

Lecture Notes in Computer Science 7610
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Tiziana Margaria Bernhard Steffen (Eds.)

Leveraging Applications
of Formal Methods,
Verification andValidation
Applications and Case Studies

5th International Symposium, ISoLA 2012
Heraklion, Crete, Greece, October 15-18, 2012
Proceedings, Part II

13

Volume Editors

Tiziana Margaria
Universität Potsdam, Institut für Informatik
August-Bebel-Straße 89, 14482 Potsdam, Germany
E-mail: margaria@cs.uni-potsdam.de

Bernhard Steffen
Technische Universität Dortmund, Fakultät für Informatik
Otto-Hahn-Straße 14, 44227 Dortmund, Germany
E-mail: steffen@cs.tu-dortmund.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34031-4 e-ISBN 978-3-642-34032-1
DOI 10.1007/978-3-642-34032-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012948288

CR Subject Classification (1998): D.2.4-5, D.2.1-3, D.3.3-4, D.4.1, D.4.5, D.4.7,
F.1.1, F.3.1-2, I.2, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to ISoLA 2012, the 4th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation, that was held in
Heraklion, Crete (Greece) during October 14–18, 2012, endorsed by EASST, the
European Association of Software Science and Technology.

This year’s event followed the tradition of its forerunners held 2004 and 2006
in Cyprus, 2008 in Chalkidiki, and 2010 in Crete, and the series of ISoLA Work-
shops in Greenbelt (USA) in 2005, Poitiers (France) in 2007, Potsdam (Germany)
in 2009, and in Vienna (Austria) in 2011.

As in the previous editions, ISoLA 2012 provided a forum for developers,
users, and researchers to discuss issues related to the adoption and use of rigor-
ous tools and methods for the specification, analysis, verification, certification,
construction, test, and maintenance of systems from the point of view of their
different application domains. Thus, since 2004 the ISoLA series of events serves
the purpose of bridging the gap between designers and developers of rigorous
tools on the one hand, and users in engineering and in other disciplines on the
other hand. It fosters and exploits synergetic relationships among scientists, en-
gineers, software developers, decision makers, and other critical thinkers in com-
panies and organizations. By providing a specific, dialogue-oriented venue for the
discussion of common problems, requirements, algorithms, methodologies, and
practices, ISoLA aims in particular at supporting researchers in their quest to
improve the usefulness, reliability, flexibility, and efficiency of tools for building
systems, and users in their search for adequate solutions to their problems.

The program of the symposium consisted of a collection of special tracks
devoted to the following hot and emerging topics

• Adaptable and Evolving Software for Eternal Systems (R. Hähnle, I. Schäfer)
• Approaches for Mastering Change (M. Leucker, M. Lochau, I. Schäfer)
• Bioscientific Data Processing and Modeling (J. Kok, A.-L. Lamprecht,

F. Verbeek, M. Wilkinson)
• Formal Methods for the Development and Certification of X-by-Wire Control

Systems (A. Fantechi, F. Flammini, S. Gnesi)
• Handling Heterogeneity in Formal Development of HW and SW Systems

(Y. Ait-Ameur, D. Mery)
• Learning Techniques for Software Verification and Validation (E.M. Clarke,

M. Gheorghiu Bobaru, C. Pasareanu, D. Song)
• Model-Based Testing and Model Inference (K. Meinke, N. Walkinshaw)
• Processes and Data Integration in the Networked Healthcare (A. Braun v.

Reinersdorff, T. Margaria, C. Rasche)
• Process-Oriented Geoinformation Systems and Applications (H. Asche)
• Quantitative Modeling and Analysis (J.-P. Katoen, K.G. Larsen)
• Runtime Verification: The Application Perspective (Y. Falcone, L. Zuck)

VI Preface

• Software Aspects of Robotic Systems (J. Knoop, D. Schreiner)
• Timing Constraints: Theory Meets Practice (B. Lisper, J. Nordlander,

P. Quinton)

and of the following four events

• LearnLib Tutorial: From Finite Automata to Register Interface Programs
(F. Howar, M. Isberner, M. Merten, B. Steffen)

• The RERS Grey-Box Challenge 2012: Analysis of Event-Condition-Action
Systems (F. Howar, M. Isberner, M. Merten, B. Steffen, D. Beyer)

• Linux Driver Verification Workshop (D. Beyer, A. Petrenko)
• ITSy Day 2012 (T. Margaria, B. Steffen)

The ISoLA Symposium was itself part of the ISoLA Week, which signaled the
steady growth of the community and included the following four co-located
events:

• STRESS 2012 — International School on Tool-Based Rigorous Engineering
of Software Systems (P.Chalin, J. Hatcliff, Robby, T. Margaria, B. Steffen)

• SEW 2012 — 35th IEEE Software Engineering Workshop (M. Hinchey,
J. Bowen, H. Zhu)

• Graduate/Postgraduate Course on Soft Skills for IT Professionals in Science
and Engineering (B. Floyd)

• FRCSS 2012 — 2nd Future Research Challenges for Software and Services
(T. Margaria)

We thank the track organizers, the members of the Program Committee and
their subreferees for their effort in selecting the papers to be presented, the
Local Organization Chair, Petros Stratis, and the Easyconference team for their
continuous precious support during the week as well as during the entire two-
year period preceding the events, and Springer for being, as usual, a very reliable
partner in the proceedings production. Finally, we are grateful to Horst Voigt
for his Web support, and to Maik Merten, Johannes Neubauer, and Stephan
Windmüller for their help with the online conference service (OCS).

Special thanks are due to the following organization for their endorsement:
EASST (European Association of Software Science and Technology), and our
own institutions — the TU Dortmund, and the University of Potsdam.

October 2012 Tiziana Margaria
Bernhard Steffen

Organization

Committees

Symposium Chair Bernhard Steffen

Program Chair Tiziana Margaria

Program Committee

Yamine Ait-Ameur
Hartmut Asche
Dirk Beyer
Mihaela Bobaru
Edmund Clarke
Ylies Falcone
Francesco Flammini
Stefania Gnesi
Reiner Hähnle
John Hatcliff
Falk Howar
Joost-Pieter Katoen
Joost Kok
Jens Knoop
Anna-Lena Lamprecht
Kim G. Larsen
Martin Leucker

Björn Lisper
Malte Lochau
Karl Meinke
Dominique Mery
Alessandro Moschitti
Johan Nordlander
Corina Pasareanu
Alexander K. Petrenko
Sophie Quinton
Ina Schaefer
Dietmar Schreiner
Dawn Song
Fons Verbeek
Neil Walkinshaw
Mark D. Wilkinson
Lenore Zuck

Table of Contents – Part II

Linux Driver Verification

Linux Driver Verification (Position Paper) . 1
Dirk Beyer and Alexander K. Petrenko

Bioscientific Data Processing and Modeling

Bioscientific Data Processing and Modeling . 7
Joost Kok, Anna-Lena Lamprecht, Fons J. Verbeek, and
Mark D. Wilkinson

Using Multiobjective Optimization and Energy Minimization to Design
an Isoform-Selective Ligand of the 14-3-3 Protein . 12

Hernando Sanchez-Faddeev, Michael T.M. Emmerich,
Fons J. Verbeek, Andrew H. Henry, Simon Grimshaw,
Herman P. Spaink, Herman W. van Vlijmen, and Andreas Bender

Segmentation for High-Throughput Image Analysis: Watershed Masked
Clustering . 25

Kuan Yan and Fons J. Verbeek

Efficient and Robust Shape Retrieval from Deformable Templates 42
Alexander E. Nezhinsky and Fons J. Verbeek

OWL-DL Domain-Models as Abstract Workflows . 56
Ian Wood, Ben Vandervalk, Luke McCarthy, and Mark D. Wilkinson

Processes and Data Integration in the Networked
Healthcare

Processes and Data Integration in the Networked Healthcare 67
Andrea Braun von Reinersdorff, Tiziana Margaria, and
Christoph Rasche

Simple Modeling of Executable Role-Based Workflows: An Application
in the Healthcare Domain . 70

Tiziana Margaria, Steve Boßelmann, and Bertold Kujath

Considerations for Healthcare Applications in a Platform as a Service
Environment . 73

Andreas Holubek and Christian Metzger

X Table of Contents – Part II

Reha-Sports: The Challenge of Small Margin Healthcare Accounting . . . 75
Markus Doedt, Thomas Göke, Jan Pardo, and Bernhard Steffen

Timing Constraints: Theory Meets Practice

Timing Constraints: Theory Meets Practice . 78
Björn Lisper, Johan Nordlander, and Sophie Quinton

A Simple and Flexible Timing Constraint Logic . 80
Björn Lisper and Johan Nordlander

Generalized Weakly-Hard Constraints . 96
Sophie Quinton and Rolf Ernst

Modeling a BSG-E Automotive System with the Timing Augmented
Description Language . 111

Marie-Agnès Peraldi-Frati, Arda Goknil, Morayo Adedjouma, and
Pierre Yves Gueguen

Formal Analysis of TESLA Protocol in the Timed OTS/CafeOBJ
Method . 126

Iakovos Ouranos, Kazuhiro Ogata, and Petros Stefaneas

Formal Specification and Verification of Task Time Constraints for
Real-Time Systems . 143

Ning Ge, Marc Pantel, and Xavier Crégut

The WCET Analysis Tool CalcWcet167 . 158
Raimund Kirner

Abstract Execution for Event-Driven Systems – An Application from
Automotive/Infotainment Development . 173

Klaus Birken

Formal Methods for the Development and
Certification of X-by-Wire Control Systems

Formal Methods for Intelligent Transportation Systems 187
Alessandro Fantechi, Francesco Flammini, and Stefania Gnesi

Model-Driven V&V Processes for Computer Based Control Systems:
A Unifying Perspective . 190

Francesco Flammini, Stefano Marrone, Nicola Mazzocca,
Roberto Nardone, and Valeria Vittorini

Formal Methods in Avionic Software Certification: The DO-178C
Perspective . 205

Gabriella Gigante and Domenico Pascarella

Table of Contents – Part II XI

Product Line Engineering Applied to CBTC Systems Development 216
Alessio Ferrari, Giorgio Oronzo Spagnolo, Giacomo Martelli, and
Simone Menabeni

Improving Verification Process in Driverless Metro Systems: The
MBAT Project . 231

Stefano Marrone, Roberto Nardone, Antonio Orazzo,
Ida Petrone, and Luigi Velardi

Optimising Ordering Strategies for Symbolic Model Checking of
Railway Interlockings . 246

Kirsten Winter

Automated Generation of Safety Requirements from Railway
Interlocking Tables . 261

Anne E. Haxthausen

Distributing the Challenge of Model Checking Interlocking Control
Tables . 276

Alessandro Fantechi

Quantitative Modelling and Analysis

Quantitative Modelling and Analysis . 290
Joost-Pieter Katoen and Kim Guldstrand Larsen

Schedulability of Herschel-Planck Revisited Using Statistical Model
Checking . 293

Alexandre David, Kim Guldstrand Larsen, Axel Legay, and
Marius Mikučionis

Checking Correctness of Services Modeled as Priced Timed
Automata . 308

Aida Čaušević, Cristina Seceleanu, and Paul Pettersson

Software Aspects of Robotic Systems

Software Aspects of Robotic Systems . 323
Jens Knoop and Dietmar Schreiner

Process-Oriented Geoinformation Systems and
Applications

Process-Oriented Geoinformation Systems and Applications 324
Hartmut Asche

XII Table of Contents – Part II

Concepts and Techniques of an Online 3D Atlas – Challenges in
Cartographic 3D Geovisualization . 325

René Sieber, Livia Hollenstein, and Remo Eichenberger

Handling Heterogeneity in Formal Development of
HW and SW Systems

Handling Heterogeneity in Formal Developments of Hardware and
Software Systems . 327

Yamine Ait-Ameur and Dominique Méry

Leveraging Formal Verification Tools for DSML Users: A Process
Modeling Case Study . 329

Faiez Zalila, Xavier Crégut, and Marc Pantel

An Ontological Pivot Model to Interoperate Heterogeneous User
Requirements . 344

Ilyès Boukhari, Ladjel Bellatreche, and Stéphane Jean

Author Index . 359

Table of Contents – Part I

Adaptable and Evolving Software for Eternal Systems

Adaptable and Evolving Software for Eternal
Systems (Track Summary) . 1

Reiner Hähnle and Ina Schaefer

Challenges in Defining a Programming Language for Provably Correct
Dynamic Analyses . 4

Eric Bodden, Andreas Follner, and Siegfried Rasthofer

Eternal Embedded Software: Towards Innovation Experiment
Systems . 19

Jan Bosch and Ulrik Eklund

A Liskov Principle for Delta-Oriented Programming 32
Reiner Hähnle and Ina Schaefer

Scientific Workflows: Eternal Components, Changing Interfaces,
Varying Compositions . 47

Anna-Lena Lamprecht and Tiziana Margaria

An Object Group-Based Component Model . 64
Michaël Lienhardt, Mario Bravetti, and Davide Sangiorgi

Automated Inference of Models for Black Box Systems Based on
Interface Descriptions . 79

Maik Merten, Falk Howar, Bernhard Steffen,
Patrizio Pellicione, and Massimo Tivoli

Model-Based Compatibility Checking of System Modifications 97
Arnd Poetzsch-Heffter, Christoph Feller, Ilham W. Kurnia, and
Yannick Welsch

A Generic Platform for Model-Based Regression Testing 112
Philipp Zech, Michael Felderer, Philipp Kalb, and Ruth Breu

Approaches for Mastering Change

Approaches for Mastering Change . 127
Ina Schaefer, Malte Lochau, and Martin Leucker

A Formal Approach to Software Product Families . 131
Martin Leucker and Daniel Thoma

XIV Table of Contents – Part I

A Compositional Framework to Derive Product Line Behavioural
Descriptions . 146

Patrizia Asirelli, Maurice H. ter Beek, Alessandro Fantechi, and
Stefania Gnesi

Delta-Oriented Monitor Specification . 162
Eric Bodden, Kevin Falzon, Ka I. Pun, and Volker Stolz

Conflict Detection in Delta-Oriented Programming 178
Michaël Lienhardt and Dave Clarke

Family-Based Analysis of Type Safety for Delta-Oriented Software
Product Lines . 193

Ferruccio Damiani and Ina Schaefer

A Vision for Behavioural Model-Driven Validation of Software Product
Lines . 208

Xavier Devroey, Maxime Cordy, Gilles Perrouin,
Eun-Young Kang, Pierre-Yves Schobbens, Patrick Heymans,
Axel Legay, and Benoit Baudry

Parameterized Preorder Relations for Model-Based Testing of Software
Product Lines . 223

Malte Lochau and Jochen Kamischke

SmartTies – Management of Safety-Critical Developments 238
Serge Autexier, Dominik Dietrich, Dieter Hutter,
Christoph Lüth, and Christian Maeder

Tracking Behavioral Constraints during Object-Oriented Software
Evolution . 253

Johan Dovland, Einar Broch Johnsen, and Ingrid Chieh Yu

Towards the Verification of Adaptable Processes . 269
Mario Bravetti, Cinzia Di Giusto, Jorge A. Pérez, and
Gianluigi Zavattaro

Runtime Verification: The Application Perspective

Runtime Verification: The Application Perspective 284
Yliès Falcone and Lenore D. Zuck

What Does AI Have to Do with RV? (Extended Abstract) 292
Klaus Havelund

A Case for “Piggyback” Runtime Monitoring . 295
Sylvain Hallé and Raphaël Tremblay-Lessard

Table of Contents – Part I XV

A Unified Approach for Static and Runtime Verification: Framework
and Applications . 312

Wolfgang Ahrendt, Gordon J. Pace, and Gerardo Schneider

Statistical Model Checking QoS Properties of Systems with SBIP 327
Saddek Bensalem, Marius Bozga, Benoit Delahaye, Cyrille Jegourel,
Axel Legay, and Ayoub Nouri

Monitoring Temporal Information Flow . 342
Rayna Dimitrova, Bernd Finkbeiner, and Markus N. Rabe

Dynamic Information-Flow Analysis for Multi-threaded Applications . . . 358
Laurent Mounier and Emmanuel Sifakis

Bounded-Interference Sequentialization for Testing Concurrent
Programs . 372

Niloofar Razavi, Azadeh Farzan, and Andreas Holzer

Runtime Verification of Biological Systems . 388
Alexandre David, Kim Guldstrand Larsen, Axel Legay,
Marius Mikučionis, Danny Bøgsted Poulsen, and Sean Sedwards

Behavioral Specification Based Runtime Monitors for OSGi Services 405
Jan Olaf Blech, Yliès Falcone, Harald Rueß, and Bernhard Schätz

Modelling and Decentralised Runtime Control of Self-stabilising Power
Micro Grids . 420

Arnd Hartmanns and Holger Hermanns

Model-Based Testing and Model Inference

Model-Based Testing and Model Inference . 440
Karl Meinke and Neil Walkinshaw

Algorithmic Improvements on Regular Inference of Software Models
and Perspectives for Security Testing . 444

Roland Groz, Muhammad-Naeem Irfan, and Catherine Oriat

Test-Case Design by Feature Trees . 458
Takashi Kitamura, Ngoc Thi Bich Do, Hitoshi Ohsaki,
Ling Fang, and Shunsuke Yatabe

Model-Based Static Code Analysis for MATLAB Models 474
Zheng Lu and Supratik Mukhopadhyay

An Incremental Learning Algorithm for Extended Mealy Automata 488
Karl Meinke and Fei Niu

XVI Table of Contents – Part I

Learning Techniques for Software Verification and
Validation

Learning Techniques for Software Verification and Validation 505
Corina S. Păsăreanu and Mihaela Bobaru

Learning Stochastic Timed Automata from Sample Executions 508
André de Matos Pedro, Paul Andrew Crocker, and
Simão Melo de Sousa

Learning Minimal Deterministic Automata from Inexperienced
Teachers . 524

Martin Leucker and Daniel Neider

Model Learning and Test Generation for Event-B Decomposition 539
Ionut Dinca, Florentin Ipate, and Alin Stefanescu

Inferring Semantic Interfaces of Data Structures . 554
Falk Howar, Malte Isberner, Bernhard Steffen, Oliver Bauer, and
Bengt Jonsson

Learning-Based Test Programming for Programmers 572
Alex Groce, Alan Fern, Martin Erwig, Jervis Pinto,
Tim Bauer, and Amin Alipour

LearnLib Tutorial: From Finite Automata to Register
Interface Programs

LearnLib Tutorial: From Finite Automata to Register Interface
Programs . 587

Falk Howar, Malte Isberner, Maik Merten, and Bernhard Steffen

Automated Learning Setups in Automata Learning 591
Maik Merten, Malte Isberner, Falk Howar, Bernhard Steffen, and
Tiziana Margaria

RERS Grey-Box Challenge 2012

The RERS Grey-Box Challenge 2012:
Analysis of Event-Condition-Action Systems . 608

Falk Howar, Malte Isberner, Maik Merten, Bernhard Steffen, and
Dirk Beyer

Author Index . 615

Linux Driver Verification

(Position Paper)

Dirk Beyer1 and Alexander K. Petrenko2

1 University of Passau, Germany
2 ISPRAS, Moscow, Russia

Abstract. Linux driver verification is a large application area for
software verification methods, in particular, for functional, safety, and se-
curity verification. Linux driver software is industrial production code —
IT infrastructures rely on its stability, and thus, there are strong require-
ments for correctness and reliability. This implies that if a verification
engineer has identified a bug in a driver, the engineer can expect quick
response from the development community in terms of bug confirmation
and correction. Linux driver software is complex, low-level systems code,
and its characteristics make it necessary to bring to bear techniques from
program analysis, SMT solvers, model checking, and other areas of soft-
ware verification. These areas have recently made a significant progress
in terms of precision and performance, and the complex task of verifying
Linux driver software can be successful if the conceptual state-of-the-art
becomes available in tool implementations.

1 Overview

The Linux kernel is currently one of the most important software systems in
our society. Linux is used as kernel for several popular desktop operating sys-
tems (e.g., Ubuntu, Fedora, Debian, Gentoo), and thus, the seamless workflow of
many users depends on this software. Perhaps even more importantly, the server
operating systems that currently dominate the market are based on Linux. Al-
most all (90% in 2010) supercomputers run a Linux-based operating system.
Increasingly many embedded devices such as smart phones run Linux as kernel
(e.g., Android, Maemo, WebOS). This explains an increasing need for automatic
verification of Linux components.

Microsoft had identified the device drivers as the most important source of
failures in their operating systems. Consequently, the company has significantly
increased the reliability of Windows by integrating the Static Driver Verifier
(Sdv) into the production cycle. The foundations were developed in the Slam

research project [1]. The Sdv kit is now included by default in the Windows
Driver Kit (Wdk).

For Linux, an industry-funded verification project of the size of Sdv does
not exist. But the development community is increasingly looking for automatic
techniques for verifying crucial properties, and the verification community is us-
ing Linux drivers as application domain for new analysis techniques. During the

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 1–6, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 D. Beyer and A.K. Petrenko

last years, three verification environments were build in order to define verifica-
tion tasks from Linux drivers: the Linux Driver Verification project 1 [23], the
Avinux project [27], and the DDVerify project 2 [32].

The Linux code base is a popular source for verification tasks [17, 22, 24, 25].
Linux drivers provide a unique combination of specific characteristics that at-
tract researchers and practitioners to challenge their tools. The most impor-
tant benefits of using the Linux code as source for verification tasks are the
following:

• the software is important – many people are interested in verification results;
• every bug in a driver is potentially critical because the driver runs with
kernel privileges and in the kernel’s address space;

• the code volume is enormously large (10MLOC) and continuously increases;
• the verification tasks are difficult enough to be challenging, but not too
complex to be hopeless; and

• most Linux drivers are licensed as open source and therefore easy to use in
verification and research projects.

Although many new advancements in the area of software verification have been
made, it requires a special effort to transfer them to practice and make them
applicable to complex industrial code such as Linux device drivers. The recent
competition on software verification (SV-COMP’12) 3 [3] showed that even mod-
ern state-of-the-art tool implementations have problems analyzing the problems
in the category on device drivers.

2 Research Directions

Pointer Analysis and Dynamic Data Structures. Many safety properties
of device drivers depend on a precise analysis of pointers and data structures
on the heap. The analysis of pointers is well understood, but due to the low-
level code that is used in system programming, the analysis concepts are dif-
ficult to implement. The LDV project has made a significant progress on this
topic with implementing a more precise pointer analysis into the software model
checker Blast [29]. This improved version of the original software model checker
Blast [5] is the SV-COMP’12 winner on the verification tasks that were derived
from the Linux kernel [28].

The analysis of data structures is still an ongoing research topic, with signifi-
cant progress in the last years; however, there is no large set of open benchmark
verification tasks to practically compare the different implementations. The tool
Predator is an example of a state-of-the-art static analyzer with the ability to
check data structures and memory safety [16].

1 http://linuxtesting.org/project/ldv
2 http://www.cprover.org/ddverify
3 http://sv-comp.sosy-lab.org

http://linuxtesting.org/project/ldv/
http://www.cprover.org/ddverify/
http://sv-comp.sosy-lab.org/

Linux Driver Verification 3

Symbolic Verification. Due to the progress in SMT solving, formula-based
symbolic representations of abstract states are nowadays effective and efficient.
Microsoft’s Sdv and Slam [1], and several current research tools are based on
predicate abstraction [5, 8, 12, 18]. Several tool implementations integrate the
concepts of counterexample-guided abstract refinement (CEGAR) [11], various
kinds of shape analysis, abstract reachability trees [5], lazy abstraction [21],
interpolation [20], and large-block encoding [4, 9]. Also bounded model check-
ing [10] is a technique of practical relevance and with impressive results in the
verification competition [14, 30].

Not yet sufficiently addressed in research projects are the problems of de-
termining the interpolants (there is a wide range between weak and strong in-
terpolants), block-sizes (which criterion should be used to determine the end
of a block that is completely encoded in one post operation), and traversal or-
ders (coverage-directed verification, BFS, DFS, etc.). Another important and
promising technique that has been largely ignored in software verification is the
possibility to encode abstract states and transition relations completely as bi-
nary decision diagrams (BDD). There was some progress on this topic, e.g., the
extension of CPAchecker and Java PathFinder to using BDDs to represent the
state space that boolean variables span in code of product-line simulators [31].

Explicit-State Verification. Some explicit-state model checkers are successful
in their application domain (e.g., Spin and Java PathFinder). In order to apply
this technology to the verification of driver software in a scalable manner, it
would be interesting to incorporate state-of-the-art techniques that are successful
in symbolic verification. For example, CEGAR should be used to automatically
create an abstraction, and Craig interpolation for explicit-value domains could
identify which parts of the state space are necessary to be analyzed.

Combination of Verification Techniques. In the past, several combination
techniques have been proposed for assembling new analyses that are created by
parallel combination of different existing analyses [7, 15]. This is extremely ef-
fective and should receive more attention and be used in practical applications.
The practical application of parallel combinations is hindered by technical bar-
riers: the two analyses have to use the same traversal algorithm, have to be
implemented in the same programming language and in compatible tool envi-
ronments, and need to run on the same machine at the same location (e.g., not
distributed in a computing cloud).

Sequential combination using conditional model checking is an effective solu-
tion to this problem [6]. Different tools and techniques can be run one after the
other, and try to solve the verification task using the various strengths. A condi-
tional model checker is instructed when to give up (by an input condition). The
input conditions represent a flexible way of bounding or restricting the verifica-
tion process. Output conditions represent the state space that was successfully
verified already. A successive verifier can use such conditions of previous runs to
not perform the same verification work again, but concentrate on applying its
strengths to the remaining task.

4 D. Beyer and A.K. Petrenko

Termination Analysis. An area that needs more attention is termination
analysis. There are a few tools for termination checking (most prominently,
Armc [26]) but the technology is not yet as wide-spread as it should be. The
technology has been adopted and further improved by Microsoft’s Terminator

project [13].

Concurrency. Due to the increasing availability of multi-core machines, the
verification of multi-threaded software becomes an important research direction.
Checking for race conditions and deadlocks is an essential quality assurance
means that needs to be applied to Linux driver software as well. The verification
community actively invents new concepts and implements new tools to approach
this problem (for example, Esbmc [14], SATabs [2], Threader [19]). It is inter-
esting to observe that the best tool for checking concurrency problems in the
last competition was a bounded model checker [14].

3 Conclusion

We outlined the motivation for considering Linux device drivers as application
domain for verification research. It is important to develop verification tools that
are efficient and effective enough to successfully check software components that
are as complex as device drivers. The benefits are twofold: for the society it is
important to get such crucial software verified; for the verification community it
is important to get realistic verification tasks in order to tune and further develop
the technology. We provided an overview of the state-of-the-art and pointed out
research directions in which further progress is essential.

References

1. Ball, T., Rajamani, S.K.: The Slam Project: Debugging System Software via Static
Analysis. In: Proc. POPL, pp. 1–3. ACM (2002)

2. Basler, G., Donaldson, A., Kaiser, A., Kröning, D., Tautschnig, M., Wahl, T.:
SatAbs: A Bit-Precise Verifier for C Programs. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 552–555. Springer, Heidelberg (2012)

3. Beyer, D.: Competition on Software Verification. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg (2012)

4. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
Model Checking via Large-block Encoding. In: Proc. FMCAD, pp. 25–32. IEEE
(2009)

5. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007)

6. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional Model
Checking: A Technique to Pass Information Between Verifiers. In: Proc. FSE. ACM
(2012)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program Analysis with Dynamic Pre-
cision Adjustment. In: Proc. ASE, pp. 29–38. IEEE (2008)

8. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

Linux Driver Verification 5

9. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate Abstraction with Adjustable-
Block Encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010)

10. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement for Symbolic Model Checking. J. ACM 50(5), 752–794
(2003)

12. Clarke, E., Kröning, D., Sharygina, N., Yorav, K.: SatAbs: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

13. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond Safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidelberg
(2006)

14. Cordeiro, L., Morse, J., Nicole, D., Fischer, B.: Context-Bounded Model Check-
ing with ESBMC 1.17. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 534–537. Springer, Heidelberg (2012)

15. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: Combination of Abstractions in the ASTRÉE Static Analyzer. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer, Heidelberg
(2008)

16. Dudka, K., Müller, P., Peringer, P., Vojnar, T.: Predator: A Verification Tool for
Programs with Dynamic Linked Data Structures. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 545–548. Springer, Heidelberg (2012)

17. Galloway, A., Lüttgen, G., Mühlberg, J.T., Siminiceanu, R.I.: Model-Checking the
Linux Virtual File System. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 74–88. Springer, Heidelberg (2009)

18. Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C):
A Software Verifier Based on Horn Clauses. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 549–551. Springer, Heidelberg (2012)

19. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A Constraint-Based Verifier
for Multi-threaded Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 412–417. Springer, Heidelberg (2011)

20. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
Proofs. In: Proc. POPL, pp. 232–244. ACM (2004)

21. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Proc.
POPL, pp. 58–70. ACM (2002)

22. Khoroshilov, A., Mutilin, V., Novikov, E., Shved, P., Strakh, A.: Towards an Open
Framework for C Verification Tools Benchmarking. In: Clarke, E., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 179–192. Springer, Heidelberg
(2012)

23. Khoroshilov, A., Mutilin, V., Petrenko, A., Zakharov, V.: Establishing Linux Driver
Verification Process. In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009.
LNCS, vol. 5947, pp. 165–176. Springer, Heidelberg (2010)

24. Mühlberg, J.T., Lüttgen, G.: Blasting Linux Code. In: Brim, L., Haverkort, B.R.,
Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346,
pp. 211–226. Springer, Heidelberg (2007)

25. Penninckx, W., Mühlberg, J.T., Smans, J., Jacobs, B., Piessens, F.: Sound Formal
Verification of Linux’s USB BP Keyboard Driver. In: Goodloe, A.E., Person, S.
(eds.) NFM 2012. LNCS, vol. 7226, pp. 210–215. Springer, Heidelberg (2012)

6 D. Beyer and A.K. Petrenko

26. Podelski, A., Rybalchenko, A.: Transition Predicate Abstraction and Fair Termi-
nation. In: Proc. POPL, pp. 132–144. ACM (2005)

27. Post, H., Sinz, C., Küchlin, W.: Towards Automatic Software Model Checking of
Thousands of Linux Modules — A Case Study with Avinux. Softw. Test., Verif.
Reliab. 19(2), 155–172 (2009)

28. Shved, P., Mandrykin, M., Mutilin, V.: Predicate Analysis with BLAST 2.7.
In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 525–527.
Springer, Heidelberg (2012)

29. Shved, P., Mutilin, V., Mandrykin, M.: Experience of Improving the Blast Static
Verification Tool. Programming and Computer Software 38(3), 134–142 (2012)

30. Sinz, C., Merz, F., Falke, S.: LLBMC: A Bounded Model Checker for LLVM’s Inter-
mediate Representation. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 542–544. Springer, Heidelberg (2012)

31. von Rhein, A., Apel, S., Raimondi, F.: Introducing Binary Decision Diagrams in
the Explicit-State Verification of Java Code. In: Proc. Java Pathfinder Workshop
(2011)

32. Witkowski, T., Blanc, N., Kröning, D., Weissenbacher, G.: Model Checking Con-
current Linux Device Drivers. In: Proc. ASE, pp. 501–504. ACM (2007)

Bioscientific Data Processing and Modeling

Joost Kok1, Anna-Lena Lamprecht2, Fons J. Verbeek1,
and Mark D. Wilkinson3

1 Leiden Institute of Advanced Computer Science, Leiden University,
2300 RA Leiden, The Netherlands

{joost,fverbeek}@liacs.nl
2 Chair for Service and Software Engineering, University of Potsdam,

14482 Potsdam, Germany
lamprecht@cs.uni-potsdam.de

3 Centro de Biotecnoloǵıa y Genómica de Plantas,
Parque Cient́ıfico y Tecnológico de la U.P.M., Campus de Montegancedo, 28223

Pozuelo de Alarcón (Madrid), Spain
mark.wilkinson@upm.es

With more than 200 different types of “-omic” data [1] spanning from sub-
molecular, through molecular, cell, cell-systems, tissues, organs, phenotypes,
gene-environment interactions, and ending at ecology and organism communi-
ties, the problem and complexity of bioscientific data processing has never been
greater. Often data are generated in high-throughput studies with the aim to
have a sufficient volume to find patterns and detect rare events. For these high-
throughput approaches new methods have to be developed in order to assure
integrity of the volume of data that is produced. At the same time efforts to
integrate these widely-varying data types are underway in research fields such
as systems biology. Systems-level research requires yet additional methodologies
to pipeline, process, query, and interpret data, and such pipelines are, them-
selves, objects of scientific value if they can be re-used or re-purposed by other
researchers.

This ISoLA 2012 special track focuses at the various topics concerned with the
discovery and preservation of knowledge in the biosciences. The track comprises
four papers, of which three are concerned with algorithms for image analysis,
and one with a new workflow management methodology. The following gives a
brief overview of these two thematic areas and of all the papers in the track.

Algorithms for Image Analysis

Although imaging and bioinformatics are research fields in their own right, there
exists a quite substantial overlap between these two areas. On the interface
of these two fields we find typically with image analysis as well as with the
study of interoperability of image information to other bio-molecular information
resources. In the life-sciences image analysis spans quite an application area
ranging from molecular biology to interpretation of areal imagery for ecology.
Then there is medical imaging focussed on patients and health care. Here we
focus on the imaging from the molecules to (small) organisms; the imaging device
is the microscope and the field is pre-clinical research.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 7–11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

8 J. Kok et al.

In microscopy imaging, at least, three issues are important, the first being
obtaining and organizing the images, then analyzing the images and reducing
the scene to numbers so that patterns can be found and analyzed, next, the
information in the image needs to be represented properly. The analysis of images
requires images to be acquired in large volumes so that patterns are statistically
meaningful. Moreover, large volumes are required to detect rare events. A trend
in life sciences research is, therefore, to approach problem with a high-throughput
workflow. This puts demands in the acquisition phase, that need be largely
automated but also on the processing phase. The latter requires algorithms that
are robust and reproducible; here we present two examples on different levels
of resolution, one on the organismal/tissue level [2,3] and one at the cellular
level [4,5]; application of high-throughput to cellular systems is also referred to
as cytomics. The specific algorithms that are presented here are designed and
evaluated with the specific requirements for high-throughput analysis in mind.

Further processing of the features extracted from the images requires frame-
works for pattern recognition specific to the data at hand [4,6,2]. However, we
need to be able to integrate images as well as the resulting analysis in systems
that include a reference model. Such systems are now being made on the level
of the model system: e.g. mouse [7], the zebrafish [8,9], but also on the level of
the organ. The brain is a good example for that, the rodent brain is used as a
model for the human brain and specific reference systems for integration are be-
ing developed for the rodent brain [7]. The integration requires intelligent use of
reference systems on the semantic level [4,10]. Therefore well maintained ontolo-
gies will be extremely important to maintain and disclose the large amounts of
data that are currently produced. Ultimately, resources for genomic and molec-
ular research will be integrated with image based resources. The challenge for
the scientific community is to do this right.

The first paper of this ISoLA track, Using multiobjective optimization
and energy minimization to design an isoform-selective ligand of the
14-3-3 protein (Hernando Sanchez-Faddeev, Michael T.M. Emmerich, Fons J.
Verbeek, Andrew H. Henry, Simon Grimshaw, Herman P. Spaink, Herman W.
van Vlijmen and Andreas Bender) [11], presents an approach for de novo design
of protein ligands based on evolutionary multiobjective optimization. It shows
that multiobjective optimization with evolutionary algorithms can be success-
fully employed in selective ligand design.

The paper Segmentation for High-throughput Image Analysis: Water-
shed Masked Clustering (by Kuan Yan and Fons J. Verbeek) [12] is concerned
with high-throughput analysis of images of cells. It describes a new segmenta-
tion algorithm for high-throughput imaging, which is in particular suitable for
image analyses in the fields of cytomics and high-throughput screening. The al-
gorithm has been used with good results in a number of studies and is reported
to perform better than previous algorithms for this task.

In Efficient and Robust Shape Retrieval from Deformable Templates
(Alexander E. Nezhinski and Fons J. Verbeek) [13] an algorithmic framework for
the automated detection of shapes in images through deformable templates is

Bioscientific Data Processing and Modeling 9

presented. For demonstration purposes, it is applied to a biological case study,
namely to high-throughput screening images of zebrafish larvae, and the algo-
rithm is reported to be particularly accurate and robust.

Workflow Management

In recent years, numerous software systems have been developed for specifically
supporting the management of scientific workflows (see, e.g., [14,15] for surveys).
Research in this comparatively new field is currently going into many different
directions. At the previous ISoLA in 2010, we focused on workflow management
for scientific applications in the scope of a symposium track on “Tools in sci-
entific workflow composition” [16], which comprised papers on subjects such as
tools and frameworks for workflow composition, semantically aware workflow
development, and automatic workflow composition, as well as some case studies,
examples, and experiences.

Particularly interesting and challenging in the field of scientific workflow man-
agement is currently the research concerned with the use of semantics-based
methods for automating workflow composition (see, e.g., [17,18]). Some examples
of concrete systems which have lately been applied for semantics-based, (semi-)
automatic workflow composition in the bioinformatics domain are the Bio-jETI
framework [19,20,21] that makes use of workflow synthesis techniques to trans-
late abstract, high-level workflow specifications into concrete, executable work-
flow instances, the jORCA [22,23] system that automatically creates pipelines
of web services given the desired input and output data types, the SADI and
SHARE frameworks [24,25] that facilitate on-the-fly service discovery and exe-
cution based on OWL-annotated data, and the Wings (Workflow INstance Gen-
eration and Selection) [26] extension for the Pegasus [27] grid workflow system
that provides functionality for (semi-) automatic workflow creation based on
semantic representations and planning techniques. Some of these systems have
also been presented in the scope of the ISoLA 2010 track.

In this context, and as a continuation of the ISoLA 2010 paper on semantics-
guided workflow construction in the Taverna workbench [28], the fourth paper of
our track addresses the problem of workflow sharing and re-purposing in bioin-
formatics: In OWL-DL domain models as abstract workflows (Ian Wood,
Ben Vandervalk, Luke McCarthy and Mark D. Wilkinson) [29], the authors dis-
cuss the growing popularity of formal analytical workflows, and the associated
difficulty in re-using these workflows due to their rigidity. To overcome these
issues, they present an original approach where a domain-concept, modeled in
OWL-DL and based on the SADI and SHARE frameworks, can be used dy-
namically as a workflow template, which is then concretized into a Web Service
workflow at run-time. Moreover, the semantics inherent in these domain-models
can act as a form of workflow annotation. The authors propose that, over time,
these abstract workflows may be easier to share and repurpose than conven-
tional “concrete” workflows. The paper demonstrates the approach by automat-
ically reproducing a published comparative genomics analysis through creating
an OWL-DL representation of the biological phenomenon being studied.

10 J. Kok et al.

References

1. McDonald, D., Clemente, J., Kuczynski, J., Rideout, J., Stombaugh, J., Wendel,
D., Wilke, A., Huse, S., Hufnagle, J., Meyer, F., Knight, R., Caporaso, J.: The
Biological Observation Matrix (BIOM) format or: how I learned to stop worrying
and love the ome-ome. GigaScience 1(1), 7 (2012)

2. Stoop, E., Schipper, T., Rosendahl Huber, S., Nezhinsky, A., Verbeek, F., Gurcha,
S., Besra, G., Vandenbroucke-Grauls, C., Bitter, W., van der Sar, A.: Zebrafish
embryo screen for mycobacterial genes involved in the initiation of granuloma for-
mation reveals a newly identified ESX-1 component. Disease Model Mechanisms,
526–536 (2011)

3. Nezhinsky, A.E., Verbeek, F.J.: Pattern Recognition for High Throughput Ze-
brafish Imaging Using Genetic Algorithm Optimization. In: Dijkstra, T.M.H.,
Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds.) PRIB 2010. LNCS, vol. 6282,
pp. 301–312. Springer, Heidelberg (2010)

4. Larios, E., Zhang, Y., Yan, K., Di, Z., LeDévédec, S., Groffen, F., Verbeek, F.J.:
Automation in Cytomics: A Modern RDBMS Based Platform for Image Analysis
and Management in High-Throughput Screening Experiments. In: He, J., Liu, X.,
Krupinski, E.A., Xu, G. (eds.) HIS 2012. LNCS, vol. 7231, pp. 76–87. Springer,
Heidelberg (2012)

5. LeDévédec, S., Yan, K., de Bont, H., Ghotra, V., Truong, H., Danen, E., Verbeek,
F., van de Water, B.: A Systems Microscopy Approach to Understand Cancer Cell
Migration and Metastasis. Journal Cellular and Molecular Life Sciences 67(19),
3219–3240 (2010)

6. Yan, K., Larios, E., LeDevedec, S., van de Water, B., Verbeek, F.J.: Automation
in Cytomics: Systematic Solution for Image Analysis and Management in High
Throughput Sequences. In: Proceedings IEEE Conf. Engineering and Technology
(CET 2011), vol. 7 (2011)

7. Hawrylycz, M., Baldock, R.A., Burger, A., Hashikawa, T., Johnson, G.A., Martone,
M., Ng, L., Lau, C., Larsen, S.D., Nissanov, J., Puelles, L., Ruffins, S., Verbeek, F.,
Zaslavsky, I., Boline, J.: Digital Atlasing and Standardization in the Mouse Brain.
PLoS Comput. Biol. 7(2), e1001065+ (2011)

8. Belmamoune, M., Potikanond, D., Verbeek, F.: Mining and analysing spatio-
temporal patterns of gene expression in an integrative database framework. Journal
of Integrative Bioinformatics 7(3)(128), 1–10 (2010)

9. Verbeek, F., Boon, P., Sloetjes, H., van der Velde, R., de Vos, N.: Visualization of
complex data sets over Internet: 2D and 3D visualization of the 3D digital atlas of
zebrafish development. In: Proc. SPIE 4672, Internet Imaging III, pp. 20–29 (2002)

10. Slob, J., Kallergi, A., Verbeek, F.J.: Observations on Semantic Annotation of
Microscope Images for Life Sciences. In: Marshall, M.S., Burger, A., Romano,
P., Paschke, A., Splendiani, A. (eds.) SWAT4LS. CEUR Workshop Proceedings,
vol. 559, CEUR-WS.org (2009)

11. Sanchez-Faddeev, H., Emmerich, M.T., Verbeek, F.J., Henry, A.H., Grimshaw, S.,
Spaink, H.P., van Vlijmen, H.W., Bender, A.: Using Multiobjective Optimization
and Energy Minimization to Design an Isoform-Selective Ligand of the 14-3-3 Pro-
tein. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610,
pp. 12–24. Springer, Heidelberg (2012)

12. Yan, K., Verbeek, F.J.: Segmentation for High-throughput Image Analysis: Water-
shed Masked Clustering. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II.
LNCS, vol. 7610, pp. 25–41. Springer, Heidelberg (2012)

Bioscientific Data Processing and Modeling 11

13. Nezhinsky, A.E., Verbeek, F.J.: Efficient and Robust Shape Retrieval from De-
formable Templates. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS,
vol. 7610, pp. 42–55. Springer, Heidelberg (2012)

14. Taylor, I.: Workflows for E-Science: Scientific Workflows for Grids. Springer (2007)
15. Wikipedia: Bioinformatics workflow management systems — Wikipedia, The Free

Encyclopedia (2012) (Online; last accessed June 25, 2012)
16. Kok, J.N., Lamprecht, A.-L., Wilkinson, M.D.: Tools in Scientific Workflow Com-

position. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415,
pp. 258–260. Springer, Heidelberg (2010)

17. Chen, L., Shadbolt, N.R., Goble, C.A., Tao, F., Cox, S.J., Puleston, C., Smart,
P.R.: Towards a Knowledge-Based Approach to Semantic Service Composition. In:
Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
319–334. Springer, Heidelberg (2003)

18. Lord, P., Bechhofer, S., Wilkinson, M.D., Schiltz, G., Gessler, D., Hull, D., Goble,
C.A., Stein, L.: Applying Semantic Web Services to Bioinformatics: Experiences
Gained, Lessons Learnt. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F.
(eds.) ISWC 2004. LNCS, vol. 3298, pp. 350–364. Springer, Heidelberg (2004)

19. Lamprecht, A.L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-
based service composition. BMC Bioinformatics 10(suppl. 10), S8 (2009)

20. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based compo-
sition of EMBOSS services. Biomedical Semantics 2(suppl. 1), S5 (2011)

21. Lamprecht, A.L., Naujokat, S., Steffen, B., Margaria, T.: Constraint-Guided Work-
flow Composition Based on the EDAM Ontology. In: Burger, A., Marshall, M.S.,
Romano, P., Paschke, A., Splendiani, A. (eds.) Proceedings of the 3rd Workshop
on Semantic Web Applications and Tools for Life Sciences (SWAT4LS 2010), vol.
698, CEUR Workshop Proceedings (December 2010)

22. Mart́ın-Requena, V., Ŕıos, J., Garćıa, M., Ramı́rez, S., Trelles, O.: jORCA: easily
integrating bioinformatics Web Services. Bioinformatics 26(4), 553–559 (2010)

23. Karlsson, J., Mart́ın-Requena, V., Ŕıos, J., Trelles, O.: Workflow Composition and
Enactment Using jORCA. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I.
LNCS, vol. 6415, pp. 328–339. Springer, Heidelberg (2010)

24. Wilkinson, M.D., Vandervalk, B., McCarthy, L.: SADI Semantic Web Services -
’cause you can’t always GET what you want! In: Proceedings of the IEEE Ser-
vices Computing Conference, APSCC 2009, December 7-11, pp. 13–18. IEEE Asia-
Pacific, Singapore (2009)

25. Vandervalk, B.P., McCarthy, E.L., Wilkinson, M.D.: SHARE: A Semantic Web
Query Engine for Bioinformatics. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.)
ASWC 2009. LNCS, vol. 5926, pp. 367–369. Springer, Heidelberg (2009)

26. Gil, Y., Ratnakar, V., Deelman, E., Mehta, G., Kim, J.: Wings for Pegasus: creating
large-scale scientific applications using semantic representations of computational
workflows. In: Proceedings of the 19th National Conference on Innovative Appli-
cations of Artificial Intelligence, vol. 2, pp. 1767–1774. AAAI Press (2007)

27. Deelman, E., Singh, G., Hui Su, M., Blythe, J., Gil, A., Kesselman, C., Mehta, G.,
Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus:
a framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming Journal 13, 219–237 (2005)

28. Withers, D., Kawas, E., McCarthy, L., Vandervalk, B., Wilkinson, M.:
Semantically-Guided Workflow Construction in Taverna: The SADI and BioMoby
Plug-Ins. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415,
pp. 301–312. Springer, Heidelberg (2010)

29. Wood, I., Vandervalk, B., McCarthy, L., Wilkinson, M.D.: OWL-DL Domain Mod-
els as Abstract Workflows. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part
II. LNCS, vol. 7610, pp. 56–66. Springer, Heidelberg (2012)

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 12–24, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Using Multiobjective Optimization and Energy
Minimization to Design an Isoform-Selective Ligand

of the 14-3-3 Protein

Hernando Sanchez-Faddeev1, Michael T.M. Emmerich1, Fons J. Verbeek1,
Andrew H. Henry2, Simon Grimshaw2, Herman P. Spaink3, Herman W. van Vlijmen4,

and Andreas Bender4

1 Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1,
2333 CA Leiden, The Netherlands

2 Chemical Computing Group, St John's Innovation Centre, Cowley Road, Cambridge,
United Kingdom, Cambridge CB40WS, United Kingdom

3 Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
4 Medicinal Chemistry Division, Leiden / Amsterdam Center for Drug Research,

Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands

Abstract. Computer simulation techniques are being used extensively in the
pharmaceutical field to model protein-ligand and protein-protein interactions;
however, few procedures have been established yet for the design of ligands
from scratch (‘de novo’). To improve upon the current state, in this work the
problem of finding a peptide ligand was formulated as a bi-objective optimiza-
tion problem and a state-of-the-art algorithm for evolutionary multiobjective
optimization, namely SMS-EMOA, has been employed for exploring the search
space. This algorithm is tailored to this problem class and used to produce a Pa-
reto front in high-dimensional space, here consisting of 2322 or about 1030 poss-
ible solutions. From the knee point of the Pareto front we were able to select a
ligand with preferential binding to the gamma versus the epsilon isoform of the
Danio rerio (zebrafish) 14-3-3 protein. Despite the high-dimensional space the
optimization algorithm is able to identify a 22-mer peptide ligand with a pre-
dicted difference in binding energy of 291 kcal/mol between the isoforms,
showing that multiobjective optimization can be successfully employed in se-
lective ligand design.

Keywords: protein design, ligand design, de novo assembly, SMS-EMOA,
multiobjective optimization, 14-3-3, Pareto front, multiobjective selection,
hypervolume indicator.

1 Introduction

Over vast timescales, nature has optimized the genetic material to account for survival
of organisms that are better adapted to the immediate, local environment [1]. The
interplay of genetic variation and natural selection is the driving force of DNA evolu-
tion that, for instance, determines the function of all proteins encoded by the genome.

 Using Multiobjective Optimization and Energy Minimization 13

Evolutionary algorithms (EA) seek to mimic this process on an algorithmic level [2].
Starting from an initial population of candidate solutions, the application of variation
(mutation and recombination) operators and selection operators adapts the solutions to
its environment (the fitness function).

In EAs the adaptation to the environment is given by a user-defined fitness func-
tion, which determines the likelihood of new genotypes for survival recombination
and/or selection; equivalent to reproductive fitness in nature [2]. The defining differ-
ence is that fitness functions can be used to optimize the same type of molecules that
have been created in the process of evolution with a user-defined objective in mind.

Taking into consideration the complexity of molecular interactions and the promis-
cuity of those interactions observed in nature [3,4], it is often not sufficient to have
only one optimization goal; rather, when designing a ligand for a protein, it is impor-
tant to make sure it is selective for the target(s) of interest, relative to other, possibly
very similar targets [3]. As in the natural environment multiobjective EAs can deal
with several conflicting objective functions at the same time and select trade-off solu-
tions that are better suited for both objectives; however, it will favor those solutions
which are superior to all others in at least one way (they are the ‘non-dominated’
solutions) [5].

The desired activity profile for a set of targets is relevant both for efficacy of a
compound in a biological system, as well as to avoid adverse side effects such as in
case of drugs that are applied to humans [3]. Given the current huge amount of bioac-
tive data we are becoming aware of the suitability of a ligands with a bioactivity pro-
file of interest, with areas such as ‘chemogenomics’ and ‘proteochemometrics’ gain-
ing increasing importance [6,7,8].

We have applied structure-based multiobjective ligand design to the family of 14-
3-3 proteins, which are present in multiple isoforms in all eukaryotic organisms. Giv-
en that this protein is also of large biomedical interest such as in cancer research, and
the requirement for a ligand to prefer some 14-3-3 isoforms over others, we chose this
case study for the in silico design of isoform-selective peptide ligand design.

14-3-3 proteins participate in many biological processes including protein kinase
signaling pathways within all eukaryotic cells, being involved in progression through
the cell cycle, initiation and maintenance of DNA damage checkpoints, regulation of
mitosis, prevention of apoptosis, and coordination of integrin signaling and cytoskele-
ton related dynamics [9]. Current studies have demonstrated the important role that
14-3-3 plays in cancer [10], particularly leukaemia as described by Dong et al.[11],
and Alzheimer’s disease as reported by Jayaratnam et al.[12]. The 14-3-3 proteins are
intensively studied in many animal species such as zebrafish, mouse and human.

We recently reported on the 14-3-3 protein isoforms in zebrafish (Danio rerio) that
are encoded by eleven genes named after their Homo sapiens homologues [13], while
the human isoforms γ, β, ε and θ each possess two homologue isoforms in zebrafish.
Zebrafish isoforms are the subject of this study due to their similarity to the human
isoforms, as well as to be able to validate the predictions later directly by means of in
vitro experiments.

14 H. Sanchez-Faddeev et al.

The differential expression of various isoforms in different tissues and diseases
suggests that different isoforms possess different functionality, which implies differ-
ent binding preferences for particular ligands [14]. However, only little is known on
the differences in the binding specificities to 14-3-3 proteins. Given the large number
of isoforms of 14-3-3 and their different roles, the design of specific ligands is impor-
tant to achieve; yet it is a task that is not trivial in practice. Given recent advances in
molecular modeling as well as computational optimization techniques, this study now
aims at merging the best of both worlds in order to establish advanced computational
methods for 14-3-3 γ1 isoform specific ligand design.

A recent review [15] outlines the opportunities and challenges in the application of
computer tools to design peptide based drugs, an area of which we present an applica-
tion of particular interest. Several previous studies have focused on in silico peptide
screening for potential new therapeutic entities [16,17,18,19,20,21,22,23,24]; howev-
er, in those cases only existing peptides were screened virtually and evaluated with
respect to their ability to bind to a protein of interest. The approach taken in this work
is rather different, however: instead of screening a library of known peptides and
scoring the best solutions, this study focuses on mutating the peptide in a step-wise
optimization process, in order to achieve better affinity and to access novel chemical
space, in a ‘de novo’ peptide design approach.

Relating this to previous work, Li et al. [25] analyzed peptide binding to the p53–
MDM2/MDMX interface by randomly mutating and evaluating affinities using com-
putational methods. Our random mutation process is similar, except for the fact that
Li et al. [25] used a single objective function, so no other protein interactions other
than the one with the intended target were taken into account.

However, in this work we emphasize both the de novo, as well as the multiobjec-
tive nature of peptide ligand design. We do so by trying to identify a peptide with
high binding affinity for the γ1 isoform, as compared to the ε1 isoform. ε1 and γ1
isoforms have been selected as they have been suggested to have different biological
functions, namely γ1 has a specialized function in adult physiology, and ε1 is highly
expressed during the embryonic stage [13,26,27].

Multiobjective optimization is meant to find good compromises (or “trade-offs”),
rather than a solution that is optimal in a single objective function only. If the number
of conflicting objectives is low, a well-established approach is to approximate the
Pareto front of the problem, i.e., the set of non-dominated optimal solutions, or reph-
rasing the above a set of optimal “trade off” solutions [28,31]. With two objectives
minimization the solution is “Pareto-optimal” if there exists no other solution which
improves the one of the objective function values without causing a simultaneous
deteriorating of the other objective function value. This is visualized in Figure 1A,
which contains a Pareto-optimal set of solutions that were generated in this study.

Multi-objective optimization is not easy to perform in high-dimensional spaces due
to the sheer size of the hypothesis space. EA, due to their population-based search
concept and high number of generated solutions, lend themselves very well for the
task of generating and maintaining Pareto-optimal solutions in higher-dimensional
spaces [29]. Pareto optimization hence recently received increasing attention in drug
design problems [19,20,30] and bioinformatics [31], besides other application fields.

 Using Multiobjective Optimization and Energy Minimization 15

Fig. 1. Binding energy of peptides to the γ1 and ε1 isoforms of the 14-3-3 protein as a function
of the number of optimization iterations using the SMS-EMOA algorithm. The X-axis shows
the potential energy of interaction with γ1 (which was desired) while the Y-axis shows the
inverse of the potential energy of interaction with ε1 (which we attempted to ‘design out’ of the
peptide). The solutions that belong to the Pareto front are represented by circles. The interme-
diate solutions rejected during the SMS-EMOA run are represented by crosses. It can be seen
that already after 100 iterations partially selective peptides are obtained, while after the full
number of 1,189 iterations even peptides with no affinity to the ε1 isoform, but 335 kcal/mol
binding energy to the γ1 isoform could be identified. Hence, our optimization can be considered
successful even in this 22-dimensional search space.

This study intends to use EA with multiobjective optimization to find a binding
peptide with relative high binding affinity for the γ1 isoform, as compared to the ε1
isoform [32]. We use multiobjective EA as implemented in SMS-EMOA [28,33], a
state-of-the-art Pareto optimization algorithm for this purpose as described in the
following.

2 Methods

2.1 Sequence Data

The nucleotide sequences of 14-3-3 isoforms in zebrafish were described by Besser
et al. [13]. They performed a phylogenetic analysis of the 14-3-3 family together with
microarray expression analysis; the results provided the basis for the choice of 14-3-3
isoforms analyzed in this study.

16 H. Sanchez-Faddeev et al.

2.2 Homology Modeling

Zebrafish 14-3-3 homology models were generated via the Molecular Operating Envi-
ronment [34]. Table 1 displays the PDB templates used for homology modeling and
the sequence similarity with the corresponding zebrafish isoforms. The high sequence
identity of 96% allowed a construction of highly reliable models. An RMS gradient
of 0.1 was employed to build intermediate homology models and an RMS gradient of
0.01 was used for generating the final models. AMBER99 (default) distance-
dependent force field parameters were applied in energy minimization after homology
modeling.

Table 1. Templates used for homology modeling of the 14-3-3 isoforms

Zebrafish
Isoforms

modeled residue
range

PDB template
(resolution)

Sequence
Identity[%] E-value

Epsilon-1 3 to 232 2br9A (1.75Å) 96.5 1.79E-114
Gamma-1 2 to 234 2b05A (2.55Å) 96.1 7.16E-111

2.3 Starting Complex of Protein and Ligand

The starting point for generating peptide ligands was 22 amino acids long in order to
allow interaction both with the binding groove as well as the regions immediately
outside to achieve selectivity. This length has also been chosen based on the location
of variable regions of 14-3-3 as well as low energy desolvation sites identified pre-
viously [14]. 23 possible amino acids could be selected in each position, namely the
20 natural amino acids as well as phosphorylated tyrosine, serine and threonine. The
reason for also including phosphorylated amino acids in the study was that in particu-
lar phosphorylated serines and threonines are known to be of relevance for peptides
interacting with the 14-3-3 protein from previous work [14].

Homology models of both isoforms were aligned sequentially using the Blosum62
matrix and subsequently structurally aligned using the MOE protein alignment tool.
The ligand template formed by 22 alanines in an extended conformation was posi-
tioned inside the binding groove, with sufficient space to prevent clashing at posterior
mutation steps and optimization (the resulting structure can be found in the supporting
material). In this orientation the peptide extends from the binding groove to the re-
gions that have been identified as possible interaction sites due to their low desolva-
tion energy to allow peptide selectivity to be achieved in the optimization step [14].

2.4 Estimation of Peptide Binding Energy

The MOE Protonate 3D function was used to assign ionization states and position
hydrogen atoms in the macromolecular structure. Subsequently the MM function
of MOE was employed to perform potential energy minimization by use of
the AMBER99 force field. Finally, the Potential function was used to evaluate the
resulting potential energy of the complex.

 Using Multiobjective Optimization and Energy Minimization 17

2.5 Molecular Search Space and Landscape Analysis

In combinatorial search correlated landscapes neighborhoods are typically induced by
a set of small mutations. However, not all neighborhoods can be explored with an EA
that uses consecutive mutations to find better fitness value. An important requirement
for EA to work is the correlation between parent solutions and offspring solutions in
fitness space, called the ‘causality requirement’. Using landscape analysis it is possi-
ble to get indications on the causality of the search space and the difficulty for optimi-
zation [35]. This requirement was assessed empirically in a preliminary study.

In our case the set of configurations or solutions is the set of all sequences of a 22-
mer peptide sequence that can be built from 23 possible amino acids, and neighbors
are given by solutions that differ in only one amino acid. The correlation and other
properties such as ruggedness of the molecular landscape was assessed with the MOE
forcefield fitness function in combination with random walks on this surface, based
on previous work [29,35]. This study indicated a positive correlation of the fitness
function and the proximity of solutions in search space, measured as Hamming dis-
tance. A positive correlation was observed up to thirty random steps, which indicated
a causal relation between parents and offspring fitness for the given mutation type.
Hence it could be seen as promising to perform evolutionary optimization in this
search space.

2.6 Multiobjective Optimization

The SMS-EMOA algorithm was used as a multi-objective evolutionary optimization
algorithm [28,33]. The instantiation of this algorithm consisted of ten parents and one
offspring ((10+1)-SMS-EMOA). A population of ten peptides was maintained
throughout the run. In each of the iterations a new sequence was generated by mutat-
ing the least recently changed peptide from this population. The new peptide was
generated by randomly replacing a residue of the peptide at a random position with a
random new amino acid. The potential energy of the complex of the ligand with the
γ1 isoform was considered as a first objective function, and the inverse of the poten-
tial energy of the complex of the ligand with the ε1 isoform was considered as the
second objective function. The inverse was taken since binding against this isoform
was not desired and the standard implementation of SMS-EMOA aims at minimiza-
tion of objectives.

The acronym SMS-EMOA stands for S-Metric Selection Evolutionary Multiobjec-
tive Optimization Algorithm. As indicated in the name, its selection is based on the S-
Metric, a metric for measuring the quality of a Pareto front approximation which does
not require a-priori knowledge of the true Pareto front. The S-Metric is nowadays
more commonly referred to as the hypervolume indicator. It measures the size (area in
two dimensions, hypervolume in higher dimensions) of subspace that is dominated by
a Pareto front approximation and cut from above by a reference point. A high value of
the hypervolume indicator corresponds to a good approximation to the Pareto front.
The hypervolume contributions are also positively correlated with the distance be-
tween neighbors. Hence its maximization promotes diversity of solutions on the

18 H. Sanchez-Faddeev et al.

Pareto front. In its selection, either a dominated solution or otherwise one with lowest
hypervolume contribution is removed from the population [33]. While the SMS-
EMOA specifies the algorithmic details for the selection step, it is generic in terms of
search space representation and variation operators. SMS-EMOA is well suited for
Pareto front approximation in large search spaces and small population sizes, where
the goal is to find well spread Pareto front approximations with relatively few evalua-
tions, such as in the present problem. The reason for this is that SMS-EMOA concen-
trates the distribution in the so-called ‘knee-point’ regions of the Pareto front, where
good compromise solutions are found, while representing regions with an unbalanced
trade-off with a decreased density of points.

The structural energy minimization and evaluation of potential energy of the iso-
form complexes with the mutated template took on average 4 minutes per complex (8
minutes per iteration for both isoforms). The computational overhead of the internal
operations performed in SMS-EMOA is negligible in case of two and three objective
functions. More precisely, all hypervolume computations for a single iteration require
only subquadratic time. Hence the computational effort is essentially determined by
the number of objective function evaluations.

3 Results

The SMS-EMOA implementation in the Molecular Operating Environment (MOE)
(available from the authors on request) evaluated 1,089 random mutations (and evalu-
ations of the objective function) after one week of processing time on four Xeon 2.5
GHz processors machine with Scientific Linux. 1,089 mutations correspond to 1,089 /
23^22 × 100 ≈ 1.19954208 × 10^-25 per cent of all possible solutions; however even
with this small number of evaluations the Pareto front (X/Y axes: potential energy of
interaction with γ1/ ε1) took its characteristic J-shape (a line bending towards the
optimizing direction) after about 100 iterations (Figure 1A).

To evaluate the behavior of the algorithm properly it is important to present the de-
velopment of peptide fitness as a function of time. Figure 1A hence visualizes the
Pareto front obtained after 100 iterations of the algorithm. For the 10 peptides that
formed part of the Pareto front the number of substitutions of the initial alanine amino
acids varied from one to seven while the energy of the complex varied from the origi-
nal -142 to -196 kcal/mol for the γ1 isoform. The solution of the first Pareto front
already shows considerable improvement over the starting point clearly a big ad-
vancement since already after eight replacements of alanine amino acids a difference
in binding between the isoforms of 49 kcal/mol was obtained (detailed numbers re-
garding the evolution of the Pareto front are given in the supplementary material).

Figure 1B contains the corresponding Pareto front after 700 evaluations. At this
point most of the alanine residues from the initial template were replaced. The poten-
tial energy difference of the complex with the 14-3-3 γ1 isoform, compared to the ε1
isoform, varied from 7 kcal/mol to 291 kcal/mol in this case while he best potential
energy upon binding the γ1 isoform has reached -282 kcal/mol.

 Using Multiobjective Optimization and Energy Minimization 19

Finally, at the end of our SMS-EMOA run, Figure 1C displays the potential energy
along the Pareto front after a total of 1,189 iterations. We observe a set of 9 Pareto-
optimal solution and 1 dominated solution with energy of the complex ranging from -
138 to -335 kcal/mol for γ1 and 125 to -284 kcal/mol for ε1. Hence, the algorithm was
successful in navigating a very high-dimensional (22-dimensional) search space to
arrive to peptides of interest for both optimization criteria.

Figure 2 and Table 2 show the energy differences for ε1 and γ1 isoform binding for
the final Pareto front. Throughout all solutions, at least an energy difference of about
40 kcal/mol is maintained, which grows to 291 kcal/mol in case of the most selective
peptide listed at position 9. The solution at position 7 might be the one most relevant
in practice, since it exhibits only minimal binding to the ε1 isoform (free energy of 23
kcal/mol), while binding relatively tightly to the γ1 isoform (free energy of 247
kcal/mol).

Fig. 2. Potential energy of peptide binding to the ε1 and γ1 isoforms of the 14-3-3 protein after
1,189 iterations of the SMS-EMOA algorithm. The x axis corresponds to the ligand position on
the final Pareto front approximation from the leftmost to the rightmost solution in Figure 1C
while the y axis represents the potential energy of the complex. It can be seen that multiple
trade-offs between affinity and selectivity can be chosen, with solution 7 representing probably
a solution of relevance in practice; high selectivity while at the same time high affinity to the γ1
isoform is maintained.

-E
 (γ

 1
) /

kc
al

/m
ol

Pareto front position

20 H. Sanchez-Faddeev et al.

Table 2. Sequence and potential energy of the final solutions obtained after 1,189 iterations of
the SMS-EMOA algorithm, optimizing the difference in the potential energy between the ε1
and γ1 isoforms. The ligand position corresponds to the order from the leftmost to the rightmost
solution in Figure 1C on the final Pareto front, with all binding energies also visualized in
Figure 2.

ligand # gamma1 epsilon1 difference
PHE ILE TPO ARGSEP GLY TYR SER TPO TRP ASP ASN ARG ARG TYR ARG TYR SEP ASN ASN ALA ALA 1 -335 -269 67
PHE ILE TPO ARGSEP GLY GLY SER TPO ALA ASP ASN ARG ARG TYR LEU TYR MET ASN ASN ALA ALA 2 -309 -266 43
PHE ILE TPO ARGSEP GLY TYR SER TPO ALA ASP ASN ARG ARG TYR ARG TYR VAL ASN ASN ALA ILE 3 -308 -254 54
PHE ILE TPO ARGSEP GLY TYR SER TPO ALA ASP ASN ARG ARG TYR LEU TYR MET ASN ASN ALA ALA 4 -306 -154 152
LEU TRP TPO ARGSEP GLY TRP ASNTPO ALA ASP ASN PRO ARG GLU ARG TYR MET ASN ASN ALA ALA 5 -283 -126 157
LEU PHE TPO ARGSEP GLY TRP ASNTPO ALA ASP ASN PRO ARG GLU ARG TYR MET ASN ASN ALA ALA 6 -269 -123 147
LEU PHE TPO CYS SEP GLY TYR ASNTPO ALA SER ASN LEU GLN GLU ARG ALA MET ASN ASN ALA ALA 7 -247 -23 224
ALA VAL ALA CYS SEP GLY TRP ASNTPO ALA SER ASN ALA ALA GLU ALA ALA MET TPO ASN ALA ALA 8 -202 5 207
LYS TRP ALA ALA ALA TRP ALA ALAALA ALA ALA PRO ALA ALA LEU ALA ALA ALA ALA ALA ALA ALA 9 -166 125 291
LYS TRP ALA ALA ALA TRP ALA ALAALA ALA ALA PRO ALA ALA LEU PHE ALA ALA ALA ALA ALA ALA 10 -139 -69 69

Aminoacid Sequence

Fig. 3. Ligand interaction plot of solution 7 from the Pareto front with the γ1 isoform of 14-3-3.
Salt bridges between the phosphoserine residue in the peptide and Lys69 are formed, which is
in agreement with interactions seen in crystal structures for 14-3-3 ligands. A charge interaction
between Glu118 and an arginine residue in the peptide ligands results in strong interactions.
These are supplemented by hydrogen bonds between an asparagine residue in the ligand and
Lys50 and Asn178 in the protein. The resulting free energy of binding is -247 kcal/mol.

Among the most frequent interactions present in the solutions are those with
Arg61, Lys69, Asn178 and Asp218. This is in agreement with literature since Arg61
and Lys69 are located above the commonly accepted binding pocket, and Asp218 is
located below the binding pocket at the sites predicted by other studies of human 14-
3-3 [14]. Asn178 on the other hand is located very close to the binding pocket and
may also be involved in recognition of natural ligands as well.

In order to understand ligand selectivity better, the interactions for solution 7 from
the final Pareto front shall be discussed here in more detail.

As can be seen, in the ligand complexed with the γ1 isoform of 14-3-3 (displayed
in Figure 3) salt bridges between the a phosphoserine residue in the peptide and
Lys69 are formed, which is in agreement with interactions seen in crystal structures
for 14-3-3 ligands, as well as a charge interaction between Glu118 and an arginine

 Using Multiobjective Optimization and Energy Minimization 21

residue in the peptide ligands, resulting in strong interactions. These are supplemented
by hydrogen bonds between an asparagine residue in the ligand and Lys50 and
Asn178 in the protein, resulting in a free energy of binding of -247 kcal/mol. On the
other hand, binding interactions with the ε1 isoform (Figure 4) are much weaker,
leading only to a free energy of binding of -23 kcal/mol. While the salt bridge of
Lys69 to the phosposerine is retained, Glu118 is not able to form an electrostatic inte-
raction with the arginine residue of the ligand anymore. Additional hydrogen bonds
such as the one to Asp216 are formed; however they are on average weaker than those
in the γ1 complex, resulting in a decrease in binding affinity.

Fig. 4. Ligand interaction plot of solution 7 from the final Pareto front with the ε1 isoform of
14-3-3. As compared to the γ1 isoform (Figure 3) interactions are much weaker, leading only to
a free energy of binding of -23 kcal/mol. While the salt bridge of Lys69 to the phosposerine is
retained, Glu118 is not able to form an electrostatic interaction with the arginine residue of the
ligand anymore. Additional hydrogen bonds such as the one to Asp216 are formed, but they are
on average weaker than those in the γ1 complex, resulting in a decrease in binding affinity.

Hence, by analyzing binding interactions we can also rationalize peptide ligand se-
lectivity, leading to an increase of the trustworthiness of the optimization algorithm
applied in this work to design isoform-selective ligands for the 14-3-3 protein.

4 Conclusions

By employing evolutionary multiobjective optimization in the form of an SMS-
EMOA algorithm we were able to design, de novo, peptide ligands of the γ1 isoform

22 H. Sanchez-Faddeev et al.

of the 14-3-3 protein with predicted selectivity over the ε1 isoform. Given the 22-
dimensional nature of the search space, this is a practical application of this type of
algorithm which will be experimentally validated in the near future.

Acknowledgements. We would like to thank Gerard van Westen (LACDR) for com-
putational support. Andreas Bender thanks Dutch Top Institute Pharma (TI Pharma)
for funding. Michael Emmerich thanks LIACS, Leiden University and the Foundation
for Science and Technology (FCT), Portugal. Grant: Set-Indicator Based Multiobjec-
tive Optimization (SIMO), SFRH/BPD/65330/2009 for financial support. Hernando
Sanchez Faddiev thanks Pieter de Knijf and Rudi Westendorp for their support.

Authors' Contributions. Hernando Sanchez Faddiev performed the implementation
of the optimization algorithm and performed all computational studies. Andrew Henry
supplied support for MOE software and provided with libraries and routines indis-
pensable for the algorithm completion. The work was initiated by Herman Spaink,
supervised jointly by Michael Emmerich (multiobjective algorithm) and Andreas
Bender with scientific input and support from Herman Spaink and Fons Verbeek and
Herman Van Vlijmen.

References

1. Bates, M.: The Origin of Species - by Means of Natural-Selection or the Preservation of
Favored Races in the Struggle for Life - Darwin, C. American Anthropologist 61, 176–177
(1959)

2. Back, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation. IOP
Publishing Ltd. (1997)

3. Bender, A., Scheiber, J., Bender, A., Glick, M., Davies, J.W., et al.: Analysis of pharma-
cology data and the prediction of adverse drug reactions and off-target effects from chemi-
cal structure. Chemmedchem 2, 861–873 (2007)

4. Macchiarulo, A., Nobeli, I., Thornton, J.M.: Ligand selectivity and competition between
enzymes in silico. Nature Biotechnology 22, 1039–1045 (2004)

5. Kalyanmoy, D.: Multi-Objective Optimization using Evolutionary Algorithms (2001)
6. van der Horst, E., Peironcely, J.E., IJzerman, A.P., Beukers, M.W., Lane, J.R., et al.: A

novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands:
a potential strategy for receptor de-orphanization. Bmc Bioinformatics 11 (2010)

7. Bender, A., Spring, D.R., Galloway, W.R.J.D., Overington, J.P., van Westen, G.J.P., et al.:
Chemogenomics Approaches for Receptor Deorphanization and Extensions of the Chemo-
genomics Concept to Phenotypic Space. Current Topics in Medicinal Chemistry (2010)

8. van Westen, G.J.P., Wegner, J.K., IJzerman, A.P., van Vlijmen, H.W.T., Bender, A.: Pro-
teochemometric Modeling as a Tool for Designing Selective Compounds and Extrapolat-
ing to Novel Targets (2010)

9. Fu, H.A., Subramanian, R.R., Masters, S.C.: 14-3-3 proteins: Structure, function, and regu-
lation. Annual Review of Pharmacology and Toxicology 40, 617–647 (2000)

10. Wilker, E., Yaffe, M.B.: 14-3-3 Proteins - a focus on cancer and human disease. Journal of
Molecular and Cellular Cardiology 37, 633–642 (2004)

 Using Multiobjective Optimization and Energy Minimization 23

11. Dong, S., Kang, S., Lonial, S., Khoury, H.J., Viallet, J., et al.: Targeting 14-3-3 sensitizes
native and mutant BCR-ABL to inhibition with U0126, rapamycin and Bcl-2 inhibitor
GX15-070. Leukemia 22, 572–577 (2008)

12. Jayaratnam, S., Khoo, A.K., Basic, D.: Rapidly progressive Alzheimer’s disease and ele-
vated 14-3-3 proteins in cerebrospinal fluid. Age Ageing 37, 467–469 (2008)

13. Besser, J., Bagowski, C.P., Salas-Vidal, E., van Hemert, M.J., Bussmann, J., et al.: Expres-
sion analysis of the family of 14-3-3 proteins in zebrafish development. Gene. Expr. Pat-
terns 7, 511–520 (2007)

14. Yang, X., Lee, W.H., Sobott, F., Papagrigoriou, E., Robinson, C.V., et al.: Structural basis
for protein-protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. U S
A 103, 17237–17242 (2006)

15. Audie, J., Boyd, C.: The Synergistic Use of Computation, Chemistry and Biology to Dis-
cover Novel Peptide-Based Drugs: The Time is Right. Current Pharmaceutical Design 16,
567–582 (2010)

16. Belda, I., Madurga, S., Llora, X., Martinell, M., Tarrago, T., et al.: ENPDA: an evolutio-
nary structure-based de novo peptide design algorithm. Journal of Computer-Aided Mole-
cular Design 19, 585–601 (2005)

17. Abe, K., Kobayashi, N., Sode, K., Ikebukuro, K.: Peptide ligand screening of alpha-
synuclein aggregation modulators by in silico panning. Bmc Bioinformatics 8 (2007)

18. Zahed, M., Suzuki, T., Suganami, A., Sugiyama, H., Harada, K., et al.: Screening of
SMG7-Binding Peptides by Combination of Phage Display and Docking Simulation Anal-
ysis. Protein and Peptide Letters 16, 301–305 (2009)

19. Gillet, V.J.: Applications of evolutionary computation in drug design. Applications of Evo-
lutionary Computation in Chemistry 110, 133–152 (2004)

20. Nicolaou, C.A., Apostolakis, J., Pattichis, C.S.: De Novo Drug Design Using Multiobjec-
tive Evolutionary Graphs. Journal of Chemical Information and Modeling 49, 295–307
(2009)

21. Keijzer, M.: Genetic and evolutionary computation conference: GECCO 2006, vol. 2. As-
sociation for Computing Machinery, New York (2006)

22. Malard, J.M., Heredia-Langner, A., Cannon, W.R., Mooney, R., Baxter, D.J.: Peptide
identification via constrained multi-objective optimization: Pareto-based genetic algo-
rithms. Concurrency and Computation-Practice & Experience 17, 1687–1704 (2005)

23. Yagi, Y., Terada, K., Noma, T., Ikebukuro, K., Sode, K.: In: silico panning for a non-
competitive peptide inhibitor. Bmc Bioinformatics 8 (2007)

24. Fjell, C.D., Jenssen, H., Cheung, W.A., Hancock, R.E., Cherkasov, A.: Optimization of
Antibacterial Peptides by Genetic Algorithms and Cheminformatics. Chem. Biol. Drug.
Des. (2010)

25. Li, C., Pazgier, M., Li, C.Q., Yuan, W.R., Liu, M., et al.: Systematic Mutational Analysis
of Peptide Inhibition of the p53-MDM2/MDMX Interactions. Journal of Molecular Biolo-
gy 398, 200–213 (2010)

26. Satoh, J., Yamamura, T., Arima, K.: The 14-3-3 protein epsilon isoform expressed in reac-
tive astrocytes in demyelinating lesions of multiple sclerosis binds to vimentin and glial fi-
brillary acidic protein in cultured human astrocytes. American Journal of Pathology 165,
577–592 (2004)

27. Roberts, M.R., de Bruxelles, G.L.: Plant 14-3-3 protein families: evidence for isoform-
specific functions? Biochemical Society Transactions 30, 373–378 (2002)

28. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on
dominated hypervolume. European Journal of Operational Research 181, 1653–1669
(2007)

24 H. Sanchez-Faddeev et al.

29. Emmerich, M., Li, B.V.Y., Bender, A., Sanchez-Faddiev, H., Kruisselbrink, J., et al.: Ana-
lyzing molecular landscapes using random walks and information theory. Chemestry Cen-
tral (2009)

30. Kruisselbrink, J.W., Aleman, A., Emmerich, T.M., IJzerman, A., Bender, A., et al.: En-
hancing search space diversity in multi-objective evolutionary drug molecule design using
niching. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation, pp. 217–224. ACM, Montreal (2009)

31. Handl, J., Kell, D.B., Knowles, J.: Multiobjective optimization in bioinformatics and com-
putational biology. IEEE-ACM Transactions on Computational Biology and Bioinformat-
ics 4, 279–292 (2007)

32. Paul, A.L., Sehnke, P.C., Ferl, R.J.: Isoform-specific subcellular localization among 14-3-3
proteins in Arabidopsis seems to be driven by client interactions. Molecular Biology of the
Cell 16, 1735–1743 (2005)

33. Emmerich, M., Beume, N., Naujoks, B.: An EMO Algorithm Using the Hypervolume
Measure as Selection Criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E.
(eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

34. Vilar, S., Cozza, G., Moro, S.: Medicinal Chemistry and the Molecular Operating Envi-
ronment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Cur-
rent Topics in Medicinal Chemistry 8, 1555–1572 (2008)

35. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information Characteristics and the Structure of
Landscapes. Evolutionary Computation (2000)

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 25–41, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Segmentation for High-Throughput Image Analysis:
Watershed Masked Clustering

Kuan Yan and Fons J. Verbeek

Section Imaging and Bioinformatics
Leiden Institute of Advanced Computer Science, Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
{kyan,fverbeek}@liacs.nl

Abstract. High-throughput microscopy imaging applications represent an im-
portant research field that is focused on testing and comparing lots of different
conditions in living systems. It runs over a limited time-frame and per time step
images are generated as output; within the time-range a resilient variation in the
images of the experiment is characteristic. Studies represent dynamic circums-
tances expressed in shape variation of the objects under study. For object ex-
traction, i.e. the segmentation of cells, aforementioned conditions have to be
taken into account. Segmentation is used to extract objects from images and
from objects features are measured. For high-throughput applications generic
segmentation algorithms tend to be suboptimal. Therefore, an algorithm is re-
quired that can adapt to a range of variations; i.e. self-adaptation of the segmen-
tation parameters without prior knowledge. In order to prevent measurement
bias, the algorithm should be able to assess all inconclusive configurations, e.g.
cell clusters. The segmentation method must be accurate and robust so that re-
sults that can be trustfully used in further analysis and interpretation. For this
study a number of algorithms were evaluated and from the results a new algo-
rithm was developed; the watershed masked clustering algorithm. It consists of
three steps: (1) a watershed algorithm is used to establish the coarse location of
objects, (2) the threshold is optimized by applying a clustering in each wa-
tershed region and (3) each mask is reevaluated on consistency and re-
optimized so as to result in consistent segmented objects. The evaluation of our
algorithm is realized by testing with images containing artificial objects and
real-life microscopy images. The result shows that our algorithm is significantly
more accurate, more robust and very reproducible.

Keywords: High-Throughput Imaging, Segmentation, Watershed, Fuzzy
C-means clustering, Fluorescence Microscopy, Systems Biology.

1 Introduction

Image segmentation is an image analysis method that separates pixels into characte-
ristic groups. For high-throughput image analysis, image segmentation is quintessen-
tial in obtaining precise per-object information that need be analyzed. Generic
segmentation methods cannot always obtain optimal results. Often we have to tune

26 K. Yan and F.J. Verbeek

the generic segmentation method with heuristics to get the result with which further
processing will be possible. The methodology described in this paper is used in a
biomedical setting; i.e., in a workflow which measurements are extracted from images
to support the understanding of indigenous phenomena in the images. Segmentation is
but one step in this workflow towards the understanding of the image content by
means of pattern recognition. Notably, such understanding can only be retrieved in
the context of the application; often in the process of image segmentation, heuristics
from the domain at hand are included. Thus, assuring that the understanding is based
on correctly measured features makes the segmentation step crucial.

In this paper, we focus on segmentation in the high-throughput (HT) imaging as
applied to the study of cell systems. High-throughput applications are often related
with high-content applications, here we restrict to high-throughput as for the under-
standing of the development of our algorithm it suffices. This study is motivated by
the consideration that in the field HT-imaging the current segmentation algorithms
perform inadequate. In order to explain the development of a new algorithm we brief-
ly introduce the application field. Subsequently, we introduce typical pitfalls of HT-
imaging and thereby formulate requirements that are important to the development of
our algorithm. Underlying this introduction is the workflow in HT-imaging that starts
with image acquisition and through a pipeline of image processing ends with image
understanding achieved through pattern recognition.

1.1 High-Throughput Cell Imaging

The application of HT-imaging is of increasing importance in the study of cell sys-
tems. In the past decades, there has been a considerable progress in imaging tech-
niques and molecular engineering. Consequently, this progress has been addressed to
make the study of cell systems feasible. Starting point for the imaging is the com-
pound microscope that is adapted to study cell systems in vitro. That is, as cell cul-
tures in small containers specifically suitable for microscopy imaging. These systems
are studied under a range of different conditions including duplicates and controls in
the same experiment. This requires a specific setup which is commonly referred to as
a high-throughput screening (HTS) [6, 20, 31]. The aim of a screen is to capture and
quantify the unique cellular and/or molecular phenotype of a particular cell line under
different conditions. The cells are cultured in a 96-well culture plate [20, 31] in which
each well represents an experimental condition; some wells are used for duplicates
and control groups.

In order to accomplish a quantification of the phenotype by accurate descriptors, a
robust image analysis pipeline must be configured. This pipeline receives time-lapse
image sequences as input. These time-lapse sequences are captured with a micro-
scope/camera setup and comprehend a complete HTS experiment. The pipeline
includes acquisition, preprocessing, segmentation, object labeling, tracking, measure-
ment and classification [4, 5, 28]. From the results of machine learning, conclusions
can be formulated that are meaningful and comprehensive in the context of biology.
The critical step in the processing pipeline, however, is the extraction of individual
objects, i.e. cells, as precise as possible. This requires a robust segmentation algorithm

 Segmentation for High-Throughput Image Analysis: Watershed Masked Clustering 27

that produces accurate and reproducible results over the large amounts of images from
the HTS. A typical screen requires large volumes of data to be processed; e.g. an expe-
riment for drug-target discovery produces more than ten 96-well plates. Assuming
acquisition of three time-lapse image sequences per well, with a length of 150 frames
(5 min/frame over 12 hrs), will then result in over 400K images per experiment. Each
image contains 50-200 objects (cells), which, normally, cover approximately 10% of
the cell population in a well. So, in the application domain of HTS, we have to take
into account the conditions under which images of the objects are acquired. There are
limitations that need be accounted for in terms of heuristics in the algorithm that is
devised for such applications.

Typically, fluorescence microscopy [26, 29] is the microscope modality in HTS
imaging and it requires the application of fluorophores to the object under study,
a.k.a. fluorescent staining or ‘labeling’. Fluorescent staining is based on a class of
dyes that have the capacity to emit light under excitation [26]. The major advantage of
fluorescence microscopy, over phase contrast or bright field microscopy is that differ-
ent stains can be simultaneously applied to functional components or protein com-
plexes within the cell, which may reveal underlying phenotypic correlations between
cell migration and protein complex localization. Each specific staining can be visua-
lized in a separate channel of the microscope through the use of bandpass filters. The
image capture is achieved with a CCD camera mounted on the microscope [4, 5, 28].
The CCD characteristic of a linear response to the amount of light, even at low doses
[29], is important in fluorescence microscopy. The amount of fluorophore, through
specific binding per object, however, is subject to per-object variation and experimen-
tal bias (cf. Fig. 1).

In the 96-well plate, the substrate of each well to which the cells are adhered, is
slightly concave toward the center of the well. This complicates the imaging, and
contributes in uneven density distribution in the cells. The lens cannot correct for this,
it is a trade-off between higher numerical aperture, i.e. resolution [29], and focal
depth. As accuracy in the description of the shape is required, a sufficient numerical
aperture needs to be chosen for the imaging thus compromising in focal depth. We
have to acknowledge these conditions to contribute to the quality of imaging and hen-
ceforth might affect the quality of the segmentation result.

1.2 Evaluation of Segmentation Algorithms in HT-Imaging

As indicated, HTS experiments cover dynamic events and therefore images are
acquired in time-lapse. This result in large amounts of images, a typical experiment
can account for 100K to 500K images per screen; consequently, computational load
has to be considered. Moreover, as conditions may differ, the parameters for segmen-
tation cannot be applied over a global set but have to be determined in local environ-
ments. In addition, over all images the algorithm needs to cope with situations that
may result in erroneous outcome of the features. The crux of the segmentation algo-
rithm is therefore to prevent errors in the measurements that would otherwise intro-
duce misclassification and misinterpretation. The objective is to find all objects and

28 K. Yan and F.J. Verbeek

extract morphological features/descriptors from these objects. A major complication
is that the signal, i.e. the fluorescent labeling, is not evenly strong in all objects (cf.
Fig. 1b). This is an experimental flaw that needs to be taken into account.

Given the consideration on the segmentation algorithms, a possible candidate is the
fuzzy C-means segmentation algorithm, which is derived from the fuzzy C-means
clustering algorithm [3]. Similar to Otsu [23], it provides an intensity threshold that is
used to separate background and foreground pixels. The disadvantages are similar to
those found in the Otsu algorithm. Therefore, we aim at a local approach of a cluster-
ing application and we need to consider methods to regionalize the image. Finding
such regions can be dealt with through a seeded watershed approach [2, 14]. Via the
combination of fuzzy C-means algorithm and watershed algorithm, we derive an in-
novative form of segmentation, namely watershed masked clustering (WMC).

The WMC algorithm consists of three steps and at each step the segmentation re-
sult is further refined. It first finds several coarse regions; each region is considered a
rough mask that requires further optimization. Next, a more precise mask is obtained
from each coarse region. In the final step, the masks are assessed and, if necessary,
corrected using multiple criteria. Following this principle, the WMC algorithm con-
verts a multimodal optimization problem into a simpler collection of several optimiza-
tion problems while each is guaranteed unimodal.

The WMC is designed to be a robust and dedicated solution to the particular ap-
plication of the image segmentation in large high-throughput screens to study cell
systems. Compared to currently used segmentation approaches, WMC is very sensi-
tive to regional variation of intensity values in images (cf. Fig. 1b); specifically for
images of cells with fluorescent labeling.

The remainder of this paper is organized as follows; in section 2, the structure of
the WMC algorithm is explained in detail. Subsequently, the performance of the
WMC algorithm is illustrated, at the same time the algorithm is compared to a number
of other segmentation approaches, i.e. Otsu [23], Bernsen local adaptive thresholding
[13], hysteresis edge-based thresholding [9] and level-set methods [30]. Finally, we
present our conclusions and discuss our developments and results in broader context.

2 Watershed Masked Clustering Algorithm

In Figure 2, the outline of the algorithm is depicted. In the discussion of the algo-
rithm, we will refer to this figure and its corresponding details for each of the subparts
of the algorithm. For an algorithm to be suitable for high-throughput screening the
following requirements must be satisfied:

1. Adaptive to local variations in intensity
2. Capable of processing large amount of images without parameter recalibration
3. Capable of finding a separation between objects
4. Computationally efficient

 Segmentation for High-Thr

This can be translated to the
propose:

1. Divide the image in inten
2. Find object(s) in each int
3. Check integrity of each o

The intensity regions in the
our algorithm, this is a pre
jects. Next, in each of the
highest possible precision.
actually should be consider
the algorithm. In this step
possible output. For this re
tion is designed. In Figure
each of the steps of the algo

(a) Fluorescence microscope i
cells with fluorescent label (GF

Fig. 1. Image (512x512) from
(20x). In order to better render

2.1 Region Selection

The implementation of the
by Pinidiyaarachchi [2]. In
watershed region is initializ
neighboring pixels: this par
to define a valid local max
rounding pixel intensities b
noise tolerance in terms of
maximum [2]. A higher val
vice versa. In practice, a hi
objects in the image and m
ciently separated (cf. Fig. 3
maximum is considered a r
be the maximum intensity i
intensity in the region und

roughput Image Analysis: Watershed Masked Clustering

e three main features of the segmentation approach that

nsity regions
tensity region
object

e image are established using watershed segmentation.
eprocessing step, as it will not sufficiently separate all

regions a clustering is applied to find the objects wit
In the case, that the preprocessing has split objects t

red as one object, a correction will follow in the last step
re-evaluation over the objects is applied to get the b

e-evaluation, a special form of watershed object segmen
 2 the overall pseudo code is given. In the next sectio

orithm is described in detail.

image of cancer
FP)

(b) Indication of typical variation in the in
sity of the fluorescence in one image

a HTS of cancer cells visualized with a fluorescence microsc
r intensity differences the inverse LUT of image 1a is used in 1

e maxima-seeded watershed masking is based on resea
this flavor of the watershed algorithm, the growing of

zed from a pixel with the highest intensity compared to
rticular pixel is referred to as the local maximum. In or
ximum, the intensity of such a pixel must exceed the s
by a threshold value h, where h is an estimated level
intensity (cf. Fig. 3); h is commonly referred to as the

lue of h provides a less sensitive watershed separation
gher value of h often leads to incomplete separation of

moreover, objects that occur in clusters are often not su
3b). We can derive the range for the value of h, since the
eference relative to the intensity value of the pixels. Le
in the dynamic range of the sensor, and Imax the maxim

der study, the h-maximum is typically in [1, (IM-Imax)]

29

t we

For
ob-

th a
that
p of
best
nta-
ons,

nten-

cope
1b.

arch
the

o its
rder
sur-
l of
e h-
and

f the
uffi-
e h-
t IM

mum
. In

30 K. Yan and F.J. Verbeek

Figure 3, the results of the
depicted. From empirical o
vides satisfactory watershed

Fig. 2. A workflow diagram il
tering Algorithm. As part of th
quality check Q to prevent wro

(a) Original image with waters

Fig. 3. It contains results from
The (a) and (b) illustrate the w

k

e maxima-seeded watershed for different values of h
observations in HTS images (IM=255), a value h=20 p
d regions.

llustrates of the three main steps of the Watershed Masked C
he automation process, at completion of the loop there is alwa
ongly processed images to be part of the analysis.

shed lines, h=20 (b) Original image with watershed lines, h

m the watershed algorithm illustrating the effect of the value o
watershed cutting lines of Fig. 1b for h=10.

are
pro-

Clus-
ays a

=50

of h.

 Segmentation for High-Throughput Image Analysis: Watershed Masked Clustering 31

2.2 Object Segmentation

The application of the watershed method provides coarse regions. Given these coarse
regions, starting point for the next step in our algorithm follows from the intrinsic
features of the watershed method; it is guaranteed that:

1. In each watershed region, the intensity landscape is always unimodal [2, 14].
2. Seeded watershed implements a restriction on the possible starting point of path

searching. An empty region usually does not contain valid seed, thus no watershed
region will be formed in an empty region.

In order to find the object in each region, an approach is required that is capable of
establishing a local adaptive threshold while being computational finite. Such can be
accomplished by a weighted fuzzy C-means clustering algorithm (WFCM). This clus-
tering is applied sequentially in each of the regions to search an optimal value for
thresholding in the region. Consequently, each region has its own threshold value
taking into account local conditions, i.e. the local variation in image intensity.

In addition, the WFCM method has a set of weighting factors ω that allows the in-
troduction of prior probability of the pixel membership in clusters. The definition of
such a weighting factor is similar to the reversed version of the prior probability in
Bayesian theory. A smaller weighting factor is assigned to the cluster having, poten-
tially, a larger standard deviation and vice versa. The sum of all weighting factors is
always one. The weighting factor ω can be directly derived from the data [15, 21]
however, with a known type of image data, commonly, a preset value is used. The
WFCM method is formalized as:

௜௝ݑ ൌ ቌ෍ ቆ ௝߱ · ฮݔ௜ െ ௝ܿฮ߱௞ · ԡݔ௜ െ ܿ௞ԡቇ ଶ௠ିଵ௞ୀଵ
௖ ቍିଵ, (1)

where uij denotes the membership matrix, ௝ܿ is the jth cluster, ݔ௜ is the data vector i
and ௝߱ is the weighting factor for cluster j. Empirically, it has been established that
for cell imaging a value of ω = 0.2 for the foreground and a value of ω = 0.8 for the
background is sufficient. This should be interpreted as: (1) there is an 80% chance a
certain pixel is belongs to the foreground and (2) there is a 20% chance that a certain
pixel is belongs to the background. By increasing the weighting factor for the fore-
ground, less intense structures, such as cell protrusions or objects with a low overall
intensity, will be discarded. In this manner, the weighting factor works similarly to
the parameter for the degree of sensitivity in the fuzzy c-means clustering algorithm
[21]. Along with eq.1, the clusters are formalized as:

௝ܿ ൌ ∑ ൫ݑ௜௝௠ · ∑௜൯௜ୀଵேݔ ൫ݑ௜௝௠൯௜ୀଵே , (2)

where uij denotes is the membership matrix at step k and m is the, so called, fuzzy
coefficient that expresses the complexity of the model, by default m=2. In our algo-
rithm, we strive at a quick convergence of the WFCM and therefore the initial seeds
for c are defined as follows:

32 K. Yan and F.J. Verbeek

ܿி௢௥௘௚௥௢௨௡ௗ௦௘௘ௗ ൌ ܫ ҧ ൅ ሺ2௡௕ െ 1ሻ · ௠௔௫ܫ െ ܫ ҧߪሺܫሻ , (3)

ܿ஻௔௖௞௚௥௢௨௡ௗ௦௘௘ௗ ൌ ܫ ҧ െ ሺ2௡௕ െ 1ሻ · ܫ ҧ െ ሻܫሺߪ௠௜௡ܫ , (4)

where Imin, Imax denote the minimum/maximum intensity in the image I, ܫ ҧdenotes the
mean of the intensities in image I, ߪሺܫሻ denotes the standard deviation in the intensi-
ties of the image I and nb denotes the dynamic range of the intensity expressed in
number of bits. In the standard case of unsigned 8-bit images nb=8.

This approach provides a robust solution to address the complexity in the HTS im-
ages regarding variation in foreground and background intensities. The application of
this step results in a binary object in each of the regions of step 1 (cf. §.2.1), if correct,
shape features can be derived. However, the watershed method might have introduced
some irregularities in the establishment of the coarse regions, which requires an addi-
tional evaluation; this evaluation is elaborated in the next section. Examples of the
application of this step of the WMC algorithm are worked out in the section 3.

2.3 Object Optimization

At onset of our algorithm, the watershed segmentation is applied resulting in regions
that are individually processed. Depending on the variation in the data, the watershed
algorithm is known to result in an overcut of the segmentation; overcut is referred to
as the situation in which the watershed segmentation produces more regions than
actually present in the image [12]. This overcut might affect the individual objects,
because of which the objects need be split or merged (cf. Fig. 4). Therefore, the last
step in our algorithm is to compensate for the possible overcut caused by the water-
shedding. This process is an object optimization as we evaluate the results obtained in
the object segmentation. In this procedure, only the objects that share a border with a
watershed line are evaluated, as these objects are the candidates for overcut.

The solution for the object optimization is a merging mechanism that uses multiple
criteria; currently, two criteria are implemented, i.e.:
1. Evaluation of the strength of watershed line; the objects are merged based on a lo-

cal difference in maximum and average intensity in the object.
2. Evaluation of the orientation of the objects; the object are merges based on assess-

ment of the difference in orientation of their principal axes.

For criterion 1, we implemented an intensity-based merging algorithm so as to esti-
mate the necessity of merging the objects through the evaluation of the strength of the
watershed lines. In this function all watershed lines are evaluated. This criterion can
be generalized with the evaluation function K: ܭ ሺ݈௜ሻ ՜ ݉݅݊ ൬ߜଵ߬ଵ , ଶ߬ଶ൰ߜ ൐ ௞ܶ, (5)

where the li denotes the ith watershed line, δ1 denotes the difference between the aver-
age intensity under the watershed line and maximum intensity of object on one side of
the watershed and similarly, δ2 represents the object on the other side of the watershed

 Segmentation for High-Thr

line; where τ1 and τ2 den
intensity value within one o
tershed line should fulfill th
then the objects on either si
lected. In Figure 4a the inte

For criterion 2, we impl
25], which provides a uniq
elongated objects. At water
either side of the line. A tw
true, i.e. both components a
will be neglected. This funcܲሺ݈௜ሻ ՜ ቊ
where ߠଵ denotes the ang
principle axis of object 1,
watershed line li. The θm is
crossing the centers of mas
are separately evaluated; so
imum angle Tp while the lin
the angular wedge Tp of th
merged. In Figure 4b, the or

(a) Two typical cases of inten
ing; (left) merge realized and (
realized using K(li) (eq. 5)

(c) Sample object

Fig. 4. Illustration of the mer
specific case for one object (ce

Once the object optimiz
rectly extracted and these c
case of HTS time-lapse im

roughput Image Analysis: Watershed Masked Clustering

ote the difference between the maximum and minim
object on either side of the watershed line li. A valid w
he condition given in eq. 5. If K(li) exceeds a threshold
ide of the line are merged to one and the watershed is n

ensity-based merging criterion is illustrated.
lemented an orientation-based merging algorithm [10,
que possibility to split/merge large structure complexes
rshed line li we consider the principal axis of the objects
wo component Boolean function is designed so that, w
are true, the objects will be merged and the watershed l
ction P is written as: |ߠଵ െ |ଶߠ ൏ ௣ܶ |ߠଵ െ |௠ߠ ൅ ଶߠ| െ |௠ߠ ൏ ௣ܶ,
gle between the horizontal image axis (x-axis) and
similarly ߠଶ is defined for the object on the other side

s the angle between the horizontal image axis and the
ss of the two objects (cf. Fig. 4b). The components in P
, if the principle axis of each individual object spans a m

ne crossing the centers of mass of the two objects lies wit
he two principle axes, only then these two objects will
rientation-based merging is illustrated by two cases.

sity based merg-
(right) merge not

(b) Two typical examples of orienta
based merging; (left) merge realized
(right) merge not realized using P(li) (eq. 6

(d) Overcutting from step 1 (e) Merging from step 3

rging of objects based on a combination of criteria; in (c,d,
ell) is illustrated

zation is applied, one can be certain that all objects are c
can be subject to a shape characterization. For the spec
mages, both shape and intensity profile of the object

33

mum
wa-
d Tk
neg-

11,
s or
s on
hen
line

(6)

the
e of
line
P(li)
min-
thin
l be

ation

and
6)

3

e) a

cor-
cific

are

34 K. Yan and F.J. Verbeek

measured. The intensity profile of an object is derived by applying the binary mask to
the original image. A large range of features can be used [25] so that features can be
used to discriminate between experimental conditions that are applied [18, 19, 31].

3 Performance of the WMC Algorithm

In this section the performance of our segmentation algorithm will be addressed. In
order to get a good impression of its robustness, we employed two tests: i.e., a test
with artificially generated images and a test with images from real HTS experiments.
Each artificial image contains a number of generated ellipsoid objects. Each HTS
image contains in vitro cells that are fluorescently labeled. The performance estima-
tion for each algorithm is derived from the comparison between the binary mask ob-
tained by the algorithm and the corresponding ground-truth binary mask for each
image. In the generation of the test images, the ground-truth masks are for the artifi-
cial test images are explicitly constructed. The usage of such artificial image provides
an image test set with an unbiased ground-truth and controllable noise, allowing the
emulation of a worst scenario in fluorescence microscopy imaging.

The pixel-level mismatch of the comparisons is calculated for all algorithms. The
rationale behind this test is to simulate the typical data processing workflow for HTS,
therefore the parameters used for each of the algorithms are optimized only once and
henceforth applied to the whole image set in the experiment. For none of the algo-
rithms in the experiment an individual tuning is applied. The parameters for all
algorithms were obtained from the HT screening literature [1, 4, 5, 16, 28].

Segmentation algorithms are often considered simplified versions of linear classifi-
ers trained in intensity space [13, 23, 24]. Similar to the error estimation for a classifi-
er, the error test normally covers both type I (False Positive) and type II (False
Negative) errors. Often the performance of a segmentation algorithm is assessed using
the number of correct and incorrect segmented pixels [21]. Only covering the type I
error may lead to an overtraining of the algorithm [3]. For a balanced conclusion we
take into account both type I and type II error. Furthermore, instead of just using the
two errors types, we introduce the F1-score [7]. The two types of errors for different
algorithms are defined in terms of the true positive and true negative. True positive
(TP) is defined as the ratio of pixel overlap between the ground-truth mask and the
segmented mask by each algorithm, expressed as: ܶܲ ൌ ܯ ת ԢܯԢܯ , (7)

where M’ is the set of pixels belonging to the foreground of binary mask provided by
the algorithm and M is the set of pixels belonging to the foreground of the ground-
truth mask. In similar fashion, the true negative (TN) is calculated from: ܶܰ ൌ ഥܯ ת ഥԢܯഥԢܯ . (8)

In this way, TP represents the percentage of correctly segmented foreground pixels
whereas TN represents the percentage of correctly segmented background pixels.
Form the values of TP and TN, the false positives (FP) are derived, i.e. FP = 1-TP
(percentage of incorrectly segmented foreground pixels), and likewise the false

 Segmentation for High-Throughput Image Analysis: Watershed Masked Clustering 35

negatives (FN) are derived, i.e. FN = 1-TN (incorrectly segmented background pix-
els). From these values, the sensitivity and specificity the [8] are calculated by: ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ ൌ ൬ ܶܲܶܲ ൅ ൰ (9)ܰܨ

ݕݐ݂݅ܿ݅݅ܿ݁݌ݏ ൌ ൬ ܲܨܰܶ ൅ ܶܰ൰ (10)

Given the results, the specificity and the sensitivity for all of algorithms of a particular
set of test images can be computed. The results are shown in Table 3. In addition,
from the specificity and sensitivity, the F1-score is derived by: 1ܨ ൌ 2 · ݕݐ݂݅ܿ݅݅ܿ݁݌ݏ · ݕݐ݂݅ܿ݅݅ܿ݁݌ݏݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ ൅ (11) .ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ

An ideal segmentation algorithm should yield the highest F1-score but this only oc-
curs when both specificity and sensitivity are approaching 100%.

In the next sections, we tested for 5 algorithms, i.e. Bernsen local adaptive threshold-
ing, Otsu thresholding, Level-set segmentation, Hysteresis edge-based segmentation,
and our WMC algorithm. We have included Fuzzy C-means clustering (FCM) to the
tests to illustrate the enhanced performance of our approach. All algorithms have
claimed the intrinsic capacity of performing well under noisy conditions typical to HTS
imaging [4, 5, 16, 25, 28]. For the algorithms, open-source plug-ins implementations
available in ImageJ [32] and CellProfiler [1] have been used without modifications.

3.1 Artificial Objects and Test Images

The intended application for our segmentation algorithm is high-throughput cell im-
aging. In order to understand and verify the behavior and performance of our algo-
rithm, ground-truth images with objects resembling the shapes which are normally
found in time-lapse cell imaging, are constructed (cf. Fig. 5a). Each image consists of
a number of ellipsoid objects and each object has a unique intensity profile. The in-
tensity profile (landscape) is generated through an exponential decay function that is
initiated at the centre of each object. The minimum and maximum value of an intensi-
ty profile of an object is generated using a uniform distributed random generator and
scaled in the range of [20, 255] – in this way sampling to an 8-bit image is simulated.
In addition, the orientation of each of the objects is varied by applying a rotation to
each of the object in the range of [-30º, 30º] using the center of mass as the pivot; the
rotation angle is selected from a uniform random generator. The original binary image
with all the objects is kept as the absolute ground-truth mask for the segmentation so
that error estimation can be applied over a range of test images that are subjected to a
range of different conditions of noise. In this test, a total amount of 30 images is gen-
erated. To simulate image noise typical to HTS and fluorescence microscopy, Poisson
noise is generated and applied to the images.

3.2 Performance Test with Artificial Images

All algorithms are applied over the same 30 test images (cf. Fig. 5). The F1-scores are
listed in Table 1. The object merging accuracy in WMC is also tested using the same

36 K. Yan and F.J. Verbeek

image set. An overcut object is defined as a group of objects obtained by segmenta-
tion algorithm share the same object in ground truth mask. A total amount of 238
overcut objects are detected in this image set. Using object optimization, the WMC
recovers 202 out of 238 overcut objects, i.e. approximately 85%.

3.3 Microscope Images

In order to test the performance of the WMC in the images it is designed for, we have
selected two sets of images from the application domain. The intention of the test is to
illustrate the performance in a typical setting and compare the performance with re-
spect to the same selection of segmentation algorithms used in the artificial test im-
ages; the test is completely similar to the test with the artificial test images. We will
make use of two different image sets. The first image set is known as the “Human
HT29 Colon Cancer” dataset [16] (cf. Fig. 6) containing 12 images of human HT29
colon cancer cells. The samples were stained for the nucleus (Hoechst) and the cytop-
lasm (phalloidin) in two separate channels. The second image set is a time-lapse im-
age sequence, i.e. a dynamic process, which is an MLTn3 cell line [17, 19] used to
study migration in live cancer metastasis processes (cf. Fig. 7). It consists of 96 time-
lapse image sequences, each of 75 frames. Each sequence portrays an in vitro cell
migration pattern typical in HTS experiments. The cytoplasm is stained through green
fluorescent protein (GFP). For the performance tests, we will only use the first 14
images of the sequence to reduce the size of the image set to reasonable for propor-
tions for this test. In addition, for this image set also a ground-truth image is required.
The MTLn3 ground-truth images were obtained by manual segmentation performed
by biologists through tracing on a digitizer tablet (WACOM Cintiq). In contrast to the
artificial image set, manual segmentation may contain observation bias between and
within observers. To that end the manual segmentation is replicated a few times to
reduce observer effects.

We will further refer to the first image set as the HT29 set and the second set as
the MTLn3 set. The HT29 set is captured at significant higher resolution compared to
the MTLn3 set. These two sets are considered a reasonable representation of the
scope of the images which are typical input for the WMC algorithm.

3.4 Performance Test with Microscope Images

For the two sets the results are presented in two tables and examples of the segmenta-
tion are given in two figures. In Table 2 and 3, the results of the experiment for this
set are presented. The sensitivity and specificity are used as the performance indica-
tors. From the result we can conclude that WMC has the best overall performance. It
produces stable and robust results for the HT29 set (cf. Table 2). Compared to WMC,
the standard FCM algorithm is similar in sensitivity but lower in specificity; the Otsu
segmentation is higher in specificity but significantly lower in sensitivity; the Hyste-
resis segmentation has a similar performance as the WMC. At this point, it is
important to realize that the quality of the HT29 set (cf. Fig. 6) is not, in all case, rep-
resentative for the real high-throughput screens, especially if we consider the dynamic
behavior common to live-cell imaging (cf. Fig. 7).

 Segmentation for High-Thr

Table 1. Specificity and

Performance WMC

Specificity 95.40%

Sensitivity 96.62%

F1 Score 95.99%

Table 2. Specificity and sen

Performance WMC

Specificity 98.59%

Sensitivity 98.78%

F1 Score 98.68%

Table 3. Specificity and

Performance WMC

Specificity 84.80%

Sensitivity 91.45%

F1 Score 88.05%

(a) Noisy image (b)

(e) Bernsen

Fig. 5. (a) noise-added artifici
binary images obtained by co
compute the errors listed in Ta

roughput Image Analysis: Watershed Masked Clustering

sensitivity of segmentation efficiency using artificial images

FCM Bernsen Otsu Level-set Hystere

98.11% 78.42% 86.02% 98.38% 79.78

91.73% 90.14% 98.22% 71.52% 85.16

94.50% 84.60% 91.83% 74.98% 82.95

nsitivity of the segmentation algorithms in the HT29 image se

FCM Bernsen Otsu Level-set Hystere

97.81% 99.84% 98.75% 70.68% 97.57

98.64% 83.10% 89.67% 53.43% 97.88

98.23% 92.11% 93.40% 31.29% 97.73

sensitivity of segmentation algorithms in MTLn3 image set

FCM Bernsen Otsu Level-set Hystere

95.76% 99.63% 90.60% 59.10% 82.82

74.16% 59.25% 80.64% 56.35% 88.13

78.27% 47.63% 83.79% 53.33% 85.81

Ground-truth (c) WMC (d) FCM

(f) Otsu (g) Level-set (h) Hysteresis

al test image, (b) ground-truth masks for the object, (c) to (h)
orresponding segmentation algorithms. These results are used
able 1.

37

esis

8%

6%

5%

et

esis

7%

8%

3%

esis

2%

3%

1%

s

) are
d to

38 K. Yan and F.J. Verbeek

(a) Gray-value image (b)

(e) Bernsen

Fig. 6. (a) Original HT29 ima
(b) Ground-truth masks and (c
are used to compute the errors

(a) Gray-value image (b)

(e) Bernsen

Fig. 7. (a) Original MTLn3 i
pixels, 8-bit (b) ground-truth m
These results are used to comp

The MTLn3 test set is, d
a good representation of a H
ground-truth segmentation
over the whole image set is
tomated methods. In Table
shown. It is immediately cl

k

Ground-truth (c) WMC (d) FMC

(f) Otsu (g) Level-set (h) Hysteresis

age acquired with a 10x lens; image size is 512x512 pixels, 8
c-h) masks obtained by the segmentation algorithms. These res

listed in Table 2.

Ground-truth (c) WMC (d) FCM

(f) Otsu (g) Level-set (h) Hysteresis

image acquired with a 20x lens (NA 1.4), image size 512x
masks and (c-h) masks obtained by the segmentation algorith
pute the errors listed in Table 3.

de facto, undersampled in terms of temporal resolution,
HTS with in vitro cell migration (cf. Fig. 7a). When find

through manual methods, the variance of the intensi
s indicative for the complications that will be faced in

e 3, the results of the experiment with the MTLn3 set
lear that the overall performance is much lower compa

s

 bit.
sults

s

x512
hms.

but
ding
ities
au-
are

ared

 Segmentation for High-Throughput Image Analysis: Watershed Masked Clustering 39

to the other test set. However, also in this test the WMC still shows the highest per-
formance. Compared to the WMC algorithm, the FCM algorithm is higher in specific-
ity but significantly lower in the sensitivity. Hysteresis still portrays a good and stable
performance. Compared to the previous experiment (cf. Table 2), the WMC algorithm
performs quite stable under the different circumstances. In conclusion, from Table 2
and 3 it can be established that the WMC algorithm outperforms the other algorithms,
which confirms its applicability for this area of bio-imaging research.

4 Conclusions and Discussion

We have proposed a segmentation algorithm for high throughput imaging that
performs better than algorithms that have been used for this purpose so far. The algo-
rithm consists of three steps, a watershed region selection followed by a fuzzy
C-means clustering and if necessary followed by a correction for oversegmentation.
The algorithm is particularly suitable for imaging in the domain of functional cytom-
ics and high-throughput screenings. We have compared the WMC algorithm with five
others and the results of the evaluation convincingly demonstrate the performance
WMC algorithm. Over all tests, the WMC algorithm has the best recall (F1-score)
without excessive increase in computation time. In the domain of cytomics, analysis
is performed post hoc; and thus computation time is not a critical component of the
analysis but segmentation robustness is. In practice, WMC is now used and we are
obtaining high precision results that are understood in biological context [19, 20, 31].

The major advantage of the WMC algorithm is that it can deal with variations in
staining intensity typical for bio-imaging and specific to high-throughput in vitro
experiments. The local intensity variations in the image limit application of Otsu
segmentation; it requires a global optimum for the threshold, which may not be possi-
ble. Along the same line, the level-set method is not suitable as it presumes a consis-
tent intensity for the objects in the image. The regional approach in WMC followed
by a local clustering transforms the segmentation to a local problem so that threshold
levels can be found efficiently. For segmentation in cytomics edge based methods are
noise susceptible, therefore intensity variations necessitate region based approaches.
This is confirmed from our findings comparing Hysteresis segmentation to WMC,
especially with more artificial noise (cf. Table 1) or staining variations in the image
(cf. Table 3).

The WMC consists of three independent steps and if we consider these individually
further improvements can be formulated. In step 1, the watershed algorithm, the initia-
lization of the watershed algorithm is currently based on local maxima; other schemas
must be investigated to render a better initialization. Now, a priori knowledge is not
used whereas this might facilitate a better estimate for the initialization. In step 2, fuzzy
weighted C-means clustering is used, however, other clustering approaches can be
probed; similarly to step 1, a priori knowledge on the intensity distribution might be
supportive in finding a better clustering approach. Regarding step 3, we implemented
only a few of situations of oversegmentation (cf. §.2.3). This particular step of the
algorithm can be adapted to experimental conditions, i.e. a priori knowledge can be

40 K. Yan and F.J. Verbeek

tuned with respect to the experiment so as to overcome certain imperfections of earlier
steps. In future research this will be elaborated, however, the global idea of the WMC
algorithm will stand its case (cf. Table 2 & 3).

The WMC has been successfully applied to other experiments in the domain of
bio-imaging, e.g. detection of small vessels [18] and chromosomes. With further ge-
neralization, the algorithm can be engaged in a broader scale of imagery. The future
research on the tuning of the subsequent steps of the WMC algorithm will contribute
to this generalization.

Acknowledgements. This work has been partially supported by the Netherlands’
Bioinformatics Centre (NBIC), BioRange Project. The authors like to express their
gratitude to our collaborators Dr. S. Le Dévédec, Dr. S. Zovko and Prof. B. van de
Water, for making available the MTln3 set. The MTLn3 ground-truth masks are ob-
tained in collaboration with Toxicology/LACDR, Leiden University, the Netherlands.
The HT29 was publically made available by the Broad Institute/MIT, USA.

References

1. Carpenter, A., Jones, T., Lamprecht, M., Clarke, C., Kang, I., Friman, O., Al, E.: CellPro-
filer: Image Analysis Software for Identifying and Quantifying Cell Phenotypes. Genome
Biology 7(10) (2006)

2. Pinidiyaarachchi, A., Wählby, C.: Seeded Watersheds for Combined Segmentation and
Tracking of Cells. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 336–
343. Springer, Heidelberg (2005)

3. Webb, A.: Statistical Pattern Recognition, 2nd edn. Wiley, UK (2005)
4. Neumann, B., Held, M., Liebel, U., Erfle, H., Rogers, P., Pepperkok, R., et al.: High-

throughput RNAi screening by time-lapse imaging of live human cells. Nature Me-
thods 3(5), 385–390 (2006)

5. Neumann, B., Walter, T., Hériché, J.K., Bulkescher, J., Erfle, H., Conrad, C., et al.: Pheno-
typic profiling of the human genome by time-lapse microscopy reveals cell division genes.
Nature 464(7289), 721–727 (2010)

6. Huang, C., Rajfur, Z., Borchers, C., Schaller, M., Jacobson, K.: JNK Phosphorylates paxil-
lin and Regulates Cell Migration. Nature 424, 219–223 (2003)

7. van Rijsbergen, C.: Information Retrieval. Butterworth-Heinemann, UK (1979)
8. Altman, D.G., Bland, J.M.: Statistics Notes: Diagnostic Tests 1: Sensitivity and Specifici-

ty. BMJ 308(1552) (1994)
9. Hancock, E., Kittler, J.: Adaptive Estimation of Hysteresis Thresholds. In: Proc. of Com-

puter Vision and Pattern Recognition, pp. 196–201 (1991)
10. Verbeek, F.J.: Three Dimensional Reconstruction from Serial Sections Including Deforma-

tion correction. PhD Thesis, Delft University of Technology, The Netherlands (1995)
11. Verbeek, F.J.: Theory & Practice of 3D-reconstructions From serial Sections. In: Baldock,

R.A., Graham, J. (eds.) Image Processing, A Practical Approach, pp. 153–195. Oxford
University Press, Oxford (1999)

12. Angulo, J., Schaack, B.: Morphological-Based Adaptive Segmentation and Quantification
of Cell Assays in High Content Screening. In: Proc. of the 5th IEEE International Sympo-
sium on Biomedial Imaging, pp. 360–363 (2008)

 Segmentation for High-Throughput Image Analysis: Watershed Masked Clustering 41

13. Bernsen, J.: Dynamic Thresholding of Grey-Level Images. In: Proc. of the 8th Int. Conf.
on Pattern Recognition (1986)

14. Roerdink, J.B., Meijster, A.: The Watershed Transform: Definitions, Algorithms and Pa-
rallelization Strategies. Fundamenta Informatica, 187–228 (2000)

15. Fan, J., Han, M., Wang, J.: Single Point Iterative Weighted Fuzzy C-means Clustering Al-
gorithm for Remote Sensing Image Segmentation. Pattern Recognition 42(11), 2527–2540
(2009)

16. Moffat, J., Grueneberg, D.A., Yang, X., Kim, S.Y., Kloepfer, A.M., Hinkle, G.: A lentivir-
al RNAi library for human and mouse genes applied to an arrayed viral high-content
screen. Cell 124(6), 1283–1298 (2006)

17. Pu, J., McCaig, C.D., Cao, L., Zhao, Z., Segall, J.E., Zhao, M.: EGF receptor Signaling is
Essential for Electric-field-directed Migration of Breast Cancer Cells. Journal of Cell
Science 120(19), 3395–3403 (2007)

18. Yan, K., Bertens, L., Verbeek, F.J.: Image Registration and Realignment using Evolutionary
Algorithms with High resolution 3D model from Human Liver. In: Proc. CGIM 2010 (2010)

19. Yan, K., Le Dévédec, S., van de Water, B., Verbeek, F.J.: Cell Tracking and Data Analysis
of in vitro Tumour Cells from Time-Lapse Image Sequences. In: Proc. VISAPP 2009, pp.
281–287 (2009)

20. Damiano, L., Le Dévédec, S.E., Di Stefano, P., Repetto, D., Lalai, R., Truong, H., Xiong,
J.L., Danen, E.H., Yan, K., Verbeek, F.J., Attanasio, F., Buccione, R., van de Water, B.,
Defilippi, P.: p140Cap Suppresses the Invasive Properties of Highly Metastatic MTLn3-
EGFR Cells via Paired Cortactin Phosphorylation. Oncogene 30(2) (2011) (in Press)

21. Ma, L., Staunton, R.: A modied fuzzy C-means image segmentation algorithm for use with
uneven illumination patterns. Pattern Recognition 40(11), 3005–3011 (2007)

22. Sezgin, M., Sankur, B.: Survey over Image Thresholding Techniques and Quantitative Per-
formance Evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)

23. Otsu, N.: A Threshold Selection Method from Gray-level Histogram. IEEE Transactions
on Systems, Man and Cybernetics 9, 62–66 (1979)

24. Venkateswarlua, N., Raju, P.: Fast Isodata Clustering Algorithms. Pattern Recogni-
tion 25(3), 335–342 (1992)

25. van der Putten, P., Bertens, L., Liu, J., Hagen, F., Boekhout, T., Verbeek, F.J.: Classifica-
tion of Yeast Cells from Image Features to Evaluate. Pathogen Conditions. In: SPIE 6506,
MultiMedia Content Access: Algorithms & Systems, vol. 6506, pp. 65060I-1–65060I-14
(2007)

26. Goldman, R., Swedlow, J., Spector, D.: Live Cell Imaging: A Laboratory Manual. Cold
Spring Harbor Laboratory Press, USA (2005)

27. Medina-Carnicer, R., Madrid-Cuevas, F., Carmona-Poyato, A., Muñoz Salinas, R.: On
candidates selection for hysteresis thresholds in edge detection. Pattern Recognition 42(7),
1284–1296 (2008)

28. Pepperkok, R., Ellenberg, J.: High-throughput Fluorescence Microscopy for Systems Biol-
ogy. Nature Reviews Molecular Cell Biology 7(9), 690–696 (2006)

29. Inoue, S.: Video Microscopy: the Fundamentals, 2nd edn. Springer, USA (1997)
30. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer,

USA (2002)
31. LeDévédec, S., Yan, K., de Bont, H., Ghotra, V., Truong, H., Danen, E., Verbeek, F.J., van

de Water, B.: A Systems Microscopy Approach to Understand Cancer Cell Migration and
Metastasis. Cellular and Molecular in Life Science 67(19), 3219–3240 (2011)

32. Collins, T.: Image J for microscopy. Bio Techniques 43, 25–30 (2007)

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 42–55, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Efficient and Robust Shape Retrieval
from Deformable Templates

Alexander E. Nezhinsky and Fons J. Verbeek

Section Imaging and Bioinformatics,
Leiden Institute of Advanced Computer Science, Leiden University,

Niels Bohrweg 1, 2333CA, Leiden, The Netherlands
{anezhins,fverbeek}@liacs.nl

Abstract. Images with known shapes can be analyzed through template match-
ing and segmentation; in this approach the question is how to represent a known
shape. The digital representation to which the shape is sampled, the image, may
be subject to noise. If we compare a known and idealized shape to the real-life
occurrences, a considerable variation is observed. With respect to the shape,
this variation can have affine characteristics as well as non-linear deformations.
We propose a method based on a deformable template starting from a low-level
vision and proceeding to high-level vision. The latter part is typically applica-
tion dependent, here the shapes are annotated according to an ideal template and
are normalized by a straightening process. The underlying algorithm can deal
with a range of deformations and does not restrict to a single instance of a shape
in the image. Experimental results from an application of the algorithm illu-
strate low error rate and robustness of the method. The life sciences are a chal-
lenging area in terms of applications in which a considerable variation of the
shape of object instances is observed. Successful application of this method
would be typically suitable for automated procedures such as those required for
biomedical high-throughput screening. As a case study, we, therefore, illustrate
our method in this context, i.e. retrieving instances of shapes obtained from a
screening experiment.

Keywords: Content-based Indexing, Search, and Retrieval, Object detection
and Localization, Object Recognition.

1 Introduction

In this paper we focus on the problem of object detection and localization in digitized
images for structures that are deformed instances of an archetypal shape (Verbeek,
1995); as an extension to the case of single instance we have investigated the effect of
the presence of more than one instance, intersecting or otherwise obscured. In all
cases instances need be properly separated from the other content in the digital image.

In order to accomplish the detection in a robust and reproducible manner, we
present a framework consisting of two steps for the recognition and annotation of
the deformed instances of a predefined shape. Annotation is required so as to be able
to compare different instances of objects in a comparable (reproducible) manner.

 Efficient and Robust Shape Retrieval from Deformable Templates 43

Therefore as part of our solution we also elaborate a straightening normalization of
the shape according to a predefined template. Our framework will be applied to a case
study in biology, i.e. high throughput screening of zebrafish larvae.

A large number of context based image retrieval systems have been described
(Zhong et al., 2000). These can be divided in the free-form and the parametric ap-
proaches. A popular approach for shape retrieval is the Active Contour, a.k.a. the
active snake, (Kass et al., 1987) which is a typical free-form model (Jain et al., 1996).
Free form models require a correct global initialization in the image and optimize the
local shape. Free-form class models do not have global shape limitation, but focus
mainly on attraction towards certain image features (Jain et al., 1996). In our ap-
proach we focus on the cases in which a global shape is known and therefore we do
not consider active snake as a possibility.

In research dealing with recognition of known shapes (Garrido et al., 2000; Ng
et al., 2006; Felzenswalb, 2003(1,2)) the use deformable templates is emphasized.
Deformable templates typically, are parametric class models; they start from a set of
predefined parameters. The representation of the parameters might differ, but often a
template is used, consisting of a set of contour points to which the basic shape outli-
neis approximated. So, if the basic shape that is looked for is known, it still needs be
localized in the images. Therefore the prior knowledge can be exploited by choosing
the parametric deformable shape template matching method as a basic approach
(Bronkorsta et al., 2000, Jain et al., 1996, Zhong et al., 2000, Felzenswalb, 2003(1)).

Such approach is used in the segmentation of cells in a microscope images (Garri-
do et al, 2000). In this application the Hough transform approach is reformulated to
be used as a deformable template. However, if the shapes are more complex than a
circular shape like object, it is difficult to adapt to this approach.

An example of a more complex shape is the segmentation of the masseter on the
basis of a predefined template (Ng et al., 2006); locally deformed instances of the
template can be successfully extracted from input images.

On the basis of this approach we propose a further generalization with which it is
also possible to deal with multiple objects in one image as well as with global defor-
mations; e.g. bending of the entire object.

Based on silhouettes or boundary representations of prototype templates a consi-
derable amount of research has been completed (Felzenswalb, 2003). Usually the
silhouettes are defined by contour points and make up the template. These templates
can then be deformed by a set of parametric transformations, including both local and
global transformations (Zhong et al, 2000). We have taken this traditional representa-
tion as a starting point; however, we have replaced the contour points in the silhouette
by a contour area (cf. Figure 2). The reason for using this representation is that we
would like to allow multiple overlapping instances of the object in one input image
and therefore we have to accommodate for missing contour points.

In addition to the template matching, we also address the problem of shape norma-
lization; in particular for applications of biological objects. The combination of shape
localization and normalization has been successfully applied for the round worm, i.e.
C.elegans (Peng et al., 2007). It is known as the BDB+ method. On the basis of the
object boundary a straightening is applied so as to ease the further analysis of the

44 A.E. Nezhinsky and F.J. Verbeek

objects. In our application, however, this method cannot be used; it starts from a pre-
defined shape and then straightens the shape assuming the boundary has already been
extracted. We want to investigate the recognition and straightening of more complex
elongated shapes and, as indicated, account for the presence of multiple instances in
one image.

The framework that we have elaborated consists of two steps. First, a preprocess-
ing step including a segmentation of an input image in order to separate the object(s)
of interest from the background is applied. Segmentation alone, however, does not
give satisfactory results, as we are not only interested in separating background from
foreground, but we also want to recognize position and best possible representation of
the object. This is realized in the second step consisting of a matching of a deformable
template to the segmented image. This step is the main focus of this paper. Finally, a
post-processing step includes shape normalization through straightening of the ex-
tracted shape. Such is possible from contextual information about the object in the
image that we have gained. Deformations are known and therefore deformations can
be normalized according to the template. The framework was implemented in C++
using the OpenCVgraphics library (http://opencv.willowgarage.com).

2 Method

The starting point of our algorithm is variation; i.e. a shape has variation, it can be
inflicted with noise and it can be deformed or partially occluded. Our framework
detects deformed instances of a predefined structure by means of Deformable Tem-
plate Matching and these are subsequently extracted from an input image. In Figure1,
an overview of the process is presented.

The method consists of two steps: the preprocessing step and the template match-
ing step. First, during the preprocessing step, the input image is converted to a strict
binary representation. In the main process the deformable template matching is ap-
plied in the binary image obtained from the preprocessing. This entails looking for the
best match of a prototype template in the image. If a match is found the result is anno-
tated according to the prototype template and henceforth, straightened.

2.1 Pre-processing

The first step in the analysis is retrieving foreground and background: i.e. an opera-
tion that converts an input image to a binary representation by marking the pixels
which belong to foreground objects 1 and the background pixels 0. Different binariza-
tion methods are described in the literature; i.e. based on the usage of global or adap-
tive threshold methods, color or edge based segmentation. The choice of the method
depends on the input image at hand, its properties and quality (Gonzales et al., 2001).
In the cases where prior spatial information is known this given can be exploited and
the threshold value set can be based on this given.

 Efficient and Robust Shape Retrieval from Deformable Templates 45

Fig. 1. Proposed framework for automatic shape retrieval and straightening

2.2 Deformable Template Matching

After separation of foreground and background in the image, the contextual informa-
tion still needs to be retrieved in order to recognize the objects of interest.

Prototype Template. The initial contour sketch of the object of interest is defined by

the prototype template 0T . The construction of is based on prior knowledge and is

an approximate representation of how a typical object contour should look like and
represents a contour location area. In Figure 2 a few examples are shown.

Fig. 2. Some examples of prototype templates of different objects. Gray area represents the
space where connected component boundaries might be located.

0T

46 A.E. Nezhinsky and F.J. Verbeek

A contour location area represents the region of interest within which the local tem-
plate contour can exist and may change. In doing so, local deformations become li-
mited by evaluating only at the pixels that are located within the contour location area
(depicted in grey in Figure 2). Introducing a limitation to the template boundary loca-
tion of the deformed template is necessary to predict image boundary location in cases
where it is missing, incomplete or overlapping. As a result of this representation only
global deformations are remaining, which will be described in the next subsection.

Parametric Transformation. Biological shape instances are often bended and ro-

tated. In order to cope with these global deformations is distributed in n smaller

sub-templates; these are hereafter referred to as slices t (Nezhinsky and Verbeek,
2010):

ntttT ,..,, 100 = (1)

A single slice can be seen as a rectangular matrix , consisting of binary values.

This is shown in Figure 3.

Fig. 3. An example of matrix representing a template slice. Fields with value 1 are

marked with grey color. Other fields have the value 0.

The horizontal medial axis of the slice horizontalO , is defined at [i/2,*], and the slice

origin as O at [i/2, j/2]. Within the whole template the slices can rotate around their
origin O to allow matching against a rotated shape. The origins are linked together as
a chain (Figure 4); at any deformation of the total shape the distance between sequen-
tial slice origins remains the same.

Fig. 4. A prototype template as a chain of slices and a deformed instance. All shape bounda-
ries that fit in the grey area fit the template. Black lines represent two example shapes that fit
these templates.

0T

),(jit

),(jit

 Efficient and Robust Shape Retrieval from Deformable Templates 47

A deformed templateT ′ is derived from 0T and is represented as:

),(0 ξTT ′ (2)

A deformationξ of the slice chain is encoded by the following state-sequence:

),..,,,,(10 nyx αααξ = (3)

x is the shift in the X-axis, y the shift in the Y-axis direction of the first slice 0t and

iα the angle of rotation of each slice it . Due to the proposed slice based representa-

tion our deformable template approach is very suitable for use with elongated shapes.

Objective Function. The fitness of a template matching of an input image is meas-
ured by an objective function (Jain et al., 1996). In the C.elegans application (Peng et
al., 2008) a parametric representation is used in which the algorithm marches along
the backbone of a representation to calculate the objective function.

A similar approach is applied, by comparing simultaneously the matrix),(jiS of

binary slices to a selected image region of the same size, i.e. the binary matrix

),(jiR (Figure 5a,b). First, the matrix is considered in which both the template and

the image region have overlapping foreground pixels, which are the result of
),(),(jiSjiR ⋅ (Figure 5c).

Fig. 5. An example of template matching of a template slice S(i,j) and a region R(i,j)

During this step the shape is a filled binary object, therefore matches that are far-
thest from the slice center but still in the silhouette contour area, are assumed to define
the object. In order to get the actual border, the algorithm then marches along the

horizontal medial axis of),(),(jiSjiR ⋅ iterating over 0 till j. Each orthogonal

image plane pixel columns ip (iterating from 0 to i) is compared to the template. It is

48 A.E. Nezhinsky and F.J. Verbeek

assumed that the silhouette has only one silhouette pixel in the top and the bottom of
each column. Therefore, per column, the two extreme points that are of value 1 (as
measured from the horizontal medial axis) remain 1, all other values are set to 0
(Figure 5d). The result thus obtained is considered an intermediate result. The quality,
i.e. the objective function, of this result is then measured by the length of the
retrieved border. Objective function is 1 if all pixels of the silhouette have been re-

trieved. To that end the objective function for a slice),(jiS is defined as:

))),(),(((
5.0

)),(( ⋅= jiRjiS
j

jiSφ (4)

A template consists of n slices of the same size, and therefore),(ξTF depends on

the fitness function of each slice:


=

=
n

k
k jiS

n
TF

0

)),((
1

),(φξ (5)

Matching the Template to the Input Image. In order to check all possible occur-

rences, 0T must be transformed, rotated and deformed by all possible parameters. To

find the best solution there is a need to retrieve the global maximum of the fitness

function (cf. Eq. 5) for the input image. That is, to compare each),(jiS to all possi-

ble regions),(jiR within the image.

A global search is computationally complex (Kim et al., 2007), especially when the
search space image is large. To that end Genetic algorithms (Tagare et al., 1997) and
dynamic programming approaches (Liu et al., 2000), have been used for optimization.

2.3 Post-processing: Straightening the Template

After a sequence of slices is found, the shape can be normalized through straightening
by back-rotation of slice found. Since each deformed template T has a deformation

defined by),..,,,,(10 nyx αααξ = each of its slices it is rotated back by the angle

slice - iα . In this manner the global deformation of the deformed template can be

reverted to the prototype template 0T .

3 Case Study

The framework was developed in the context of high throughput imaging applica-
tions. Therefore, as a case study we will elaborate on shape analysis and retrieval of
the zebrafish larvae (Stoop et al., 2011). Typically, zebrafish are employed in high
throughput studies to investigate new factors for mycobacterial infection. Such
approach requires a screening of thousands of larvae.

The shapes of zebrafish larvae are similar, yet each individual (instance) is little
different. Moreover, shapes are often slightly bent and rotated. Without proper

 Efficient and Robust Shape Retrieval from Deformable Templates 49

localization and annotation of the regions in the shapes, the measurement of features
within each instance is severely hampered.

The framework that we present fulfills the need for solutions in high-throughput
applications in which shapes can be recognized in images and subsequently annotated
in such way that these can be compared to other retrieved shapes.

The images for this case study were acquired using Leica MZ16FA light microscope
as 24-bit color images with a size of 2592×1944 pixels. On average, each image contains
up to 3 larvae. The orientation of the instances in the images is random; however they are
not touching the image border. Given the experimental set-up we can assume that the
images only contain zebrafish larvae and some incidental noise/debris.

3.1 Pre-processing

Because of uneven illumination, global threshold methods applied on gray-scale
converted images of the zebrafish larvae will not produce satisfactory results. We,
therefore, employ an edge map based method to the input image. Edges define the
boundaries between objects and background without strong dependency to flaws in
the illumination. There exist several algorithms to create an edge map. After creation
of the edge map a threshold is applied to select for the strong edges.

The determination of the threshold value of an edge map can be a cumbersome
task. To set the threshold automatically without prior spatial relationship knowledge
of the image, the Otsu segmentation (Otsu, 1979) might be applied.

However, as we have prior spatial relationship knowledge of our particular dataset,
we can exploit this for our border based method; i.e. the objects in the image are al-
ways located at some minimal distance d from image border. This characteristic is
utilized. We can assume that a sheet of thickness d on the outside of an image con-
tains only background pixels and some incidental noise. Of this sheet we retrieve a
number of local maximal pixel values. Of all the collected values we take the median
value to determine the threshold value for the edge map.

In order to select the best preprocessing approach we compare the performance of
different simple edge detectors, i.e. Sobel gradient, Roberts gradient (Gonzales &
Woods, 2001) in combination with Otsu segmentation (Otsu, 1979) and our border
based method on 233 images. We count the number of objects in the segmented im-
age. If the number of objects equals the number of objects in the original image we
mark the prediction as correct. Both gradient methods in combination with our border
method outperformed thresholding based on Otsu segmentation. Out of the images
incorrectly segmented in 17 cases the zebrafish shapes were touching each other and
thus connected. In all of these cases both edge detectors predicted 1 or 2 fish instead
of 3 due to this connection.

After basic segmentation is completed, mathematical morphology operations are
applied to get rid of noise and close up unwanted gaps. The closing operator is ap-
plied to connect small regions and close holes, then connected components labeling
(with filling up holes) is applied to obtain the closed shapes. In order to eliminate re-
maining noise we use the fact that we know the minimal area covered by a zebrafish.
This area size can be automatically retrieved from the template size. Thus we remove
all objects smaller then this minimal area. We do not remove objects that are larger
than the maximal area, since larger object might be intersecting zebrafish shapes.

50 A.E. Nezhinsky and F.J. Verbeek

3.2 Main Process: Deformable Template Matching

Prototype Template. Our initial zebrafish template (cf. Figure 6) is created from
averaging a test set of training shapes (Cootes et al.,1994); here the template is
created by averaging a set of 20 zebrafish larvae shapes.

Zebrafish larvae tend differ in length. Therefore, the length of the template is not
fixed, but can vary between some minimal (min) and maximal (max) number of slices

mint and maxt . If the number of found slices is smaller than min or larger then max we

assume the shape is not found. All the slices xt with min< x < max are thus optional

slices. In Figure 6 this is depicted. The max and min are set based on the length of the
longest and shortest encountered zebrafish.

Fig. 6. Minimal slices and optional slices in a prototype template. The template is compared to
an example of a short and a long larvae shape.

Objective Function for the First Slice. The described objective function is applica-
ble for slices in which the important information is located above and below the slice
center. While most of the zebrafish larvae template applies to this condition the very
first slice, in which the head is located, does not. This is due to the fact that its shape
is close to half circular. This is depicted in Figure 7. To cope with this case, instead of
retrieving extreme values above and below the median axis extreme values are re-
trieved in a circular way as shown in Figure 7.

Fig. 7. Marching direction for the first slice depicted in the image pixel matrix

 Efficient and Robust Shape Retrieval from Deformable Templates 51

Matching the Template to the Shape. In order to obtain a global optimum a
top-down dynamic programming approach is applied with a hash table saving for
intermediate result. In our case study the larvae shapes are located in approximately
vertical positions in the input image. This fact is used to reduce the search space by
assuming that each slice can rotate between -45 to 45 degrees as measured from the
image horizontal axis. Additionally, a discrete set of deformation angles for each slice
is used.

To further reduce the search space a Multi resolution algorithm (Leroy, 1996) is
used. First the solution is located on a low resolution template and a low resolution
input image. Then, the solution is used for initialization in a higher resolution.

4 Experiments and Results

An evaluation of our algorithm is performed on a dataset consisting of 233 images
which were obtained from a running experiment. Out of the images 177(76%) con-
tained 3 larvae, 33(14%) contained 2 larvae and 23(10%) 1 larva.

A first basic test is to check for how many of the tested images the number of lar-
vae is predicted correctly: for all images (100%) the number of the larvae shapes (1,2
or 3 larvae, even if overlapping) with in the image was correctly retrieved.

The correct prediction of the number of shapes in an image is promising, however
only retrieving the number of shapes is not sufficient for a proper analysis. To that
end we also tested the accuracy of the algorithm, that is, how precise the shapes were
retrieved. In Figure 8 representative results of retrieved shapes are depicted. We show
shapes that are deformed in different way as well as shapes touching each other. The
template in Figure 6 was used for the creation of all these images.

Fig. 8. Automatic localization of the zebrafish shapes using deformable template matching. The
white line defines the shape as found by the algorithm. The white dots represent the slice cen-
ters found. In the right image the shapes are slightly touching each other, which complicates the
recognition. These result were created using the same template as the left image; the black
regions in each larva depicts a bacterial infection.

52 A.E. Nezhinsky and F.J. Verbeek

Methods that can be used for automated retrieval predefined shapes from images
without an initialization have not been described, and therefore we have compared the
resulting shapes of each retrieved zebrafish larva shape against ground truth images of
the same shapes as annotated by experts. A comparison of human to automatic re-
trieval is regularly used for validation procedures (Peng et al., 2008).

In order to have manageable proportions in the evaluation, we reduced our test set
to a total of 104 zebrafish shapes (distributed over in 35 images, containing up to 3
shapes per image). Four experts (test-persons T1, T2, T3, T4) were asked to delineate
the outline of the zebrafish larva. Drawing the shapes was realized with an LCD-
tablet (Wacom) using the TDR software (Verbeek et al., 2002).

Next, the precision of our method is compared by applying it to the same input data
(algorithm output A). The accuracy of our shape retrieval algorithm is measured by
the equation proposed in (Ng et al., 2006):

 (6)

We have compared the accuracy of our algorithm to T1, T2, T3 and T4. The average
accuracy was established as 96.71 (σ= 1.27). Note, that this accuracy could not be
achieved by the segmentation step alone, as 35 (of the 104) shapes used for this test
were touching each other and their boundary could only be derived through the tem-
plate matching.

Table 1 presents the results of the comparison of the accuracy of our algorithm
with the test persons. In addition the inter-observer variation is analyzed.

Table 1. Accuracy comparison of our algorithm T0 and the test subjects T1, T2, T3, T4. The
matrix is symmetrical, yet we have shown all the values for viewing convenience

 T0 T1 T2 T3 T4

T0 - 96.85 97.19 96.29 96.47

T1 96.85 - 97.61 97.21 96.81

T2 97.19 97.61 - 97.17 97.46

T3 96.29 97.21 97.17 - 96.68

T4 96.47 96.81 97.46 96.68 -

As can be seen from the table the accuracy between our algorithm and each test

person is as close to the accuracy of the test persons to each other. This indicates that
the algorithm retrieves shapes as good as or comparable to manual retrieval.

In the last part of the experiment the objects, i.e. zebrafish, are normalized; a
straightening operation. This is accomplished using a template with a straight top
border in order to align the slices found with their top to a horizontal line. In Figure 9
and Figure 10 the results are shown.

To retrieve and straighten a single zebrafish shape from a 2592×1944 image took
our application about 35s CPU time on an Intel Dual Core 2.66 Ghz, 1.00 Gb.

%100
)()(

)(
2 ×








+
∩

×=
areaarea

areaarea

SNMN

SMN
accuracy

 Efficient and Robust Shape Retrieval from Deformable Templates 53

Fig. 9. Results showing the automated straightening of zebrafish larvae. Image (left) is the
input image. Image (right) is the normalization result.

Fig. 10. Results of the automated straightening zebrafish larvae. Image (a) shows the retrieved
shapes projected on the input image. Image (b) shows the automated normalization result.

5 Conclusions

In this paper we have described a framework for automated detection of archetypal
object shapes in an image. Once detected a post-processing by straightening of each
object on the basis of a predefined template is applied.

In our framework, the prototype template is represented as a bitmap and can easily
be adapted to the needs of the application while the same algorithm is used.

The algorithm we propose does not rely on initial localization of the shape and
therefore does not require any manual intervention or analysis.

The framework was applied in an experimental set-up for high throughput screen-
ing with a read-out in images. In the application to zebrafish screening average accu-
racy of about 96 percent has been achieved.

The framework can be easily adapted to work with other shapes, be in the life
sciences or in other fields that require accurate and robust shape retrieval.
Further analysis of the validation and the precision in object straightening is part of
the future work.

Acknowledgements. This work is partially supported through the Smartmix program.

54 A.E. Nezhinsky and F.J. Verbeek

References

1. Brunelli, R.: Template Matching Techniques in Computer Vision: Theory and Practice.
John Wiley & Sons, Ltd. (2009)

2. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models: their training
and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

3. Cootes, T.F., Taylor, C.J., Lanitis, A.: Active Shape Models: Evaluation of a Multiresolu-
tion Method for Improving Image Searches. In: Proceedings of the British Machine Vision
Conference, vol. 1, pp. 327–336 (1994)

4. Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comp. Appl.
Math. 6(6), 19–26 (1980)

5. Felzenszwalb, P.: Representation and Detection of Shapes in Images. Ph.D. dissertation,
Massachusetts Institute of Technology (2003)

6. Felzenszwalb, P.: Representation and Detection of Deformable Shapes. In: 2003 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003),
vol. 1, p. 102 (2003)

7. Garrido, A., Perez de la Blanca, N.: Applying deformable templates for cell segmentation.
Pattern Recognition 33 (2000)

8. Gonzales, R., Woods, R.: Digital Image Processing, 2nd edn. Addison-Wesley, London
(2001)

9. Jain, A.K., Zhong, Y., Lakshmanan, S.: Object matching using deformable templates.
IEEE Tran. on Pattern Analysis and Machine Intell. 18(3) (1996)

10. Jain, A.K., Zhong, Y., Dubuisson-Jolly, M.: Deformable Template Models: a Review. In:
Signal Processing - Special Issue on Deformable Models and Techniques for Image and
Signal. Elsevier (1998)

11. Zhong, Y., Jain, A.K.: Object localization using color, texture and shape. Pattern Recogni-
tion 33 (2000)

12. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. Journal of
Comput. Vision 1(4) (1987)

13. Kim, H.Y., de Araújo, S.A.: Grayscale Template-Matching Invariant to Rotation, Scale,
Translation, Brightness and Contrast. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS,
vol. 4872, pp. 100–113. Springer, Heidelberg (2007)

14. Leroy, B., Herlin, I., Cohen, L.D.: Multi-resolution algorithms for active contour models.
In: Proceedings of the 12th International Conference on Analysis and Optimization of Sys-
tems Images, Wavelets and PDE’S, Rocquencourt (1996)

15. Liu, Z., Wang, Y.: Face detection and tracking in video using dynamic programming. In:
Proceedings of International Conference on Image Processing (2000)

16. Nezhinsky, A.E., Verbeek, F.J.: Pattern Recognition for High Throughput Zebrafish Imag-
ing Using Genetic Algorithm Optimization. In: Dijkstra, T.M.H., Tsivtsivadze, E., Mar-
chiori, E., Heskes, T. (eds.) PRIB 2010. LNCS (LNBI), vol. 6282, pp. 301–312. Springer,
Heidelberg (2010)

17. Ng, H.P., Ong, S.H., Goh, P.S., Foong, K.W.C., Nowinski, W.L.: Template-based Auto-
matic Segmentation of Masseter Using Prior Knowledge. In: Proceeding SSIAI 2006 Pro-
ceedings of the 2006 IEEE Southwest Symposium on Image Analysis and Interpretation
(2006)

18. Peng, H., et al.: Straightening Caenorhabditis elegans images. Bioinformatics 24, 234–242
(2008)

19. Ren, M., Yang, J., Sun, H.: Tracing boundary contours in a binary image. In: Image and
Vision Computing (2002)

 Efficient and Robust Shape Retrieval from Deformable Templates 55

20. Ridler, T.W., Calvard, S.: Picture thresholding using an iterative selection method. IEEE
Trans. System, Man and Cybernetics SMC-8, 630–632 (1978)

21. Stoop, E.J.M., Schipper, T., Rosendahl Huber, S.K., Nezhinsky, A.E., Verbeek, F.J., Gur-
cha, S.S., Besra, G.S., Vandenbroucke-Grauls, C.M.J.E., Bitter, W., van der Sar, A.M.:
Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma
formation reveals a newly identified ESX-1 component. Dis. Model. Mech. 4(4), 526–536
(2011)

22. Tagare, H.D.: Deformable 2-D template matching using orthogonal curves. IEEE Transac-
tions on Medical Imaging 16(1), 108–117 (1997),
http://www.ncbi.nlm.nih.gov/pubmed/9050413

23. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Transactions on
Systems Man Cybernet (1978)

24. Verbeek, F.J.: Three-dimensional reconstruction from serial sections including deforma-
tion correction Delft University of Technology, Delft (1995)

25. Verbeek, F.J., Boon, P.J.: High-resolution 3D reconstruction from serial sections: micro-
scope instrumentation, software design, and its implementations. In: Three-Dimensional
and Multidimensional Microscopy: Image Acquisition and Processing IX (2002)

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 56–66, 2012.
© Springer-Verlag Berlin Heidelberg 2012

OWL-DL Domain-Models as Abstract Workflows

Ian Wood1, Ben Vandervalk1, Luke McCarthy1, and Mark D. Wilkinson2

1 Institute for Heart + Lung Health, St. Paul's Hospital,
University of British Columbia, Vancouver, BC, Canada

ian.wood@alumni.ubc.ca, luke@elmonline.ca,
ben.vvalk@gmail.com

2 Centro de Biotecnología y Genómica de Plantas,
Universidad Politécnica de Madrid, Madrid, España

markw@illuminae.com

Abstract. Workflows are an increasingly common way of representing and
sharing complex in silico analytical methodologies. Workflow authoring systems
such as Taverna and Galaxy precisely capture the services and service
connections created by domain experts, and these workflows are then shared
through repositories like myExperiment, which encourages users to discover,
reuse, and repurpose them. Repurposing, however, is not trivial: ostensibly
straightforward modifications are quite troublesome in practice and workflows
tend not to be well-annotated at any level of granularity. As such, a "concrete"
workflow, where the component services are explicitly declared, may not be a
particularly effective way of sharing these analytical methodologies. Here we
propose, and demonstrate, that a domain model for a given concept, formalized
in OWL, can be used as an abstract workflow model, which can be automatically
converted into a context-specific, concrete, self-annotating workflow.

Keywords: OWL-DL, ontologies, workflow, workflow modeling, SPARQL,
Semantic Web, Semantic Web Services.

1 Introduction

Scientific workflows represent important "units of thought" that contain, implicitly or
explicitly, both the detailed hypothesis of the researcher as well as the precise materials
they utilized and methodology they undertook throughout their investigation.
Unfortunately, these core elements of repeatable and reproducible science are, to date,
still primarily shared as blocks of sometimes unclear narrative [1]. Though still quite rare,
even for in silico science, formal workflows are starting to be adopted as an accepted unit
of both publication and collaboration, allowing the precise representation of both
resources and processes underlying complex in silico analytical methodologies [2].

Workflow authoring systems such as Taverna [3] and Galaxy [4] are used, usually
by bioinformaticians or other technically-oriented personnel, to precisely capture the
services and service connections that represent the evaluation of a biological
hypothesis of a domain expert. The resulting workflow is then captured in some
standard language. As of this writing, >76% of the 1839 workflows in myExperiment

 OWL-DL Domain-Models as Abstract Workflows 57

[2] are in some version of Taverna's SCUFL language, with the other 24% being spread
over 8 other workflow languages, with the second most-common language being
RapidMiner (198 Workflows). Importantly, because these workflows are designed to
be used directly by some Orchestration Engine (e.g. Taverna) they are rigidly tied to
specific web services (or other components).

Such workflows may then be shared through repositories like myExperiment which
encourages users to discover, reuse, and repurpose them. Repurposing, however, is not
trivial [28] specifically because the workflows are so tightly tied to a specific set of
services and resources. Ostensibly straightforward modifications, such as executing a
bioinformatics analysis, functionally unaltered, between one species or another, may be
quite troublesome in practice as many of the underlying databases and algorithms for
different model organisms will not expose the same interface, despite the overall
analytical process being effectively identical. Moreover, scientific workflows tend not
to be well-annotated at the macro level, and tend not to be annotated at all at even a
modest level of granularity. This makes repurposing even more difficult as the
workflow editor must divine the intent of each inter-service connection created by the
original author, and what data element(s) that connection will contribute to the final
output.

For these reasons, and others, a "concrete" workflow, where the component services
are explicitly declared, may not be a particularly effective way of sharing analytical
methodologies. What is required is a layer of abstraction, where the overall objectives
of the workflow are described, without being tied to a specific concrete set of resources
until such time as the context of the Workflow execution is known.

The workflow orchestration language BPEL [5] could, in principle, act as a type of
abstraction by making sharable, functionally-meaningful combinations of
internally-interoperable services, which then might be easier to interchange in a
modular manner; however in practice BPEL is not widely used by the scientific
community [6]. Scientific workflows are composed of (mainly) scientific services, and
these are known to be, by and large, stateless and data-centric [6-9]. BPEL, on the other
hand, is primarily a process-centric description language, and thus modeling scientific
workflows in BPEL is somewhat un-natural and, moreover, provides little value to the
workflow author. As such, it does not seem a promising approach to the abstraction we
are trying to achieve.

GenePattern [10], a popular application for building genomics analysis workflows,
provides a certain amount of abstraction in that their algorithms are organized
hierarchically. For example, under the "Clustering" node are such values as "KMeans",
and "Consensus", which may have a variety of concrete instantiations as services. To
date, however, GenePattern has not expanded beyond the scope of genomics, and
provides access only to the ~150 analytical tools in its repository. Thus it is not
immediately suitable for the wider ecosystem of web services.

A considerable amount of effort has been invested in the creation of a semantic
workflow abstraction/templating layer for the Wings [11] workflow system, which has
resulted in a highly expressive set of OWL axioms and concepts [12] that enable the
creation of linked-data documents that explicitly describe an abstract workflow. This
includes the ability to enumerate both datasets and the analytical resources that

58 I. Wood et al.

make-up the workflow and the connections between them; to semantically type data,
datasets, and tools in the abstraction; and to describe how to handle "sets-of-sets" (e.g.
the cross-product of two datasets) at any point in the workflow. These abstract
workflows have been demonstrably capable of being concretized (by the Wings
orchestration engine) under a variety of conditions and, importantly, concretized by
non-expert users, for example in the domain of text-mining [11,13].

A significant amount of research on the abstract specification of workflows has also
been done outside of the biology domain. In particular, several frameworks [21-23]
have been developed to specify workflows using constraints expressed in Linear
Temporal Logic (LTL) or some variant thereof. While these systems are often designed
to guide human processes, such as the activities of a hotel customer service clerk [21],
the work can be readily adapted to web service workflows, as demonstrated by [23]. A
key strength of the LTL-based workflow systems is that they are able to leverage
existing algorithms for model-checking [24]. Model-checking algorithms allow
automated detection of workflow errors such as dead activities (unreachable nodes),
deadlocks, or any other type of error condition that can be expressed in LTL.

Of importance to this work are two inter-related observations about the Wings /LTL
workflow abstractions which differentiate their approaches from what we describe
here. First, both of these workflow abstractions take the form of distinct documents that
describe only the workflow, and the semantics of that workflow. Second, the
abstractions are constructed independently -as a separate engineering event -from the
expert domain-knowledge (e.g. biological question) that the workflow relates to. While
neither of these issues are negative or detrimental, they result in a slightly higher
curatorial burden due to the need to maintain an additional resource (the abstraction) in
parallel with changes in the domain knowledge. Thus, in light of our development of
the SADI Semantic Web Service design patterns [14] and the SHARE system for
resolving queries over SADI services [15], we have pursued an investigation of
whether the posing of a domain-model, and the construction of a corresponding
workflow to evaluate that model, can be more tightly linked -perhaps into a single,
unified event.

We propose that a domain model for a given concept, formalized in OWL (i.e. an
ontological Class), can itself be used as an abstract workflow model, which can be
automatically converted into a context-specific concrete workflow as-needed by a
semantic orchestration engine (SHARE [15]). Similar to the Wings abstraction, this has
the advantage that the concrete representation of the workflow is constructed at
run-time, based on the nature of inputs and other metadata, and does not require
difficult and error-prone manual re-wiring of workflow components. Second, and
unique to this approach, is that the metadata that explains each service and service
connection is inherent in the semantics of the OWL domain model itself, making this
representation largely self-annotating. We demonstrate our proposal by duplicating an
existing, published bioinformatics analysis which we model as a domain concept in
OWL. We use this OWL model to show how a variety of valid workflows can be
automatically generated by simply changing the species of interest.

 OWL-DL Domain-Models as Abstract Workflows 59

2 Materials and Methods

2.1 Technologies Used

SADI: Semantic Automated Discovery and Integration
SADI is a set of design patterns for Semantic Web Service publishing that differs from
other projects in that it requires Web Service publishers to (a) consume and produce
RDF natively; (b) model their input and output as OWL-DL classes, fully elaborated
with the property-restrictions expected of incoming and output data; and
(c) explicitly model the semantic relationship between input and output data through
properties in the output class.

SHARE: Semantic Health And Research Environment.
SHARE is a specialized SPARQL-DL query engine that finds instances of an OWL
class by recursively mapping property restrictions to SADI service invocations. For
example, if a class called Homolog is defined using the value restriction (‘is
homologous to’, uniprot:Q9UK53), SHARE will discover instances of Homolog by
invoking SADI services that i) make ‘is homologous to’ statements about their input
URIs, and ii) have an input OWL class matches an rdf:type of uniprot:Q9UK53.
Building on this example, a class called InteractorOfHomolog could be defined using
the value restriction (‘interacts with’, Homolog), and SHARE would resolve this class
by i) finding instances of Homolog, then ii) using the discovered instances of Homolog
as input to SADI services that make ‘interacts with’ statements. It is important to note
that SHARE can only find instances of OWL classes that are defined using necessary
and sufficient conditions. In addition, as SHARE currently utilizes reasoners that
operate under the Open World Assumption (OWA) [29], certain types of property
restrictions are not ‘discoverable’. For example, SHARE cannot find instances of a
OneHomolog class defined using the maximum cardinality restriction (‘is homologous
to’ max 1), because it is not possible to prove the truth of a maximum cardinality
restriction under the OWA, only the falsehood.

2.2 Target, Peer-Reviewed and Published Workflow

We selected the comparative genomics analysis and workflow of [16] as our target for
abstraction, as diagrammed in Figure 1. The overall purpose of the workflow is to
predict previously unknown protein-protein interactions [25], which are valuable for
understanding the structure, signaling, and metabolic processes that occur within cells.
The workflow predicts protein interactions by mapping known or probable interactions
in one or more comparator species to a target species. The general principle is that if a
particular pair of proteins is known to interact in one species, and two homologous
(evolutionarily related) proteins exist in another species, then the latter pair of proteins
is likely to interact as well. If homologous pairs of proteins exist in more than one
comparator species, then the confidence of the prediction increases. In biology,
homology is usually inferred from sequence similarity, and thus sequence comparison
tools such as BLAST [26] or HMMer [27] represent important components of the
workflow.

60 I. Wood et al.

Fig. 1. Diagram of the conceptual workflow underlying the comparative genomics analysis of
Gordon et al., taken directly from their publication (with permission) [16]. The workflow
describes a bioinformatics analysis aimed at predicting protein-protein interactions in a
lesser-characterized species based on comparison of protein sequences and interactions in a
well-characterized species.

The workflow of Figure 1 was constructed by the original authors specifically for
predicting interactors of the ING family of human proteins, but is generalizable for use
with other proteins and species. In the first step, the human ING proteins are mapped to
homologous proteins in the comparator organisms, yeast and fruitfly, which represent
the two vertical branches of the diagram. In the left branch (yeast), the mapping of
human proteins to homologs occurs in Step 1, whereas in the right branch (fruitfly) the
mapping occurs in Steps 2-5. A detailed description of the semi-automated methods

 OWL-DL Domain-Models as Abstract Workflows 61

used for identifying homologs in each species is beyond the scope of this paper;
however, for the purposes of this study, we will consider BLAST to be a suitable
substitute, though likely at the cost of some sensitivity. After identifying homologs in
the comparator species, probable interactors for the homologs are obtained from
existing experimentally-derived interaction datasets for yeast and fruitfly (Step 6).
Finally, the human homologs of the probable interactors are identified by sequence
similarity (Steps 7 and 8), producing the predicted interactors for the human ING
proteins. Step 9 is an optional filter step in which the scientist manually explores
existing literature about the predicted interactors in order to select the best candidates
for experimental validation.

In the following sections, the authors describe how the experimental environment
was set-up to ensure that all necessary resources would be available to the automated
workflow generation system (SHARE). We also ensure that the environment is
generalized such that the workflow described above could be executed on any choice of
input protein, target species, and two comparator species.

2.3 Selection and Deployment of Services

We first, in discussion with the author, delimited which analytical tools/algorithms
were used in their original analysis with the goal of ensuring that corresponding SADI
services were available. For those steps that did not exist as SADI services, services
were written, deployed, and registered in the public SADI registry.

Figure 2A diagrams our hypothetical workflow for each comparator species; i.e., the
workflow we anticipate our automated system will have to create. Each box represents
a type of data, and each edge represents an algorithm and/or data source/species from or
through which that data will be derived. Note that this workflow diagram does not
simply describe the data-type based on its "nature" (e.g. "protein sequence", "dna
sequence") but rather describes the data based on its "semantics" -its role in the overall
workflow from the perspective of the domain-expert. This is important because we will
now go on to explicitly model the semantics of each of these data elements -an
undertaking that makes our approach to workflow abstraction distinct from any prior
work of which we are aware.

Figure 2B shows the semantic model for the concept of a "Potential Interactor" -the
semantic data-type that would result if the hypothetical model workflow in 2A were
executed. This semantic model is then formalized into OWL-DL. The model shown in
2B is highly schematized for readability, as concepts within the model (e.g. homology)
are extremely difficult to represent compactly (the OWL-DL model for BLAST-based
homology was designed during the 2011 BioHackathon [17] as a collaboration between
the SADI, SIO, and UniProt participants and can be viewed in its entirety here: [18,19]).
Each component of the workflow was modeled in OWL-DL, and as such, at each step in
the model it is only necessary to describe the relationship between the newly derived
concept, and the concepts upon which it is based -as is typical in well-formed OWL,
individual concepts are "modular" and "layered" [20]. In Figure 2B, however, we
expand these more modular definitions somewhat to assist in showing the full semantics
of the concept being modeled. Importantly for our discussion, the class-names are
chosen to be familiar and meaningful to a biologist end-user, thus carrying semantics
both in their class-names as well as in their more formal logical definition.

62 I. Wood et al.

Fig. 2. The generalized workflow and (simplified) logical model. The generalized workflow in
(A) describes how we migrate into, and out-of, each comparator species to determine likely
interactors in the species of interest based on interactors in the comparator species. In (B) we
show a highly simplified logical model that describes what a "Potential Interactor" is. It is a
protein from a given organism that has homology to a protein in another organism, where the
gene that codes for that protein has been annotated as interacting with the protein product of
another gene, which has homology to a protein of interest.

Fig. 3. A subclass of Potential Interactor (Fig. 2) that requires homologous pairs of interacting
proteins to exist in both ModelOrganism1 and ModelOrganism2.

To achieve the comparative workflow from Gordon et al, it would be necessary to
take the intersection of two "runs" of the workflow in Figure 2A to obtain only those
results common to both comparator species, since this was a filtering step in the
original analysis. In our study, we accomplish this by defining an OWL class called
ProbableInteractor that is the intersection of two versions of the abstract Potential
Interactor class, each referencing its own symbolic ModelOrganism class

 OWL-DL Domain-Models as Abstract Workflows 63

(ModelOrganism1 and ModelOrganism2), but both referencing the same symbolic
OrganismOfInterest class (Figure 3).

The components of our experiment, therefore, include an OWL model describing
“the biology” of a Potential Interactor, in a generalized manner; and a set of SADI
Semantic Web Services capable of generating the properties that define Potential
Interactors.

3 Results and Discussion

To run the experiment, we created a small data-file containing the name of a protein of
interest, and a set of target species, and the SPARQL query shown in Figure 4.

Fig. 4. The SPARQL query (top) that results in the workflow shown in Figure 5 and the local
RDF/N3 data file referenced in the query (below), which specifies the organism and protein of
interest and the 2 comparator model organisms

This SPARQL query was introduced to the SHARE client, and it was allowed to
automatically build a workflow to resolve that query. SHARE finds instances of
ProbableInteractor by loading data that binds the symbolic classes
OrganismOfInterest, ProteinOfInterest, ModelOrganism1, and ModelOrganism2
to the desired values via the SPARQL FROM clause (Figure 4). The result of SHARE
execution is the workflow shown in Figure 5, which was synthesized automatically,
and then executed by SHARE, populating a transient triple store, which was then used
to resolve the SPARQL query itself. Of particular interest are the two distinct BLAST
services selected near the beginning of the workflow -these were selected by SHARE
based on precisely the same OWL model. The difference in selection for each branch
of the automatically-synthesized workflow is the result of the data-set loaded at
run-time. The ability of SHARE to derive distinct workflows from the same OWL class
is based on its perception of the value of ModelOrganism1 and ModelOrganism2 in the
query, and the relationships in the ProbableInteractor class. For example, when
ModelOrganism1 has the value taxon:7227, the look-up in the SADI registry becomes
contextually constrained to only finding services related to Drosophila. In this way,

64 I. Wood et al.

OWL has acted as an abstract workflow model, where the concretization of that
workflow is decided depending on the context in which that Class finds itself at
run-time; all that is required to adapt the workflow to a different protein of interest or a
different model organism is to change the starting data.

Fig. 5. The resulting workflow after SHARE has broken-down the OWL classes presented to it in
the SPARQL query and mapped them, in context, on to relevant SADI Web Services

4 Conclusions

We have attempted to show that (a) OWL-DL domain-models can be used as abstract
workflow templates, where the resulting workflow is capable of generating OWL
individuals of that particular class (if such can exist), and (b) that that the semantics
inherent in these domain-models can act as a form of annotation, such that the
objectives, and the "purpose" of the data at any given step can be determined more
intuitively through either the semantics of the class-name, or if necessary, the deeper

 OWL-DL Domain-Models as Abstract Workflows 65

semantics of the property restrictions that define that class. Our demonstration that, by
changing the context of the Class (i.e. by presenting it with a different taxonomy
identifier), we are able to derive a different workflow, provides strong evidence that,
when the underlying resources are exposed as SADI Services, OWL descriptors carry
sufficient semantics to act as concretizable workflow abstractions. Effectively, we
achieved re-purposing of a workflow model (the OWL class itself) simply by putting
that class into a new context. Since OWL classes are demonstrably sharable over the
web, we believe that sharing workflows at this more abstract level might be more useful
than the current paradigm of sharing the concretized workflow itself. Moreover, if the
OWL is modeled in a modular and layered manner, the class-names and definitions at
every depth provide the semantic meaning necessary to understand how each
component of the workflow fits into the overall concept.

While we have not demonstrated that either of these successes improve the ability of
end-users (in this case, biologists) to ask and answer complex domain questions
through workflow re-use, we believe that additional tooling around such semantic
abstractions might bring us considerably closer to achieving that goal.

References

1. Garijo, D., Gil, Y.: A New Approach for Publishing Workflows: Abstractions, Standards,
and Linked Data. To appear in Proceedings of the Sixth Workshop on Workflows in Support
of Large-Scale Science 2011, Held in Conjunction with SC 2011, Seattle, Washington
(2011)

2. Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman, D.,
Borkum, M., Bechhofer, S., Roos, M., Li, P., De Roure, D.: myExperiment: a repository and
social network for the sharing of bioinformatics workflows. Nucleic Acids Research 38,
W677–W682 (2010)

3. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover,
K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of
bioinformatics workflows. Bioinformatics 20, 3045–3054 (2004)

4. Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences.
Genome Biology 11, R86 (2010)

5. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Analysis of Web
Services Composition Languages: The Case of BPEL4WS. In: Song, I.-Y., Liddle, S.W.,
Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 200–215. Springer,
Heidelberg (2003)

6. Goderis, A., Sattler, U., Lord, P., Goble, C.A.: Seven Bottlenecks to Workflow Reuse and
Repurposing. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 323–337. Springer, Heidelberg (2005)

7. Wilkinson, M., Links, M.: BioMOBY: an open source biological web services proposal.
Briefings in Bioinformatics 3, 331–341 (2002)

8. Wilkinson, M.D., Senger, M., Kawas, E., Bruskiewich, R., Gouzy, J., et al.: Interoperability
with Moby 1.0–it’s better than sharing your toothbrush! Briefings in Bioinformatics 9,
220–231 (2008)

66 I. Wood et al.

9. Lord, P., Bechhofer, S., Wilkinson, M.D., Schiltz, G., Gessler, D., Hull, D., Goble, C.A.,
Stein, L.: Applying Semantic Web Services to Bioinformatics: Experiences Gained,
Lessons Learnt. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004.
LNCS, vol. 3298, pp. 350–364. Springer, Heidelberg (2004)

10. Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., Mesirov, J.: GenePattern 2.0.
Nature Genetics 38, 500–501 (2006)

11. Gil, Y., Ratnakar, V., Kim, J., González-Calero, P.A., Groth, P.T., Moody, J., Deelman, E.:
Wings: Intelligent Workflow-Based Design of Computational Experiments. To appear in
IEEE Intelligent Systems (2011)

12. Gil, Y., Groth, P., Ratnakar, V., Fritz, C.: Expressive Reusable Workflow Templates. In:
Proc. 5th IEEE Int’l Conf. E-Science, pp. 344–351. IEEE Press (2009)

13. Hauder, M., Gil, Y., Sethi, R., Liu, Y., Jo, H.: Making Data Analysis Expertise Broadly
Accessible through Workflows. To appear in Proceedings of the Sixth Workshop on
Workflows in Support of Large-Scale Science, Held in Conjunction with SC 2011, Seattle,
Washington (2011)

14. Wilkinson, M.D., Vandervalk, B., McCarthy, L.: The Semantic Automated Discovery and
Integration (SADI) Web service Design-Pattern, API and Reference Implementation.
Journal of Biomedical Semantics 2, 8 (2011)

15. Vandervalk, B.P., McCarthy, E.L., Wilkinson, M.D.: SHARE: A Semantic Web Query
Engine for Bioinformatics. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009.
LNCS, vol. 5926, pp. 367–369. Springer, Heidelberg (2009)

16. Gordon, P.M.K., Soliman, M.A., Bose, P., Trinh, Q., Sensen, C.W., Riabowol, K.:
Interspecies data mining to predict novel ING-protein interactions in human. BMC
Genomics 9, 426 (2008)

17. BioHackaton (2011), http://2011.biohackathon.org/
18. BLAST RDF Model,

https://github.com/dbcls/bh11/wiki/BLAST-output-as-RDF
19. http://sadiframework.org/ontologies/blast.owl
20. ODP - semanticscience - SIO Ontology Design Principles, Scientific Knowledge Discovery,

http://code.google.com/p/semanticscience/wiki/ODP
21. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for

Loosely-Structured Processes. In: 11th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2007), p. 287 (2007)

22. Lamprecht, A.-L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose
Programming. In: 2010 Seventh International Conference on the Quality of Information and
Communications Technology, pp. 262–267 (2010)

23. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative Specification and Verification of Service Choreographies. ACM Transactions
on the Web 4, 1 (2009)

24. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1997)
25. De Las Rivas, J., Fontanillo, C.: Protein-protein interactions essentials: key concepts to

building and analyzing interactome networks. PLoS Computational Biology 6, 6 (2010)
26. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Blast local alignment

search tool. Journal of Molecular Biology 215(3), 403–410 (1990)
27. Finn, R.D., Clements, J., Eddy, S.R.: HMMER web server: interactive sequence similarity

searching. Nucleic Acids Research 39, W29–W37 (2011)
28. Goderis, A.: Workflow Re-use and Discovery in Bioinformatics. PhD Thesis, School of

Computer Science, The University of Manchester (2008)
29. Baader, F.: The Description Logic Handbook: Theory, Implementation, and Applications,

2nd edn. Cambridge University Press (2003)

Processes and Data Integration

in the Networked Healthcare

Andrea Braun von Reinersdorff1, Tiziana Margaria2, and Christoph Rasche3

1 Chair of Management in Healthcare Systems, Hochschule Osnabrück, Germany
Braun@wi.hs-osnabrueck.de

2 Chair of Service and Software Engineering, University Potsdam, Germany
margaria@cs.uni-potsdam.de

3 Chair of Management, Professional Services and Sports Economics, University
Potsdam, Germany

christoph.rasche@uni-potsdam.de

In the past decade, state-of-the-art Information and Communication Technology
(ICT) has gained a strong standing in all aspects of healthcare provision and
management. As already discussed in the ISoLA-Med workshop in Potsdam in
June 2009 [1], a set of innovative research topics related to the future of health-
care systems hinge on the notion of simplicity as a driving paradigm in ICT
development, maintenance and use. We believe that the philosophy of consis-
tently applied simplicity is strategically important to make advanced healthcare
provision accessible ad keep it affordable to patients and to society, yet the dis-
cipline of simplicity is still poorly understood and rarely systematically applied.

Instead, design principles attempt to focus on increased functionality within
thinly disguised complexity, often at the expense of life cycle costs and total cost
of ownership issues (e.g., training, system malfunctions, system upgrades). Often
designers are unaware of the tradeoffs and impacts. With the increased use of ICT
in such socially critical areas such as Health Care, society can no longer afford
systems that do not perform as specified. We believe that an understanding of
simplicity is the key. Simplicity is foundational, its essence fundamental to many
desired characteristics of ICT systems such as reliability, usability and trust.
This has been studied in the course of the ITSy project [6], a EU FET Support
Action that in 2010-2011 conducted a community-oriented research that involved
multidisciplinary experts to assist in surveying key research communities about
their understandings and vision of the philosophy of simplicity.

In order to illustrate the economic and business perspective in both of the
above described dimensions, in this track we consider several facets of the health-
care sector with their high potential for IT-based process optimization - a must
under the increasingly tight budget conditions. It spans standard office func-
tionality (accounting, human resources, communication, . . .), as well as more
critical control scenarios as they appear in Assisted Living Environments, like
remote health control, detection of accidents, finding of lost patients, etc. - typ-
ical scenarios for our investigations in the Potsdam Ambient Assisted Living
initiative.

At the EU as well as at the national level, several initiatives concentrate
around the two central sectors: healthcare and the ageing population. For

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 67–69, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

68 A. Braun von Reinersdorff, T. Margaria, and C. Rasche

example, in the German Theseus Initiative [7] that recently terminated and mo-
bilized over 300 Mio Euro in the past 3 years, the choice of the first integrated
application was in the health care sector. This choice was selected due to the
problem of rapidly expanding healthcare costs. It also was innovative by using a
remote medical expert consultation scenario. This domain is particularly suitable
for investigation because it is centrally positioned within the so called TIME-
value chain, that originates from the convergence of the Telecommunication,
Information, Media and Entertainment industries. These four core industries lie
at the heart of the information age (the fifth Kondratieff cycle) and trigger the
sixth Kondratieff cycle (the coming age of healthcare and wellness) in terms of
pioneering digital healthcare solutions to promote telemedicine and assisted am-
bient living concepts. The acceptance and market penetration of the latter are
highly dependent on smart, simple, intuitive and appealing customer solutions
contributing to life quality, self empowerment and cost efficiency. Simplicity is
here core to knowledge and competence building, resulting in sustainable com-
petitive advantages. Corporate staff must be enabled and empowered to design,
engineer, implement and adapt their knowledge process in an agile, robust and
smart way without being prisoners of overarching over-engineered systems and
of IT lock-in philosophies.

Current hot issues that will shape the competitiveness of the European ICT
in the next few decades and which require investigation from the perspective
of simplicity in IT at the networked system level revolve around the notion of
simplicity and its elevation to a design paradigm including:

– Balancing IT-aspirations with user demands: How to bridge the widening
gap between software engineers and front-end clients.

– From sophisticated to smart technologies: User empowerment through sim-
plicity, manageability, adaptability, robustness, and target group focus.

– Handing-over IT power to the co-value creating customers: Users as process
designers, owners and change agents.

– Competing for the future: Sketching-out viable IT-roadmaps for multiple
strategy.

Thinking in processes starts more easily in those sectors of medicine that are un-
der the highest pressure of complexity and urgency: the emergency room and the
surgical theater. There we see the technologically most advanced systems help
the medical staff to cope with the parallel and heterogeneous needs they con-
tinuously face. As a successful prominent example we refer to the new thinking
about processes in the emergency department proposed by Dr. Barbara Hogan,
President elect of EuSEM, the European Society for Emergency Medicine [3]
with her ”First View” concept.

In the age of an upcoming service-based economy, many traditional questions
take new shades due to the new possibilities offered by the modern IT and to the
legal and ethical issues that the handling of data and knowledge in a networked
world bears. How can we efficiently and legally manage and share the medical
and diagnostic knowledge, the patients’ data? How to manage the handling of
administered treatments on the medical side, as well as under their aspect of

Processes and Data Integration in the Networked Healthcare 69

an economic transaction that includes a supply chain and complex billing and
clearing operations that span a network of stakeholders?

The papers and the panel in this track address exactly these needs, with
a special attention to the process integration and simplification needed in the
different aspects of diagnosis as in policlinic processes for outpatients [5], health-
care management and provision in the cloud [4], and manageable accounting and
billing systems at the border between preventive and rehabilitative professional
training [2].

References

1. ISoLA-Med 2009: 1st International isola Symposium on Structural Changes and
Market Dynamics in the Healthcare Sector, Potsdam, Germany (June 2009),
http://www.cs.uni-potsdam.de/isola-med-2009/?id=home

2. Doedt, M., Göke, T., Pardo, J., Steffen, B.: Reha-Sports: The Challenge of Small
Margin Healthcare Accounting. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part
II. LNCS, vol. 7610, pp. 75–77. Springer, Heidelberg (2012)

3. Hogan, B.: Leading an ed using industrial lean management and intelligent man-
agement technology to speed up emergency department procederes,
http://www.ecare.be/images/stories/downloads/DrHogan_leading_an_ED.pdf

4. Holubek, A., Metzger, C.: Considerations for Healthcare Applications in a Platform
as a Service Environment. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II.
LNCS, vol. 7610, pp. 73–74. Springer, Heidelberg (2012)

5. Margaria, T., Boßelmann, S., Kujath, B.: Simple Modeling of Executable Role-Based
Workflows: An Application in the Healthcare Domain. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 70–72. Springer, Heidelberg (2012)

6. Project. Itsy - it simply works!
http://www.cs.uni-potsdam.de/sse/ITSy/

7. Project. Theseus, new technologies for the internet of services. funded by the Federal
Ministry of Economics and Technology,
http://theseus-programm.de/en/about.php

http://www.cs.uni-potsdam.de/isola-med-2009/?id=home
http://www.ecare.be/images/stories/downloads/DrHogan_leading_an_ED.pdf
http://www.cs.uni-potsdam.de/sse/ITSy/
http://theseus-programm.de/en/about.php

Simple Modeling of Executable

Role-Based Workflows:
An Application in the Healthcare Domain

Tiziana Margaria, Steve Boßelmann, and Bertold Kujath

Institut für Informatik, Universität Potsdam
August-Bebel-Str. 89, 14482 Potsdam, Germany
{margaria,bossel,kujath}@cs.uni-potsdam.de

Abstract. Process modeling has developed to an established technique
facilitating and supporting the documentation, analysis and automation
of workflows. As in common practice workflow modeling requires imme-
diate contribution of participants that lack broad knowledge of formal
models as well as software engineering skills, simplicity of the selected
modeling approach throughout each step of the design phase is a key
factor for the success of a workflow management project. We present an
approach that combines simplicity in the modeling phase with the feasi-
bility of immediate evaluation via execution to rapidly develop systems
supporting role-based workflows. Finally, we discuss practicability and
benefits of this approach based on an exemplary case study of processes
in the healthcare domain.

Keywords: process modeling, healthcare clinical processes workflow man-
agement, business process management, model-driven software develop-
ment, simplicity, rapid prototyping.

1 Introduction

The core of any workflow are the people living it, i.e. carrying out each single task
by means of everyday work. Hence, in order to capture the logic of a domain-
specific workflow and in order to develop a system that supports we propose
an approach that privileges simplicity: if it is easy to understand, even non-IT
experts can contribute. A model-driven process-oriented approach has immedi-
ate benefits ranging from the possibility of simulation and verification to rapid
prototyping of custom-tailored solutions. Although this seems to be obvious,
this approach has not been widely adopted so far. Despite the rise of a Business
Process Management (BPM) school of thought in organizations, the majority of
their processes are not supported by systems relying on explicit process models.
Although most of the adopted information systems are process-aware in some
manner, they focus on common, generic enterprise processes and most of their
functionality is buried within the hard-coded core of the application. At the same
time, the adoption of enterprise systems has increasingly attracted attention in
the healthcare domain in recent years [1].

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 70–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Simple Modeling of Executable Role-Based Workflows 71

In contrast, we present an approach that focuses on simplicity but is yet
powerful enough to allow for rapid creation of solutions that support domain-
specific processes. Recently, the notion of simplicity as a driving paradigm in
information system development has been explicitly identified as an important
research topic, yet poorly understood [2]. In the workflow context we aim at
keeping the design simple in order to involve those people that best know the
observed workflow and to achieve consistency between the created process model
and reality. In fact, this means preserving simplicity throughout each of the
design steps spanning process modeling as well as testing and evaluation, which
as a whole support a step-by-step ripening of the workflow model.

We live up to this claim by leveraging the jABC Framework [3] and the advan-
tageous characteristics of its architecture following the eXtreme Model Driven
Design (XMDD) approach [4]. The jABC facilitates workflow modeling by de-
signing processes as a composition of configurable domain-specific components,
so called Service Independent Building Blocks (SIBs). In a workflow context,
these SIBs represent discrete tasks familiar to the users, to be arranged along
the process’ control flow. Furthermore the framework supports immediate test-
ing and evaluation, as the models specified this way are executable by means
of service calls along the modeled control flow. Hence, any workflow system or
role-based task list that provides an adequate service interface might be used as
the service providing system to be interacted with during execution.

2 Case Study: Diabetes Day-Care Clinic

We present a case study of our approach by means of its application on healthcare
processes of a diabetes day care clinic at a large hospital in Berlin. Here we focus
on policlinical workflows as they are best structured and have a high repetition
rate. They cover a patient’s sequential pass through three discrete operational
stages of the clinic, which are the outpatient reception, patient care, and medical
examination. The clinic management has already used ARIS [5] for creating
workflow models based on the syntax of Event-driven Process Chains (EPCs) [6]
in previous projects and decided to stick with this approach in order to preserve
consistency. Hence we are able to present a comparison of ARIS models and
jABC models based on the same workflows. We thereby focus on simplicity in
the design phase as well as readability of the models by means of typical users.
Finally, we show that by focusing on core requirements the rapid creation of
solutions supporting domain-specific processes does not need to be complex. In
particular, the initial design step as well as the evaluation via execution following
our approach is simple for any workflow practitioner without knowledge of formal
models.

References

1. Li, L., Ge, R.-L., Zhou, S.-M., Valerdi, R.: Guest editorial integrated health-
care information systems. IEEE Transactions on Information Technology in
Biomedicine 16(4), 515–517 (2012)

72 T. Margaria, S. Boßelmann, and B. Kujath

2. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile Innovation. Com-
puter 43(6), 90–92 (2010)

3. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven Develop-
ment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383,
pp. 92–108. Springer, Heidelberg (2007)

4. Margaria, T., Steffen, B.: Service-Orientation: Conquering Complexity with XMDD.
In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity. Springer (2012)

5. Scheer, A.-W.: ARIS. Vom Geschäftsprozess zum Anwendungssystem, p. 20.
Springer (2002)

6. van der Aalst, W.: Formalization and Verification of Event-driven Process Chains.
Information & Software Technology 41(10), 639–650 (1999)

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 73–74, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Considerations for Healthcare Applications
in a Platform as a Service Environment

Andreas Holubek and Christian Metzger

Arlanis Software AG, Potsdam, Germany
{andreas.holubek,christian.metzger}@arlanis.com

Abstract. With the introduction of software as a service projects a fundamental
change for the world of the IT services and also for the development of software
systems goes on. One of the major challenges for today's companies is to detect
and manage this change and business development. This are not only IT pro-
vided internal considerations, but must also be considered for business processes.
Software as a service and platform as a service seems at first glance to have only
advantages. Users do not need to install software anymore and also the mainten-
ance is eliminated. Developers do not have to worry longer about infra-structure,
software requirements and distribution of the results. It seems the perfect world
for everyone. But special considerations must be taken into account when de-
veloping software for health care and medical solutions. Not only must such
software meet highest security standards patient data must never be com-
promised or altered unobserved. The primary example under discussion consists
of a clinic portal with numerous collaboration possibilities for surgeons.

The first question in traditional system development is for the components to
be used. This means both hardware and software. This includes for example the
question according to the database, the operating system, application server, or
also the programming language. All this requires many decisions and a high
risk, which affect the development process of the application much later already
in advance.

With the introduction of the cloud and service platforms all of these deci-
sions are moved to the operator of the platform. The selection of the appropriate
platform remains for us as system architects, and application developers. This
means a comfortable situation for the projects decision maker. However, a later
change between platforms is not easily possible.

One of the advantages of a service platform is that infrastructure and plat-
form are provided globally for all users. Modifications allow for adaptations to
special requirements. Accordingly, a considerable part of software development
consists of the definition of required components in the platform metadata.

To develop healthcare applications on a platform, special challenges are
faced for the architecture. A big difference is added in the health sector. Here,
security issues and the location of the data play a larger role. In the full paper
we will discuss this in more detail. A first insight is that it requires not only a
single platform. Due to the still existing, identifiable specialization of the plat-
forms we need to connect the strengths from multiple platforms together. In ad-
dition, we must comply with common international standards such as HIPAA
compliance and FDA compliance.

74 A. Holubek and C. Metzger

In the case study we consider, the client is one of the leading companies in
the development of integrated medical software systems. The client at its sites
already deploys salesforce.com. An exclusive portal for doctors, especially neu-
rosurgeons, should be developed on this basisfor the professional exchange of
experience. It should work similar to a social network (see Fig. 1).

Salesforce.com is by default suitable for the management of users and their
rights. The platform comes in the handling of large medical image data sets to
the borders. For this reason, Amazon's simple storage services (S3) and Ama-
zon Elastic cloud computing (EC2) for these aspects are involved. The use of a
Microsoft Silverlight component in the force.com platform is introduced for the
integration of the two platforms in the same project. Silverlight in turn should
then communicate by exchanging SOAP messages with S3 and the user inter-
face, as well as processing of image sequences.The architecture of the final sys-
tem is shown in Fig. 2.

Fig. 1. Home screen after successful login of a doctor

Fig. 2. Architecture of the project at a glance: community for doctors

Reha-Sports: The Challenge

of Small Margin Healthcare Accounting

Markus Doedt1, Thomas Göke2, Jan Pardo1, and Bernhard Steffen1

1 TU Dortmund University,
Dortmund, Germany

{markus.doedt,jan.pardo}@tu-dortmund.de,
steffen@cs.tu-dortmund.de

http://www.tu-dortmund.de
2 sysTeam GmbH,
Dortmund, Germany

thomas.goeke@systeam-gmbh.com

http://www.systeam-gmbh.com

Abstract. The paper presents the development of a Web-based account-
ing system for rehabilitation sports, which, due to the small margins,
requires a very economical approach, both for its development and for
its later use. The development process was therefore driven by simplicity
in two dimension: the accounting process itself was reduced to the mini-
mum under the given legal circumstances, and the software development
was clearly guided by total cost of ownership concerns. In particular,
standards where taken and artifacts reused wherever possible.

Keywords: Simplicity, Software reuse, Web applications, Accounting,
Healthcare, Rehabilitation sports.

1 Introduction

It is a new trend in the German healthcare system to actively involve the pa-
tients themselves and to try to improve their health conditions by changing their
lifestyles. Reha-sports is one such initiative. It has the goal to educate disabled
people or people with a risk of suffering from disability (i.e. everybody in fact) to
be more active and to regularly exercise their bodies. This way Reha-ports par-
ticipants should experience the impact of their own contribution to their health,
be it for rehabilitation or simply to preserve/improve their health by regular
sports exercises. Ideally, they should achieve a better feeling for their body and
improve the quality of their lives in the long term. Due to the Code of Social
Law (”Sozialgesetzbuch”) every German individual has a right to benefit from
rehasports if certain indications are given. The expenses of rehasports have to
be borne by the statutory health insurances.

A general specification of Reha-sports has been set up by the German as-
sociation of statutory health insurances together with various associations of
Reha-sports providers. This general agreement describes for example how and

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 75–77, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.tu-dortmund.de
http://www.systeam-gmbh.com

76 M. Doedt et al.

how often Reha-sports sessions have to be exercised, who might be certified as a
Reha-sports provider, and which basic accounting process has to be followed[1].

For patients with neck or back pain, too weak muscles or too high percentages
of body fat, a typical prescription consists of about 50 sessions of Reha-sports.
The Reha-sports patient may take this description to any certified Reha-sports
provider in order to exercise there free of charge. (S)he only has to confirm
participation by signing a special signature form. The Reha-sports provider can
then send an invoice to the corresponding statutory health insurance together
with this signature form and the description in order to get refunded. Organizing
this process of accounting for their typically 300-600 patients is quite painful
for Reha-sports providers, as there are almost 200 different statutory health
insurances which need to be treated individually. In fact, due to the various frame
conditions it is almost impossible without computer support: e.g., accounts can
be sent only if a certain number of exercising sessions have been taken, and for
economical reason it would be beneficial to bundle accounts for one and the same
health insurance.

In this paper we present the development of a web-based accounting system for
rehabilitation sports, which, due to the small margins, requires a very economical
approach, both for its development and for its later use. The development process
was therefore driven by simplicity in two dimension: the accounting process
itself was reduced to the minimum under the given legal circumstances, and the
software development was clearly guided by total cost of ownership concerns. In
particular, standards where taken and artifacts reused wherever possible.

In particular, the paper sketches how the experience with an existing web ap-
plication called ”Rehasportzentrale” influenced the development of the new web
application in its goal to simplify the accounting process. Not only was it possible
to profit from the knowledge about the current bottlenecks of ”Rehasportzentrale”,
but also from the wealth of already collected data concerning the rehasports par-
ticipants, statutory health insurances, prescriptions, and also date, time and signa-
tures for every rehasports session. As one of its important process optimizations,
the new application automates the secure transfer of these data between the in-
volved participants based on a clean roles, rights, and access management. This
does not only simply the communication process itself, but it also the correspond-
ing bookkeeping. It is now easy to reliably track,whogotwhich information atwhat
time, which is important in case something went wrong.

The development of the new web application was driven by simplicity as a
major concern. Of course, the new application should simplify the life of its users,
but simplicity of the software itself was also very important:

– The small margins did not allow any fancy development, and require a
strictly cost cost of ownership-oriented. approach.

– Time to market war very essential, to exploit the early mover advantage in
a new business area.

– Agility of a simple solutions war rated higher than perfectionism, concerning
coverage issues and beauty. In particular, being able to cover potential future
request was rated higher than a 100% match of today’s requirements.

Reha-Sports 77

Throughout the paper we will emphasize simplicity as an essential and currently
more and more prominent design principle (cf. [2, 4, 6]). Its impact on the user
side is evident e.g. from Apple’s enormous success with products like iMac, iPod,
iPhone, iPad, ..., and it gradually enters system development, in particular in
cases where fast results and flexibility are in the foreground. Here, the so-called
80/20 approach is central, meaning that often 80% of the requirements can be
achieved with only 20% of effort. In fact, in system development, the numbers are
even more striking, and one could easily speak of 90/10 approaches, as solutions
close to current standards can often be realized in very short time, whereas
deviations from those standards may be extremely costly. The project described
here illustrates the success of such a KISS (”Keep it simple, stupid”) approach.

In order to implement the software product in a simple way the eXtreme
Model Driven Design (XMMD) approach has been followed, which achieves sim-
plicity by combining service-orientation [5] with the ”One Thing Approach” [3].
This supports strict separation of concerns while enforcing consistency between
the design steps of the various involved roles.

References

[1] BAR - Bundesarbeitsgemeinschaft für Rehabilitation: Rahmenvereinbarung über
den Rehabilitationssport und das Funktionstraining (2011),
http://www.kbv.de/rechtsquellen/2610.html

[2] Margaria, T., Floyd, B., Steffen, B.: It simply works: Simplicity and embedded
systems design. In: 2011 IEEE 35th Annual Computer Software and Applications
Conference Workshops (COMPSACW), pp. 194–199 (July 2011)

[3] Margaria, T., Steffen, B.: Business Process Modelling in the jABC: The One-Thing
Approach. In: Handbook of Research on Business Process Modeling. IGI Global
(2009)

[4] Margaria, T., Steffen, B.: Simplicity as a driver for agile innovation. Com-
puter 43(6), 90–92 (2010)

[5] Margaria, T., Steffen, B., Reitenspiess, M.: Service-Oriented Design: The Roots.
In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 450–464. Springer, Heidelberg (2005),
http://dx.doi.org/10.1007/11596141_34, 10.1007

[6] Merten, M., Steffen, B.: Simplicity driven application development. In: Proceedings
of Society for Design & Process Science, SDPS 2012 (2012)

http://www.kbv.de/rechtsquellen/2610.html
http://dx.doi.org/10.1007/11596141_34

Timing Constraints: Theory Meets Practice

Björn Lisper1, Johan Nordlander2, and Sophie Quinton3

1 School of Innovation, Design, and Engineering, Mälardalen University,
SE-721 23 Västerås, Sweden

2 Department of Computer Science, Electrical and Space Engineering,
Luleå University of Technology, SE-971 87 Luleå, Sweden

3 Institute of Computer Network and Engineering, TU Braunschweig, Germany

Many embedded systems must satisfy timing requirements, which describe how
these systems should behave with respect to timing. Such requirements must
be dealt with throughout the system development process: from their initial
specification, expressed at an abstract level, through the increasingly concrete
layers, to the final implementation level. There is a growing awareness that this
process needs support from languages, tools, and methodologies.

The term “timing constraint” encompasses timing requirements, which de-
scribe how a system should behave, as well as timing properties which describe
how the system really behaves. Languages for defining timing constraints allow
checking the consistency of specifications and verifying the correctness of imple-
mentations with respect to requirements, by both formal means and testing. The
AUTOSAR timing extensions provide an example of a domain-specific timing
constraint language for automotive systems, but general principles for the design
of suitable timing constraint languages are sorely needed.

This track aims to bring together researchers and practitioners who are in-
terested in all aspects of timing constraint languages, including their syntactic
and semantic formulation, probabilistic or weakly-hard variants, industrial case
studies using timing constraints, tools and methods for verification of properties
expressed in timing constraint languages, and methodologies for the use of such
languages and tools in the system development process.

Three of the track contributions deal with the Timing Augmented Descrip-
tion Language (TADL) [3], which has been adopted by EAST-ADL and forms
the basis for the timing extensions of AUTOSAR. In [5], a small first-order logic
is defined. This logic can express timing constraints very succinctly, and it can
be used to describe the semantics for timing constraint languages like TADL.
[8] develops generalized weakly-hard constraints : such timing constraints specify
that a condition on the timing is to hold at least n out of m times. An exten-
sion of TADL with such timing constraints is proposed. In [7], proposed novel
features of TADL such as symbolic timing expressions and multiple time bases
are demonstrated on an industrial case study.

Two track contributions consider the formal verification of timing constraints.
In [6], Timed Observational Transition Systems are used to model and verify
the TESLA source authentication protocol. [2] proposes to translate timing con-
straints expressed in the MARTE RTS modeling language into Timed Petri Nets
for verification by model checking.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 78–79, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Timing Constraints: Theory Meets Practice 79

Finally, two track contributions consider code-level timing analysis. [4] de-
scribes the Worst-Case Execution Time (WCET) analysis tool CalcWcet167,
which has been extensively used in WCET analysis research at TU Vienna.
In [1], the abstract-interpretation based WCET analysis technique of abstract
execution is extended to a class of event-driven, concurrent programs.

In conclusion, this track presents contributions focusing on various aspects
of timing constraints, from expressiveness issues to verification methods. This
illustrates some of the current research directions in the domain.

References

1. Birken, K.: Abstract Execution for Event-Driven Systems – An Application from
Automotive/Infotainment Development. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012, Part II. LNCS, vol. 7610, pp. 173–186. Springer, Heidelberg (2012)

2. Ge, N., Pantel, M., Crégut, X.: Formal Specification and Verification of Task Time
Constraints for Real-Time Systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part II. LNCS, vol. 7610, pp. 143–157. Springer, Heidelberg (2012)

3. Johansson, R., Frey, P., Jonsson, J., Nordlander, J., Pathan, R.M., Feiertag, N.,
Schlager, M., Espinoza, H., Richter, K., Kuntz, S., Lönn, H., Kolagari, R.T., Blom,
H.: TADL: Timing augmented description language, version 2. Technical report
(October 2009)

4. Kirner, R.: The WCET Analysis Tool CalcWcet167. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 158–172. Springer, Heidelberg
(2012)

5. Lisper, B., Nordlander, J.: A Simple and Flexible Timing Constraint Logic. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 80–95.
Springer, Heidelberg (2012)

6. Ouranos, I., Ogata, K., Stefaneas, P.: Formal Analysis of TESLA Protocol in the
Timed OTS/CafeOBJ Method. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part
II. LNCS, vol. 7610, pp. 126–142. Springer, Heidelberg (2012)

7. Peraldi-Frati, M.-A., Goknil, A., Adedjouma, M., Gueguen, P.-Y.: Modeling a BSG-
E Automotive System with the Timing Augmented Description Language. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 111–125.
Springer, Heidelberg (2012)

8. Quinton, S., Ernst, R.: Generalized Weakly-Hard Constraints. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 96–100. Springer, Heidelberg
(2012)

A Simple and Flexible Timing Constraint Logic

Björn Lisper1 and Johan Nordlander2

1 School of Innovation, Design, and Engineering, Mälardalen University,
SE-721 23 Västerås, Sweden

2 Department of Computer Science, Electrical and Space Engineering,
Luleå University of Technology, SE-971 87 Luleå, Sweden

Abstract. Formats for describing timing behaviors range from fixed
menus of standard patterns, to fully open-ended behavioral definitions;
of which some may be supported by formal semantic underpinnings, while
others are better characterized as primarily informal notations. Timing
descriptions that allow flexible extension within a fully formalized frame-
work constitute a particularly interesting area in this respect.

We present a small logic for expressing timing constraints in such an
open-ended fashion, sprung out of our work with timing constraint se-
mantics in the TIMMO-2-USE project [15]. The result is a non-modal,
first-order logic over reals and sets of reals, which references the con-
strained objects solely in terms of event occurrences. Both finite and
infinite behaviors may be expressed, and a core feature of the logic is the
ability to restrict any constraint to just the finite ranges when a certain
system mode is active.

Full syntactic and semantic definitions of our formula language are
given, and as an indicator of its expressiveness, we show how to express all
constraint forms currently defined by TIMMO-2-USE and AUTOSAR. A
separate section deals with the support for mode-dependencies that have
been proposed for both frameworks, and we demonstrate by an example
how our generic mode-restriction mechanism formalizes the details of
such an extension.

1 Introduction

Timing behavior descriptions exist in many different forms. Classical real-time
scheduling theory defines the basic periodic and sporadic patterns to describe
task activations, along with the simple notion of relative deadlines for capturing
the desired behavior of a system’s response. Digital circuits are often accompa-
nied by timing diagrams [4], where selected scenarios from an infinitely repeat-
ing behavior are depicted graphically, specifically indicating the minimum and
maximum distances between key events. In the automotive domain, the model-
based development frameworks of AUTOSAR [6] and EAST-ADL [8] offer a rich
palette of built-in timing patterns and constraints, commonly specified in terms
of typical-case timing diagrams. On the theoretical side, temporal and real-time
logics concentrate on a few basic building blocks, from which more complex
timing formulae can be constructed using logical connectives.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 80–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Simple and Flexible Timing Constraint Logic 81

The timing models of classical scheduling theory are well-understood, but
limited in expressiveness and essentially closed — even though they have been
successfully extended with notions such as jitter and release offsets, every exten-
sion has to show that it also can be understood and analyzed in ways that mirror
the original theory. As a contrast, graphical timing diagrams appear inherently
open-ended, but this is primarily the consequence of a lack of rigor in this in-
formal notation. AUTOSAR and EAST-ADL can express some very complex
timing behaviors, but pay the price of being both informal as well as closed to
extension. A formal foundation for the timing constructs of both languages has
previously been defined by the TIMMO-2-USE project, but extensibility of this
foundation has so far not been addressed.

This paper contributes a retake on the TIMMO-2-USE formalization effort, by
means of a timing constraint logic that is able to express all existing constraints,
while also acting as a toolbox for building new and open-ended forms of well-
defined timing behaviors. The logic, called TiCL (Timing Constraint Logic), is
similar to existing real-time logics in this respect, but differs in the following
important ways:

– TiCL is a logic of pure timing constraints. It does not attempt to express
any functional properties of the systems it constrains, and it only interfaces
to the latter via the notion of event occurrences. This separation of con-
cerns is central to the ability to blend with EAST-ADL and AUTOSAR,
whose complex semantics does not yet allow full formalization of functional
behavior.

– TiCL is not a modal logic. In fact, TiCL just represents a carefully chosen
selection of operators from a standard first-order logic over the real numbers
and real number sets.

– TiCL is not restricted to infinite behaviors only. Finite behaviors can be
expressed with ease, and one of the strengths of TiCL is a mechanism for
restricting a generic constraint to just the finite ranges when a certain system
mode is active.

In Section 2 we introduce introduce TADL, a language for timing constraints
that was defined in the TIMMO project and has influenced the AUTOSAR
Timing Extensions. We then define the syntax and semantics of TiCL in Sec-
tion 3, establish some convenient notational short-hands (Section 4), and show
how current TADL and AUTOSAR constraints are captured (Section 5). The
mechanism for interpreting mode-dependencies is explained in Section 6. We
discuss related work in Section 7. Verification and analysis issues are beyond the
scope of the current paper, but the topic will be returned to in the concluding
discussion (Section 8).

2 TADL

The Timing Augmented Description Language (TADL) [10] is a constraint lan-
guage for describing timing requirements and properties within the automotive

82 B. Lisper and J. Nordlander

domain. It was originally defined in the TIMMO project, and is now being re-
vised and formalized within the TIMMO-2-USE project: TiCL is an outcome of
this work. The syntax of TADL is compliant to the AUTOSAR meta-model, but
the TADL constraints can also be understood through a textual syntax.

TADL defines constraints on events, which are simply (finite or infinite) se-
quences of strictly increasing times. The definition does not specify whether
times are integers or reals: the constraints have meaningful interpretations in
both cases. An element in an event is an occurrence of the event.

TADL’s constraints, as defined in [10], can be divided into three groups: rep-
etition rate constraints, which concern single events, delay constraints, which
concern the timing relation between stimuli and responses, and synchronization
constraints, that require that corresponding occurrences of a group of events
appear in sufficiently tight clusters.

All repetition rate constraints can be seen as instances of a generic repetition
rate constraint. Such a constraint is specified by four parameters lower , upper ,
,jitter , and span . An event 〈t1, t2, . . .〉 satisfies a generic repetition rate constraint
iff there exists an sequence of times 〈x1, x2, . . .〉 such that for all i > 1,

xi ≤ ti ≤ xi + jitter

and for all i ≥ span,
lower ≤ xi − xi−span ≤ upper

Now, a periodic repetition constraint is a generic repetition rate constraint where
span = 1, and lower = upper . A sporadic repetition constraint has span = 1,
and upper = ∞. TADL also defines more complex pattern repetition constraints,
and arbitrary repetition constraints, see [10].

Delay constraints relate two events, called stimulus and response, by demand-
ing that each occurrence of one event is matched by at least one occurrence of
the other within some time window. Depending on whether these time windows
are achored at the stimulus or response occurrences, TADL names the delay
constraints reaction or age, respectively.

Both the reaction and age constraints are characterized by the parameters
lower , and upper . A stimulus event 〈s1, s2, . . .〉 and a response event 〈r1, r2, . . .〉
satisfy a reaction constraint with parameter lower , upper iff for all si there exists
rj such that

si + lower ≤ rj ≤ si + upper

The same events satisfy an age constraint with the same parameters, iff for all
rj there exists an si such that

rj − upper ≤ si ≤ rj − lower

Synchronization constraints were originally defined as rather complex constructs
in both TADL and AUTOSAR, being syntactic (but notably not semantic) ex-
tensions of the delay constraints [10]. Both language have since then simplified
the notion of synchronization considerably, and the upcoming release of TADL
v2 defines synchronization as a constraint on a group of events S, characterized

A Simple and Flexible Timing Constraint Logic 83

by a single parameter tolerance. Such a constraint is satisfied iff there is a se-
quence of times 〈x1, x2, . . .〉 such that for all xi and all events 〈s1, s2, . . .〉 ∈ S
there exists at least one sj such that

xi ≤ sj ≤ xi + tolerance

The TADL v1 definition of synchronization will be further discussed at the end
of Section 5.

A common theme in the definitions above is that they all rely on an infinite
number of indexed event occurrences, which excludes their use in scenarios that
span only finite intervals (as in mode-switching systems, for example). They are
also practically closed, due to the fact that the logic in which the definitions are
expressed is left unspecified in the current TADL. Both these deficiencies will be
addressed by the introduction of TiCL.

3 TiCL

The basic purpose of the timing constraint language TiCL is to express truth
statements about the points in time when events occur. Points in time are in-
terpreted as real values, and since such values are totally ordered, events can
simply be understood as sets of reals (infinite or finite). We make the choice to
also represent time intervals as sets of time values; such sets are however always
infinite. Three different sets of variables form the basis of TiCL: one denoting
time values (Tvar), one ranging over sets (Svar), and yet another form standing
for arbitrary arithmetic values not denoting points in time (Avar). The syntax
of TiCL is given in Fig. 1.

Syntactic categories

r ∈ R (arithmetic constants)

v ∈ Avar (arithmetic variables)
X, Y ∈ Svar (set variables)
x, y ∈ Tvar (time variables)

e, f ∈ AExp (arithmetic expressions)
E, F ∈ SExp (set expressions)
c, d ∈ CExp (constraint expressions)

Abstract syntax

e → r | v | e + f | e − f | e ∗ f | e /f | |E| | λ(E)

E → X | {x : c}

c → e ≤ f | x ≤ y | x ∈ E | c ∧ d | ¬c | ∀v : c | ∀x : c | ∀X : c

Fig. 1. TiCL syntax

TiCL distinguishes between three kinds of terms. AExp is the set of arith-
metic expressions formed from constants, variables, arithmetic operators, as well

84 B. Lisper and J. Nordlander

as the size |E|, or the measure λ(E), of a set expression E. By measure we mean
the total length of all continuous intervals in E (that is, the Lebesgue measure
of E). The set expressions SExp take the form of a set variable X , or a set
comprehension {x : c} – the set of all times x such that constraint c (which
may reference x) is true. CExp, finally, stands for the set of boolean constraint
formulae formed from inequalities between arithmetic expressions, inequalities
between time variables, set membership (x belongs to the set of times denoted
by E), logical connectives, and quantification over arithmetic, time and set
variables.

true ≡ 0 ≤ 1
false ≡ 1 ≤ 0
c ∨ d ≡ ¬(¬c ∧ ¬d)

c ⇒ d ≡ ¬c ∨ d
c ⇔ d ≡ (c ⇒ d) ∧ (d ⇒ c)
e = f ≡ e ≤ f ∧ f ≤ e
e �= f ≡ ¬(e = f)
e < f ≡ e ≤ f ∧ e �= f

E ⊆ F ≡ ∀x : x ∈ E ⇒ x ∈ F
E = F ≡ E ⊆ F ∧ F ⊆ E
E �= F ≡ ¬(E = F)
E ⊂ F ≡ E ⊆ F ∧ E �= F
x /∈ E ≡ ¬(x ∈ E)

∃v : c ≡ ¬(∀v : ¬c)
∃x : c ≡ ¬(∀x : ¬c)
∃X : c ≡ ¬(∀X : ¬c)

∀x ∈ E : c ≡ ∀x : x ∈ E ⇒ c
∃x ∈ E : c ≡ ∃x : x ∈ E ∧ c
∃X = E : c ≡ ∃X : X = E ∧ c
{x ∈ E : c} ≡ {x : x ∈ E ∧ c}

E ∪ F ≡ {x : x ∈ E ∨ x ∈ F}
E ∩ F ≡ {x : x ∈ E ∧ x ∈ F}

E� ≡ {x : x /∈ E}
E\F ≡ {x : x ∈ E ∧ x /∈ F}

Fig. 2. Standard syntactic abbreviations

The syntax of TiCL is thus entirely standard, and should—with the possible
exception of the Tvar/Avar distinction—suggest an absolutely straightforward
first-order logic semantics. The reason why time variables are kept distinct from
their arithmetic counterparts is that absolute time values are never interesting in
their own right; only their relative distances are. By making it impossible to form
arithmetic expressions directly from time variables, the TiCL constraints become
independent of the arbitrary point in time a user chooses to refer to as time
"zero". This contrasts sharply to the arithmetic variables, which typically stand
for aspects such as minimum interval length, maximum number of occurrences,
etc—i.e., aspects whose absolute values are of prime interest in the definition of
timing constraints.

As an example TiCL formula, here follows a constraint that demands the
occurrences of event X to be no more than, and to occur no later than, the
occurrences of event Y .1

|X | ≤ |Y | ∧ ∀x : ∀y : ¬(x ∈ X ∧ y ∈ Y ∧ ¬(x ≤ y))

1 We use a concrete syntax where quantifiers scope as far to the right as possible, and
standard operator precedences apply.

A Simple and Flexible Timing Constraint Logic 85

4 Abbreviations

For added convenience, we complement the basic syntax of TiCL with a series
of syntactic abbreviations, the first of which is defined in Fig. 2. By taking
advantage of these notational short-hands, we may choose to express the example
constraint of the previous section as follows:

|X | ≤ |Y | ∧ ∀x ∈ X : ∀y ∈ Y : x ≤ y

Sets of time values do not only represent the generally sparse points in time
where different events occur, but also the notion of dense intervals – i.e., sets
that contain all time values above or below chosen endpoints. Fig. 3 defines some
useful interval constructors, that take either single time values, or sets of such
values, as starting points.

[x ≤] ≡ {y : x ≤ y}
[x <] ≡ {y : x < y}
[≤ x] ≡ [x <]�

[< x] ≡ [x ≤]�

[x..y] ≡ [x ≤] ∩ [< y]

[E ≤] ≡ {y : ∃x ∈ E : x ≤ y}
[E <] ≡ {y : ∀x ∈ E : x < y}
[≤ E] ≡ [E <]�

[< E] ≡ [E ≤]�

[E] ≡ [E ≤] ∩ [≤ E]

Fig. 3. Interval constructors

Intervals are important for separating legal and illegal occurrences of events.
The following operations filter out occurrences of an event that are either above
or below a certain point in time.

Ex< ≡ E ∩ [x <]
E<x ≡ E ∩ [< x]

The first of these filters, in combination with the previous interval constructors,
allows us to express the range of time values starting at some point x and ending
right before the next occurrence of an event E.

[x..E] ≡ [x ≤] ∩ [< (Ex<)]

Generalizing the previous notation to two events E and F , we end up with an
operator that captures a set of ranges, where E contains the possible starting
points, and F the possible end-points.

[E..F] ≡ {x : ∃y ∈ E : x ∈ [y..F]}
Fig. 4 shows the intuition behind this range operator in graphical form.

As an inverse of the range operator, we may also define two operations that
extract the set of starting points and end-points, respectively, from a set of
disjoint intervals.

E↑ ≡ {x ∈ E : ∃y < x : y /∈ E ∧ ∀y′ : y ≤ y′ < x ⇒ y′ /∈ E}
E↓ ≡ (E�)↑

86 B. Lisper and J. Nordlander

X
Y
[X..Y]

Fig. 4. Scenario illustrating the active ranges between two events

Since the length of an interval is captured by the measure operator, we may
introduce the relative distance between two time values as an arithmetic expres-
sion.

x − y ≡ λ([y..x]) − λ([x..y])

Note how the use of two swapped intervals makes the distance operator capable
of returning both positive and negative results, depending on which of the times
x and y that is greater.

The distance operator allows time translation of sets to be expressed, and the
range notation to be generalized accordingly.

E � e ≡ {x : ∃y ∈ E : y − x = e}
E � e ≡ E � 0 − e

[x+e..y+f] ≡ ([x ≤] � e) ∩ ([< y] � f)

We also provide an option for indexing a set of time values from zero and up.
Since indexing must fail if the set in question contains too few elements, or if
an index falls inside a continuous interval of elements, the indexing operator is
integrated into a constraint form that simply becomes false under those circum-
stances.

x = E(e) ≡ x ∈ E ∧ |E<x| = e

Another useful constraint form that is definable in terms of intervals is the
subrange relation:

E � F ≡ ∃x : ∃y : E = F ∩ [x..y]

As a generic mechanism for open-ended extension, TiCL allows user-defined
constraints to be named and placed in the available abbreviation environment
alongside the notational short-hands introduced above. Each such constraint
definition is of the form

C(x, X, v) ≡ c

where C is a name drawn from some set of constraint identifiers, c is a constraint
expression, and x, X, and v are zero or more distinct time, event, and arithmetic
variables, respectively. A named constraint can be referred to by writing

C(y, E, e)

where the number of terms in y, E, and e must match the corresponding param-
eter lists in the definition of C.

A Simple and Flexible Timing Constraint Logic 87

To constitute a valid constraint definition, C(x, X, v) ≡ c must fulfill two
conditions:

1. c must not contain any other free variables than those in x, X, and v.
2. c must not refer to C, or any other constraint definition that directly or

indirectly refers to C.

These conditions ensure that in any context, named constraints can be removed
by simply macro-expanding their respective definitions.

5 Expressing TADL Constraints

In this section we demonstrate the expressive power of TiCL by showing how
the various timing constraints defined by both TIMMO and AUTOSAR can be
captured formally. The intention is neither to explain the intuition behind these
constraints here, nor to motivate any particular design choices in the definitions.
In fact, some constraints are actually given multiple definitions, reflecting the
alternatives that have appeared in different TIMMO or AUTOSAR versions.
The focus in this section is primarily on the semantic details that distinguish
such alternatives from each other.

The basic TADL delay constraint requires that for each occurrence of a stim-
ulus event X , there must exist some occurrence of response event Y at a relative
distance determined by a lower and an upper bound (vl and vu).

delay(X, Y, vl, vu) ≡ ∀x ∈ X : ∃y ∈ Y : vl ≤ y − x ≤ vu

Two delay constraints in a symmetric fashion form a bidelay. Such a constraint
is not actually part of TADL, but we give it a name here nevertheless because
it will prove useful in the specification of other TADL constraints.

bidelay(X, Y, vl, vu) ≡ delay(X, Y, vl, vu) ∧ delay(Y, X,−vu,−vl)

An alternative form of delay that will also be subsequently needed requires that
each response occurrence is unique within the specified time window.

unidelay(X, Y, vl, vu) ≡ ∀x ∈ X : |Y ∩ [x + vl..x + vu]| = 1

Yet another useful form is the strong delay, which demands that the stimulus
and response events are related for each indexed occurrence.

strongdelay(X, Y, vl, vu) ≡ ∀i : ∀x = X(i) : ∃y = Y (i) : vl ≤ y − x ≤ vu

The differences between these delay forms are subtle but important. The basic
delay allows multiple responses to a single stimuli, as well as responses that
are shared by multiple stimuli. bidelay does the same, but disallows orphan
responses. The unidelay constraint rules out multiple possible responses, but still
allows the mapping of many stimuli onto a single response. strongdelay requires
the stimulus and response occurrences to appear in lock-step.

88 B. Lisper and J. Nordlander

TADL further defines a repetition constraint, which can be conveniently cap-
tured in two stages. First we introduce the basic notion of a repetition, which
says that any stretch of vs periods (i.e., any subrange of vs+1 event occurrences)
must have a distance between the first and last occurrence that is bounded by
vl and vu.

repeat(X, vl, vu, vs) ≡ ∀Y � X : |Y | = vs + 1 ⇒ vl ≤ λ([Y]) ≤ vu

Then we add the jitter component by means of a local event and strongdelay:

repetition(X, vl, vu, vj , vs) ≡ ∃Y : repeat(Y, vl, vu, vs) ∧ strongdelay(Y, X, 0, vj)

Notice how Y here takes the role of a set of ideal points in time, from which the
actual event X may deviate by at most the jitter distance vj .

The third pillar of TADL is the synchronization constraint, which in its weak
form can be expressed as follows:

sync(X1, . . . , Xn, vj) ≡ ∃Y : bidelay(Y, X1, 0, vj) ∧ · · · ∧ bidelay(Y, Xn, 0, vj)

That is, synchronization implies that each occurrence of each event Xi is suffi-
ciently close to a "cluster" point of some set Y , and each such point in turn is
sufficiently close to occurrences of all the Xi. Note that by choosing bidelay over
the other delay forms in this definition, TADL deliberately accepts both overlap-
ping synchronization clusters, and clusters containing more than one occurrence
of some events. A strong synchronization variant, which requires all synchronized
events to appear in a lock-step fashion akin to the strongdelay constraint, can
easily be defined in terms of the latter (not shown here).

TADL has recently been extended with a constraint capturing the notion
of bounded execution times, which is a bit challenging to formalize purely in
terms of events. However, if one assumes the existence of events indicating not
only the start and termination of the function of interest, but also preemption
and resumption of that function, an exectime constraint can be defined quite
succinctly in TiCL.

exectime(X, Y, X ′, Y ′, vl, vu) ≡ ∀x ∈ X : vl ≤ λ([x..Y]\[X ′..Y ′]) ≤ vu

This definition assumes that X and Y capture the points in time when the
function of interest is started and terminated, and that preemption and resump-
tion points for that function are given by events X ′ and Y ′, respectively. The
set [X ′..Y ′] thus indicates the intervals during which the measured function is
preempted, and those points in time should be excluded from each invocation in-
terval in order to obtain an accurate execution time. The value to be constrained
is the sum of the interval fragments that remain, which is equivalently expressed
as the measure of the corresponding set. Fig. 5 shows a graphical illustration of
an exectime scenario, where x1 and x2 denote the starting points of two separate
invocations of the constrained function.

A Simple and Flexible Timing Constraint Logic 89

X
Y
[X..Y]

X'
Y'
[X'..Y']

[x1..Y]\[X'..Y']
[x2..Y]\[X'..Y']

x1 x2

Fig. 5. Event scenario illustrating the exectime constraint

sporadic(X, vl, vu, vj , vm) ≡ repetition(X, vl, vu, vj , 1)∧
minimum(X, vm)

periodic(X, vp, vj , vm) ≡ sporadic(X, vp, vp, vj , vm)
pattern(X, Y, v1, . . . , vn, vj , vm) ≡ delay(Y, X, v1, v1 + vj) ∧ · · · ∧

delay(Y, X, vn, vn + vj)∧
minimum(X, vm)

arbitrary(X, v1, . . . , vn, v′
1, . . . , v

′
n) ≡ repeat(X, v1, v

′
1, 1) ∧ · · · ∧

repeat(X, vn, v′
n, n)

burst(X, vl, vn, vm) ≡ repeat(X, vl,∞, vn + 1)∧
minimum(X, vm)

Fig. 6. Derived TADL constraint definitions

Further TADL constraints are definable entirely in terms of the building blocks
introduced so far. Fig. 6 shows the definitions that apply to TADL v2.2 The
minimum constraint referenced in several places is just a jitter-free repetition
spanning subsequent occurrences, with infinity as its upper bound.

minimum(X, v) ≡ repeat(X, v,∞, 1)

To further exemplify the precision that is possible to express using TiCL, we
give a few alternative definitions of the pattern and sync constraints above. The
pattern1 variant represents one reasonable interpretation of the corresponding
2 TADL v2 also includes a group of delay and synchronization constraints that use

an externally provided causality relation to filter out the event occurences that that
a particular delay or synchronization window should contain. TiCL can easily be
complemented with the machinery necessary to express this extension, but we do
not show it here in the interest of notational brevity.

90 B. Lisper and J. Nordlander

AUTOSAR constraint, which assumes that the underlying periodic cycle of the
pattern is automatically detected. Also, constraint sync1 captures the quite com-
plicated definition of synchronization that was a part of TADL v1, where syn-
chronization was not expressible without also embedding a delay from a reference
event governing when synchronization must take place.

pattern1 (X, vp, vj , vm, v1, . . . , vn) ≡ ∃Y : periodic(Y, vp, 0, 0)∧
pattern(X, Y, v1, . . . , vn, vj , vm)

sync1 (Y, X1, . . . , Xn, vl, vu, vj) ≡ unidelay(Y, X1, vl, vu) ∧ · · · ∧
unidelay(Y, Xn, vl, vu)∧
∃Y ′ : strongdelay(Y, Y ′, vl, vu)∧
sync(Y ′, X1, . . . , Xn, vj)

6 Modes

Mode dependency is a design pattern that is used frequently in many AUTOSAR
and EAST-ADL models, and which naturally also has an impact on the notion
of timing correctness of such models. Simply put, a mode is an abstraction over
the state of a system, such that at each point in time, the mode is either active
or inactive. Modes are typically used to guard different functional behaviors,
emphasizing orderly distributed mode transitions over distributed behavior in
general. A mode-dependent timing constraint is then understood as a constraint
that only has to hold while the referenced mode is active; outside those active
intervals, the constraint should count as being vacuously true.

However, while the basic intuition behind modes is relatively simple, its ap-
plication to timing correctness presents some interesting design problems. The
fundamental challenge is that timing constraints express properties that gen-
erally involve multiple points in time, and a mode change that occurs in the
middle of such an interval may very well render a mode-dependent constraint
ambiguous. A delay constraint serves as a simple illustration. Should an absent
response be tolerated if a mode deactivation intervenes? Should a stray response
be accepted if it could have been caused by a stimulus outside the current mode
interval?

Examination of real world scenarios has led us to believe that the generic
answer should be yes to all such questions. A mode-dependent constraint should
be considered satisfied if it holds for the event occurrences within each active
interval, plus some hypothetic and optimally chosen occurrence pattern outside
each interval. If this idea is formalized correctly, it should be possible to put a
mode-restriction on an arbitrary constraint and obtain a meaningful semantics,
even if the constraint has not been defined with the specific challenges of mode-
switching in mind.

A Simple and Flexible Timing Constraint Logic 91

The approach we have taken is to model modes as sets of time values, just
like we do for events and arbitrary intervals. To make the mode intuition clear,
however, we introduce a distinct class of variables to range over modes:

M ∈ Svar (mode identifiers)

Semantically, a mode identifier M stands for some set of time values, just like
an X or a Y . In particular, if X and Y are events indicating the activation
and deactivation of some mode M , a natural way to express this formally is to
introduce M in some scope c as follows:

∃M = [X..Y] : c

Alternatively, a mode M can be defined as some combination of other modes
using union, disjunction, or any other defined operator on general sets.

We now introduce a syntax for mode-restricted constraints, by means of a
decoration to the application of a named constraint macro.

C(y, E1, . . . , En, e)%M

The core of our mode-restriction mechanism is the semantics given to this con-
straint form. As before, we proceed in terms of a translation of the syntax form,
that results in a constraint term where the new syntax is absent. We begin with
the simple case where C takes only one event argument.

C(y, E, e)%M ≡ ∀x ∈ M↑ : ∃Y = [x..M↓] : ∃X ⊆ Y � : C(y, (E∩Y)∪X, e)

The definition should be read as follows. For the given mode M , its activation
and deactivation points (M↑ and M↓) are identified. Then, for each activation
point x in M↑, a freely chosen X , subset of the possible time values outside the
current activation interval Y , is added to the subrange of event parameter E
that falls within Y . That is, the translated, mode-independent application of C
takes E∩Y ∪X as an argument in place of E, which captures the intuition that
a mode both ignores and assumes the best about occurrences that fall outside
its active intervals. Generalized to n event arguments, the translation becomes

C(y, E1, . . . , En, e)%M ≡ ∀x ∈ M↑ : ∃Y = [x..M↓] :
∃X1 ⊆ Y � : . . . : ∃Xn ⊆ Y � :
C(y, (E1∩Y)∪X1, . . . , (En∩Y)∪Xn, e)

To illustrate the power of this interpretation of mode-dependencies, we define a
somewhat contrived, but still perfectly sound, variant of a repetition constraint:

cyclic(X, v) ≡ delay(X, X, v, v)

This constraint is special because it only holds for infinitely repeating events.
The top of Fig. 7 shows the initial trace of an event E that certainly does

not satisfy cyclic(E, v) for any v. However, the intent is now that the constraint

92 B. Lisper and J. Nordlander

M↑

M↓

M

E

E ∩[x1..M↓] ∪X1

[x1..M↓]

[x2..M↓]

x1 x2

E ∩[x2..M↓] ∪X2

...

...

...

...

...

Fig. 7. Event scenario involving a mode-restricted constraint cyclic(E, v)%M

only has to hold while mode M is active; i.e., cyclic(E, v)%M must be true.
While it is clear that E is repetitive during the activity intervals, just limiting
E to those intervals would not work—all such E subsets would be finite. But
by interpreting mode-restriction as a constraint on mode-limited event subsets
extended with arbitrarily chosen points outside the mode interval, even infinitely
demanding constraints like cyclic become possible to apply in finite contexts.

What Fig. 7 depicts below the trace of E is the assumed activity intervals
of mode M , its activation and deactivation points, the complements of the first
and second activity intervals of M (i.e., the sets from which suitable subsets X
may be drawn), and the resulting, purely cyclic patterns that result when the
relevant subsets of E are suitably extended.

7 Related Work

TiCL shares its main objective with the various real-time (timed/temporal) log-
ics that have been proposed in the context of model-checking and verification
of timed automata: to offer a comprehensive formalism for specifying the tim-
ing behavior of a system in a logically robust way [3,7,13,12,1,9]. This line of
research is uniformly dealing with modal logics; i.e., logics whose semantics is
based on sequences of system states and atomic predicates on these. Such gener-
ality allows the integration of timing aspects into arbitrary specifications of func-
tional behavior, as would be expected by the model-checking approach. TiCL
exhibits a much weaker connection between timing properties and their under-
lying systems, by only allowing relations on the occurrences of abstract events
as its atomic formulas. This makes TiCL unsuitable as a general model-checking

A Simple and Flexible Timing Constraint Logic 93

specification language, although it also makes for a very clean identification of
the properties that are purely concerned with timing.

At the same time, TiCL is fundamentally more expressive than the modal
approaches in being a first-order logic. The additional power stems primarily
from the universally (and existentially) quantified variables of TiCL, which may
range over both points in time as well as sets of such values. Temporal logics
allow only a limited form of quantification through temporal operators, whose
closest counterparts in TiCL would be quantifiers introducing variables used
just as event indices. A mode-dependency operator like ours, which critically
depends on the ability to quantify over sets, appears very difficult to express in
a temporal logic style, if at all possible. It should also be noted that the core
TiCL operators and quantifiers are entirely standard in the logic field, whereas
the various temporal and real-time logics are to a large extent identified by the
custom operators they provide. Of course, TiCL pays a price for this generality
by being undecidable, but its intended role as a disambiguation tool for humans is
more dependent on a standard semantics and a carefully delimited syntax than
on decidability issues. Moreover, there are reasons to believe that practically
significant fragments of TiCL are indeed decidable, analogous to the case for
first-order logics in general.

Amon et al. [4] define a specification language for capturing the logic of tim-
ing diagrams in a form that resembles our constraint language minus the event
variables and with restricted integer arithmetic (no division operator, multipli-
cation by literals only). This sublanguage corresponds to Presburger formulas,
for which automatic and efficient verification procedures exist. It remains to be
seen to what extent the approach allows extension towards the full TiCL syntax
(one particular sub-case that appears particularly benign is top-level quantifi-
cation over real-valued sets, which should imply little more than just iterated
verification).

CCSL [5] is a language for specifying timing constraints in the UML profile
MARTE [14] for modeling and analysis of real-time systems. CCSL can specify
clocks, which correspond to events, and relations between them. Relations include
various sub- and precedence constraints. It seems that TiCL quite readily could
express counterparts to CCSL clock constraints on events.

Timed automata [2] are automata extended with various clock variables, which
can be used to model real-time systems. Model checking can be performed over
timed automata to verify that the models have certain properties. The properties,
which typically are reachability properties, are then specified in some temporal
logic. UPPAAL [11] is a well-known tool for modeling and verification using
timed automata.

Transitions in timed automata can be guarded by constraints on the clocks:
thus, timed automata can to some extent include timing constraints in the mod-
els. However, the style is state-oriented rather than event-oriented and thus
quite different from TiCL. Also, timed automata and their temporal logics are
usually designed to be decidable, allowing efficient procedures for model check-
ing whereas TiCL favours expressiveness. An interesting question, of course, is

94 B. Lisper and J. Nordlander

whether some nontrivial fragment of TiCL can be translated into timed automata
as it would allow automatic verification of that fragment.

8 Conclusions and Further Research

We have presented TiCL, a simple logic for expressing timing constraints on
events. TiCL came out of the work with TADL, a language for specifying timing
requirements and -properties that is intended to be used with AUTOSAR and
EAST-ADL in the automotive domain. TiCL offers a rich syntax, on top of
a simple kernel language, for defining constraints on events defined as sets of
times. We showed how to express TADL’s timing constraints in TiCL, as well as
some other timing constraints that seem natural and useful. We also introduced
mode-dependent TiCL constraints, with a special mode restriction operator, and
gave the operator a semantics by translation into TiCL without this operator.

Expressing timing constraints by translation into a logic like TiCL has several
advantages. One advantage is that the semantics of timing constraints becomes
well-defined and unambiguous, since TiCL itself has a very clear, standard se-
mantics. In particular this is true for mode-dependent constraints, since they
have hitherto never been given a stringent semantics although they are present
in both AUTOSAR, EAST-ADL, and TADL. We believe that we have found the
“right” definition of mode dependency, and the semantics of this definition can
be used to give a well-defined semantics for mode dependency in, say, TADL as
well.

Another advantage is that tools for validating or verifying timing constraints
can work by translation into TiCL. Tools that check the validity of event traces
vis-a-vis some timing constraints, or that simulate systems based on timing prop-
erties expressed in, say, TADL, can work on TiCL rather than TADL. Since
TiCL is simple, with a clear semantics, such tools will be easier to implement
for TiCL. This is similar to compilers, where programs are first translated into
some intermediate format that is easier to work on.

TiCL also offers a way to express timing constraints in situations where the
fixed format constraints of languages like TADL turn out not to be applicable. A
“power user” can easily define new timing constraints in TiCL that are tailored
to special needs. Similarly, if later versions of AUTOSAR or TADL will have
a modified set of timing constraints, then these will most likely be expressible
in TiCL as well. Once a translation to TiCL is established the new constraints
will have a well-defined semantics, and tools that are based on TiCL will work
immediately.

Finally, TiCL opens a possible route for formal verification of timing con-
straints. Although TiCL itself is not a decidable logic, it does not seem unlikely
that there are nontrivial fragments that are decidable. Timing constraints that
can be expressed within such fragments will then be possible to verify formally
by an automated decision procedure.

A Simple and Flexible Timing Constraint Logic 95

References

1. Abadi, M., Lamport, L., Taylor, R.W.: An old-fashioned recipe for real time. In:
ACM Transactions on Programming Languages and Systems, pp. 1–27. Springer
(1992)

2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: Proc.
Logic in Computer Science, pp. 414–425. IEEE (June 1990)

3. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–203 (1994)
4. Amon, T., Borriello, G., Hu, T., Liu, J.: Symbolic timing verification of timing

diagrams using Presburger formulas. In: Proc. 34th Annual Design Automation
Conference, pp. 226–231. ACM, New York (1997)

5. André, C., Mallet, F.: Clock constraints in UML/MARTE CCSL. Research report,
INRIA (May 2008)

6. Homepage of the AUTOSAR project (2009), http://www.autosar.org
7. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process.

Lett. 40(5), 269–276 (1991)
8. Cuenot, P., Frey, P., Johansson, R., Lönn, H., Papadopoulos, Y., Reiser, M.-O.,

Sandberg, A., Servat, D., Tavakoli Kolagari, R., Törngren, M., Weber, M.: 11 The
EAST-ADL Architecture Description Language for Automotive Embedded Soft-
ware. In: Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) MIBEERTS.
LNCS, vol. 6100, pp. 297–307. Springer, Heidelberg (2010)

9. Grüninger, M., Menzel, C.: The process specification language (PSL) theory and
applications. AI Mag. 24(3), 63–74 (2003)

10. Johansson, R., Frey, P., Jonsson, J., Nordlander, J., Pathan, R.M., Feiertag, N.,
Schlager, M., Espinoza, H., Richter, K., Kuntz, S., Lönn, H., Kolagari, R.T., Blom,
H.: TADL: Timing augmented description language, version 2. Technical report
(October 2009)

11. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. Journal on Soft-
ware Tools for Technology Transfer 1, 134–152 (1997)

12. Mattolini, R., Nesi, P.: An interval logic for real-time system specification. IEEE
Trans. Softw. Eng. 27(3), 208–227 (2001)

13. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Com-
puter 18, 10–19 (1985)

14. UML profile for MARTE: Modeling and analysis of real-time embedded systems.
Tech. rep., OMG (November 2009), http://www.omg.org/spec/MARTE/1.0

15. Homepage of the TIMMO-2-USE project (2012), http://www.timmo-2-use.org

http://www.autosar.org
http://www.omg.org/spec/MARTE/1.0
http://www.timmo-2-use.org

Generalized Weakly-Hard Constraints

Sophie Quinton� and Rolf Ernst

Institute of Computer Network and Engineering / TU Braunschweig

Abstract. Real-time systems must meet, in addition to their functional
requirements, requirements regarding their timing behavior. In the case
of hard real-time systems, such requirements include the absence of dead-
line misses. In contrast, for soft real-time systems, a “reasonable” number
of deadline misses may happen without leading to a system failure. The
usual definition of what a “reasonable” number of deadline misses for-
mally means is based on probability distributions. Another option is to
use weakly-hard constraints, which describe bounds on the number of
allowed deadline misses in a given time window.

In this paper we show the interest of using weakly-hard constraints
for other purposes than describing deadline misses, e.g. to describe exe-
cution times or jitter. We discuss in depth the semantics of weakly-hard
constraints with an emphasis on how they can be inferred from other
weakly-hard constraints and compared to probabilistic constraints.

1 Introduction

Real-time systems must meet, in addition to their functional requirements, re-
quirements regarding their timing behavior. In the case of hard real-time sys-
tems, such requirements include the absence of deadline misses. In contrast, for
soft real-time systems, a “reasonable” number of deadline misses may happen
without leading to a system failure. The usual definition of what a “reasonable”
number of deadline misses formally means is based on probability distributions.
Another option is to use weakly-hard constraints, which describe bounds on the
number of allowed deadline misses in a given time window.

In this paper, we make a proposal for an extension of the Timing Augmented
Description Language [10] (TADL) to soft constraints, weakly-hard and proba-
bilistic. TADL was first defined in the TIMMO project [12] and then integrated
into EAST-ADL by the ATESST2 project [1]. An improved and extended version
of TADL, called TADL2, is now being developed in the context of the TIMMO-
2-USE project [13]. In particular, we show the interest of using weakly-hard
constraints for other purposes than describing deadline misses, e.g. to describe
execution times or jitter. We also discuss in depth the semantics of weakly-hard
constraints with an emphasis on how they can be compared to probabilistic
constraints.

� This work was funded by the ITEA2 project TIMMO-2-USE (EUREKA cluster N◦

3674) through the German Ministry of Education and Research (BMBF) under the
funding ID 01IS10034.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 96–110, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Generalized Weakly-Hard Constraints 97

This paper is organized as follows: in Section 2 we first present the key as-
pects of TADL and a new basic constraint needed for representing constraints
on execution times in TADL2. In Section 3 we show how to extend the DELAY

constraint from TADL in order to allow the expression of the weakly-hard con-
straints introduced in [2]. We then demonstrate the interest of providing similar
extensions for the other constraints of TADL and provide a result for deriving
new weakly-hard constraints from a given one. In Section 4, we first focus on
probabilistic execution times as they are usually formalized, e.g. in [7]. Then we
show how probabilistic constraints are represented in TADL2, in particular be-
cause histogram distributions must be permitted. Finally we relate weakly-hard
constraints and probabilistic constraints.

2 Strongly-Hard Timing Constraints

The systems for which we want to express constraints consist of software compo-
nents performing for example a computation or some storage or communication,
which we call tasks. These components are mapped onto hardware components
(e.g. processors, memories, buses) called resources, on which they execute. When
a resource is shared by several tasks, a scheduling policy decides in which order
tasks are executed.

The execution of a task is triggered by an input event received by the task,
called activation. The end of the execution is indicated by the output of an-
other event, called termination. As is the case in all event-based approaches,
we abstract from the data often associated with events (e.g. the result of a
computation associated with a termination event) and identify the behavior of
the system with how events occur during execution. This makes the size of our
system abstraction manageable. An event trace describes the set of instants at
which a given event takes place. Note that we only use traces focusing on one
specific type of event, which is for example the activation or the termination of
a given task τ , as well as preemptions and resumptions if the scheduling policy
is preemptive. The behavior of the system is then defined as a set of traces.

In this paper we assume that time is discrete (Time = N), time windows can
be of infinite size (TimeWindow = N ∪ {∞}) and we consider infinite traces
starting at an instant 0.

Definition 1. A trace of an event e is an increasing function σe : N
+ −→ Time

where σe(n) is the point in time when e occurs for the n-th time.

We use the notation Se for denoting the set of traces of e. By extension to a set
of events E, SE denotes the set of trace sets containing exactly one trace per
event in E. For example, if E = {s, t} then an element of SE would contain one
trace of s and one trace of t.

Definition 2. The timing behavior of a system with respect to a set of events
Esys is represented by an element of SEsys , that is, one trace per event in E.

98 S. Quinton and R. Ernst

Definition 3. A constraint c on a vector of events < e1, . . . , en > (for n ∈ N
+)

is a predicate on S{e1,...,en
}, i.e., a function which takes one trace σei

per event
ei and returns true if the set of traces {σe1 , . . . , σen} satisfies the constraint, and
false otherwise.

We now present the basic constraints of the Timing Augmented Description
Language (TADL) defined in the TIMMO project [12] and developed now as
TADL2 in TIMMO-2-USE [13]. TADL is based on three constraints from which
all other constraints are derived:

• DELAY constrains the time window between the occurrence of a source
event and that of some corresponding target event.

• REPETITION constrains the distance between occurrences of the same
event.

• SYNCHRONIZATION constrains the maximum distance between events
which are expected to occur at the same time.

We choose to focus on the first two constraints as the SYNCHRONIZATION

constraint does not yield any specific problem. Note that the DELAY con-
straint presented here corresponds to the STONG-DELAY variant introduced
in TADL2 for describing response times.

2.1 DELAY Constraints

Definition 4. A DELAY constraint on two events s (source) and t (target) is
a constraint parameterized by a pair of time windows:

• (lower , upper) ∈ TimeWindow × TimeWindow

A timing behavior {σs, σt} satisfies DELAYs,t(lower , upper) if and only if

∀n ∈ N
+ : σs(n) + lower ≤ σt(n) ≤ σs(n) + upper

In other words, a behavior satisfies such aDELAY-constraint iff the time window
between an occurrence of s and the corresponding occurrence of t is bounded by
lower and upper .

Example 1. If act and end are the events describing respectively the activation
and the termination of an execution of a task τ with a deadline D, then the fact
that τ should not miss any deadline is expressed by the constraint

DELAYact,end(0, D)

which states that the response time of τ should always be between 0 and D.

Generalized Weakly-Hard Constraints 99

2.2 REPETITION Constraints

Definition 5. A REPETITION constraint on an event e is parameterized by:

• (lower , upper) ∈ TimeWindow × TimeWindow
• J ∈ TimeWindow
• span ∈ N

+

A timing behavior σe satisfies REPETITIONe(lower , upper ,J , span) if and
only if one can build a trace σ′

e such that

∀n ∈ N
+ : σ′

e(n) + lower ≤ σ′
e(n+ span) ≤ σ′

e(n) + upper

and

∀n ∈ N
+ : σ′

e(n) ≤ σe(n) ≤ σ′
e(n) + J

Such a REPETITION constraint relates for all n ∈ N
+ the n-th occurrence of

event e and its (n+ span)-th occurrence. Note that because there may be some
jitter, one cannot directly constrain the distance (in time) between σe(n) and
σe(n + span). This phenomenon appears clearly in the PERIODIC constraint
which can be derived from REPETITION as follows.

2.3 PERIODIC Constraints

Definition 6. A PERIODIC constraint on an event e is parameterized by:

• P ∈ TimeWindow
• J ∈ TimeWindow

Its semantics is defined by

PERIODICe(P,J) = REPETITIONe(P, P,J , 1)

In the periodic case, the distance between two consecutive events is not necessar-
ily P , however there exists a theoretical trace of reference which is fully periodic
(i.e., without any jitter) and such that the distance between occurrences in σe

and their counterparts of reference is bounded by J .

2.4 REPEAT Constraints

The following derived constraint is not directly part of TADL. We present it here
as the absence of jitter makes this constraint simpler to analyze than even the
PERIODIC constraint, as we will see later. We furthermore explicit through
two theorems its relation to the REPETITION constraint.

Definition 7. A REPEAT constraint on an event e is parameterized by:

• (lower , upper) ∈ TimeWindow × TimeWindow
• span ∈ N

+

100 S. Quinton and R. Ernst

A timing behavior σe satisfies a constraint REPEATe(lower , upper , span ,m, k)
if and only if

∀n ∈ N
+ : σe(n) + lower ≤ σe(n+ span) ≤ σe(n) + upper

Example 2. In the context of Compositional Performance Analysis [4] or Real-
Time Calculus [11], REPEATe(lower , upper , k) bounds the distance between
the first and the last occurrence of a sequence of k consecutive occurrences of e
and can therefore be used to build a finite prefix of an arrival curve.

Theorem 1. A REPEAT constraint can always be represented as an equivalent
REPETITION constraint.

REPEATe(lower , upper , span) = REPETITIONe(lower , upper , 0, span)

Proof. By definition of REPETITION, a timing behavior σe satisfies a given
constraint REPETITIONe(lower , upper , 0, span) if and only if one can build a
trace σ′

e such that

∀n ∈ N
+ : σ′

e(n) + lower ≤ σ′
e(n+ span) ≤ σ′

e(n) + upper

and

∀n ∈ N
+ : σ′

e(n) ≤ σe(n) ≤ σ′
e(n) + 0

This is clearly equivalent to finding a trace σ′
e which satisfies the constraint

REPEATe(lower , upper , span) and such that σe = σ′
e. Hence the result.

Theorem 2. A behavior σe satisfies REPETITIONe(lower , upper ,J , span) if
and only if one can build a trace σ′

e such that

σ′
e satisfies REPEATe(lower , upper , span)

and

{σ′
e, σe} satisfies DELAYe′,e(0,J)

Proof. This is a direct consequence of the definitions of REPEAT and DELAY.

2.5 EXECUTION-TIME Constraints

Finally, the last strongly-hard constraint which we want to present in this section
is a constraint which is not in TADL but has been added to TADL2 to express
constraints on execution times. In contrast to response times, the execution time
of a task represents the time during which the task is actually used by a resource.
Describing such a time window requires to take into account preemptions, which
is not possible with the existing DELAY constraint.

Generalized Weakly-Hard Constraints 101

Definition 8. Given a behavior ω = {σstart, σend, σpre, σres} where start rep-
resents the start of the executions of a given task τ , end the termination of
the executions of τ , pre its preemption times and res its resumption times,
we define the execution time of the n-th execution of τ (for n ∈ N

+), de-
noted ETω(n), as follows. Denote {σpre(k), . . . , σpre(k + i)} (with k ∈ N

+ and
i ∈ N) the preemption times occurring during the n-th execution of τ . Then
{σres(k), . . . , σres(k+ i)} (with k ∈ N

+ and i ∈ N) should also correspond to the
resumptions occurring during this execution, otherwise the behavior is not well
formed. We define

ETω(n) = σend(n)− σstart(n)−
i∑

j=0

(σres(k + j)− σpre(k + j))

Definition 9. An EXECUTION-TIME constraint on four events start, end,
pre and res is a constraint parameterized by:

• (lower , upper) ∈ TimeWindow × TimeWindow

A timing behavior ω = {σstart, σend, σpre, σres} is said to satisfy a constraint
EXECUTION-TIMEstart,end,pre,res(lower , upper) if and only if

∀n ∈ N
+ : lower ≤ ETω(n) ≤ upper

Example 3. If start, end, pre and res are the events describing respectively the
activation, termination, preemption and resumption of a task τ , then the fact
that the execution time of τ is bounded by WCET is expressed by the constraint

EXECUTION-TIMEstart,end,pre,res(0,WCET)

3 Weakly-Hard Timing Constraints

In this section, we first recall the principle of weakly-hard constraints as they
were introduced in [2]. We provide an extension of TADL that allows us to
specify such constraints as DELAY constraints. We then explore the meaning
of similar extensions for the other constraints of TADL. Finally, we discuss how
new weakly-hard constraints can be inferred from a given one.

3.1 Weakly-Hard DELAY Constraints

Weakly-hard constraints were introduced for expressing the fact that a bounded
number of deadline misses may be allowed in a sequence of consecutive execu-
tions. More precisely, the behavior of a task τ satisfies a weakly-hard constraint
with parameters m ∈ N and k ∈ N

+ if and only if for any sequence of k consecu-
tive executions of τ at least m executions meet their deadline. In the context of
TADL, such a constraint can be represented as an extension of the strongly-hard
delay with two parameters.

102 S. Quinton and R. Ernst

Definition 10. A weakly-hard DELAY constraint on two events s and t, which
we denote WH-DELAYs,t, is a constraint with four parameters:

• (lower , upper) ∈ TimeWindow × TimeWindow
• (m, k) ∈ N × N

+

A timing behavior {σs, σt} satisfies WH-DELAYs,t(lower , upper ,m, k) if and
only if

∀n ∈ N
+ : #{l ∈ N

+ | n ≤ l < n+ k ∧ σt(l)− σs(l) ∈ [lower ; upper]} ≥ m

where #S denotes the number of elements of a set S.

This definition states that for any sequence {n, . . . , n+ k − 1} of k consecutive
natural numbers, the number of l in this sequence satisfying pred(l) must be
larger than m, where pred(l) is the predicate asserting that the response time of
the l-th execution is within the specified bounds [lower , upper].

Example 4. For a task with deadline D, the definition of weakly-hard constraint
of [3] corresponds to a constraint WH-DELAY(0, D,m, k).

The following well-known theorem relates the definition of weakly-hard delay to
its strongly-hard version.

Theorem 3. For all events s and t and all lower , upper ∈ TimeWindow:

DELAYs,t(lower , upper) = WH-DELAYs,t(lower , upper , 1, 1)

Proof. We have to show that

∀n ∈ N
+ : σs(n) + lower ≤ σt(n) ≤ σs(n) + upper

if and only if for n = m = 1

∀n ∈ N
+ : #{l ∈ N

+ | n ≤ l < n+ k ∧ σt(l)− σs(l) ∈ [lower ; upper]} ≥ m

The latter is equivalent to

∀n ∈ N
+ : #{l ∈ N

+ | l = n ∧ σt(l)− σs(l) ∈ [lower ; upper]} ≥ 1

which holds if and only if

∀n ∈ N
+ : σt(n)− σs(n) ∈ [lower ; upper]

This last statement is trivially equivalent to DELAYs,t(lower , upper), hence the
result.

Note also that if the trace of s is constrained (using aREPETITION constraint)
then the values of l in Definition 10 which do not satisfy pred(l) are still implicitly
constrained by the occurrences which do satisfy it. To keep the proof simple we
show this only for REPETITION constraints with no jitter and a span of 1,
but the same would be possible for any type of REPETITION.

Generalized Weakly-Hard Constraints 103

Theorem 4. Consider a timing behavior {σs, σt} which satisfies two constraints
WH-DELAYs,t(lowerd, upperd,m, k) and REPETITIONs(lower r, upperr,
0, 1). If m > 0 then:

∀n ∈ N
+ : σt(n)− σs(n) ≤ upperd + k × upperr

Proof. Consider n ∈ N
+. If pred(n) holds then the result is obviously satisfied,

so let us suppose that

σt(n)− σs(n)
∈ [lowerd; upperd]

Because of the WH-DELAY constraint, we know there exists l ≤ k such that

σt(n+ l)− σs(n+ l) ∈ [lowerd; upperd]

Furthermore, because of the REPETITION constraint, we also know that

σs(n+ l)− σs(n) ≤ l× upper r

Finally, from the definition of a trace, we also know that

σt(n) ≤ σt(n+ l)

From all this we can conclude that

σt(n)− σs(n) ≤ σt(n+ l)− σs(n+ l) + l × upper r ≤ upperd + l × upper r

This concludes our proof that the delay for the n-th occurrences of events in the
trace is also bounded.

3.2 Towards Generalized Weakly-Hard Constraints

What we have done so far is generalizing the weakly-hard constraints of [3] to any
type of DELAY constraint. A natural question now is how this generalization
can extend to the other basic constraints of TADL, and whether this is of interest.
This question was triggered by the development of Typical-Case Analysis [9,8]
(TCA), which a new approach for timing analysis inspired by the analysis of
weakly-hard systems. One major novelty is that weakly-hard constraints are used
also for the description of the system and not only for bounding the number of
deadline misses. Furthermore, because TCA is always coupled with the usual
worst-case analysis, its result is slightly different from a standard weakly-hard
constraint, namely it is a conjunction two DELAY constraints, one strongly-
hard and the other weakly-hard.

As we have seen, the REPETITION constraint can be derived from the
DELAY and REPEAT constraints, therefore we now focus onREPEAT before
considering the fully general case.

Definition 11. A weakly-hard REPEAT constraint on an event e is a con-
straint parameterized by:

104 S. Quinton and R. Ernst

• (lower , upper) ∈ TimeWindow × TimeWindow
• span ∈ N

+

• (m, k) ∈ N × N
+

A timing behavior {σe, σe} satisfies WH-REPEATe(lower , upper , span ,m, k)
if and only if

∀n ∈ N
+ : #

{
l ∈ N

+ | n ≤ l < n+ k
∧ σe(l + span)− σe(l) ∈ [lower , upper]

}
≥ m

Such a constraint can be used, for example, to express that a bounded number
of shifts may be observed in a trace. It can then be used in complement of a
strongly-hard REPEAT constraint to describe how often the shifts may occur,
as in the following example.

Example 5. A behavior satisfying two constraints REPEATe(P, P + shift , 1)
and WH-REPEATe(P, P, 1, 9, 10) is mostly periodic with at most one shift out
of 10 consecutive events, where the shift is bounded by shift .

One point deserves to be clarified, namely the relation between the span pa-
rameter of the REPEAT constraint (and thus the REPETITION constraint)
and the weakly-hard version of this constraint. Indeed, both the span and the
weakly-hard parameters allow us to define a constraint on a sequence of consecu-
tive occurrences in a trace (span+1 occurrences and k occurrences, respectively).
However the former constrains the distance (in time) between the first and the
last occurrence in the sequence, which is also the sum of the distances between
any two consecutive occurrences in the sequence, while the latter constrains how
many of these distances may be above a given threshold.

Now let us consider another specific case of the REPETITION constraint,
namely PERIODIC constraints. It should be clear by now that coming up with
a weakly-hard variant of a constraint c requires that c be decomposable into a
set of “local” predicates pred(l) such that

∀n ∈ N
+ : #{l ∈ N

+ | n ≤ l < n+ k ∧ pred(l)} ≥ m

The obvious candidate here is

∀l ∈ N
+ : pred(l) � [σ′

e(l + 1) = σ′
e(l) + P ∧ σe(l)− σ′

e(l) ≤ J]

However, unlike the REPEAT constraint, it is here unclear how useful a weakly-
hard PERIODIC constraint as defined above could be. Indeed, a temporary
violation of the constraint might result from a shift in the trace as well as
from an overjitter. In practice these two types of unexpected behaviors are of
a very different nature. This suggests that a PERIODIC constraint, and thus
a REPETITION constraint, should have two distinct weakly-hard variants,
one corresponding to a bounded number of shifts allowed in a trace (as for the
WH-REPEAT constraint), and another one corresponding to a bounded num-
ber of occurrences allowed to happen outside the specified jitter. In the latter

Generalized Weakly-Hard Constraints 105

case for example, the expected global predicate would be the following: a tim-
ing behavior {σe, σe} satisfies a constraint WH-PERIODICe(P,J ,m, k) if and
only if one can build a trace σ′

e such that

∀n ∈ N
+ : σ′

e(n+ 1) = σ′
e(n) + P ∧#

{
l ∈ N

+ | n ≤ l < n+ k
∧ σe(l)− σ′

e(l) ≤ J

}
≥ m

Hence the following definition for the general case .

Definition 12. A weakly-hard REPETITION constraint on an event e is a
constraint parameterized by:

• (lower , upper) ∈ TimeWindow × TimeWindow

• J ∈ TimeWindow

• span ∈ N
+

• (mr, kr) ∈ N × N
+

• (mj , kj) ∈ N × N
+

A timing behavior σe satisfies WH-REPETITIONe(lower , upper ,J , span ,m, k)
if and only if one can build a trace σ′

e such that

σ′
e satisfies WH-REPEATe(lower , upper , span ,mr, kr)

and

{σ′
e, σe} satisfies WH-DELAYe′,e(0,J ,mj , kj)

3.3 Weakly-Hard EXECUTION-TIME Constraints

Finally, let us focus on the EXECUTION-TIME constraint, for which the
weakly-hard version is obvious: the execution time of a task should be within
the bounds defined by lower and upper at least m times out of k consecutive
executions of the tasks. Such a constraint can be used for compositional perfor-
mance analysis in [6], as this approach is based on a busy window which typically
contains a sequence of executions.

Definition 13. A weakly-hard EXECUTION-TIME constraint on four events
start, end, pre and res is a constraint parameterized by:

• (lower , upper) ∈ TimeWindow × TimeWindow

• (m, k) ∈ N × N
+

A timing behavior ω = {σstart, σend, σpre, σres} is said to satisfy the constraint
WH-EXECUTION-TIMEstart,end,pre,res(lower , upper ,m, k) if and only if

∀n ∈ N
+ : #{l ∈ N

+ | n ≤ l < n+ k ∧ ETω(l) ∈ [lower ; upper]} ≥ m

106 S. Quinton and R. Ernst

3.4 Inference of Weakly-Hard Constraints

Properties of weakly-hard constraints have been studied for example in [3], how-
ever to the best of our knowledge the focus has always been on determining
whether one constraint is stronger than another one. We present here a result
about how to infer new constraints from existing ones. As this question is in-
dependent of which specific weakly-hard constraint is mentioned and only the
values of the parameters m and k are relevant, we simply assume that we are
given an (m, k)-weakly-hard constraint, meaning that a predicate pred must be
satisfied by at least m elements of a sequence {n, . . . , n+k−1}, for any n ∈ N

+.

Theorem 5. If a behavior ω satisfies an (m, k)-weakly-hard constraint then for
all k′ ∈ N

+:

1. if k′ ≤ k−m: ω also satisfies the corresponding (0, k′)-weakly-hard constraint.

2. if k − m < k′ ≤ k: ω also satisfies the corresponding (m′, k′)-weakly-hard
constraint where m′ = k′ − k +m.

3. if k < k′: ω also satisfies the corresponding (m′, k′)-weakly-hard constraint
where m′ = m× q +max(0, r − k +m) for q and r denoted respectively the
quotient and the remainder in the division of k′ by k, that is k′ = k × q + r
and 0 ≤ r < k.

Proof. We prove this theorem case by case.

1. Any behavior trivially satisfies an (0, k)-weakly-hard constraint.

2. We make a proof by contradiction: consider a behavior which does not satisfy
the (m′, k′)-weakly-hard constraint. This means that there exists n ∈ N

+

such that the predicate pred(l) is violated more than k′ −m′ = k−m times
for n ≤ l < n+k′. This implies that even if pred(l) holds for n+k′ ≤ l < n+k
there will be more than k −m violations of pred(l) for n ≤ l < n+ k′, that
is, ω does not satisfy the m, k-weakly-hard constraint either.

3. Let k′ = k × q + r (where q ≥ 0 and 0 ≤ r < k). Consider then a sequence
of k′ consecutive events and partition it into q subsequences of length k and
1 subsequence of length r. Each of the q subsequences contains at most m
occurrences satisfying pred and the subsequence of length r contains at least
max(0, r−k+m) (this is obtained directly from 1. and 2.). Hence the result.

Note that these bounds are the best safe bounds possible. This theorem has a
strong practical relevance, as one may not be able to choose the length of the
sequence of executions to be observed.

4 Probabilistic Timing Constraints

In this section we propose a representation of probabilistic timing in TADL2 and
then show how weakly-hard constraints relate to probabilistic constraints.

Generalized Weakly-Hard Constraints 107

4.1 Generalities about Probabilities

Let us recall first some definitions and properties related to probabilities. A
probability is defined on a sample space Ω which is a (possibly infinite and
uncountable) set defining all existing values for this space. In other words, the
sample space defines where the uncertainty comes from. Let us suppose that
such an Ω is given.

Definition 14. A probability1 on Ω is a function P : P(Ω) −→ [0, 1] such that:

1. P(Ω) = 1
2. for any indexed family {Ai}i∈N of pairwise disjoint subsets of Ω:

P(
⋃
i∈N

Ai) =
∑
i∈N

P(Ai)

Here P(Ω) denotes the set of subsets of Ω.

Definition 15. A random variable is a function X : Ω −→ E for some set E.
The probability distribution2 of X is a probability on E denoted PX and defined
as

∀B ⊆ E : PX(B) = P(X−1(B))

where X−1(B) = {ω ∈ Ω | X(ω) ∈ B}.

For readability, PX(B) is usually denoted P(X ∈ B), or even P(X = x) if B is
a singleton {x}.

4.2 Probabilistic Execution Times

In the context of timing analysis of real-time systems, probabilities are mostly
used for describing the execution time of tasks and then computing the response
time of particular executions of tasks.

The sample space used for defining the probability is usually kept implicit. We
choose here to mention it explicitly because it formalizes where the randomness
comes from. As a first definition, we use Ω = SEsys , meaning that the outcome
of the random experiment is a timing behavior as formalized in Definition 2.
Note that our sample space is not countable as Ω and P(N) are equinumerous.

Definition 16. For each task τ , the execution time ETn
τ of the n-th execution

of τ is then a random variable, as it is a function ranging over Ω.

Probabilistic methods for timing analysis are based on the assumption that for
a given task τ , ETn

τ has the same distribution for all values of n ∈ N
+. Oth-

erwise, one would have to provide a distribution for each ETn
τ . Based on this

and furthermore assuming that all ETn
τ are independent (for all τ and all n), [7]

1 This definition is not the most general since it is limited to the σ-algebra P(Ω).
2 Also called probability law.

108 S. Quinton and R. Ernst

computes the distribution of each response time RTn
τ . Note that even if all execu-

tion times in {ETn
τ | n ∈ N

+} have the same distribution, the response times in
{RTn

τ | n ∈ N
+} may still have different distributions, as shown in the following

example.

Example 6. Consider a system consisting of one resource and two tasks activated
periodically as in Figure 1. Suppose that the execution times are constant and
the scheduling policy is static priority preemptive, τ1 having higher priority than
τ2. The response time of τ2 is not constant, although all execution times are.

task
τ1

task
τ2

Fig. 1. A behavior scheduled according to a static priority preemptive policy

However, even though the distributions of the response times in {RTn
τ | n ∈ N

+}
may be different, the result of a probabilistic timing analysis is usually given as
a single distribution. This is achieved by assuming that the choice of n is also
random and therefore the sample space Ω is in that case defined as SEsys × N

+

rather than SEsys as before.

4.3 Representing Probabilistic Constraints in TADL2

We now focus on the representation of probabilistic timing in TADL2. It is
beyond the scope of such a language to allow the expression of mathematical
functions, therefore two options are proposed: the use of predefined distribution
functions (namely: uniform, Gaussian, Fréchet, Gumbel and Weibull) or the
approximation of distribution functions using histograms, as we explain now.

Definition 17. Consider a partition {α1, . . . , αq} of an interval [lower , upper].
A histogram distribution Ph in [lower , upper] is a function {α1,..., αq} −→ [0, 1]
which associates a probability with each interval αi (for 1 ≤ i ≤ q) such that

q∑
i=1

Ph(αi) = 1

Given a probability distribution Pd in [lower , upper] and a partition {α1, . . . , αq}
of [lower , upper], it is possible to approximate Pd with a histogram distribution
Ph defined by Ph(αi) = Pd(αi) for 1 ≤ i ≤ q.

We also allow in TADL2 the definition of pessimistic histogram distributions,
that is, histogram distributions for which the sum of all probabilities is larger

Generalized Weakly-Hard Constraints 109

than 1. Ph(αi) must then be interpreted as an upper bound of the probability of
αi. Interestingly, this does not limit the expressivity of the original definition, as
shown in the following theorem.

Theorem 6. If Ph is a pessimistic distribution histogram upper bounding a prob-
ability distribution Pd in [lower , upper] and

∑q
i=1 Ph(αi) = 1 then

∀1 ≤ i ≤ n : Pd(αi) = Ph(αi)

Proof. Suppose that
∑q

i=1 Ph(αi) = 1. We know that

•
∑q

i=1 Pd(αi) = 1 by definition of probability, and
• ∀1 ≤ i ≤ q : Pd(αi) ≤ Ph(αi) because Ph is an upper bound.

By a simple arithmetic reasoning we obtain the result.

5 Probabilistic Interpretation of Weakly-Hard
Constraints

Let us begin this section with a comment about the impact of dependencies
between random variables on the expressivity of the model presented in the pre-
vious subsection. As a weakly-hard EXECUTION-TIME constraint describes
a property over a sequence of consecutive executions of a task, it is of interest
to discuss how much can be inferred about such a sequence from a probabilis-
tic constraint represented as a distribution of the execution time of a task. We
illustrate how this works on an example.

Example 7. Consider a task τ whose execution time is either equal to 1, with
probability 1

3 , or equal to 2, with probability 1
3 . We focus on the execution time

of two consecutive executions of τ , denoted respectively ETn
τ and ETn+1

τ . By
definition, we have

P(ETn
τ = 1,ETn+1

τ = 1) = P(ETn+1
τ = 1 | ETn

τ = 1)× P(ETn
τ = 1)

where P(A|B) is the probability of A, given B. However, because we do not know
the dependencies between ETn

τ and ETn+1
τ , we have to consider all possibilities.

In this case P(ETn+1
τ = 1 | ETn

τ = 1) might be equal to anything between 0 and
1. As a result, we only know that P(ETn

τ = 1,ETn+1
τ = 1) is between 0 and 1

3 .

In the general case, the bounds on the probability of a sequence of executions
to be in of a given value are obtained by using Fréchet bounds [5]. This example
shows that weakly-hard constraints may be more adequate for systems in which
there are dependencies between consecutive executions of a task.

Symmetrically, consider now a behavior satisfying an (m, k)-weakly-hard con-
straint where the property being monitored is denoted pred . What does this
mean in terms of probabilities?

First, this implies that the probability of pred(n) to be violated for a value of
n ∈ N

+ chosen randomly is smaller than k−m
k . In addition, and more precisely,

this means that for all n ∈ N
+, if one chooses randomly n ≤ l < n+ k, then the

probability that pred(l) be violated is smaller that k−m
k .

110 S. Quinton and R. Ernst

6 Conclusion

We have presented an extension of the Timing Augmented Description Lan-
guage [10] (TADL) to weakly-hard and probabilistic constraints. In particular,
we have shown the interest of using weakly-hard constraints for other purposes
than describing deadline misses. The variety of formalisms which can be rep-
resented using our generic soft constraint emphasizes its practical relevance. A
natural and exciting continuation of this work is the study of analysis methods
based on these generic constraints.

References

1. ATESST2 project, http://www.atesst.org
2. Bernat, G.: Specification and Analysis of Weakly Hard Real-Time Systems. PhD

thesis, Universitat de les Illes Balears (1998)
3. Bernat, G., Burns, A., Llamośı, A.: Weakly hard real-time systems. IEEE Trans.

Computers 50(4), 308–321 (2001)
4. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level

performance analysis - the SymTA/S approach. In: IEE Proceedings Computers
and Digital Techniques (2005)

5. Ivers, M., Ernst, R.: Probabilistic Network Loads with Dependencies and the Effect
on Queue Sojourn Times. In: Bartolini, N., Nikoletseas, S., Sinha, P., Cardellini,
V., Mahanti, A. (eds.) QShine 2009. LNICST, vol. 22, pp. 280–296. Springer, Hei-
delberg (2009)

6. Jersak, M., Henia, R., Ernst, R.: Context-aware performance analysis for efficient
embedded system design. In: Proceedings of DATE 2004, pp. 1046–1051. IEEE
Computer Society (2004)

7. López, J.M., Dı́az, J.L., Entrialgo, J., Garćıa, D.F.: Stochastic analysis of real-time
systems under preemptive priority-driven scheduling. Real-Time Systems 40(2),
180–207 (2008)

8. Quinton, S., Ernst, R., Bertrand, D., Yomsi, P.M.: Challenges and new trends in
probabilistic timing analysis. In: Proceedings of DATE 2012 (2012); Hot Topic
Special Session

9. Quinton, S., Hanke, M., Ernst, R.: Formal analysis of sporadic overload in real-time
systems. In: Proceedings of DATE 2012 (2012)

10. TADL: Timing Augmented Description Language – TIMMO public deliverable D6,
http://timmo-2-use.org/timmo/pdf/D6_TIMMO_TADL_Version_2_v12.pdf

11. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: Proceedings of ISCAS 2000, vol. 4, pp. 101–104. IEEE Com-
puter Society (2000)

12. TIMMO project, http://timmo-2-use.org/timmo/index.htm
13. TIMMO-2-USE project, http://timmo-2-use.org

http://www.atesst.org
http://timmo-2-use.org/timmo/pdf/D6_TIMMO_TADL_Version_2_v12.pdf
http://timmo-2-use.org/timmo/index.htm
http://timmo-2-use.org

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 111–125, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Modeling a BSG-E Automotive System
with the Timing Augmented Description Language

Marie-Agnès Peraldi-Frati1, Arda Goknil1, Morayo Adedjouma2,
and Pierre Yves Gueguen2

1 AOSTE Project - UNS-I3S-INRIA - Sophia Antipolis, France
2
 Delphi - 22 Avenue des Nations - BP 65059 Villepinte, France

map@unice.fr, arda.goknil@inria.fr,
{morayo.adedjouma,pierre.yves.gueguen}@delphi.com

Abstract. Modeling and analysis of time is a key issue for the correct develop-
ment of an automotive distributed embedded system. The paper presents new
extensions of the Time Augmented Description Language (TADL), applicable
at different abstraction levels of an EAST-ADL/AUTOSAR design. The new
extensions enable a precise modeling of multi clock characteristics of distri-
buted systems together with parameterized timing expressions. In this paper, we
highlight some critical issues for the high–level time modeling of a Box Servi-
tude Generic-External (BSG-E) provided by Delphi. This industrial example il-
lustrates timing constraints coming from both hardware and software parts of
the system.

Keywords: Timing constraint language, Automotive case studies, Non-
functional requirements, EAST-ADL, AUTOSAR.

1 Introduction

The engineering of software in automotive becomes more and more complex today
due to the amount of new functionalities, constraints applied to these functions (tim-
ing, cost reduction, weight, energy saving, etc.) and the diversity of hardware support-
ing software execution and communication (current vehicles may have up to 70 ECUs
connected with each other by more than five different bus systems). From an engi-
neering point of view, there is a need for a safe development process based on differ-
ent abstraction levels providing capabilities for a clear separation of concerns between
hardware and software parts. For real-time critical systems the integration of timing
requirements at these different levels becomes mandatory for a high level analysis of
timing behavior early in the design.

The AUTOSAR standard [3] and EAST-ADL [5] provide supports for the devel-
opment of such embedded systems. Both the new releases of AUTOSAR (V4) [3]
and EAST-ADL (V2) [5] have adopted the timing model proposed in the Timing
Architecture Description Language (TADL) [1]. TADL is a timing language com-
pliant with AUTOSAR and EAST_ADL models for defining timing characteristics of

112 M.-A. Peraldi-Frati et al.

systems (duration, period, synchronization, etc.). However, TADL still lacks the abili-
ty to express important timing aspects such as:

• The modeling of symbolic timing expressions with unset parameters,
• The integration of variations in timing values by using intervals,
• The integration of complex concepts of distributed systems such as multi rate

and multi clock systems (car software being distributed on different ECUs).

In this paper we mainly focus on the modeling of symbolic timing expressions, the
integration of variations in timing values and the definition of a single-rate time base.
The new extension of TADL2 for defining multi rate and multi clock systems is out of
scope of the example we are using in this paper.

We take as example an industrial application provided by Delphi: a Box Servitude
Generic-External (BSG-E). This industrial use case illustrates timing constraints com-
ing from both hardware and software parts of the system. The timing specification of
the BSG-E system with TADL2 is built on top of EAST-ADL models that describe
functional and hardware design architectures.

The paper is organized as follows. Section 2 is dedicated to TADL2 and its new
extensions. Section 3 presents the industrial use case, the functional architecture and
the timing requirements applied on it with a timing model in TADL2. A conclusion
ends the paper.

2 TADL2 Language

In this section we introduce the TADL2 language and show how a TADL2 specifica-
tion allows a high-level modeling of complex timing requirements that mix time bases
and Symbolic Timing Expressions (STE) with unset parameters.

One main improvement with TADL2 is the ability to define explicit time bases in a
system. We first introduce the associated modeling elements: the TimeBase, Dimen-
sion and Unit. In addition, TADL2 provides the TimeBaseRelation in order to relate
time bases to each other. Since our focus in this paper is not multi clock systems, we
do not illustrate the TimeBaseRelation. A recent paper [7] gives a detailed description
of the TimeBaseRelation.

The second improvement concerns timing expressions in TADL2 with the Symbo-
licTimingExpression, VariableTimingExpression and ValueTimingExpression. Timing
expressions are used conjointly with EAST-ADL2 to express duration such as maxi-
mum/minimum delay, period, jitter and tolerance duration. These concepts are
represented in the metamodel in Figure 1.

2.1 TimeBase, Dimension and Unit in TADL2

The TADL2 metamodel shows that the TimingSpecification refers to the TimeBase
which represents a discrete and totally ordered set of instants. An instant can be seen
as an event occurrence called a “tick”. It may represent any repetitive event in the
system. Events may refer even to the “classical” time dimension or to some evolution
of a hardware part (rotation of crankshaft, distance, etc.). The type of the TimeBase is
the Dimension. The Dimension has a kind that represents the nature of the TimeBase
(see the DimensionKind in Figure 1). The Time, Angle and Distance which are often

 Modeling a BSG-E Automotive System with the TADL 113

Fig. 1. TADL2 Metamodel for Timing Specification

used in the automotive domain are proposed as a dimension kind. Additionally, the
Logical can be used to define a logical time reference. Finally, the other can be used
for specific applications.

The Dimension defines a set of units that can be used to express duration measured
on a given TimeBase. Each Unit is related to another Unit in order to enable conver-
sions. The factor, offset and reference attributes in the Unit are used for conversions.
Only linear conversions between units of the same dimension are allowed. Because a
Timebase is a discrete set of instants, a discretization step is specified with the preci-
sionFactor attribute which relies on the precisionUnit. Listing 1 gives a TADL2 spe-
cification where one Dimension and one TimeBase are declared.

1 Dimension physicalTime {
2 Units { micros{factor 1.0 offset 0.0},
3 ms{factor 1000.0 offset 0.0 reference micros}
4 second{factor 1000000.0 offset 0.0 reference micros}
5 }
6 }
7
8 TimeBase universal_time {
9 dimension physicalTime
10 precisionFactor 0.1
11 precisionUnit micros
12 }

Listing 1. Example of the Dimension and TimeBase

The physicalTime dimension has three units named micros, ms and second where 1
second unit is equal to 1000000 micros unit and 1 ms unit is equal to 1000 micros unit

114 M.-A. Peraldi-Frati et al.

(see lines 1 and 6). Based on the dimension type, the universal_time timebase is de-
clared (see lines 8 - 12). Please note that the physicalTime and universal_time are
used for the BSG-E example in the rest of the paper.

2.2 Timing Expression in TADL2

The TimingExpression stands for all terms that denote time values in TADL2 and
allows complex parameterized timing expressions referring to one or multiple time-
bases. There are three different timing expressions: ValueTimingExpression, Variab-
leTimingExpression and SymbolicTimingExpression.

A ValueTimingExpression may have one Unit and one TimeBase. TADL2 is aimed
to be a declarative language. Therefore, we have only free variables, constants and
values. The VariableTimingExpression stands for free variables and constants. If a
value is assigned to a variable, the variable becomes a constant. In the SymbolicTi-
mingExpression, the language integrates basic arithmetic and relation operators such
as addition, subtraction, multiplication, greater than, and less than associated with
timing values. Since we have only free variables and constants, the Assignment opera-
tor can be used only once for a variable in the left operand.

Timing expressions can be used at different levels of abstraction in a design. We
provide integration of timing expressions in TADL2 with EAST-ADL.

2.3 Timing Constraints in TADL2

TADL2 supports a number of timing constraints attached to EAST-ADL models.
Figure 2 gives the metamodel for the basic timing constraints.

Fig. 2. The Basic Timing Constraints in TADL2 with TimingExpression

The complete description of the constraints can be found in [5]. A Repetition con-
straint describes the distribution of the occurrences of a single event. A Delay con-
straint describes how occurrences of an event called target are placed relative to each
occurrence of an event called source. A Synchronization constraint describes how
tightly the occurrences of a group of events follow each other. An Order constraint

 Modeling a BSG-E Automotive System with the TADL 115

forces two timing expressions (presumably containing variables) to be ordered. Each
constraint has one or more properties. In TADL2 we replace the initial integer type
associated with these properties by the TimingExpression.

Listing 2 shows the textual concrete syntax for an EAST-ADL timing constraint
extended with a TADL2 TimingExpression.

1 Event firstWheelBrakeActuation { }
2 Event secondWheelBrakeActuation { }
3 Event thirdWheelBrakeActuation { }
4 Event fourthWheelBrakeActuation { }
5
6 var X ms on universal_time
7
8 SynchronizationConstraint syc1 {
9 events firstWheelBrakeActuation,
10 secondWheelBrakeActuation,
11 thirdWheelBrakeActuation,
12 fourthWheelBrakeActuation
13
14 tolerance = X
15 }

Listing 2. Example Synchronization Constraint in TADL2

The constraint is about the maximum tolerated time difference – in a Brake By Wire
system – between the first and last wheel brake actuations. The brake actuation is defined
for each wheel as an event (see lines 1-4). The var keyword is used for defining both free
variables and constants. The variable X is defined as a free variable in an instance of the
VariableTimingExpression (see line 6). For the brake actuation events, the synchroniza-
tion constraint sc1 has the attribute tolerance which is equal to X (see line 14).

3 Use Case Description: The Box Servitude Generic External
(BSG-E)

We take as example an industrial application provided by Delphi: a Box Servitude
Generic-External (BSG-E). This industrial use case illustrates timing constraints com-
ing from both hardware and software parts of the system. BSG-E means in French
“Boîtier de Servitude Externe” (Box Servitude Generic - External). One of the main
functions of the product is the management of vehicle front fog lights which is a criti-
cal functionality. These lights are also used as cornering lights. Moreover, the BSG-E
covers the following main functions:

• Function 1. Ensure the dialogue with the main car ECU BSI (Box Servitude
Internal) by using a CAN low speed communication network

• Function 2. Ensure the internal and output diagnostic
• Function 3. Management and storage of local defects
• Function 4. The electrical protection of downstream wires (not loads).

These functions require handling of real-time performance and some timing charac-
teristics of the system.

116 M.-A. Peraldi-Frati et al.

3.1 Functional /Hardware Architecture of the BSG-E

The first step in the system development is to perform the requirement analysis phase.
The requirement analysis phase allows classifying functional and non-functional re-
quirements, identifying operational scenarios, and understanding the behavior of the
system. This phase is suitable for handling timing constraints like duration and re-
sponse time of functions.

One output of the requirements analysis phase is the functional architecture as a
preliminary idea of the main functions involved in the design, boundaries, blocks of
system and relations between them. In the EAST-ADL development cycle, such mod-
els correspond to the high level architecture at the analysis level.

The second step is perform the design phase where the Functional Design Archi-
tecture (see Figure 3) is detailed and a Hardware Design Architecture gives the execu-
tion platform and the sensors/actuators (see Figure 4).

The Functional Design Architecture focuses on the Software (SW) part of the sys-
tem. It shows components and their interfaces (input and output ports).

Fig. 3. Functional Design Architecture of the BSG-E System

The BSG-E receives orders from the BSI (Box Servitude Internal) which is the
main ECU that communicates with the BSG-E through a CAN bus. Communication
with the BSI is handled, at the software level, by the Com_Can_Ls_Sensor compo-
nent (see Function 1). The POWER_SUPPLY component in Figure 3 ensures the
acquisition of the alimentation. The FogLights_Command component is the main
software component. It receives all messages from the main ECU (BSI) through the
CAN frames and manages them for executing the functionalities of the system. Start-
ing from it, the Fail_Mode_Logic component can manage the protection and diagnos-
tic functions (see Function 2) and the Smart_Actuator component receives orders for
activating the front fog lights. The State_Manager component handles the internal
mode changes of the system.

 Modeling a BSG-E Automotive System with the TADL 117

The Hardware Design Architecture in Figure 4 represents the physical architecture
of the system. Each element in the functional design architecture is allocated to one
element in the hardware design architecture. Each Hardware (HW) component realiz-
es one or many SW components.

Fig. 4. Hardware Design Architecture of the BSG-E System

The MICRO component realizes the FogLights_Command, State_Manager and the
Fail_Mode_Logic functions which appear in Figure 3. The SMART, POWER_SUPPLY
and Com_Can_Ls are hardware components. The SMART is a driver to complete output
command control and the POWER-SUPPLY ensures the alimentation distribution. The
Com_Can_Ls is a bus used for the network management and control. Thus, these
components manage the first two functions of the BSG-E (see Function 1 and Function
2). Another two functions are specifically managed at the HW level by the EEPROM
and WATCHDOG components. The EEPROM, a memory component, is used to man-
age the SMART defect counter memorization and also to store the configuration data of
the BSG-E (see Function 3). The WATCHDOG is an ASIC that triggers the system reset
if the MICRO quits the “normal” mode operation (see Function 4).

Connectors between components are also refined regarding the system architecture.
Output and input lines in the Functional and Hardware Design Architectures are sub-
mitted to timing requirements.

3.2 BSG-E Requirements Including Timing Characteristics

Some hardware components (together with the software functions they realized) are
submitted to timing constraints. The BSG-E system contains timing constraints of
different nature such as delay, synchronization and arbitrary constraints. In this sec-
tion, we present the textual timing requirements for the BSG-E system obtained

118 M.-A. Peraldi-Frati et al.

during the requirements analysis phase and the formalization of these requirements in
TADL2. We use the TADL2 textual concrete syntax.

Timing Requirements for the POWER_SUPPLY
When the vehicle is under tension, all the components including the BSG-E are switch-
ed on. The internal power supply acquisition is done periodically through the
EMA_PERM3 line after filtering of the initial voltage read (see Figure 4). Requirements
PWS_1 and PWS_2 are about timing characteristics of the power supply acquisition.

In Listing 3, we give the TADL2 specification for the PWS_1 and PWS_2 require-
ments. The specification has two periodic constraints. Please note that we use the
dimension and timebase declarations given in Listing 1.

1 var AcqPerm ms on universal_time :=5.0
2
3 Event HAD_PowerSupply_PERM3 { }
4 Event HAD_PowerSupply_EMA_PERM3 { }
5
6 PeriodicConstraint pc1{
7 event HAD_PowerSupply_PERM3
8 period = AcqPerm
9 minimum = 0.0
10 jitter = 0.0
11 }
12
13 PeriodicConstraint pc2{
14 event HAD_PowerSupply_EMA_PERM3
15 period = (3*AcqPerm)
16 minimum = 0.0
17 jitter = 0.0
18 }

Listing 3. TADL2 Specification for the PWS_1 and PWS_2 Requirements

We have two periodic constraints (the pc1 for the PWS_1 and the pc2 for the
PWS_2). A periodic constraint describes periodic occurrence of an event. The events
HAD_PowerSupply_PERM3 and HAD_PowerSupply_EMA_PERM3 are declared for
power supply monitoring and acquisition (see lines 3 and 4). These events are at-
tached to the corresponding input and/or output ports of the FDA/HDA.

Requirement ID Description
PWS_1 PERM3 (+BAT_COUPE) - Analog Input

5

3
3_

PERM
PERMEMA

+≈

The POWER_SUPPLY needs to be monitored to manage the diagnostic
link with its value.

Requirement ID Description
PWS_2 The acquisition period for the PERM3 should be 5 ms with a filtering

done on 3 samples. So the EMA_PERM3 voltage value must be evalu-
ated every 15 ms to determine its level.

 Modeling a BSG-E Automotive System with the TADL 119

The period value for the events is declared as a constant (see line 1). The pc1 and
pc2 periodic constraints describe periodic occurrence of the events for power supply
monitoring and acquisition with periods AcqPerm and 3*AcqPerm. The variable Acq-
Perm is used twice in two different constraints.

Timing Requirements for the MICRO
The MICRO is the component which realizes the State_Manager whose role is to
handle internal mode changes of the system. After power is switched ON, the BSG-E
is initialized and it gets into the transitory mode INIT. When the system gets into a
stable mode, it carries out its associated functions. It can also get into the
DEGRADED or RESET mode if an abnormal operation is detected. The following
MICRO_1 requirement is the timing requirement for the mode transitions.

Listing 4 gives the TADL2 specification for the MICRO_1 timing requirement.

1 Event EMA_PERM3 { }
2 Event CAR_CDE_BSE { }
3 Event RESET { }
4
5 var T_init ms on universal_time := 40.0
6
7 DelayConstraint dc1_a {
8 source EMA_PERM3
9 target CAR_CDE_BSE
10 lower = 0.0
11 upper = T_init
12 }
13
14 DelayConstraint dc1_b {
15 source RESET
16 target CAR_CDE_BSE
17 lower = 0.0
18 upper = T_init
19 }

Listing 4. TADL2 Specification for the MICRO_1 Requirement

Requirement ID Description
MICRO_1 - When the BSGE enters into the INIT mode, its initialization must be

performed.
- BSG_E must stay in the INIT mode for a maximum time of T_init.
- T_init represents the time for the following transitions:
 OFF=>INIT=>NORMAL or RESET=>INIT=>NORMAL.
- The BSG_E initialization time T_init corresponds to the time between
the detection of the rising edge of the power supply in the EMA_PERM3
(EMA_BAT_COUPE) and the consumption of the first frame
CAR_CDE_BSE.
- This must be lower than 40 ms.
- In case of reset, T_init is the duration calculated between the reset
activation and the consumption of the first frame CAR_CDE_BSE.

120 M.-A. Peraldi-Frati et al.

The specification has two delay constraints with three events. The minimum and
maximum duration between the occurrences of target and source events are given by
the attributes lower and upper. The dc1_a delay constraint states that the duration
between the detection of the rising edge of the power supply in the EMA_PERM3 and
the consumption of the first frame CAR_CDE_BSE should be less than 40 ms. The
dc1_b delay constraint states the same timing constraint between the RESET activa-
tion and the consumption of the first frame CAR_CDE_BSE.

Timing Requirements for the SMART
The SMART driver is the component that completes the output control commands
S_BROUIL_AV_D and S_BROUIL_AV_G (see Figure 4). In case of normal operation,
i.e. the system is in the NORMAL mode, the fog lights are activated with the outputs
S_BROUIL_AV_D and S_BROUIL_AV_G.

In Listing 5, we give the TADL2 specification for the SMART_1 timing require-
ment. The specification has two delay constraints with three events.

1 var BSG_E_O_Delay ms on universal_time := 10.0
2
3 Event CAR_CDE_BSE { }
4 Event S_BROUIL_AV_D { }
5 Event S_BROUIL_AV_G { }
6
7 DelayConstraint dc2_a{
8 source CAR_CDE_BSE
9 target S_BROUIL_AV_D
10 lower = 0.0
11 upper = BSG_E_O_Delay
12 }
13
14 DelayConstraint dc2_b{
15 source CAR_CDE_BSE
16 target S_BROUIL_AV_G
17 lower = 0.0
18 upper = BSG_E_O_Delay
19 }

Listing 5. Example TADL2 Specification for the SMART_1 Requirement

The dc2_a delay constraint is for the activation of the S_BROUIL_AV_D. After the
consumption of the first frame CAR_CDE_BSE (see lines 3 and 8 for the event
CAR_CDE_BSE), the S_BROUIL_AV_D should be activated in less than 10 ms. The
dc2_b is a similar delay constraint for the activation of the S_BROUIL_AV_G.

Requirement ID Description
SMART_1 The BSG_E outputs (S_BROUIL_AV_D and S_BROUIL_AV_G) have

to be activated or deactivated in less than 10 ms for the CAR_CDE_BSE
frame reception. This time is calculated between the end of the reception
of the frame and the real output commutation.

 Modeling a BSG-E Automotive System with the TADL 121

The two outputs S_BROUIL_AV_D and S_BROUIL_AV_G correspond to the left
and right fog lights respectively. When they are commuted, the driver must see them
simultaneously activated. The minimum dephasing time between the two signals
should be very low (see the SMART_2 requirement).

Listing 6 gives the TADL2 specification for the SMART_2 timing requirement with
a synchronization constraint.

1 var dephasing_GD ms on universal_time := 25.0

2

3 SynchronizationConstraint sc1 {

4 events S_BROUIL_AV_G, S_BROUIL_AV_D

5 tolerance = dephasing_GD

6 }

Listing 6. TADL2 Specification for the SMART_2 Requirement

The sc1 constraint is about the maximum tolerated time difference between the ac-
tivation of left and right fog lights (the S_BROUIL_AV_G and the
S_BROUIL_AV_D). The activation of left and right fog lights is defined by two
events (see line 4). For these events, the synchronization constraint sc1 has the
attribute tolerance with the constant dephasing_GD which is 25 ms (see line 5).

Another function realized by the BSG-E is the internal and output diagnostic. It is
useful to detect short circuit in the outputs. This functionality is performed at the
SMART level through the CDE_CS_DIS_RQ_1 and the CDE_CS_DIS_RQ_2 lines in
Figure 4.

Listing 7 gives the TADL2 specification for the SMART_3 timing requirement with
synchronization and delay constraints.

Requirement ID Description
SMART_2 For the S_BROUIL_AV (“Brouillards AV allumés”), the dephasing time

between right and left outputs must be lower than 25 ms

Requirement ID Description
SMART_3 The CDE_CS_DIS_RQ_2 must be reset to 0 (enable state) before reading

the value of the CDE_STOP_RQ (BROUIL_AV_G) pin to perform diag-
nostic function.
- This behaviour has to be done only if a diagnostic reading is performed.
- The diagnostic reading has to be performed at least 600µs after the reset
of the CDE_CS_DIS_RQ_2.
- The CDE_CS_DIS_RQ_2 signal is set to 1 (inactive), when the diagnos-
tic acquisition is terminated.
Note: This behaviour is the same when PWM command @ 100% or when
the output is not commanded.

122 M.-A. Peraldi-Frati et al.

1 Event BROUIL_AV_G { }
2 Event CDE_CS_DIS_RQ_2 { }
3 Event DiagStart { }
4

5 SynchronizationConstraint sc2 {
6 events BROUIL_AV_G, CDE_CS_DIS_RQ_2
7 tolerance = (0.0 ms on universal_time)
8 }
9
10 var MinDelayForDiag micros on universal_time := 600.0
11 var PWM ms on universal_time := 5.0
12
13 DelayConstraint dc3 {
14 source CDE_CS_DIS_RQ_2
15 target DiagStart
16 lower = MinDelayForDiag
17 upper = PWM
18 }

Listing 7. TADL2 Specification for the SMART_3 Requirement

If the diagnostic detects abnormal operating conditions, the system gets into the
RESET mode and the WATCHDOG ensures some operations.

Timing Requirements for the WATCHDOG
The WATCHDOG drives the following operations:

• Drive to specific value of the buffer outputs in order to drive some specific
BSG outputs using the WD_UC line (see Figure 4).

• The WATCHDOG safe mode: reset the BSG µC through the input line RESET.

The WD_UC line is being triggered periodically. It is falling edge sensitive, i.e. the signal
on the line is read only at the low state. Furthermore, this signal must be present for a
minimum time. Otherwise, it is too short to be handled correctly by the WATCHDOG.

In Listing 8, we give the TADL2 specification for the WD_1 and WD_2 require-
ments with a delay constraint.

1 var WD_UC_Hold micros on universal_time := 6.0
2 var infinity ms on universal_time := 10000000000000.0
3 Event WD_UC_fallingEdge { }
4 Event WD_UC_risingEdge { }
5
6 DelayConstraint dc4 {
7 source WD_UC_fallingEdge
8 target WD_UC_risingEdge
9 lower = WD_UC_Hold
10 upper = infinity
11 }

Listing 8. TADL2 Specification for the WD_1 and WD_2 Requirements

Requirement ID Description
WD_1 The WD_UC line is falling edge sensitive.

Requirement ID Description
WD_2 The WD_UC signal must be present at low state for at least 6μs to be taken

into account by the WATCHDOG.

 Modeling a BSG-E Automotive System with the TADL 123

The dc4 delay constraint states that the WD_UC line should be maintained at a
lower state for at least 6 microsecond (see lines 6 -11).

If the signal is not read in some fixed window area (for example it is not present
long enough to be handled), the component resets the micro to return to the “normal”
mode. It gets into the “fail” mode if the normal operation is not returned back after
three attempts of reset (see the WD_3 requirement).

The TADL2 specification in Listing 9 states that it takes at least 180 ms for the

WATCHDOG to get into the “fail” mode from the falling edge.

1 var delayBeforeFailMode ms on universal_time := 180.0

2 var infinity ms on universal_time := 10000000000000.0

3

4 Event WD_UC_failMode { }

5

6 DelayConstraint dc5 {

7 source WD_UC_fallingEdge

8 target WD_UC_failMode

9 lower = delayBeforeFailMode

10 upper = infinity

11 }

Listing 9. TADL2 Specification for the WD_3 Requirement

We specify 'infinity' as a special constant not to limit the upper bound of the delay
for the 'fail' mode (see lines 2 and 10). The lower bound is specified by a constant
with a value of 180 ms (see lines 1 and 9).

The WATCHDOG activates the reset of the MICRO in a time interval.

Listing 10 gives the TADL2 specification for the WD_4 timing requirement with a

delay constraint.

Requirement ID Description
WD_3 The WATCHDOG is monitoring its WD_UC line. If this line is not acti-

vated correctly, then WATCHDOG resets the MICRO.
If the MICRO does not return to the normal operation after the 3rd reset
pulse, then the WATCDOG enters into the fail mode after 180ms (130,7
to 256,9ms).

Requirement ID Description
WD_4 Outside a window area of [150ms - 250ms] +/-10%, the WATCHDOG

activates the material reset.

124 M.-A. Peraldi-Frati et al.

1 Event Micro_Reset { }

2

3 var delayBeforeFailMode2 ms on universal_time

4 { (delayBeforeFailMode2 ≤ 250.0) }

5 { (delayBeforeFailMode2 ≥ 150.0) }

6

7 DelayConstraint dc6 {

8 source WD_UC_fallingEdge

9 target Micro_Reset

10 lower = delayBeforeFailMode2

11 upper = infinity

12 }

Listing 10. TADL2 Specification for the WD_4 Requirement

The lower bound is specified by the variable delayBeforeFailMode2 (see line 3) with
a value interval which comprises between 150 ms and 250 ms on universal time (see
lines 4 and 5). The final value of the variable is left unspecified in TADL2. It is a free
variable and the final value can be determined later.

If the signal is correctly read, the reset is not set. To be sure of the right reading of
the signal, the watchdog triggering must be submitted to a worst case time.

In Listing 11, we give the TADL2 specification for the WD_5 requirement with a
repetition constraint.

1 var InterWD_UC ms on universal_time := 50.85

2

3 RepetitionConstraint rc1 {

4 event WD_UC_risingEdge

5 span = 1

6 lower = 0.0

7 upper = InterWD_UC

8 jitter = 0.0

9 }

Listing 11. TADL2 Specification for the WD_5 Requirement

The rc1 arbitrary constraint states that every sequence of span occurrences of the
the WD_UC_risingEdge event must have a length of at least the lower and at most the
upper time units. The two watchdog triggers on the WD_UC (the
WD_UC_risingEdge event) occur in a time interval less than 50.85 ms.

Requirement ID Description
WD_5 To be sure that the reset will not occur, the time between two watchdog

triggers on the WD_UC should be less than 50.85 ms in Worst Case.

 Modeling a BSG-E Automotive System with the TADL 125

4 Conclusion

In this paper we presented the TADL2 language for the modeling of multiple timing
referential (TimeBase) in a system and the integration of complex timing constraints.
We illustrate the new features with the industrial application example of a Box Servi-
tude Generic-External (BSG-E) provided by Delphi. We highlighted the formalization
- with TADL2 - of timing constraints applied on both hardware and software parts of
the system. The integration of the new features with EAST-ADL is presented with the
textual concrete syntax of TADL2. The illustration of multi-time bases and their rela-
tions is out of scope of the paper.

With TADL2 we progress henceforth on the way of modeling and analyzing timing
constraints early in the design phase. Analysis of TADL2 specifications can be ob-
tained by using model transformation techniques to go towards simulation and analy-
sis tools. One candidate for the simulation is the TimeSquare environment [4] and the
associated language CCSL [6] which allow multi clock system specifications. In a
second step and for a formal analysis of TADL2 specifications, a synchronous lan-
guage environment such as SCADE [2] could be envisaged.

Acknowledgments. This paper is based on the TIMMO-2-USE project in the frame-
work of the ITEA2, EUREKA cluster N°3674. The work has been funded by The
French Ministry for Industry and Finances, the German Ministry for Education and
Research (BMBF) under the funding ID 01IS10034, and the Swedish governmental
agency for innovation systems (VINNOVA). The responsibility for the content rests
with the authors.

References

1. The ITEA TIMMO-2-USE Project, http://timmo-2-use.org/
2. Abdulla, P.A., Deneux, J., Stålmarck, G., Ågren, H., Åkerlund, O.: Designing Safe, Reliable

Systems Using Scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313,
pp. 115–129. Springer, Heidelberg (2006)

3. AUTOSAR AUTomotive Open System Architecture, http://www.autosar.org
4. DeAntoni, J., Mallet, F., André, C.: TimeSquare: on the formal execution of UML and DSL

models. Tool Session of the 4th Model Driven Development for Distributed Real Time
Systems (2008)

5. EAST-ADL Language Specification,
http://www.atesst.org/home/liblocal/docs/
ATESST2_D4.1.1_EAST-ADL2-Specification_2010-06-02.pdf

6. Mallet, F., André, C., de Simone, R.: CCSL: Specifying Clock Constraints with
UML/Marte. ISSE 4(3), 309–314 (2008)

7. Peraldi-Frati, M.-A., Goknil, A., Deantoni, J., Nordlander, J.: A Timing Language for Spe-
cifying Multi Clock Automotive Systems: The Timing Augmented Description Language.
In: ICECCS 2012, Paris, France (2012)

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 126–142, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Formal Analysis of TESLA Protocol
in the Timed OTS/CafeOBJ Method

Iakovos Ouranos1,2, Kazuhiro Ogata3, and Petros Stefaneas4

1 Hellenic Civil Aviation Authority, Heraklion Airport
2 Technological Educational Institute of Crete, Computer Science Department

3 School of Info. Sci., Japan Adv. Inst. of Sci. and Tech. (JAIST)
4 School of Appl. Math. and Phys. Sci., National Tech. Univ. of Athens (NTUA)

iouranos@gmail.com, ogata@jaist.ac.jp, petros@math.ntua.gr

Abstract. The Timed Observational Transition System (TOTS)/CafeOBJ
method is a version of the OTS/CafeOBJ method for modeling, specification
and verification of distributed systems and protocols with real time constraints.
In this paper we report on a case study from the field of source authentication
protocols, TESLA protocol, to show the application of the method to such
complex systems. We prove that our model of the protocol satisfies that the
receiver does not accept as authentic any message unless it was actually sent by
the sender. To verify the property we have used several other invariants which
include timing information. To our knowledge, this is the first time that the
method has been applied to the formal analysis of such a complex protocol.

Keywords: Algebraic Specification, Source Authentication, TESLA, CafeOBJ,
Timed Observational Transition Systems, Formal Verification.

1 Introduction

The Timed OTS/CafeOBJ method [1], is a version of the OTS/CafeOBJ [2] method
for modeling real-time systems. The main advantage of these methods is that system’s
specification and verification is written in terms of equations, which are the most
fundamental logical formulas, easier to learn and use than other formal methods.

Although the OTS/CafeOBJ method has been used in several complex, real life
case studies [3-5], the real time version of it has been used only for simple systems
[1]. The aim of this paper is to demonstrate the TOTS/CafeOBJ method by applying it
to the modeling and verification of basic TESLA protocol [6-7], the simpler but yet
very sophisticated version of TESLA protocol. TESLA, which stands for Time
Efficient Source Loss-Tolerant Authentication Protocol, is a source authentication
protocol used in multicast settings. It achieves properties of asymmetric cryptography
by using symmetric primitives and time synchronization. Authentication of a data
packet is based on information of the next and previous packets. The protocol finds
application to the continuous authentication of radio and TV Internet broadcasts,
authenticated data distribution by satellite, and has been published as an IETF
standard [8].

 Formal Analysis of TESLA Protocol in the Timed OTS/CafeOBJ Method 127

In the OTS/CafeOBJ method, a protocol, algorithm, or software system is modeled
as an Observational Transition System (OTS), which is a kind of transition system
that can be written straightforwardly in terms of equations. Next, the OTS is described
in CafeOBJ algebraic specification language [9]. Properties to verify are then
expressed as CafeOBJ terms, and proof scores showing that the specified OTS model
has desired properties are also written in CafeOBJ. Finally, proof scores are executed
with the CafeOBJ system.

When dealing with real time systems, the system specification is extended with
special data types called clock observers that model timing issues and a special time
advancing transition, and OTSs are evolved to Timed OTSs. This approach can be
seen as an application of the old-fashioned recipe of Abadi and Lamport [10].

The rest of the paper is organized as follows: Section 2 introduces the Timed
OTS/CafeOBJ method, while in section 3, after the description of the protocol, we
present the formal modeling and verification of it. Section 4 discusses some lessons
learned and section 5 presents related works and closes the paper.

2 The Timed OTS/CafeOBJ Method

2.1 Timed Observational Transition Systems

U is the universal state space (the set of all possible states) and R+ is the set of non-
negative real numbers. Sets and types may be interchangeably used. Bool is the type
for truth values.

Definition 1 (TOTS). A TOTS S consists of <, ,  ∪ {tick}> where

• O: A set of observers. Each observer is a function o : U Do1 ... Dom -> Do. If Do is a
subset of R+ ∪ { ∞ }, o is called a clock (observer). Otherwise, o is called a discrete
observer. The equivalence between two states u1, u2 (denoted as υ1 =S υ2) is defined
w.r.t. values returned by the observers. Among clocks is now : U -> R+ that plays a
master clock and initially returns 0.
•  : The set of initial states such that  ⊆ U.

•  ∪ {tick}: A set of transitions. Each transition is a function t : U Dt1 . . . Dtn ->

U. Each transition t, together with any other parameters y1, ..., yn, preserves the
equivalence between two states. Each t has the effective condition that consists of the
non-timing part c-t and the timing part tc-t whose types are U Dt1... Dtn -> Bool. If c-
t(u,y1,...,yn) ∧ tc-t(u,y1,...,yn) does not hold, then t(u,y1,...,yn) =S u. tick is a time
advancing transition whose type is U R+ -> U. If c-tick(u, r) holds, now(tick(u,r)) is
now(u)+r, namely advancing the master clock by r. Any application of tick does not
affect the values returned by any observers except for now, and the value returned by
now is only affected by applications of tick.

For each t ∈, there are two clocks lt : U Dt1 . . . Dtn -> R+ and ut : U Dt1 . . . Dtn ->

(R+ - {0}) ∪ { ∞ }. The two clocks return the lower and upper bounds of t, and are
used to force t to be applied during the interval. tc-t(u,y1,...,yn) is lt(u,y1,...,yn) ≤
now(u).

128 I. Ouranos, K. Ogata, and P. Stefaneas

For each t ∈, there are two functions dt
min and dt

max whose types are the same as lt

and ut. dt
min and dt

max give the minimum and maximum delays of t, which are used to
calculate the values returned by lt and ut as follows:
- Let init be an arbitrary initial state.

-

c-t’(u,z1,...,zn’)∧ lt’(u,z1,...,zn’) ≤ now(u). Let u’ be t’(u, z1, …, zn’) and t be any other
transition than t’.

min
' 1 ' 1 '

' (', , ...,)1 '

(, ,...,) ' (', ,...,)

 0
t n n

t u y yn

d u y y c t u y y true
l

otherwise
=
 − =



max
' 1 ' 1 '

' (', , ...,)1 '

(, ,...,) ' (', ,...,)

t n n

t u y yn

d u y y c t u y y true
u

otherwise
=
 − =


∞

Definition 2 (Execution). An execution of S is an infinite sequence u0, u1, ..., ui, ... of
states satisfying,

- Initiation: u0 ∈,

- Consecution: For each natural number i, there exists t ∈ such that υi+1 =S t(ui,

y1,...,yn) for some parameters y1,...,yn or υi+1 =S tick (ui,r) for some r.
- Time Divergence: As i increases, now(ui) increases without bound.
Let ES be the set of all executions obtained from S.

Definition 3 (Reachable State). A state u is called reachable wrt S iff there exists an
execution e∈ ES such that u ∈ e. Let RS be the set of all reachable states wrt S.

Definition 4 (Invariant). A predicate p: U -> Bool is called invariant wrt S iff p
holds in all reachable states, namely (∀ u : RS) p(u).

min
11

1

(, , ...)(, ,...)
(, , ...)

 0

nt n
nt

c t init y y trued init y y
l init y y

otherwise
=

− =



max
11

1

(, ,...)(, ,...)
(, ,...)

nt n

nt
c t init y y trued init y y

u init y y
otherwise

=
− =


∞

min
1 1' 1 '

1 1

1

(, ,...) (', ,...)() (, ,...,)

(', ,...,) (, ,...) (', ,...) 0 1
(, ,...)

n nt n

n n

t n

t

c t u y y false c t u y y truenow u d u y y

l u y y c t u y y true c t u y y false
n

otherwisel u y y

=

− = ∧ − = +
 − = ∧ − =



max
1 1' 1 '

1 1

1

(, ,...) (', ,...)() (, ,...,)

(', ,...,) (, ,...) (', ,...) 0 1
(, ,...)

n nt n

n n

t n

t

c t u y y false c t u y y truenow u d u y y

u u y y c t u y y true c t u y y false
n

otherwiseu u y y

=

− = ∧ − = +
 − = ∧ − =



 Formal Analysis of TESLA Protocol in the Timed OTS/CafeOBJ Method 129

2.2 Specifying and Verifying TOTS in CafeOBJ

A TOTS is specified in CafeOBJ as an OTS. For specifying TOTSs in CafeOBJ,
however, we prepare one module called TIMEVAL where extended non-negative real
numbers are specified. TIMEVAL is declared with mod*. The signature of the module
is as follows:

[Zero NzReal+ < Real+]

[NzReal+ Inf < NzTimeval]

[Real+ NzTimeval < Timeval]

 op 0 : -> Zero

 op oo : -> Inf

 op _<_ : Timeval Timeval -> Bool

 op _<=_ : Timeval Timeval -> Bool

 op _+_ : Timeval Timeval -> Timeval {assoc comm}

 op _+_ : Real+ Real+ -> Real+ {assoc comm}

 op _=_ : Timeval Timeval -> Bool {comm}

Zero, NzReal, Real+, Inf, NzTimeval and Timeval are visible sorts
denoting {0}, R+ - {0}, R+, {∞}, (R+ - {0}) ∪ {∞} and R+ ∪ {∞}. Constants 0 and
oo denote 0 and ∞. The operator _+_ adds two extended non-negative real numbers,
the operator _<_ checks if one extended non-negative real number is greater than the
other, the operator _<=_ checks if one extended non-negative real number is greater
than or equal to the other and the operator _=_ checks if two extended non-negative
real numbers are equal. The properties of the operators are specified in equations.
Among equations are:

eq X < 0 = false . eq X < oo = true .

ceq X + T1 < X + T2 = true if T1 < T2 .

ceq T < T1 + T2 = true if T < T2 .

The same techniques used to verify that an OTS enjoys invariant properties, namely
writing proof scores in CafeOBJ, can be used to verify that a TOTS enjoys invariant
properties.

3 Analysis of TESLA Protocol

3.1 Description of the Protocol

Timed Efficient Stream Loss Tolerant Authentication (TESLA) protocol is a protocol
used in broadcast settings for source authentication. It achieves properties of
asymmetric cryptography by using symmetric primitives (except for the first digitally
signed packet) and time synchronization. Authentication of a packet is based on
information of the next and previous packets.

Basic TESLA, which is the simpler but sophisticated version of the protocol and
applies the basic ideas in a one-to-one setting, informally works as follows: An initial
authentication is achieved using a public key signature. The subsequent messages are
authenticated using Message Authentication Codes (MACs) linked back to the initial
signature.

In message n-1, the sender S generates a key kn and transmits f(kn) to the receiver
R, as a commitment to that key, where f is a suitable cryptographic hash function.

130 I. Ouranos, K. Ogata, and P. Stefaneas

In message n, S sends a data packet mn, authenticated using a MAC with key kn.
The key itself is revealed in message n+1.

Each receiver checks that the received key kn corresponds to the commitment
received in message n-1, verifies the MAC in message n, and then accepts the data
packet mn as authentic. Message n also contains a commitment to the next key kn+1,
authenticated by the MAC, thus allowing a chain of authentications. The messages
exchanged in Basic TESLA are as follows:

Init Message: R -> S: nR
Reply Message: S -> R: f(k1), nR, {f(k1), nR}PK(S)

Msg1: S -> R: d1, f(k2), MAC(k1, d1, f(k2))
Msgn: S -> R: dn, f(kn+1),kn-1,MAC(kn, dn, f(kn+1), kn-1), n > 1.

where nR is a nonce generated by the receiver to ensure freshness and d1, dn the data
transmitted.

The protocol requires an important time synchronization assumption, the security
condition: the receiver will not accept message n if it arrives after the sender might
have sent message n+1, otherwise an intruder can capture message n+1, and use the
key kn from within it to fake a message n.

3.2 Timed OTS Modeling and Specification

We suppose that there exist untrustable nodes as well as trustable ones. Trustable
nodes exactly follow the protocol, but untrustable ones may do something against the
protocol as well, namely eavesdropping and/or faking of messages. The combination
and cooperation of untrustable nodes is modelled as the most general intruder [11].
The cryptosystem used is perfect and so, the intruder can do the following:

• Eavesdrop any message flowing in the network.
• Glean any nonces, data, commitments, keys, message authentication codes (MACs)
and signatures from the message; however the intruder can decrypt an encrypted text
only if he knows the corresponding key to decrypt.
• Fake and send messages based on the gleaned information; however the intruder
cannot guess unknown data.

We first formalize data types that constitute messages in terms of order-sorted
algebras. We declare the following visible sorts and the corresponding data
constructors for those data types:

• Sender denotes the set of agents that participate in the protocol as server. Two
special sender nodes are enemy denoting a malicious intruder, and server modeling
the legitimate server.
• Receiver denotes the set of receivers of the protocol. In our case we assume one
legitimate receiver which is modelled by constant client.
• Data denotes data to be sent by the sender. For sender a and index i, d(a,i)
models the data. Projection operator p1 returns the data creator and i the index of the
data.
• Sort Key denotes the symmetric key used for the formation of commitments and
MACs (we assume that is used the same key). The key used in an interval i, for sender
a and receiver b is k(a,b,i). Projections p1, p2, and i return the three arguments.

 Formal Analysis of TESLA Protocol in the Timed OTS/CafeOBJ Method 131

• Sort PKey models the private key used in the signature of the Reply message. Given a
sender a, its private key is given by pk(a), while projection p returns the agent.
• The pseudorandom function for the formation of the commitments is denoted by
Prf. Given a key k, f(k) returns the commitment to that key. Projection k returns
the argument.
• Rand denotes random numbers which makes nonces unguessable and unique.
• Nonce denotes nonces. Given sender a, receiver b and a random number r,
n(a,b,r) returns the nonce created by a for b. Projections creator, forwhom and
rand return the first, second and third arguments.
• Sign denotes the digital signature used in the Reply message. Given a private key
pk, nonce n and prf p, enc(pk,n,p) returns the signature. Projections pk, n and p
return the arguments.
• Mac1 denotes MACs of the first message (m1). Given key k, data d and prf p,
mac1(k,p,d) is the data constructor and k, p, d the projectors.
• Mac2 denotes MAC used in message mn. Given keys k, k’, data d and prf p,
mac1(k,p,d,k’) is the data constructor and k, k’, p, and d the projectors.
• Msg models the four types of messages exchanged in a protocol session.
• Network models network as a multiset of messages exchanged.
• Timeval is a special sort modeling the time values.

In addition to the above visible sorts, we use the built-in visible sort Bool that
denotes truth values, declared in the built-in module BOOL.

Formalization of Messages. There are four different kind of messages exchanged in
the protocol:

- The initial message (im) that a receiver sends to the sender (server) to initiate a
session, containing a nonce to ensure freshness, in clear. This is the only message sent
by the receiver agent. The constructor of the message is

op im : Receiver Receiver Sender Nonce -> Msg

The first argument is meta-information that is only available to the outside observer
and the node that has sent the corresponding message, and cannot be forged by the
intruder, while the remaining arguments may be forged by the intruder. So, if the first
argument is the enemy and second one is not, then the message has been faked by the
intruder. Second and third arguments are the seeming sender and receiver, while the
last argument is the nonce created by the sender of the message (i.e. the Receiver) for
the server (i.e. the Sender), using a fresh random number. Projections crt-im, src-im,
dst-im return the first (actual creator), second (seeming sender), and third (receiver)
arguments of each message. A predicate im?, checks if the given message is of the
type im. Finally, j returns the identification number of the message, which is zero (0)
for message im.

- The reply message (rm) sent by the server in response to the im. It contains the
digital signature which encrypts with its private key, the nonce received, and the
application of a pseudorandom function to the first key k1 (the so-called key
commitment).

The constructor is: op rm : Sender Sender Receiver Nonce Prf Sign

132 I. Ouranos, K. Ogata, and P. Stefaneas

while the projections in CafeOBJ notation:

op rm? : Msg -> Bool -- returns whether is an rm.

op crt : Msg -> Sender -- creator

op src : Msg -> Sender -- source

op dst : Msg -> Receiver -- destination

op n : Msg -> Nonce -- nonce

op p : Msg -> Prf -- commitment

op c : Msg -> Sign -- signature

op j : Msg -> Int -- returns the id of the message.

 -- We assume it is zero (0) for im and rm

- The first message that sends some data (m1). We model it separately because it does
not reveal a key and as a consequence has different body. It contains the data, the
commitment to the key used in the next message (k2), and both of them encrypted
with the k1 in a message authentication code.

op m1 : Sender Sender Receiver Data Prf Mac1 -> Msg

Projections:

op m1? : Msg -> Bool -- returns whether is an m1.

op crt : Msg -> Sender -- creator

op src : Msg -> Sender -- source

op dst : Msg -> Receiver -- destination

op d : Msg -> Data -- data

op p : Msg -> Prf -- commitment

op mc1 : Msg -> Mac1 -- mac

op j : Msg -> Int -– returns the id of the message which

 -- is 1 for m1

- The nth message (mn). It contains the data, the commitment to the key used in the
next message (k_n+1), the key used in the previous message (k_n-1) and all of them
encrypted with the kn in a message authentication code. We also add the index of the
message, n.

op mn : Sender Sender Receiver Data Prf Key Mac2 Int -> Msg

Projections:
op mn? : Msg -> Bool -- returns whether is an mn.

op crt : Msg -> Sender -- creator

op src : Msg -> Sender -- source

op dst : Msg -> Receiver -- destination

op d : Msg -> Data -- data

op p : Msg -> Prf -- commitment

op k : Msg -> Key -- key

op mc2 : Msg -> Mac1 -- mac

op j : Msg -> Int -- index of the message n

Formalization of the Network. The network is modeled as a multiset of messages,
which is used as the storage that the intruder can use. Any message that has been sent
or put into the network is supposed to be never deleted from the network. As a
consequence, the emptiness of the network means that no messages have been sent.

 Formal Analysis of TESLA Protocol in the Timed OTS/CafeOBJ Method 133

The intruder tries to glean seven kinds of quantities from the network. These are
the nonces, data, commitments, the keys, two kinds of the message authentication
codes and the signatures. The collections of these quantities are denoted by the
following operators:
op nonces : Network -> ColNonces .

op keys : Network -> ColKeys . op macs2 : Network -> ColMacs2 .
op data : Network -> ColData. op signs : Network -> ColSigns .
op prfs : Network -> ColPrfs . op macs1 : Network -> ColMacs1 .

Network is the visible sort denoting networks. ColX is the visible sort denoting
collections of quantities denoting by visible sort X (X = Nonce, Sign, Data, Prf,
Mac1, Mac2, Key). For example, given a snapshot nw of the network, nonces(nw)

and macs1(nw) denote the collection of nonces and message authentication codes
appeared in the m1 message available to the intruder.

Those operators are defined with equations. For the case of nonces the equations
are as follows:

eq N \in nonces(void) = (creator(N) = enemy) .

ceq N \in nonces(M,NW) = true if im?(M) and n(M) = N .

ceq N \in nonces(M,NW) = true if rm?(M) and n(c(M)) = N and

 p(pk(c(M))) = enemy .

ceq N \in nonces(M,NW) = true if rm?(M) and n(M) = N .

ceq N \in nonces(M,NW) = N \in nonces(NW) if not (im?(M) and

 n(M) = N) and not (rm?(M) and n(c(M)) = N and

 p(pk(c(M))) = enemy) and not(rm?(M) and n(M) = N) .

Constant void denotes the empty bag, while N, M, NW are CafeOBJ variables for
Nonce, Msg and Network, respectively. Operator _\in_ is the membership predicate
of collection, while _,_ is the data constructor of bags. So, M,NW denotes the network
obtained by adding message M to the network NW. The first equation says that
initially, the intruder’s nonce is the only available to him. The second equation says
that if there exists a message M of the type im in the network, then the nonce N of the
message is available to the intruder. In the case of an rm message, we have two
subcases: The nonce sent in clear is available to the intruder (equation 4), while the
nonce encrypted with sender’s private key in the signature is available to the intruder
only if the key belongs to the intruder(equation 4). These are the only nonces
available to the intruder.

The equations defining data are:

eq D \in data(void) = (p1(D) = enemy) .

ceq D \in data(M, NW) = true if m1?(M) and D = d(M) .

ceq D \in data(M, NW) = true if m1?(M) and D = d(mc1(M)) and

p1(k(mc1(M))) = enemy .

ceq D \in data(M, NW) = true if mn?(M) and D = d(M) .

ceq D \in data(M, NW) = true if mn?(M) and D = d(mc2(M)) and

p1(k(mc2(M))) = enemy .

ceq D \in data(M, NW) = D \in data(NW) if

not (mn?(M) and D = d(M)) and

not (m1?(M) and D = d(M)) and

not (m1?(M) and D = d(mc1(M)) and p1(k(mc1(M))) = enemy) and

not (mn?(M) and D = d(mc2(M)) and p1(k(mc2(M))) = enemy) .

134 I. Ouranos, K. Ogata, and P. Stefaneas

The first equation says that the data initially available to the intruder are those
constructed by him. The rest equations describe how intruder can glean data by
messages m1 and mn.

Equations defining the remaining operators are written likewise.

TOTS Model of TESLA Protocol. Having specified the data part of the
specification, we proceed to the specification of the behavior of the protocol in the
module TESLA, as an Observational Transition System with real time extensions. The
assumptions made for modeling reasons are as follows:

1. Time constraints for sending and receiving messages m1 and mn.
2. Ordering of packets using an integer packet id. We assume that messages im and
rm have id = 0, m1 has id = 1, and mn, n > 1, id = n.
3. One sender - one receiver (basic scheme).
4. Intruder is modeled following Dolev Yao general intruder model [11].
5. A Boolean flag-s is set to true if the sender has received the im message.
6. A Boolean flag-r is set to true if the receiver has sent the im message.
7. A Boolean received? is used to check the receipt of a message by the receiver.
Since the message is not deleted from the network, when received, the Boolean is set
to true, in order not to be received again by the same receiver.
8. The observation next returns the id of the packet to be received by the client.

Real Time Issues and Model. The protocol requires an important synchronization
assumption, the security condition: The receiver will not accept message n if it arrives
after the sender might have sent message n+1, otherwise an intruder can capture
message n+1, and use the key kn to fake a message n. This is the reason for using
timing constraints to some transitions and the Timed OTS model.

When the sender sends message rm, then receiver can receive it, while also sender
can send message m1, since he does not know whether the receiver has already
received it (the Boolean received? is not shared between sender and receiver). If the
sender sends the m1 before receiver gets the rm, then there exist in the network rm
and m1 with received? values set to false. But in that case there is no problem, since
m1 does not reveal a key, while also rm contains a digital signature. So in that case
there is no need for timing constraints other than 0 and oo.

But, if the sender sends message m2 (mn+1) before receiver received m1 (and in
general mn), then the intruder can capture the key that is revealed in the m2 (k1), and
fake the data part of m1. This can be avoided if some time constraints are used. So,
after sender sends the m1 message, m2 (mn) should be sent between l-sdm2 (l-sdmn)
and oo, m1 should be received between 0 and u-rcvm1, with u-rcvm1 < l-sdm2.
Similarly, the next mn message should be sent after the previous has been received
(i.e. u-sdmn < l-sdmn). We assume that the delays are constant.

So, we have the following clock observers: now(t) returns the time at state t, l-

sdm2(t)(l-sdmn(t))the lower bound of sending message m2 (mn), u-rcvmn(t) the
upper bound of receiving message mn, and u-rcvm1(t) the upper bound of receiving
message m1, at a state t.

The constants are: init denotes the initial state, d1 is the lower bound of sending
an mn message, d2 is the upper bound of receiving m1 message and d3 is the upper

 Formal Analysis of TESLA Protocol in the Timed OTS/CafeOBJ Method 135

bound of receiving mn message. The relation between time delays is declared in the
OTS module as follows:

-- delays

op d1 : -> Real+

op d2 : -> Timeval+

op d3 : -> Timeval+

eq d2 < d1 = true . eq d3 < d1 = true .

eq 0 < d1 = true . eq 0 < d2 = true . eq 0 < d3 = true .

Finally the time advancing transition is denoted by tick(t,r).

Formalization of Trustable Nodes. The non clock values observable from the outside
of the protocol are nw(t)that returns the set of messages in the network at a state t, ur(t)
which returns the set of random numbers used until state t, flag-r(t) that returns
whether the receiver has sent im message, flag-s(t) that returns whether the sender has
received im message, received?(t,m) that returns whether message m has been
received or not at state t, while next(t) returns the id of the next packet to be received.

The behavior of the trustable principals is modeled with the corresponding sending
and receiving transitions. Each action has an effective condition which is divided into
the timing and the non-timing part. There are four transitions modeling receiver and
five transitions modeling the behavior of sender. The transitions that have timing part
are sdm1, sdm2 and sdmn.

For example, sdmn(t,m,J) corresponds to that if a message m of the type mn with
id = J,J > 2, that has been sent by server to client exists in the network, agent
server makes the data d(a,J+1), f(k(server,client, J+2), the key
k(server,client, J) and the message authentication code
mac(k(server,client,J+1),d(server,J+1),f(k(server,client,

J+2),k(server,client,J)) and sends it in the message mn with the id J+1 of the
message, providing that l-sdmn(t) <= now(t).

The above are specified with equations in CafeOBJ as follows:

-- for action sdmn

op c-sdmn : Tesla Msg Int -> Bool

eq c-sdmn(T, M, I) = (M \in nw(T) and mn?(M) and j(M) = I and

crt(M) = server and src(M) = server and dst(M) = client and d(M) =

d(server, I) and p(M) = f(k(server, client, s I))

and k(M) = k(server, client, I - 1) and mc2(M) =

mac2(k(server,client,I), d(server,I), f(k(server, client, s I)),

k(server,client, I - 1)) and I > 1 and l-sdmn(T) <= now(T)) .

ceq nw(sdmn(T, M, I)) = (mn(server, server, client, d(server,s

I), f(k(server,client, (I + 2))), k(server, client, I),

mac2(k(server,client, s I), d(server, s I), f(k(server,client, (I +

2))), k(server,client, I)), s I), nw(T)) if c-sdmn(T, M, I) .

eq ur(sdmn(T, M, I)) = ur(T) . eq now(sdmn(T, M, I)) = now(T) .

eq flag-s(sdmn(T, M, I)) = flag-s(T) .

eq flag-r(sdmn(T, M, I)) = flag-r(T) .

eq next(sdmn(T, M, I)) = next(T) .

eq received?(sdmn(T, M, I),M') = received?(T,M') .

eq u-rcvm1(sdmn(T, M, I)) = u-rcvm1(T) .

eq l-sdm1(sdmn(T, M, I)) = l-sdm1(T) .

136 I. Ouranos, K. Ogata, and P. Stefaneas

eq l-sdm2(sdmn(T, M, I)) = l-sdm2(T) .

ceq l-sdmn(sdmn(T, M, I)) = now(T) + d1 if c-sdmn(T, M, I) .

ceq u-rcvmn(sdmn(T, M, I)) = now(T) + d3 if c-sdmn(T, M, I) .

bceq sdmn(T, M, I) = T if not c-sdmn(T, M, I) .

As is shown in the above CafeOBJ code, the observations nw, l-sdmn and u-rcvmn
change their value after the application of sdmn in a state T, provided that the effective
condition, which is defined by the first equation, holds. The rest observation value
does not change. The delays d1 and d3 are declared in the OTS module with relation
d3 < d1 and define the time order of sending and receiving a message mn.

Formalization of the Intruder. The intruder tries to glean information from the
messages flowing in the network, create and send fake messages based on it. The
gleaned quantities are nonces, data, commitments, keys, macs1, macs2, and
signatures. The intruder’s fake messages follow the format of the messages of the
protocol, in order to be accepted by the receiver.

For example, if the intruder has some data D, D’ commitments P, P’ and a key K,
then, if he/she create a message of type m1: D, P, mac1(K, D’, P’), then it will be
rejected by the receiver since when he/she will decrypt mac, D =/= D’ and P =/= P’.
So we assume that the format of such a fake message will be: m1: D, P, mac1(K,D,P).
There are 18 transitions modeling the behavior of the intruder. For a fake message
of the type mn, the application of transition fkmn7(t,k,k',k'',i) corresponds
to that the enemy fakes mn(enemy,server,client,d(enemy,i),f(k),k',

mac2(k'',d(enemy,i),f(k),k'),i) and put it into the network.
The CafeOBJ equations are:

-- for action fkmn7

op c-fkmn7 : Tesla Key Key Key Int -> Bool

eq c-fkmn7(T,K,K',K'',I) = (K \in keys(nw(T)) and K' \in keys(nw(T)) and

K'' \in keys(nw(T)) and I > 1) .

ceq nw(fkmn7(T,K,K',K'',I)) =

mn(enemy,server,client,d(enemy,I),f(K),K',mac2(K'',d(enemy,I),f(K),K'),I

),nw(T) if c-fkmn7(T,K,K',K'',I) .

eq ur(fkmn7(T,K,K',K'',I)) = ur(T) .

eq now(fkmn7(T,K,K',K'',I))= now(T) .

eq flag-s(fkmn7(T,K,K',K'',I)) = flag-s(T) .

eq flag-r(fkmn7(T,K,K',K'',I)) = flag-r(T) .

eq next(fkmn7(T,K,K',K'',I)) = next(T) .

eq received?(fkmn7(T,K,K',K'',I),M) = received?(T,M) .

eq u-rcvm1(fkmn7(T,K,K',K'',I)) = u-rcvm1(T) .

eq l-sdm1(fkmn7(T,K,K',K'',I)) = l-sdm1(T) .

eq l-sdm2(fkmn7(T,K,K',K'',I)) = l-sdm2(T) .

eq l-sdmn(fkmn7(T,K,K',K'',I)) = l-sdmn(T) .

eq u-rcvmn(fkmn7(T,K,K',K'',I)) = u-rcvmn(T) .

ceq fkmn7(T,K,K',K'',I) = T if not c-fkmn7(T,K,K',K'',I) .

 Formal Analysis of TESLA Protocol in the Timed OTS/CafeOBJ Method 137

3.3 Verification

The protocol satisfies the following invariant property (definition taken from the
original paper): The receiver does not accept as authentic any message mi unless mi
was actually sent by the sender.

We have expressed the above property based on our specification as three different
invariants:

Invariant 1. Whenever you receive the three messages rm, m1, m2, i.e.
f(k1), n_R, {f(k1), n_R}_PK(S) and d1, f(k2), MAC(K1, d1,f(K2)) and
d2, f(k3), k1, MAC(...),
then m1 originates from the claimed source S.

Invariant 2. Whenever you receive the three messages m1, m2, m3 i.e.,
d1, f(k2), MAC(K1, d1,f(K2)) and d2, f(k3), k1, MAC(...), and
d3, f(k4), k2, MAC(...),
then m2 originates from the claimed source S.

Invariant 3. Whenever you receive the three messages m_n-1, m_n, m_n+1, n > 2
i.e., d_n-1, f(k_n), k_n-2, MAC(...), and d_n, f(k_n+1), k_n-1, MAC(...), and

 d_n+1, f(k_n+2), k_n, MAC(...),
then mn originates from the claimed source S.

The above invariants are expressed in CafeOBJ notation in a module called
inv.mod as operators inv1, inv2 and inv3 respectively. The most important property,
inv3 is declared as follows:

eq inv3(T, X, Y, Z, N) = (N > 2) and

mn(X, server, client, d(server, N - 1), f(k(server,client, N)),

k(server, client,N - 2), mac2(k(server,client,N - 1), d(server,N - 1),

f(k(server,client, N)), k(server, client, N - 2)), N - 1) \in nw(T)

and received?(T,mn(X, server, client, d(server, N - 1),

f(k(server,client, N)), k(server, client,N - 2), mac2(k(server,client,N

- 1), d(server,N - 1), f(k(server,client, N)), k(server, client, N -

2)), N - 1)) and

mn(Y, server, client, d(server,N), f(k(server,client, s N)),

k(server,client, N - 1), mac2(k(server,client,N),d(server,N),

f(k(server,client, s N)), k(server,client, N - 1)), N) \in nw(T)

and received?(T,mn(Y, server, client, d(server,N), f(k(server,client, s

N)), k(server,client, N - 1), mac2(k(server,client,N),d(server,N),

f(k(server,client, s N)), k(server,client, N - 1)), N)) and

mn(Z, server, client, d(server,s N), f(k(server,client, s s N)),

k(server,client, N), mac2(k(server,client,s N), d(server,s N),

f(k(server,client, s s N)), k(server,client, N)), s N) \in nw(T) and

received?(T,mn(Z, server, client, d(server,s N), f(k(server,client, s s

N)), k(server,client, N), mac2(k(server,client,s N), d(server,s N),

f(k(server,client, s s N)), k(server,client, N)), s N))and next(T)>N + 1

implies

138 I. Ouranos, K. Ogata, and P. Stefaneas

mn(server, server, client, d(server,N), f(k(server,client, s N)),

k(server,client, N - 1), mac2(k(server,client,N),d(server,N),

f(k(server,client, s N)), k(server,client, N - 1)), N) \in nw(T)

and received?(T,mn(server, server, client, d(server,N),

f(k(server,client, s N)), k(server,client, N - 1),

mac2(k(server,client,N),d(server,N), f(k(server,client, s N)),

k(server,client, N - 1)), N)) .

To prove the above invariant, we used five more invariants as lemmas that we had
then to prove. In general, to prove the three invariants that constitute the basic
property of TESLA protocol, we used 29 invariants. Most of them were state
invariants, while there were also lemmas on data types, such as Network.

Two invariants that were used as lemmas and include timing information are inv8
and inv12 and are defined as follows:

For any reachable state T and any message index N,

eq inv8(T,N) = N > 1 and l-sdmn(T) <= now(T) and

mn(server,server,client,d(server,N),f(k(server,client,(1 +

N))),k(server,client,(N + -

1)),mac2(k(server,client,N),d(server,N),f(k(server,client,(1 +

N))),k(server,client,(N + -1))),N) \in nw(T) implies

received?(T,mn(server,server,client,d(server,N),f(k(server,client,(1 +

N))),k(server,client,(N + -

1)),mac2(k(server,client,N),d(server,N),f(k(server,client,(1 +

N))),k(server,client,(N + -1))),N)) .

eq inv12(T,N) = N > 1 and

mn(server,server,client,d(server,N),f(k(server,client,(N +

1))),k(server,client,(N + -

1)),mac2(k(server,client,N),d(server,N),f(k(server,client,(N +

1))),k(server,client,(N + -1))),N)\in nw(T) and

not received?(T,mn(server,server,client,d(server,N),f(k(server,client,

(N + 1))),k(server,client,(N + -

1)),mac2(k(server,client,N),d(server,N),f(k(server,client,(N +

1))),k(server,client,(N + -1))),N)) implies u-rcvmn(T)<l-sdmn(T) .

The former says that if an original message mn exists in the network in a state T with n
>1 and l-sdmn(T) <= now(T)then the message has been already received by the
client. The latter says that if an original message mn exists in the network in a state T
with n>1 and it has not yet been received by the client, then u-rcvmn(T)<l-sdmn(T).

Apart from the lemmas, the proof scores written include exhaustive case analysis. In
general the verification of Timed OTS specifications follow the same principles and
methodology as the Standard OTS [2].

4 Lessons Learned and Proposals

Writing algebraic specifications and verifying them with CafeOBJ system has the
advantage of a simple underlying theory, since it is based on equations, but can be
very difficult and time consuming for an inexperienced user.

 Formal Analysis of TESLA Protocol in the Timed OTS/CafeOBJ Method 139

The two basic tasks that a specification engineer has to perform to specify and
verify a system is the system and property description. Both suppose a deep
understanding of the system/protocol. In many cases, an incorrect system’s
specification may lead to unsuccessful verifications, which implies specification
revisions/updates and verification retries. In an interactive theorem proving system
and proof score verification style this can be very time consuming.

In the case of TESLA protocol specification and verification, many verification
retries and specification revisions were performed. The reason was basically protocol
functions misunderstanding, that lead to wrong descriptions. For instance, at the
initial steps of our work on TESLA, we made two fundamental errors. The first was
that we tried to model the protocol without timing constraints, only by adding some
index to each packet. But when we tried to express the security condition, we found
out that a counterexample was obvious: An intruder could steal a message and put
into the network with altered data. Then the receiver could not identify the faked from
the original message.

The second error was related to the expression of the property. We expressed it as:

mn-1(x,server,client,….datan-1…) \in nw(t) ∧ mn(y,server,client,….datan…) \in nw(t) ∧
mn+1(z,server,client,….datan+1…) \in nw(t) => mn(server,server,client,….datan…) \in nw(t)
instead of mn-1(x,server,client,….datan-1…) \in nw(t) ∧
received?(t, mn-1(x,server,client,….datan-1…)) ∧ mn(y,server,client,….datan…) \in nw(t) ∧
mn+1(z,server,client,….datan+1…) \in nw(t) ∧ received?(t, mn+1(z,server,client,….datan+1…)) =>
mn(server,server,client,….datan…) \in nw(t) ∧ received?(t, mn(server,server,client,….datan…))

During the process of verifying/writing proof scores, we realized that without the
boolean observation received? in our property expression, a message could exist in
the network without having been received by the receiver, which was not
representative for the protocol’s behavior.

Some less important, but necessary modifications that we had to do are:

• Initially we did not use an observation next to model the id of the next packet to be
received by the client. As a result the client could accept a faked message that existed
in the network with smaller id than the last received.
• Without a special transition sdm2 for the sending of the second message m2, it was
not possible to model the effective condition c-sdmn, n=2, since sdmn, n=2 depends on
the existence of message m1 in the network which has different format from mn, n>1.

Some level of automation for Timed OTS method can be possible. This include proof
score reusability and case analyses with tool support similar to that of Standard OTSs
[12-13]. Additionally, editors such as Emacs and Eclipse make specification and
verification writing easier, and can be more useful with CafeOBJ oriented extensions.

Using CafeOBJ for complex real life systems and protocols is still difficult for
non-experts. To overcome this, some library support for reusable similar modules
used to real time, security protocols, etc. can be useful. Additionally, combination of
model checking and theorem proving techniques is necessary [14].

140 I. Ouranos, K. Ogata, and P. Stefaneas

5 Related Work

TESLA protocol has been formally specified and verified in three different works
[15-17]. In [15], the protocol is analysed using TAME [18], an interface to PVS [19]
specialized for proving properties of automata. In this approach the system is first
modelled as an LV timed automaton, [20] next any desired system property is
expressed as a state invariant and finally, the validity of the state invariant is
established by developing auxiliary invariants that supports its proof. Both our
approach and this approach belong to the theorem proving family, but the main
difference between them is that in the case of timed automata you should identify all
the states involved in the real time system in advance, which may be difficult. On the
contrary, you have not to explicitly identify states involved in a real time system in
advance to model the system as an TOTS.

In [16], a CSP [21] finite model of TESLA is model checked using the FDR [22]
model checker. The authors’ challenge was to apply model checking to such an
infinite system. A number of reduction strategies were developed and incorporated
into the model to keep state space within a feasible range. They have also extended
their model to capture the Scheme II of the protocol that involve modelling of
unbounded hash-chains. Synchronization between sender and receiver processes in
this approach is captured by introducing a special event tock that represents the
passage of one time unit. This synchronization allows the receiver to tell whether it
has received message n before sender might have sent message n+1.

Finally, in [17], the authors present the application of an extension of a model
checker for multi agent systems called MCMAS-X to the verification of TESLA. The
model of the protocol is written in an SMV-like programming language called ISPL
which is based on TDL [23] temporal epistemic logic.

All approaches, including ours, take the simple case of one sender – one receiver,
but it is straightforward to extend the model to capture the most complex cases, with
an increase to verification complexity.

Generally, formal verification of real time systems has been studied by many
researchers. Another OBJ language that has a real time extension is Maude [24], with
Real-time Maude[25]. The main difference between our approach and that of Maude,
is that the system to be analyzed with Maude should have finite state space.

Some of the reasons for selecting algebraic specifications and CafeOBJ to model
and verify the protocols are as follows:

- CafeOBJ is not an interactive theorem prover, but an algebraic specification
language and system with interactive theorem proving facilities. Hence, documents
described in CafeOBJ can be used not only for verification, but also as specifications
with which human beings can communicate with each other.
- Since it is straightforward to describe complex data structures such as multisets in
CafeOBJ, security protocols and their properties can be naturally described.
- It is the first time that such a complex system is modeled with Timed OTSs, which
was a challenge with successful results.

 Formal Analysis of TESLA Protocol in the Timed OTS/CafeOBJ Method 141

Acknowledgements. This research has been co-
financed by the European Union (European
Social Fund – ESF) and Greek national funds
through the Operational Program "Education and
Lifelong Learning" of the National Strategic
Reference Framework (NSRF) - Research
Funding Program: THALIS.

References

1. Ogata, K., Futatsugi, K.: Modeling and Verification of real-time systems based on
equations. In: Science of Computer Programming. Elsevier (2007)

2. Ogata, K., Futatsugi, K.: Some Tips on Writing Proof Scores in the OTS/CafeOBJ
Method. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Goguen Festschrift. LNCS,
vol. 4060, pp. 596–615. Springer, Heidelberg (2006)

3. Ogata, K., Futatsugi, K.: Flaw and modification of the iKP electronic payment protocols.
IPL 86(2), 57–62 (2003)

4. Ogata, K., Futatsugi, K.: Equational approach to formal analysis of TLS. In: Proc. 25th
ICDCS, pp. 795–804 (2005)

5. Ogata, K., Futatsugi, K.: Proof score approach to analysis of electronic commerce
protocols. IJSEKE 20(2), 253–287 (2010)

6. Perrig, A., Canetti, R., Tygar, J.D., Song, D.: Efficient Authentication and Signing of
Multicast Streams over Lossy Channels. In: Proc. IEEE Symposium on Security and
Privacy, pp. 56–73 (2000)

7. Perrig, A., Tygar, J.D.: Secure Broadcast Authentication. In: Wired and Wireless
Networks. Springer (2002)

8. Perrig, A., Canetti, R., Tygar, J.D., Briscoe, B., Song, D.: TESLA: Multicast Source
Authentication Transform. IETF RFC 4082 (2005)

9. Diaconescu, R., Futatsugi, K.: CafeOBJ Report. World Scientific, Singapore (1998)
10. Abadi, M., Lamport, L.: An old fashioned recipe for real time. ACM Transactions on

Programming Languages and Systems 16(5), 1543–1571 (1994)
11. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Trans. on Inf.

Theory 29, 198–208 (1983)
12. Seino, T., Ogata, K., Futatsugi, K.: A toolkit for generating and displaying proof scores in

the OTS/CafeOBJ method. In: Proc. of the 6th RULE. ENTCS. Elsevier (2005)
13. Nakano, M., Ogata, K., Nakamura, M., Futatsugi, K.: Crème: An automatic invariant

prover of behavioural specifications. IJSEKE 17(6), 783–804 (2007)
14. Ogata, K., Nakano, M., Kong, W., Futatsugi, K.: Induction-Guided Falsification. In: Liu,

Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 114–131. Springer,
Heidelberg (2006)

15. Archer, M.: Proving correctness of the basic TESLA multicast stream authentication
protocol with TAME. In: Proc. of WITS 2002, Portland (2002)

16. Broadfoot, P., Lowe, G.: Analysing a Stream Authentication Protocol Using Model
Checking. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS 2002. LNCS,
vol. 2502, pp. 146–161. Springer, Heidelberg (2002)

17. Lomuscio, A., Raimondi, F., Wozna, B.: Verification of the TESLA protocol in MCMAS-
X. Fundamenta Informaticae 79(1-2), 473–486 (2007)

142 I. Ouranos, K. Ogata, and P. Stefaneas

18. Archer, M.: TAME: Using PVS strategies for special-purpose theorem proving. Annals of
Mathematics and Artificial Intelligence 29(1-4) (2000)

19. Shankar, N., Owre, S., Rushby, J.M., Stringer-Calvert, D.W.J.: The PVS prover guide.
Technical Report, Computer Science Lab., SRI Intl. Menlo Park, CA (1998)

20. Lynch, N., Vaandrager, F.: Forward and backward simulations – Part II: Timing based
systems. Information and Computation 128(1), 1–25 (1996)

21. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
22. Formal Systems Europe Ltd. Failures – Divergence Refinement – FDR2 User Manual

(2000)
23. Lomuscio, A., Wozna, B.: A complete and decidable security-specialised logic and its

application to the tesla protocol. In: Stone, P., Weiss, G. (eds.) Proc. of the Fifth
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2006), pp. 145–152 (2006)

24. Clavel, M., et al.: Maude: Specification and Programming in Rewriting Logic.
TCS 285(2), 187–243 (2002)

25. Ölveczky, P.C., Meseguer, J.: Real-Time Maude: A tool for simulating and analyzing real
time and hybrid systems. In: 4th WRLA. ENTCS, vol. 36 (2000)

Formal Specification and Verification
of Task Time Constraints for Real-Time Systems�

Ning Ge, Marc Pantel, and Xavier Crégut

University of Toulouse, IRIT/INPT
2 rue Charles Camichel, BP 7122, 31071 Toulouse cedex 7, France

{Ning.Ge,Marc.Pantel,Xavier.Cregut}@enseeiht.fr

Abstract. Safety critical real-time systems (RTS) have stringent re-
quirements related to the formal specification and verification of system’s
task-level time constraints. The most common methods used to assess
properties in design models rely on the translation from user models to
formal verification languages like Time Petri Net (TPN), and on the
expression of required properties using Timed Linear Temporal Logic
(LTL), Computation Tree Logic (CTL) and μ-calculus. However, these
logics are mainly used to assess safety and liveness properties. Their ca-
pability for expressing timing properties is more limited and can lead to
combinatorial state space explosion problems during model checking. In
addition, the existing methods are mainly concerned with logical rela-
tions between the events without the consideration of time tolerance.

This paper introduces a formal specification and verification method for
assessing system’s task-level time constraints, including synchronization,
coincidence, exclusion, precedence, sub-occurrence and causality, in both
finite and infinite time scope. We propose a translation method to formally
specify task-level time constraints, and decompose time constraints by a
set of event-level time property patterns. These time property patterns are
quantitative and independent from both the design modeling language and
the verification language. The observer-based model checking method re-
lying on TPN is used to verify these time property patterns. This contri-
bution analyses the method’s computational complexity and performance
for the various patterns. This task-level time constraints specification and
verification method has been integrated in a time properties verification
framework for UML-MARTE safety critical RTS.

Keywords: MDE, RTS, Task, Time Constraint, Formal Specification,
Verification, Time Property Patterns, Time Petri Net, Observer-Based
Model Checking.

1 Introduction

Model-Driven Engineering (MDE) enables to verify system model’s properties
since the early phases of its lifecycle and to iteratively improve the models ac-
cording to the verification results. Safety critical real-time systems (RTS) have
� This work was funded by the French ministries of Industry and Research and the Midi-

Pyrénées regional authorities through the ITEA2 OPEES and FUI Projet P projects.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 143–157, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

144 N. Ge, M. Pantel, and X. Crégut

stringent requirements related to the specification and verification of system’s
task-level time constraints. As the commonly used modeling languages in the
industry, for example UML [6], are only semi-formal, they cannot be directly
verified by the formal methods. The common approaches used to assess the
properties in design models rely on translating semi-formal models into fully
formal and verifiable languages and on expressing the properties in a formal
way. To assess the task-level time constraints, two main issues should be solved
in the state-of-the-art methods.

First, the common verifiable formal assertions used to express time properties
are Timed Linear Temporal Logic (LTL), Computation Tree Logic (CTL) and
μ-calculus. These logics are mainly used to assess safety and liveness properties.
Their capability for expressing timing properties is more limited and can lead to
combinatorial state space explosion problems during model checking.

Second, the common methods are mainly concerned with the logical relations
between events, for example the partial orders, whereas RTS requirements usu-
ally focus on task-level time constraints with the consideration of time tolerance,
for example Whether TaskA and TaskB are coincident within the time tolerance
10ms, in each of their occurrences. The concept of time tolerance should be in-
troduced, because two simultaneous events cannot be measured without errors
in real world.

To solve the above two problems, this paper presents a formal specification
and verification method for system’s task-level time constraints, in both finite
and infinite time scope. Clock Constraints Specification Language (CCSL) [8]
standardizes clock constraints semantics in UML. However, it only covers the
event-level constraints. In order to follow OMG MARTE modeling language [7],
we extend the basic semantic elements of CCSL to cover the requirements of
task-level time constraints with time tolerance, including coincidence, synchro-
nization, exclusion, sub-occurrence, precedence and causality. We translate non
verifiable task-level time constraints into verifiable specifications composed by a
set of time property patterns. These time property patterns are quantitative and
independent from both the design modeling language and the verification lan-
guage. To assess these time property patterns, we use an observer-based model
checking method relying on Time Petri Nets (TPN) [5]. The computational com-
plexity of this proposal is then analysed. To provide a concrete illustration and
to validate our approach, we have integrated it in a time properties verification
framework for UML-MARTE safety critical RTS [3].

The paper is organized as follows: Section 2 compares our work with related
works; Section 3 introduces a case study; Section 4 introduces the methodology;
Section 5 presents the formal specification method for task-level time constraints;
Section 6 gives the specifications of time property patterns, illustrates time prop-
erty patterns verification using observer-based model checking, and discusses
the computational complexity and performance to demonstrate the method’s
applicability; Section 7 gives some concluding remarks and discusses the future
works.

Formal Specification and Verification of Task Time Constraints 145

2 Related Works

Several works aim to specify event-level time constraints. CCSL standardizes
clock constraint semantics within UML in MARTE profile to formally express
causal and temporal constraints between previously defined symbolic discrete
clocks and proposes a process to model time specification. It defines a complete
set of clock constraints, which are driven by instantaneous events. However, as
it focuses on event-level concept, some adaptations are required to specify task-
level time constraints. Meanwhile, although it can express the concept of time
tolerance in event-level constraints, to our knowledge, no efficient verification
method is available yet.

Concerning the verification method, [1] transforms UML model to SyncCha-
rts, and uses Esterel assertions to express clock constraints. Esterel has a well-
defined notion of instant, and at each reaction, any signal has a unique status.
This is not the case with non-strictly synchronous languages. It is thus less appli-
cable at detailed design and implementation phases, as the time tolerance must
be taken into account. [9] describes component patterns in ProCom, a language
for component-based design of embedded systems. Further, the patterns are for-
mally verified to satisfy relevant timing properties. This is done by translating
the pattern specifications in ProCom, into corresponding timed automata mod-
els, and model-check the resulting models using UPPAAL [4]. This related work
focuses on component based patterns, and it validates the patterns by UPPAAL
model checker. It does not mention the verification performance of the proposal,
while we think the performance is an important issue in the complex systems.

3 Case Study

A classical asynchronous RTS model is specified in Fig. 1. According to the gen-
eral asynchronous message-driven pattern, in the system model Fig. 6(a), the
Sender will regularly distribute data to the two receivers Calculator A and Cal-
culator B through the Router. The receivers provide redundant control service.
They will do some computation after receiving the data, as shown in the behav-
ior model Fig. 1(b). The redundant controller requires that the computation of
two calculators starts at the same time and the output of the two calculators
must be available at the same time in each working cycle; otherwise, the servo
of the corresponding actuator cannot correctly unify the redundant command.
In this case, the designer need to verify the coincidence between computation
tasks of calculators A and B. As it is impossible to respect a strict simultaneous
timing with an explicit local synchronisation, a time tolerance is defined. Once
the two time instants fall into the same time window (size of window equals to
tolerance), they are considered as coincident.

4 Methodology

The proposed method is illustrated by Fig. 2. The Transformation of Design
Model activity transforms the Design Model into TPN models. Meanwhile,

146 N. Ge, M. Pantel, and X. Crégut

Sender

Calculator A Calculator B

Router

[rTmin,rTmax] [rTmin,rTmax]

[sTmin,sTmax]
Receive

Computation

(a) System Model (b) Calculator Behavior Model

Fig. 1. Case Study Model

the Transformation of Task Time Constraints activity first translates the Task
Time Constraint into Time Constraint Formal Specification, then decomposes
the specification into Time Property Patterns. The time property patterns are
quantitative. Each of them can be assessed using observer-based model checking
relying on TPN, which means each time property pattern corresponds to one
TPN observer structure added in the original TPN models and a set of mark-
ing assertions. The integrated TPN models are model checked by TINA toolset
[2] with the marking assertions. The formal specification method is indepen-
dent from the design modeling language, making it reusable in other verification
frameworks.

Design Model Task TIme Constraint

Task TIme Constraint
Formal Specification

Time Property Patterns

Time Property Pattern
TPN Observers

TPN

Transformation of Design Model Transformation of Task Time Constraint

Time Property Pattern
Verification Results

Time Constraint Translation

Specification Decomposition

Observer Generation

Observer-Based Model Checking

Model
Transformation

Independent

Combinational

Fig. 2. Independence of the Formal Specification

When designing the formal specification and verification method for task-level
time constraints, three temporal aspects are taken into account. First, both logical
and physical time concepts. Logical symbolic time can be seen as instantaneous

Formal Specification and Verification of Task Time Constraints 147

physical time, i.e. physical time with tolerance being zero. Second, both discrete
and dense time domains. Dense time does not introduce any issue in the specifi-
cation. Problems can occur during the verification phase. This proposal’s model
checking relies on TINA toolset, which supports TPN in dense time domain.
Last, both finite and infinite time scopes. Time constraint must be assessed for
each task occurrence. Finite scope means that the tasks will occur finite times
in a finite time range, for example aperiodic tasks, while infinite scope concerns
the tasks that occur infinite times like periodic tasks.

As the formal verification relies on observer-based model checking, it is manda-
tory to check whether the specification approach allows feasible and efficient
model checking or not. According to our study so far, the specification and veri-
fication methods are different for finite and infinite time scopes. For example, in
finite time scope, we know the maximum occurrence number for a pair of tasks,
and we can compare the corresponding occurrence of the two. However, in infi-
nite time scope, the maximum occurrence number is uncountable. The solution
is to assess the difference of two tasks’ occurrence number. If the difference is
inferior to 2, the two tasks are possible coincident in this working cycle.

Another important issue is that, although the notion of synchronization should
enforce things to occur simultaneously, in the real world, the strict simultaneous
character cannot be achieved. This requirement is thus usually associated with
a time tolerance. In order to take into account this more realistic fact, this time
tolerance is introduced for all the time constraints specification, and it is denoted
by δ (δ ∈ R

+).

5 Formal Specification of Task-Level Time Constraints

5.1 Preliminary Definitions

Definition 1 (Event). An event is the happening of the start of task and the
end of task, noted as Es and Ee.

Definition 2 (Task). In the system, a task is considered as the smallest com-
putable unit, which consumes time and modifies resources (consumes and pro-
duces). It contains two inner events, Es and Ee. A task could be executed in-
finitely or finitely according to the design.

Definition 3 (Occurrence). Occurrence is used to represent the appearance
of a task and its associated inner events Es and Ee.

To simplify the presentation, some symbols are defined in Table 1.

5.2 Coincidence Time Constraint

Definition 4 (Coincidence). Tasks X and Y are coincident iff the nth occur-
rence of X occurs simultaneously with the nth occurrence of Y while n ∈ N. It
is equivalent saying the nth occurrence of Xs occurs simultaneously with the nth

148 N. Ge, M. Pantel, and X. Crégut

Table 1. Symbols for Formal Specification

Symbol Definition
X Task X

Xi The ith occurrence of task X

Xa The inner event a of task X (Es and Ee)
Xi

a The ith occurrence of Xa

Xt
a The ith occurrence of Xa, where i is the nearest occur-

rence number to the time instant t (forward or backward)
T (Xi

a) The occurring time instant of Xi
a

T (Xt
a) The occurring time instant of Xt

a

O(X) The maximum possible occurrence number of task X

O(Xa) The maximum possible occurrence number of event Xa

O(Xt
a) The maximum possible occurrence number of event Xa

before time instant t

X[i] X[i+1]

Y[i] Y[i+1]

Coincidence(X,Y,) = true

X

Y

X[i] X[i+1]

Interleave

Coincidence(X,Y,) = false

Y[i] Y[i+1]

(a) (b)

Fig. 3. Coincidence

occurrence of Ys, and the nth occurrence of Xe occurs simultaneously with the
nth occurrence of Ye. In Fig. 3(a), X and Y are coincident.

Specification 1 (Coincidence - Infinite Time Scope). Cift(X, Y, δ) ≡
∀t ∈ R+ : (|O(Xt

s) − O(Y t
s)| < 2) ∧ (|O(Xt

e) − O(Y t
e)| < 2) (1)

∀t ∈ R+ : (|T (Xt
s) − T (Y t

s)| < δ) ∧ (|T (Xt
e) − T (Y t

e)| < δ) (2)

∀i ∈ N
∗ : (T (X i

e) + δ < T (Y i+1
s)) ∧ (T (Y i

e) + δ < T (X i+1
s)) (3)

Specification 2 (Coincidence - Finite Time Scope). Cft(X, Y, δ) ≡
(O(Xs) = O(Ys)) ∧ (O(Xe) = O(Ye)) (4)

∀i ∈ [1, O(Xs)] : (|T (X i
s) − T (Y i

s)| < δ) ∧ (|T (X i
e) − T (Y i

e)| < δ) (5)

∀i ∈ [1, O(Xe) − 1] : (T (X i
e) + δ < T (Y i+1

s)) ∧ (T (Y i
e) + δ < T (X i+1

s)) (6)

We illustrate coincidence time constraint used in the case study. Due to page
limits, the formal specifications of other time constraints are given without de-
tailed explanations. In formula (1) of infinite time scope, at time t, the difference

Formal Specification and Verification of Task Time Constraints 149

of occurrence number between Xs and Ys (Xe and Ye) should be inferior to 2. If
this occurrence difference is equal or superior to 2, it means one task is too fast to
be coincident with the other. In formula (4) of finite time scope, the occurrence
number is countable, thus we can compare the two numbers and ensure they are
the same. According to the definition, in formulas (2) and (5), the ith occurrence
of Xs (Xe) occurs simultaneously with the jth occurrence of Ys (Ye), within time
tolerance δ. i = Xt

s, j = Y t
s , as defined in Table 1. In formula (3) and (6), with

the time tolerance introduced, it is possible that an interleave exists between ith

occurrence of X and (i + 1)th occurrence of Y , which violates the coincidence
definition. So constraints for consequent occurrences must be added. In Fig. 3(b),
the model satisfies formulas (1) (4) and (2) (5), but violates the formulas (3)
(6). The two tasks are not coincident.

5.3 Synchronization Time Constraint

Definition 5 (Synchronization). Logical synchronization is a reduced coinci-
dence relation without restricting a simultaneously execution. The only concern
is that the execution order must persist. In Fig. 4(a), X and Y are coincident.

X[i] X[i+1]

Y[i] Y[i+1]

Synchronization(X,Y,) = true

X

Y

X[i] X[i+1]

Interleave

Synchronization(X,Y,) = false

Y[i] Y[i+1]

(a) (b)

Fig. 4. Synchronization

Specification 3 (Synchronization - Finite Time Scope). Synft(X, Y, δ) ≡
(O(Xs) = O(Ys)) ∧ (O(Xe) = O(Ye))
∀i ∈ [1, O(Xe) − 1] : (T (X i

e) + δ < T (Y i+1
s)) ∧ (T (Y i

e) + δ < T (X i+1
s))

Specification 4 (Synchronization - Infinite TimeScope). Synift(X, Y, δ) ≡
∀t ∈ R+ : (|O(Xt

s) − O(Y t
s)| < 2) ∧ (|O(Xt

e) − O(Y t
e)| < 2)

∀i ∈ N
∗ : (T (X i

e) + δ < T (Y i+1
s)) ∧ (T (Y i

e) + δ < T (X i+1
s))

5.4 Exclusion Time Constraint

Definition 6 (Exclusion). As shown in Fig. 5, task X and Y are excluded, iff
not any presence of X occurs simultaneously with any presence of Y . It could be
considered as another form of coincidence with some time offset.

Specification 5 (Exclusion - Finite Time Scope). Eft(X, Y, δ) ≡
∀i ∈ [1, O(Xs)], ∀j ∈ [1, O(Ys)] :
T (X i

s) + δ < T (Y j
s) ⇒ (T (X i

e) + δ < T (Y j
s)) ∧ (T (Y j

e) + δ < T (X i+1
s))

150 N. Ge, M. Pantel, and X. Crégut

X[i] X[i+1]

Y[j] Y[j+1]

Exclude(X,Y,) = true

X[i] X[i+1]

Y[j+1]

Exclude(X,Y,) = false

Y[j]

Fig. 5. Exclusion

T (X i
e) + δ < T (Y j

s) ⇒ T (Y j
e) + δ < T (X i+1

s)
T (X i

s) + δ < T (Y j
e) ⇒ T (X i

e) + δ < T (Y j
s)

T (X i
e) + δ < T (Y j

e) ⇒ (T (X i
e) + δ < T (Y j

s)) ∧ (T (Y j
e) + δ < T (X i+1

s))

As the finite time semantics are not computable in infinite time scope. Some
constraints are required to ensure that between two continuous occurrences of
task X, it exists and only exists one occurrence of task Y, and vice versa.

Specification 6 (Exclusion - Infinite Time Scope). Eift(X, Y, δ) ≡
∀t ∈ R+ : (|O(Xt

s) − O(Y t
s)| < 2) ∧ (|O(Xt

e) − O(Y t
e)| < 2)

∀i ∈ N
∗ :

T (X i
s) + δ < T (Y i

s) ⇒ (T (X i
e) + δ < T (Y i

s)) ∧ (T (Y i
e) + δ < T (X i+1

s))
T (X i

e) + δ < T (Y i
s) ⇒ T (Y i

e) + δ < T (X i+1
s)

T (X i
s) + δ < T (Y i

e) ⇒ T (X i
e) + δ < T (Y i

s)
T (X i

e) + δ < T (Y i
e) ⇒ (T (X i

e) + δ < T (Y i
s)) ∧ (T (Y i

e) + δ < T (X i+1
s))

5.5 Sub-occurrence Time Constraint

Definition 7 (Sub-occurrence). Task Y is a sub-occurrence of task X, iff the
ith occurrence of X and the jth occurrence of Y occur simultaneously, where
always j � i. The schema of sub-occurrence is shown in Fig. 6.

X[i]

Sub-Occurrence(X,Y,) = true Sub-Occurrence(X,Y,) = false

X[i+1] X[i+2]

Y[j] Y[j+1]

X[i] X[i+1] X[i+2]

Y[j] Y[j+1]

Interleave

Fig. 6. Suboccurrence

Specification 7 (Sub-occurrence - Finite Time Scope). Sft(X, Y, δ) ≡
(O(Xs) � O(Ys)) ∧ (O(Xe) � O(Ye))
∀j ∈ [1, O(Ys)], ∃i ∈ [j, O(Xs)] : (|T (X i

s) − T (Y j
s)| < δ) ∧ (|T (X i

e) − T (Y j
e)| <

δ) ∧ (T (X i−1
e) + δ < T (Y j

s)) ∧ (T (Y j
e) + δ < T (X i+1

s))

Formal Specification and Verification of Task Time Constraints 151

As the finite time semantics are not computable in infinite time scope, a com-
promise should be made, which means that the faster one’s occurrence is always
k(k ∈ N

∗) times multiple of the slower one’s.

Specification 8 (Sub-occurrence - Infinite Time Scope). Sift(X, Y, δ, k) ≡
∀t ∈ R+ : (|O(Xt

s)/k − O(Y t
s)| < 2) ∧ (|O(Xt

e)/k − O(Y t
e)| < 2)

∀i ∈ N
∗ : (|T (X i·k

s)− T (Y i
s)| < δ) ∧ (|T (X i·k

e)− T (Y i
e)| < δ) ∧ (T (X i·k

e) + δ <
T (Y i+1

s)) ∧ (T (Y i
e) + δ < T (X i·k+1

s))

5.6 Precedence Time Constraint

Definition 8 (Precedence). Task X precedes task Y iff at any time, the occur-
rence of X is more than or equal to the occurrence of Y . This implies X i

s must
precede Y i

s , however it is not necessary to also have X i
e precedes Y i

s in all context.
There strict levels are defined, L1(less strict), L2(strict), L3(very strict).

Specification 9 (Precedence - Finite Time Scope).
Pft(X, Y, δ,L1) ≡ ∀i ∈ [1, O(Xs)] : T (X i

s) + δ < T (Y i
s)

Pft(X, Y, δ,L2) ≡ ∀i ∈ [1, O(Xs)] : (T (X i
s)+ δ < T (Y i

s))∧ (T (X i
e)+ δ < T (Y i

e))
Pft(X, Y, δ,L3) ≡ ∀i ∈ [1, O(Xs)] : T (X i

e) + δ < T (Y i
s)

The computable specification for infinite time scope is the same as the causalities’
in infinite time scope.

5.7 Causality Time Constraint

Definition 9 (Causality). Causality is similar to Precedence, except that it
requires the maximum possible occurrence of X equals to that of Y , because each
occurrence of X causes the corresponding occurrence of Y .

Specification 10 (Causality - Finite Time Scope).
Cft(X, Y, δ,L1) ≡ O(X) = O(Y), Pft(X, Y, δ,L1)
Cft(X, Y, δ,L2) ≡ O(X) = O(Y), Pft(X, Y, δ,L2)
Cft(X, Y, δ,L3) ≡ O(X) = O(Y), Pft(X, Y, δ,L3)

Specification 11 (Causality - Infinite Time Scope).
Cift(X, Y, δ,L1) ≡

∀t ∈ R+ : (|O(Xt
s) − O(Y t

s)| < 2) ∧ (|O(Xt
e) − O(Y t

e)| < 2)
∀i ∈ N

∗ : T (X i
s) + δ < T (Y i

s)
Cift(X, Y, δ,L2) ≡

∀t ∈ R+ : (|O(Xt
s) − O(Y t

s)| < 2) ∧ (|O(Xt
e) − O(Y t

e)| < 2)
∀i ∈ N

∗ : (T (X i
s) + δ < T (Y i

s)) ∧ (T (X i
e) + δ < T (Y i

e))
Cift(X, Y, δ,L3) ≡

∀t ∈ R+ : (|O(Xt
s) − O(Y t

s)| < 2) ∧ (|O(Xt
e) − O(Y t

e)| < 2)
∀i ∈ N

∗ : T (X i
e) + δ < T (Y i

s)

152 N. Ge, M. Pantel, and X. Crégut

6 Verification of Time Property Patterns

6.1 Time Property Patterns

All the above specifications are composed by a set of time property patterns.
For example, in section 5.2, formula (2) contains the time property pattern Max
interval between two events. All the time property patterns used in the formal
specifications are listed in Table 2.

Table 2. Time Property Patterns

Time Property Pattern (Finite) Formal Specification
Max Occurrence Count ∀i ∈ N

∗ : O(Xi
s) < constant

Min time interval between the ith occurrence
of E1 and the jth occurrence of E2

∀i, j ∈ N
∗ : T (Ei

1) − T (Ej
2) > δ

Max time interval between the ith occurrence
of E1 and the jth occurrence of E2

∀i, j ∈ N
∗ : T (Ei

1) − T (Ej
2) < δ

Time Property Patterns (Infinite) Formal Specification
The next kth occurrence of event Ei Ei+k

The (i/k)th occurrence of event Ei Ei/k

Occurrence difference ∀t ∈ R+, k ∈ N
∗ :

|O(Xt
s)/k − O(Y t

s)| < δ

Min time interval between the ith occurrence
of E1 and the jth occurrence of E2

∀i ∈ N
∗, k ∈ N

∗, b ∈ N, j = i · k + b :
|T (Ei

1) − T (Ej
2)| > δ

Max time interval between the ith occurrence
of E1 and the jth occurrence of E2

∀i ∈ N
∗, k ∈ N

∗, b ∈ N, j = i · k + b :
|T (Ei

1) − T (Ej
2)| < δ

In the case study, the specification of coincidence time constraint in infinite time
scope is composed by 4 time property patterns (Table 3). To assess the coincidence
time constraint, the method will compute the values of these 4 quantitative prop-
erty patterns. The verification method will be introduced in the next section.

Table 3. Time Property Patterns in Coincidence Constraint (Infinite Time Scope)

Formal Specification Time Property Pattern
Xi+1

s Representation of the next occurrence of event Xi
s

|O(Xt
a) − O(Y t

a)| < δ Occurrence number difference between events Xt
a and Y t

a

|T (Xt
a) − T (Y t

a)| < δ Max time interval between events Xt
a and Y t

a

T (Xi
e) + δ < T (Y i+1

s) Min time interval between events Xt
a and Y t

b

6.2 Observer-Based Model Checking on TPN

To assess the time property patterns by model checking, the commonly used
formal methods rely on a translation of the user models into a formal verifiable
language and express the required properties using verifiable formal expressions.

Formal Specification and Verification of Task Time Constraints 153

[20,40] [3,10]
n

[11,15]

[19,27]

T1P1

Fig. 7. Time Petri Net Example

TPN is selected as the verification model in this work, because it allows express-
ing and verifying time properties within both logical and chronometric time
models. Fig. 7 is a TPN example. Compared to Petri Nets, the transitions in
TPN are extended with a time constraint that controls the firing time. For ex-
ample, transition T1 is attached with time constraint [19,27]. When the token
arrives at place P1, the local timer of T1 starts. Between 19 and 27 time units,
T1 can be fired.

To verify one time property pattern, the user model is translated into TPN
model, then an observer TPN structure is added into it, and TINA is used to ver-
ify the observer-dedicated LTL/CTL/Marking assertions on the combined TPN.
As model checking significantly consumes time and memory resource, we use 2
approaches to ensure verification performance. First, when model checking, TPN
shall perform the highest possible abstraction to unfold the reachability graph.
This high abstraction model should preserve the desired time property. The
model-checking is on-the-fly. Second, each formula’s verification is independent
in terms of reachability graph generation, so a parallel computation is possible.

6.3 Verification of Time Property Pattern |T (at) − T (bt)| < δ

One of the property patterns, |T (at) − T (bt)| < δ, is used to illustrate the
verification method. For the page limits, the other observers will be presented in
another paper or technical report. The principle for deciding whether two events
are always occurring in a given bound is to find out whether one could advance
the other by time δ.

An observer pattern (Fig. 8) is added to the original TPN. The middle tran-
sition will always instantly neutralize the tokens from the places Occ A and Occ
B except when one token waits for a time longer than δ that leads to the firing
of the Pass transition. To guarantee the termination of model checking, the pat-
tern is extended by adding a large overflow number on the tester’s incoming arc.
Places tester A and tester B are used to detect this exception. In the generated
reachability graph, it only requires to verify if tester A or tester B has marking.
The formula is: ♦(testerA = 1) ∨ ♦(testerB = 1).

Once it is known how to verify |T (at) − T (bt)| < δ, it is possible to change
δ to compute a near optimal tolerance. If |T (at) − T (bt)| < δ + 1 is verified as
true, but false for |T (at) − T (bt)| < δ, then the near optimal tolerance is δ + 1.
In order to improve the computation efficiency, a dichotomy search is used to
reduce the complexity from O(N) to O(log N) using divide and multiply by two
instead of add or subtract one.

154 N. Ge, M. Pantel, and X. Crégut

Event A

tester A

overflow

[δ,δ]

Observer

 Event B

tester B

[δ,δ]

overflow

[0,0]

Occ A Occ B

Pass A Pass B

Fig. 8. |T (At) − T (bt)| < δ Pattern TPN Observer

6.4 Computational Complexity Analysis

Coincidence time constraint is taken as example to analyse the computational
complexity. As the observers for infinite and finite time scope are different, the
two cases are respectively analyzed. To simplify the presentation, one Kripke
Transition Systems (KTZ) generation time is taken as the unit of time (ut).

In the infinite time scope, according to Table 3 and Specification 1, its formal
specification contains 4 time property patterns: Representation of the next oc-
currence of event, Occurrence difference between events Xt

a and Y t
a , Maximum

time interval between events Xt
a and Y t

a , and Minimum time interval between
events Xt

a and Y t
b . For formula (1), it will respectively calculate the value for

|O(Xt
s)−O(Y t

s)| < 2 and |O(Xt
e)−O(Y t

e)| < 2. Each of them corresponds to one
KTZ generation for the TPN with observer. Thus, the computational complex-
ity for formula (1) is 2(ut). Likewise, the computational complexity for formulas
(2) and (3) are both 2(ut). The computational complexity of coincidence in in-
finite time scope is 6(ut). Thus, in the infinite time scope, the computational
complexity is a constant, which means it is independent of the system’s design.

In the finite time scope, according to Specification 2, it also contains 3 prop-
erty patterns. In formula (4) (O(Xs) = O(Ys)) ∧ (O(Xe) = O(Ye)), it will
calculate the occurrence’s upper bound of start event and end event. The up-
per bound of event’s occurrence is denoted A. As a dichotomy search is used
to reduce the complexity, the computational complexity of O(Xs or O(Xe)
is A · log2 A, denoted as B. Thus, the computational complexity of formula
(4) is 2B(ut). In formula (5), to calculate |T (X i

s) − T (Y i
s)| < δ, is in fact

to calculate respectively T (X i
s) − T (Y i

s) < δ and T (Y i
s) − T (X i

s) < δ. For
each of them the complexity is A(ut), because it should calculate the times
of the upper bound of the event’s occurrence. Thus, the complexity of formula
(5) is 4A(ut), and of formula (6) is 2A(ut). The whole computational com-
plexity of coincidence in finite time scope is 6A+2B. Thus, in the finite time
scope, the computational complexity depends on the complexity of system’s
design.

Formal Specification and Verification of Task Time Constraints 155

Table 4. Computational Complexity of Task Time Constraints

Task Time Constraint Finite Time Infinite Time
Coincidence 6A + 2B 6

Synchronization 2A + 4B 4

Exclusion 6A2 8

Sub-occurrence 7A2 + 2B 6

Precedence (less strict) A 3

Precedence (strict) 2A 4

Precedence (very strict) A 3

Causality (less strict) A + 2B 3

Causality (strict) 2A + 2B 4

Causality (very strict) A + 2B 3

The computational complexity of all the mentioned time constraints are listed
in Table 4, for both finite and infinite time scope. These numbers allow to con-
clude that the verification method guarantees a low computational complexity.

6.5 Performance Analysis

In TPN model checking, the computational performance depends on both the
cost of generating the KTZ and the cost of assessing the formulas for the KTZ.
The former produces the major cost, while the later produces the minor cost once
the decidability has been proved. The computational performance is analyzed
for the time property patterns, then the computational performance of the task
time constraints can be deduced using the complexity table, Table 4.

As the performance depends on the system’s scale, it is important to mea-
sure the performance influence produced by the observer TPN added into the
original TPN. Both the performance of the original TPN and of the observer-
added TPN are evaluated. This influence is computed by comparing the KTZ
generation cost of the original TPN and that of the observer-added TPN. In or-
der to make this performance result demonstrate that the method is applicable
for pragmatic systems, the systems are randomly generated scaling from 2 to
10 parallel threads, where each thread disposes of 10 to 100 periodic tasks. As
shown in Fig. 9, the influence for pattern Occurrence Difference is controlled
in 15%; for pattern Maximum Time Interval, it is controlled in 40%; and for
pattern Minimum Time Interval is also controlled in 40%. The influence test
result demonstrates that the over-cost of the observer is very slight, thus, the
observer-based model checking method’s performance is very stable. If the origi-
nal TPN can terminate its KTZ generation in an acceptable time range,the cost
of time constraint’s verification is also acceptable. This demonstration is for the
infinite time scope property patterns.

The same approach allows to demonstrate the performance for the property
patterns in finite time scope, the results are given in Fig. 10. For the page limits,
the analysis is not detailled.

156 N. Ge, M. Pantel, and X. Crégut

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0 10 20 30 40 50 60

di
ffe

re
nc

e
to

 o
rig

in
al

 T
P

N
 (

%
)

system scale

Occurrence difference
Max interval
Min interval

Fig. 9. Performance Influence of the Observer-Based Model Checking Method

-10

 0

 10

 20

 30

 40

 0 10 20 30 40 50 60

di
ffe

re
nc

e
to

 o
rig

in
al

 T
P

N
 (

%
)

system scale

Max occurrence count
Min/Max interval

Fig. 10. Performance Influence of the Observer-Based Model Checking Method

7 Conclusion

The common specification and verification methods of system’s time constraint
focus on event-level constraints without the consideration of quantitative time
tolerance. This paper presents a formal specification and verification method
for system’s task-level time constraints, including synchronization, coincidence,

Formal Specification and Verification of Task Time Constraints 157

exclusion, precedence, sub-occurrence, causality in both finite and infinite time
scope. We translate non verifiable task-level time constraints into verifiable spec-
ifications composed by a set of time property patterns. These time property pat-
terns are quantitative and independent from both the design modeling language
and the verification language. To assess these time property patterns, we use
an observer-based model checking method relying on TPN. The computational
complexity and the method’s performance are analyzed. This task-level time
constraints specification and verification method has been integrated in a time
properties verification framework for UML-MARTE safety critical RTS.

In the future, on the technical side, we will optimize TPN models by find-
ing some reducible structural patterns non-influencing the system’s behavior to
improve the performance of verification. On the application side, we will apply
this approach in the industrial applications, and integrate this reusable approach
into other time properties verification dedicated frameworks.

References

1. André, C.: Verification of clock constraints: CCSL Observers in Esterel. Rapport de
recherche RR-7211, INRIA (February 2010)

2. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool tina - construction of abstract
state spaces for petri nets and time petri nets. International Journal of Production
Research 42(14), 2741–2756 (2004)

3. Ge, N., Pantel, M.: Time Properties Verification Framework for UML-MARTE
Safety Critical Real-Time Systems. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E.,
Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 352–367. Springer,
Heidelberg (2012)

4. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal on
Software Tools for Technology Transfer (STTT) 1, 134–152 (1997)

5. Merlin, P., Farber, D.: Recoverability of communication protocols–implications of a
theoretical study. IEEE Transactions on Communications 24(9), 1036–1043 (1976)

6. Object Management Group, Inc.: OMG Unified Modeling LanguageTM, Superstruc-
ture (February 2009)

7. Object Management Group, Inc.: UML profile for MARTE: modeling and analysis
of real-time embedded systems version 1.0 (2009)

8. Peraldi-Frati, M., DeAntoni, J.: Scheduling multi clock real time systems: From
requirements to implementation. In: 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Comptuing (ISORC),
pp. 50–57. IEEE (March 2011)

9. Suryadevara, J., Seceleanu, C., Pettersson, P.: Pattern-driven support for designing
component-based architectural models. In: 18th IEEE International Conference on
Engineering of Computer-Based Systems (ECBS). IEEE CS (April 2011)

The WCET Analysis Tool CalcWcet167

Raimund Kirner

University of Hertfordshire, United Kingdom
r.kirner@herts.ac.uk

Abstract. Determining upper bounds for the worst-case execution time
(WCET) is mandatory to ensure timeliness of hard real-time systems.
To be of practical use, such WCET estimates also have to be precise.

In this paper we present the WCET analysis tool CalcWcet167, which
supports the Infineon C167 processor as its main target. CalcWcet167
was designed with the goal to enable research on WCET analysis. This
is achieved by interfacing to a modified version of the GCC compiler.
Besides describing the tool by itself, we show what kind of useful research
has been enabled by this approach.

1 Introduction

The knowledge of the worst-case execution time (WCET) [1] is a vital input
for proving the temporal correctness of real-time systems. While two decades
of research on WCET analysis have created significant progress, there are still
hurdles towards widespread use of WCET analysis in practice [2].

It would push the industrial practice if vendors of commercial development
tools find their niche to support WCET analysis, especially compiler vendors [3].
Also from the academic side it is highly beneficial to have WCET support by
development tools, in order to bring together and link the different research
activities of WCET analysis [4].

In this paper we present the WCET analysis tool CalcWcet167 and its tool
chain. Central to this tool chain is that the compiler is a modified GCC version
that supports WCET analysis. The contribution of this paper is on one side
the technical aspect of how to model the jump cache of the Infineon C167CR
within the establish IPET method to calculate the WCET estimate. On the
other side, the contribution is to summarise several research activities around
CalcWcet167, providing evidence that support of WCET analysis by devel-
opment tools like a compiler, would provide an effective leverage to widen the
industrial use of WCET analysis methods. CalcWcet167 has been also applied
to industrial case studies within the FP5 project SETTA. In one industrial case
study from the automotive domain is has been possible with that to explain the
reasion behind some rarely occuring timing variations of significant magnitude.

Section 2 motivates and explains the tool chain of CalcWcet167. In Sec-
tion 3 we describe wcetC, the annotation language of CalcWcet167. Cal-

cWcet167 supports as main processor backend the Infineon C167CR, which

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 158–172, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The WCET Analysis Tool CalcWcet167 159

is described in Section 4. In Section 5 we discuss how the architecture of Cal-

cWcet167 has inspired and enabled research onWCET analysis beyondWCET
analysis tools themselves. There is no explicit section of related work, as this
paper focuses on telling the story around the tool CalcWcet167. However, in-
dividual sections cite relevant articles, which contain the related work for further
reading. Section 6 concludes this paper.

2 Overview of CalcWcet167

The development of the WCET analysis tool CalcWcet167 wasn’t started in
the classical way, i.e., choosing a target platform where the program to be anal-
ysed will be running on and a compiler that produces the code to be analysed.
CalcWcet167 was started as a research activity with the primary goal of pro-
viding WCET bounds for simulation models programmed in Matlab/Simulink.
The choice of the target hardware was merely driven by interest of research
partners and the choice of compiler was driven by the requirement of being
open source and of providing code generation for the chosen target hardware.
As target hardware, the Infineon C167CR has been chosen, as it was a common
processor in the automotive domain. This left as the only compiler choice the
GCC 2.7.2 ported by the German company HighTec EDV-Systeme GmbH to
the C167. This section summarises the overall tool chain of the WCET analysis
framework. Further details on the input language and the hardware backend are
described in Section 3 and Section 4.

The result of this initial research requirements resulted in a WCET analysis
tool chain as shown in Figure 1. What is important, is the fact that the compiler
has become part of the WCET analysis tool chain. This was needed, as we did
also research on the Matlab/Simulink code generator in order to generate au-
tomatically flow information like loop bounds [5]. To support this, we designed
a variant of the ANSI C language, which we called wcetC, and extended the
GCC compiler to parse the additional keywords and maintain the flow infor-
mation during the compilation. In the following we call this modified compiler
wcet-GCC. The annotation concepts of wcetC are detailed in Section 3. Fur-
thermore, we restricted the programming language compared to ANSI C in order
to allow for better WCET analysability [6]: No use of function pointers, recursive
function calls, goto, setjmp(), longjmp(), signal(), and exit().

Inherited from GCC, wcet-GCC processes during compilation each subroutine
separately. Thus we generate for each subroutine func() of the source program
a machine code file wcet func.s that includes the flow information transformed
to the machine code, as shown in the centre of Figure 1.

The WCET analysis tool CalcWcet167 takes as main input 1) the anno-
tated machine code files of each subroutine of the source program, 2) an optional
list of WCET bounds for library functions, and 3) an optional description of the
target hardware configuration.

The output of the WCET analysis is the calculated WCET bound. But since
this analysis framework includes the complete development tool chain, we also

160 R. Kirner

CalcWcetC167CalcWcetC167

wcet GCCwcet GCC

hardware

configuration

hardware

configuration

<prog>.c<prog>.c

flow infoflow info

wcet_<func>.swcet_<func>.s

flow infoflow info

wcet_<func>.swcet_<func>.s

flow infoflow info

wcet_<func>.swcet_<func>.s

flow infoflow infoflow infoflow info
wcet_<func>.swcet_<func>.s

WCET resultWCET result

wcet_<func>.swcet_<func>.s

WCET resultWCET result

wcet_<func>.swcet_<func>.s

WCET resultWCET resultWCET resultWCET result

wcet_<func>.swcet_<func>.s

WCET resultWCET result

wcet_<func>.swcet_<func>.s

WCET resultWCET result

wcet_<func>.cwcet_<func>.c

WCET resultWCET resultWCET resultWCET result

WCET estimateWCET estimate

back

annotation

Fig. 1. WCET Analysis with Compiler-support

provide back-annotation of the WCET results to the machine code and the source
code. The WCET results at machine code level are given per machine instruction,
and for the source code per source line, using the debug information generated
by the compiler in order to map the instruction timings. Here we have to state
that the back-annotation to the source code is only as good as it can be with
the compiler’s debug information: With full optimisation during compilation,
the distribution of the individual WCET contributions to the source code can
be counter-intuitive to the users. For example, in order to further manually
optimise the code, the developer might need to have a look at the WCET results
at machine-code level as well.

Implementation details of the presented WCET analysis tool chain can be
found in [6]. Further features of the tool CalcWcet167 are briefly described
in it’s user’s manual [7], available at the tool homepage1.

3 The Annotation Language wcetC

Flow information to guide the WCET analysis can be annotated manually, or,
with the help of an approriate static program analysis, calculated automati-
cally. The preferred code level to annotate with properties of flow information
in our tool chain is the source code. Annotations at source code allow to write
compiler/hardware-independent automatic calculations of flow information. Also

1
CalcWcet167: http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/

http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/

The WCET Analysis Tool CalcWcet167 161

manual annotations are more convenient at the source level, since the user has
typically more knowledge about program behaviour at source level than on
machine-code level, and the machine code would have to be re-done or checked
whenever the compiler switches are changed.

The mapping between flow information and source code could be done in
several ways. On one side it could be done by separate annotation files that have
hooks to link to the source code. On the other hand, it could be done inside the
code, either by compiler-specific pragma statements or by extending the source
language by additional keywords. We have chosen for the language wcetC the
latter option, as this provides to most robust mapping between annotations and
source code in the case the code gets modified.

1 /∗ Constants f o r LANGWCET to s e l e c t the r i g h t keywords . ∗/
2
3 #de f i n e OTHER 0x00 /∗ no annotat ions ∗/
4 #de f i n e WCETC 0x01 /∗ wcetC ∗/
5 #de f i n e WCETCC 0x02 /∗ wcetCc ∗/
6
7 #i f n d e f LANGWCET
8 #de f i n e LANGWCET WCETC
9 #end i f

10
11 /∗ De f i n i t i o n s o f wrappers f o r the wcetC grammar ∗/
12
13 #i f d e f i n ed (LANGWCET) && ((LANGWCET)==WCETC | | (LANGWCET)==WCETCC)
14 #i f (LANGWCET) == WCETC /∗ WCETC ∗/
15 #de f i n e WCET LOOPBOUND(x) maximum (x) i t e r a t i o n s
16 #de f i n e WCET SCOPE(x) scope x
17 #de f i n e WCETMARKER(x) marker x
18 #de f i n e WCET RESTRICTION(x) r e s t r i c t i o n x
19 #de f i n e WCET ADD CYCLES(x) addcyc l e s (x)
20 #e l s e /∗ WCETCC ∗/
21 #de f i n e WCET LOOPBOUND(x) wcet maximum (x) wc e t i t e r a t i o n s
22 #de f i n e WCET SCOPE(x) wcet scope x
23 #de f i n e WCETMARKER(x) wcet marker x
24 #de f i n e WCET RESTRICTION(x) w c e t r e s t r i c t i o n x
25 #de f i n e WCET ADD CYCLES(x) wcet addcyc l e s (x)
26 #end i f
27 #d e f i n e WCET BLOCK BEGIN(x , y) wcet b lockbeg in (x , y)
28 #de f i n e WCETBLOCK END(x) wcet blockend (x)
29 #de f i n e WCET BUILD INFO(x) wc e t bu i l d i n f o (x)
30 #e l s e /∗ ANSI C ∗/
31 #de f i n e WCET LOOPBOUND(x)
32 #de f i n e WCET SCOPE(x)
33 #de f i n e WCETMARKER(x)
34 #de f i n e WCET RESTRICTION(x)
35 #de f i n e WCET ADD CYCLES(x)
36 #de f i n e WCET BLOCK BEGIN(x , y)
37 #de f i n e WCETBLOCK END(x)
38 #de f i n e WCET BUILD INFO(x)
39 #end i f

Fig. 2. Excerpt of wcet.h - The language dialect selection mechanism

Even though wcetC extends the ANSI C language by additional keywords,
the annotated programs can still be compiled by any non-WCET-aware C com-
piler. This is achieved by using macro definitions for all the keywords, as shown

162 R. Kirner

in Figure 2. As detailed in [8] there are two versions of the annotation language:
the original definition (chosen by defining macro WCETC) proposes short names
for the added keywords, quite likely resulting in name conflicts with an exist-
ing program code. Thus we later proposed another version (chosen by defining
macro WCETCC), which has added the prefix wcet to each keyword in order to
make name conflicts less likely. In the following we briefly discuss these language
extensions based on the macro names given in Figure 2:

WCET LOOP BOUND(x) is added to loops in order specify with the expression X
the loop bound, i.e., the maximum loop iteration count. X is an integer
expression, allowing operands like pow, min, max, log, log2, and log10.
Using macro definitions helps to hold code behaviour and flow annotations
in sync.

WCET MARKER(x)/WCET RESTRICTION(x)/WCET SCOPE(x) allows to express lin-
ear constraints between the total program execution count at different
code locations. The different code locations are given symbolic names by
WCET MARKER(X), which labels the place where it is written with the name
X. The WCET RESTRICTION(X) statement allows to specify as argument X a
linear flow constraint of the total program execution count between an arbi-
trary number of code locations, labelled by WCET MARKER. To enforce a more
regular placement of flow restrictions, we added WCET SCOPE(x) as a scope
boundary, were flow restrictions described by WCET RESTRICTION can be only
placed at the end of such a scope.

WCET ADD CYCLES(x) can be added at a code location in order to tell the WCET
analysis to add to the execution cost of the local block further execution time
of X cycles. This statement can be used to specify the WCET of library calls
for which the code is not available for analysis, or to describe timing that
depends on the underlying platform, e.g., flash update times.

WCET BLOCK BEGIN(x)/WCET BLOCK END(x) are used to partition the program
source code into named regions, with the name specified in X. The purpose
of this mechanism can be manifold, but originally we developed it in order to
mark code borders of different Matlab/Simulink block sets at source code
level, which is mapped by the compiler wcet-GCC down to machine code,
where the WCET analysis is done. Finally, this provides a back-propagation
mechanism of WCET results beyond the level of source code.

WCET BUILD INFO(x) is a simple version control support for the WCET analysis
framework, as it allows to pass a character string X to all the different output
files produced by the WCET analysis.

To give an impression of how the use of the language wcetC looks like, an an-
notated version of the commonly known search algorithm BubbleSort is given in
Figure 3. The constant N EL, defined in line 6, serves for both, the implementa-
tion of the algorithm, as well as the flow information given by the annotations.
In line 20 and 25 the loop bounds for the nested loops is given. The linear flow
constraint given in line 36 together with the auxiliary annotations in line 15
and 27 expresses the fact that the execution count of the inner loop is signifi-
cantly lower than the execution count of the entry of the outer loop multiplied

The WCET Analysis Tool CalcWcet167 163

1 #i f n d e f LANGWCET
2 #de f i n e LANGWCET WCETCC
3 #end i f
4 #inc l ude ”wcet . h”
5
6 #de f i n e N EL 10
7
8 /∗ Sort an array o f 10 e lements with bubble−s o r t ∗/
9 void bubble (i n t a r r [])

10 {
11 /∗ De f i n i t i o n o f l o c a l v a r i a b l e s ∗/
12 in t i , j , temp ;
13
14 /∗ Main body ∗/
15 WCET SCOPE(BS)
16 {
17 f o r (i=N EL−1;
18 i > 0 ;
19 i−−)
20 WCET LOOPBOUND (N EL − 1)
21 {
22 f o r (j = 0 ;
23 j < i ;
24 j++)
25 WCET LOOPBOUND (N EL − 1)
26 {
27 WCETMARKER (M) ;
28 i f (a r r [j] > a r r [j +1])
29 {
30 temp = ar r [j] ;
31 a r r [j] = ar r [j +1] ;
32 a r r [j +1] = temp ;
33 }
34 }
35 }
36 WCET RESTRICTION (M <= (N EL∗(N EL−1)/2)) ;
37 }
38 }

Fig. 3. wcetC source code of BubbleSort, annotated with flow information

by both loop bounds. This additional information allows to eliminate a WCET
overestimation of about 100%.

4 Processor Modelling

In this section the processor backend for the Infineon C167CR of the tool Cal-

cWcet167 is presented.

4.1 The Infineon C167CR

The Infineon C167CR processor is a relatively simple architecture compared
to many newer processors of the embedded domain, like the Infineon TriCore
1796, which includes three microcontrollers in one chip. However, the challenge
with modelling the temporal behaviour of the C167CR was that there is no
accurate timing documentation of the processor available. When deriving the
timed processor model from the available documentation, we used systematic

164 R. Kirner

measurements in order to calibrate the timing behaviour against the observed
timing deviations compared to the processor documentation [9]. We were also
working in close collaboration with Infineon in order to explain our measured
timing behaviour. The results of the obtained timing model are documented in
detail in [10].

1 #
2 # in f o : memory l o c a t i o n can be a combination o f ROM | RAM | EXT
3 #
4 EXEC LOCATION = EXT
5 READ LOCATION = EXT
6 WRITE LOCATION = EXT
7 #
8 # in f o : ACT = 2 + (BTYP & 1) + (15 − MCTC) + (1 − MTTC) + ALECTL
9 #

10 # BTYP (2 b i t) , Exte rna l Bus Conf igurat ion
11 # 00 . . . 8 b i t demul t ip l exed bus
12 # 01 . . . 8 b i t mul t ip l exed bus
13 # 10 . . . 16 b i t demult ip l exed bus
14 # 11 . . . 16 b i t mul t ip l exed bus
15 # MCTC (4 b i t) , Memory Cycle Time Control : 15−MCTC
16 # MTTC (1 b i t) , Memory Tr i s t a t e Time Control
17 # ALECTL (1 b i t) , ALE Lengthening Control
18 #
19 BTYP = b 11
20 MCTC = b 0000
21 MTTC = b 1
22 ALECTL = b 1
23 MODEL JUMPCACHE = true

Fig. 4. Hardware configuration options for the C167CR backend

To give an impression of hardware configuration parameters that influence
the instruction timing of the Infineon C167CR, Figure 4 shows a documented
example of a CalcWcet167 hardware configuration file for the C167CR back-
end. As shown in lines 4 to 6, one can specify the memory type for different
memory access categories (instruction fetching, data read operations, and data
write operations). The current version does not allow to specify multiple mem-
ory types for a memory access category. The lines 19 to 22 specify the access
time to the external memory, following the formula given as a comment in line
8. The meaning of the different hardware register names can be found in the
hardware documentation given by the manufacturer [11]. The flag in line 23
specifies whether CalcWcet167 should model the jump cache of the C167CR
processor. More details on the jump cache and how it is modelled is given in
Section 4.3.

4.2 The IPET Method

The implicit path enumeration method (IPET) is the standard method in static
WCET analysis to calculate the WCET estimate [12,13]. The IPET method
operates on the control-flow graph (CFG) of the program to be analysed. The
CFG is a tuple 〈N,E, s, t〉, whereN is the set of program nodes (e.g., basic blocks
or single instructions), E ⊆ N ×N is the set of control-flow edges between the

The WCET Analysis Tool CalcWcet167 165

program nodes, and s is a unique start node and t a unique termination node of
the program. The requirement of s and t to be unique is for simplicity reasons
only.

The IPET method can be applied to the CFG in different ways, by either
modelling the nodes, the edges, or the combination of them. Modelling only the
nodes would have the serious disadvantage that flow information about CFG
edges cannot be expressed in the model. This would be dissatisfactory, as the
general benefit of the IPET method is, compared to other methods, that it can
directly take into account arbitrary linear flow constraints [14]. Thus we chose to
model the edges of the CFG, while modelling both, nodes and edges, would not
add any expressiveness, but just adds convenience in writing some of the flow
information at the price of a longer constraint system with more constraints.

We map the instructions of a CFG node ni to all of its outgoing edges ej =
〈ni, 〉. In case that a node has more than one outgoing edge, then the different
edges represent program instructions with a conditional branch at the end, each
edge representing a different branch decision (taken or not taken). For each
edge ei ∈ E we assume an execution cost ci, given as a constant value. Using
variables fi for each edge ei that denotes the total execution count of edge ei
during program execution, we can formulate the following goal function for the
IPET method:

WCET c = max
∑

i=j,ej∈E

fi ∗ ci (1)

To complete the IPET constraint system, additional constraints have to be added
to make the resulting WCET estimate bounded and precise:

1. All the execution frequency variables must no be assigned negative values:

∀ei ∈ E. fi ≥ 0 (2)

2. The structure of the CFG has to be expressed as flow equations over the
execution frequency variables:

∀ni ∈ N\{s, t}.
∑

k=j,ej=〈 ,ni〉
fk =

∑
k=j,ej=〈ni, 〉

fk (3)

∀ej = 〈ni, t〉 ∈ E. fj = 1 (4)

∀ej = 〈s, ni〉 ∈ E. fj = 1 (5)

Equation 3 expresses the fact the flow going into a node has to be the same
as the flow leaving the node. Equation 4 and Equation 5 state that the entry
edge and exit edge of the program has to executed exactly once.

3. Flow information that restricts the count and form of traces the CFG is able
to describe. Such flow information can be of any form of flow constraints.
For example, assuming there is loop in the program with loop-entry edge ei

166 R. Kirner

and loop-body edge ej and the upper bound of the loop iteration count is
LB . Then the following constraint describes this loop bound:

fi ∗ LB ≤ fj (6)

Maximising Equation 1 in combination with the additional constraints will result
in a WCET estimate by IPET. Besides that, the valuation of the different flow
variables gives a rather abstract hint of what has been considered the worst-case
execution path.

4.3 Extended IPET to Model Processor Behaviour

With the IPET model presented in Section 4.2 we are already able to model
processor behaviour with different execution times of a conditional branch if be-
ing taken or not. What is missing, is the ability to express different execution
costs of an edge ei ∈ E depending on the execution history, as, for example,
would be necessary to model caches. Steven Li et al. have shown in an impres-
sive way that behaviour of direct-mapped and even set-associative caches can
be modelled directly inside the IPET constraint system [12,15]. However, this
original work already revealed that IPET does not really scale to that level of
complexity, as the resulting constraint systems are much bigger than the purely
CFG-based systems.

However, the jump cache of the C167CR is rather simple to model, as it con-
tains only a small state, one jump target instruction, and is only relevant in
rather local code areas, the innermost loops of programs. Basically, the jump
cache stores the jump target of the latest previously executed and taken con-
ditional jump. In the C167CR, only the instructions JB, JBC, JNBS, JMPA, and
JMPR can influence the content of this single-entry jump cache. A jump cache
has a similar effect to a dynamic branch predictor, but instead of pre-fetching it
caches the target instruction.

To model the jump cache we have to identify those CFG edges whose last
instruction can potentially benefit from the jump cache. We denote this set of
edges as JCC (jump-cache candidates), which is a strict subset of the edges:
JCC ⊂ E. In our implementation JCC contains only those edges ei ∈ E that
fulfil all of the following properties:

1. The last instruction of ei is one of the conditional jump instructions JB, JBC,
JNBS, JMPA, or JMPR.

2. The edge ei represents the jump-taken outcome of the conditional jump
instruction.

3. The edge ei is the back-edge of an innermost loop.

This is the most common pattern to be observed in practical code, where the
jump cache may have an effect. Another case would be, for example, where a
callee is called multiple times in sequence from within the caller. However, for
simplicity, we focused only on what we considered the most effective code pattern
to be supported.

The WCET Analysis Tool CalcWcet167 167

Furthermore, we have to identify all the other CFG edges that can destroy
the jump cache content of each edge ei ∈ JCC . We denote this set as CCC (ei)
(cache-conflict candidates). For an edge ei ∈ JCC the set CCC (ei) includes all
the edges ej that fulfil all of the following properties:

1. The last instruction of ej is one of the conditional jump instructions JB, JBC,
JNBS, JMPA, or JMPR.

2. The edge ej represents the jump-taken outcome of the conditional jump
instruction.

3. The edge ej is placed within the innermost loop of which ei is the back edge.
4. There is no other edge ek with a taken conditional branch inside the inner-

most loop of which ei is the back edge, such that ek dominates ej . If such
an ek would exist, than there would be no need to include ej as well, since
ek already causes the eviction of ei’s target from the jump cache.

To model the jump cache in IPET we assign for each edge ei ∈ JCC the basic
execution cost ci for the case of a cache hit. The extra fetch penalty that has to
be paid in case of a cache miss is denoted as cpi. Actually, in reality the status of
the jump caches influences the execution time of the jump-target instruction, as
fetching the instruction is part of it, and not the execution time of the conditional
jump. However, it can be more easily modelled if we assign this jump penalty to
the edge with the jump instruction.

By using pi as the execution-frequency variable that represents all cache-miss
branch-taken of an edge ei ∈ JCC we extend the original IPET goal function of
Equation 1 to the goal function that includes the jump-cache miss penalties, as
given in Equation 7.

WCET c = max

⎛
⎝ ∑

i=j,ej∈E

fi ∗ ci +
∑

i=j,ej∈JCC

pi ∗ cpi

⎞
⎠ (7)

All these additional constraints listed in Section 4.2 still have to be applied. But
besides that, we have to add additional constraints to limit the number of miss-
penalties of the jump cache. For this we define pji as the execution-frequency
variable of how often an edge ej ∈ CCC (ei) destroys the jump-cache content of
edge ei. Further, we denote eentry,i the loop-entry edge and ebody,i the loop-body
edge of the surrounding loop of any edge ei ∈ JCC . Based on these definitions,
the following constraints have to be added:

1. The number of miss-penalties caused by all the interfering edges of CCC (ei)
cannot be at most the execution count of the body-edge of the surrounding
loop:

∀ei ∈ JCC .

⎛
⎝ ∑

ej∈CCC(ei)

pji

⎞
⎠ ≤ fbody,i (8)

168 R. Kirner

2. An interfering edge ej ∈ CCC (ei) cannot cause more miss penalties than ej
is executed:

∀ei ∈ JCC ∀ej ∈ CCC (ei). p
j
i ≤ fj (9)

3. There can be no more miss penalties than the number of executed interring
edges ej ∈ CCC (ei) and number of entries into the surrounding loop of ei:

∀ei ∈ JCC . pi ≤

⎛
⎝ ∑

ej∈CCC(ei)

pji

⎞
⎠+ fentry,i (10)

4. The surrounding loops of any ei ∈ JCC can only be of do-while form, since
the cached jump needs to be a taken jump. Thus, the last iteration of the
surrounding loop cannot cause any miss penalty:

∀ei ∈ JCC . pi ≤ (fbody,i − fentry,i) (11)

1 #de f i n e UPPERLIMIT 20
2 typede f i n t v e c t [UPPERLIMIT] ;
3 ve c t ArrayA , ArrayB ;
4
5 void ArrCopy (ve c t ArrayA , ve c t ArrayB)
6 {
7 in t Index=0;
8
9 do WCET LOOPBOUND (UPPERLIMIT)

10 {
11 ArrayB [Index] = ArrayA [Index] ;
12 Index++;
13 }
14 whi l e (Index < UPPERLIMIT) ;
15 }

Fig. 5. Example program that potentially facilitates the C167’s jump cache

Discussion. The jump cache modelling within IPET is safe in the sense that it
will not underestimate the penalties resulting from jump cache misses. But over-
estimation is possible. For example, assuming two or more conditional jumps are
inside the loop body and these jumps are executed at the same loop iterations,
then this behaviour cannot be expressed by the flow information and modelled
in the IPET method. However, loops often do not have such complex control,
resulting in a precise modelling of the jump cache.

To give an example of the effect of the jump cache modelling, consider the sam-
ple program given in Figure 5. Without modelling the jump cache, the WCET
would be 3198 cycles, while enabing the jump cache analysis reduces the WCET
to 3090 (3.4% reduction).

The WCET Analysis Tool CalcWcet167 169

5 Enabling Research WCET-Related Research

After describing the unconventional initial requirements for developing the tool
CalcWcet167 and the WCET analysis tool chain it belongs to, we give in
the following examples, of how this approach was helpful to facilitate further
research on WCET analysis.

5.1 Annotation Languages at Source Code-Level

The WCET analysis framework based on CalcWcet167 allowed to work on
flow information annotation languages at source-code level. While the WCET
analysis has to be done at machine-code level to get utmost accuracy, it is more
convenient to provide code annotations at source-code level [16,17]. Even though
first contributions to source-level languages for WCET analysis started at least
as early as 1986 [18], the design of wcetC for source-level code annotations
with flow information (see Section 3) provided one of the first contributions
of source-based annotation languages that provide information to be used for
WCET analysis at machine-code level.

The topic of source-level annotation languages for WCET analysis is still a
demanding one, as much more work has to be spent towards a common WCET
annotation language, for which a design challenge has been raised in 2007 [19].
As a contribution in that direction we made a discussion and comparison of
different existing annotation languages of WCET tools [20].

5.2 Transformation of Flow Information

The compiler as a tool that knows the relation between program representation
at different levels, can provide very helpful support for the WCET analysis.
Especially the update of code annotations and ensuring of code properties are
domains where the compiler could help [16,3].

After an early attempt of transforming flow information during optimising
compilation that solved the problem only partially [21,22], the research around
the WCET analysis tool chain of CalcWcet167 finally provided a solution
that has been proven powerful enough to transform and update arbitrary flow
constraints during code optimisation [5,17].

Besides our own tool chain, this approach has also been implemented [23]
within another research compiler [24,25].

5.3 WCET Analysis for Case Tools Like Matlab/Simulink

Modelling tools like Matlab/Simulink provide automatic code generation from
the model. Research on WCET analysis for such case tools is naturally sup-
ported by the presented WCET analysis tool chain that provides a WCET-aware
compiler. It was actually the original motivation to perform WCET analysis
of Matlab/Simulink models, which led to the design of the WCET analysis

170 R. Kirner

framework facilitatingCalcWcet167. We extended the code generator of Mat-

lab/Simulink to generate code annotations at C level, in order to speed up and
simplify WCET analysis [26].

5.4 TU-Bound

The tool CalcWcet167 does not provide any automatic extraction of flow
information from the program code and relies on code instrumentations in-
stead. However, its ability to accept annotations at C-code level, made it easy to
combine it with source-level-based program analysis tools in order to generate
flow information automatically. This resulted in the WCET analysis framework
TuBound [27]. TuBound is driven by CalcWcet167 and the wcet-GCC com-
piler to perform the WCET analysis, while research on TuBound focuses on
automatic calculations of flow information [28,29].

6 Summary and Conclusion

In this paper we have presented the tool chain behind the WCET analysis tool
CalcWcet167. While one contribution of the paper is the description of how
a jump cache, as it exists in the Infineon C167CR processor, can be modelled
within the popular IPET method, the second message of the paper is to demon-
strate how development tools geared towards supporting WCET analysis have
provided fruitful inspiration to the WCET analysis community to make WCET
analysis easier to use and more precise. We have shown this on the activities of
designing source-level WCET annotation languages, automatic transformation
of flow information during optimising compilation, WCET analysis for case tools
like modelling environments with code generation, and on automatic calculation
of flow information.

The next step for the benefit of the WCET community as a whole, could be
the establishment of a commonWCET analysis tool chain, where researchers can
bring in their specialised expertise. Furthermore, it would be interesting to see
when tool support for WCET analysis finds a niche in the commercial domain
of real-time computing, bringing the obtained research results into industrial
practice.

Acknowledgements. The research leading to these results has received fund-
ing from the IST FP7 research project “Asynchronous and Dynamic Virtu-
alization through performance ANalysis to support Concurrency Engineering
(ADVANCE)” under contract no IST-2010-248828, the European Community’s
Seventh Framework Programme [FP7,2008-2011] under grant agreement no
214373 (ArtistDesign, http://www.artist-embedded.org/http://www.artist-
embedded.org/), the Austrian Science Fund (Fonds zur Förderung der wis-
senschaftlichen Forschung) within the research project “Formal Timing Analysis
Suite of Real-Time Systems” (FORTAS-RT) under contract P19230-N13, the
Austrian Science Fund (Fonds zur Förderung der wissenschaftlichen Forschung)

http://www.artist-embedded.org/

The WCET Analysis Tool CalcWcet167 171

within the research project “Compiler-Support for Timing Analysis” (COSTA)
under contract P18925-N13, and the IST FP5 research project “Systems Engi-
neering for Time-Triggered Architectures (SETTA)” under contract IST-10043.
The author would also like to thank Pavel Atanassov for his time-intensive effort
of deriving the instruction timing for the Infineon C167CR processor.

References

1. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckman, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenstrom, P.: The worst-case execution time prob-
lem - overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS) 7(3) (April 2008)

2. Kirner, R., Puschner, P.: Obstacles in worst-cases execution time analysis. In: Proc.
11th IEEE International Symposium on Object-oriented Real-time Distributed
Computing, Orlando, Florida, pp. 333–339 (May 2008)

3. Kirner, R.: Development and Analysis of Time-Predictable Real-Time Systems. Ha-
bilitation treatise, Technische Universität Wien, Vienna, Austria (February 2010)

4. Huber, B., Puffitsch, W., Puschner, P.: Towards an open timing analysis platform.
In: Proc. 11th International Workshop on Worst-Case Execution Time Analysis,
Porto, Portugal, OCG (July 2011)

5. Kirner, R., Puschner, P.: Transformation of path information for WCET analy-
sis during compilation. In: Proc. 13th IEEE Euromicro Conference on Real-Time
Systems, Delft, The Netherlands, Technical University of Delft, pp. 29–36 (June
2001)

6. Kirner, R.: Integration of static runtime analysis and program compilation. Mas-
ter’s thesis, Technische Universität Wien, Vienna, Austria (May 2000)

7. Kirner, R.: User’s Manual - WCET-Analysis Framework based on wcetC. Vienna
University of Technology, Vienna, Austria. 0.0.3 edn. (July 2001),
http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/

8. Kirner, R.: The programming language wcetC. Technical Report 02/2002, Tech-
nische Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1,
1040 Vienna, Austria (2002)

9. Atanassov, P., Kirner, R., Puschner, P.: Using real hardware to create an accurate
timing model for execution-time analysis. In: International Workshop on Real-Time
Embedded Systems RTES (in Conjunction with 22nd IEEE RTSS 2001), London,
UK (December 2001)

10. Atanassov, P.: Experimental Assessment of Worst-Case Program Execution Times.
PhD thesis, Technische Universität Wien, Vienna (May 2003)

11. INFINEON: C167CR Derivatives. 16-Bit Single-Chip Microcontroller. User’s Man-
ual. Version 3.0. Infineon Technologies AG (February 2000)

12. Li, Y.T.S., Malik, S., Wolfe, A.: Cache modeling for real-time software: Beyond
direct mapped instruction caches. In: Proc. 17th Real-Time Systems Symposium,
pp. 254–263. IEEE (December 1996)

13. Puschner, P., Schedl, A.V.: Computing maximum task execution times – a graph-
based approach. Journal of Real-Time Systems 13, 67–91 (1997)

14. Kirner, R., Puschner, P.: Classification of WCET analysis techniques. In: Proc. 8th
IEEE International Symposium on Object-oriented Real-time distributed Comput-
ing, Seattle, WA, pp. 190–199 (May 2005)

http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/

172 R. Kirner

15. Li, Y.T.S., Malik, S., Wolfe, A.: Efficient microarchitecture modeling and path
analysis for real-time software. In: Proc. IEEE Real-Time Systems Symposium,
pp. 298–307 (December 1995)

16. Kirner, R., Puschner, P.: Classification of code annotations and discussion of
compiler-support for worst-case execution time analysis. In: Proc. 5th International
Workshop on Worst-Case Execution Time Analysis, Palma, Spain (July 2005)

17. Kirner, R., Puschner, P., Prantl, A.: Transforming flow information during code
optimization for timing analysis. Real-Time Systems 45(1), 72–105 (2010)

18. Klingerman, E., Stoyenko, A.D.: Real-time euclid: A language for reliable real-time
systems. IEEE Transactions on Software Engineering 12(9), 941–989 (1986)

19. Kirner, R., Knoop, J., Prantl, A., Schordan, M., Wenzel, I.: WCET analysis: The
annotation language challenge. In: Proc. 7th International Workshop on Worst-
Case Execution Time Analysis, Pisa, Italy, pp. 83–99 (July 2007)

20. Kirner, R., Knoop, J., Prantl, A., Schordan, M., Kadlec, A.: Beyond loop bounds:
Comparing annotation languages for worst-case execution time analysis. Software
and Systems Modeling 10(3), 411–437 (2011)

21. Engblom, J.: Worst-case execution time analysis for optimized code. Master’s the-
sis, Uppsala University, Uppsala, Sweden (September 1997)

22. Engblom, J., Ermedahl, A., Altenbernd, P.: Facilitating worst-case execution time
analysis for optimized code. In: Proc. 10th Euromicro Real-Time Workshop, Berlin,
Germany (June 1998)

23. Schulte, D.: Flow Facts für WCET-optimierende Compiler: Modellierung und
Transformation. VDM Verlag, Germany (2007) ISBN: 978-3836448130

24. Lokuciejewski, P.: A WCET-Aware Compiler. Design, Concepts and Realization.
Vdm Verlag Dr. Müller (August 2007) ISBN: 978-3836418485

25. Lokuciejewski, P., Falk, H., Marwedel, P., Theiling, H.: WCET-driven, code-size
critical procedure cloning. In: Proc. 11th International Workshop on Software and
Compilers for Embedded Systems, Munich, Germany, pp. 21–30 (March 2008)

26. Kirner, R., Lang, R., Freiberger, G., Puschner, P.: Fully automatic worst-case ex-
ecution time analysis for Matlab/Simulink models. In: Proc. 14th Euromicro Con-
ference on Real-Time Systems, Vienna, Austria, Vienna University of Technology,
pp. 31–40. IEEE (June 2002)

27. Prantl, A., Schordan, M., Knoop, J.: Tubound - a conceptually new tool for worst-
case execution time analysis. In: Proc. 8th International Workshop on Worst-Case
Execution Time Analysis, Prague, Czech Republic (July 2008)

28. Knoop, J., Kovács, L., Zwirchmayr, J.: Symbolic loop bound computation for wcet
analysis. In: Proc. 8th Ershov Informatics Conference. PSI Conference Series (2011)

29. Knoop, J., Kovács, L., Zwirchmayr, J.: r-TuBound: Loop Bounds for WCET Anal-
ysis (Tool Paper). In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS,
vol. 7180, pp. 435–444. Springer, Heidelberg (2012)

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 173–186, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Abstract Execution for Event-Driven Systems –
An Application from Automotive/Infotainment

Development

Klaus Birken

Harman/Becker Automotive Systems, Raiffeisenstr. 34,
70794 Filderstadt, Germany

klaus.birken@harman.com

Abstract. Event-driven systems are ubiquitous – in technical as well as non-
technical domains. Often these systems are safety-critical, and static analysis
methods are applied in order to reduce risks and increase quality. The Abstract
Execution analysis method provides valuable results for imperative programs,
which are used for WCET analysis. In this paper, an enhancement for Abstract
Execution is presented, which allows handling the concurrent program flow of
event-driven systems. An abstract event queue is defined which is able to
represent multiple concrete event queues. This queue handling is embedded into
the Abstract Execution engine without further changes to the original algorithm.
A elaborated real-world example will be shown, which applies the new analysis
method to the model-based development of on-board diagnostics software in
the Automotive/Infotainment domain.

Keywords: Abstract execution, static analysis, event-driven, concurrency, on-
board diagnostics, automotive, infotainment.

1 Introduction

Event-driven systems play an important role in many technical as well as non-
technical domains. This ranges from embedded systems like medical devices,
automotive systems and production control to personal computers and tablets which
are used by humans, e.g., graphical user interfaces and web-based systems. In order to
increase the quality of these systems, static analysis methods can be applied to their
software, especially if these systems have safety-critical parts.

In terms of their execution model, these event-driven systems typically have two
aspects: The actual event-based, asynchronous command/control layer, which is using
events for communication between subsystems and components, and some imperative
detail code inside the event handlers of those components. The static analysis method
has to take into account the different properties of these two layers.

Abstract Execution (AE) is an analysis method for imperative programs, which
executes the code based on variables which are defined in an abstract domain [1, 2].
During this execution, information about variable values, executed program scopes
etc. is collected and stored for later analysis. This is used primarily for computing

174 K. Birken

worst-case execution times (WCET) in the context of runtime analysis for imperative
programs.

In this paper, we will show how the Abstract Execution method can be extended in
order to additionally support the command/control layer of event-driven systems. This
allows handling not only parallel concurrent execution flows, but also their timing
behavior. Moreover, we will provide a detailed example from the Automotive
domain, which shows how the AE method with concurrency extensions can be used
for validating On-Board Diagnostics (OBD) software against abstract test cases
already during development.

The paper has the following structure: In section 2, we present related work and
how this paper combines and enhances existing approaches. Section 3 briefly
describes event-driven systems. In Section 4, we outline the Abstract Execution
method and how it can be extended in order to handle concurrency and event timings.
Section 5 applies this extended method to the development of On-Board Diagnostics
software from the Automotive/Infotainment domain. Finally, the paper gives a short
conclusion and planned future steps.

2 Related Work

Event-driven systems are commonly being modeled using finite state machines
(FSMs). For static analysis of the FSM-formalism, model checking is a well-
established technique [3]. Model checking will prove that temporal-logic formulas
hold for a given FSM system or provide a counter-example. However, if the finite
state machine uses an elaborated detail code action language (e.g., for entry/exit
actions of states or transition actions), model checking will be hard, if not impossible.
Thus, either the expressivity of the detail language has to be limited in order to still
allow model checking to produce results, or the static analysis will not be possible
anymore.

Static analysis for sequential imperative programs, on the other hand, can be done
with a variety of techniques, e.g. Abstract Interpretation [4], Symbolic Execution and
Abstract Execution [1, 2]. The common idea behind these techniques is to
approximate the program semantics by an abstract semantics. The abstraction is done
by lifting the values of variables and the corresponding operations to an abstract
domain. Those methods offer full support for many general-purpose programming
languages (e.g., C, Ada, C++, Java), but are limited with regard to concurrency and
parallel asynchronous execution. If the goal of the static analysis is the computation
of WCET bounds, the results of the analysis (i.e., flow facts) are combined with a
low-level timing model in order to do the WCET calculation. Recently, it has been
shown that the WCET calculation can be merged into the actual AE, leading to an
algorithm which is capable of computing WCET bounds more efficiently than
conventional methods [2].

Based on the advent of tools for easy creation of domain-specific languages
(DSLs) during the past years, a plethora of special-purpose executable languages with
restricted expressivity has been and still is being invented. For those languages,
formal methods for static analysis can be applied in a pragmatic way [5]. The key to
success for this combination of DSLs and formal methods is that the DSL is as

 Abstract Execution for Event-Driven Systems 175

expressive as necessary, but still limited in order to allow the formal methods to be
applied. Depending on the complexity resulting from the static analysis of the DSL
models, the analysis can be executed while the models are being changed by the
developer/designer. This allows immediate feedback and thus improves the quality of
the resulting software.

In this paper, we propose an enhancement of the Abstract Execution method in
order to support a combination of imperative and event-driven paradigms. This
method will be applied to DSL models which describe the combined system. If some
restrictions on the size and expressivity of models can be ensured, the static analysis
can be done interactively providing immediate feedback to the developer. Our
enhancement to the AE method is focused on handling concurrent executions well
instead of computing exact WCET bounds for linear programs as shown in [2].

Fig. 1. Schematic event-driven system with event queue, event loop and internal vs. external
(incoming) events. The event loop may generate internal and outgoing events during its
execution.

3 Event-Driven Systems

A variety of technical and non-technical systems are using messages or events for the
top-level communication of subsystems and components. Some examples of event-
driven systems are:

• graphical user interfaces (e.g. for desktop PCs, tablets and smartphones)
• web-based clients and servers
• communication protocols (e.g., TCP/IP, D-Bus, HTTP)
• automation / production control systems
• Automotive systems, including In-Vehicle Infotainment (IVI)

The typical design of an event-driven system consists of subsystems or components.
Each component has an event queue and an event handler (see Fig. 1). The event

176 K. Birken

queue will collect internal and external events. The event loop will block until an
event is available in the queue. As soon as the queue contains at least one event, the
event loop will unblock and an event handler for the specific event will be executed.

The handler’s execution semantics is either run-to-completion (on a small
embedded system without operating system scheduler), or handled by one single
thread of execution (if an operating system scheduler is present). During its execution
the event handler might generate and send new events. Internal events will be put into
the component’s own queue; other events will be sent to other components and put
into their queue as incoming or external events.

The event loop can be implemented in different ways, for example as a mapping of
events to handlers or as finite state machine. In the latter case, transitions of the state
machine will be selected according to the current state and the incoming event. Events
may contain additional data (i.e., parameters). If the components or subsystems are
distributed over various computational nodes (e.g., web browsers and servers), this
structure is often called message-based systems.

4 Abstract Execution and Enhancements for Concurrency

The core of the Abstract Execution method is an interpreter-like scheme, which starts
with an initial state of the program under investigation and iteratively computes
successor states by executing statements of the program (see [1] for a detailed
description of Abstract Execution). However, the execution of statements is not just a
simple interpreter step according to the statement’s semantics, but will be done in an
abstract way. The abstraction is accomplished for data types, i.e., program values and
operations on those values. E.g., integer variables will not be defined by a single,
specific numeric value, but might be a collection of several values instead. Section 4.1
will give more details about the abstraction of some commonly used data types.

A program state in Abstract Execution is a 4-tupel containing (among other
information) the current program state, which itself includes the instruction pointer,
the stack and all memory contents (i.e., variable values). As the evaluation of Boolean
conditions might lead to several possible results depending on the abstract values of
the contained variables, the Abstract Execution engine has to handle multiple possible
execution flows simultaneously. For example, this might occur for the branches of
if/else-statements and for varying loop iterations due to abstract iteration limits. In
order to manage the computational complexity of the analysis, branched execution
paths might be joined at merge points. The selection of merge points and the order of
their application is a means for trading the performance of the static analysis
algorithm against the accuracy of its results.

During the Abstract Execution run, results will be collected based on program
scopes. As it is not relevant for the extension we are describing in this paper, we will
skip this part of AE (see [1] for more details of collecting results and how this is used
to compute WCET data). The Abstract Execution of the program under investigation
ends as soon as all execution paths end by reaching a final state.

 Abstract Execution for Event-Driven Systems 177

4.1 Abstractions Used for Data Types

The Abstract Execution method operates on abstractions of the data types being used
in the program under investigation. Therefore, both its analysis performance and its
accuracy depend on the abstractions chosen for the values and operations of those
data types. Nevertheless, design decisions regarding this abstracted type system can
be chosen quite locally without impacts on the overall Abstract Execution algorithm.

For our current implementation used in the real-world example which is described
in the next chapter, we are using the following, pragmatic abstractions:

• Abstract integers are represented as sets of integer intervals. This offers improved
accuracy compared to the usual abstraction method using just one interval. In order
to still ensure affordable (i.e., linear) complexity, the maximum number of
intervals for an abstract integer has to be limited by adding a heuristics for merging
intervals (e.g., based on the minimum distance of neighbored intervals).

• Abstract Boolean values might have one of the values {F}, {T} or {F, T}. Thus, the
Boolean condition {2, 5, 11} < {7} comparing two abstract integers can be
represented by the resulting value {F, T}.

• Abstract strings are represented as a set of concrete strings up to a certain number
of elements. If this number of concrete strings exceeds a configurable limit, the
string representation switches to a mere abstract integer, representing the length of
the abstract string. This nicely satisfies the requirements of a typical application,
where strings will be either well-known and therefore concrete, or a limited
number of strings (e.g., from a test case specification), or rather abstract with
limited size.

• Abstract arrays are represented by a head part and a tail part. The head part consists
of a real array of abstract element values. The tail part is an abstract integer
defining an abstract number of additional elements. Thus, this representation can
handle arrays with a specific number of abstract elements, as well as arrays with a
number of elements which is not fixed.

Operations with mixed-type signatures will often have to rely on implementation
details of all participating types, e.g., length(abstract string) will return an abstract
integer.

While extending Abstract Execution in order to properly handle concurrency and
timed events, the additional data type abstract time period will be needed. Abstract
time periods will usually not be available in the target language for the analysis, but
will be used for the specification and Abstract Execution of concurrent events. The
additional data type is defined as follows:

• Abstract time periods are represented by a single interval of concrete time periods.
Example: [2sec...4sec] is any time period with duration between 2 sec and 4 sec.
We will choose [t0...t1] as the general notation for the set of time periods with
durations between t0 and t1. An abstract time period with t0=t1=t represents a
concrete time period with duration t.

Depending on the expressivity of the target language more data types will have to be
supported. The abstractions above have been chosen pragmatically and oriented at the

178 K. Birken

use-cases expected for the application domain. Their correctness has not been
formally proven yet, but has been validated by test cases.

4.2 Abstract Execution of Event-Driven Systems

For the discussion of Abstract Execution of event-driven systems we will first assume
that the system is built of just one event queue and one event loop (as depicted in
Figure 1). At the end of this section we will generalize this assumption to a system of
multiple event-driven components.

In the original Abstract Execution algorithm as described in [1] the execution
engine repeatedly uses a interpreter step which executes a single statement in a given
program state and provides the set of successor states. The handling of concurrency
can be introduced by applying the following local extensions without changing the
core Abstract Execution algorithm:

• The program state is extended by an abstract event queue, representing all events
which might be handled in the future and their possible orderings. The abstract
event queue of a program state also holds the current time, which will progress in
discrete steps as the execution goes on. See section 4.3 on details about the abstract
event queue concept.

• Some statements of the programming language under analysis will create events,
e.g., starting of timers and timeouts, sending of requests across interfaces, raising
signals, or forking new execution threads. The interpreter has to be extended to
provide the proper behavior depending on the semantics of these primitives.

• In sequential Abstract Execution, the interpreter computes successor states based
on the program’s sequential control flow. The execution ends if all remaining
program states do not have any successor states (i.e., reached a final state). In the
extended Abstract Execution presented here, we will in this situation check the
abstract event queue for waiting events and create new program states from these.
Thus, the imperative program parts will be executed with priority and the
asynchronous part will only be activated if all sequential execution flows have
been finished (run-to-completion semantics).

• In general, multiple execution paths will have to be handled because several events
might be ready for execution in the same period of time. This can be tackled very
similar to the handling of multiple execution paths in the sequential Abstract
Execution method: The computation of merge points has to take into account also
the abstract event queue’s current state.

Although the extensions described in this paper enable the Abstract Execution scheme
to compute the timing behavior of event-driven systems, it is important to mention
that it is not a detailed real-time simulation. There are no assumptions about the
runtimes of sequential parts of the system (e.g., event handler code). Thus, we can
compute the order of events, but will approximate the detail code’s runtime.

This approach allows extending the scheme to systems with multiple event queues
and event loops. The abstraction of the system will still contain just one abstract event
queue, which serves multiple event loops.

 Abstract Execution for Event-Driven Systems 179

4.3 Abstract Event Queue

The central ingredient of the concurrency extension for the Abstract Execution
method is the abstract event queue. An abstract event queue Qabs is defined as

Qabs := { t, C },

where t is the current time and C is a set of continuations. A continuation c є C is
defined as pair

 c := { [t0...t1], Δs },

with [t0...t1] specifying the time when the event will be triggered relative to the
queue’s current time t. This time period is specified as abstract time period (see
section 4.1), which allows approximations to concrete orders of events. The delta
program state Δs provides all information needed for Abstract Execution after the
event loop removes the event from the queue and executes it. Typically, Δs will
contain a reference to the event handler which should be executed, an event id and the
(abstract) parameters of the event (if any).

In a concrete event-driven system, the time between creation of an event and the
arrival in the receiver’s event queue is determined by the underlying communication
system. For the execution of an abstract event-driven system we specify the expected
event arrival time as abstract time period [t0...t1] relative to the creation time of the
event and store it in the receiver’s abstract event queue immediately. This can be used
for the approximation of communication channel timings, the response time of a
server component, but also for timers which provide exact timing intervals. In the
latter case t0=t1=t, where t is the actual duration after which the timer should fire.

An event queue in a concrete event-driven system has concrete arrival times for
each continuation (i.e., incoming event). Thus, the queue has a deterministic order of
events. With an abstract event queue, the abstract time periods of its continuations
may overlap; this requires a more complex handling of the order of events: the
candidate computation. Basically, the algorithm for candidate computation consists of
the following steps:

1. First, it computes the next point in time t’≥ t where some continuation c є C begins
or ends.

2. Afterwards, it selects two subsets from the set of continuations C based on t’:

• must-continuations Cmust will definitely be triggered before time t’, i.e.,
t1≤ t’ for c є Cmust.

• may-continuations Cmay may be triggered after time t’,
i.e., t0≤ t’, t’<t1 for c є Cmay.

3. The continuations c є Cmust could be triggered in any order during the time interval
t...t’. Thus, the enhanced Abstract Execution must handle the execution paths for
all continuations in Cmust in parallel (similar to if/else-statements where the
condition has the abstract Boolean value {F, T}). The candidate computation

180 K. Birken

algorithm ends here and the resulting execution paths are interpreted by sequential
Abstract Execution according to run-to-completion semantics.

4. If Cmust=Ø, the execution paths for all c є Cmay are started and time progresses by
setting t’:= t. This is repeated until either Cmust≠Ø holds, or both Cmust=Ø and
Cmay=Ø. In the former case, new must-continuations have been detected by
progressing in time and processing must be continued with step 3. In the latter
case, neither must- nor may-continuations are available, which indicates an empty
abstract queue.

If a continuation c is going to be taken from the queue and executed, it has to be
removed from the queue’s continuation set C and the initial program state for the
event handler has to be computed based on Δs.

4.4 Example of Abstract Execution with Abstract Event Queue Handling

In order to illustrate the algorithm defined in the previous sections, a small example
will be presented here. For the example, we assume that the component under analysis
has sent a request to a remote server and starts a timeout of 1 sec in order to remain
reactive in case the server doesn’t respond. From an environment model we deduce
that the server’s response might take between 0.1 seconds and 1.3 seconds. After
those two events have been initiated, the component’s abstract event queue is defined
as (times are given in seconds):

 Qabs := { t=0, C }, with C = { cR, cT } and
 cR = { [0.1…1.3], Δsresponse }, cT = { [1…1], Δstimeout }

The continuation cR represents the server response event, the continuation cT
represents the timeout event. The first candidate computation based on Qabs will
provide the following results:

 t = 0, t’ = 0.1, Cmust = Ø, Cmay = { cR }

According to step 4 in the algorithm described in section 4.3, a new program state will
be created from continuation cR and prepared for Abstract Execution. In this new
program state, we will have an updated abstract event queue with t=0.1 and C={ cT }.
During the Abstract Execution of this program state the client might react to the
server response by stopping the current timeout.

After creating this new program state, the candidate computation progresses in
time and repeats step 2. This results in:

t = 0.1, t’ = 1, Cmust = Ø, Cmay= { cR }

A similar reaction as before will occur; we skip the details here for sake of simplicity.
As there are still may-continuations, but no must-continuations, we again progress in
time and repeat step 2, resulting in:

t = 1, t’ = 1, Cmust = { cT }, Cmay = { cR }

 Abstract Execution for Event-Driven Systems 181

According to step 3 in the algorithm of section 4.3, continuation cT will be removed
from the queue and another new program state will be prepared for sequential
Abstract Execution. As specified in step 3, the candidate computation ends and the
sequential Abstract Execution algorithm proceeds by interpreting the two resulting
program states. In the program state resulting from continuation cT, the timeout
handler will be called.

Depending on the implementation of the timeout handler, the server request
might be canceled. If the server request is not canceled, Qabs in that program state
will still contain continuation cR, which will be classified as must-candidate for time
t’=1.3. Thus, it will be abstractly executed and the static analysis ends. From the
resulting execution paths it can be seen that the server’s response has been
accepted, although the timeout handler has been called. This should be classified as
a program error.

From the execution paths resulting from the extended Abstract Execution analysis,
it can be concluded that the timeout value of 1 second will lead to a non-deterministic
behavior, depending on the server’s concrete reaction time to the client request.

5 Application to On-board Diagnostics Development

Electronic control-units in automobiles (ECUs) have to support diagnostics
functionality, which is used both during production at the manufacturer as well as
when the car is at the dealer’s service shop. Therefore, the On-Board Diagnostics
(OBD) functionality is critical for the vehicle’s production process, but also important
for customer satisfaction after the car has been delivered.

Fig. 2. Architecture of On-Board Diagnostics software as part of an Automotive/Infotainment
System. An external tester is connected with the OBD subsystem via some external interface.
The OBD subsystem will communicate asynchronously with the various application
subsystems.

182 K. Birken

Fig. 3. Validation of implementation against test cases on model level and on target system
level. Both software model and test cases model are tightly linked to customer requirements.
The actual code for system and concrete test cases is being generated from the models.

5.1 Typical Architecture of OBD for Infotainment Systems

The overall architecture of OBD is depicted in Figure 2. An external diagnostics
testing device is connected to the vehicle by some physical link (typically, CAN-Bus
or Ethernet is being used). In the case of Automotive/Infotainment systems, the OBD
subsystem is similar to other user interfaces like touch-screens, multi-function
steering wheels or speech dialog systems. It has to handle incoming asynchronous
events, do some protocol handling and contact other subsystems (e.g., tuner,
navigation or connectivity) in order to execute diagnostics requests. After a proper
response has been compiled, it is sent back to the external tester.

5.2 Model-Driven Development for OBD Software

As failures of the OBD functionality could lead to severe problems at the
manufacturer’s production site, it is important that the development tooling used for
creating the OBD subsystem enforces high quality implementations. Therefore, a
proprietary development tool based on Eclipse technologies [6] had been created at
Harman which offers a domain-specific language (DSL) for OBD development. This
language has a procedural semantics with a static type system (similar to C/C++), and
additionally supports asynchronous primitives. These primitives reflect the event-
driven aspects of the OBD architecture, e.g., the asynchronous communication with
the external tester and the interaction with the application subsystems.

 Abstract Execution for Event-Driven Systems 183

Programs using the OBD development DSL basically consist of a set of
service-implementations. Each service can be called from the external testing
device and is required to reply with a positive or negative response message. The
implementation of each service-section consists of the following parts:

• Exactly one action-block, which will be executed if the service is called. The
block consists of a sequence of statements, which will be executed in a run-to-
completion way. Statements include assignments, if/else, for-loops (restricted to
iterators over array-type variables), positive/negative responses, and commands for
triggering asynchronous events (starting timers, sending requests via the internal
APIs).

• Zero or more on-handlers, each consisting of a set of event ids and a command
block. The command block may consist of the same statements as the action-
block. It will be executed as soon as all events from the event id set have been
triggered. If an incoming event triggers more than one handler (because its id is a
member of their event id sets), then the handlers will be executed in increasing
order of their set sizes.

The OBD development tool offers a state-of-the-art editor (created with the Xtext
framework [8]), which is used to develop software for OBD subsystems. From the
service implementations (formulated using the DSL) the source code for the target
system is generated automatically.

As the car manufacturer is providing the specification of the diagnostics services as
machine-readable XML format, an important part of the implementation can be
derived directly from the specification. The APIs of the application subsystems which
are used by the OBD service implementations are formally modeled as well. Thus, the
developer is guided by specification and APIs, which leads to a development speed-
up and quality increase. Additionally, the DSL for OBD implementation by design
doesn’t offer error-prone concepts like pointers or dynamic memory allocation. These
expressivity restrictions help to increase the software quality even more, while only
removing language features which are not needed for this domain.

5.3 Application of Abstract Execution for Event-Driven OBD Software

In order to push productivity and software quality even further, a model-based test
concept has been added to the OBD development tool. The model-based testing
approach uses test cases on a model level and generates actual test scripts from these
models [7]. This approach is applied to test cases for OBD service implementations.
The test scripts generated from those test cases will be validated against the real target
system, running the generated source code. Figure 3 shows the overall relationships of
specification, test cases, models and code.

It turned out that a huge number of test cases are necessary to achieve a reasonable
coverage. This situation could be improved significantly by the following measures:

• Allow the specification of test cases based on abstract values for parameters and
expected results. Thus, one abstract test case may represent a large set of concrete
test cases.

184 K. Birken

• For the test script generation, create concrete test cases from abstract ones. This is
not a topic for this paper.

• Apply the abstract test cases to the OBD implementation already on the model
level. In this step, Abstract Execution and the extensions for event-driven systems
are applied as described in previous chapters. All asynchronous primitives from the
implementation DSL will be transformed into events, which can be interpreted by
the extended Abstract Execution scheme.

• Represent the results of the abstract execution as direct feedback for the
implementer, either on the implementation side or on the test case side.

The complexity of the Abstract Execution procedure is limited due to quite small
portions of code which have to be analyzed and due to an aggressive strategy of
merging execution paths at merge points during the Abstract Execution. Nevertheless,
the accuracy of the analysis results is sufficient for increasing the overall quality. By
carefully choosing the merge strategy, the triggers for starting the Abstract Execution
and the implementation of the abstract data types (see section 4.1), the trade-off
between reactivity of the static analysis and its accuracy can be adjusted in a wide
range. In any case, we didn’t suffer from performance bottlenecks so far.

Fig. 4. Screenshot of DSL editor in OBD development tool with activated code coverage. The
code coverage is being computed while editing as a result from the extended Abstract
Execution scheme.

The Abstract Execution analysis produces a lot of detailed data, which has to be
post-processed and displayed to the developer properly in order to be useful. There is
a variety of possibilities to represent the results, among them:

• Direct feedback in the implementation’s code (source model) and the test case
model by showing error markers and corresponding messages. Sometimes it is

 Abstract Execution for Event-Driven Systems 185

useful to additionally offer quick fixes which provide automatic proposals of how
to improve or resolve the issue.

• A test result view which shows detailed execution traces for all test cases in a
hierarchical tree-view structure. This includes abstract values of variables as well
as return values and results. The execution traces are folded onto the program
scope structure described in [1].

• Test case coverage information can be added optionally to the service
implementations. Figure 4 shows an example, where some parts of the implementation
are not yet covered by abstract test cases. Coverage can be displayed regarding all test
cases available for a section of the implementation, which provides the overall
coverage status. It can also be displayed for a small selection of test cases, which
provides feedback on how these test cases impact the implementation under test.

All this information does not require that actual code and test code is being generated,
built and executed; instead, it is resulting from the extended Abstract Execution
analysis which is running in the background while the developer is editing his code.

6 Conclusions and Future Work

In this paper, we have presented an extension to the sequential Abstract Execution
method which allows the proper handling of event-driven systems. The extensions are
non-invasive, as it is not required to change the execution engine of the sequential
scheme. The algorithm is based on the concept of an abstract event queue and the
computation of continuation candidates.

The algorithm has been illustrated by a small example and a real-world application
in the domain of Automotive On-Board Diagnostics development. In the latter, a
model-based development tool for OBD software has been extended to provide a
facility for online validation of implementations against abstract test cases. It has been
shown that the immediate feedback given to the developer from the Abstract
Execution leads to software with high quality and speeds up the development process.

As a next step, we will generalize the current implementation of the extended
Abstract Execution and extract it from the OBD development tool as a separate
component. This component will be used in other environments, e.g., an open-source,
model-based development tool offering a hierarchical component model and
hierarchical state machines.

References

1. Gustafsson, J., et al.: Automatic derivation of loop bounds and infeasible paths for WCET
analysis using Abstract Execution. In: Proceedings of the 27th IEEE Real-Time Systems
Symposium (RTSS 2006). IEEE Computer Society, Rio de Janeiro (2006)

2. Ermedahl, A., Gustafsson, J., Lisper, B.: Deriving WCET Bounds by Abstract Execution.
In: Proceedings of the 11th International Workshop on Worst-Case Execution Time
Analysis (WCET 2011), Porto, Portugal (2011)

186 K. Birken

3. Clarke, E.M., Heinle, W.: Modular translation of Statecharts to SMV. Technical report,
Carnegie Mellon University (2000)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Conference Record of the Sixth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Los Angeles, California, pp. 238–252 (1977)

5. Ratiu, D., Völter, M., Schätz, B., Kolb, B.: Language Engineering as an Enabler for
Incremental Formal Analysis. In: Proceedings of FORMSERA 2012 Workshop (2012)

6. Eclipse platform, http://www.eclipse.org
7. El-Far, I.K., Whittaker, J.A.: Model-based Software Testing. In: Encyclopedia on Software

Engineering. Wiley (2001)
8. Xtext framework, http://www.eclipse.org/Xtext

Formal Methods

for Intelligent Transportation Systems

Alessandro Fantechi1,3, Francesco Flammini2, and Stefania Gnesi3

1 Universit degli Studi di Firenze DSI
Via S. Marta 3, Florence, Italy

fantechi@dsi.unifi.it
2 Ansaldo STS I&C

Via Argine 425, Naples, Italy
francesco.flammini@ansaldo-sts.com

3 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, Pisa, Italy
Via Moruzzi 1, Pisa, Italy

stefania.gnesi@isti.cnr.it

1 Motivation

The term Intelligent Transportation Systems (ITS), [4,5], refers to information
and communication technology (applied to transport infrastructure and vehi-
cles) that improve transport outcomes such as transport safety, transport pro-
ductivity, travel reliability, informed travel choices, social equity, environmental
performance and network operation resilience [2,3]. Safety-critical ITS include
the so called X-by-wire (where ’X’ can stand for ’fly’, ’brake’, ’accelerate, ’steer’,
etc.) systems used in domains like aerospace, automotive and railways. The
importance of ITS is increasing as novel driverless/pilotless applications are
emerging.

2 Goals

This track, inspired by discussions held inside the ERCIM Working Group on
Formal Methods for Industrial Critical Systems (FMICS), addresses the appli-
cation of formal methods to model and analyze complex systems in the context
of ITS. In fact, modeling and analysis activities are very important to optimize
system life-cycle in the design, development, verification and operational stages,
and they are essential whenever assessment and certification is required by in-
ternational standards. On this regard, several approaches suggest a specification
methodology based on the Unified Modeling Language (UML), together with its
extensions/profiles, to generate analyzable formal models. Methodologies inte-
grating the requirements of incremental and modular development are especially
challenging [1]. Both qualitative and quantitative evaluations can be performed
on formal models, including model-checking and stochastic simulations. Finally,
on-line model-checking (e.g. for adaptive route planning) issues are also very
important in the context of ITS, when objects exchange information about their

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 187–189, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

188 A. Fantechi, F. Flammini, and S. Gnesi

states to reach consistency among their decisions. In particular, this track ad-
dresses applications and case studies with a conceptual message, surveys on the
state of the art on the application of formal methods on specific domains within
ITS, and experience papers with a clear link to tool construction.

3 Contributions

The contributions to the track ”Formal Methods for Intelligent Transportation
Systems” address three distinct aspects. The first two papers address from a gen-
eral perspective the introduction of formal methods in the development process
of safety critical systems: F. Flammini et al. [6] discuss model-driven verifica-
tion techniques, both for functional and non-functional system properties, with
reference to a complex railway signalling equipment. G. Gigante et al.[7] intro-
duce a novel software development guideline for safety-critical systems (namely,
the avionic DO178-C standard), that for the first time specifically includes for-
mal methods as one of the means to produce software at the highest Assurance
Levels.

The other contributions are related to two category of systems in the rail-
way domain, that for their complexity pose several challenges to current soft-
ware and system development technology. The first category addresses driverless
metros, that integrate in a complex architecture several subsystems which are
geographically distributed, featuring strict dependability requirements: while A.
Ferrari et al. [8] propose to cope with the architectural complexity and variety
of Communication-Based driverless metro control systems by means of the disci-
pline of product lines, S. Marrone et al. [9] address the complexity of verification
of such kind of system by means of a common verification Reference Technology
Platform exploiting a set of advanced model-based verification tools.

The second category is the one of railway interlocking systems: here the com-
plexity lies in the geographical layout of the tracks, points and signals that can
be found in a station or in a railway yard: verifying that the designed interlock-
ing logics actually satisfies safety properties (that guarantee for example that
two trains do not collide) for medium to large size interlockings is actually a
challenge for current model-checking technology. On this regard, K. Winter [10]
investigates possible optimisations for symbolic model checking, by means of
specific reorderings of BDD variables which are strictly related to the topology
of the controlled layout. A. E. Haxthausen [11] focuses on the formal definition of
safety properties to be checked on models of legacy relay-based interlocking sys-
tems. A. Fantechi [12] proposes to adopt a distributed, geographical modelling in
order to better attack the state space explosion typical of model checking when
dealing with large size interlocking systems.

It is our opinion that the contributions to the track, even in the limited space
available, succeed to give a good overview of the state-of-the-art and of the
hard-to-solve open issues, as well as to give significant directions for the future
research in this field.

Formal Methods for Intelligent Transportation Systems 189

References

1. Bonnefoi, F., Hillah, L.M., Kordon, F., Renault, X.: Design, modeling and analysis
of ITS using UML and Petri Nets. In: IEEE Intelligent Transportation Systems
Conference (ITSC 2007), pp. 314–319 (2007)

2. Cascetta, E.: Transportation Systems Engineering: Theory and Methods. Kluwer
Academic Publishers (2001)

3. Flammini, F.: Railway Safety, Reliability, and Security: Technologies and Systems
Engineering. IGI Global (2012)

4. IEEE Intelligent Transportation Systems Society home-page,
http://sites.ieee.org/itss/ (last access June 2012)

5. International Journal of Intelligent Transportation Systems Research,
http://www.springer.com/engineering/electronics/journal/13177

6. Flammini, F., Marrone, S., Mazzocca, N., Nardone, R., Vittorini, V.: Model-Driven
V&V Processes for Computer Based Control Systems: A Unifying Perspective. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, pp. 190–204. Springer,
Heidelberg (2012)

7. Gigante, G., Pascarella, D.: Formal Methods in Avionic Software Certification:
The DO-178C Perspective. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part
II. LNCS, pp. 205–215. Springer, Heidelberg (2012)

8. Ferrari, A., Spagnolo, G.O., Martelli, G., Menabeni, S.: Product Line Engineering
Applied to CBTC Systems Development. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012, Part II. LNCS, pp. 216–230. Springer, Heidelberg (2012)

9. Marrone, S., Nardone, R., Orazzo, A., Petrone, I., Velardi, L.: Improving Verifica-
tion Process in Driverless Metro Systems: The MBAT Project. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, pp. 231–245. Springer, Heidelberg
(2012)

10. Winter, K.: Optimising Ordering Strategies for Symbolic Model Checking of Rail-
way Interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS,
pp. 246–261. Springer, Heidelberg (2012)

11. Haxthausen, A.E.: Automated Generation of Safety Requirements from Railway
Interlocking Tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS,
pp. 262–276. Springer, Heidelberg (2012)

12. Fantechi, A.: Distributing the Challenge of Model Checking Interlocking Control
Tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, pp. 277–290.
Springer, Heidelberg (2012)

http://sites.ieee.org/itss/
http://www.springer.com/engineering/electronics/journal/13177

Model-Driven V&V Processes for Computer

Based Control Systems: A Unifying Perspective

Francesco Flammini1, Stefano Marrone2, Nicola Mazzocca3,
Roberto Nardone3, and Valeria Vittorini3

1 AnsaldoSTS, Innovation and Competitiveness Unit (Italy),
via Nuova delle Brecce 260, 80147 - Napoli, Italy

francesco.flammini@ansaldo-sts.com
2 Seconda Università di Napoli, Dipartimento di Matematica,

viale Lincoln, 5, 81100 - Caserta, Italy
stefano.marrone@unina2.it

3 Università di Napoli “Federico II”, Dipartimento di Informatica e Sistemistica,
Via Claudio 21, 80125 Napoli, Italy

{nicola.mazzocca,roberto.nardone,valeria.vittorini}@unina.it

Abstract. A recent trend in software engineering is to support the de-
velopment process by providing flexible tool chains allowing for effective
Model-Driven approaches. These solutions are very appealing in indus-
trial settings since they enable the creation of development and verifi-
cation processes, enhancing abstraction and reuse, and hence improving
productivity. This paper addresses advantages and challenges in extend-
ing Model-Driven approaches to system engineering and specifically to
verification and validation (V&V) of critical computer-based systems.
Specifically, the paper highlights the needs for real-world industrial con-
texts and proposes the definition of a unifying Model-Driven process
for V&V of functional and non-functional system properties. Some en-
abling techniques which aim at improving the reuse of Model-Driven
artifacts are addressed to deal with process scalability and effectiveness.
Two sample applications are described for ERTMS/ETCS signalling sys-
tem in order to show the advantages of the approach: formal modeling
for performance evaluation of message delivery between train and track
controllers and test case generation for the verification of functional re-
quirements of trains outdistancing.

Keywords: Model-Driven Engineering, Verification & Validation, Crit-
ical Systems, Domain Specific Languages, Railway Systems.

1 Introduction

Verification & Validation (V&V) processes within critical control systems devel-
opment must guarantee the fulfillment of both functional and RAMS (Reliability
Availability Maintainability Safety) requirements [11]. Two main approaches are
employed in order to predict/evaluate the dependability attributes of those sys-
tems: the first relies on simulation based techniques, e.g. fault-injection [14] at

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 190–204, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Model-Driven V&V Processes for Computer Based Control Systems 191

the hardware level (either physical or simulated) or software testing [8] at the
various abstraction and integration levels; the second is based on formal meth-
ods, which can be used at any abstraction level (both hardware and software)
and at any stage of system development and validation. Both simulative and
formal approaches are used in real world applications, for different or same pur-
poses, and can be classified as model-based techniques, as they require designers
to generate an accurate model of the system under analysis and of the external
environment (i.e. interacting entities). They may be used in combination with
formal models possibly interacting with simulative ones (an example of this is
the class of approaches known as model-based testing). Formal methods are
employed in a variety of industrial applications, from microprocessor design to
software engineering and verification (see [9] for a survey of widespread methods
and applications). Despite of such a variety of methods, tools and applications,
V&V activities are still critical in costs and results. The optimization of V&V
processes is the focus of several ongoing national and international projects car-
ried out in industrial settings [2]. A recent trend is to define and develop tool
chains to support the developer in the V&V process. They are based on the
Model Driven Engineering (MDE) paradigm and rely on the usage of models as
the primary artifact in the development cycle. The idea to derive dependabil-
ity models (e.g. Stochastic Petri Nets models) from high-level specifications of
the system to be developed (e.g. expressed by UML) is not new ([5,6,24,22,7]).
The cutting edge between those approaches and MDE may be summarized by
the following words: integration, automation and traceability. That means a
complete suite of integrated tools covering and linking all the stages of the V&V
process has to be available, featuring automated generation of artifacts (models,
test cases, log files, etc.) and requirements traceability. This paper describes how
MDE may provide a unifying framework for V&V activities for critical systems,
and specifically how this can be applied to railways control systems. Section 2
introduces some MDE concepts, starting from its primary nest: software devel-
opment; Section 3 presents a brief state-of-the-art on a) Model-Driven analysis
of non-functional properties of systems, according to its main fields of applica-
tion, b) Model-Driven approach to functional testing. In Section 4 an overview
of a Model-Driven approach to V&V is given; it is then applied to the railway
domain in Section 5. Section 6 contains a brief discussion on some open issues
and challenges.

2 The Model-Driven Approach

MDE approaches are very used in software development to support software
production: they are the starting point from which source code, can be gener-
ated in an automatic or semi-automatic way. Models of software systems are
usually constructed by using visual modeling languages like UML, SysML, Mat-
Lab Simulink/Stateflow; successively, transformational approaches are applied
to automate the overall process.

In this context, the Object Management Group (OMG) has developed a set
of standards providing an advanced meta-modeling architecture (Model Driven

192 F. Flammini et al.

Architecture, MDA [4]) whose primary goals are to cope with complexity and
heterogeneity of different platforms and application domains and obtain automa-
tion and reuse. These goals are pursued by abstracting at three different levels:
the platform independent model (PIM) is a model of the system structure and
functions which must be independent by specific technical details related to its
implementation, it is translated by proper Model to Model (M2M) transforma-
tions into one or more platform specific models (PSMs) and then to system code.

MDA relies on OMG standards including MOF (Meta-Object Facility, which
is used to define modeling languages), UML (that is a MOF model), and QVT
(Query/View/Transformation, a standard language for model transformation).
MDA processes are supported by well established workbenches and tool chains,
based on easily extensible plug-in systems such as Eclipse. Nevertheless, MDE
is more general than MDA. Its strength is in using abstract representations of
concepts and activities that characterize a specific application domain. Hence,
it could be applied to several fields and to different purposes. In this paper we
show how MDE may be used to define a V&V process for critical control sys-
tems according to a unifying perspective able to held together (semi) automatic
generation of code, test cases, and dependability models. This may be done by
exploiting the usage of proper languages to represent domain specific concepts
and solutions at the conceptual level. This is a tricky aspect of the question that
is briefly discussed here below.

2.1 Domain Specific Languages

UML is a general purpose modeling language, rich of modeling notations and
semantic, which can be applied to a wide class of application domains. Despite of
this great advantage, the effective usage of Model-Driven Development solutions
in industrial settings asks for the availability of specialized modeling languages
for several reasons: Domain Specific Modeling Languages (DSMLs) are small
and well focused on domain scope, they simplifies the design process, tracing
recurring design patterns in the application domain, and promote communica-
tion by standardizing the terminology and the best practices to be used in the
specific application domain. Domain specific concepts are grouped into a domain
meta-model, which defines the relationships among them and precisely specifies
semantics and constraints associated with the domain concepts. The definition
of a DSML is an activity performed by “language engineers” and it is still an
emerging discipline with few established guidelines and patterns. Three main
approaches to the definition of a DSML are reported in the literature [23]: (1)
definition of a new modeling language from scratch; (2) extension of an existing
modeling language by supplementing it with fresh domain specific constructs;
and (3) refinement of an existing more general modeling language, as UML, by
specializing some of its general constructs to represent domain specific concepts.
Clearly the first one allows a precise characterization of domain specific concepts,
but it requires the implementation of the model editors that involves an extra
effort when put into practice. The second one suffers from the same problems
but it can rely on the experience. The third one is more practical and presents

Model-Driven V&V Processes for Computer Based Control Systems 193

minor development and maintenance costs: it bases on UML profiling techniques
when UML is the general modeling language chosen.

The proposed approach is based on the third solution since inheriting UML
syntax and semantics avoids the re-definition of existing concepts (e.g. state
machines); moreover UML (and its good tool support) shortens the time to
realization of languages that is of great interest for industries.

3 Model Driven V&V of Critical Systems

Model-driven approaches have been extended to support V&V activities, both for
software and complex systems in general, in order to prove properties (Model-
Driven Analysis) and to generate test cases (Model-Driven Testing). This is
possible applying the two main principles, described previously, on which a
Model-Driven process is based: the definition and usage of an high-level model
for the system, and model transformation techniques. Model-Driven Analysis
and Model-Driven Testing are separate techniques and are also supported by
different tools but, since they rely on the same high-level model, some attempt
to integrate them have been tried and are still under study: an ARTEMIS on-
going project MBAT [2] is an example of a European project that will provide
a new leading-edge V&V technology in form of a Reference Technology Plat-
form (MBAT RTP) for effective and cost-reducing validation and verification,
primarily focusing on transportation domain combining Model-Driven Analysis
and Testing techniques.

3.1 Model-Driven Analysis

The goal of Model-Driven Analysis is to construct formal models or artifacts, able
to verify requirements, from input design models (high-level model) assuring the
achievement of system quality, such as safety targets. Several projects addresses
the analysis of dependability attributes of complex systems, based on MDE
principles (e.g. the projects PRIDE [3], CHESS [1]), even if performance evalu-
ation is perhaps the most addressed feature assessed in the literature by means
of Model-Driven Analysis (see for example [18], [20] and [21]) The ArgoSPE
tool [12] implements a performance3 evaluation process translating some perfor-
mance annotated UML diagrams into Stochastic Petri nets models. MARTE [17]
is a UML profile which intends to replace the UML profile for Schedulability, Per-
formance and Time, adding capabilities to UML for Model-Driven development
of Real Time and Embedded Systems. The MARTE profile is able to annotate,
in an high-level model, system non functional properties (NFPs), according to
a well-defined Value Specification Language (VSL) syntax. In a recent work [6]
the “Dependability Analysis and Modeling” (DAM) profile has been proposed
to extend MARTE with dependability concepts (e.g., annotating a UML State
Machine transition as a failure step). Hence, DAM is useful to annotate de-
pendability requirements and properties in UML specifications, in particular,
reliability, availability, maintainability and safety. The DAM domain model rep-
resents the main dependability concepts according to a component-based view

194 F. Flammini et al.

of the system under analysis. The system is defined as a set of components and
delivers a set of services that can be detailed as a set of steps. Possible hw/sw
redundancies are modeled through the redundant structure, made of fault tol-
erant components which can play different roles. The system can be affected by
threats according to the fault, error, impairment (failure or hazard) chain. The
maintenance actions are modeled through maintenance model, which includes
the concepts necessary to represent components repair and service restore.

3.2 Model Driven Testing

Model-Driven Testing techniques deal with the efficient and automated genera-
tion of test cases from different kinds of models. Model-Driven Testing promises
higher quality and conformance to the respective functional safety and quality
standards at reduced costs through increased coverage, advanced test gener-
ation techniques, and increased automation of the process, including support
for certification. As depicted in Fig. 1, Model-Driven Testing applies the same
abstraction of platform independent model (PIM) and platform specific models
(PSM) concepts into the test design model: it have been introduced the concepts
of platform specific test design model (PST) that can be derived from platform
independent test design model (PIT) ([10]). Both PIT and PST can be refined
and enriched with test specific properties and it is possible to obtain from them
executable test suites (and code) with the aim to verify the properties. To date
transformations between the different abstraction levels (from platform indepen-
dent to platform specific, and from models to executable test) have been made,
but only few progress in the transformations between system models and test
models are remarkable, in particular for non-software systems.

A recent OMG standard, the UML Testing Profile (UTP), defines a language
for designing, visualizing, specifying, analyzing, constructing and documenting
test cases [19]. This language can work with all major object and component
technologies and can be applied in various application domains. UTP defines
a MOF-based meta-model, enabling compliance between MOF-based tools and
UTP standard. In4 of the profile, in which the behavioral aspects are left out
because they are considered not relevant and require an inclusion of a significant
portion of the UML 2.0 meta-model. For these reasons the UTP can be used
standalone or in an integrated way with UML. This profile introduces four log-
ical concept groups, that include test specific concepts, covering the following
aspects: test architecture, test behavior, test data and test time. The test architec-
ture contains the concepts able to describe the organization and the realization
of test cases. One or more objects can be stereotyped as the SUT (system under

Platform Independent
Test (PIT)

Platform Specific
Test (PST)

Executable
Test

transformation

transformation transformation

refinement refinement

Fig. 1. Model Driven Testing reference schema

Model-Driven V&V Processes for Computer Based Control Systems 195

test), that refers to a system, subsystem, or component that is being tested. The
features and behavior of the SUT is given entirely by the type of the property
to which the stereotype is applied; the internal portion of the SUT is not known
during the test execution due to its black-box nature. Different test cases can be
groupend into a TestContext, the TestContext is realized by a set of TestCom-
ponents able to communicate with the SUT. The TestContext is also connected
with an Arbiter able to determine the final outcome, the Verdict, of a test case.
The concepts of text behavior specify the behavior of test cases: one Behavior
is included into each TestCase. TestCases are connected with TestLog entities,
able to log information. The concepts of test data group are able to specify
data values. They include wildcards for a flexible data definition such as special
characters for ”any value” and ”any or omitted value” definition. At last test
time defines time concepts for a precise time specification using the primitives
of Time and Duration to define respectively time values and duration. In [10] a
set of transformations from UML model to UTP model is showed, proposing to
generate test cases using three layers of transformations that are UML to PIT,
PIT to PSM and PSM to testcase.

4 How It Could Be Used: A Unifying Approach

In this Section a unifying “industry-friendly” Model-Driven approach for V&V
processes (for both formal analysis and testing) is presented. In Fig. 2 a reference
schema for this approach is provided.

The first step is related to meta-modeling activities: proper languages, if not
available, should be created by means of extension and/or merging of exist-
ing languages. These may be domain-independent (as MARTE-DAM and UTP)
or domain-specific according to their focus on technical or business concepts.
In our approach we need both kinds of languages since the first improves re-
usability while the second improves usability. In the proposed approach the
Verification&Validation Profile (VVP) (an “horizontal” language) is created:
it extends MARTE-DAM and UTP. Moreover it could be possible to specialize
VVP concepts into a specific business domain (Specific).

Formalism/Text

specific2formalism
MARTE-DAM

UTP
vvp2formalism

VVP

Specific

Fig. 2. Unifying Model-Driven V&V approach

196 F. Flammini et al.

Model transformations are defined generating a formal model according to
a well specified formalism1 from an high level model expressed into VVP or
Specific. The definition of model transformations can be a modular task too,
since it is possible to exploit composition and inheritance techniques [16]. Best
results can be obtained if model transformations are defined on the basis of VVP
since these transformations allow every specific derived language to inherit them
improving reusability. Nevertheless some peculiarities of the Specific language
may need to partially create further model transformations in order to best
translate these features into the target formalism (specific2formalism).

4.1 Focus on the V&V Profile

In this subsection we define a V&V domain model to merge the concepts repre-
sented in the two cited UML profiles: MARTE-DAM and UTP. The first is used
to model both performance and dependability aspects and the second allows the
modeling of system and software testing. Fig. 3 depicts the V&V domain model
we constructed to obtain the VVP.

V&V

Testing

MARTE-DAM UTP

Component
SUT

AnalysisContext

Component

StateTransitionRequirement

+id: int

+version: int

+description: String

VerificationContext

TestCase
TestStep

TestContext

Full
Partial

verified by
covered by

source

destination

Fig. 3. Extract of V&V domain model

Notwithstanding these two languages need to be extended since they do not
provide to all the features required in real industrial processes. In general three
kinds of operations can be applied to existing profiles: merge: resulting domain
model contains all the concepts of existing ones; extension: resulting domain
model is refined by adding new concepts; synthesis : redundant concepts are re-
duced refactoring the resulting domain model. In the construction of the V&V
domain model, first we extended UTP domain model by adding some important
features in the modeling of the behaviour of system under test: under the hy-
pothesis to model the behaviour of a component in terms of state machines (a

1 If we think about performance analysis, suitable formalisms are: Queueing Networks,
Petri Nets, etc.

Model-Driven V&V Processes for Computer Based Control Systems 197

very common practice in industry), the UTP’s TestCase is refined by defining
TestStep, a elementary unit of the TestCase, that can be a State or a Transition
of the state machine. Other important added concepts are related to specifica-
tion of requirements (the Requirement class) and the VerificationContext (that
can be reported to a series of TestSteps). Testing specification and case can be
modeled by specializing VerificationContext in Partial and Full according to
the test detail level. Then some synthesis are made between some elements of
MARTE-DAM and UTP (e.g. Component for both MARTE-DAM’s Component
and UTP’s SUT). Finally the VVP is generated by the V&V domain model [15].

5 Application to Railway Signalling

The proposed V&V Model-Driven approach is here instantiated to the railway
signalling domain. In particular it will be studied the European Railway Traf-
fic Management System/European Train Control System (ERTMS/ETCS) [25]
that is a standard for the interoperability of the European railway signalling
systems in charge of providing the safe movement of trains and the optimal
regulation of traffic flows.

5.1 The ERTMS/ETCS System

The mission of ERTMS/ETCS is to ensure railway interoperability. To this
aim, it provides the specification of a traffic management and train control
system that enables the transit of high speed trains through national borders.
The ERTMS/ETCS standard ensures both technological compatibility among
transeuropean railway networks and integration of the new signalling system
with the existing national train interlocking systems. An ERTMS/ETCS sys-
tem consists of heterogeneous, distributed components that are installed on the
trains, along the tracks and in several control centers. A reference schema for
ERTMS/ETCS systems is shown in Fig. 4. It consists of the Radio Block Centre
(RBC), that is a central computer responsible of an entire track area, and the
European Vital Computer (EVC), that is the on board controller. The commu-
nication between these two subsystems is provided by the GSM-R network. The
control of the movement of the train is realized by means of a message that
RBC sends to EVC: the authorization to safely move within a defined area that
is called Movement Authority (MA)2. Attached to the MA, additional informa-
tion describing a Temporary Speed Restriction (TSR) inside the length of the
MA may be sent to the train.

In this paper we focus on V&V of both non-functional and functional prop-
erties of the delivery of the MA. We consider two representative requirements:

1. UTX < 1.6 ∗ 10−5 where UTX is the unavailability due to transmission error
of communication networks [26];

2 The MA is built according to the information about train position and speed each
EVC periodically sends via GSM-R to RBC (Position Report).

198 F. Flammini et al.

Fig. 4. ERTMS/ETCS reference schema

2. the message containing the TSR is sent periodically to EVC until EVC does
not ack; if EVC does not send any ack message, RBC must send a braking
command (Unconditionally Emergency Stop - UES) [25].

The first requirement can be verified by a performance evaluation of MA mes-
sage delivery while the second by means of a functional test. The performance
analysis is provided by automatic generation of Generalized Stochastic Petri
Nets (GSPN) in Subsection 5.2; the functional test case is generated by model
checking techniques in the Subsection 5.3 and is supported by the definition of
a model transformation into Promela language [13]. Hence the general schema
depicted in Fig. 2 is instantiated into the one depicted in Fig. 5.

Promela

ertms2gspn

MARTE-DAM

UTP
VVP2promela

GSPN

VVP

ERTMS

dam2gspn

Fig. 5. ERTMS specific Model-Driven V&V

5.2 A DSML for GSM-R Unavailability Analysis

The MA is also used in some implementations as a channel monitoring message.
If a train does not receive a new MA within a chosen number of seconds after the
last received message, EVC tries to re-establish the connection within a specified
timeout period and the following situations may happen: if EVC does not receive
any valid message within a timeout, it brakes and passes in a degraded mode
from which can exit after a reconnection procedure. VVP is specialized into
ERTMS/ETCS domain specific language. A sample of this domain model is

Model-Driven V&V Processes for Computer Based Control Systems 199

depicted in Fig. 6 where the three cited components are represented by three
UML classes, each of them containing proper attributes. The meaning of the
parameters of EVC and RBC classes are briefly described in the following:

– numRetry : number of reconnection attempts by the EVC;
– timeToRestore: mean time from a disconnection to the next balise group

commanding a recall to the RBC;
– timeToRetry: time between reconnection attempts;
– timeToBrake: time-out after that a received message is no more valid;
– messageCycle: time between monitoring messages sent by RBC;

GSM-R networks does not need to be fully characterized by specific attributes
since some quantitative parameters needed for a performance analysis are con-
tained in some clases derived from MARTE and MARTE-DAM:

– ssAvail (from MARTE-DAM): unavailability of GSM-R connection;
– packetTime (from MARTE): mean message transmission time (in millisec-

onds) on the GSM-R network;
– trasmissionError (newly added): probability of a messages being corrupted

during transmission.

According to this specific domain model (and the relative UML profile), we can
describe the situation where a EVC and a RBC are connected by a redundant
GSM-R network as in Fig. 7. The tagged value ftLevel is the level of fault toler-
ance of the RedundantStructure: if set to 1, it means that at least one operating
GSM-R is needed to accomplish delivery service.

Dam2gspn and ertms2gspn are defined after the definition of a metamodel for
GSPN language, omitted for brevity. These transformations are implemented in
Atlas Transformation Language (ATL): for clarity the rules defining the transfor-
mations are described bymeans of the generatedGSPN subnets. These rules trans-
late: the redundancy of GSM-R networks, single GSM-R behaviour and RBC. The
GSPNs are respectively depicted in Fig. 8 (DaRedundantStructure with ftLevel =
1), Fig. 9 (a) (GSMR stereotype) and Fig. 9 (b) (RBC stereotype).

The i-th “cloud” in the GSPN of Fig. 8 is filled with one of the GSPN of
Fig. 9 (a) by means of the superposition of transition couples (OK,Replicai out)
and (FROM RBC,Replicai in), then the in transition of RedundantStructure

VVP

Component

ERTMS/ETCS

<<stereotype>>

RBC

+messageCycle: int

<<stereotype>>

GSMR

+trasmissionError: double

<<stereotype>>

EVC

+numRetry: int

+timeToRestore: int

+timeToRetry: int

+timeToBrake: int

VvERTMSComponent

MARTE

CommunicationMedia

+packetTime: int

MARTE-DAM

Component

+ssAvail: double

Fig. 6. ERTMS/ETCS domain model

200 F. Flammini et al.

<<DaRedundantStructure>>

network

<<EVC>>
Train

<<RBC>>
MainController

<<GSMR>>
MainNetwork

<<GSMR>>
SpareNetwork

ftLevel = 1

Fig. 7. ERTMS/ETCS Performance
Model

Out In

Replica1_in

ReplicaN_in

ReplicaN_out

Replica1_out

Fig. 8. RedundantStructure GSPN
pattern

(b)

RBC_RX

(a)

RBC_OK

RBC_KO

BUFFER

TXOK

KO

TRASMISSION

ERROR
RE-TRASMISSION

RBC_DOWNRBC_UP

FROM_RBC

Fig. 9. GSPN patterns of GSM-R (a) and RBC (b)

net is superposed with RBC RX of RBC GSPN model Fig. 9 (b) while the
out transition is then linked to the EVC GSPN model. We can now apply the
dam2gspn and ertms2gspn transformations to this model, generating a complete
GSPN model not fully represented for sake of space.

5.3 Temporary Speed Restriction Behaviour Testing

In order to be industrial appealing, the verification of functional requirements
needs automatic test case generation. First steps concern with modeling of both
system behaviour and property to be tested.

Fig. 10 models the behaviour of the RBC in presence of TSR. This model
is based on state machines according to the VVP language. With respect to
the functional requirement expressed in Subsection 5.1, when a TSR must be
sent to EVC, RBC starts a timer and sends such kind of message until it does
not receive an ack from EVC or three attempts has not been made. In the
last case, an Unconditionally Emergency Stop message is sent to the EVC. A
model of the verification of the requirement is represented in Fig. 11: an UML
activity diagram is stereotyped with Partial VerificationContext and contains

Model-Driven V&V Processes for Computer Based Control Systems 201

<<VvState>>
TSR_START

do/ count=0

<<VvState>>
TIMER_ON

entry/ timer_state=ON; timer=0;
exit/ timer_state=OFF;

T01
/msg_out=TSR; count=count+1

T02
timer==TIMEOUT && counter < 3 && msg_in == NULL
/count=count+1; msg_out=TSR

T04
msg_in==ACK T03

counter == 3 && timer==TIMEOUT && msg_in ==NULL
/msg_out=UES

<<VvTransition>>

<<VvTransition>>

<<VvTransition>>
<<VvTransition>>

Fig. 10. Model of the RBC behaviour of TSR mechanism

<<VerificationContext>>

type=partial;

requirement=(id=01;version=03;

 description=RBC must send...)

<<VvState>>
TSR_START

<<VvTransition>>
T03

Fig. 11. Specification of TSR mechanism requirement

the necessary TestSteps to develop in a full specified Full VerificationContext
(the object of the automatic generation).

In order to generate the related test case (full specification of input and out-
put conditions), we use model checking technique. In particular we rely on SPIN
model checker [13] and Promela language. After the definition of a metamodel
for Promela language, both M2M and M2T tranformations can be defined start-
ing from VVP. These transformations can be used to translate both the system
behaviour and the requirement for which generate the test case; then the two
parts are merged into a single Promela model and translated into Promela con-
crete syntax. Formal definition of the model transformations is out of the scope
of the paper; notwithstanding we report a snippet of the Promela file generated
by the TSR model.

202 F. Flammini et al.

...

:: (state == TIMER_ON) ->

atomic {

if

:: (timer==TIME_OUT && count < 3 && msg_in == NULL) ->

// exit - state

timer_state = OFF;

// applicable transition

transition = T02;

state = TIMER_ON;

// transition action

msg_out = TSR;

count = count + 1;

// entry - state

timer_state = ON;

:: (count == 3 && timer==TIME_OUT && msg_in ==NULL) ->

// exit - state

timer_state = OFF;

// applicable transition

transition = T03;

state = END_STATE;

// transition action

msg_out = UES;

:: (msg_in == ACK) ->

// exit - state

timer_state = OFF;

// applicable transition

transition = T04;

state = END_STATE;

fi;

}

...

The code snippet is the result of the translation of the TIMER ON state: it’s
possibile to see the three transitions that start from this state with trigger con-
ditions as specified in the high level. For each transition a “case” statement is
generated containing all the actions that must be accomplished: state exiting
activities, transition activation, new state entering tasks.

If a specified test is feasible, SPIN finds a counterexample and a full detailed
trace containing all the changes in Promela variables can be generated. This trace
can be used to extract the sequence of states-transitions on the state machines
inducing the sequence of inputs to give to system during the test execution phase.

6 Conclusions and Open Issues

This papers has presented a novel approach in Verification&Validation of crit-
ical railway systems that exploits the benefits of formal analysis and sofwt-
ware/system testing. An important point is related to the capability of defined

Model-Driven V&V Processes for Computer Based Control Systems 203

process to be both theoretically unifiying and be appealing in real industrial
contexts. The methodology has been applied to the railway domain specifically
addressing the two different aspects: two applications of ERTMS/ETCS sig-
nalling control systems show complementary features and advantages of the
proposed approach. Indeed the applications show how to develop novel tech-
incal and business oriented specific languages and mode transformations both
improving language usability and transformation reuse. It’s important to remark
that this is part of an ongoing work and the VVP is currently in development
phase: future research efforts will investigate on extends VVP in particural in
the interaction between the analysis and testing subparts of the approach.

References

1. ARTEMIS-2008-1-100022 CHESS - composition with guarantees for high-integrity
embedded components software assembly, https://www.artemis-ju.eu/chess

2. MBAT: Combined Model-based Analysis and Testing of Embedded Systems,
http://www.mbat-artemis.eu/

3. PRIDE - ambiente di progettazione integrato per sistemi dependable, transforma-
tions for dependability analysis, deliverable 2.1 (February 2003)

4. Model driven architecture guide, Version 1.0.1, OMG document (2003)

5. Bernardi, S., Flammini, F., Marrone, S., Merseguer, J., Papa, C., Vittorini, V.:
Model-Driven Availability Evaluation of Railway Control Systems. In: Flammini,
F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 15–28.
Springer, Heidelberg (2011)

6. Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE.
Journal of Software and Systems Modeling (2009)

7. Bondavalli, A., Dal Cin, M., Latella, D., Majzik, I., Pataricza, A., Savoia, G.:
Dependability analysis in the early phases of UML-based system design. Comput.
Syst. Sci. Eng. 16(5), 265–275 (2001)

8. Causevic, A., Sundmark, D., Punnekkat, S.: An industrial survey on contemporary
aspects of software testing. In: 2010 Third International Conference on Software
Testing, Verification and Validation (ICST), pp. 393–401 (April 2010)

9. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. 28(4), 626–643 (1996)

10. Dai, Z.: Model-driven testing with UML 2.0. In: Proceedings of the 2nd European
Workshop on Model Driven Architecture (2004)

11. Flammini, F.: Railway safety, reliability, and security: Technologies and systems
engineering. IGI Global (2012)

12. Gómez-Mart́ınez, E., Merseguer, J.: ArgoSPE: Model-Based Software Performance
Engineering. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS,
vol. 4024, pp. 401–410. Springer, Heidelberg (2006)

13. Holzmann, G.J.: The SPIN model checker (September 2003)

14. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. Com-
puter 30(4), 75–82 (1997)

15. Lagarde, F., et al.: Improving UML profile design practices by leveraging con-
ceptual domain models. In: 22nd Int.l Conf. on Automated Software Engineering,
Atlanta, USA, pp. 445–448. ACM (November 2007)

https://www.artemis-ju.eu/chess
http://www.mbat-artemis.eu/

204 F. Flammini et al.

16. Marrone, S., Papa, C., Vittorini, V.: Multiformalism and Transformation Inheri-
tance for Dependability Analysis of Critical Systems. In: Méry, D., Merz, S. (eds.)
IFM 2010. LNCS, vol. 6396, pp. 215–228. Springer, Heidelberg (2010)

17. UML profile for modeling and analysis of real-time and embedded systems (marte),
Version 1.0, OMG document (2009)

18. Moreno, G.A., Merson, P.: Model-driven performance analysis. In: Proceedings of
the 4th International Conference on the Quality of Software Architectures, QoSA
(2008)

19. UML testing profile, Version 1.1, OMG document (2012)
20. Petriu, D.B., Woodside, M.: A metamodel for generating performance models from

UML designs. In: Proceedings of the 7th Int. Conference on the Unified Modeling
Language. Modelling Languages and Applications, pp. 41–53 (2004)

21. Petriu, D.B., Woodside, M.: An intermediate metamodel with scenarios and re-
sources for generating performance models from UML designs. In: Software and
Systems Modeling, Special Issue, SoSyM, pp. 163–184 (2007)

22. Rugina, A., Kanoun, K., Kaâniche, M.: A system dependability modeling frame-
work using AADL and GSPNs, pp. 14–38. Springer, Heidelberg (2007)

23. Selic, B.: A systematic approach to domain-specific language design using UML.
In: 10th IEEE Int.l Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC 2007), pp. 2–9 (2007)

24. Tadano, K., Xiang, J., Kawato, M., Maeno, Y.: Automatic Synthesis of SRN Mod-
els from System Operation Templates for Availability Analysis. In: Flammini, F.,
Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 296–309.
Springer, Heidelberg (2011)

25. UIC. ERTMS/ETCS class1 system requirements specification, ref. SUBSET-026,
issue 2.2.2 (2002)

26. UNISIG. ERTMS/ETCS RAMS requirements specification, ref. 96s1266

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 205–215, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Formal Methods in Avionic Software Certification:
The DO-178C Perspective

Gabriella Gigante and Domenico Pascarella

CIRA (Italian Aerospace Research Centre), Via Maiorise,
81043 Capua, Italy

{g.gigante,d.pascarella}@cira.it
http://www.cira.it

Abstract. The ideal of correct software has always been the goal of research in
the field of Information Technologies. For the next years scientific communities
hope for a great challenge: a complete strategy in software programming and
software engineering supported by a range of analysis tools to design, develop,
integrate, verify and maintain software applications with mathematical rigor. In
this challenge formal methods shall play a key role. The adoption of these me-
thodologies should be placed in the proper software engineering framework ac-
cording to the software domain. In the avionic domain safety-critical software
has to accomplish Federal Aviation Regulations by DO-178C or DO-278A
means of compliance giving evidence that software implements its intended
functions and does not perform unintended functions. DO-178B and DO-278A
allowed formal methods without addressing specific process requirements. DO-
178C instead is accompanied by a new RTCA Guideline DO-333 “Formal me-
thods supplement to DO-178C and DO-278A”. The paper aims to provide an
overview of the above mentioned standard. It highlights key concepts about the
proper adoption of formal methods to accomplish the standard and the related
certification objectives and provides different cases according to the different
granted verification techniques.

1 Introduction

Correctness is a key issue in the design process of safety-critical software. Defects in
such software may lead to catastrophic consequences. Software verification is the soft-
ware engineering discipline whose goal is to assure that the product under consideration
possesses the required functionalities and does not perform unintended functions.

The most used verification techniques are still reviewing and testing. For example,
an average part between 30% and 50% of the software costs are dedicated to testing.
Moreover testing and reviews are complementary means of verification because they
are able to detect different types of errors. Thereby a typical design process uses test-
ing, reviews and other best practices for software assurance.

This approach has three main pitfalls:

- testing and reviewing are not exhaustive methods: they cannot analytically show
the absence of defects, but they can only improve in some way the confidence
about the good functioning of the product;

206 G. Gigante and D. Pascarella

- testing and reviewing are mostly manual techniques: they are strongly related to
the verifier experience and they cannot be completely automated;

- testing and reviewing are more effective in the latter stages of the development
cycle: testing is not applicable in the earliest stages, while empirical studies indi-
cate that reviews obtain better results if they are directed to specific errors.

These weaknesses are more significant for complex systems and safety-critical soft-
ware, where more effort is spent on verification than in development. Besides an ear-
lier detection of defects would considerably reduce the fixing costs. Formal methods
and formal analysis could resolve these issues.

2 Depth and Issues of Application in Formal Methods

Formal methods are the use of mathematical techniques in the design and analysis of
computer hardware and software. Mathematical rigor provides for the construction of
specifications and their verification is less reliant on human intuition, thus could give
evidence of correctness and robustness of software.

Formal specification and verification means creating a mathematical model of a
system, using a language to specify desired properties of the system in a concise and
unambiguous way, and using a method of proof to verify that the specified properties
are satisfied by the model.

The literature provides numberless of case studies demonstrating that formal me-
thods can be used for a wide variety of purposes:

- to derive premises or logical consequences of the specification, for user confir-
mation, through deductive theorem proving techniques [8];

- to generate counterexamples to claims about a declarative specification;
- to generate concrete scenarios illustrating desired or undesired features about the

specification [9] or, conversely, to infer the specification inductively from such
scenarios;

- to produce animations of the specification in order to check its adequacy [10];
- to check specific forms of specification consistency/completeness efficiently;
- to generate higher-level specifications such as invariants or conditions for live-

ness or for safety or for reachability and functional correctness [11];
- to generate test cases and oracles from the specification [12];
- to support formal reuse of components through specification matching [13].

According to the intended purposes formal methods can be applied to the specifica-
tion and verification of products from each development lifecycle: requirements,
high-level and low-level design, and implementation.

Early software lifecycle phases are currently less automated and less tightly
coupled to specific languages and notations, and related work products are typically
less effectively analyzed than those of later development stages. Formal methods
could compensate for these limitations supporting the existing process by the pro-
vided systematic, repeatable analysis specification and proof.

 Formal Methods in Avionic Software Certification: The DO-178C Perspective 207

Formal approaches used later in lifecycle phases, raises more technically challeng-
ing integration problems. For example, the languages adopted for formal specification
and proof and those used for programming generally exhibit semantic differences
making it difficult to synthesize a process that effectively uses both [16].

Formal methods seem to find their most effective application early in the lifecycle.
First of all the activity of modeling in itself has been widely experienced to raise

many questions and detect serious problems in original informal formulations. Be-
sides, the semantics of the formalism being used provides precise rules of interpreta-
tion allowing many of the problems with natural language to be overcome. These
semantic rules can fix accuracy problems. Second, the formal language can guarantee
a proper and uniform level of abstraction. In real development processes we expe-
rienced that is difficult “to standardize” the proper level of abstraction and at the same
time is difficult for software engineers to describe thoroughly what the software has to
do to implement the system requirements, abstracting from how the software will
implement that behavior. Third, formal specifications can discovery incompleteness
or ambiguity. Fourth, formal specifications are closely connected to automatic verifi-
cation, they encourage atomicity. Fifth, formal specifications can be subjected to var-
ious forms of automatic analysis that are rather effective in detecting certain kinds of
faults. Simple syntax analysis identifies many clerical errors, and type checking is a
very potent debugging. Sixth, formal methods based on state exploration can automat-
ically examine all the possible behaviors of simplified instances of many design prob-
lems, unlike rapid prototyping and simulation.

Generally speaking formal methods require discrete phases or steps clearly defined
and documented with fixed work products. Whatever the lifecycle is, it should give
evidence of compliance to applicable standards and guidelines. In the avionic domain
the adoption of formal approaches is guided by DO-178B [1], DO-178C [2] and
DO-333 [15].

3 Formal Methods in Support Certification

3.1 DO-178B and DO-178C

Software failures are usually systematic and not random. They arise from faults (de-
fects) in requirements specification, design, coding or integration, so their occurrences
are deterministic: they always come true if there is a certain combination of inputs
and system state. However, this combination can be treated as a random process,
therefore software failures can have a stochastic model and a probabilistic characteri-
zation, i.e. we may estimate a software failure rate.

As regards airborne software, its development needs an integral safety engineering
approach to minimize failure rates. We can classify this kind of software as “ultra-
dependable” as it typically requires failure rates of 10-7 to 10-12 per hour. For example,
catastrophic failures in a civil aircraft must have a rate less than 10-9 [7]. Failure rates
of ultra-dependable systems are so low that we cannot generally provide an experi-
mental validation of their fulfillment. We can’t even decompose software into simply
related components which can fail independently and can be easily modeled from a

208 G. Gigante and D. Pascarella

reliability point of view: software structures present complex relationships, they can
influence each other and they can propagate their errors. For this reason, certification
of airborne software can’t be globally experimental or analytical, but it can only in-
volve different aids, such as specific life-cycle processes, configuration management,
fault-tolerant techniques, experience with similar software, qualifications of tools and
developers, and so on. Assurance of ultra-dependable software can be guaranteed only
by an intensive analysis of its design activities (“we cannot measure how well we’ve
done, we instead look at how hard we tried”, [4]). Anyway, testing is essential, but it
cannot formally prove dependability properties: it can only support in verification of
requirements coverage due to the infeasibility of experimental estimation of the real
failure rates in the ultra-dependable region.

This is the core issue of DO-178B and DO-178C (but also of other standards for
safety-critical software). They are both prescriptive standards for airborne software
development: they point out requirements on the process by which software is devel-
oped and deployed.

DO-178C is a revision of DO-178B. Unlike DO-178B, it takes into account more
mature software technologies, such as object-oriented programming, model-based
design (automatic code generation), COTS tools (such as real-time operating sys-
tems). As regards verification, it goes beyond testing and reviewing and addresses
formal analysis. It tries to remove ambiguities to minimize the possibility of subjec-
tive judgments by certification authorities.

DO-178C explicitly addresses “new” software technologies in supplements: in this
way, the basic prescribed approach for software development process is practically
the same of DO-178B, but it can be partially replaced or extended by some variants
that include other means of compliance (for example, formal methods). These sup-
plements are about tool qualification, model-based development, object-oriented de-
sign and formal methods.

3.2 DO-178C Overview

Certification is the legal recognition by a certification authority that a product, ser-
vice, organization or person complies with some specific requirements. The applicant
has to convince the relevant certification authority that all required steps have been
taken to match the required requirements. DO-178C (Software Considerations in Air-
borne Systems and Equipment Certification) is the current reference for software
certification in the aeronautical domain (even though it could be theoretically applied
in other domains, too). It has been used by FAA and EASA to approve software for
commercial aircrafts. Like DO-178B, it has been produced by RTCA “to establish
software considerations for developers, installers, and users when the aircraft equip-
ment design is implemented using microcomputer techniques” [3]. So DO-178C does
not provide real certification requirements (which are based on other existing regula-
tions), but it points out some fundamental guidelines. For example, it does not pre-
scribe a particular development process, but identifies the main design activities and
their objectives. It does not dictate approaches for hazard assessment (for example,

 Formal Methods in Avionic Software Certification: The DO-178C Perspective 209

fault tree analysis), specific programming languages or tools, requirements for per-
sonnel training or format for artifacts, too.

This is summarized in [2]: “the certification authority establishes the certification
basis for the aircraft or engine in consultation with the applicant”. Besides, “the appli-
cant proposes a means of compliance that defines how the development of the air-
borne system or equipment will satisfy the certification basis. The Plan for Software
Aspects of Certification defines the software aspects of the airborne system or equip-
ment within the context of the proposed means of compliance”.

From a qualitative point of view, DO-178C requires that each line of code must be
directly traced to a requirement, that every requirement must be traced to some test
cases and that no extraneous code is present in the delivery. Obviously the applicant
has to provide some evidence to the authority in order to gain certification credits, i.e.
to prove that all required objectives (requirements for certification) are satisfied.
These objectives are not all mandatory, but their imposition is related to the software
level.

Software level is “the designation that is assigned to a software component as de-
termined by the system safety assessment process” and establishes the rigor necessary
to demonstrate compliance with [2]. Therefore, the certification authority does not
consider the software as a stand-alone product, but in its relationships to the total
system (aircraft) which contains it. For this reason, the software level is related to the
software contribution to system failure conditions. Software levels are identified from
levels A to E according to the severity of their potential conditions: level A is soft-
ware whose malfunction could contribute to catastrophic failure conditions; level E
(not addressed in DO-178C) corresponds to software whose malfunction is always
anomalous behavior, with no effects on aircraft operational capability and on pilot
workload.

DO-178C organizes software design process into three processes: software plan-
ning process, software development process and integral processes.

The planning process addresses both development and integral processes. Its arti-
facts (Plan for Software Aspects of Certification, Software Development Plan, Soft-
ware Verification Plan, Software Configuration Management Plan, Software Quality
Assurance Plan, Software Standards and tool qualification plans) must conform to
DO-178C. Then, the applicant has to provide evidence that the software lifecycle
processes are compliant with the software plans.

Software development process is further composed of four sub-processes:

- software requirements process develops High Level Requirements (HLR, a de-
scription of the intended software functionalities, i.e. what the software shall do)
from the outputs of the system process (system requirements);

- software design process develops Low Level Requirements (LLR, a description
about how the software shall executes its delegated functionalities) and Software
Architecture from the HLR;

- software coding process develops source code from the Software Architecture
and the LLR;

210 G. Gigante and D. Pascarella

- software integration process loads executable object code into the target hardware
for hardware/software integration.

Integral processes ensure correctness, control and confidence of the software activities
and their artifacts. Verification, configuration management, quality assurance and
certification liaison are part of integral processes.

3.3 Formal Methods in DO-178C Processes

DO-178C makes some preliminary remarks in order to guide the applicant to a sound
use of formal approach. It creates a common understanding on the words: formal
methods, formal model, formal analysis. A formal method is constituted by a formal
model combined with a formal analysis. It can be applied at various stages in software
development, that is in different processes.

Formal models are produced by the development process, for example require-
ments process or detailed design or by formal analysis of a software artifact. Different
formal models can be applied to different type of analysis, as well as not all the speci-
fications need to be modeled in a formal way.

Formal analysis provides guarantees/proofs of software properties, in other words
compliance with requirements. Subject to the formal model employed is correct, for-
mal analysis provides assurance that the artifact at that stage does not contain certain
kind of faults.

Compliance between artifacts can never be shown between a formal model and an
informal model, using formal analysis. Besides tools adopted to execute formal analy-
sis or formal modeling should follow guidelines related to tools.

Planning Process
Planning process should develop a thorough analysis about benefits of applying for-
mal methods in the specific software lifecycle. Trade-off must be driven by skill,
communications needs, software design assurance level, commercial tools availability
and effectiveness of other verification techniques on the specific application.

Once decided on the adoption of formal methods, the purposes, the relative outputs
and framework should be fixed.

The Plan for Software Aspects Certification (PSAC) should address such consider-
ations in order to make certification authorities aware of the soundness of formal ap-
proach. In details formal methods purposes should be mapped to the specific process
objectives, the use in software lifecycle should be clarified identifying the affected
processes (development, verification, integration, assurance), the relative outputs
should be defined together with their intended use within the software lifecycle.

The Software Development Plan should detail the integration of formal modeling
within the development activities identifying the relative process data, in other words
the relative outputs and the intended use within the process. The Software Verifica-
tion Plan should detail the verification activities stating explicitly which properties are
intended to be verified, which objectives must be accomplished and describing step
by step the working procedure to exercise verification. Formal verification cases must

 Formal Methods in Avionic Software Certification: The DO-178C Perspective 211

be repeatable. The verification environment should be described in detail with par-
ticular attention to the assumptions that may invalidate the verification itself.

Software Standards also should be considered by the planning process. According
to the stage at which the formal methods are applied, the standard of formal modeling
should be provided. Standard should also guide developers and verifiers to the defini-
tion of properties to be satisfied by models.

Development Process
The objectives of the Development Process require the production of artifacts
representing intermediate steps towards the executable object code. Such artifacts are
the means of compliance to the objectives.

Artifacts are: High Level Requirements, Software Architecture, Low Level Re-
quirements, source code, object code.

Each one can be developed by applying formal modeling. The intended purpose
could be the need of defining high quality software artifacts eventually combined with
the need of a rigorous verification technique. Each artifact could be independently
modeled by means of a specific formal language, or an artifact could represent the
model and the higher level artifact could represent the properties that the model
should satisfy. Formal modeling of object code implies the semantics are managed in
the same by formal analysis as they are by the target hardware.

Anyway each possible approach allows the applicant to comply with the recom-
mended objectives of Annex A Table A-2 [2], but encompasses different verification
objectives. Besides each approach implies a different planning of development stan-
dards. Duplication of artifacts expressed in different models should be avoided. The
presence of different models of the same artifact could generate confusion during the
verification activity, and the evidence of equivalence between the different models
could raise some problems. This approach could minimize benefits in saving effort.
Typically this approach is adopted when software developers do not have the skill
needed to provide directly a formal model of the artifact, and an independent group
executes the activity, or when there are binding constraints by customer. In this case
the development process should clearly identify the process data and their utilization
within the certification process, verification process should manage and resolve the
intrinsic ambiguity.

An hybrid approach could be encouraged by the presence on the market of CASE
tools. In this case, to enable formal analysis, the process should address the transfor-
mation the “semi-formal model” into a formal model, providing that a tool exists. In
this case the planning process must pay great attentions in tools assurance: models
should be equivalent.

Verification Process
According to DO-178C, the objectives of the Verification Process require:

- evidence of fully and exclusive compliance of each level of specification to the
requirements of its superior specification;

212 G. Gigante and D. Pascarella

- evidence of correctness of object code satisfying the system requirements, that is it
implements the intended functions;

- confidence that the object code does not perform unintended functions.

Formal methods do not replace this process, but rather augment the already foreseen
verification techniques analysis, review and testing. Different approaches can be
adopted according to the different objectives that are intended to be accomplished
formally.

High Level Requirements are required to meet system requirements, to be accurate,
to be verifiable, to be consistent, to comply standards, to be traceable to system re-
quirements, to define accurate algorithms.

Compliance to system requirements by formal analysis would require formal mod-
eling of system requirements.

If a set of system requirements and a set of High Level Requirements are expressed
as formal notations, formal analysis can provide evidence of compliance. The proof of
evidence could be supplied in different ways according to the approach. High Level
Requirements can be “logical consequences” of system requirements, or they can
define the model, and system requirements identify the properties of the model. In the
latter case reachability analysis could provide a counter-example of something not
reachable and this could lead to identify unnecessary High Level Requirements that
would probably originate dead code.

Derived High Level Requirements (HLR not traceable to system requirements)
might not be assured by formal methods, therefore they should always be reviewed
and reported to verify any conflict at system level.

Anyway in a typical process, the system project team is different from the software
project team, and the activity, if not executed by the system team itself, could result
heavy and the relative benefits of a sound verification could be minimized by the
effort spent for the activity.

If a set of High Level Requirements is expressed as formal notation, relative accu-
racy and verifiability are intrinsically assured by the formalism itself, being precise
and unambiguous and verifiable. The remaining set of High Level Requirements
should be verified by different means.

A set of High Level Requirements in formal notations can be easily checked for
conformance to standards by means of formal analysis. The verification process
should clarify if all standards can be verified by means of formal analysis, otherwise it
should identify clearly which standards are verified formally and which one by means
of review.

Traceability should be verified by review, anyway it could be supported by the ve-
rification of compliance to system requirements.

Low Level Requirements are required to meet High Level Requirements, to be ac-
curate, to be verifiable, to be consistent, to comply to standards, to be traceable to
High Level Requirements, to define accurate algorithms and to be compatible with
target computer.

For Low Level Requirements the same approach of that for High Level
Requirements can be adopted to assure the same objectives (compliance, accuracy,

 Formal Methods in Avionic Software Certification: The DO-178C Perspective 213

consistency). Compatibility with software/hardware target environment means assur-
ing that no conflict exists on aspects about bus loading, system response time, and
input/output hardware. Verification by formal analysis would require formal model-
ing of hardware/software features of the target computer.

Software Architecture is required to be compatible with High Level Requirements,
consistent, conform to standards, compatible with the target computer and coherent
with respect the partitioning integrity identified at PSAC level.

Compatibility with High Level Requirements requires that architecture does not
conflict with them. If both are expressed by formal notations, formal analysis can be
applied. If only some parts of artifacts are formally modeled, the remaining parts
should be verified by other means for example by review.

Consistency aims to assure the correct relationships between the software compo-
nents concerning both the aspects of data flow and control flow, and to guarantee
protection mechanism between every higher level component and the related low
level components. Consistency could be guaranteed by formal analysis.

Compatibility with software/hardware target environment aims to assure that no
conflict exists in initialization, asynchronous and synchronous operations and inter-
rupts. It could be verified by formal analysis only if target environment is formally
modeled.

Partitioning integrity could be expressed by appropriate formal properties satisfied
by the architectural formal model.

Source code is required to be compliant with Low Level Requirements, with Soft-
ware Architecture, to be conform to standards, verifiable, accurate and consistent.

Compliance, conformity to standards, accuracy, consistency and verifiability could
be assured by formal analysis provided that both artifacts are formally modeled.

Accuracy means the verification of properties as stack usage, memory usage, fixed
point arithmetic overflow, floating-point arithmetic, resource contention and limita-
tions, worst case execution timing, exception handling, initializations run-time prob-
lems, cache management, unused variables, data corruption, compiler and the relative
options, linker and the relative options.

Formal analysis could verify this properties if a semantic model of the code exists.
Objectives accomplished by source code could be considered accomplished by ob-

ject code if the similarity between two artifacts can be demonstrated.

Verification of Verification Process
Verification of Verification Process aims at assure the “completeness” of Verification
Process itself demonstrating that verification cases and results are correct and full
coverage is achieved. Correctness of formal verification cases and relative results is a
specific objective to accomplish when using formal methods. Coverage can be
achieved by means of:

- requirement-based coverage analysis: that is a formal case for each formalized
requirement (exhaustive verification provided by formal methods guarantees a
complete coverage with a single formal case);

- completeness of the set of requirements: that is for all input conditions the re-
quired output has been specified and for all output the required input conditions
have been specified.

214 G. Gigante and D. Pascarella

If completeness cannot be achieved, structural coverage analysis by means of testing
must be considered.

3.4 Additional Specific Objectives

In addition to the core objectives, the formal methods supplement of DO-178C pre-
scribes some specific objectives concerning the application of formal methods. They
are intuitively an extension of verification of verification objectives, applied to formal
specification and analysis. These objectives are:

- Correctness of formal analysis cases and procedures: all assumptions included in
the formal analysis must be justified and false assumptions must be identified and
removed because they would invalidate the analysis.

- Correctness of formal analysis results: the applicant must provide evidence that
formal analysis results are correct and discrepancies between actual and expected
results are explained.

- Correctness of requirements formalization: if informal requirements (i.e., natural
language or semi-formal expressions) are translated into formal specifications,
the applicant must prove that the formalization is an equivalent representation of
the starting requirement.

- Formal method soundness: the applicant must provide evidence about formal
method soundness, i.e. notations have an unambiguous and mathematically de-
fined syntax and semantics and the analysis method never asserts that a property
is true even when it may be not true.

4 Conclusions and Future Works

Formal methods and their benefits within a project for the development of safety-
critical airborne software must be evaluated for effectiveness and efficiency. Many
specific objectives must be accomplished in order to be fully compliant to RTCA
guideline. The planning process should choose a proper framework for formal devel-
opment and formal verification. Framework encompasses objectives, activities for
identification of specific aspects of system to be investigated, and tools. Objectives
covered by formal analysis should be precisely identified avoiding duplicates in
processes. Property and modeling languages should be appropriate to the specific
system domain, and their scope should be precisely clarified. Notations should be
clear and intuitive to the average user and reviewer. Additional activities should be
defined to identify rigorously the “most critical aspects of the system” to investigate.
Tools should guarantee confidence about their outputs.

Analysis should not be an isolated phase in the software verification process. Ra-
ther methods and tools for design, analysis and coding should be well integrated, and
support similar approaches to system development. Defining for the first time a sound
framework to gain certification credits requires effort, but building it “reusable”, al-
lows to gain in time more and more benefits.

 Formal Methods in Avionic Software Certification: The DO-178C Perspective 215

Future works should investigate the open points: formal methods to detect unin-
tended functions hidden in the software model, an integrated framework that can well
map the recommended processes within the “formal method lifecycle”.

References

1. RTCA/DO-178B, EUROCAE/ED-12B: Software Considerations in Airborne Systems and
Equipment Certification (December 1, 1992)

2. RTCA/DO-178C: Software Considerations in Airborne Systems and Equipment Certifica-
tion (December 13, 2011)

3. RTCA Inc., Document RTCA/DO-178B, Federal Aviation Administration (January 11,
1993), Advisory Circular 20-115B

4. Formal Methods and the Certification of Critical Systems, John Rushby, Technical Report
CSL-93-7 (December 1993)

5. Heimdahl, M.P.E., Leveson, N.G.: Completeness and Consistency in Hierarchical State-
Based Requirements. IEEE Transactions on Software Engineering 22(6) (June 1996)

6. van Lamsweerde, A.: Formal Specification: a Roadmap. In: ICSE - Future of SE Track,
pp. 147–159. ACM (2000)

7. System Design and Analysis, Federal Aviation Administration (June 21, 1988), Advisory
Circular 25.1309-1A

8. Manna, Z.: STeP: Deductive-Algorithmic Verification of Reactive and Real-Time Sys-
tems. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 415–418.
Springer, Heidelberg (1996)

9. Hall, R.J.: Explanation-Based Scenario Generation for Reactive System Models. In: ASE
1998, Hawaii (October 1998)

10. Thompson, J.M., Heimdahl, M.P.E., Miller, S.P.: Specification-Based Prototyping for Em-
bedded Systems. In: Wang, J., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE 1999.
LNCS, vol. 1687, pp. 163–179. Springer, Heidelberg (1999)

11. Jeffords, R., Heitmeyer, C.: Automatic Generation of State Invariants from Requirements
Specifications. In: Proc. FSE-6: 6th ACM SIGSOFT Intl Symposium on the Foundations
of Software Engineering, Lake Buena Vista, pp. 56–69 (1998)

12. Roong-Ko, D., Frankl, P.G.: The ASTOOT approach to testing object-oriented programs.
ACM Transactions on Software Engineering and Methodology 3(2), 101–130 (1994)

13. Zaremski, A.M., Wing, J.: Specification Matching of Software Components. ACM Trans-
actions on Software Engineering and Methodology 6(4), 333–369 (1997)

14. Lutz, R.R.: Analyzing software requirements errors in safety-critical embedded systems.
In: IEEE International Symposium on Requirements Engineering, San Diego, CA, pp.
126–133 (January 1993)

15. RTCA/DO-333: Formal Methods Supplement to DO-178C and DO-278A (December 13,
2011)

16. NASA-GB-002-95, Formal Methods Specification and Verification Guidebook for Soft-
ware and Computer Systems – Volume I: Planning and Technology Insertion, Office of
Safety and Mission Assurance (July 1995)

Product Line Engineering

Applied to CBTC Systems Development

Alessio Ferrari1, Giorgio Oronzo Spagnolo1,
Giacomo Martelli2, and Simone Menabeni2

1 ISTI-CNR, Via G. Moruzzi 1, Pisa, Italy
lastname@isti.cnr.it

http://www.isti.cnr.it/
2 DSI, Università degli Studi di Firenze, Via di S.Marta 3, Firenze, Italy

lastname@dsi.unifi.it

http://www.dsi.unifi.it/

Abstract. Communications-based Train Control (CBTC) systems are
the new frontier of automated train control and operation. Currently
developed CBTC platforms are actually very complex systems including
several functionalities, and every installed system, developed by a dif-
ferent company, varies in extent, scope, number, and even names of the
implemented functionalities. International standards have emerged, but
they remain at a quite abstract level, mostly setting terminology.

This paper reports intermediate results in an effort aimed at defining
a global model of CBTC, by mixing semi-formal modelling and prod-
uct line engineering. The effort has been based on an in-depth market
analysis, not limiting to particular aspects but considering as far as pos-
sible the whole picture. The adopted methodology is discussed and a
preliminary model is presented.

Introduction

Communications-based Train Control (CBTC) is the last technological frontier
for signalling and train control in the metro market [16,11]. CBTC systems offer
flexible degrees of automation, from enforcing control over dangerous operations
acted by the driver, to the complete replacement of the driver role with an
automatic pilot and an automatic on-board monitoring system.
Depending on the specific installation, different degrees of automation might
be required. Furthermore, companies shall be able to provide complete CBTC
systems, but also subsets of systems. The aim is to satisfy the needs of green-field
installations, and address the concerns of the operators who wish to renew only
a part of an already installed system. In this sense, the product line engineering
technology provides a natural tool to address the need for modularity required
by a market of this type [7,10].

Entering the CBTC market with a novel product requires such a product to
be compliant with the existing standards. Two international standards provide
general requirements for CBTC systems. The first is IEEE 1474.1-2004 [11], while

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 216–230, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.isti.cnr.it/
http://www.dsi.unifi.it/

Product Line Engineering Applied to CBTC Systems Development 217

the second is IEC 62290 [1,2]. The standards differ in terminology and structure.
Therefore, a product satisfying the former is not ensured to accomplish also the
requirements of the latter.

A novel CBTCproduct shall also take into account the existing similar products
and installations to be competitive w.r.t. the other vendors. The CBTC market
is currently governed by six main vendors, namely Bombardier [20], Alstom [19],
Thales [21], Invensys Rail Group [12], Ansaldo STS [3], and Siemens [18]. Each
vendor provides its own solution, and different technologies and architectures are
employed.

In this paper an experience is presented, where domain analysis has been used
to derive a global CBTC model, from which specific product requirements for
novel CBTC systems can be derived. The global model is built upon the integra-
tion of the guidelines of the standards, and is driven by the architectural choices
of the different vendors. The model is represented in the form of a feature dia-
gram [14,4,8], following the principles of the product-line engineering technology.
From the global feature diagram, we derive the actual product requirements. To
this end, we draw graphical formal models of the product architecture, together
with scenario models in the form of simplified sequence diagrams. Architecture
and scenario models are finally used to define and enrich the natural language re-
quirements of the actual product. Examples are presented throughout the paper
to explain the approach, and to show the results of the current implementation
of the proposed methodology.

The paper is structured as follows. In Sect. 1, the CBTC operational princi-
ples are presented. In Sect. 2, an overview of the approach is given. In Sect. 3,
an analysis of the standards and of the architectures of the CBTC vendors is
presented. In Sect. 4, the global CBTC model is described. In Sect. 5, the ar-
chitecture and scenario models are derived, together with the requirements for
the actual product. In Sect. 6, related works are discussed. Sect. 7 draws final
conlusions and remarks.

1 Communications-Based Train Control Systems

CBTC systems [16,11] are novel signalling and control platforms tailored for
metro. These systems provide a continuous automatic train protection as well
as improved performance, system availability and operational flexibility of the
train.

The conventional metro signalling/control systems that do not use a CBTC
approach are exclusively based on track circuits and on wayside signals. Track
circuits are used to detect the presence of trains. Wayside signals are used to en-
sure safe routes and to provide information to the trains. Therefore, the position
of the train is based on the accuracy of the track circuit, and the information
provided to the train is limited to the one provided by the wayside signals. These
systems are normally referred as fixed block systems, since the distance between
trains is computed based on fixed-length sections (i.e., the length of a track
circuit - see upper part of Figure 1).

218 A. Ferrari et al.

CBTC overcomes these problems through a continuous wayside-to-train and
train-to-wayside data communication. In this way, train position detection is
provided by the onboard equipment with a high precision. Furthermore, much
more control and status information can be provided to the train. Currently, most
of CBTC systems implement this communication using radio transmission [15].

The fundamental characteristic of CBTC is to ensure a reduction of the dis-
tance between two trains running in the same direction (this distance is normally
called headway). This is possible thanks to the moving block principle: the min-
imum distance between successive trains is no longer calculated based on fixed
sections, as occurs in presence of track circuits, but according to the rear of the
preceding train with the addition of a safety distance as a margin. This distance
is the limit distance (MA, Movement Authority) that cannot be shortened by a
running train (see lower part of Figure 1).

The control system is aware at any time about the exact train position and
speed. This knowledge allows the onboard ATP (Automatic Train Protection)
system to compute a dynamic braking curve to ensure safe separation of trains,
which guarantees that the speed limit is not exceeded. The ATP system en-
sures that the MA is not shortened by the train, in addition to the continuous
protection of the train in every aspect.

Fig. 1. Fixed block vs moving block

From the architectural point of view, CBTC systems are characterized by a
division in two parts: onboard equipment and wayside equipment. The first is
installed on the train and the latter is located at a station or along the line.

CBTC systems also allow automatic train control functions by implementing
both the ATO (Automatic Train Operation) and the ATS (Automatic Train
Supervision) systems. The ATO enlables driverless operation, ensuring the fully
automatic management of the train in combination with ATP. The ATS offers
functions related to the supervision and management of the train traffic, such
adjustment of schedules, determination of speed restrictions within certain areas
and train routing.

A CBTC system might include also an interlocking (noted in the following
as IXL). The IXL monitors the status of the objects in the railway yard (e.g.,
switches, track circuits) and, when routing is required by the ATS, allows or
denies the routing of trains in accordance to the railway safety and operational
regulations.

Product Line Engineering Applied to CBTC Systems Development 219

2 Method Overview

In this work an approach has been defined to identify a global model of CBTC
and derive the product requirements for a novel CBTC system. The method
starts from the available international requirements standard – IEEE 1474.1-
2004 [11] and IEC 62290 [1,2] – and from the public documents provided by the
current CBTC vendors. Three main phases have been identified to move from
these heterogeneous natural language description of the expected CBTC features
to the actual CBTC product requirements.

Fig. 2. Overview of the product requirements definition process adopted

Figure 2 summarizes the approach followed. Activities are depicted as circles
and artifacts are depicted as rectangles with a wave on the bottom side.

First, domain analysis is performed (Sect. 3). During this phase, the require-
ments standards are analysed together with the documents of the different
vendors. The former are used to identify the functionalities expected from a
standard-compliant CBTC system (Functionality Identification), while the lat-
ter are used to identify the system architectures adopted by the competitors
(Architecture Identification). Requirements standards are also employed in the
Architecture Identification task to provide a common vocabulary to describe the
architectures.

In the second phase, a product family for CBTC systems is defined (Sect. 4).
The architectures identified in the previous phase are evaluated, and a feature
model is derived to hierarchically capture all the different architectural options
available in the market (Feature Modelling).

The last phase drives the definition of the actual product features (Sect. 5).
From the feature model that represents the product family, a product instance
is chosen. A detailed architecture is defined for such a product instance, taking
into account the functionalities extracted from the standards (Product Architec-
ture Modelling). Then, scenarios are derived to analyse the different behavioural
aspects of the product (Product Scenario Modelling).

The final product requirements are the results of the adaptation of the stan-
dard CBTC requirements to the desired product. This adaptation is provided
according to the (1) functionalities extracted from the standards, (2) the product
architecture, and (3) the product scenarios.

220 A. Ferrari et al.

3 Domain Analysis

3.1 Functionality Identification

In this phase, functionalities are identified for a generic CBTC system by eval-
uating the available international standards. Currently, the reference standards
are IEEE 1474.1-2004 [11] and IEC 62290 [1,2], which are briefly summarized
below.

IEEE 1474.1-2004. The IEEE 1474.1-2004 has been defined by the Commu-
nications-based Train Control Working Group of IEEE (Institute of Electrical
and Electronic Engineers) and approved in 2004. Such standard concerns the
functional and performance requirements that a CBTC system shall implement.
These requirements concern the functions of Automatic Train Protection (ATP),
Automatic Train Operation (ATO) and Automatic Train Supervision (ATS),
implemented by the wayside and onboard CBTC system. The ATO and ATS
functions are considered optional by the standard. In addition to these require-
ments, the standard also establishes the headway criteria, system safety criteria
and system availability criteria applicable to different transit applications, in-
cluding the Automated People Movers (APM).

IEC 62290. The IEC 62290 is a standard defined by the IEC (International
Electrotechnical Commission) gone into effect in 2007. This standard brings the
fundamental concepts, the general requirements and a description of the func-
tional requirements that the command and control systems in the field of urban
guided transport, like the CBTC, shall possess. In reference to the fundamental
concepts, the standard establishes four levels or Grades of Automation (GoA-1
to 4). The increasing GoA corresponds to increasing responsibility of the com-
mand and control system w.r.t. the operational staff. For example, a GoA-1
system simply enforces brakes when the driver violates the braking curve. A
GoA-4 system does not have a driver, nor yet an onboard human supervisor.

The standards have been evaluated to derive a complete set of CBTC func-
tionalities. The approach adopted is as follows. First, the functionalities that the
IEEE 1474.1-2004 standard specifies have been extracted. Such functionalities
have been divided between ATP, ATO and ATS according to the anticipated
classification provided by the same standard. Starting from this first group of
functionalities, the activity continued with the analysis of the IEC 62290 stan-
dard, for identifying possible additional functionalities in comparison to those
already extracted. Each functionality is traced to the paragraph of the corre-
sponding standard from which it has been originally derived. Example function-
alities, which are useful to understand the examples reported in the rest of the
paper, are reported below together with the related subsystem and the reference
to the standard documents.

Train Location Determination. (ATP onboard - IEEE 6.1.1) This function-
ality determines the position of the train;

Product Line Engineering Applied to CBTC Systems Development 221

Safe Train Separation. (ATP onboard - IEEE 6.1.2) This functionality uses
the location information of the train to compute the braking curve and ensure
safe separation of trains;

Movement Authority Determination. (ATP wayside - IEC 5.1.4.1) This
functionality computes the MA message to be sent to the train based on the
position of the other trains and on the railway status;

Route Interlocking Controller. (ATP wayside - IEEE 6.1.11) This function-
ality controls an external IXL and performs the route requests and locks. IXL
systems are normally based on fixed block principles. This function is able to
bypass the interlocking inputs concerning the position of the trains coming
from the track circuits. In this way, the functionality is also able to ensure
the increased performance guaranteed by the moving block principles;

Train Routing. (ATS - IEEE 6.3.4) This functionality allows setting the route
for the train in accordance with the train service data, predefined routing
rules and possible restrictions to the movement of the train;

Train Identification and Tracking. (ATS - IEEE 6.3.3) This functionality
monitors the position and the identity of the trains.

3.2 Architecture Identification

In this phase, different possible architectures for a CBTC system are identified by
evaluating the available information about the CBTC products on the market.

Several implementations of CBTC systems are offered by different vendors.
In our work, we focus on the systems proposed by Bombardier, Alstom, Thales,
Invensys Rail Group, Ansaldo STS, and Siemens.

The major subsystems identified in the evaluated CBTC systems are ATP,
ATS, ATO and IXL. There are also other additional subsystems, which in-
clude, e.g., the fire emergency system, the passenger information system, and
the closed-circuit television. The system architectures are identified by analyz-
ing the relationships among all these subsystems.

As examples, we focus on the relationships among ATP, ATS and IXL. The
most relevant configurations identified for these systems are summarized below.

Centralized Control. (Figure 3a) In this configuration, the ATS controls both
the ATP and the IXL. The ATS is called ATS Router since it has a di-
rect interface with the IXL to perform routing. The wayside ATP is called
Wayside ATP Simple since it has no direct interface with the IXL, and the
communication among these two subsystems is managed through the ATS.
Furthermore, the wayside ATP communicates with the onboard ATP, as in
all the other configurations.

Built-in IXL. (Figure 3b) In this configuration there is no external IXL, since
the ATP encapsulates also the functions of the IXL (ATP Wayside IXL). We
call the ATS of this configuration ATS Simple since it has no direct interface
with an IXL.

Controllable IXL. (Figure 3c) The wayside ATP has a control interface (ATP
Wayside Controller) with an external IXL, and acts as intermediary be-
tween the ATS Simple and the IXL. We call the IXL of this configuration

222 A. Ferrari et al.

(a) Centralized Control (b) Built-in IXL

(c) Controllable IXL

Fig. 3. Architectures extracted

IXL Controllable since, unlike the IXL Pure of the first configuration, al-
lows the ATP Wayside Controller to bypass some of its controls to achieve
improved performances. It is worth noting that this solution would not be
possible with an ATS controlling the IXL. Indeed, the ATS is normally not
meant as a safety-related system, while the ATP and the IXL are safety-
critical platforms.

Configurations 3a and 3b are both used by Bombardier. The second architecture
is described in the Bombardier documentation as CITYFLO 650 with built-
in IXL. Though architecture 3a is not explicitely described, the Bombardier
documentation states that, when available, the IXL works as a backup system
in case of ATP failure. Therefore, we can argue that the IXL control resides in
the ATS and not in the ATP.

Architecture 3c has been derived evaluating the Alstom system. The IXL
employed by Alstom is provided by the same supplier of the Bombardier IXL,
but Alstom does not use this IXL as a backup system. Therefore, we can argue
that the ATP is in charge of controlling the IXL, as in architecture 3c.

4 Product Family Definition

The development of industrial software systems may often profit from the adop-
tion of a development process based on the so-called product families or product
line approach [10,7]. This development cycle aims at lowering the development
costs by sharing an overall reference architecture for each product. Each product
can employ a subset of the characteristics of the reference architecture in order
to, e.g., serve different client or jurisdictions.

The production process in product lines is hence organized with the purpose
of maximizing the commonalities of the product line and minimizing the cost of
variations [17]. A description of a product family (PF) is usually composed of two
parts. The first part, called constant, describes aspects common to all products

Product Line Engineering Applied to CBTC Systems Development 223

of the family. The second part, called variable, represents those aspects, called
variabilities, that will be used to differentiate a product from another. Variabil-
ity modelling defines which features or components of a system are optional,
alternative, or mandatory.

The product family engineering paradigm is composed of two processes: do-
main engineering and application engineering. Domain engineering is the process
in which the commonality and the variability of the product family are identified
and modelled. Application engineering is the process in which the applications
of the product family are built by reusing domain artefact and exploiting the
product family variability [17].

4.1 Feature Modelling

The modelling of variability has been extensively studied in the literature, with
particular focus on feature modelling [14,4,8]. Feature modelling is an important
technique for modelling the product family during the domain engineering.

The product family is represented in the form of a feature model. A feature
model is as a hierarchical set of features, and relationships among features.

Fig. 4. Feature diagram notations

Relationships between a parent feature and its child features (or subfeatures)
are categorized as: AND - all subfeatures must be selected; alternative - only
one subfeature can be selected; OR - one or more can be selected; mandatory -
features that required; optional - features that are optional; a require b, if a and
b are present; a exclude b, if a is present and b is not present and vice-versa. A
feature diagram is a graphical representation of a feature model [14]. It is a tree
where primitive features are leaves and compound features are interior nodes.
Common graphical notations are depicted in Figure 4.

4.2 A Global Feature Diagram for CBTC

At this stage of the research, we have been able to define a global feature model
for CBTC at the GoA-1 level, according to the IEC 62290 terminology [1]. In
other terms, our model assumes the presence of a driver on board. The model has
been defined by integrating the different architectural choices identified during
the architecture identification task (Sect. 3.2).

A simplified excerpt of the global feature diagram associated to our model is
given in Figure 5. The diagram includes the architectural components (which in
our diagram becomes features) already identified in Sect. 3.2.

The require constraint requires a product to include IXL Pure and ATS Router

whenever the product includes ATP Simple. Indeed, the control interface with

224 A. Ferrari et al.

Fig. 5. Simplified excerpt of the CBTC global feature diagram

the IXL has to be implemented by the ATS if the ATP does not include it, as
in the case of ATP Simple. Also IXL Controllable is required whenever ATP

Controller is used. In this case, a proper controllable interface of the IXL is
required to let the ATP system control its functionalities.

The ATP Onboard is required by any product of this family. On the other hand,
the features IXL Pure and IXL Controllablecannot cohabit in any product of this
family. The same observation holds for ATS Router and ATP Simple. Indeed, only
one type of IXL and one type of ATS is allowed in a product.

It is worth noting that the feature diagram allows new configurations that
were not identified in the domain analysis phase performed. These configurations
represent new possible products. For example, an ATP IXL can - optionally -
cohabit with an IXL of any type. In this case, the additional IXL works as a
backup system.

5 Product Features Definition

The provided feature model represents a global model for CBTC at the GoA-1
level. From this global model we choose a product instance, which in our example
case corresponds to the Controllable IXL architecture of Figure 3c. Then, we
model the detailed architecture of the product according to the functionalities
extracted from the standards in the domain analysis phase. The architecture
represents a static view of our product in the form of a block diagram. In order
to assess the architecture, we provide realistic scenarios using architecture-level
sequence diagrams. This phase can be regarded as the application engineering
process of the product family engineering paradigm. Architecture and scenarios
are employed to derive requirements for the actual product.

5.1 Product Architecture Modelling

The graphical formalism adopted to model the product architecture is a block
diagram with a limited number of operators. We have designed this simple lan-
guage in agreement with our industrial partner, and according to our previous

Product Line Engineering Applied to CBTC Systems Development 225

experiences in the railway industry. Companies tend to be skeptical about the
benefit given by the adoption of complex and rigid languages during the early
stages of the development. Instead, they are more keen to accept a lightweight
formalism that allows them to represent architectures intuitively and with a
limited effort.

The diagrams are composed of blocks and arrows. Blocks can be of two types:
system blocks, which represent individual hardware/software systems, or func-
tionality blocks, which represent hardware/software functionalities inside a sys-
tem. Two types of arrows are also provided: usage arrows, allowed between any
block, and message arrows, allowed solely between functionalities belonging to
different systems. If a usage arrow is directed from a block to another, this im-
plies that the former uses a service of the latter. If a message arrow is directed
from a functionality to another, this implies that the former sends a message –
the label of the arrow – to the latter.

We describe the usage of this formalism with an example. Given the global
CBTC model, we first select the features that we wish to implement in our final
product. For example, Figure 6 highlights in pink (grey if printed in B/W) the
features that are selected for a CBTC system that uses a controllable interlocking
(see Figure 3c).

An excerpt of the detailed architecture for the selected product is depicted in
Figure 7. It is worth noting that the functionality blocks used are part of the
functionalities identified during the domain analysis phase.

The Train Location Determination functionality belonging to the onboard
ATP sends the train location information to the ATP wayside system. The
Movement Authority (MA) Determination functionality forward this informa-
tion to the ATS for train supervision, and uses this information to compute the
MA. The Train Routing functionality of the ATS requires the routes to the
wayside ATP, which controls the routing by means of the Route Interlocking

Controller functionality connected to the IXL. We recall that the Route

Interlocking Controller functionality is used to modify the interlocking in-
puts concerning the location of the trains – normally based on fixed block prin-
ciples – to achieve the increased performance of the moving block paradigm.

Fig. 6. Selection of features for our example product

226 A. Ferrari et al.

Fig. 7. Architecture example for a CBTC system

5.2 Product Scenario Modelling

The architecture provided during the previous activity has been defined ac-
cording to the functionalities extracted from the standards. Nevertheless, some
connections among functionalities, or some message exchange, might be missing
from the model, since the architecture has not been evaluated against actual
scenarios. In order to refine the architecture, and provide coherent requirements
for the product, graphical scenarios are defined.

The graphical formalism adopted to model the scenarios at the architectural
level is a simplified version of the UML sequence diagrams. Lifelines are associ-
ated to systems, while blocks along the lifelines are associated to the function-
alities of the system. The arrows among different blocks are indicating message
communication or service requests. In case of message communication, the arrow
is dashed. In case of service requests the arrow is solid.

Figure 8 reports a scenario for a train that moves from a station to another
according to a route defined by the ATS.

In the operational center, the ATS sends the Route information to the wayside
ATP. The wayside ATP requests the IXL to move the switches in the proper
position, and to lock the resources (the setRoute service request). Once the route
has been locked by the IXL, the wayside ATP sends the Movement Authority

to the onboard ATP. The onboard ATP allows the train departure, so the driver
can start the train movement. While moving, the onboard system updates its
position and sends the Train Location information to the wayside ATP. This
system uses such information to compute new MAs for the current and preceding
trains. Furthermore, the wayside ATP forwards the Train Location information
to the ATS for identification and tracking.

It is worth noting that in this representation, we have added the setroute ser-
vice request, whichwas not defined in the block diagram.This explicit request is an
example of refinement enabled by the usage of scenarios: the relationship among
the Route Interlocking Controller functionality and the IXL Controllable

system has been clarified by means of the sequence diagram.

Product Line Engineering Applied to CBTC Systems Development 227

Fig. 8. Example sequence diagram: a train moves from one station to another

5.3 Requirements Definition

The information provided throughout the process are used to define the require-
ments of the final product. In particular, the requirements of one of the standard
are used as a reference for the definition of the actual product requirements. In
our case, we take the IEEE 1474.1-2004 standard as a reference.

The requirements are tailored according to the functionalities extracted from
the standards, and evaluating the product architecture and the scenarios. For
example, consider the following requirement referred to the ATP system:

6.1.11 – Route Interlocking. A CBTC system shall provide route interlocking func-
tions equivalent to conventional interlocking practice to prevent train collisions and
derailments. [...]

Where an auxiliary wayside system is specified by the authority having jurisdiction,

interlocking functions may be provided by separate interlocking equipment [...].

In our example product, the interlocking is an auxiliary wayside system external
from the ATP. Therefore the Derived (D) requirement for our product is:

6.1.11(D) – Route Interlocking. Interlocking functions shall be provided by separate

interlocking equipment [...].

Additional requirements on the actual behaviour can be derived from the archi-
tecture and the example scenario, as in the following:

6.1.11(D − 1) – Route Interlocking Controller. When a route is requested from

the ATS, The ATP system shall require route setting (setRoute) to the interlocking

to lock the interlocking resources. [...]

The behaviour expected from this requirement is clarified by the scenario, which
is also attached to the requirement in the final specification.

Consider now a vendor that wish to accomplish also the IEC 62290 standard
with his product. The product is already defined according to IEEE 1474.1-2004
following the presented approach. In this case, we argue that the compliance with
the IEC 62290 standard can be demostrated by reasoning at functional level. In-
deed, the functions identified in the domain analysis phase integrate the content

228 A. Ferrari et al.

of both standards, and traceability with the original functional requirements of
IEC 62290 is therefore made easier.

6 Related Works

There is a large literature concerning the development methods of train control
systems, including CBTC. Below some works are listed that represent the most
relevant examples related to our work.

TheMODCONTROL [5] project aimed todefinea set of generic requirements for
a new generation of TrainControl andMonitoring Systems (TCMS). In particular,
it has in commonwithourwork the collectionof requirements fromdifferent sources
such as specifications of existing systems, standards or draft specifications from
other EU projects. The second part of the MODCONTROL project differs from
our work since it is more focused in finding linguistic defects in the requirements.

The work performed by LS Industrial Systems [23] concerns the software
development of a CBTC system by means of a process based on model-driven
development principles. In particular, the UML language is used to model the
CBTC software, and source code for the model is derived through the IBM
Rhapsody tool. Unlike our case, where requirements are represented in textual
form and derived from the analysis of existing systems and standards, the authors
use a UML notation (Use Cases) to represent the customer requirements, and
do not give details concerning the domain analysis phase.

Wang and Liu [22] present an approach for developing a CBTC system based
on a 3-levels hierarchical modelling of the system. The three levels are the func-
tional model, the behavioural model of the train, and the model of all control
actions. To illustrate this approach, authors use SCADE applied to a case study
of a specific CBTC subsystem.

Essamé and Dollé [9] present the application of the B method in the METEOR
project led by Siemens Transportation Systems. According to the authors, the
use of the B method to realize the vital software system for the automatic control
of the train, called METEOR, is economical if considered in relation with the
entire development process of the CBTC system, which includes the validation
of the specification and the product certification.

Yuan et al. [24] illustrate a modelling approach and verification of the System
Requirement Specifications (SRS) of a train control system based on the Speci-
fication and Description Language (SDL). The application of this approach has
allowed the authors to identify possible ambiguities and incompatible descrip-
tions of SRS, useful for making changes on the SRS.

L. Jansen et al. [13] illustrate a modelling approach of the European Train
Control System (ETCS) based on Coloured Petri Nets (CPN) and the Design /
CPN tools. The proposed approach has been developed within a research project
for Deutsche Bahn AG and aims to model the ETCS system according to an hi-
erarchical multi-level decomposition. Specifically, are considered and integrated
three aspects of ETCS: components, scenarios and functions. The computed
models are then simulated by the Design/CPN tool and each simulation is per-
formed on a sequence of scenarios with function calls.

Product Line Engineering Applied to CBTC Systems Development 229

The first two works mainly concern the usage of semi-formal methods or
structured approaches, while the other four works are focused on formal meth-
ods. Our work does not strictly employ formal techniques, and can be therefore
attached to the first group. Besides other process-related differences, the cur-
rent paper mainly differs from all the other works for the emphasis given to the
product line aspects of the CBTC development. The main novelty is indeed the
domain analysis performed, and the process adopted to define requirements for
a novel CBTC system. We argue that this approach enables the development of
a modular, competitive, and standards-compliant CBTC system.

7 Conclusion

In this paper, preliminary results are presented concerning the definition of a
global model for Communications-based Train Control (CBTC) systems. The
model is derived from existing CBTC implementations and from the guidelines
of international standards, and is represented in the form of a feature model.
A methodology has been also outlined to derive product requirements from the
global model.

The current model is limited to the functionalities of a CBTC system that
requires a driver. However, the most relevant safety-critical components are al-
ready detailed in our representation.

The approach has been considered higly valuable by our industrial partner,
who acted as external supervisors for the presented work. The most promising
commercial aspect is the value given to (1) the consideration of the competitor’s
choices, and (2) to the adherence to the standards. Indeed, though a migration
strategy from a standard to the other is not fully defined yet, we expect the
transition to be simplified by the consideration of all the available standards
during the functionality identification phase.

Another aspect that has been highly appreciated by our partner is the choice
of the modelling languages. The feature model by itself provides an abstract
view of the product family that is easily understood by the stakeholders [6]. On
the other hand, the block digram notation and the sequence diagrams defined
allows focusing on the essential concepts, even employing a limited number of
operators. Other languages, such as SysML or Simulink/Stateflow, have been
considered too complex to be useful in this analysis phase.

Given the promising results of the current approach, we are presently working
on an enhanced version of the model that includes also capabilities for driverless
and unattended operation. Integration of the approach with natural language
requirements analysis methods is also foreseen.

References

1. IEC 62290-1: Railway applications: Urban guided transport management and com-
mand/control systems. Part 1: System principles and fundamental concepts (2007)

2. IEC 62290-2: Railway applications: Urban guided transport management and com-
mand/control systems. Part 2: Functional requirements specification (2011)

230 A. Ferrari et al.

3. Ansaldo STS. CBTC Brochure (2011), http://goo.gl/3Kmb0
4. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink,

H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

5. Bucchiarone, A., Fantechi, A., Gnesi, S., Trentanni, G.: An experience in using a
tool for evaluating a large set of natural language requirements. In: Proc. of SAC,
pp. 281–286 (2010)

6. Chastek, G., Donohoe, P., Kang, K.C., Thiel, S.: Product Line Analysis: A Practi-
cal Introduction. Technical Report CMU/SEI-2001-TR-001, Software Engineering
Institute, Carnegie Mellon University (2001)

7. Clements, P.C., Northrop, L.: Software product lines: practices and patterns.
Addison-Wesley Longman, Inc., Boston (2001)

8. Czarnecki, K., Eisenecker, U.: Generative programming: methods, tools, and ap-
plications. ACM Press/Addison-Wesley, New York, NY, USA (2000)

9. Essamé, D., Dollé, D.: B in Large-Scale Projects: The Canarsie Line CBTC Ex-
perience. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp.
252–254. Springer, Heidelberg (2006)

10. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In: Proc.
of SPLC, pp. 193–202 (2008)

11. Institute of Electrical and Electronics Engineers. IEEE Standard for Communi-
cations Based Train Control (CBTC) Performance and Functional Requirements.
IEEE Std 1474.1-2004 (Revision of IEEE Std 1474.1-1999) (2004)

12. Invensys Rail. SIRIUS Brochure (2009), http://goo.gl/YFUiL
13. Jansen, L., Horste, M.M.Z., Schnieder, E.: Technical issues in modelling the Eu-

ropean Train Control System (ETCS) using Coloured Petri Nets and the De-
sign/CPN tools (1998)

14. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical report, Carnegie-
Mellon University Software Engineering Institute (1990)

15. Kuun, E.: Open Standards for CBTC and CBTC Radio Based Communications.
In: APTA Rail Rail Transit Conference Proceedings (2004)

16. Pascoe, R.D., Eichorn, T.N.: What is Communication-Based Train Control? IEEE
Vehicular Technology Magazine (2009)

17. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

18. Siemens Transportation Systems. Trainguard MT CBTC (2006),
http://goo.gl/Xi0h0; The Moving Block Communications Based Train Control
Solution

19. Signalling Solutions Limited. URBALIS Communication Based Train Control
(CBTC) Delivery Performance and Flexibility (2009), http://goo.gl/G3hEe

20. Stover, J.S.: CITYFLO 650 System Overview (2006), http://goo.gl/e26SZ
21. Thales Transportation. Seltrac Brochure (2009), http://goo.gl/OjhvK
22. Wang, H., Liu, S.: Modeling Communications Based Train Control system: A case

study. In: Proc. of ICIMA, pp. 453–456 (2010)
23. Yang, C., Lim, J., Um, J., Han, J., Bang, Y., Kim, H., Yun, Y., Kim, C., Cho,

G.Y.: Developing CBTC Software Using Model-Driven Development Approach. In:
Proc. of WCRR (2008)

24. Yuan, L., Tang, T., Li, K.: Modelling and Verification of the System Requirement
Specification of Train Control System Using SDL. In: Proc. of ISADS, pp. 81–85
(2011)

http://goo.gl/3Kmb0
http://goo.gl/YFUiL
http://goo.gl/Xi0h0
http://goo.gl/G3hEe
http://goo.gl/e26SZ
http://goo.gl/OjhvK

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 231–245, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Improving Verification Process
in Driverless Metro Systems: The MBAT Project

Stefano Marrone1, Roberto Nardone2, Antonio Orazzo3,
Ida Petrone4, and Luigi Velardi3

1 Dip. di Matematica, Seconda Università di Napoli,
Via Lincoln 5, 81100 Caserta, Italy
stefano.marrone@unina2.it

2 Dip. di Informatica e Sistemistica, Università di Napoli “Federico II”,
Via Claudio 21, 80125 Napoli, Italy
roberto.nardone@unina.it

3 Ansaldo STS, via Argine 425, 80147 Napoli, Italy
{antonio.orazzo,luigi.velardi}@ansaldo-sts.com

4 Intecs SpA, Via G. Porzio, 80023 Napoli NA, Italy
ida.petrone@intecs.it

Abstract. Complex systems are experiencing increasing needs to obtain a high-
er level of safety and to reduce time to market. This is in particular true for au-
tomotive, aerospace and railway domains, pushing the research community to
define novel development and verification methods and techniques. The
ARTEMIS EU-project MBAT (Combined Model-Based Analysis and Testing
of Embedded Systems) represents one of the most important attempts in this
direction since it aims to achieve such improvements in several application do-
mains. Starting from the Ansaldo STS implementation of Communication-
Based Train Control system (CBTC), which is the base of automatic driverless
metro systems, we describe in this paper the improvement that MBAT would
bring to the Verification process. To this aim an accurate description of existing
Verification process in automatic metro systems and discussion about critical
points are provided. Then we describe the expected results of MBAT project on
such kind of processes. The proposed approach and developed tools will be part
of a common reference platform and, also if related to the railway domain, for
its generality, they can be used for different domains with similar needs. The
basic agreement in the project will guarantee the cross use of the platform and
will give quantitative measures of the obtained improvement.

Keywords: Model-based analysis, Model-based testing, Validation process,
Safety Critical Embedded Systems, Automatic Metro Systems.

1 Introduction

Critical systems, in particular in transportation domains, are asking higher and higher
quality but, at the same time, technology providers must face with global and compet-
itive markets with strict requirements of development costs and time. Proper

232 S. Marrone et al.

development and verification methodologies and processes should be searched in
order to guarantee at the same time both high quality artifacts in systems and software
and fast and cheap testing and verification activities. The scientific community has
always addressed formal methods as the main way to satisfy both the needs; since
first experiments in application of formal methods in real industrial contexts, they
show a great capability to allow high integrity systems building. But industry wants
more from formal methods: industrial settings require (two above all) a great level of
integration of formal methods in existing development processes and a lower entrance
barrier in their adoption (i.e. higher level of usability and complexity hiding). Moreo-
ver industry heavily relies on simulation techniques (testing), due to its simplicity and
great adaptability in existing and assessed processes, so formal methods are required
to be integrated with testing activities, too.

Model-based design would be the connection point to facilitate the usage of formal
methods in industrial settings and to integrate them with testing activities, increasing
both productivity and quality of systems. In model-based approaches a system model
would be at the center of the development process instead of code. This model is de-
veloped in a common design environment, aiming at facilitating communication be-
tween different development groups, spanning from requirements descriptions and
management, model-based design, simulation and verification. The explicit existence
of models allows the definition and use of complex and correct-by-design develop-
ment steps. As well as shift from assembler to higher level programming languages
increases the abstraction for control structures, similarly model-based design increas-
es the abstraction level in terms of domain specific concepts and solutions already
identified in the reference domain. Model-based design is not just the application of
graphical languages for code production, but it is a paradigm for system development
that improves the use of languages, including explicit operational descriptions of the
relevant entities that occur during development in terms of both product and process.
Applications of the model-based concepts in embedded system context are shown in
[1] and in [2] where, also, brief overviews on general concepts as abstraction and
restriction, separation of concerns and model levels are given. An approach to the
development of discrete-continuous system is shown in [3] where modeling and de-
scription techniques, semantics, tool support and test case generation is shown with a
high degree of abstraction. The application of model-based techniques in the automo-
tive context is shown in [4] where a tool prototype, able to apply model-based design
for the automotive control software, is depicted. Specifically for the adoption of mod-
el checking for safety analyses on a system model, a survey on current research trends
is in [5], where a discussion on reasons that make the model checking not widely
adopted in industries is addressed.

In the development of critical systems, the SCADE product family [6] is a com-
plete design environment to design and model critical system and software, able to
generate certified source code according to some international safety standards in the
domains of aerospace&defence, heavy equipments, and railway. SCADE is also a tool
suite for the flexible graphical design of embedded display systems, as well it is able
to support the management of the entire development workflow, from requirements
management to verification, through documentation generation.

 Improving Verification Process in Driverless Metro Systems: The MBAT Project 233

To manage and formalize requirements, one of the languages that best fits into the
double mission to be formal and usable is Boilerplate. Boilerplate [7] is a semi-formal
language for stating and formulating requirements having the advantage of being close
to the natural language, easy to write and to understand, in the future suitable to be used
to directly write the requirements specification, bypassing the natural language.
Boilerplate strongly improves the understandability and identification of requirements
reducing ambiguity and spelling mistakes and is template-based: starting from a set of
templates composed by fixed syntax and attributes, the requirements engineer is able to
compile it with concepts and entities obtaining the boilerplate requirements. Concepts
and entities are collected in a domain ontology [8], that is a domain vocabulary plus a
set of rules for relationships between vocabulary items which adds additional informa-
tion about system components used in the requirements.

The research community is currently searching for general frameworks in industrial
applications of model-based process for critical systems. CESAR1 is an European
funded project that aims to constitute a common methodological and technological plat-
form shared among several application domains (and companies) in the field of embed-
ded systems. Through boilerplates and ontology, the tool developed in the CESAR
project for entering and analyzing the requirements provides also a check for complete-
ness, consistency and correctness on the entire set of boilerplate requirements [9].

Following CESAR directions, MBAT2 is an ongoing funded ARTEMIS EU-
project that wants to push further the results of CESAR. The main concrete objective
of MBAT is to provide European industry with a new Verification & Validation
(V&V) technology in form of a Reference Technology Platform (the MBAT RTP).
This platform will unleash the power of model-based methodologies enabling the
construction of high-quality dependable embedded systems reducing, at the same
time, both costs and development times. This will be made possible by focusing on a
tighter integration between (formal) analysis and testing. In addition, MBAT RTP will
be connected to other ARTEMIS RTPs (as e.g. the CESAR RTP) to extend these
platforms pursuing the ARTEMIS goal to provide an European RTP for the develop-
ment of embedded systems.

This paper will show how MBAT project can affect the current development and
Verification process in railway systems. To this aim, the paper proposes a new V&V
activities workflow that is built upon the existing one that is currently adopted in An-
saldo STS (ASTS). The process accepts the vision and aims of the MBAT project, in
which ASTS is an active partner: the state of the art on model-based methodologies
and techniques is used in order to match these aims and to develop a demonstrator
able to verify the improvements obtained by the project.

The paper is organized as follows: this Section 1 introduces the aim of the paper
and provides a quick background in model-based design; Section 2 describes current

1 http://cesarproject.eu/. The research leading to these results has received funding

from the ARTEMIS Joint Undertaking within the European project CESAR under grant
agreement n°100016 and from specific national programs and/or funding authorities.

2 http://www.mbat-artemis.eu/. This research project is funding from the
ARTEMIS Joint Undertaking under grant agreement n° 269335 and from ARTEMIS member
states Austria, Denmark, Estonia, France, Germany, Italy, Sweden and U.K.

234 S. Marrone et al.

V&V process in ASTS whereas Section 3 defines a novel process inspired by MBAT
project. Section 4 tries to instantiate such process on a portion of a real use case: the
Communication-Based Train Control (CBTC) automatic metro system. Section 5
ends the paper and addresses some future issues.

2 Verification Processes for Railway and Metro Systems

During last 10 years, the efforts of ASTS allowed the definition of the methodology
described in this paper in order to optimize and implement systematic approaches for
verification and validation activities. Non-functional analysis processes, in particular
for safety related issues, and functional testing have been improved.

The hazard analysis methodology defined and used in ASTS to assess safety re-
quirements, and the results obtained by its application to the European Standard for
signaling systems ERTMS/ETCS system have been shown in [10]. Starting from this
analysis, several mitigations have been identified. Mitigations become new require-
ments for the systems: only by providing the evidence of their correct implementation
the system can be certified to be safe.

On the other hand testing phases are fundamental steps of embedded systems de-
velopment cycle in terms of time and cost efforts, therefore improve this step is cru-
cial to optimize the whole process. Due to the large complexity of these systems, it is
impossible to achieve the completeness of test set needed to verify and validate the
final implementation. For these reasons in the course of time reduction techniques,
avoiding test-case explosion, and well-formed activities, automating test phases, have
been attempted. A detailed methodology to increase the test coverage, in terms of
number of stressed aspects, keeping the number of test-cases below a reasonable thre-
shold, has been described in [11] and in [12]. This grey-box testing methodology,
combining black-box and white-box techniques, is based on the identification and
reduction of influence variables and test cases. Due to the increasing complexity of
railway systems not managed by traditional validation techniques, several issues to
handle the complexity of heterogeneous distributed systems have been addressed. [13]
presents the working principles of ERTMS/ETCS and the functional testing approach
followed by ASTS in 2005 in order to thoroughly test this system. Furthermore, to
meet the necessity to re-execute the test set in the regression test campaign that could
provoke the testing time explosion, ASTS proposed the adoption of a classical Service
Oriented Architecture (SOA) in order to address the building of such an environment
for safety-critical control systems [14]. In [15] a methodology is presented to perform
an “abstract testing” of such large control systems in an efficient way: an abstract test,
configuration independent, is specified directly from system functional requirements
and has to be instantiated in more test runs to cover the given configuration, compris-
ing any number of control entities (sensors, actuators and logic processes).

The current development process in ASTS (Fig. 1) is already centered on the opti-
mization of functional requirements verification. It starts from the high level system
functional requirements specification (FRS) in natural language where all the
functionalities and clients requirements are reported. This specification can suffer

 Improving Verification Process in Driverless Metro Systems: The MBAT Project 235

from ambiguity, incompleteness or inconsistency and, for these reasons, subsequently
the refinement and formalization process is performed, where requirements are de-
tailed manually, whose output are System Requirements Specification (SRS), System
Architecture Specification (SAS), System Detailed Description (SDD) and Software
Requirements Specification (SwRS).

At this point two models are developed: a system descriptive model for the static
analysis and a system high-level model for the dynamic testing are here produced.
Both models rarely represent two replicas of the same entire system, but commonly
they represent it with respect to different points of view: the first kind of models,
developed in SCADE, is used to describe the system components, their functionalities
and their behavior; whereas the latter are used to give just a high-level overview on
system structure with a specific focus on the expected functionalities.

Fig. 1. Ansaldo STS current development process (S stands for “in SCADE”, OOS stands for
“out of SCADE”)

Source code production starts here and it is done manually for the components that
have not been modeled with a system descriptive model in the SCADE environment
(out of SCADE – OOS), where present, whereas it is automatically generated for the
portion represented in SCADE (with SCADE – S). The choice to develop or not sys-
tem portions in SCADE depends on the necessity to perform static analysis on them;
this activity is conducted through formal verification techniques, as model checking,
symbolic execution or others, depending on the property and on the model under test.
For the OOS portion, static analysis activities can be also required: here static analysis
is needed to find deadlocks, infinite loops, un-required dead code in order to assure
high quality levels in code. These activities are performed by experts through visual
code inspection.

From the system high-level model, test case specifications are generated and then
they can be manually implemented, or test scripts (written in ASTS proprietary lan-
guage) for automatic execution can be written. The system under test runs on the real

236 S. Marrone et al.

target platform or in a simulated ASTS environment. To reduce the number of tests
some empirical reduction rules, based on specialists' domain knowledge, are applied.

Both for analysis (for OOS and S portion) and testing, the potential discovery of
errors is obtained at the end of the implementation, so the corrections strongly impact
on the overall costs due to expensive and time consuming loops in the process. A
combined approach for the analysis and testing activities, although still rough, has
been already implemented in the current process thanks to the high expertise of ASTS
in the safety critical embedded systems development; as an example, when the spe-
cialists perform the visual code inspection, they are able to determine test cases with
the aim of increasing the coverage level in terms of tested system/software parts.

The shortcomings noticed in current process are, mainly, three. The first resides in
the lack of a common model of the system to perform analysis and testing: different
aspects are captured by two different system models, and there is not a defined
process for their updating. The second is the weak use of formal verification on the
system model, both for the verification of system requirements and for the definition
of reduction rules to minimize the number of test cases, relying particularly on spe-
cialists' domain knowledge. At last, there is a strong lack of automation in analysis
and testing procedures, making them longer than necessary.

3 Proposal of a New Development Process

ASTS aims to exploit the proposed workflow through the technical innovations that
will be provided within the MBAT project; this workflow would be the solution to
improve and optimize V&V processes in terms of efficiency and quality. According
to the principles of model-based approach, the main steps are: (1) development of the
system model; (2) static analysis on the model; (3) dynamic testing generation.

The outcomes will be the reports generation and feedbacks on the requirements ac-
curacy, on the model completeness and on its correct definition compared with both
functional requirements, that is the one arising from customer needs, and non-
functional ones imposed by international regulations and internal standards. Moreover
the dynamic testing will trace the activated components of the system to better under-
stand the coverage factor reached by test cases in terms of stressed system portion.

The proposed workflow is shown in Fig. 2, where the activities coming from the
CESAR projects are also outlined. Starting from system requirements (System FRS),
the System Model shall be defined in order to perform the verification of some charac-
teristics and to execute test cases. The static analysis and the dynamic testing must be
performed on the same System Model: the real system will be implemented at the end
of the process through certified transformations, so the real system will be already
compliant to safety standards and to properties formally verified.

The left side concerns with the dynamic functional testing steps. A technical de-
monstrator to obtain the automatic test generation starting from functional system
requirements has been implemented by ASTS engaged in the CESAR project. These
relevant results are integrated in this workflow as follows:

 Improving Verification Process in Driverless Metro Systems: The MBAT Project 237

Fig. 2. Ansaldo STS process workflow

1. Refinement of system functional requirements (System FRS) and their translation
from natural language at first to semi-formal language (Boilerplate) and then to
formal language (Pattern) (leading to Formal FRS);

2. Definition of a Test Model highlighting inputs and outputs for each function-under-
test;

3. Definition of some reduction rules, on the basis of domain assumptions and/or arc-
hitectural high-level model, to avoid the tests number explosion;

4. Automatic generation of all possible combinations of input variables for the func-
tion-under-test, taking into account the reduction rules, after a preventive consis-
tency check between Test Model and Formal FRS.

The output is a reasonably complete set of test cases which have to be converted in a
proprietary data format in order to be executed on the system under test. These results
must be optimized to avoid some applicability limits of existing tools, decreasing the
possibility to use/apply these procedures in ASTS processes, and must be extended to
the automatic drawing up of document report, not yet implemented in CESAR.

Another important step is to perform the test on the system model as defined in the
central part of the schema, since the test definition phase is finalized to the execution
of the abovementioned tests, that have been drawn up from the system requirements.

The result is fed back on the model (if it is compliant with the expected behavior),
on the requirements (if they are complete, consistent, not ambiguous and not

238 S. Marrone et al.

conflicting) and/or on the test campaign (if test suite is not complete or the tests are
not correctly designed). Test results will be used to drive the analysis where the re-
duction rules should be checked through the analysis techniques, in addition to every-
thing else.

The right side of the proposed workflow contains the steps related to the static
analysis tasks. Properties, which need static analysis, concern both functional and
non-functional requirements and, especially for the latter, they come from different
sources:

• Safety Standards;
• Internal regulations based on experience, statistics and best practices;
• Hazard analysis performed to known notable risks.

The output of this analysis is a report that allows the improvement or the modification
of the System Model. These improvements permit to remove any mistakes that might
have been found or errors in FRS or to obtain indications to perform further analysis
and better improve the consequent test cases description. Moreover, it allows to ob-
tain a feedback on the correctness of reduction rules adopted to reduce the test cases.

4 CBTC Case Study

An ASTS system on which the methodology previously described needs to be applied
is here shown. The ASTS Communication-Based Train Control (CBTC) system has
been chosen as a case study, and the application of the methodology on a its single
function is shown in this paragraph.

4.1 The CBTC System

The Rapid Transit Metro system is an electric passenger railway in an urban area with
high capacity and frequency. The Communication-Based Train Control (CBTC) is an
automatic innovative system for the management of railway traffic. It is particularly
used for metropolitan projects with the aim to overcome the limitations of conven-
tional fixed-block systems optimizing the transportation levels, ensuring safety and
shortest headways. ASTS participated in developing the IEEE Standard 1474.1 [17]
for CBTC performance and functions and it is also an active participant in European
Union sponsored working groups, writing the standards for future Mass Transit sys-
tems in Europe. A Metro system is based on several sub-systems and principally on:

• Signalling system: combination of the Interlocking and communication system that
transmits the information necessary to control the train movement to the on board
sub-system;

• Automation system: trains scheduling and interface with the central Operator;
• Power Supply system: line electrification and supply of all civil loads in a metro

system (e.g. station lighting and elevators);
• Platform Screen Doors: doors on the platform to screen it from the train;

 Improving Verification Process in Driverless Metro Systems: The MBAT Project 239

• other auxiliary systems as Intrusion Detection System, Passengers Information
System, etc.

A Metro system can operate at different basic grades of automation. The definition of
suitable grades results from sharing responsibility for given basic functions of trans-
port management between operations staff and system.

The key to automation is the Automatic Train Control (ATC) system. CBTC tech-
nology, used to implement the ATC system, ensures that the trains stop at the right
place at the stations, open and close the doors, leave the stations, keep the correct
speed and keep the secure distance between the trains, and so on, by means of systems
integrated in the trains, on the tracks, on the stations and in the control room that have
the capability to exchange real-time data in continuous way (the main system archi-
tecture is shown in Fig. 3).

Fig. 3. Architecture overview of the CBTC system

The ATC consists of three subsystems each of them having its own functionalities:
(1) Automatic Train Protection (ATP) constantly supervises the position and the
speed of the trains ensuring the correct distance between themselves and is able to
automatically intervene to adjust the speed or to stop the train for safety reasons; (2)
Automatic Train Operation (ATO) ensures that the trains stop at the right position at
the platform, open and close the doors and adjust the speed within the limits imposed
by the ATP. An ATO system is capable to survey the entire operation and monitoring
the status of each vehicle on the track; (3) Automatic Train Supervision (ATS) con-
trols and coordinates all traffic and maintains a schematic review of the entire Metro
for the operators in the control room. It controls the arrival and the departure of trains
from all the stations and also includes automatic vehicle dispatching, automatic
routing, schedule control and zone speed restriction.

In the CBTC technology these functionalities can be traced on several components,
the main ones indicated in the Fig. 4.

240 S. Marrone et al.

Fig. 4. Functional overview of the CBTC system architecture

The Zone Controller (ZC) manages the Movement Authority Limits (MALs) of all
trains. Each ZC unit is integrated with adjacent ZCs and communicates with Inter-
lockings (IXLs) and Carborne Controllers (CCs) to guarantee that specific headway
requirements are met. The CC determines the train position with the highest accuracy.
This information is then relayed back to the ZC. Based on the MAL received from the
ZC, the CC calculates its braking curves and enforces speed restrictions. The IXL &
Object Controller (OC) determines the traffic schedule and the minimum headway.
The Platform Screen Doors (PSDs) have a controller that monitors the status of the
doors and, interacting with the CC by means the ZC, enables them to open and close.
In order to ensure the correct integration of the above subsystems and the necessary
safety requirements it is needed to perform an intense analysis and testing activity on
the CBTC functions.

4.2 The "Determine Doors Opening Side” Function

The case study presented in this paper is based on a particular function of the CBTC
system: the “Determine Doors Opening Side” function. The role of this function is to
determine which side of train doors (Train Doors, TDs) should open at first (or
second) and which side of the Platform Screen Doors (PSDs) should open at first (or
second) when the train is stopped at the platform (in the most general case of the
presence of double platform at the two sides of the line). This function also provides a
safety check on the correctness of the train side (and platform side) selected by the
driver to be opened, when the doors are not in automatic opening mode.

The CBTC system splits the whole line into several virtual segments and associates
an orientation to each one of them that can be concordant or contrasting to the one of
the line (in the Fig. 5a, for the segment ‘i’ the polarity is ‘+’, according to the conven-
tional direction of the line whereas the polarity for the segment ‘j’ is ‘-’). The two
platforms, where present, are named Right or Left according to the position with re-
spect to the conventional direction of the line. Given the conventional direction of the
train as in Fig. 5b, defined from Cab 2 to Cab 1 ends (conventional), the train polarity

 Improving Verification Process in Driverless Metro Systems: The MBAT Project 241

could get ‘+’ or ‘-’ with reference to the orientation of the crossed virtual segment of
line, it is ‘+’ if the train direction is concordant to the one of the crossed virtual seg-
ment, ‘-’ otherwise.

Fig. 5. Determination of the train doors and platform screen doors opening side

The realization of this function requires a computational block that takes as input
the signals about the current_platform_side, TP_train_polarity and plat-
form_tp_line_direction; this block is able to evaluate: (1) which is the right side of
train doors to "move" (open and close) at first (td_1st_side) and, potentially, at second
(td_2nd_side); (2) which is the right side of platform doors to move at first
(psd_1st_side) and, potentially, at second (psd_2nd_side). Hence one functional re-
quirement for this function describes how it determines the side train door to move in
case of single platform (output: td_1st_side). In the following example, the require-
ment part related to the right side of the train doors is reported.

ID: REQ_F5.2-001_R
The first Train Doors to be moved shall be the right side of a train if one of the
following conditions is true:

● that train’s polarity is positive and the right side of the related platform is
configured as the first side to be opened.
● that train’s polarity is negative and the left side of the related platform is
configured as the first side to be opened.

4.3 Dynamic Functional Testing

At first, the requirement has been refined and translated in two Boilerplate
requirements.

ID: BP_REQ_F5.2-001_R_a
If <train polarity is positive> and <current platform side is right>, the <CBTC
system> shall <open the right side of train doors>
ID: BP_REQ_F5.2-001_R_b
If <train polarity is negative> and <current platform side is left>, the <CBTC sys-
tem> shall <open the right side of train doors>

242 S. Marrone et al.

The second step is the formalization of the requirements in a language (Pattern), in
a semi-automatic way with the support of a specific tool, to allow the successive au-
tomatic generation of test cases, as implemented in the CESAR project and already
described in [16]. The patterns, consisting of static text elements and attributes de-
scribing conditions through logical operators in a requirements specification language
(RSL), are more formal then boilerplate. The formalization is reported here below.

ID: Patt_REQ_F5.2-001_a
TP_train_polarity = = positive AND current_platform_side = = right ==>
td_1st_side = = right
ID: Patt_REQ_F5.2-001_b
TP_train_polarity = = negative AND current_platform_side = = left ==>
td_1st_side = = right

The automatic test generator, on the basis of the pattern requirements and the re-

duction rules, defines the test set, including the expected output against the given
combination of inputs, following the steps listed below.

1. For each requirement a positive test vector (PTV) and a negative test vector (NTV)
are here generated: the positive test vector corresponds to the test in which all the
variables involved into the requirement are set as indicated in the same require-
ment. The negative test vector corresponds to the same input sequence (as in the
PTV) containing, as expected output, the opposite of the desired one, indicated into
the requirement. So, with the NTV, we can get a test case that is expected to fail, if
the system is correctly implemented with respect to the requirement, and this re-
quirement is not violated.

2. The expert user can define some rules in order to limit the number of tests, without
jeopardizing the completeness related to the whole set of functional requirements
needed to test the system. The reduction rules (RRs) allow to discard some particu-
lar permutations of system variables. In detail, the RRs imply two assumptions: the
independence among variables not involved into the output definition (indepen-
dence rules) and combinations of variables defining a non-significant or not ad-
missible condition for the system (domain rules).

An example of a typical reduction rule has been applied in this example, it concerns
the assumption of input variables being independent of each other: analyzing the set
of requirements that define the output td_1st_side, it appears that the only variables
involved in its definition are TP_train_polarity and current_platform_side. On the
basis of this hypothesis, the RR sets all the values of the not involved inputs to a de-
fault value, avoiding the generation of all the possible combinations of the other in-
puts of the system not involved in a specific output. In detail, the computational block
takes as input also the signals platform_tp_line_direction: this value has been not
taken into account in the test cases; this is due to the fact that this input, together with
the current_platform_side, is not involved in determine the right side of train doors to
move whereas it is necessary to determine the side of platform doors to move.

 Improving Verification Process in Driverless Metro Systems: The MBAT Project 243

4.4 Static Functional and Non-functional Analysis

In the previous subsection a reduction rule about the independency between inputs of
a computational block has been considered. This rule is able to restrict the number of
generated test cases leaving out other inputs of the computational block, not involved
in the evaluation of the specific output. This rule needs to be validated because, due to
errors in the model implementation, unexpected interactions among variables could
exist and cause unwanted behavior of the system. Due to the inclusion of that rule in
the test generation phase to limit the number, these not foreseen interactions may not
be discovered. For this reason it is necessary to validate them through static analysis
techniques. As an example, these analysis techniques can be applied on the compo-
nent diagram related to the computational block implementing the function: it is nec-
essary to verify that the inputs leaved out in the test cases does not have an influence
on the specific output evaluation.

Other kinds of analysis can be performed in order to validate non-functional prop-
erties: it is possible to prove system properties descending from the hazard analysis on
the same high-level models. A hazard identified for the function under analysis is the
incorrect doors opening side (the function sets the wrong side for TD and PSD).
The consequences are several: passengers on the train or on the platform could fall in
the track with serious injuries, passengers could fall in the track with electric shock
due to the contact with power rail, or others.

Formal properties to be verified have to demonstrate that the system cannot fail in
determining the correct side to be opened for the doors of the train. Referring to the
requirement Patt_REQ_F5.2-001_a, an example of a property, that must be verified
always false, is the following one:

td_1st_side = = right AND TP_train_polarity = = negative AND
current_platform_side = = right

Tools used for the static analysis shall allow the validation of the correctness of the

system model implementation, because if these properties had been verified, it would
mean that the model is not correct since the hazardous state defined has been reached.

Due to the high complexity of these systems, it can happen that the static analysis
is not able to give the proof of a property, because it is not possible to investigate the
whole space of reachable states. In this case, the result can be considered on a proba-
bilistic base.

5 Conclusions and Future Development

The main motivation that pushed ASTS participating to MBAT project is the possibil-
ity to exploit the model-based analysis and testing and in a combined approach to
obtain a reduction in overall V&V costs by already keeping high quality and safety
standards. Therefore, the main objective is the achievement of an efficient and
effective use of the MBAT results. The important result reached with CESAR is the

244 S. Marrone et al.

automatic definition of the set of test cases reasonably complete, starting from func-
tional system requirements.

The first aim will be the compatibility between the CESAR tool chain and the pro-
posed workflow based on the MBAT technical innovation. The second aim is
represented by the execution of analysis and testing on the system model when, no-
wadays, is executed on the real system. The possibility of anticipating this check to
the design phase allows decreasing the development efforts of time and cost. Fur-
thermore, the introduction of systematic activities of static analysis allows verifying
properties that are not yet formally verified at the moment, filling a gap and strongly
improving the quality of the work and decrease of V&V and certification costs com-
pared to imposed standards.

Other benefits are the improvement of automation to minimize human error and the
introduction of the traceability among the FRS, test cases, system model and report
documents. The model allows strongly decreasing time/costs in case of correction of
possible anomalies on the system, since a lot of checks are preliminary performed on
the model and not on the real system and in case of, whereas needed, introduction of
modifications on the system arising from new constraints identified in later steps of
the project (new requirements added).

Further expected benefits might be the sharing and the comparison of best practices
among different companies, the improvement of standardization degree of the V&V
processes among different industrial domains (European standardization) and the
reduction of the efforts for the certification of the overall system at the end of the
processes.

References

1. Schätz, B., Pretschner, A., Huber, F., Philipps, J.: Model-based development. Technical
Report TUM-I0204, Institut für Informatik, Technische Universitat Munchen (2002)

2. Schätz, B., Pretschner, A., Huber, F., Philipps, J.: Model-Based Development of Embed-
ded Systems. In: Proceedings of Advances in Object-Oriented Information Systems, OOIS
(2002)

3. Bender, K., Broy, M., Péter, I., Pretschner, A., Stauner, T.: Model Based Development of
Hybrid Systems: Specification, Simulation, Test Case Generation. In: Modelling, Analysis,
and Design of Hybrid Systems (2002)

4. Ziegenbein, D., Braun, P., Freund, U., Bauer, A., Romberg, J., Schatz, B.: AutoMoDe -
model-based development of automotive software. In: Proceedings of Design, Automation
and Test in Europe, pp. 171–176 (2005)

5. Fantechi, A., Gnesi, S.: On the Adoption of Model Checking in Safety-Related Software
Industry. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS,
vol. 6894, pp. 383–396. Springer, Heidelberg (2011)

6. http://www.esterel-technologies.com/products/
7. Stålhane, T., Omoronyia, I., Reichenbach, F.: Ontology-Guided Requirements and Safety

Analysis. In: Proc. 6th International Conference on Safety of Industrial Automated Sys-
tems, SIAS (2010)

 Improving Verification Process in Driverless Metro Systems: The MBAT Project 245

8. Omoronyia, I., Sindre, G., Stålhane, T., Biffl, S., Moser, T., Sunindyo, W.: A Domain On-
tology Building Process for Guiding Requirements Elicitation. In: Wieringa, R., Persson,
A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 188–202. Springer, Heidelberg (2010)

9. Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Zojer, H., Panis, C.: DODT: Increasing
Requirements Formalism using Domain Ontologies for Improved Embedded System De-
velopment. In: 14th IEEE Symposium on Design and Diagnostics of Electronic Circuits
and Systems, Germany (2011)

10. di Tommaso, P., Esposito, R., Marmo, P., Orazzo, A.: Hazard Analysis of Complex Distri-
buted Railway Systems. In: Proc. of International Symposium on Reliable Distributed Sys-
tems, SRDS 2003, Florence, Italy, pp. 283–292 (2003)

11. De Nicola, G., di Tommaso, P., Esposito, R., Flammini, F., Orazzo, A.: A Hybrid Testing
Methodology for Railway Control Systems. In: Heisel, M., Liggesmeyer, P., Wittmann, S.
(eds.) SAFECOMP 2004. LNCS, vol. 3219, pp. 116–129. Springer, Heidelberg (2004)

12. De Nicola, G., di Tommaso, P., Rosaria, E., Francesco, F., Pietro, M., Antonio, O.: A
Grey-Box Approach to the Functional Testing of Complex Automatic Train Protection
Systems. In: Dal Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC 2005. LNCS,
vol. 3463, pp. 305–317. Springer, Heidelberg (2005)

13. De Nicola, G., di Tommaso, P., Esposito, R., Flammini, F., Marmo, P., Orazzo, A.:
ERTMS/ETCS: Working Principles and Validation. In: Proceedings of the International
Conference on Ship Propulsion and Railway Traction Systems, SPRTS 2005, Bologna, Ita-
ly, pp. 59–68 (2005)

14. Donini, R., Marrone, S., Mazzocca, N., Orazzo, A., Papa, D., Venticinque, S.: Testing
complex safety-critical systems in SOA context. In Proc. of the 2008 International Confe-
rence on Complex, Intelligent and Software Intensive Systems (CISIS), Barcelona, Spain
(2008)

15. Flammini, F., Mazzocca, N., Orazzo, A.: Automatic instantiation of abstract tests on spe-
cific configurations for large critical control systems. Journal of Software Testing, Verifi-
cation & Reliability (STVR) 19(2), 91–110 (2009)

16. Bonifacio, G., Marmo, P., Orazzo, A., Petrone, I., Velardi, L., Venticinque, A.: Improve-
ment of Processes and Methods in Testing Activities for Safety-Critical Embedded Sys-
tems. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS,
vol. 6894, pp. 369–382. Springer, Heidelberg (2011)

17. Institute of Electrical and Electronics Engineers. IEEE Standard for Communication Based
Train Control (CBTC) Performance and Functional Requirements. IEEE Std 1474.1-2004
(Revision of IEEE Std 1474.1-1999) (2004)

Optimising Ordering Strategies
for Symbolic Model Checking of Railway Interlockings

Kirsten Winter

School of Information Technology and Electrical Engineering, The University of Queensland,
St.Lucia, QLD 4072, Australia

Abstract. Interlockings implement Railway Signalling Principles which ensure
the safe movements of trains along a track system. They are safety critical systems
which require a thorough analysis. We are aiming at supporting the safety analysis
by automated tools, namely model checkers.

Model checking provides a full state space exploration and is thus intrinsically
limited in the problem’s state space. Current research focuses on extending these
limits and pushing the boundaries. In our work we investigate possible optimisa-
tions for symbolic model checking. Symbolic model checkers exploit a compact
representation of the model using Binary Decision Diagram. These structures
provide a canonical representation which allows for reductions. The compactness
of this data structure and possible reductions are dependent on two orderings: the
ordering of variables and the ordering in which sub-structures are manipulated.
This paper reports on findings of how a near to optimal ordering can be generated
for the domain of interlocking verification.

1 Introduction

Railway signalling interlockings are safety critical systems. Therefore special attention
has to be given to the correctness of the design and the implementation of an inter-
locking system. The development of such systems is very labour intensive and prone to
error. It requires specialised skills. Moreover, possible errors in the design are detected
very late in the design process. To mitigate these problems Queensland Rail (QR), the
major railway operator and owner in Queensland, Australia, intended to support its de-
sign process by a specialised tool set called the Signalling Design Toolset (SDT) [1].
Parts of this toolset were intended for supporting the verification task.

In this paper we summarise our findings on how to formally model a functional
specification of an interlocking system, the control table, and how to optimise symbolic
model checking of these interlocking models. Our results render the approach feasible
for industrial practise.

Others have applied model checking to analyse railway interlocking systems: Gnesi
et al. [2], Bernadeschi et al. [3], and Cleaveland et al. [4], for instance, have analysed
fault tolerance of interlocking systems. The main focus in their work were communica-
tion aspects between components rather than the control logic as in our work.

The first approaches on applying model checking to verify railway interlocking sys-
tems represented as control tables or equations were reported by Groote et al. [5], using
μCRL and its tools, and Eisner [6,7] using SMV. Also Simpson et al. [8], and Huber

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 246–260, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Optimising Ordering Strategies for Symbolic Model Checking 247

et al. [9] are focusing on the control logic similar to our approach. In particular, the
approach by Eisner and Huber et al. is very close to ours as they also use a symbolic
model checker. The interlocking systems, however, are modelled on a lower level of ab-
straction. This leads to significantly different models and in particular a more complex
model of the requirements which in our case can be simply expressed as train collision
and train derailment.

In [10] Ferrari et al. attempt a comparison of different model checkers when applied
to interlocking control tables. Although the work is very interesting it is lacking to
take into account the potential of optimising symbolic model checking as it has been
proposed in this work.

While most existing work on signalling design verification targets the later interlock-
ing design phase, the focus of our approach was to enable verification of the interlock-
ing design at an early stage, when specified as control tables. The results presented here
consolidate work published in [11,12] and [13,14].

2 The Context

The research this paper reports on has been conducted in the context of the Signalling
Design Tools projects (SigTools), a collaboration of Queensland Rail (QR), the Soft-
ware Verification Research Centre (SVRC), and later the University of Queensland.
Aim of these projects was to design tool support for the creation and verification of
control tables[1,15].

Control Tables provide the functional specification for railway signalling interlock-
ings and contain the key safety requirements. They act as (1) an agreement between
the railway administration and the train operators on when moves will be permitted on
a track layout, (2) a specification for designing the interlocking itself, and (3) a test
specification for use by testers.

A control table is a structured, tabular presentation of the rules governing route set-
ting on a railway track layout. An example of a QR (signal) control table is shown in
Figure 1. A route, a sequence of tracks from an entry signal to an exit signal, is a key
concept in the table. One row of the table indicates the conditions needed to “set” a
single route (i.e., reserve it for a train to safely use it).

S
ig

na
l

R
ou

te
N

um
be

r

R
ou

te
to

R
ou

te
In

di
ca

ti
on

Requires
Replaced

by
Tracks Occ

Points Locked Routes Route
Holding

or Until Tracks

Normal Reverse Normal Reverse Maintained by
Tracks occ

Tracks
occ

for Time
secs

Clear Occ

he2 1m ng8 - p500

he3(1s) HE1BT

HE1BT HE1AT
HE2AT HE2BT
HE2CT NG7BT
NG7AT NG8AT

HE1BT

he1(1M)
he1(2M)

HE1BT HE1AT

Fig. 1. Control Table for a small verification area (as shown in Figure 2); depicted is the row for
the route from signal HE2 to NG8

248 K. Winter

NG1 NG4NG3

NG2 NG5

NG7 NG6 NG8 HE1

HE2HE3 HE5
HE6

HE8

501500

HE4 HE7

510 511

Fig. 2. Track Layout of a small verification area

The control table is specific to a track layout which represents the local arrangement
of the railway equipment on a selected part of the railway network while abstracting
from the actual length of the tracks and distances between the signalling equipment.
In our context we refer to the area covered by the track layout as the verification area.
Figure 2 shows the track layout for the above control table. It contains the signals HE2,
NG8, etc., the points 500, 501, etc., and tracks which are not named in the figure but
indicated as sections on the railway.

2.1 The Signalling Design Tools Project

Intention of the SigTools project was to design a tool suite to enable generation of (parts
of) signalling control tables, the editing of generated control tables, and the verification
of control tables against safety principles for railway signalling, the Signalling Design
Tool (SDT) suite. Figure 3 gives an overview of the architecture.

It comprises a Track Layout
Editor [16,17] to manually edit
track layouts, a Control Table
Generator [18] for automatically
generating all entries of the ta-
ble that can be inferred from the
layout, a Control Table Editor
[19] for manually editing control
tables, and a Counter-example
Interpreter [20] which automati-
cally interprets counter-examples
output by the verification tool, as
well as the Control Table Verifi-

Track Layout
Editor

Control Table
Generator

Control Table
Editor

Control Table
Verification

Counter-example
Interpretation

Verification
Report

Track Layout
Generated

Control Table

Completed
Control Table

Signalling
Principles

Train Movement
Rules

Control Table
Semantics

Route Table

Fig. 3. Architecture of the Signalling Design Tools

cation itself which is the focus of the following sections.

2.2 Modelling Control Tables

We target an automated verification of the completed control tables utilising the model
checker NuSMV [21]. This requires to provide a formal model of the control table. To

Optimising Ordering Strategies for Symbolic Model Checking 249

this end we designed a generic formal model that captures the control table seman-
tics using ASMs [22] as a vehicle. For each particular control table to be verified the
generic model is to be instantiated with the data from the accompanying track-layout,
the route table, and the control table itself. This instance constitutes the formal model of
the control table to be checked. It is automatically translated into the model checker’s
input notation, here the NuSMV language [23]. The ASM model serves as a useful
tool to communicate, formalise and document (our understanding of) the control table
semantics. More detail on the model can be found in [11,24].

At later stages of the project we omitted the “intermediate” ASM model as we de-
rived a generic NuSMV model from the NuSMV code that was generated by the ASM-
to-NuSMV translator. The generic NuSMV model is to be instantiated similarly to the
ASM model used earlier. The instantiation process has been automated within the SDT
suite [25,1]. In the following we sketch the simplifying assumptions of our control table
model as these have an impact on the scope of our analysis.

Train Movement. Unlike other approaches our model also includes (one or two) trains
moving along the tracks. As a consequence, the safety requirements become generic
and very easy to validate. They are modelled in terms of train collision and derailment.
It could be shown through tests that even a very simplistic model of train movement
suffices to show missing entries in the control table. The train data is limited to an iden-
tifier, which route the train is on, and which track it is occupying. The simplifications are
carried by the following assumptions: (a) Trains move at a constant speed or stop (i.e.,
we do not model the speed of a train or its braking capacity). (b) We assume that trains
always stop at red signals (excluding possible overruns). (c) Trains move according to
the conditions given by the state of points and signals from track to track. (d) Trains can
stop at any time. (e) The direction of a train is determined through its position, which is
a particular track segment each of which carry direction information.

It suffices to consider only two trains in the system to check for collision, and only
one train to detect possible derailment. The reasoning for this simplification, which is
in agreement with the railway engineers, is based on the fact that the more trains are
running through a particular verification area the more the movement of other trains is
restricted. Moreover, trains can appear on the tracks of the verification area in an ar-
bitrary fashion in our model. Therefore, every possible combination of two potentially
colliding trains is investigated. Considering only two trains at maximum limits the ad-
ditional complexity that stems from adding trains to the model to a tolerable level.

Aspect Sequencing. Signals can show only two aspects, stop and proceed. This reduces
the specified aspect type (two values instead of three) but it does prevent us from check-
ing the aspect sequencing of the interlocking design. Aspect sequencing ensures that the
train driver will see a yellow aspect before a red one. This mechanism, however, can
also be checked statically within the Control Table Editor [1].

Approach Locking. One part of the control table logic describes the functionality of
approach locking. Approach locking prevents a route that has been set for a train from
changing until it is deemed safe to do so. We decided to restrict our verification to a
smaller problem without approach locking in order to decrease the model’s state space
and behaviour. This also allowed us to simplify the train movement and signal model as

250 K. Winter

described above. Approach locking is a safety concern, but the corresponding entries in
the table can be checked statically by the Control Table Editor.

Shunt Routes. Our initial model did not distinguish between normal routes and shunt
routes. Shunting is a low speed operation in which trains are joined together. In terms
of our initial model, however, the scenario of shunting equals a train collision since we
do not consider the speed of a train. For simplicity, the shunting behaviour of trains was
then ignored. As justification we used the fact that shunting does not provide a high
risk safety concern due to the low speed that is involved. At a later stage of the project
however it was found that the models can be extended to include shunt routes as distin-
guished instances. This required to change the some of the rules for train movement as
well as the specification of the safety requirements for train collision.

Overlaps. Overlaps are tracks behind a signal and are introduced as a safety buffer
for trains that overrun a red signal. Since the trains in our model always stop at a red
signal (see above), missing overlaps in the control table cannot be detected in our initial
model. Moreover, including the concept of overlaps into our model would also allow
us to check for certain liveness conditions on setting signals and routes. A later version
of the model included the model of overlapping tracks and it could be shown that the
modification extended the scope of the verification sufficiently.

Level Crossings. Level crossings also carry a safety concern. They are not present in
every area but when they are, the corresponding part of the control table should be
checked. These checks require to introduce new concepts, such as gates and gate move-
ment, as well as the notion of time into the model. This can be supported by either the
use a modelling framework that supports time (e.g., timed automaton and UPPAAL [26]
or timed CSP [27]), or to integrate an explicit timer variable into a “standard” model
like ours. The latter approach has been proposed in [28].

Keeping the model of the interlocking design at a more abstract and more simplified
level reduces the complexity of the checking process. However, it comes at a cost of
retrieving counterexamples that are less intuitive for the railway engineer for whom
the formal model is an internal representation he/she is not familiar with. Although
revealing real errors in the control table the given path might show unusual behaviour
for the trains due to our simplified model of train movement. To alleviate this problem
the project designed a Counter-example Interpretation which provides the user with
hints as to which entry in the table is missing [20].

All the simplifications on our model were thoroughly discussed with our industry
partners from QR. The modelling decisions and their impact are well documented, es-
pecially the scope of the verification that is provided by the model checking process.

3 Symbolic Model Checking

Simplifying the model as described in the previous section helped to scale-up the ver-
ification to some extend but the improvement was not sufficient to target medium-
or large-sized models. Therefore we aimed at optimising the model checking process
itself.

Optimising Ordering Strategies for Symbolic Model Checking 251

3.1 Variable Ordering

Central to symbolic model checking is the idea of internally representing the model
(i.e., its states and state transitions) using Bryant’s Binary Decision Diagrams (BDDs)
[29]. BDDs are a graph structure that allows the canonical representation of Boolean
functions. In most cases a BDD representation is substantially more compact than other
canonical representations in normal form, and it furthermore allows for signification
reductions avoiding the representation of duplicate information.

A BDD consists of a set of nodes that are labelled with a variable. Each node is linked
via two directed edges to its successor nodes. These edges represent the evaluation of
the variable to false and true, respectively. The leaf nodes of the BDD are labelled with
the truth values. If the labels of the nodes in the BDD are ordered then we call the graph
an ordered BDD (OBDD).

The possible reduction of an OBDD depends on its structure which is determined by
the ordering of its node variables. An OBDD for the same function but with the changed
variable ordering has a different shape and consequently reduces differently.

It is infeasible to compute an optimal variable ordering in general, however, much
research effort has been focused on heuristics for finding a good variable ordering au-
tomatically. These heuristics are based on dependencies between variables and early
evaluation of the represented formula. When a formula represents a transition that up-
dates one variable we refer to it as single transition. It will reference variables on which
the transition depends. We call these variables support variables of the transition. Vari-
ables that are referenced by all transitions are called global variables. The following
guidelines help finding a good ordering:

1. Declare closely related variables together. In the variable ordering, each variable
should be close to the support variable of its transition [30,31].

2. For each transition, having the support variables closer to the top of the order than
the variable being transformed, gives the smallest ROBDD [30].

3. Place global variables at the top of the order [31].

3.2 Transition Orderings

Due to the nature of the application our model is similar to synchronous hardware cir-
cuits. The transition relation is described as the conjunct of single transitions of which
each describes the update of one state variable. That is, the value for a state variable v
can be given as v = f(v1, . . . vn) where f is a function that captures the logical de-
pendencies between variable v and the support variables v1, . . . , vn. All transitions are
fired simultaneously which leads to a next state in which some variables have changed
their values while others have not. Therefore, we can use results that originated in the
domain of synchronous circuit verification, in particular [32].

If we assume a set V of n state variables, v1, . . . vn, we denote a state of the model as
S(v1, . . . vn) and abbreviate this as S(V). The transition relation, modelling the tran-
sition from current state to next state, is captured by a function N which depends on
variables in V as well as their primed counterparts, V ′, capturing the evaluation in the
next state. The function N(v1, . . . , vn, v

′
1, . . . , v

′
n) is abbreviated as N(V, V ′).

252 K. Winter

In symbolic model checking the state space is explored by iteratively applying the
transition relation to the state. This is done in a forward fashion starting with the ini-
tial state and is called image computation. The operation on ROBDDs used for image
computation is called relational product. For synchronous systems (as in our case) it is
defined as

S′(v′1, . . . , v′n) = ∃v1 ∈ V [. . . ∃vn∈V [S(v1, . . . , vn)∧N(v1, . . . , vn, v
′
1, . . . , v

′
n)] . . .]

We abbreviate this formula using the notion from [32] as follows

S′(V ′) = ∃v∈V [S(V) ∧N(V, V ′)] (1)

where V ′ is the set of primed state variables and S′(V ′) describes the set of next states
reachable from S(V) via one transition step.

The transition relation N(V, V ′) can be applied to the state as one big transition or
it can be envisaged as a conjunct of smaller partitions of N , Ni(V, V

′), where each
partition is either a single transition (that updates one variable) or a conjunct of several
single transitions, referred to as cluster in the following. In practise each Ni(V, V

′) can
often be represented by a small BDD whereas the whole of N(V, V) becomes very
large. The aim is to compute the image without building the whole of N(V, V ′) by
using the following formula:

S′(V ′) = ∃v∈V [S(V) ∧N0(V, V
′) ∧ . . . ∧Nn−1(V, V

′)]. (2)

Unfortunately, existential quantification (e.g., ∃v∈V in the formula above) does not dis-
tribute over conjunction and we cannot simply split up the operation into single steps.
Burch et al. in [32], however, developed a method to overcome this problem. It is based
on two observations. Firstly, our model of interlockings exhibits locality (in a similar
fashion to circuits), that is, most single transitions will depend on only a small num-
ber of variables in V and V ′. Secondly, sub-formulas from the relational product can
be moved out of the scope of the quantification if they do not depend on the variables
being quantified. Therefore, it is beneficial to conjoin the Ni(V, V

′) with S(V) one at
a time moving out those variables from the scope of the quantification that none of the
remaining partitions depends on. To do so we want to order the partitions Ni(V, V

′) in
such a way that the number of variables that can be eliminated early is maximised. This
will lead to smaller intermediate results of the image computation.

Assume the chosen order of clusters is given by the permutation p that permutes the
indices {0, . . . , n − 1}. That is, cluster Np(i)(V, V

′) will be applied in the ith step of
the image computation. Let Dp(i) be the variables that Np(i)(V, V

′) depends on and Ei

the set of variables that can be eliminated after the ith step. That is, Ei is the subset
of Dp(i) that is not contained in any of the other dependency sets. Then S′(V ′) can be
computed in a number of steps each eliminating the variables in Ei when building the
corresponding intermediate products Si+1(V, V

′):

S1(V, V
′) = ∃v∈E0 [S(V) ∧Np(0)(V, V

′)]
S2(V, V

′) = ∃v∈E1 [S1(V, V
′) ∧Np(1)(V, V

′)]
. . .

S′(V ′) = ∃v∈En−1 [Sn−1(V, V
′) ∧Np(n−1)(V, V

′)]

(3)

Optimising Ordering Strategies for Symbolic Model Checking 253

The chosen order p has an impact on how early variables can be quantified out and
therewith affects the size of the BDDs constructed. The aim is to group those transi-
tions together into one cluster that have the same support variables. Selective grouping
of transitions into clusters, and the order p of application of the clusters leads to smaller
and fewer intermediate products that are manipulated faster [33]. The following heuris-
tics can be proposed: Transitions that are supported by the maximal number of variables
should be grouped together in a cluster and applied first. Subsequent transitions that are
supported by fewer variables should be grouped into clusters so that as many of their
support variables as possible do not support transitions in clusters yet to be applied.
This enables some of the support variables to be quantified out progressively from the
intermediate products giving smaller intermediate products.

If transitions do not naturally fall into clear-cut divisions, the grouping of transi-
tions within clusters and the order of application of the clusters should be such that
early elimination of support variables is maximised. We will see in the next section
how a good ordering for the transitions can be generated for the domain of railway
interlockings.

4 Optimised Orderings for Railway Interlockings

Checking medium-sized control tables utilising the standard user options provided by
NuSMV [23] would in many cases lead to memory overflow and a non-acceptable run-
time of the process. The approach needed to be taylored for the application domain.

Three optimisation were taken into consideration: (1) Generating the variable or-
dering on the basis of domain knowledge. (2) Computing an ordering in which the
transition clusters are to be applied to maximise the early quantification of support vari-
ables. (3) Determining the threshold size for clusters based on experimental results. The
following subsection report on our findings.

The domain knowledge on which our approach is based stems from the following
characterisation of the domain data. Variables in our model can be divided into three
groups: global, local and input variables. Similarly, single transitions can be charac-
terised as global transitions if they update a global variable or local transitions if they
update local variables.

Global Variables represent train attributes like the current position (given in terms
of a track) and the currently used route. In the SMV code this is modelled by four vari-
ables of enumerated type. Typically 30 -130 different values, depending on the number
of tracks and routes in the interlocking, are required. The larger and more complex
the verification area, the larger becomes the set of Booleans necessary to represent the
values. Typically five to seven Booleans are required for each attribute in the implemen-
tation (see [30] for details on implementing enumerated types efficiently).

Local Variables model the lie of the individual points, the current aspect of the sig-
nals, and the lock and usage of routes. Mostly, this information can be represented by
simple Booleans (e.g., points are set normal or reverse, signals are set proceed or stop,
routes are locked normal or reverse), only the route usage is encoded by a typically
small enumerated set.

Input Variables represent signalling and train control commands (i.e., requests). They
are not controlled by the interlocking but change their values randomly (to capture every

254 K. Winter

possible behaviour). This can be modelled using a number of simple Booleans variables
and one variable of enumerated type. The number of enumerated values again depends
on the size of the verification area (number of routes, signals, etc.). The implementation
of the enumerated input variable typically requires 5 to 7 Booleans.

Transitions in our context are modelled using the next operator of the SMV input
language [34,23]. For each variable the evaluation in the next state is modelled depend-
ing on the previous values of the support variables. The size of the ROBDD representing
the transition for each variable depends on the variable ordering (see Section 3.1).

Global transitions are supported by all the variables. Local transitions depend on a
limited number of variables. Specifically they are supported by the global variables,
the input variables and some of the local variables, e.g., only the occupation of nearby
tracks and the input command variable are relevant to the movement of a point.

Generally, the transitions are such that if {v1, v2, v3} is the set of support variables
for transition Nv1(V1, v

′
1) then the set of support variables for transition Nv3(V2, v

′
3) is

likely to include v1. That is, there is a cross-dependency between transitions. An analy-
sis of the dependencies between all the variables using a dependency matrix (see [35])
resulted in a very dense matrix. This made the application of the standard heuristics
which are based on the characteristics of a less dense dependency matrix unsuccessful
in finding a good ordering.

Size of the Verification Area. An increase in the complexity of models (more signals,
points and tracks), introduces more local variables, and maintains the same number of
global and input variables but adds more values to the enumerated types. Adding more
values to the enumerated types does not impact significantly on the number of Booleans
used to implement them but does impact on the size of the ROBDD used to distinguish
particular values of the variables.

Let Var = {v1, . . . , vm+n+p} be the set of state variables in our model with
{g1, . . . , gm} ⊂ Var the set of global variables, {l1, . . . , ln} ⊂ Var the set of lo-
cal variables and {req1, . . . , reqp} ⊂ Var the set of input variables. Let Nvi(V, v

′
i),

1 ≤ i ≤ (m + n), be the transitions, local or global, that changes (local or global)
variable vi dependent on the support variables V ⊆ V ar.

4.1 Optimising the Variable Ordering

We have implemented an algorithm that performs an ordering of local, global and input
variables using the available data from the track layout. The strategy, and the reasoning
for this strategy, on which the algorithm is based are explained in detail in the following.

Local Variables. Single transitions which model the update of signals, points, etc.
depend on the support of signalling equipment that is in the close vicinity on the track-
layout graph. The dependencies between the state variables are therefore related to the
geographical arrangement that can be read from the track layout (see, for example,
Figure 2).

Mechanical interlocking design suggests further considerations for this ordering
strategy. Building the relays for the mechanical interlockings starts usually with points,
followed by the signals whose routes crossed those points. Typically each signal is

Optimising Ordering Strategies for Symbolic Model Checking 255

associated with routes from that signal. This leads to a strategy which associates the
signals and routes with a particular point. The associated entities form a group.

However, there are several different ways of associating signals and points if a route
comprises several in-route points. It was noted that moving a signal and its routes from
a group with its first in-route trailing point to a group with its first in-route facing point
made a significant difference to the model checking time and the memory used.

These consideration led to the following first ordering heuristics:

a) A signal and its routes are associated with the first facing point in the route or
b) with the first trailing point in-route if this is the only point.

While variables within groups are related by the transition relations, there is significant
cross dependencies between the groups e.g. routes are related to routes that oppose them
and the opposing routes are likely to be associated with different points. This leads us
to the second ordering heuristics:

c) The groups are best ordered according to their arrangement on the track layout
rather than in a random order.

The heuristics a) to c) form the basis of our ordering strategy, called geographic order
which defines a permutation γ on the local variables. The layout is viewed as a grid and
the signals and points are read in order from left to right. Where signals or points are in
the same vertical grid, elements are ordered from top to bottom.

Ordering the local variables {l1, . . . , ln} ⊂ Var according to the geographic order
following the heuristics above leads to an ordering of local variables of the form lγ(1) <
. . . < lγ(n). For each local variable lγ(j), 1 ≤ j ≤ n, the corresponding transition
Nlγ(j)

(V, l′γ(j)) then depends on local variables in reasonably close proximity to lγ(j)
in the order, e.g., lγ(j−1) and lγ(j+1), etc.

Global Variables. The local transitions also depend on the global variables. Experi-
mentation shows that putting the global variables higher in the variable order than all
the local variables gives the smallest local transitions (i.e., those transitions that update
local variables) supporting heuristics 3 in Section 3.1. The global transitions for the four
global variables of enumerated type depend on all the variables and are large.

Input Variables. Placement of the input variables in the variable order is problematic.
Input variables are in the support variables for all transitions. When they are placed
at the beginning of the order, the ROBDDs representing the transitions Nvi(V, v

′
i),

1 ≤ i ≤ (m + n), are smaller than ROBDDs for an order in which the input vari-
ables are placed lower in the order. However, this does not necessarily lead to smaller
intermediate products. Experimentation has shown that placing the large input variable
lower in the order increases the size of the local transitions and the size of the clus-
ters. However, this gives smaller intermediate products and uses less memory overall.
There are time and memory efficiency penalties for manipulating large transitions, large
clusters, and large intermediate products and for our data, experimentation has shown
that the best results are obtained by placing the large input variable about 2/3 down the
order. For a detailed discussion see [13].

256 K. Winter

4.2 Improving the Transition Ordering

NuSMV did not have provision for the user to supply a transition order at the time
we started our project. It has its own generic algorithm for estimating the affinity of
transitions [35] (which describes their degree of similarity) and by default progressively
builds clusters based on this affinity. A cluster is closed off when its size reaches a
threshold (defined by the user or a default value) which results in evenly sized clusters.

For railway interlockings the dependency matrix on which the affinity is based is
very dense. Therefore, computing the affinity between variables by itself does not pro-
vide the necessary information to improve efficiency. However, examining the railway
interlocking model and its semantics has enabled us to define an order in which tran-
sitions can be conjoined and the points in the order at which to cut the conjunctions
to form clusters. When these clusters are applied in turn in the image computation, the
variables are quantified efficiently from the intermediate product.

We use the same argument of vicinity of symbols on the track layout that is used
for finding a good variable ordering for ordering the partitioned transition relation. The
global transitions, Ng1 , . . . , Ngm , are supported by all the other variables including
the input variables. This suggests that global transitions should be applied first. The
local transitions, Nl1 , . . . , Nln , depend on global variables and other local variables
associated with nearby symbols in the track layout. A transition order that reflects the
geographic order of variables γ for the local transitions results in a permutationNlγ(1)

<
. . . < Nlγ(n)

of local transitions which then can be progressively grouped into clusters
with some overlap of support variables.

Eliminating variables that are at the leaf end of an ROBDD (lowest in the variable
order) favours BDD reduction and results in smaller diagrams than removing variables
from the middle or root end of the diagram (higher in the variable order). Therefore, we
order the local transition in such a way that transitions for variables of lower order will
be applied first. If the local variables indexed progressively by γ(1), . . . , γ(n) using the
geographic order γ then the aim is that the transition for the γ(n)th variable is applied
before the transition for the (γ(n − 1))th variable to facilitate early elimination of the
γ(n)th variable. While the γ(n)th variable may not be eliminated immediately after
application of its transition, it should be soon after since all transitions using it will be
within close range. This leads to an ordering of local transitions that is reverse to the
ordering of local variables as introduced in Section 4.1.

In summary, a good order of application of transitions is the global transitions fol-
lowed by the local transitions in the order γ(n) to γ(1). That is, assuming the NuSMV
principle of prepending the cluster list and applying the transitions from the back to the
front of the list, a good transition order for railway interlockings is the local transitions
in the order γ(1) to γ(n), followed by the global variable transitions:

Nlγ(1)
< . . . < Nlγ(n)

< Ng1 < . . . < Ngm (4)

The NuSMV code was extended so that the user could provide a transition order in terms
of an ordered list of the corresponding variables, lγ(1) < . . . < lγ(n) < g1 < . . . < gm.

Optimising Ordering Strategies for Symbolic Model Checking 257

4.3 Clustering

Transitions are conjoined in order according to the transition order. Having defined a
good transition order that supports the elimination of variables as early as possible,
the question becomes where to cut the transition conjunction and form a cluster. If all
transitions are in one cluster, no elimination of variables can occur and the ROBDD
representing the cluster becomes very large. If the clusters are too small then many
intermediate products S′(V ′) (see equation 3 in Section 3.2) have to be computed.
The issue is to find the balance between size and number of clusters and intermediate
products.

Using a transition order and the default threshold to form the clusters resulted in
between ten and fourteen clusters for our models. This number is too large and we had
to re-define the cut-off points for the clusters.

The global transitions are applied first and it is logical to put all of these into the first
cluster. After application of the global cluster the next values for the global variables
can be quantified out.

When clustering the remaining local transitions, which are ordered using the geo-
graphical ordering, we used the insight that by referencing the track layout it is possible
to nominate where in the transition order the dependencies change. This observation
was confirmed by the railway engineers. For example, Figure 2 shows us that variables
related to symbols to the right of signal HE1 will be supported mostly by variables lower
in the transition order than the variable for signal HE1 since we ordered the variables in-
specting the track layout from left to right. Similarly, variables related to symbols to the
left of signal HE1 will be mostly supported by variables higher in the variable ordering
than the variable for signal HE1. Thus, for this verification area the local transitions fall
naturally into two clusters at this point. Including the global cluster gives three clusters
for this track layout.

From our experimentation it is clear that with a good transition order, few clusters
are required. We found that often the models fell naturally into three or four clusters.
However, for large models these clusters can become very big and the model checker
spent significant time building them. In this case the performance was best using a
clustering based on the threshold.

Another way to achieve few clusters is to specify a large threshold. The clusters will
not be cut as precisely as before but because the order is good, progressive elimination
of variables will occur. This approach is not as efficient as the customised formation
of clusters described above, but is a worthwhile improvement on the default threshold
used by standard NuSMV. The result (shown in Table 1 in Section 4.4) suggest that this
approach is a reasonable alternative as it requires no specialist knowledge of the model
or the application domain.

4.4 Experimental Results

We conducted our experiments with real data provided by QR. Table 1 compares our
results for three different sized models: The large model consists of 41 routes, 9 points,
19 signals, and 31 track circuits. The medium model comprises 29 routes, 9 points, 13
signals, and 22 tracks. The small model comprises 12 routes, 2 points, 8 signals, and 8
tracks. The experiments were conducted using the options as indicated below.

258 K. Winter

Table 1. Comparison of various sized models using the discussed options

User Options 5 Time(s) Memory
Small model 1 4081 655Mb

2 651 98Mb
3 124 42Mb
4 61 29Mb
5 88 36Mb

Medium model 1 9620 1098Mb
2 734 114Mb
3 321 78Mb
4 152 49Mb
5 222 63Mb

Large model 1 N/A N/A
2 N/A N/A
3 68872 3.6Gb
4 33641 980Mb
5 29357 1160Mb

Option 1: using NuSMV defaults for
variable and transition or-
ders and clustering

Option 2: using user-defined variable
order with default transi-
tion order and clustering

Option 3: using user-defined variable
ordering and user-defined
transition orders with de-
fault clustering

Option 4: using user-defined vari-
able ordering, user-defined
transition order and clus-
ters selected by user

Option 5: using user-defined variable
order, user-defined transi-
tion order and clusters se-
lected by threshold.

The figures show that a significant improvement of run-time and memory usage was
achieved by choosing a good variable ordering that was based on geographical informa-
tion from the track layout, i.e., domain knowledge over the dependencies. This result
is not surprising as this correlation is often stated in the literature. Improvements of
similar scale could also be achieved by customising the order of transition partitions
and by forming the clusters. Both parameters were chosen using the same reasoning
as was used for choosing the variable ordering — in our case geographic order of
dependencies.

The NuSMV tool (from version 2.4.1) has been extended by the user option
-t <tv_file> which allows the user to specify an alternative variable ordering to
be used for clustering of the transition relation [23]. The grammar of the ordering file is
the same as for the variable ordering file.

5 Conclusion

In this paper we provide a strategy for improving efficiency of symbolic model checking
when applied in the domain of railway interlockings. Based on domain knowledge we
show how to compute optimised variable and transition orderings and report on our
findings of how to set the threshold for clusters. The results from our experiments are
encouraging and render the approach feasible for use in industrial practise.

For future work it would be interesting to include an optimised symbolic model
checking approach into a comparative study as it has been done in [10]. Moreover,
we would like to apply the proposed strategies to a model on the level of code or a
geographical data model of an interlocking system to confirm whether similar improve-
ments as for the control table model can be achieved.

Optimising Ordering Strategies for Symbolic Model Checking 259

Acknowledgements. The work has been conducted in close cooperation with Queens-
land Rail, in particular we would like to thank George Nikandros, David Barney and
David Tombs. The domain expertise of Neil Robinson helped to shape the model and its
simplifications, and the persistence of Wendy Johnston when analysing BDD size and
structures was essential in producing the ordering strategies. This work was supported
by Australian Research Council (ARC) Linkage Grant LP0882479 and the Australian
Safety Critical Systems Association (aSCSa).

References

1. Robinson, N., Barney, D., Kearney, P., Nikandros, G., Tombs, D.: Automatic generation and
verification of design specification. In: Proc. of Int. Symp. of the International Council on
Systems Engineering, INCOSE 2001 (2001)

2. Gnesi, S., Lenzini, G., Latella, D., Abbaneo, C., Amendola, A., Marmo, P.: An automatic
SPIN validation of a safety critical railway control system. In: Procs. of IEEE Conference on
Dependable Systems and Networks, pp. 119–124. IEEE Computer Society (2000)

3. Bernardeschi, C., Fantechi, A., Gnesi, S., Mongardi, G.: Proving Safety Properties for Em-
bedded Control Systems. In: Hlawiczka, A., Simoncini, L., Silva, J.G.S. (eds.) EDCC 1996.
LNCS, vol. 1150, pp. 321–332. Springer, Heidelberg (1996)

4. Cleaveland, R., Luettgen, G., Natarajan, V.: Modeling and Verifying Distributed Systems
Using Priorities: A case Study. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS,
vol. 1055, pp. 287–297. Springer, Heidelberg (1996)

5. Groote, J., Koorn, J., van Vlijmen, S.: The safety guaranteeing system at station Hoorn-
Kersenboogerd. In: Proceedings 10th IEEE Conference on Computer Assurance (COMPASS
1995), pp. 131–150. IEEE Computer Society Press (1995)

6. Eisner, C.: Using Symbolic Model Checking to Verify the Railway Stations of Hoorn-
Kersenboogerd and Heerhugowaard. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS,
vol. 1703, pp. 97–109. Springer, Heidelberg (1999)

7. Eisner, C.: Using symbolic CTL model checking to verify the railway stations of Hoorn-
Kersenboogerd and Heerhugowaard. Software Tools for Technology Transfer 4(1), 107–124
(2002)

8. Simpson, A., Woodcock, J., Davies, J.: The mechanical verification of solid state inter-
locking geographic data. In: Groves, L., Reeves, S. (eds.) Proc. of Formal Methods Pacific
(FMP 1997). Discrete Mathematics and Theoretical Computer Science Series, pp. 223–243.
Springer (1997)

9. Huber, M., King, S.: Towards an Integrated Model Checker for Railway Signalling Data. In:
Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 204–223. Springer,
Heidelberg (2002)

10. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking control ta-
bles. In: Schnieder, E., Tarnai, G. (eds.) Proceedings of Conference on Formal Methods for
Automation and Safety in Railway and Automotive Systems (FORMS/FORMAT 2010), vol.
2, pp. 107–115. Springer (2011)

11. Winter, K., Robinson, N.J.: Modelling large railway interlockings and model checking small
ones. In: Oudshoorn, M. (ed.) Proc. of Australasian Computer Science Conference, ACSC
2003 (2003)

12. Winter, K., Johnston, W., Robinson, P., Strooper, P., van den Berg, L.: Tool support for check-
ing railway interlocking designs. In: Cant, T. (ed.) Proc. of the 10th Australian Workshop on
Safety Related Programmable Systems (SCS 2005), vol. 55, pp. 101–107. Australian Com-
puter Society, Inc. (2005)

260 K. Winter

13. Johnston, W., Winter, K., van den Berg, L., Strooper, P., Robinson, P.: Model-Based Variable
and Transition Orderings for Efficient Symbolic Model Checking. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 524–540. Springer, Heidelberg (2006)

14. Winter, K.: Symbolic Model Checking for Interlocking Systems. In: Railway Safety, Relia-
bility, and Security: Technologies and Systems Engineering, pp. 298–315. IGI Global (2012)

15. Robinson, N.: Operation concept document. SigTools-004, version 1.9 (May 2002)
16. Robinson, N.: Design specification – Track Layout Editor. SigTools-032, version 1.1 (April

2004)
17. McComb, T., Robinson, N.J.: Assuring graphical computer aided design tools. Technical

Report TR02-18, Software Verification Research Centre, University of Queensland (2001)
18. Tombs, D., Robinson, N.J., Nikandros, G.: Signalling control table generation and verifica-

tion. In: Proc. of Conf. on Railway Engineering (CORE 2002). Railway Technical Society of
Australasia (2002)

19. Johnston, W.: Design specification – Control Table Editor. SigTools-044, version 0.1 (Jan-
uary 2003)

20. van den Berg, L., Strooper, P., Johnston, W.: An automated approach for the interpretation
of counter-examples. In: Bloem, R., Roveri, M., Somenzi, F. (eds.) Proceedings of 1st Work-
shop on Verification and Debugging, pp. 6–25 (2006)

21. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)

22. Egon Börger, R.S.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer (2003)

23. Cavda, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M., Roveri, M.,
Tchaltsev, A.: NuSMV 2.5 User Manual (2010), http://nusmv.irst.itc.it

24. Winter, K.: Model checking control tables: the ASM-NuSMV approach. SigTools.039, ver-
sion 0.1 (October 2002)

25. Johnston, W.: Design specification - Verification Manager and NuSMV Driver. SigTools-051,
version 0.4 (April 2004)

26. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

27. Schneider, S.: An operational semantics for timed CSP. Information and Computa-
tion 116(2), 193–213 (1995)

28. van den Berg, L., Strooper, P., Winter, K.: Introducing Time in an Industrial Application of
Model-Checking. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 56–67.
Springer, Heidelberg (2008)

29. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers C-35(8) (August 1986)

30. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
31. Lewis, G., Comella-Dorda, S., Gluch, D., Hudak, J., Weinstock, C.: Model-based verifica-

tion: Analysis guidelines. Technical Report CMU/SEI-2001-TN-028, Carnegie Mellon Soft-
ware Engineering Institute (2001)

32. Burch, J., Clarke, E., Long, D.: Symbolic model checking with partitioned transition rela-
tions. In: Int. Conf. on Very Large Scale Integration (1991)

33. Geist, D., Beer, I.: Efficient Model Checking by Automated Ordering of Transition Relation.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 299–310. Springer, Heidelberg (1994)

34. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
35. Moon, I.-H., Hachtel, G.D., Somenzi, F.: Border-Block Triangular Form and Conjunction

Schedule in Image Computation. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000.
LNCS, vol. 1954, pp. 73–90. Springer, Heidelberg (2000)

http://nusmv.irst.itc.it

Automated Generation of Safety Requirements

from Railway Interlocking Tables

Anne E. Haxthausen

DTU Informatics, Technical University of Denmark, DK-2800 Lyngby, Denmark
ah@imm.dtu.dk

Abstract. This paper describes a tool for extracting formal safety con-
ditions from interlocking tables for railway interlocking systems. The tool
has been applied to generate safety conditions for the interlocking sys-
tem at Stenstrup station in Denmark, and the generated conditions were
then checked to hold by the SAL model checker tool.

Keywords: railways, interlocking systems, formal methods, safety, ver-
ification, model checking, interlocking tables, signal control tables.

1 Introduction

With more than 170 million passengers going by train on a yearly basis in Den-
mark, the safety of the railway traffic is a top priority for Railnet Denmark. As
in other countries railway interlocking systems are used to prevent trains from
colliding and derailing. Many interlocking systems in Denmark are still relay
based, i.e. implemented by complex electrical circuits containing relays. These
systems are documented by track layout diagrams, relay circuit diagrams and
interlocking tables (also sometimes called signal control tables or train route
tables). The interlocking tables serve as design specifications for relay circuit
implementations1, and the latter are verified to satisfy the design requirements
by manual inspection of the circuit diagrams and the tables. Such a manual ver-
ification is very challenging, time consuming, and error prone. For these reasons
Railnet Denmark asked us to research a better verification method.

Our solution has been to develop a set of tools [10] supporting automated
formal verification of relay interlocking systems. We decided that the verification
method should be formal as formal verification has been recognised as one of
the best ways of avoiding errors and is for that reason strongly recommended by
the CENELEC standards for railway control systems. Furthermore we decided
that the method should be automated as much as possible to reduce the time
consumption. We chose the model checking approach [6] to formal verification as
this allows for full automation. However, the model checking approach requires
as input a formal model of the system behaviour and a formal specification of the
required properties, and it is not a trivial task to create this input. To overcome
this problem, we decided also to create tools for generating verifiable formal
models and for generating formal requirements, respectively.

1 They are also used for some computer based interlocking systems.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 261–275, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

262 A.E. Haxthausen

station documentation

results

circuit diagrams

model checker
track layout

 formal model and reqs
generators

 model

required propertiesinterlocking table

Fig. 1. Overview of generator tools. The tool described in this paper is shown by a
solid arrow.

The tools are centred around a domain-specific language (DSL) for digitised
representations of track layout diagrams, interlocking tables, and circuit dia-
grams used for documenting a relay interlocking system. We chose to centre the
tools around a domain-specific language rather than a general purpose modelling
language, as it is easier for railway engineers to use a language that facilitates
concepts already known and used in the railway domain.

The tools comprise:

– data validators for checking that the documentation (in DSL) follows certain
general wellformedness rules,

– generators that from a DSL description produce input to a model checker:

• a formal, behavioural model (state transition system) of the described
interlocking system and its environment and

• required properties expressed as formulae in the temporal logic LTL.

Fig. 1 shows an overview of the generator tools. As it can be seen the model is
generated from the circuit diagrams and the track layout diagram. Additional
generators can be used to derive required properties from the circuit diagrams,
the track layout diagram, and the interlocking table, respectively. The generated
properties include: (1) conditions expressing desired internal model consistency
properties (used for model validation), (2) high-level safety conditions expressing
that there are no derailments and no collisions, and (3) low-level safety condi-
tions expressing that general signalling rules of Railnet Denmark are obeyed,
respectively. Prototypes of the generator tools have been developed using the
RAISE formal method [15,16] due to previous good experience in using that
method. Details on these tools and their development can be found in [2,4,11].

The whole collection of tools can be used to verify an interlocking system in
the following number of steps:

– Write a DSL description of the interlocking system.
– Validate the description using the data validators.
– Apply the generators to generate input to a model checker.
– Apply the model checker to that input to investigate whether the model

satisfies the required properties.

Automated Generation of Safety Requirements 263

The current paper describes how one of the property generators takes inter-
locking tables as input and generates low-level safety conditions expressing that
the signalling rules of Railnet Denmark are obeyed. This generator utilises the
fact that interlocking tables serve as design specifications and contain data that
can be used to instantiate generic signalling rules to concrete instances that can
serve as safety requirements. More details on the tool and its development can
be found in [2].

Related Work. The railway domain has been identified as a grand challenge
for computer science, and the modelling, development and verification of inter-
locking systems has been investigated by many researchers. Different types of
interlocking systems (e.g. relay based versus computer based, functional versus
geographical, etc) have been modelled using different modelling formalisms and
verified using different verification techniques (e.g. theorem proving and model
checking). It is out of the scope of this paper to give a complete list of related
work. An overview of results and trends in 2003 can be found in [3], and more
recent results can be found in proceedings like [14] and book chapters like [8,17].

Several other research groups [18,13,9,12,5] have also investigated interlock-
ing systems having interlocking tables as design specifications. They are among
others concerned with the verification of the interlocking tables. Their approach
for verification is to translate the tables into execution/design models for inter-
locking systems (typically by instantiating generic models with data from the
tables) and verify by model checking that these models satisfy high-level safety
requirements such as no collisions and no derailments. Furthermore, [9] studies
the applicability bounds for the NuSMV and SPIN model checkers when applied
to such verification problems.

Hence, a main difference between their and our verification approach is that
their interlocking models are derived from the interlocking tables (i.e. from the
design specification) while our models are derived from the relay circuit diagrams
for the implementation. Instead of using interlocking tables for generating inter-
locking models, we use them for generating requirements (LTL formula) in terms
of signalling. Like the others, we also check for no collisions and no derailments.

Eriksson [7] has also formally verified relay based interlocking systems by
deriving a model from the relay circuits, but he used theorem proving and not
model checking for the verification.

Paper Overview. First, in Section 2, an informal introduction to train route
based interlocking is given. Then, in section 3, the state space of the formal
models is stated, and in Section 4 the condition generator tool is described.
Section 5 reports on how the tool has been applied in the verification of the
interlocking system for Stenstrup station in Denmark, and finally, in Section 6
some conclusions are drawn.

2 Train Route Based Interlocking Systems

In this paper we consider a class of interlocking systems (DSB type 1954) used for
many Danish stations. These systems are based on a concept of train routes and

264 A.E. Haxthausen

implemented by relay based electrical circuits. In this section a short introduction
to these systems is given.

2.1 The Physical Domain of a Station

The physical domain under control consists of the railway tracks, points and
signals. The tracks are divided into sections, each having a track circuit for
detecting whether or not it is occupied by a train. The points can be switched
between two positions: plus (i.e. straight) and minus (i.e. branching), and the
signals can give proceed and stop indications by lights in coloured lamps.

TA12 T03 B12
A

02

04T T

T T

F

E B

T T01

H

G

01 02

Fig. 2. Track layout diagram for Stenstrup station

Fig. 2 shows a (simplified) track layout diagram for a typical station (Sten-
strup station in Denmark). The track layout diagram outlines the geographical
arrangement of the tracks and track-side equipment such as track circuits, points,
and signals. From the diagram it can be seen that Stenstrup has six track circuits
(named A12, 01, 02, 03, 04, and B12), two points (named 01 and 02), and six
signals (named A, B, E, F, G, and H).

2.2 Train Route Based Interlocking

The task of an interlocking system is to control points and signals such that
train collisions and derailments are avoided. The interlocking systems we are
considering use a train route based approach to achieve do that. The basic ideas
of this approach are:

– Trains should drive on predefined routes through the network.
– Each route is covered by an entry signal that indicates whether it is allowed

for a train to enter the route or not. Trains are assumed to respect the
signals.

– Two trains must never be allowed to drive on conflicting (e.g. overlapping)
routes at the same time. (To prevent collisions.)

– Before a train is allowed to enter a route, the points in the route must be
locked in positions making the route connected (i.e. it is physically possible
to go from one end of the route to the other end without derailing), and
the route must be empty (i.e. there are no trains on the route). (To prevent
derailments and collisions, respectively.)

– The points of a route must not be switched while a train is driving on the
route. (To prevent derailments.)

Automated Generation of Safety Requirements 265

2.3 Interlocking Tables

For each station an interlocking table specifies the train routes of the station and
for each of these routes (1) the conditions for when the train route can be locked
(reserved), (2) the conditions for when the entry signal of the route is set to
show a proceed aspect, (3) the conditions for when the entry signal of the route
is set back to show a stop aspect, and (4) the conditions for releasing the train
route again.

The interlocking table serves as a design specification of the interlocking sys-
tem. Hence, it is used by the engineers who design the electrical circuits of the
interlocking system, and it is used by the test team who tests that the implicit
requirements of the table hold for the implemented interlocking system.

The aim of the generator tool we describe in this paper is to derive explicit,
formal requirements from an interlocking table such that they can be formally
verified to hold for a formal model of the behaviour of the implemented interlock-
ing system. The formal model is generated from the circuit diagrams by other
generators (see [11]) of our tool set.

Fig. 3 shows a (simplified) interlocking table for Stenstrup station. The inter-
locking table has one row for each train route. For each route

– the Route sub-columns contain basic information about the train route such
as its identification number,

– the Signals sub-columns state (1) which signals (the entry signal and any
distant signal for this) should be set to a proceed aspect when the conditions
for entering the route are met, and (2) which signals must be set to a stop

Route Signals Track isolations Points Stop Route release
Id From To A B E F G H A12 01 02 04 03 B12 01 02 Init Final

2 A G gr re re ↑ ↑ ↑ ↑ ↑ + + A:A12 ↓01,↑02 ↓02,↑01
3 A H gr re re ↑ ↑ ↑ ↑ ↑ - - A:A12 ↓01,↑04 ↓04,↑01
5 B E gr re re ↑ ↑ ↑ ↑ ↑ + + B:B12 ↓03,↑02 ↓02,↑03
6 B F gr re re ↑ ↑ ↑ ↑ ↑ - - B:B12 ↓03,↑04 ↓04,↑03
7 E A gr re ↑ ↑ + E:01 ↓01,↑A12 ↓A12,↑01
8 F A re gr ↑ ↑ - F:01 ↓01,↑A12 ↓A12,↑01
9 G B gr re ↑ ↑ + G:03 ↓03,↑B12 ↓B12,↑03
10 H B re gr ↑ ↑ - H:03 ↓03,↑B12 ↓B12,↑03

Route Conflicts

2
3 © 3

5 © © 5
6 © © © 6

7 © © © 7
8 © © © © 8

9 © © © 9
10 © © © © 10

Fig. 3. Interlocking table (divided in two parts) for Stenstrup station

266 A.E. Haxthausen

aspect (to provide flank protection) before the entry signal can be set to
proceed (gr means green light (indicating proceed) and re means red light
(indicating stop)),

– the Points sub-columns state required positions of points (+ means straight
position and - means branching position) for the route to be connected (and
possibly also flank protected),

– the Track isolations columns state with an ↑ which track sections must be
unoccupied for the route and its safety distance to be empty,

– the Stop column specifies that a certain signal (the entry signal of the route)
should be switched to a stop aspect when a certain track section (the first
section of the route) becomes occupied,

– the Route release columns define conditions for when the train route can
be released (to be explained in section 4), and

– the Route conflicts marks with the symbol ◦ which routes are conflicting.

One of our data validator tools can be used to check that such an interlocking
table contains suitable data, e.g. that overlapping routes are marked as being
conflicting.

3 State Space

3.1 States of Relays

The relays in the circuits implementing an interlocking system change state over
time as reaction to input from the environment. The possible states of a relay
are: drawn or dropped.

In the relay circuits there are relays monitoring the states of the track side
equipment:

– For each point P , there are two relays plusP and minusP that are true
when and only when P is in the plus and the minus position, respectively.

– For each track section t, there is a relay t that is drawn when and only when
the track section is unoccupied.

– For each signal signal S, there are two relays RedS and GreenS that are
drawn when and only when there is a red light and a green light in S,
respectively.

There are also relays storing the internal state of the interlocking system. For
instance, there are relays keeping track of which routes are locked. For some in-
terlocking systems, there is one locking relay for each route, however, for systems
of DSB type 1954, some routes share a relay. We will use the notation l(x) to
denote the locking relay associated with a route x. A locking relay l is dropped,
when and only when one of the train routes x associated with l is locked. Which
of the routes is locked is determined by the point settings: Route x is locked,
when l(x) is dropped and the points settings are as required for route x according
to the interlocking table.2

2 Note: two routes can only share a locking relay when at least one point is required
to be set in different positions for the two routes.

Automated Generation of Safety Requirements 267

As an example, for Stenstrup station there are four locking relays, ia (for
routes 2 and 3), ib (for routes 5 and 6), ua (for routes 7 and 8), and ub (for
routes 9 and 10).

3.2 State Variables

The safety requirements that will be formalised in this paper can be expressed
in terms of the states of the relays mentioned above.

As a relay can be in one of two states, drawn or dropped, we introduce

– a Boolean variable r for each relay r in the circuit diagrams

When a relay variable r is true/false, it models that the associated relay is
drawn/dropped.

Furthermore, we introduce a Boolean variable idle. When it is true, it models
that the interlocking system is in an idle state waiting for new input.

The formal model generated from the circuit diagrams and track layout dia-
gram describes the possible state changes of all the introduced variables.

4 Safety Requirements

This section describes which formal requirements the generator tool derives from
an interlocking table (that has been checked by the data validator tool). The
formal requirements are formulae in LTL, expressed as conditions on the relay
variables keeping the state of points, track sections, signals, and route lockings.
They express safety conditions at the design level (i.e. concrete instances of the
general signalling principles) that an interlocking system must satisfy.

In each subsection below, first a general signalling principle is stated infor-
mally, then it is explained how formal, concrete instances of this can be generated
by instantiating a formal condition pattern with data from a given interlocking
table, and finally an example of this is given for the interlocking table for Sten-
strup in Fig. 3.

In the formal condition patterns the following notation will be used for a route
x:

– RouteLockedx = ¬l(x)∧PointsSetx
– PointsSetx: a condition expressing that the points of x are set as required

according to the “Points” fields for x in the interlocking table.
– TracksFreex: a condition expressing that the track sections of x are un-

occupied as required according to the “Track isolations” fields for x in the
interlocking table.

– SignalsSetx: a condition expressing that the covering signals of x are set
to a stop aspect as required according to the “Signals” fields for x in the
interlocking table.

268 A.E. Haxthausen

4.1 Locking of Conflicting Routes

Principle: When a train route x is locked, none of its conflicting routes y must
be locked.

For each route x, this is expressed by a condition of the following form:

G(RouteLockedx ⇒
∧

y∈ConflictingRoutes(x)

¬RouteLockedy) (1)

where ConflictingRoutes(x) is the set of routes that are in conflict with x
according to the interlocking table.

Example. Applying this principle to train route 2 for Stenstrup, the generated
condition will be in the following form as the route is in conflict with train routes
3, 5, 6, 7, 8 and 10 according to the interlocking table for Stenstrup:

G(RouteLocked 2 ⇒
¬ RouteLocked3 ∧
¬ RouteLocked5 ∧
¬ RouteLocked6 ∧
¬ RouteLocked7 ∧
¬ RouteLocked8 ∧
¬ RouteLocked10)

Expanding each of the expressions RouteLockedy using the data in the inter-
locking table, this gives

G(¬ ia ∧ plus01 ∧ plus02 ⇒
¬ (¬ ia ∧ minus01 ∧ minus02) ∧
¬ (¬ ib ∧ plus01 ∧ plus02) ∧
¬ (¬ ib ∧ minus01 ∧ minus02) ∧
¬ (¬ ua ∧ plus01) ∧
¬ (¬ ua ∧ minus01) ∧
¬ (¬ ub ∧ minus02)

)

which can be reduced to3:

G(¬ ia ∧ plus01 ∧ plus02 ⇒ ib ∧ ua)

4.2 Locking and Points Positions

Principle: When a locking relay l is dropped, one of the routes x, which is
controlled by l, must have the points of that route set as required for route x
according to the interlocking table. (This implies that a route can’t be locked
before its points are set.)

3 We can make this reduction as we are also verifying G(¬ (plusP ∧ minusP)) for
each point P .

Automated Generation of Safety Requirements 269

For each locking relay l, this is expressed by a condition of the following form:

G(¬l ⇒
∨

x∈Routes(l)

PointsSetx) (2)

where Routes(l) is the set of routes x controlled by l, i.e. for which l(x) = l.

Example. Applying this principle to locking relay ia for Stenstrup, the following
condition is generated as routes 2 and 3 are the routes controlled by ia:

G(¬ ia ⇒ (plus01 ∧ plus02) ∨ (minus01 ∧ minus02))

The condition expresses that when ia is dropped, points 01 and 02 are either
both set in the plus position or both set in the minus position as required by
the interlocking table for routes 2 and 3, respectively.

4.3 Signal Aspects

Only certain combinations of lights are allowed aspects of the signals.

Principle: A signal must never display a red light and green light at the same
time.

For each signal S, this is expressed by a condition of the following form:

G(idle ⇒ ¬(RedS ∧GreenS)) (3)

Example. Applying this principle to signal A for Stenstrup, the following con-
dition is generated:

G(idle ⇒ ¬ (RedA ∧ GreenA))

Principle: When the green light is turned off in a signal S, the red light must
be turned on.

For each signal S, this is expressed by a condition of the following form:

G(idle ∧ ¬ GreenS ⇒ RedS) (4)

Example. Applying this principle to signal A for Stenstrup, the following con-
dition is generated:

G(idle ∧ ¬ GreenA ⇒ RedA)

270 A.E. Haxthausen

4.4 Proceed Signal

Principle: When a signal S shows a proceed aspect, one of the routes x, starting
from S, must be ready for use, i.e. (1) the route x must be locked, (2) all the
track sections of the route must be unoccupied as stated in the interlocking table,
and (3) all covering signals of the route must show a stop aspect as stated in the
interlocking table.

For each signal S, this is expressed by a condition of the following form:

G(idle∧GreenS ⇒
∨

x∈Routes(S)

RouteLockedx ∧ TracksFreex ∧SignalsSetx) (5)

where Routes(S) is the set of routes starting from signal S.
From the condition, it can be derived that the green light must be turned off

when the right-hand side becomes false. As it takes time for the system to turn
the green light off, idle has been included on the left-hand side of the implication.

Example. Applying this principle to signal A, a condition of the following form
is generated as train routes 2 and 3 start from signal A:

G(idle ∧ GreenA ⇒
(RouteLocked2 ∧ TracksFree2 ∧ SignalsSet2) ∨
(RouteLocked3 ∧ TracksFree3 ∧ SignalsSet3))

Expanding each of the sub-formulae using the data in the train route table, this
gives:

G(idle ∧ GreenA ⇒
((¬ia ∧ plus01 ∧ plus02) ∧
(A12 ∧ 01 ∧ 02 ∧ 03 ∧ B12) ∧
(RedF ∧ RedG)

)
∨
((¬ia ∧ minus01 ∧ minus02) ∧
(A12 ∧ 01 ∧ 04 ∧ 03 ∧ B12) ∧
(RedE ∧ RedH)

)
)

4.5 Stop Signal

Principle: When the track section, StopIsolationx, specified in the ”Stop” field
for route x in the interlocking table, is occupied in an idle state, the signal Sx

in the same field must show a stop aspect.

Automated Generation of Safety Requirements 271

For each route x, this is expressed by a condition of the following form:

G(idle ∧ ¬ StopIsolationx ⇒ RedSx) (6)

In the condition it is necessary to include idle on the left-hand side of the impli-
cation in order to give the system time to change the setting of the signal as a
reaction on the occupation of StopIsolationx.

Example. Applying this principle to route 2 for Stenstrup, the following con-
dition is generated:

G(idle ∧ ¬ A12 ⇒ RedA)

It expresses that when track section A12 (the first section of the route) is occu-
pied by a train (or another object), then the entry signal, A, must show a stop
aspect.

Principle: When the setting of the entry signal S of a locked route x is changed
from proceed (green) to stop (red), it must keep this setting at least until the train
route has been released.

For each signal S and route x ∈ Routes(S), this is expressed by a condition of
the following form:

G(idle ∧ ¬ Lx ∧ GreenS ∧ X(RedS) ⇒ X(U(RedS, Lx))) (7)

where Lx = l(x) is the locking relay of x.
The generation of the latter kind of conditions has not yet been implemented

in the generator tool, but we have verified that the conditions are trivially true
for Stenstrup station.

4.6 Train Route Release

Before a locked train route can be released, the two last sections t1 and t2 of
the route must first have been in a state (called the release start state) where
t1 is occupied and t2 is unoccupied, and then in a state (called the release end
state) where t1 is unoccupied and t2 is occupied. This sequence of states is called
the release sequence. This sequence will happen when a train passes the second
last track section and ends on the last track section of the route. The “Route
release” columns of the interlocking table states the release start and end states
for each train route.

Principle: When a train route has been locked, the route must not be released
before the release sequence for the route has taken place.

For each route x, this is expressed by a condition of the following form:

272 A.E. Haxthausen

G(Lx ∧ X(RouteLockedx ∧ F(Lx)) ⇒
X(
U(¬Lx,
¬Lx ∧ Initx ∧

X(U(¬Lx, ¬Lx ∧ Endx))
)

)
)

where Lx = l(x) is the locking relay of x, Initx is a condition expressing the
release start state for x, Endx is a condition expressing the release end state for
x, U is the LTL until operator and X is the next state operator.

Example. Applying this principle to train route 2 for Stenstrup Station, the
following condition is generated:

G(ia ∧ X((¬ia ∧ plus01 ∧ plus02) ∧ F(ia)) ⇒
X(
U(¬ia,
¬ia ∧ (¬01 ∧ 02) ∧ X(U(¬ia, ¬ia ∧ (01 ∧ ¬02)))

)
)

The left hand side of the implication says that route 2 is not locked (i.e. ia is true)
in the current state, it becomes locked (i.e. ¬ ia ∧ plus01 ∧ plus02) in the next
state and later on it becomes released (unlocked) again. The right-hand side says
that in the next state the route will stay locked at least until the release start
state (where track section 01 is occupied and track section 02 is unoccupied) and
in the state after this release start state, the route will continue being locked
until the release end state where track section 01 is again unoccupied and track
section 02 has been occupied.

5 Experiments

We applied the developed condition generator to the interlocking table (shown
in Fig. 3) for Stenstrup station in Denmark. In this way 46 conditions were
generated. We also applied other condition generators from our tool set to gen-
erate 152 other desired properties from the station documentation. Furthermore,
we applied yet other generator tools from our tool set to generate a transition
system model for the behaviour of the implemented relay interlocking system
(described by 18 circuit diagrams) and its environment (allowing operator input
and an arbitrary number of trains driving according to the traffic rules). This
model had 71 Boolean variables and 141 transition rules. We then used the SAL
model checker [1] to verify that the generated model satisfied the 198 generated
conditions. All conditions turned out to be valid.

Automated Generation of Safety Requirements 273

The total execution time for model checking the 46 interlocking table con-
ditions and the 152 other conditions were 132 seconds and 1485 seconds, re-
spectively, when measured with the LinuxMint12 time command on a Lenovo
T410.

According to the signalling engineers it would last about a month to validate
the circuit diagrams for Stenstrup station by their traditional manual inspection,
and they would only check a small part of our 198 conditions. So it is really much
faster to use our tools.

We also tried to introduce some design flaws in the relay circuits to demon-
strate that these can be found by using our tools. E.g. we introduced flaws such
that a signal could reach a state where both the red light and the green light
were turned on at the same time. In this case the model checker detected that
the signal aspect condition in formula (3) was broken for that signal.

6 Conclusions

Summary. This paper has described a tool component of a tool set that supports
formal verification of relay interlocking systems.

Given the interlocking table of a relay interlocking system, the tool can au-
tomatically generate formal safety requirements for the implementation of the
relay interlocking system. The requirements express that the signalling rules are
followed. Other tool components of the tool set can be used to generate a formal
model of an implemented interlocking system and its environment. Having gen-
erated the requirements and the model, a model checker can be used to verify
that these requirements always hold for the formal model.

To use such an automated, formal verification approach is a great improve-
ment compared to manual inspections of interlocking tables, track layout dia-
grams and circuit diagrams: It is much faster and less error prone, it is much
more complete wrt. what is being checked, and the checking it-self is exhaustive
considering all possible scenarios. The approach has successfully been applied to
the relay interlocking system for Stenstrup station.

Although the condition generator tool has been developed for a certain type of
interlocking systems (the relay based DSB type 1954), it is expected that it can
easily be adapted to other DSB types of interlocking systems that are based on
similar interlocking tables as the safety conditions for these systems are basically
the same.

Future Work. The current tool set has been used for a proof-of-concept. To
be used in industry, further development needs to be done, e.g. a better user
interface should be provided.

We plan to apply the tools to larger stations to test to which extent the method
is scalable without state space explosion problems. In case of state space explo-
sion, techniques such as compositional reasoning and induction to avoid that
should be investigated. One idea could be to combine bounded model checking
with inductive reasoning, as done in [12].

274 A.E. Haxthausen

We also plan to make a similar tool set for the new ERTMS based signalling
systems that are going to be implemented in Denmark over the next decade.

Acknowledgements. I would like to thank Kirsten Mark Hansen for providing
the initial idea for this project and for many valuable discussions when she was
employed at Railnet Denmark. Special thanks go to my former students Morten
Aanæs and Hoang Phuong Thai who developed the first version of the generator
tool described in this paper in their master thesis project supervised by me.
The functionality of the tool was inspired by another master thesis made by my
former students Marie Le Bliguet and Andreas A. Kjær. Finally, I would like to
thank the reviewers for valuable comments to a previous version of this paper.

References

1. Symbolic Analysis Laboratory, SAL, home page (2001), http://sal.csl.sri.com
2. Aanæs, M., Thai, H.P.: Modelling and Verification of Relay Interlocking Systems.

Technical Report IMM-MSC-2012-14, DTU Informatics, Technical University of
Denmark, Master thesis supervised by Anne Haxthausen, ah@imm.dtu.dk (2012)

3. Bjørner, D.: New Results and Current Trends in Formal Techniques for the Devel-
opment of Software for Transportation Systems. In: Proceedings of the Symposium
on Formal Methods for Railway Operation and Control Systems (FORMS 2003),
Budapest, Hungary, May 15-16, L’Harmattan Hongrie (2003)

4. Bliguet, M.L., Kjær, A.A.: Modelling Interlocking Systems for Railway Stations.
Technical Report IMM-M.Sc.-2008-68, DTU Informatics, Technical University of
Denmark, Master thesis supervised by Anne Haxthausen, ah@imm.dtu.dk (2008)

5. Cao, Y., Xu, T., Tang, T., Wang, H., Zhao, L.: Automatic Generation and Veri-
fication of Interlocking Tables Based on Domain Specific Language for Computer
Based Interlocking Systems (DSL-CBI). In: Proceedings of the IEEE International
Conference on Computer Science and Automation Engineering (CSAE 2011), pp.
511–515. IEEE (2011)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
7. Eriksson, L.-H.: Using Formal Methods in a Retrospective Safety Case. In: Heisel,

M., Liggesmeyer, P., Wittmann, S. (eds.) SAFECOMP 2004. LNCS, vol. 3219, pp.
31–44. Springer, Heidelberg (2004)

8. Fantechi, A.: The Role of Formal Methods in Software Development for Railway
Applications. In: Railway Safety, Reliability and Security: Technologies and System
Engineering, pp. 282–297. IGI Global (2012)

9. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model Checking Interlock-
ing Control Tables. In: Schnieder, E., Tarnai, G. (eds.) Proceedings of For-
mal Methods for Automation and Safety in Railway and Automotive Systems
(FORMS/FORMAT 2010)), Braunschweig, Germany. Springer (2011)

10. Haxthausen, A.E.: Towards a Framework for Modelling and Verification of Relay
Interlocking Systems. In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop
2010. LNCS, vol. 6662, pp. 176–192. Springer, Heidelberg (2011)

11. Haxthausen, A.E., Kjær, A.A., Le Bliguet, M.: Formal Development of a Tool for
Automated Modelling and Verification of Relay Interlocking Systems. In: Butler,
M., Schulte,W. (eds.) FM 2011. LNCS, vol. 6664, pp. 118–132. Springer, Heidelberg
(2011)

http://sal.csl.sri.com

Automated Generation of Safety Requirements 275

12. Haxthausen, A.E., Peleska, J., Kinder, S.: A Formal Approach for the Construction
and Verification of Railway Control Systems. Formal Aspects of Computing 23(2),
191–219 (2011), The article is also available electronically on SpringerLink,
http://www.springerlink.com/openurl.asp?genre=article

&id=doi:10.1007/s00165-009-0143-6

13. Mirabadi, A., Yazdi, M.B.: Automatic Generation and Verification of Railway In-
terlocking Control Tables using FSM and NuSMV. Transportation Problems, 103–
110 (2009)

14. Schnieder, E., Tarnai, G. (eds.): Proceedings of Formal Methods for Automation
and Safety in Railway and Automotive Systems (FORMS/FORMAT 2010), Braun-
schweig, Germany. Springer (2011)

15. The RAISE Language Group. The RAISE Specification Language. The BCS Prac-
titioners Series. Prentice Hall Int. (1992)

16. The RAISE Method Group. The RAISE Development Method. The BCS Practi-
tioners Series. Prentice Hall Int. (1995)

17. Winter, K.: Symbolic Model Checking for Interlocking Systems. In: Railway Safety,
Reliability and Security: Technologies and System Engineering, pp. 298–315. IGI
Global (2012)

18. Winter, K., Johnston, W., Robinson, P., Strooper, P., van den Berg, L.: Tool Sup-
port for Checking Railway Interlocking Designs. In: Proceedings of the 10th Aus-
tralian Workshop on Safety Critical Systems and Software, SCS 2005, Darlinghurst,
Australia, Australia, vol. 55, pp. 101–107. Australian Computer Society, Inc. (2006)

http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00165-009-0143-6
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00165-009-0143-6

Distributing the Challenge of Model Checking

Interlocking Control Tables

Alessandro Fantechi

DSI - University of Florence

Abstract. Railway interlocking systems represent a challenge for model
checkers: although encoding interlocking rules as finite state machines
can be quite straightforward, and safety properties to be proved are
easily expressible, the inherent complexity related to the high number of
variables involved makes the verification of such systems typically incur
state space explosion problems.

Domain-specific techniques have been adopted to advance the size
of interlocking systems that can be successfully proved, but still not
reaching the size needed for large deployment cases.

Wepropose anovel approach inwhichwe exploit a distributedmodelling
of an interlocking system and a careful selection of verification scenarios,
so that parallel verifications conducted on multiple processors can address
systems of a large size. Some experiments in this direction are presented
and new directions of research according to this proposal are discussed.

1 Introduction

In the railway signaling domain, an interlocking is the safety-critical system
that controls the movement of trains in a station and between adjacent stations.
The interlocking monitors the status of the objects in the railway yard (e.g.,
points, switches, track circuits) and allows or denies the routing of trains in
accordance with the railway safety and operational regulations that are generic
for the region or country where the interlocking is located. The instantiation
of these rules on a station topology is stored in the part of the system named
control table, that is specific for the station where the system resides [22] [21].
Control tables of modern computerized interlockings are implemented by means
of iteratively executed software controls over the status of the yard objects.

Verification of correctness of control tables has always been a central issue
for formal methods practitioners, and the literature counts the application of
several techniques to the problem, namely the Vienna Development Method
(VDM) [10], property proving [5, 9], Colored Petri Nets (CPN) [1] and model
checking [24] [17, 19]. This last technique in particular has raised the interest of
many railway signaling industries, being the most lightweight from the process
point of view, and being rather promising in terms of efficiency. Nevertheless,
application of model checking for the verification of safety properties has been
successfully conducted only on small case studies, often requiring the application
of domain-related heuristics based on topology decomposition. The literature is

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 276–289, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Distributing the Challenge of Model Checking Interlocking Control Tables 277

however quite scarce on data concerning the size of interlocking systems that
have been successfully proved with model checking techniques. This because of
confidentiality reasons, and because the reported experiences refer to specific
case studies, with a limited possibility of scaling the obtaining results to larger
systems. In a previous work [8], we investigated more systematically the actual
applicability bounds for widely used model checkers on this class of systems, by
studying the typical characteristics of control tables and their size parameters,
by comparing the performances of two popular general purpose model checkers,
the symbolic model checker NuSMV [6] and the explicit model checker SPIN
[13]. A test set of generic control table models of increasing complexity has been
defined and translated into the input language of the two tools, and generic safety
properties have been proved on them by the two model checkers. The results have
confirmed that the bound on the size of the controlled yard that can be safely
addressed by the two tools is still rather small, making general purpose model
checking tools not usable for medium and large scale interlockings.

These results are in accordance with those obtained by several concurrent
studies. Indeed, [25, 23, 24] show that specifically optimized verification tech-
niques allow the range of verifiable systems to be expanded. SAT-based verifi-
cation techniques appear to be more promising in this direction, but still large
scale interlocking systems pose a big challenge.

In this paper we address the problem from a different perspective: elaborating
on the geographic approach to model interlocking systems (orthogonal w.r.t. con-
trol table-based approaches, but anyway adopted by industry in several cases),
we exploit a distributed modelling approach. Some verification scenarios are
then defined on such models, which require a limited verification effort, while at
the same time are representative enough of real verification efforts. Preliminary
results obtained with an on-the-fly model checker are discussed and hints for
a general strategy, employing parallel verification runs, to verify medium/large
scale interlocking systems are given.

2 Interlocking Systems Representation

In Relay Interlocking Systems (RIS), still operating in several sites, the logical
rules of the control tables were implemented by means of physical relay connec-
tions. With Computer Interlocking Systems (CIS), in application since 30 years,
the control table becomes a set of software equations that are executed by the
interlocking. Since the signaling regulations of the various countries were already
defined in graphical form for the RIS, and also in order to facilitate the repre-
sentation of control tables by signaling engineers, the design of CISs has usually
adopted traditional graphical representations such as ladder logic diagrams [9]
[15] and relay diagrams [12]. These graphical schemata, usually called principle
schemata, are instantiated on a station topology to build the control table, that
is then translated into a program for the interlocking. In Table 1 a few lines of
the control table related to the reported layout are shown; such lines describe the
relations between the indicated route and the different entities (track circuits,
points, signals) of the layout.

278 A. Fantechi

Table 1. An example Control Table

Route S IN S OUT Aspect S Ahead Tracks P N P R

1 S2 S1 Y/G R/Y TC4
TC5
TC6

P1 P2 -

2 S2 S3 Y/G R/Y TC6
TC2
TC1

P2 P1

3 S2 S3 Y/G R/Y TC3
TC2
TC1

P1 P2

As pointed out in [9], the graphical representations and the related control
tables can be reduced to a set of boolean equations of the form xi := xj ∧ . . . ∧
xj+k, where xj . . . xj+k are boolean variables in the form x or ¬x. The variables
represent the possible states of the signalling elements monitored by the control
table [20]: they might be system input, output or temporary variables. The
equations are conditional checks over the current and expected status of the
controlled elements.

Correctness of control tables depends also on their model of execution by the
interlocking software. In building CISs, the manufacturers adopt the principle
of as safe as the relay based equipment [1], and often the implemented model
of execution is very close to the hardware behaviour. The model of execution,
inherited by the typical execution of a ladder diagram, is a state machine where
equations are executed one after the other in a cyclic manner and all the variables
are set at the beginning of each cycle and do not change their actual value until
the next cycle.

In this way, the equations can be seen as interpreted by a reasoner engine.
The reasoner engine is the same for every plant; the control table is coded as
data, actually boolean equations, for the reasoner. Behind this choice is the
minimization of certification efforts: the reasoner is certified once for all, the
data are considered “easier” to certify if they can be related in some way
to the standard principle schemata adopted by railway engineers in the era
of relay-based interlockings. For this reason, this approach is also referred as

Distributing the Challenge of Model Checking Interlocking Control Tables 279

“data-driven”. We want to stress anyway that looking at equations as data may
induce the false consideration that certification of such data is easy. However,
such data is actually a program interpreted by the reasoner, hence certification
of this kind of data is no different from certification of a program. If we adopt
formal verification, it is actually the complexity of the control table that gives
the complexity of the problem.

In order to give a metric to the dimension of the problem in terms of param-
eters of the control tables, [8] defines the size of a control table as the couple
(m,n), where m is the maximum number of inter-dependent equations involved,
that means equations that, taken in pairs, have at least one variable in common,
and n is the number of inputs of the control table. Another used metric is just
the size of the layout, given as the number of physical entities that constitute
the layout (points, track circuits, signals,..) and the number of routes that are
established on the layout.

It is not easy to relate the two metrics, since the style of definition of the con-
trol tables, the characteristics of the physical entities and the regional/national
signalling rules can make the number of equations considerably vary for similar
layouts.

A very rough classification can be given between small layouts (in the order of
a few tens of entities and ten routes, which correspond to a few tens of equations
with tens of inputs), medium layouts (in the order of one hundred entities and a
few tens of routes, which correspond to hundreds of equations with one hundred
of inputs) and large layouts (several hundreds of entities, tens of routes, which
correspond to thousands of equations with a thousand inputs). Systems of the
latter size are often addressed, even in the system design phase, by slicing them
into (still quite large) subsystems related to different zones of the layout. Indeed,
slicing algorithms specifically aimed at optimization of formal verification have
been described in [23]. Clearly, slicing can be applied only if the actual topology
of the tracks layout and the interlocking functionality do separate concerns about
different zones of the layout, with little interactions among them.

3 Safety Requirements

Safety requirements of signaling principles are typically expressed in the principle
schemata or in the regulations. This kind of properties have shown to be repre-
sentable in Computation Tree Logic (CTL) in the CTL-AGAX form: AG(p →
AXq), where p and q are predicates on the variables of our model [11]. Intuitively,
they represent fail-safe conditions, i.e., events that should happen on the next
state if some unsafe condition occurs [7]. One of the typical safety properties that
is normally required to be verified is the no-derailment property: while a train is
crossing a point the point shall not change its position. This typical system level
requirement can be easily represented in the AGAX form [24]:

AG(occupied(tci) ∧ setting(pi) = val → AX(setting(pi) = val))

“whenever the track circuit tci associated to a point pi is occupied, and the point
has the proper setting val, this setting shall remain the same on the next state”.

280 A. Fantechi

Another typical safety property for interlockings is no-collision: two routes
that conflict on a track circuit cannot both be reserved at the same time (possibly
allowing two trains to collide), expressed in the classic AG form:

AG ∼ (reserved(routei) ∧ reserved(routej))

To check that safety properties are verified represents the worst case for a model
checker: explicit and symbolic model checkers are challenged by verification of
safety properties [23], since, in order to show their correctness, they have to
explore the entire state space, or its symbolic representation.

We can note that certification of the correctness of a control table is the aim of
this effort, and not bug-hunting, that is, finding counterexamples. Indeed control
tables built by a competent signalling engineer rarely contain bugs, but it is the
absolute certainty that bugs are not there which is sought for certification.

4 Limits of Model Checking

In a previous work [8], we investigated more systematically the actual applicabil-
ity bounds for widely used model checkers on this class of systems, studying the
typical characteristics of control tables and their size parameters, and comparing
the performances of two popular general purpose model checkers, the symbolic
model checker NuSMV [6] and the explicit model checker SPIN [13]. A test set
of generic control table models of increasing complexity has been defined and
translated into the input language of the two tools, and generic safety proper-
ties, such as the no-collision and no-derailment properties shown in Sect. 3, have
been proved on them by the two model checkers.

The experiments have shown that NuSMV with the BDD-based verification
algorithms succeeds in verifying systems defined at most by 70 equations with
15 inputs. SPIN behaves slightly better, reaching 80 equations and 20 inputs
without using any memory oriented optimization. The usage of such optimization
increases the limit of applicability to about 100 equations and 60 inputs.

In conclusion, traditional model checking tools hardly scale to verify medium
size interlocking systems.

The better results reported in [22–25] are achieved within NuSMV by cus-
tomising the ordering of state variables occurring in the BDD. The BDD variable
ordering strategies adopted exploit locality exhibited by correlations of variables
according to a pattern that follows the topology of the track layout informa-
tion. The improvements obtained with such variable ordering strategies allow
an interlocking with 41 routes, 9 points, 19 signals, and 31 track circuits to be
verified, a size that was not tractable with standard variable orderings.

Another direction of improvement can be the use of different verification al-
gorithms, such as the SAT-based ones: unpublished results of experiments con-
ducted along the lines of [8] show that the NuSMV SAT-based solver behaves
much better than that of the BDD-based one, so that a size of 200 equations
with 20 inputs can be addressed. The SAT-based solver is used in a Bounded
Model Checking scheme which cannot prove safety properties unless the bound

Distributing the Challenge of Model Checking Interlocking Control Tables 281

is deep enough to cover all the cycles of the model. The depth for the conducted
experiments has been limited to 60, on the basis of memory capacity problems
for the most complex equation systems.

A few experiments conducted within General Electric Transportation Systems
on Stateflow models of real medium scale interlocking systems with Mathworks’
Design Verifier (based on a SAT engine by Prover Technology) show this tool is
able to deal with such models, although apparently at the limits of its capacity.
Actual figures are not available.

Indeed Prover Technology has launched a commercial solution (Ilock) for the
production of interlocking software, that includes formal proofs, by means of a
SAT solving engine, of safety conditions. Bounds on the addressable size of the
controlled yard and strategies used to address large state spaces are not known.
[18] reports the use of such solution on a quite complex system, part of the
Paris Metro. Several difficulties in addressing such a complex case are reported,
although size and evaluation time figures are not disclosed.

Anyway, there is still much space for improvements of SAT-based verification
of interlockings: for example, an optimized problem-tailored boolean encoding
of the equations and of the execution model should be investigated.

5 An Alternative Approach

We have seen that CISs are traditionally seen as centralized systems, that man-
age a whole station, or a part of it in case of large ones: the interlocking logic,
based on control tables, is configuration dependent, but is seen as a monolithic
set of equations interpreted by a reasoner engine.

5.1 Geographic Approach

A completely opposed approach is the geographic approach: the interlocking logic
is made up by composition of small elements that take care each of the control
of a physical element (point, track circuit, signal) and are connected by means of
predefined composition rules, mimicking the topology of the specific layout. The
global interlocking logic therefore comes out as the result of the composition of
the elementary bricks. A known example of this approach is the EURIS language
[4] developed in the Netherlands, and later adopted by Siemens, for the GRACE
toolset of Siemens [14]. EURIS (European Railway Interlocking Specification)
assumes an object-oriented architecture, which consists of a collection of generic
building blocks, representing the elements in the infrastructure such as signals
and points. The building blocks, which together make up the interlocking logic,
communicate with each other by means of messages called telegrams. The build-
ing blocks can also exchange telegrams with two separate entities that model
the logistic layer and the infrastructure.

Also the definition of generic principles as generic statecharts made by RFF
(SNCF) in 2003 goes in this direction, modeling their (relay-based) principle
schemata using Statemate, by means of 90 generic statecharts to model inter-
locking elements [16].

282 A. Fantechi

Another more recent example is the formalization of interlocking rules carried
out in the INESS project, where UML State Diagrams have been chosen as the
modeling language [26].

Indeed, the geographic approach inherits typical modelling criteria from com-
puter science, and can be considered as a model-based approach, while control
tables inherit the criteria of relay-based functional definition. It is however true
that the geographic approach looses the separation between the reasoner en-
gine and the data, with its advantages w.r.t. certification. The relation between
control tables and the geographical modelling has been studied in [2], where
automated instantiation of geographical models from control tables has been
proposed, basing on the generic statecharts developed by RFF-SNCF.

5.2 Distributed Approach

The elements of the geographic approach can be configured as a set of dis-
tributed, communicating, processes, in which each distributed process controls
a given layout element. The route is instead a global notion: a route has to be
established by proper cooperation of the distributed elements; the communica-
tion among processes follows the physical layout of the station/yard and a route
is established by the status of the elements that lie along the route.

Some experiments have been conducted at DSI on the modelling of the logic
of a (simplified) distributed interlocking, using different formalisms such as
SCADE, Stateflow and UML State Diagrams, with a route establishment proto-
col based on the classical two-phase commit (2PC) protocol: the protocol guaran-
tees that the route is established only if all the elements on the route are reserved
and locked. The experiments were mainly aimed at evaluating the possibility of
formal verification via model checking of basic interlocking safety properties (e.g.
no-derailment property).

The model of the layout is composed of a set of track circuits and points (we
have avoided signals and other kinds of entities to maintain the model simple),
that we call nodes.

Each node is modeled by an object instantiated from a class whose behaviour
is represented by a statechart. Each node has among its attributes the set of
routes to which it belongs. Each node has two (in case of a track circuit) or
three (in case of a point) adjacent nodes. However, for each route it belongs to,
the node has only one successor and one predecessor adjacent nodes. If it is a
point, for each route it belongs to, the node knows whether it belongs to the
route in normal or reverse status.

A route starts in a track-circuit (start node) and terminates in another track
circuit (end node) and is made of adjacent nodes.

The working of the algorithm is basically the following:

– A train is assumed to request a route at its start node. The request is prop-
agated through adjacency by the nodes of the route, in a linear fashion.

– When the request reaches the end node, and if all the nodes are free, the
acknowledge message flows back to the start node. At the end of this phase,

Distributing the Challenge of Model Checking Interlocking Control Tables 283

all the nodes are reserved for the requesting train, and the points have been
commanded to the proper position.

– A second round then is started by the start node to commit the reserva-
tion, and after the agree message has flowed back through all the nodes, a
consensus message is given to the train that can move safely through the
route.

– Either if a node is not free or if the movement of the point does not suc-
ceed (this is modelled by simple nondeterminism) the algorithm aborts the
request, again by means of an abort message flowing back through the nodes
of the route, and the train receives a no go message.

This basic algorithm is then enriched by the possibility to receive a route can-
cellation message from the train, and by the route liberation actions that make
nodes behind the passing train free again.

Figure 1 shows the state diagram model of a track circuit by means of a UML
statechart; we can see that a free track circuit, at the reception of a route request,
engages in the 2PC protocol in order to become reserved, passing through the
sequence of states waiting ack, waiting commit, waiting agree. A disagree message
or an abort message may prevent the track circuit to reach the reserved state.
Trigger messages are coming from adjacent nodes (previous or next in the route,
according to the relevant phase of the protocol). When reserved, the track circuit
goes back to the free state after the requesting train has passed. Knowledge on
adjacent nodes on each route is stored in arrays prev and next.

The model of a point is not much different, apart from the fact that it may be
commanded in its normal or reverse states, and has three adjacent notes. The
model of the complete system is obtained, in compliance with the geographic
approach, by instantiating the proper number of points and track circuits, and
by setting their attributes (prev and next) to reflect the network layout, both in
terms of adjacency and in terms of established routes.

This modelling approach has allowed us to build several experimental inter-
locking models of varying size by replicated instantiations of track-circuit and
point classes.

5.3 UMC

The tool adopted to evaluate the approach has been UMC [3]. UMC is a frame-
work for formal verification of the dynamic behaviour of UML models: a UML
model is defined as a set of concurrently executing UML state machines. UML
state machines describe the dynamic aspects of a system component’s behaviour.
UMC accepts a system specification given in UML-like style as a collection of
active objects, modelled by state-machines, and whose behavior is described
through statecharts. On such systems UMC allows to verify properties specified
in the UCTL logic, a temporal logic which enriches the classical CTL temporal
logic with the possibility of expressing properties over actions, and with a rich set
of state propositions.The UMC framework adopts an “on-the-fly” approach to
generate a Labelled Transition System (LTS) from a UML specification, meaning

284 A. Fantechi

Fig. 1. UML statechart of a track circuit

that the LTS corresponding to the model is generated “on-demand”, following
either the interactive requests of a user while exploring the system, or the needs
of the logical verification engine. However, for proving safety properties as the
ones in the AGAX form, it is bound to generate the complete reachable state
space.

A complete UMC model description is given by providing a set of class defini-
tions and a set of object instantiations. Class definitions represent a template for
the set of active or nonactive objects of the system. In the case of active objects
a statechart diagram associated to the class is used to describe the dynamic
behaviour of the corresponding objects. A state machine (with its events queue)
is associated to each active object of the system.

The UMC model checker defines a textual language for describing a state
diagram of a UML class, which is one to one corresponding to the UML graphical
syntax. Hence, the UML state diagrams can be directly converted into UMC
state machines.

In UML, the behaviour of an object, instantiated from a class to which a stat-
echart is associated, is reactive, that is, can only be activated by triggers and
by changes to variables visible through the interfaces. The former are signals
exported by the class, and hence can be changed only from external objects,
the latter should also be performed by external objects. If we do not include
a model of such external objects, the “official” UML semantics of the model
shows a null behaviour, that is, the model does not move from its initial state.

Distributing the Challenge of Model Checking Interlocking Control Tables 285

The UMC model checker follows strictly this official UML semantics, therefore
simply composing the statecharts representing track circuits and points does not
allow them to have a not-null behaviour. Hence no interesting properties can be
checked over them. We need to add external objects that send the appropriate
triggers to the state machines described by the UML state diagrams. This re-
quires in practice to build an exhaustive simulation environment that exercises
the defined state charts with all the possible sequences of triggers and variable
changes.

In our case, such external objects actually need to mimic the behaviour of
trains, that are positioned at input points of routes and request routes. If a
route is reserved for a train, the train then moves along the tracks and points
that form the route, until the end node of the route is reached. In this respect,
the most general environment for our models is the one where a train is initially
placed at each input point of any route, and nondeterministically requests one
of the routes for which that node is an input point. Such a general environment,
due to the high degree of parallelism and nondeterminism involved, is expected
to exhibit an important state space explosion.

5.4 Experiments

If we include the model of just a single requesting train and we ask UMC to ver-
ify that it eventually reaches its end node, the counterexample/witness facility
of UMC confirms that such a typical success computation, related to the estab-
lishment of a route and the movement of the train along the route, traverses a
number of states which is linear in the length of the route. A source of nonde-
terministic choice along such a linear sequence of states is the possibility that
a command to a point is not completely actuated, so that a disagree message
flows back to the train.

If we run experiments with two trains, notwithstanding the quadratic state
space size required by the interleaving, and the explicit state space representation
of UMC (which in the case of AG properties is not taking advantage from the
on-the-fly construction), we are still able to prove safety properties on models
in the low end of the “medium” size. Table 2 reports a few results on different
models (one of them is the full model built along the criteria listed above, the
other ones are simplified in the sense that they do not consider cancellation of a
route requests).

Table 2. Some UMC verification results

nodes generated
nodes on routes diameter property states time (sec.)

Model A Simplified 30 18 354 no-collision 35293 0.00003
Model B Simplified 90 45 827 no-collision >19941626 > 3 days
Model C Full 9 7 394 no-collision 72052 15.693425

no-derailment 72052 20.177162

286 A. Fantechi

We can see that Model B hits the limits of the tool, that we found are currently
around 2 ∗ 107 states, not succeeding in proving no-collision. On this model, the
computation of a successful path has required the generation of ten million states
in a hour of execution time.

The length of a successful computation that lets the two conflicting trains to
establish a route by serializing their requests gives actually the diameter of the
state space, that is, the maximal depth of any cycle. This length is computed
as the length of the witness of a formula asking that both trains reached their
destination. It is this parameter that drives the state space growth, since non-
determinism of adverse events is spread along the length of this computation,
and interleaving the actions of the two trains contribute with quadratic growth.
Adopting partial order reduction techniques should make it possible to deal at
least with the latter. In particular, UMC has a prioritizing feature that can
be used to implement a limited form of partial order reduction. At the time
of writing, this feature has not yet been exploited. Obviously, using tools that
include partial order reduction and that are able to deal with larger state spaces
enlarges even further the tractability limits.

Hence, we can conclude that medium size interlockings are tractable if we
limit to two trains, especially if specific state space reduction measures, such as
partial order reduction, are adopted.

5.5 Parallel Verification

The preliminary results listed above indicate that even for medium size inter-
lockings, states spaces appear to be affordable, provided few trains are modeled,
due to the “locking” properties of the system. Limiting trains to two limits
concurrent behaviour.

Although we have not a formal proof, we can state that proving no-collision
for all conflicting pairs of routes with two trains requesting each route of the
pair, is enough to prove global no-collision properties. Indeed, it appears that
there is no possibility of a three train collision without a two-train collision first:
hence proving that no two-train collision occur is enough.

Again, the interaction on a point from another train requesting or using
a nearby, non-conflicting, route could be the only cause of violation of no-
derailment: A train requesting a conflicting route is not allowed to reserve its
route, and hence to circulate, due to the no-collision property. If we prove there
is no such interaction, we show independency of the point from non-conflicting
trains, which means also from a possible third circulating train.

In the end, in order to prove global no-collision and no-derailment properties,
we need to perform several tractable verification runs. The resulting needed
number of such runs is of the order of the square of the number of routes in the
first case (more accurately, the number of pairs of non-conflicting routes), and
in the order of the number of routes times the number of points for the second
case.

Distributing the Challenge of Model Checking Interlocking Control Tables 287

The number of runs can therefore be quite big, but there is much space for
parallel verification here: distributing such computations on a grid formed by all
of a company’s computer can achieve a big deal.

Distribution of tasks should follow criteria such as:

– for each pair of conflicting routes, verify no-collision on a model assuming
two requesting trains on the input points of the two routes of the pair

– for each point, and for each route A not using the point, choose a route B
that uses the point and is not conflicting with A; verify no-derailment on a
model assuming two requesting trains on the input points of routes A and
B (for this criterion an optimization can be applied which chooses pairs of
routes such that no-derailment is verified for all points of one of the routes,
in order to cover all points with a minimum set of route pairs: in this way the
number of different models is minimized, although the number of verification
runs is not).

6 Conclusions

The preliminary results obtained by experimenting with distributed modelling of
interlockings encourage us to pursue a research activity in the direction of exper-
imenting the parallel verification of an interlocking according to the principles
discussed above, that is:

– assuming a distributed modelling of an interlocking
– using a model-checker that efficiently uses specific optimizations, such as

partial-order reduction
– distributing the verification tasks on a grid, defining the tasks on the basis

of the conflicting and non-conflicting route pairs, and on the list of points.

Such an activity will be aimed to evaluate the effectiveness and scalability of the
parallel verification approach, assessing the maximum size of tractable systems.
However, even if results will be positive, still two aspects need to be studied in
order to translate such an approach in a viable alternative for industry.

A first issue is to verify whether the distributed approach is able to capture
all the intricacies that real interlockings may exhibit in particular layouts or
for particular local regulations. We believe it is so, since any case of condition
affecting the safe establishment of a route can in principle be modelled as an ad
hoc node that enters the 2-phase commit protocol to give its consensus. But we
cannot exclude at the moment that some peculiarities may require a different
handling.

A second issue to investigate is whether the proposed verification scheme ap-
plies to verification of Control-Table - based interlockings as well. Our reasoning
on limiting the verification to two trains is based indeed on locality properties
that are easily exhibited by a distributed model, while it is not as easy to show
locality in a system of boolean equations, where inevitably the names of the
variables have lost most of their geographic meaning.

288 A. Fantechi

On the other hand, the importance of relating the verification algorithms to
the geographic layout were already established in the layout-related optimizing
reordering of BDD variables in [25]. It would be interesting to investigate whether
these two similar conclusions on so different models and verification algorithms
are actually correlated.

Acknowledgements. I wish to thank A. Ferrari, D. Grasso, G. Magnani for
their work in the area of formal verification of interlocking, on real examples
produced at General Electric Transportation Systems. I also thank the students
L. Brilli, L. Carlà, M. Paolieri, G. Rocciolo, S. Rossetto, A. Schiavelli, E. Vasarri,
for their experiments with the UMC model checker.

References

1. Anunchai, S.V.: Verification of Railway Interlocking Tables using Coloured Per-
tri Nets. In: Proceedings of the 10th Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools (2009)

2. Banci, M., Fantechi, A.: Instantiating Generic Charts for Railway Interlocking Sys-
tems. In: Tenth International Workshop on Formal Methods for Industrial Critical
Systems (FMICS 2005), Lisbon, Portugal, September 5-6 (2005)

3. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Science of Com-
puter Programming 76(2), 119–135 (2011)

4. Berger, J., Middelraad, P., Smith, A.J.: EURIS, European railway interlocking
specification. In: Proceedings of the Institution of Railway Signal Engineers, IRSE
1993, pp. 70–82 (1993)

5. Boralv, A.: Formal Verification of a Computerized Railway Interlocking. Formal
Aspects of Computing 10, 338–360 (1998)

6. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

7. Eriksson, L.: Use of Domain Theories in Applied Formal Methods. Technical Re-
port, Uppsala University, Dept. of Information Technology, 2006-029 (2006)

8. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Proc. 8th FORMS/FORMAT Symposium, pp. 98–107 (2010)

9. Fokkink, W., Hollingshead, P.: Verification of Interlockings: from Control Tables
to Ladder Logic Diagrams. In: 3rd FMICS Workshop, pp. 171–185 (1998)

10. Hansen, K.M.: Formalizing Railway Interlocking Systems. In: Proceedings of the
2nd FMERail Workshop (1998)

11. Haxthausen, A.E., Le Bliguet, M., Kjær, A.A.: Modelling and Verification of Relay
Interlocking Systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008.
LNCS, vol. 6028, pp. 141–153. Springer, Heidelberg (2010)

12. Haxthausen, A.E.: Developing a Domain Model for Relay Circuits. International
Journal of Software and Informatics, 241–272 (2009)

13. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional (2003)

Distributing the Challenge of Model Checking Interlocking Control Tables 289

14. Jung, B.: Die Methode und Werkzeuge GRACE. In: Formale Techniken für die
Eisenbahn-sicherung (FORMS 2000), Fortschritt-Berichte VDI, Reihe 12, Nr. 441.
VDI Verlag (2000)

15. Kanso, K., Moller, F., Setzer, A.: Automated Verification of Signalling Principles in
Railway Interlocking Systems. Electronic Notes in Theoretical Computer Science
(ENTCS) 250, 19–31 (2009)

16. Le Bouar, P.: Interlocking SNCF functional requirements description. Euro-
Interlocking Project, Paris (May 2003)

17. Mirabadi, A., Yazdi, M.B.: Automatic Generation and Verification of Railway In-
terlocking Control tables using FSM and NuSMV. Transport Problems: an Inter-
national Scientific Journal 4, 103–110 (2009)

18. Mota, J.M.: Safety formal verification of metro railway signalling systems. Presen-
tation at I-Day, FM 2011, Limerick, Ireland (June 2011)

19. Pavlovic, O., Ehrich, H.: Model Checking PLC Software Written in Function Block
Diagram. In: 3rd International Conference on Software Testing, Verification and
Validation, pp. 439–448 (2010)

20. Simpson, A.: Model Checking for Interlocking Safety. In: Proceedings of the 2nd
FMERail Seminar (1998)

21. Tombs, D., Robinson, N., Nikandros, G.: Signalling Control Table Generation and
Verification. In: Proceedings of the Conference on Railway Engineering (2002)

22. Winter, K.: Model Checking Railway Interlocking Systems. In: Proceedings of the
25th Australasian Conference on Computer Science, vol. 4, pp. 303–310 (2002)

23. Winter, K., Robinson, N.J.: Modeling Large Railway Interlockings and Model
Checking Small Ones. In: Proceedings of the 26th Australasian Computer Science
Conference, vol. 35, pp. 309–316 (2003)

24. Winter, K., Johnston, W., Robinson, P., Strooper, P., van den Berg, L.: Tool
Support for Checking Railway Interlocking Designs. In: Proceedings of the 10th
Australian Workshop on Safety Critical Systems and Software, pp. 101–107 (2006)

25. Winter, K.: Symbolic Model Checking for Interlocking Systems. In: Flammini, F.
(ed.) Railway Safety, Reliability, and Security: Technologies and Systems Engineer-
ing. IGI Global (May 2012)

26. FP7 Project INESS - Deliverable D.1.5 Report on translation of requirements from
text to UML (2009)

Quantitative Modelling and Analysis

Joost-Pieter Katoen1,2 and Kim Guldstrand Larsen3

1 University of Twente, Formal Methods and Tools, The Netherlands
2 RWTH Aachen University, Software Modeling and Verification Group, Germany

3 Center for Embedded Software Systems, Aalborg, Denmark

Quantitative models and quantitative analysis in Computer Science are currently
intensively studied, resulting in a revision of the foundation of Computer Science
where classical yes/no answers are replaced by quantitative analyses. The poten-
tial application areas are huge, e.g., performance analysis, operations research
or embedded systems. This field covers extended automata-based models that
permit to reasons about quantities. Over the past, one has mainly distinguished
between real-time and stochastic extensions of automata.

Timed Models. The model of timed automata introduced by Alur and Dill in
1989 [2] has by now established itself as a universal formalism for describing real-
time systems. In the first publications a number of problems known from the
finite state systems were considered with respect to decidability and complexity.
In particular reachability and model checking wrt timed extensions of CTL were
shown decidable whereas (timed) languages inclusion was shown undecidable.
Later other behavioral relationships like simulation and bisimulation were shown
decidable. Here, the universal tool underlying the above decidability results has
been the notion of regions, providing a finite partitioning of the uncountable
infinite state-space which is exact with respect to the above problems.

Whereas the notion of region provides the key to decidability in many cases
it is completely impractical from the point of view of making tools that perform
efficiently in practice. The (coarser) notion of zone has lead to a number of tools
– e.g. BIP, Kronos, UPPAAL – which support efficient analysis (reachability
and model checking) of timed automata, quickly following the introduction of
the timed automata formalism.

Later the more expressive formalism of hybrid automata was introduced and
popularized by Henzinger et al. and the introduction of the tool HyTech pro-
viding a semi-decision algorithm for analyzing so-called linear hybrid systems.
Whereas in timed automata the continuous part of a model is restricted to be
clocks (which always evolve with rate 1), linear hybrid automata allow more
general continuous variables with evolution rates in arbitrary intervals. Despite
undecidability being a consequence of this extended expressive power the HyTech
tool has been successfully applied to the verification of several hybrid systems.

The notion of priced (or weighted) timed automata was introduced indepen-
dently by Alur et al and Larsen et al in 2001, with the surprising result that
cost optimal reachability is decidable. Since these initial results, efficient tools
exist and a number of more challenging questions has been considered includ-
ing multi-priced timed automata, optimal infinite scheduling (both wrt mean

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 290–292, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Quantitative Modelling and Analysis 291

pay-off and discounting), priced timed games and model checking for priced
timed automata. The last two questions are in general undecidable (if more than
2 clocks) but in the setting of 1-clock not only has decidability been obtained
but complexity is also polynomial. The setting with 2 clocks remains open.

Stochastic Models. Stochastic models have a long tradition in Mathematics,
starting with the work by Markov in the early 20th century and by Bellman
around 1950 who introduced the basic principles of Markov chains and Markov
decision processes, respectively. Nowadays, Markovian models and related
stochastic models are central in many application areas, such as queuing theory,
reliability and performance analysis, systems biology, social science, operational
research, and control theory, to mention just a few.

In their seminal work, Hart, Sharir and Pnueli (1983, [4]) and Vardi (1985,
[5]) were the first who modelled (distributed) randomized systems by finite-
state automata with discrete transition probabilities and presented algorithms
to prove that a given linear-time property holds with probability 1 by means of
automata- and graph-based algorithms. These basic principles for model check-
ing probabilistic systems have been extended in various ways. Modelling lan-
guages and process calculi with stochastic features were introduced with an
operational semantics based on some probabilistic variant of transition systems,
with behavioral equivalences and implementation relations for stochastic models,
and with probabilistic branching-time logics. Another interesting extension was
the combination of known model checking techniques with numerical methods
for a quantitative system analysis (e.g., to compute the probabilities for certain
events or expected values of certain random variables). Also, stochastic games
were studied as an operational model for multi-agent systems.

The ISOLA Session. Driven by new needs in areas such as cyber physical sys-
tems, a series of recent works have tried to combine real-time with stochastic
aspects, leading to new models such as timed stochastic automata.

In this ISOLA session, the main objective will be to study quantitative mod-
els and discuss their practical usage. New techniques such as statistical model
checking, a simulation-based approach that allows to verify properties that can-
not be expressed in classical temporal logic formalisms will be presented, and
applied to a satelite system [3]. This is complemented with a paper on how to
use priced timed automata to check the correctness of service-aware systems [1].

References

1. Čaušević, A., Seceleanu, C., Pettersson, P.: Checking Correctness of Services Mod-
eled as Priced Timed Automata. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part II. LNCS, vol. 7610, pp. 309–323. Springer, Heidelberg (2012)

2. Alur, R., Dill, D.: Automata for Modeling Real-Time Systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

292 J.-P. Katoen and K.G. Larsen

3. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of Herschel-
Planck Revisited Using Statistical Model Checking. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 294–308. Springer, Heidelberg
(2012)

4. Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent programs.
ACM Transactions on Programming Languages and Systems 5(3), 356–380 (1983)

5. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: 26th IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 327–338. IEEE Computer Society Press (1985)

Schedulability of Herschel-Planck Revisited

Using Statistical Model Checking �

Alexandre David1, Kim Guldstrand Larsen1,
Axel Legay2, and Marius Mikučionis1

1 Computer Science, Aalborg University, Denmark
2 INRIA/IRISA, Rennes Cedex, France

Abstract. Schedulability analysis is a main concern for several embed-
ded applications due to their safety-critical nature. The classical method
of response time analysis provides an efficient technique used in industrial
practice. However, the method is based on conservative assumptions re-
lated to execution and blocking times of tasks. Consequently, the method
may falsely declare deadline violations that will never occur during execu-
tion. This paper is a continuation of previous work of the authors in apply-
ing extended timed automata model checking (using the tool UPPAAL)
to obtain more exact schedulability analysis, here in the presence of non-
deterministic computation timesof tasksgivenby intervals [BCET,WCET].
Considering computation intervals makes the schedulability of the result-
ing task model undecidable. Our contribution is to propose a combination
of model checking techniques to obtain some guarantee on the
(un)schedulability of the model even in the presence of undecidability.

Two methods are considered: symbolic model checking and statistical
model checking. Symbolic model checking allows to conclude schedula-
bility – i.e. absence of deadline violations – for varying sizes of BCET.
However, the symbolic model checking technique is over-approximating
for the considered task model and can therefore not be used for disproving
schedulability. As a remedy, we show how statistical model checking
may be used to generate concrete counter examples witnessing non-
schedulability. In addition, we apply statistical model checking to obtain
more informative performance analysis – e.g. expected response times –
when the system is schedulable.

The methods are demonstrated on a complex satellite software system
yielding new insights useful for the company.

1 Introduction

Embedded systems involve the monitoring and control of complex physical pro-
cesses using applications running on dedicated execution platforms in a resource
constrained manner in terms of for example memory, processing power, band-
width, energy consumption, as well as timing behavior.

� Work partially supported by VKR Centre of Excellence MT-LAB, the Sino-Danish
basic research center IDEA4CPS, the regional CREATIVE project ESTASE, and
the EU projects DANSE and DALI.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 293–307, 2012.
� Springer-Verlag Berlin Heidelberg 2012

294 A. David et al.

Viewing the application as a collection of (interdependent tasks) various
scheduling principles may be applied to coordinate the execution of tasks in
order to ensure orderly and efficient usage of resources. Based on the physical
process to be controlled, timing deadlines may be required for the individual
tasks as well as the overall system. The challenge of schedulability analysis is
now concerned with guaranteeing that the applied scheduling principle(s) ensure
that the timing deadlines are met.

The classical method of response time analysis [JP86,Bur94] provides an effi-
cient means for schedulability analysis used in industrial practice: by calculating
safe upper bounds on the worst case response times (WCRT) of tasks (as solu-
tions to simple recursive equations) schedulability may be concluded by a simple
comparison with the deadlines of tasks. However, classical response time analysis
is only applicable to restricted types of task-sets (e.g. periodic arrival patterns),
and only applicable to applications executing on single processors. Moreover, the
method is based on conservative assumptions related to execution and blocking
times of tasks [BHK99]. Consequently, the method may falsely declare deadline
violations that will never occur during execution.

Process algebraic approaches [BACC+98,SLC06] have resulted in many meth-
ods for specification and schedulability analysis of real-time systems. Timed au-
tomata frameworks are also combined with other tools [BHK+04,BHM09] for
schedulability and schedule assessment in realistic settings.

In this paper, we continue our effort in applying real-time model checking
using the tool Uppaal to obtain more exact schedulability analysis for a wider
class of systems, e.g. task-sets with complex and interdependent arrival patterns
of task, multiprocessor platforms, etc [DILS10]. In particular, we revisit the
industrial case study of the Herschel-Planck [MLR+10] satellite system. The
control software of this system – developed by the Danish company Terma A/S
– consists of 32 tasks executing on a single processor system with preemptive
scheduling, and with access to shared resources managed by a combination of
priority inheritance and priority ceiling protocols. Unfortunately, though falling
into the class of systems covered by the classical response time analysis, this
method fails to conclude schedulability for the Herschel-Planck application.

In our previous work [MLR+10], we “successfully” concluded schedulability
of the Herschel-Planck application using a more exact analysis based on the
timed automata modeling framework for schedulability problems of [DILS10]
and the tool Uppaal. However, the analysis in [MLR+10] is based on the strong
assumption, that each task has a given and specific execution time (ET). Clearly
this is an unrealistic assumption. In reality, it can only be guaranteed that the
execution time for (each execution of) task i is in some interval [BCETi,WCETi].
In particular, classical response time analysis aims at guaranteeing schedulability
for intervals [0,WCETi], though unfortunately inconclusive for the Herschel-
Planck control software. On the other hand the guarantee of schedulability in
[MLR+10] only applies to (unrealistic) singleton intervals [WCETi,WCETi].

Both works consider systems with preemptive scheduling and our timed au-
tomata models are using stop-watches. In addition this work deals with

Schedulability of Herschel-Planck Revisited 295

Table 1. Summary of schedulability of Herschel-Planck concluded using symbolic and
statistical model checking

f = BCET
WCET : 0-71% 72-86% 87-90% 90-100%

Symbolic MC: maybe maybe n/a Safe
Statistical MC: Unsafe maybe maybe maybe

non-deterministic computation times as well as dependencies between task due to
resources, thus schedulability of the resulting task model is undecidable
[FKPY07]. Our solution will be to consider a combination of well-known model
checking techniques to obtain some guarantee on schedulability even in the
presence of undecidability. Concretely, we revisit the schedulability problem for
the Herschel-Planck software, with execution time intervals of the general form
[BCETi,WCETi], with BCETi ≤ WCETi. Two model checking methods of Up-

paal are applied for the schedulability analysis: classical (zone-based) symbolic
model checking (MC) and statistical model checking (SMC). The core idea of
SMC [LDB10,YS06,SVA04,KZH+09] is to randomly generate simulations of the
system and verify whether they satisfy a given property. The results are then
used by statistical algorithms in order to compute among others an estimate of
the probability for the system to satisfy the property. Such estimate is correct
up to some confidence that can be parameterized by the user. Several SMC al-
gorithms that exploit a stochastic semantics for timed automata have recently
been implemented in Uppaal [DLL+11a,DLL+11b,BDL+12].

Symbolic MC allows to conclude schedulability – i.e. absence of deadline vio-
lations – for varying sizes of BCET, though with the size of the (symbolic) state-
space and the overall verification time increasing significantly with an increase in
the size of the intervals [BCETi,WCETi]. Moreover, the symbolic MC technique
is over-approximate due to the presence of stop-watches needed to encode pre-
emption. Thus, symbolic MC can not be used for disproving schedulability. As a
remedy, we show how statistical MC may be used to generate concrete counter
examples witnessing non-schedulability. The new results obtained for Herschel-
Planck are rather interesting as can be seen from the summary Table 1: when
BCET
WCET ≥ 90% symbolic MC confirms schedulability, whereas statistical MC dis-

proved schedulability for BCET
WCET ≤ 71%. For BCET

WCET ∈ (71%, 90%) both methods
are inconclusive either due to the over-approximation induced by the symbolic
approach or to a burden in computation time. In addition, we apply statistical
MC to obtain more informative performance analysis, e.g. expected response
times when the system is schedulable as well as estimation of the probability of
deadline violation when the system is not schedulable.

2 Modeling

This section introduces the modeling framework that will be used through the
rest of the paper. We start by presenting the generic features of the framework

296 A. David et al.

through a running example. Then, we briefly indicate the key additions in mod-
eling the Herschel-Planck application, leaving details to be found in [MLR+10].

We consider a Running Example, that builds on instances from a library of
three types of processes represented with timed automata templates in Uppaal:
(1) preemptive CPU scheduler, (2) resource schedulers that can use either pri-
ority inheritance, or priority ceiling protocols, and (3) periodically schedulable
tasks. In what follows, we use broadcast channels in entire model which means
that the sender cannot be blocked and the receiver can will ignore it if it is not
ready to receive it. Derivative notation like x’==e specifies whether the stop-
watch x is running, where e is an expression evaluating to either 0 or 1. By
default all clocks are considered running, i.e. the derivative is 1.

For simplicity, we assume periodic tasks arriving with period Period[id],
with initial offset Offset[id], requesting a resource R[id], executing for at
least best case execution time BCET[id] and at most worst case execution time
WCET[id] and hopefully finishing before the deadline Deadline[id], where id

is a task identifier. The wall-clock time duration between task arrival and fin-
ishing is called response time, it includes the CPU execution time as well as any
preemption or blocking time.

Figure 1a shows the Uppaal declaration of the above mentioned parameters
for three tasks (number of tasks is encoded with constant NRTASK) and one re-
source (number of resources is encoded with constant NRRES). The task t type
declaration says that task identifiers are integers ranging from 1 to NRTASK.
Similarly the res t type declares resource identifier range from 1 to NRRES.
Parameters Period, Offset, WCET, BCET, Deadline and R are represented with
integer arrays, one element per each task. Figure 1b shows a simple periodic task
template which starts in Starting location, waits for the initial offset to elapse
and then moves to Idle location. The task arrival is marked by a transition
to a Ready location which signals the CPU scheduler that it is ready for execu-
tion. Then location Computing corresponds to busy computing while holding the
resource and Release is about releasing the resources and finishing. The period-
icity of a task is controlled by constraints on a local clock p: the task can move
from Idle to Ready only when p==Period[id] and then p is reset to zero to
mark the beginning of a new period. Upon arrival to Ready, other clocks are also
reset to zero: c starts counting the execution time, r measures response time and
ux is used to force the task progress. The invariant on location Ready says that
the task execution clock c does not progress (c’==0) and it cannot stay longer
than zero time units (ux<=0) unless it is not running (ux’==runs[id]). The
task also cannot progress to location Computing unless the CPU is assigned to it
(runs[id] becomes true). When the CPU is assigned, the task will be forced to
urgently request a resource and move on to Computing, where the computation
time (valuation of c) increases only when it is marked as running (runs[id] is
true). The task can stay in Computing for at most worst case execution time
(c<=WCET[id]), cannot leave before best case execution time (c>=BCET[id]),
but can be preempted by setting runs[id] to 0. If the resource is not granted
then the resource scheduler is responsible for blocking the task from using the

Schedulability of Herschel-Planck Revisited 297

�

const int NRTASK = 3; // # of tasks
const int NRRES = 1; // # of resources
typedef int [1, NRTASK] task t;
typedef int [1, NRRES] res t;
const int f=80; // fraction of WCET, in %
int Period[task t] = { 100, 100, 100 };
int Offset [task t] = { 20, 0, 10 };
int WCET[task t] = { 15, 25, 40 };
int BCET[task t] = { WCET[1]�f/100,

WCET[1]�f/100, WCET[1]�f/100 };
int Deadline[task t] = { 20, 40, 70 };
res t R[task t] = { 1, 1, 1 };
int P[task t] = { 3, 2, 1 }; // priorities
bool runs[task t] = { 0, 0, 0 };
bool error = false ; // global variable
� �

(a) Task parameters.

error=1

p=Period[id]

ux=0, c=0

c=0, r=0
p=0, c=0, r=0, ux=0

runs[id] &&
p<=Deadline[id]

runs[id] &&
c>=BCET[id] &&
p<=Deadline[id]

error=1

p==Period[id]

error=1

p>Deadline[id]

Release

Starting

Computing

Error
c’==0 &&
ux’==runs[id]
&& ux<=0

ux’==runs[id]
&& ux<=0

p<=Offset[id] &&
c’==0 && r’==0

Ready

c’==runs[id] &&
c<=WCET[id]

p<=Period[id] &&
c’==0 &&
r’==0

Idlep==Offset[id]

request[CPU][id]!
release[CPU][id]!

release[R[id]][id]!

runs[id]

p>Deadline[id]

p>Deadline[id]

request[R[id]][id]!

(b) Task template.

Fig. 1. Task parameter declaration and its stop-watch automaton template

CPU. If the deadline is not violated (p<=Deadline[id]) then the task can move
on to Release and similarly complete to Idle. Notice that task competes for
resources in locations Ready, Computing and Release and it will move to Error

location if the deadline is exceeded (p>Deadline[id]).
The CPU scheduler is equipped with a task queue q sorted by task priori-

ties P[t], where t is a task identifier and task variable holding the currently
running task identifier. Function front(q) always returns the highest priority
task identifier in the q queue. Figure 2a shows a CPU template which alternates
between Free and Occupied locations.

When a request[CPU][t] arrives, the requesting task t is put into the
queue and the CPU is being rescheduled. This is done either by immediate
grant[CPU][task] and marking that the task is running runs[task]=true, or
via preemption of the currently running task of lower priority, or simply return-
ing to Occupied if the highest priority task in the queue is not higher than
currently running. When a release[CPU][t] arrives, the requesting task t is
de-queued, marked as not running (runs[t]=false), and the CPU is granted
to the next highest priority task in the queue (if the queue is not empty). We
use Uppaal committed locations (encircled with C) for uninterrupted (atomic)
transitions, thus Free and Occupied are the only locations where the time can
pass. In addition, the scheduler is equipped with usage stop-watch: usage is
stopped by invariant usage’==0 at location Free and is running with default
rate of 1 in location Occupied, hence its valuation computes the CPU usage.

A resource scheduler shown in Fig. 2b is equipped with its own waiting queue
w. It operates in a similar way as CPU scheduler, that is by alternating between
Free and Occupied. The main difference is that a resource cannot be preempted
once it is locked. The locking operations follow the priority inheritance protocol

298 A. David et al.

runs[task]=true

runs[task]=false,
task=front(q)

enqueue(q, t)

task=0

runs[t]=false,
dequeue(q, t)

task=front(q)

request[CPU][t]?
enqueue(q,t),
task=front(q)

usage’==0

t:task_t

P[front(q)]>P[task]

t:task_t

t:task_t

release[CPU][t]?

Free

Occupied

P[front(q)]<=P[task]

empty(q)

!empty(q)

request[CPU][t]?

grant[CPU][task]!

preempt[task]!

(a) Preemptive CPU scheduler.

request[CPU][front(w)]!

release[id][t]?

request[id][t]?
tid=t,
enqueue(w, tid),
boostP(id, tid) release[CPU][tid]!

enqueue(w,t),
task=front(w),
lockInh(id, task)

unlockInh(id, t),
dequeue(w, t)

Unblock

Block

Occupied

request[id][t]?

runs[tid]

!empty(w)

empty(w)Free

t:task_t

t:task_t

task=front(w),
lockInh(id, task)

t:task_t

(b) Resource using priority inheritance.

Fig. 2. Schedulers for active and passive resources

implemented in functions lockInh(res,task), unlockInh(res,task). Opera-
tion boostP(res,task) raises the priority of the resource res owner to higher
level than the requesting task. Figure 3 shows the listing of Uppaal code im-
plementing the priority inheritance protocol.

�

/�� Boost the priority of resource owner based on priority inheritance protocol : �/
void boostP(res t res , task t task) {

if (P[owner[res]] <= defaultP(task)) {
P[owner[res]] = defaultP(task)+1;
sort(q); // sorts the queue by descending priorities

}
}
/�� Lock the resource based on priority inheritance protocol : �/
void lockInh(res t res , task t task) {

owner[res] = task; // mark the resource as occupied by the task
}
/�� Unlock the resource based on priority inheritance protocol : �/
void unlockInh(res t res , task t task) {

owner[res] = 0; // mark the resource as released
P[task] = defaultP(task); // return to default priority

}
� �

Fig. 3. Data and function declarations

Similarly to priority inheritance scheduler, we can also model priority ceiling
protocol by suitable modification of the locking functions.

Herschel. In this paper, we will also consider a large, industrial case study:
the schedulability analysis of the control software of the Herschel satellite. This
case study, which will seriously challenge the capabilities of Uppaal, uses the
same basic stop-watch modeling principles as in the Running Example described
above. The Herschel model consists of 32 tasks sharing 6 resources using two

Schedulability of Herschel-Planck Revisited 299

Table 2. Summary of schedulability of the Running Example example concluded using
symbolic and statistical MC for varying sizes of computation time intervals

f = BCET
WCET 0-79% 80-83% 84-100%

Symbolic MC: maybe maybe Safe
Statistical MC: Unsafe maybe maybe

protocols (priority inheritance and priority ceiling). Among these tasks, 24 are
periodic, while 8 are triggered in a sequence. Additionally, tasks use multiple re-
sources in a sequence, thus the sequence between Idle and Release of acquiring
and releasing resources is more refined. As an optimization, the resource sharing
and blocking is built into tasks to alleviate the need for task queues. We refer
the reader to [MLR+10] for more details.

3 Symbolic Safety Analysis

In this section we apply the classical zone-based symbolic reachability engine of
Uppaal to verify schedulability. As we are considering systems with preemptive
scheduling our models will be using stop-watches. With the addition of having
non-deterministic computation times – i.e. computation intervals – as well as
dependencies between task due to resources, schedulability of the resulting task
model is undecidable as a consequence of the results of [FKPY07]. In this case,
the analysis provided by Uppaal is over-approximate, guaranteeing that safety
properties established are valid properties of the system but leaving reachability
properties to be possibly spurious.

Running Example As detailed in Section 2, our running example consists of three
tasks with WCET times being 15, 25, 40, deadlines 20, 40, 70 and with one single
resource shared by the three tasks. In Table 2 the result of applying symbolic
MC with respect to the safety property

A[] !error

is given. Here error is a Boolean being set whenever a task misses its deadline
(see Figure 1b). Thus this property expresses absence of deadline violations
(i.e. schedulability), and is confirmed (within 0.06s) for computation intervals
[f ·WCET,WCET] with f ≥ 84%. For f < 84%, the over-approximate analysis
of Uppaal returns symbolic counter-example traces indicating possible deadline
violations for task T(1). However, these may be spurious.

In addition to schedulability, we may obtain upper bounds on the WCRTs of
the three tasks by posing the the query

sup: T(1).r, T(2).r, T(3).r

300 A. David et al.

where T(i).r is a stopwatch running whenever the task T(i) is not idle. Again
the results fall in two classes: for computation intervals [f ·WCET,WCET] with
f ≥ 84% the WCRTs are 20, 40, 70 and for f < 84% the WCRTs are 55, 40, 70,
again indicating the possibility of deadline violation for task T(1).

Finally, using an additional stopwatch usage, which is only stopped when the
CPU is free (and reset for each 2000 time-units) the query sup: usage returns
the value 1600, providing 80% (= 1600/2000) as an upper bound of the CPU
utilization.

Herschel. Applying in a similar manner symbolic MC to the Herschel case se-
riously challenges the engine of Uppaal, due to the the explosion in the size
symbolic state-space with the increase of the size of the computation time in-
tervals. In fact, to avoid the analysis to run out of memory we have applied the
so-called sweep-line method.

Table 3 provides a summary of the effort spent in verifying the model. We
started verification with model-time limited instances to get an impression of
resources need to verify the model and once we gained enough confidence we
increased the limit, thus the results are sorted by the model-time limit. The
deterministic case of f = 100% is relatively cheap and even unlimited case is
verifiable within three hours. Important insight here is that the verification time
correlates linearly with the limit and the unlimited case seems to correlate with
156 cycles which is the least common multiple of all task periods. So given enough
time we managed to verify down to f = 90% where the resource consumption
is increased drastically to more than 6 days. Finally, the model-checker indicate
a (possibly spurious) deadline violation for the case f = 86% after a little bit
more than 4 days.

Table 3. Verification statistics for different task execution time windows and explo-
ration limits: the percentage denotes difference between WCET and BCET, limit is in
terms of 250ms cycles (∞ stands for no limit, i.e. full exploration), memory in MB,
time in hours:minutes:seconds

limit f = 100% f = 95% f = 90% f = 86%
cycle states mem time states mem time states mem time states mem time

1 0.001 51.2 1.47 0.5 83.0 15:03 1.5 124.1 1:22:43 3.3 186.9 6:39:47
2 0.003 53.7 2.45 0.8 96.8 27:00 2.4 139.7 2:09:15 5.3 198.7 9:14:59
4 0.005 54.5 4.62 1.5 97.2 48:02 4.4 138.3 3:48:40 9.2 274.6 14:12:57
8 0.010 54.7 8.48 2.8 97.8 1:28:45 9.1 156.5 8:38:42 18.2 364.6 28:35:32

16 0.020 55.3 16.11 5.4 112.0 2:45:52 17.8 176.0 16:42:05 35.4 520.4 44:06:57
∞ 0.196 58.8 2:39.64 52.7 553.9 27:05:07 181.9 1682.2 147:23:25 pos.unsafe 99:07:56

Since symbolic MC proves that f = 90% case is safe, we also computed
WCRT upper bounds. Table 4 compares the Uppaal bounds on WCRTs with
the bounds from classical response time analysis performed by Terma A/S. In
particular Terma A/S found that PrimaryF task (#21) might violate its deadline
even though this violation has never been observed neither in simulations nor in
system deployment, whereas the bound provided by Uppaal is still within the
deadline, thus (re)confirming schedulability.

Schedulability of Herschel-Planck Revisited 301

Table 4. Specification and worst-case response-times of individual tasks

Specification WCRT
ID Task Period WCET Deadline Terma f = 100% f = 95% f = 90%

1 RTEMS RTC 10.000 0.013 1.000 0.050 0.013 0.013 0.013
2 AswSync SyncPulseIsr 250.000 0.070 1.000 0.120 0.083 0.083 0.083
3 Hk SamplerIsr 125.000 0.070 1.000 0.120 0.070 0.070 0.070
4 SwCyc CycStartIsr 250.000 0.200 1.000 0.320 0.103 0.103 0.103
5 SwCyc CycEndIsr 250.000 0.100 1.000 0.220 0.113 0.113 0.113
6 Rt1553 Isr 15.625 0.070 1.000 0.290 0.173 0.173 0.173
7 Bc1553 Isr 20.000 0.070 1.000 0.360 0.243 0.243 0.243
8 Spw Isr 39.000 0.070 2.000 0.430 0.313 0.313 0.313
9 Obdh Isr 250.000 0.070 2.000 0.500 0.383 0.383 0.383

10 RtSdb P 1 15.625 0.150 15.625 4.330 0.533 0.533 0.533
11 RtSdb P 2 125.000 0.400 15.625 4.870 0.933 0.933 0.933
12 RtSdb P 3 250.000 0.170 15.625 5.110 1.103 1.103 1.103
13 (no task, this ID is reserved for priority ceiling)
14 FdirEvents 250.000 5.000 230.220 7.180 5.553 5.553 5.553
15 NominalEvents 1 250.000 0.720 230.220 7.900 6.273 6.273 6.273
16 MainCycle 250.000 0.400 230.220 8.370 6.273 6.273 6.273
17 HkSampler P 2 125.000 0.500 62.500 11.960 5.380 7.350 8.153
18 HkSampler P 1 250.000 6.000 62.500 18.460 11.615 13.653 14.153
19 Acb P 250.000 6.000 50.000 24.680 6.473 6.473 6.473
20 IoCyc P 250.000 3.000 50.000 27.820 9.473 9.473 9.473
21 PrimaryF 250.000 34.050 59.600 65.47 54.115 56.382 58.586
22 RCSControlF 250.000 4.070 239.600 76.040 53.994 56.943 58.095
23 Obt P 1000.000 1.100 100.000 74.720 2.503 2.513 2.523
24 Hk P 250.000 2.750 250.000 6.800 4.953 4.963 4.973
25 StsMon P 250.000 3.300 125.000 85.050 17.863 27.935 28.086
26 TmGen P 250.000 4.860 250.000 77.650 9.813 9.823 9.833
27 Sgm P 250.000 4.020 250.000 18.680 14.796 14.880 14.973
28 TcRouter P 250.000 0.500 250.000 19.310 11.896 11.906 14.442
29 Cmd P 250.000 14.000 250.000 114.920 94.346 99.607 101.563
30 NominalEvents 2 250.000 1.780 230.220 102.760 65.177 69.612 72.235
31 SecondaryF 1 250.000 20.960 189.600 141.550 110.666 114.921 122.140
32 SecondaryF 2 250.000 39.690 230.220 204.050 154.556 162.177 165.103
33 Bkgnd P 250.000 0.200 250.000 154.090 15.046 139.712 147.160

4 Statistical Analysis

In the previous section, we observed that symbolic MC can be used to conclude
schedulability, but not to disprove it. This is reflected in the first line of Table 1
where there is a wide range of values of f for which symbolic MC cannot conclude
due to the potential presence of spurious counterexamples. In this section, we in-
troduce SMC, a technique that we consider here to be the dual of symbolic MC.
Namely, SMC can be used to disprove schedulability, but not to conclude it.

Concretelly, SMC is a simulation-based approach whose core objective is to
estimate the probability for a system to satisfy a property by simulating and
observing some of its executions, and then apply statistical algorithms to obtain
the result. SMC is parameterized by two parameters: a confidence interval size
on the estimate of the probability and a confidence level on the probability that
the answer returns by methodology is correct. In terms of schedulability, SMC
will thus be useful to generate concrete counterexample but cannot be used to
conclude schedulability.

302 A. David et al.

Several SMCalgorithmshave recentlybeen implemented inUppaal [DLL+11b].
In this section, wewill show how this implementation can be used not only to prove
schedulability, but also to observe and reason on the execution of tasks. The latter
will be done by exploiting the simulation engine and various informations displayed
by the GUI of the tool.

SMC relies on the assumption that the dynamic of the system is entirely
stochastic. In [DLL+11a,DLL+11b], we have proposed a refined stochastic se-
mantic for timed automata that associates probability distributions to both the
time-delays spend in a given state as well as to the transition between states. In
this semantics timed automata components repeatedly race against each other,
i.e. they independently and stochastically decide on their own how much to de-
lay before outputting, with the “winner” being the component that chooses the
minimum delay. Our stochastic schedulability model exploits the semantic of
[DLL+11a,DLL+11b] as it assumes the execution time of the task 4 to be picked
uniformly in the interval [f ·WCETi,WCETi].

In the rest of this section, we shall see how the SMC approach can be used
to generate a witness traces when concluding that the system is not schedulable
with a probability greater than 0. We will also illustrate how the SMC engine
of Uppaal can evaluate the probability to reach a state violating a deadline.
Finally, and not to be underestimated, we will show how the GUI of the Uppaal

tool can be exploited to give quantitative feedback to the user on, e.g., blocking
time, CPU usage, distribution of response time.

Running Example. Table 5 shows the query used to evaluate the probability
of violating a deadline for runs bounded by 200 time units and the results for
different values of f . We check only for cases when the symbolic model-checker
reports that deadlines may be violated to generate a witness with SMC. The
SMC technique gives results with certain levels of confidence and precision, i.e.,
the actual result is an interval. However, if the lower bound is strictly positive, it
guarantees that the checker did find witnesses. The case f = 80% is interesting
because it seems to be a spurious result from the symbolic model-checker. In
fact we can do hypothesis testing to get a more precise result more cheaply. The
model-checker accepts the hypothesis Pr[<=200](<> error) <= 0.00001 with
1% significance level in 25s. As summarized in line 2 of Table 1 SMC allow to
conclude unschedulability for f ≤ 79%.

Table 5. Probability of error estimation with 1% level of significance

f 50% 70% 79% 80%

Pr[<=200](<> error) [0.847,0.858] [0.604,0.615] [0.301,0.312] [0,0.005]

We can visualize traces (and inspect witnesses of deadline violation) by asking
the checker to generate random simulation runs and visualize the value of a
collection of expressions as a function time in a Gantt chart. In addition, we can
filter these runs and only retain some that reach some state, here the error state.
This is done with the following query producing the plot in Fig. 4b:

Schedulability of Herschel-Planck Revisited 303

simulate 1000 [<=300] {

(T(1).Ready+T(1).Computing+T(1).Release+runs[1]-2*T(1).Error)+6,

(T(2).Ready+T(2).Computing+T(2).Release+runs[2]-2*T(1).Error)+3,

(T(3).Ready+T(3).Computing+T(3).Release+runs[3]-2*T(1).Error)+0

} :1: error

If the filtering (“:1:error”) is omitted, the plot contains all the runs, and for
clarity just a single of them is displayed in Fig. 4a. As a result the plot encodes the

T3
T2
T1

time

va
lu

e

0

2.0

4.0

6.0

8.0

0 34 68 102 136 170 204 238 272 306

(a) Normal run using f = 80.

T3
T2
T1

time

va
lu

e

0

2.0

4.0

6.0

8.0

0 26 52 78 104 130 156 182 208 234

(b) Failed run using f = 79.

Fig. 4. Visualization of runs as a Gantt chart. The chart shows an encoding of the
state with different weights corresponding to steps of different heights.

task states (idle, ready, running or error) in the level of the curve. For example,
Figure 4a shows that T2 becomes ready and running starting from 0 time. At 10
task T3 becomes ready, but is not running. Then at 20 task T1 becomes ready
and becomes running by preempting T2 but then it immediately gives up the
running status (due to resource blocking) and resumes by preemption when T2

releases the resource. At this point T2 is not finished yet and will be able to
finish only when T1 finishes and releases the CPU, hence there is a small spike
just before going to idle state. The lowest priority task T3 has a chance to run
and finish only when both T1 and T2 are done. Figure 4b is interpreted similarly,
where the task T1 violates its deadline because T3 managed to get the resource
before T1 and thus T1 was blocked from finishing.

More insight on the behavior of the tasks is gained by estimating expected
response times using the queries:

E[<=200; 50000] (max: T(1).r)

E[<=200; 50000] (max: T(2).r)

E[<=200; 50000] (max: T(3).r)

304 A. David et al.

max: Task[1].r

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.012

0.024

0.036

0 10 20 30 40 50

(a) Task T1.

max: Task[2].r

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.020

0.040

0.060

0 8 16 24 32 40

(b) Task T2.

max: Task[3].r

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.011

0.022

0.033

0 13 26 39 52 65

(c) Task T3.

Fig. 5. Response time distributions for the different tasks when f = 0

The result is the response time averages respectively: 16.96, 36.96 and 63.65 time
units. In addition tool provides the probability densities shown in Figures 5. The
plots show the effect of priority inversion on the higher priority tasks that may
be delayed by the lower priority task.

The response of T1 goes beyond the deadline for f = 0%, thus we evaluate the
shapes of response time distributions for various f values in Fig. 6. Surprisingly
there is a sharp contrast between f = 79% (unsafe for sure) and f = 80% which
does not seem to exhibit the error and responds within 20 time units. This
worst response time is more optimistic than the case f = 83% from symbolic
analysis, which suggests that the symbolic analysis most probably is not exact
for f ∈ [80, 83]. Figure 6a is an intermediate result between f = 0% (Fig. 5a)
and f = 79% where the two seemingly normal “hills” are wide enough to meet
each other, thus Fig. 5a is the result of two “hills”: one from safe responses and
the other slipped beyond a safety threshold but they are overlapping so tightly
that this fact is hardly evident in Fig. 5a.

Herschel. We generalize this methodology to our more complex Herschel case-
study to confirm deadline violations and to study performance.

Table 6 shows the results when we vary the execution time to be in the interval
[f ·WCET,WCET]. The table shows the probabilities in function of this factor
f and statistical parameters α (1 − α is the confidence level) and ε the size of
the confidence interval of the probability. Asking for more precise results yields
more traces at the cost of time. At first we limited the search to just one cycle of
250ms, but then at the point of f = 62% the errors are rarely found even with
high confidence and many runs. Then we increased the limit which increased our

max: Task[1].r

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.016

0.032

0.048

8 19 30 41 52

(a) f = 50% (not safe).

max: Task[1].r

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.05

0.10

0.15

11 19 27 35 43 51

(b) f = 79% (not safe).

max: Task[1].r

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.09

0.18

0.27

12.3 16.1 19.9

(c) f = 80% (seem OK).

Fig. 6. Response time distributions for Task T1 using various f ratios

Schedulability of Herschel-Planck Revisited 305

Table 6. Results of Herschel statistical model-checking

Limit f SMC parameters Total Error traces Earliest Error Verification
cycles % α ε traces, # # Probability cycle offset time

1 0 0.0100 0.005 105967 1928 0.018194 0 79600.0 1:58:06
1 50 0.0100 0.005 105967 753 0.007106 0 79600.0 2:00:52
1 60 0.0100 0.005 105967 13 0.000123 0 79778.3 2:01:18
1 62 0.0005 0.002 1036757 34 0.000033 0 79616.4 19:52:22

160 63 0.0100 0.05 1060 177 0.166981 0 81531.6 2:47:03
160 64 0.0100 0.05 1060 118 0.111321 1 79803.0 2:55:13
160 65 0.0500 0.05 738 57 0.077236 3 79648.0 2:06:55
160 66 0.0100 0.05 1060 60 0.056604 2 82504.0 2:62:44
160 67 0.0100 0.05 1060 26 0.024528 1 79789.0 2:64:20
160 68 0.0100 0.05 1060 3 0.002830 67 81000.0 2:67:08
640 69 0.0100 0.05 1060 8 0.007547 114 80000.0 12:23:00
640 70 0.0100 0.05 1060 3 0.002830 6 88070.0 12:30:49

1280 71 0.0100 0.05 1060 2 0.001887 458 80000.0 25:19:35

chances of finding the errors, we were lucky to find some errors as early as in the
first cycle. Most of the errors are found quite early (cases where f < 68), but
for smaller time-windows it is much harder to find and the few found ones are
quite far in the run. Eventually the search took more than a day to find only a
few error instances for f = 71%, hence we stopped here.

max: WCRT[21]

co
un

t

0

400

800

1200

1600

5.106E4 5.282E4

Fig. 7. Response times

Similarly to Fig. 5, response times for the most
stressed task PrimaryF are estimated by generat-
ing 2000 probabilistic runs limited to 156 cycles
for the safe case of f = 90%. The vast majority
(1787) of instances responded before 51093.3 and
the rest is distributed about evenly (see Fig. 7).
The worst found response time was of 52851.2
which is significantly lower than bound of 58586.0
found by symbolic MC in Table 4. The computa-
tion for this model took 17.6 hours.

Fig. 8a shows an overview chart of all 32 tasks during the first 85ms. Each
task can be identified by its base level 3*ID, thus PrimaryF with ID=21 is at
63. PrimaryF starts with an offset of 20ms and it has to finish before a deadline
of 59.6ms. Under safe conditions of f = 90% PrimaryF finishes before 70500μs
(Fig. 8a) but with f = 50% it fails at 79828.3μs (Fig. 8b).

5 Conclusion

In this paper, we have applied both symbolic MC and statistical MC to schedu-
lability analysis. In particular, we have demonstrated that the complementary
qualities of the two methods allow to conclusively confirm as well as disprove
schedulability for a wide range of cases. This is an impressive result as the prob-
lem is known to be undecidable. In addition we have illustrated how the user
can benefit from the Uppaal features in plotting, observing and reasoning about
task executions, and hence improving the modeling process. We also believe that
the combination of symbolic MC and statistical MC will prove highly useful in

306 A. David et al.

time

va
lu

e

0

10

20

30

40

50

60

70

80

90

100

0 1.2E4 2.4E4 3.6E4 4.8E4 6E4 7.2E4 8.4E4

(a) A successful run with f = 90 (PrimaryF at level 63).

T14
T15
T16
T21
T22
T30

time

va
lu

e

0

3

6

9

12

15

0 1.1E4 2.2E4 3.3E4 4.4E4 5.5E4 6.6E4 7.7E4

(b) Selected processes of a simulation run with f = 50%, where PrimaryF (task T21

at level 9) violates a deadline.

Fig. 8. The first 85ms of Herschel model simulation runs

analyzing systems with mixed critically, i.e. systems containing tasks with hard
timing constraints as well as soft, where the timing constraints are permitted to
be violated occasionally.

References

BACC+98. Ben-Abdallah, H., Choi, J.-Y., Clarke, D., Kim, Y.S., Lee, I., Xie,
H.-L.: A process algebraic approach to the schedulability analy-
sis of real-time systems. Real-Time Systems 15, 189–219 (1998),
doi:10.1023/A:1008047130023

BDL+12. Bulychev, P., David, A., Guldstrand Larsen, K., Legay, A., Mikučionis, M.,
Bøgsted Poulsen, D.: Checking and Distributing Statistical Model Check-
ing. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp.
449–463. Springer, Heidelberg (2012)

BHK99. Bradley, S., Henderson, W., Kendall, D.: Using timed automata for re-
sponse time analysis of distributed real-time systems. In: Systems in 24th
IFAC/IFIP Workshop on Real-Time Programming, WRTP 1999, pp. 143–
148 (1999)

Schedulability of Herschel-Planck Revisited 307

BHK+04. Bohnenkamp, H.C., Hermanns, H., Klaren, R., Mader, A., Usenko, Y.S.:
Synthesis and stochastic assessment of schedules for lacquer production.
In: Proceedings of the First International Conference on the Quantitative
Evaluation of Systems, QEST 2004, pp. 28–37 (September 2004)

BHM09. Brekling, A., Hansen, M.R., Madsen, J.: Moves – a framework for mod-
elling and verifying embedded systems. In: International Conference on
Microelectronics, ICM 2009, pp. 149–152 (December 2009)

Bur94. Burns, A.: Preemptive priority based scheduling: An appropriate engineer-
ing approach. In: Principles of Real-Time Systems, pp. 225–248. Prentice
Hall (1994)

DILS10. David, A., Illum, J., Larsen, K.G., Skou, A.: Model-Based Framework for
Schedulability Analysis Using UPPAAL 4.1. In: Nicolescu, G., Mosterman,
P.J. (eds.) Model-Based Design for Embedded Systems, pp. 93–119. CRC
Press (2010)

DLL+11a. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Bøgsted Poulsen, D.,
van Vliet, J., Wang, Z.: Statistical Model Checking for Networks of Priced
Timed Automata. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011.
LNCS, vol. 6919, pp. 80–96. Springer, Heidelberg (2011)

DLL+11b. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for
Statistical Model Checking of Real-Time Systems. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Hei-
delberg (2011)

FKPY07. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulabil-
ity, decidability and undecidability. Information and Computation 205(8),
1149–1172 (2007)

JP86. Joseph, M., Pandya, P.K.: Finding response times in a real-time system.
Comput. J. 29(5), 390–395 (1986)

KZH+09. Katoen, J.-P., Zapreev, I.S., Moritz Hahn, E., Hermanns, H., Jansen, D.N.:
The ins and outs of the probabilistic model checker MRMC. In: Proc. of
6th Int. Conference on the Quantitative Evaluation of Systems (QEST),
pp. 167–176. IEEE Computer Society (2009)

LDB10. Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An
Overview. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K.,
Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010.
LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010)

MLR+10. Mikučionis, M., Larsen, K.G., Rasmussen, J.I., Nielsen, B., Skou, A., Palm,
S.U., Pedersen, J.S., Hougaard, P.: Schedulability Analysis Using Uppaal:
Herschel-Planck Case Study. In: Margaria, T., Steffen, B. (eds.) ISoLA
2010, Part II. LNCS, vol. 6416, pp. 175–190. Springer, Heidelberg (2010)

SLC06. Sokolsky, O., Lee, I., Clarke, D.: Schedulability analysis of aadl models. In:
20th International Parallel and Distributed Processing Symposium, IPDPS
2006, p. 8 (April 2006)

SVA04. Sen, K., Viswanathan, M., Agha, G.: Statistical Model Checking of Black-
Box Probabilistic Systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004)

YS06. H̊akan, L., Younes, S., Simmons, R.G.: Statistical probabilistic model
checking with a focus on time-bounded properties. Inf. Comput. 204(9),
1368–1409 (2006)

Checking Correctness of Services Modeled

as Priced Timed Automata

Aida Čaušević, Cristina Seceleanu, and Paul Pettersson

Mälardalen Real-Time Research Centre (MRTC),
Mälardalen University, Väster̊as, Sweden

{aida.delic,cristina.seceleanu,paul.pettersson}@mdh.se

Abstract. Service-Oriented Systems (SOS) have gained importance in
different application domains thanks to their ability to enable reusable
functionality provided via well-defined interfaces, and the increased op-
portunities to compose existing units, called services, into various con-
figurations. Developing applications in such a setup, by reusing existing
services, brings some concerns regarding the assurance of the expected
Quality-of-Service (QoS), and correctness of the employed services. In
this paper, we describe a formal mechanism of computing service guaran-
tees, automatically. We assume service models annotated with pre- and
postconditions, with their semantics given as Priced Timed Automata
(PTA), and the forward analysis method for checking the service cor-
rectness w.r.t. given requirements. Under these assumptions, we show
how to compute the strongest postcondition of the corresponding au-
tomata algorithmically, with respect to the specified precondition. The
approach is illustrated on a small example of a service modeled as Priced
Timed Automaton (PTAn).

1 Introduction

The complexity of software systems has been continuously increasing during the
last decade. One of the reasons underlying such a phenomenon is a new trend
that aims to integrate and connect heterogeneous applications and available re-
sources while aiming at improved software reusability. Service-oriented systems
(SOS), which have emerged as context independent component-based systems
(CBS), are becoming one of the dominant paradigms for developing large scale
systems out of self-contained and loosely coupled services. Among the main
benefits of the approach, the most appealing are: the reusable functionality via
well-defined interfaces, the service infrastructure that enables services to be pub-
lished, discovered, invoked, and, if needed destroyed on demand, as well as the
fast application development by employing existing services.

In systems built up in such a setup, it becomes essential to ensure a satisfying
level of the system’s Quality-of-Service (QoS). Sometimes, based on the QoS, one
simply needs to decide which service to select out of a number of available services
that offer similar functionality. To deliver guarantees on provided QoS, some SOS
approaches [3, 15, 19, 21] support formal analysis; however, in most cases building
the formal system model, out of formalized services, is far from straightforward.

T. Margaria, B. Steffen, and M. Merten (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 308–322, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Checking Correctness of Services Modeled as Priced Timed Automata 309

Once a model is created, it becomes crucial to be able to check the fulfilment of
requirements of the employed services, both in isolation, as well as in the context
of the newly created system that involves service compositions. An important
aspect, often ignored, is the service’s resource usage. Any analysis approach that
abstracts from service resource constraints might produce analysis results that
are insufficiently correct, or reliable.

For instance, let us consider a three shuttle system, previously modeled and
analyzed in the Priced Timed Automata (PTA) formal framework [5]. In brief,
the system provides transportation services to three different locations. We as-
sume a scenario in which two out of three shuttles are supposed to stay in a
convoy and reach the common final location. Considering energy to be the most
critical resource in the system (i.e., each shuttle operates on batteries with a lim-
ited capacity), it would be beneficial to be able to formally check if the current
energy level in each shuttle is sufficient to reach the final destination, before the
actual convoy is created. In addition, each shuttle has timing constraints, which
should be in accordance with the deadline of the convoy.

To tackle the above concerns, in this paper, we focus on computing func-
tional and extra-functional service guarantees, automatically. The service model
is time- and resource-aware, being described in Remes [23], a behavioral lan-
guage intended for modeling and analysis of interacting embedded components
and services. The system is obtained by composing Remes models, via operators
that we have defined previously [6].

In our recent work, we have shown how service correctness can be checked using
Hoare triples, and strongest postcondition semantics technique, described in Sec-
tion 3.1. However, the postcondition calculation, on which the verification relies, is
not currently automated, thus hindering the applicability of the method. Here, we
address this deficit by presenting algorithms for computing strongest postcondi-
tions (service guarantees) automatically, by applying minimum/maximum reach-
ability analysis on PTA [17] translations of theRemes service models (Section 3).

We consider the service resource usage in Remes as a cost variable in PTA,
and we include the computation of the minimum and maximum reachability costs
of a final PTA location in our algorithms, alongside with calculating the strongest
postcondition of reaching such location, over symbolic states. The approach,
described in Section 3, is accompanied by an illustrative example of a simple
model of a PTA service. Last but not least, we compare our approach with some
relevant work in Section 4 before concluding the paper in Section 5.

2 Preliminaries and a Simple Example

2.1 Remes Modeling Language

To model functional and extra-functional behavior such as timing and resource
usage of SOS, in this paper, we use the dense-time state-based hierarchical mod-
eling language called Remes [23]. The language has been initially intended as a
meaningful basis for modeling and analysis of embedded systems in a component-
based fashion. To make it suitable for modeling SOS too, we have recently

310 A. Čaušević, C. Seceleanu, and P. Pettersson

extended Remes with constructs fit for an SOS description [6]. To enable formal
analysis, Remes models can be transformed into Timed Automata (TA) [1], or
PTA [2], depending on the analysis type [13].

Remes is appropriate for describing the behavior of SOS, as it is well-suited
for abstract modeling, since it is a language well-suited for abstract modeling,
supports hierarchical modeling, has an input/ouput distinction, a well-defined
formal semantics, and tool support [14] 1.

Fig. 1. An example of a Remes service

Let us assume a simple example of a composite mode that models a web
service depicted in Fig. 1. The composite mode contains two submodes, i.e.,
atomic modes l0 and l1. The mode has a special Init entry point, visited when
the service executes first, and where all variables are initialized.

In Remes one may model timed behavior and resource consumption. Timed
behavior is modeled by global continuous variables of specialized type clock evolv-
ing at rate 1 (x, y in Fig. 1). Each (sub)mode can be annotated with the corre-
sponding continuous resource usage, if any, modeled by the first derivative of the
real-valued variables that denote resources that evolve at positive integer rates
(res’ == 2 in Fig. 1). Discrete resources are allocated through updates, e.g., res
+= 1 in Fig. 1.

The Remes service shown in Fig. 1 contains a list of attributes (i.e., service
type is Web service, capacity is 5, time-to-serve is 3, status is Idle, service precon-
dition is (x == 0 ∧ y == 0), and postcondition (1 ≤ res ≤ 10∧y ≥ x)) exposed
at the interface of the Remes service. A service precondition is a predicate that
constrains the start of service execution, and must be true at the time a Remes

1 The Remes tool-chain is available at http://www.fer.hr/dices/remes-id

http://www.fer.hr/dices/remes-id

Checking Correctness of Services Modeled as Priced Timed Automata 311

service is invoked. A postcondition must hold at the end of a Remes service
execution and it can be the same or included into the user defined requirement,
also modeled as a predicate.

To verify the service correctness, we use the forward analysis technique based
on the computation of the strongest postcondition of a Remes service w.r.t. a
given precondition. To prove the correctness of a Remes service in isolation,
we check that the calculated strongest postcondition is no more than the given
requirement. Since Remes models can be automatically transformed to PTA via
a well-defined set of rules [13, 14, 20], in this paper, we propose an algorithmic
technique of strongest postcondition calculation on the PTAn description of a
service, in order to provide automation to our Remes verification procedure.

The service composition correctness check reduces to discharging similar
boolean implications, as we have shown in our recent work [6]. Therefore, au-
tomating the strongest postcondition calculation of services is central to the
applicability of our analysis method.

For a more thorough description of the Remes language, we refer the reader
to our previous work [6, 23].

2.2 Priced Timed Automata

In the following, we recall the model of PTA [2, 4], an extension of TA [1] with
prices on both locations and edges.

Let us assume a finite alphabet Act ranging over a, b etc., a finite set of all
data (i.e., boolean, integer or array) variables V , a finite set of real-valued clocks
χ and B(χ) the set of formulas obtained as conjunctions of atomic constraints of
the form x
� n, where x ∈ χ, n ∈ N, and
� ∈ {<,≤,=,≥, >}. The elements of
B(χ) are called clock constraints over χ. Similarly, we use B(V) to stand for the
set of non-clock constraints that are conjunctive formulas of i ∼ j or i ∼ k, where
i, j ∈ V , k ∈ Z and ∼ ∈ {<,≤,=,
=,≥, >}. We use B(χ, V) to denote the set
of formulas that are conjunctions of clock constraints and non-clock constraints.
Additionally, P(χ) represents the powerset of χ.

Definition 1. A linearly Priced Timed Automaton (PTAn) over clocks χ and
actions Act is a tuple (L, l0, E, V, I, P), where L is a finite set of locations, l0 ∈ L
is the initial location, E ⊆ L×B(χ, V)×Act×P(χ)×L is the set of edges, V is
a finite set of data variables, I : L → B(χ) assigns invariants to locations, and
P : (L ∪ E) → N assigns prices (or costs) to both locations and edges.

In the case of e = (l, g, a, r, l′) ∈ E, we also write l
g,a,r→ l′. For an edge e we

refer to l as the source of e, to l′ as the target of e, to g as the guard of e, to a
as the action of e, and to r as the reset set i.e., data- or clock assignment of e.
Fig. 2 depicts the PTAn description of the Remes service introduced in Fig. 1.
We omit the Remes interface from the model, so only the internal behavior
is represented. The PTA description consists of three locations: l0, l1, and l2
(with l0 as the initial location), and edges, which are directed lines connecting
locations. The timing behavior is controlled by two clock variables, x and y. For

312 A. Čaušević, C. Seceleanu, and P. Pettersson

l2l1

y<=1 && cost’==3

l0

y<=1 && cost’== 2

y>x

cost+=2

x=0,
cost+=1

n>0
x=0,
n=n-1,
cost+=1

Fig. 2. The PTAn model of the Remes service of Fig. 1

each location, it is possible to assign an invariant that must hold in order to
stay in that location (e.g., invariant y ≤ 1), which enforces a location change in
case it ceases to hold. Further, each edge, may be decorated with guards, that is,
boolean expressions that must hold in order for an edge to be taken (e.g., y > x).
For simplicity, to prevent infinite looping in l0, in this example we use the integer
variable n. To model, simulate and verify our example we use the Uppaal Cora

tool. The tool extends Definition 1 with data variables of different types, arrays
of data variables, constants, and records.

The semantics of PTA is defined in terms of priced transition systems over
states of the form (l, u), where l is a location, u ∈ RRX are clock valuations, and
the initial state is (l0, u0), where u0 assigns all clocks in χ to 0. In this model,
there are two kinds of transitions: delay transitions and discrete transitions. In
delay transitions,

(l, u)
d,p→ (l, u⊕ d),

where u ⊕ d is the result obtained by incrementing all clocks of the automata
with delay d, and p = P (l) ∗ d is the cost of performing the delay (the cost of
staying in location l0 is described by cost′ == 2). Discrete transitions

(l, u)
a,p→ (l′, u′)

correspond to taking an edge l
g,a,r→ l′ for which the guard g is satisfied by u.

The clock valuation u′ of the target state is obtained by modifying u according
to updates r. The cost p = P ((l, g, a, r, l′)) is the price associated with the edge
(the cost of taking a self loop in location l0 is annotated as cost+ = 1).

A timed trace σ of a PTAn is a sequence of alternating delays and action
transitions

σ = (l0, u0)
a1,p1→ (l1, u1)

a2,p2→ . . .
an,pn→ (ln, un)

A network of PTA A1, . . . , An over χ and Act is defined as the parallel compo-
sition of n PTA A1 ‖ . . . ‖ An over χ and Act. Semantically, a network again
describes a timed transition system obtained from those components, by requir-
ing synchrony on delay transitions, and requiring discrete transitions to synchro-
nize on complementary actions (i.e., a? is complementary to a!) [4]. Next, we
recall the basic symbolic reachability analysis notions on which our algorithms
are based.

Checking Correctness of Services Modeled as Priced Timed Automata 313

2.3 Symbolic Optimal Reachability

The text in this subsection is an adaptation for single-cost PTA, from the one
presented by Larsen and Rasmussen, for dual-priced PTA [17]. Symbolic tech-
niques are required in the analysis of infinite state systems. They provide effective
ways to describe and manipulate sets of states simultaneously. To enable cost-
optimal analysis, such techniques are enriched with cost information annotated
to each individual symbolic state [16].

A priced transition systems with a structure τ = 〈S, s0, Σ,→〉, where S is
a set of states, s0 ∈ S is the initial state, Σ is a finite set of labels, and → is
a partial function from S × Σ × S into the non-negative reals, R≥0, defines all
possible systems transitions with their respective costs. An execution of τ is a

sequence γ = s0
a1,p1→ s1

a2,p2→ . . .
an,pn→ sn. The cost of γ with respect to some

goal state G ⊆ S, is defined as:

COSTG(γ) =

{
∞, if ∀ i ≥ 0 : si /∈ G∑n

i=1 pi, if ∃ n ≥ 0 : sn ∈ G ∧ ∀ 0 ≤ i < n : si /∈ G.

For a given goal state s, the minimum cost of reaching s is the infimum of the
costs of the finite traces ending in the s. Dually, the maximum cost of reaching
the goal state s is the supremum of the costs of the finite traces ending in s.
Similarly, the minimum/maximum cost of reaching a set of states G ⊆ S is:

inf {COSTG(γ) : γ ∈ Γ}, and

sup{COSTG(γ) : γ ∈ Γ},
where Γ is the set of all executions in the priced transition system τ .

To effectively analyze priced transition systems, priced symbolic states of the
form (A, π) are used, where A ⊆ S is a set of states, and π : A → 2R≥0 assigns
non-negative costs to all states of A. The reachability of the priced symbolic state
(A, π) assumes that all s ∈ A are reachable with all costs in π(s). To express
successors of priced symbolic states, e.g., all states that can be reached from the
current state s ∈ A, we use a Post-operator Posta(A, π) = (posta(A), η) = (B, η)
expressed as follows:

B = {s′ | ∃ s ∈ A : s
a→ s

′}
η(s) = inf{π(s′

) + p | s
′ ∈ A ∧ s

′ a,p→ s}

Here η provides the cheapest cost for reaching states of B via states in A, as-
suming that these may be reached with costs according to π.

A symbolic execution of a priced transition system τ is a sequence β =
(A0, π0), . . . , (An, πn), where for i < n, (Ai+1, πi+1) = Postai(Ai, πi) for some
ai ∈ Σ and A0 = {s0} and π0(s0) = 0. The relation between executions and
symbolic executions is expressed as follows:

– For each execution γ of τ ending in s, there is a symbolic execution β ending
in (A, π) such that s ∈ A and COST(γ) ∈ π(s).

314 A. Čaušević, C. Seceleanu, and P. Pettersson

– Let β be a symbolic execution of τ ending in (A, π); then, for each s ∈ A
and p ∈ π(s), there is an execution γ ∈ s such that COST(γ) = p.

From the statements above, one can notice that symbolic states accurately cap-
ture the cost of reaching all states in the state space.

3 Algorithms for Calculating Strongest Postconditions of
Services

To provide constructs for the correctness check of a Remes service, as described
in Section 2 and introduced in [6], we assume that the service is described by a
Hoare triple, on which we apply the forward analysis technique. The latter relies
on computing the strongest postcondition of the Remes service w.r.t. the given
precondition. Proving the correctness of a Remes service in isolation reduces
to simply checking the Boolean implication between the calculated strongest
postcondition and the given user requirement.

Previously [6], we have focused on less complex systems and employed the
Guarded Command Language (GCL) [9] to prove service correctness by manual
computation of the strongest postconditions needed in the process. In this paper,
we aim for a more automated mechanism to check service correctness, focusing
on developing algorithms that facilitate such computation for Remes services
formally described as PTA. We can perform maximum/minimum resource-usage
trace computation on the corresponding PTA, while accumulating the strongest
postcondition during the analysis. The algorithms for strongest postcondition
calculation, presented in this paper, rely on the symbolic reachability algorithms
for computing the minimum and the maximum reachability cost, respectively,
proposed by Larsen and Rasmussen [17].

In the following, we recall the notion of strongest postcondition, as introduced
by Dijkstra and Sholten [10], and the program correctness check based on it.
Next, we introduce two algorithms that compute the strongest postcondition of
a Remes service formally described as PTA, together with the maximum/mini-
mum cost reachability analysis, respectively.

3.1 Strongest Postcondition

Assume that {p}S{q} is a Hoare triple denoting the partial correctness of service
S with respect to precondition p and postcondition q. According to Dijkstra and
Sholten [10], the strongest postcondition transformer, denoted by (sp.S.p), is the
set of final states for which there exists a computation controlled by S, which
belongs to class “initially p”. Assuming that p holds, the execution of a service S
results in sp.S.p true, if S terminates. Proving the Hoare triple, that is, proving
the correctness of service S, reduces to showing that (sp.S.p ⇒ q) holds.

To illustrate the strongestpostcondition calculationona simple statement, let us
assume that a service performs a simple subtraction operation (x := x−5) and that
the provided precondition is p = (x > 15), while the requirement is q = (x > 10).
Then, calculating the strongest postcondition reduces to the following:

Checking Correctness of Services Modeled as Priced Timed Automata 315

sp.(x := x− 5).(x > 15) = (∃x0 · x = x0 − 5 ∧ (x0 > 15))

where x0 is the initial value of x. Verifying the correctness of S, with respect to
p, and q above, reduces to showing that:

∃x0 · x = x0 − 5 ∧ (x0 > 15) ⇒ (x > 10)

In the following, we show how to compute sp.S.p automatically, assuming S is
the PTA semantic translation of a Remes service.

3.2 Strongest Postcondition Calculation and Minimum Cost
Reachability

In this section, we show the algorithm that computes the strongest postcondi-
tion, and the minimum cost of resource consumption for a given Remes service,
formally described as a PTAn.

Let us assume (A, π) and (B, η) as our priced symbolic states. If A ⊆ B
and η(s) ≤ π(s), for all s ∈ A, we denote by (B, η) �inf (A, π) the preorder
expressing that (B, η) is “at most as big and cheap” as (A, π) [16].

Algorithm 1 employs two data-structures, Waiting (initially containing the
initial priced symbolic state (A,π0)) and Passed (initially empty) to hold the
priced symbolic states waiting to be examined, and those that are already ex-
plored, respectively. At each iteration, the algorithm selects a priced symbolic
state (A, π) from Waiting. If (A, π) is a goal state 2 not contained in a goal
state previously stored in SP (strongest postcondition), it is added to the calcu-
lated postcondition SP. Otherwise, if it is not a goal state and not contained in
a symbolic state previously stored in Passed, it is added to Passed, and all its
successor states are added to Waiting. When Waiting is empty, the strongest
postconditions calculated for each path reaching the goal state are returned.

We define Final (A, π) as follows:

Final (A,π) =

{
true, if (A, π) ∈ F

false, otherwise.

where F denotes the final priced symbolic state.
The algorithm terminates when Waiting is empty, that is, when no further

priced symbolic state is left to be examined. The algorithm results in a set
of strongest postconditions SP. Termination of the algorithm is guaranteed,
provided that
�inf is a well quasi-ordering on symbolic states [16].

In addition, information about the cost of service execution is carried within
the calculated strongest postcondition. The cost is assumed to be initially set to
∞ and updated whenever a goal state is found, which can be reached with the
lower cost than the current one.

2 Note that, in a PTAn describing a Remes service, the goal state is determined by a
unique location and hence, if Final (A, π) holds, then the whole of (A, π) is a goal
state, assuming that every symbolic state (A, π) satisfies the property that all states
in A are in the same location.

316 A. Čaušević, C. Seceleanu, and P. Pettersson

00 SP := {}
01 Passed := {}
02 Waiting := {({A0}, π0)}
03 while Waiting �= {} do
04 select (A, π) from Waiting

05 if (Final (A, π) ∧ ∀ (B, η) ∈ SP : (B, η) ��inf (A,π))
06 then SP := SP ∪ (A,π) else
07 if ∀ (B, η) ∈ Passed : (B, η) ��inf (A,π) then
08 Passed := Passed ∪ {(A, π)}
09 Waiting := Waiting ∪ ⋃

a∈Σ Posta(A, π)
10 end if
11 end if
12 end while
13 return SP

Algorithm 1. Abstract algorithm for computing the service strongest postcon-
dition and the minimum cost of reaching the goal state.

As stated, the algorithm provides a set of strongest postconditions calculated
for distinctive paths that reach the goal state (location) in the PTAn. Finally,
to get the actual strongest postcondition, we simplify the set SP. The strongest
postcondition can be simplified as follows:

∀ (A, π)i ∈ SP :
⋃
j �= i

(A,π)j ��inf (A, π)i

The simplification assumes that each symbolic priced state that is not included
into the reunion of all other symbolic priced states is subtracted. For more details
regarding simplification, we refer the reader to [7, 12].

Example Revisited. To illustrate our approach, we recall the simple service shown
in Fig. 2. In the automaton, it is possible to delay either in location l0 or l1.
Location l2 is assumed to be the final location. From l0, it is possible to take a
self-loop, for maximum two times (integer n is initially set to two) and then take
one of the available edges, or directly take one of the edges that lead to location
l1, and finally end up in location l2. Staying in locations l0 or l1 or taking any
of the available edges increases the accumulated cost, modeled by cost variable.
We are interested in calculating the minimum cost for reaching the final location
(l2) and the respective strongest postcondition.

Let us now assume that our service is annotated with precondition p, which we
assume satisfied, and postcondition q, which represents the service requirement,
as follows:

p = (x = 0 ∧ y = 0)

q = (1 ≤ res ≤ 10 ∧ x ≤ y)

In the above, x and y are clock variables, n is an integer variable that bounds
the number of loop iterations in location l0, and res is the variable modeling
the resource usage of the original service. In the corresponding PTAn represen-
tation, res translates into the automaton’s cost variable. By verifying q, within

Checking Correctness of Services Modeled as Priced Timed Automata 317

the minimum cost reachability context, we want to check whether our service
consumes at least 1 unit of resource, for the system to be considered correct.

Proving correctness of the PTAn w.r.t. this requirement relies on the strongest
postcondition computation, for minimum cost, according to Algorithm 1.

1
cost = 2y

ρ1

x

1
cost = 2y + 1

ρ2

x

yy

min cost (ρ1) = 0 min cost (ρ2) = min cost (ρ1) + 1 = 1

Fig. 3. Symbolic states for minimum reachability cost

In Fig. 3, we illustrate one trace of the minimum cost reachability analysis that
reaches the goal location l2. Note that in the minimum cost case, it is optimal
to reach l2 in zero time units, via location l1. The accumulated cost is then 1.
In case of the total accumulated delay 1, it is optimal to delay in l0 with cost
2, hence the cost of reaching l2 is 2y+ 1 and the strongest postcondition of this
trace is cost = 2y + 1 ∧ y ≤ 1 ∧ x ≤ y.

There are four more traces reaching l2. The total SP becomes

(cost = 2y + 1 ∧ y ≤ 1 ∧ x ≤ y) ∨
(cost = 2y + 2 ∧ y ≤ 1 ∧ x ≤ y) ∨
(cost = 2y + 3 ∧ y ≤ 1 ∧ x ≤ y) ∨
(cost = 2y + 3 ∧ y ≤ 1 ∧ x < y) ∨
(cost = 2y + 4 ∧ y ≤ 1 ∧ x < y)

After simplifying according to our definition, the total SP can be reduced to
the following:

(cost = 2y + 4 ∧ y ≤ 1 ∧ x < y)

It is easy to prove that the above strongest postcondition implies the following
predicate:

v = (1 ≤ cost ≤ 6 ∧ x ≤ y),

which in turn implies q, if cost is replaced by res. It then follows that the
minimum-cost strongest postcondition implies q, which completes our correct-
ness proof in this case.

3.3 Strongest Postcondition Calculation and Maximum Cost
Reachability

Algorithm 1 can be modified to provide the strongest postcondition calculation
together with the maximum reachability cost. At the service level, this would

318 A. Čaušević, C. Seceleanu, and P. Pettersson

translate into checking whether, in the worst-case of service resource-usage, the
latter does not exceed a prescribed upper bound. We here briefly sketch the
required modifications of Algorithm 1. As previously, we assume that all paths
eventually reach the goal state. The modification concerns the lines 05 to 07 of
Algorithm 1, which become as follows:

05 if (Final (A, π) ∧ ∀ (B, η) ∈ SP : (B, η) ��sup (A,π))
06 then SP := SP ∪ (A,π) else
07 if ∀ (B, η) ∈ Passed : (B, η) ��sup (A, π)) then

Algorithm 2. Extract of abstract algorithm for computing the service strongest
postcondition and the maximum cost of reaching the goal state.

The only difference from the previous algorithm is in the pruning of symbolic
priced states before adding them to Passed or SP. Any symbolic state (A, π)
can be pruned if there exists already a symbolic state (B, η), such that A ⊆ B
and π(s) ≤ η(s) for all states s ∈ A. Similarly, the strongest postcondition can
be simplified as follows:

∀ (A, π)i ∈ SP :
⋃
j �= i

(A,π)j ��sup (A,π)i

Example Revisited. The PTAn depicted in Fig. 2 is again used to illustrate
the approach described above. According to our methodology, to verify the cor-
rectness of the service w.r.t. p and q, we need to first compute the strongest
postcondition of the corresponding PTAn, under the assumption of worst-case
resource usage, that is, maximum cost in PTA terms.

1
cost = 2y

ρ1

max cost (ρ1) = 0

x

y

1
cost = 2y + 4

ρ4

max cost (ρ5) = max cost (ρ4) + 3 = 7

x

y

1
cost = 3y + 4

ρ5

x

max cost (ρ4) = max cost (ρ3) + 2 = 4

y

cost = 2y + 1

ρ2

x

y

max cost (ρ2) = max cost (ρ1) + 1 = 1

1
cost = 2y + 2

ρ3

x

y

max cost (ρ3) = max cost (ρ2) + 1 = 2

1

Fig. 4. Symbolic states for maximum reachability cost

Checking Correctness of Services Modeled as Priced Timed Automata 319

Fig. 4 depicts a trace of the reachability analysis, assuming the maximum cost
of reaching the goal location. In this case, the trace includes two self-loops in
l0, and then a jump to l1 via the lower of the two possible edges. The costs are
2y, 2y + 1, and 2y + 2 in l0, and then 3y + 4 in l1 (and in l2). The strongest
postcondition w.r.t. the maximum cost of the trace becomes cost = 3y+4∧ y ≤
1 ∧ x < y. The total SP of the whole PTAn w.r.t. maximum cost becomes

(cost = 3y + 1 ∧ y ≤ 1 ∧ x ≤ y) ∨
(cost = 3y + 2 ∧ y ≤ 1 ∧ x ≤ y) ∨
(cost = 3y + 3 ∧ y ≤ 1 ∧ x ≤ y) ∨
(cost = 3y + 3 ∧ y ≤ 1 ∧ x < y) ∨
(cost = 3y + 4 ∧ y ≤ 1 ∧ x < y)

The calculated SP can now be simplified according to our definition and reduced
to the following:

(cost = 3y + 4 ∧ y ≤ 1 ∧ x < y)

By applying simple rules of logic, we can verify that the above SP with maximum
cost implies the following predicate:

w = (1 ≤ cost ≤ 7 ∧ x ≤ y)

Next, after replacing cost by res in w, it follows straightforwardly that w[cost ←
res] ⇒ q, which entails that the strongest postcondition for maximum cost
implies the requirement q. This actually proves the correctness of our original
service, including its feasibility w.r.t. worst-case resource usage.

4 Discussion and Related Work

Beek et al. [24] give an exhaustive survey of several popular approaches [3, 15,
19,21] that provide means for service modeling, service composition, and service
correctness check. While all the described approaches offer a rich environment
for service modeling and composition, neither of them has included direct sup-
port for service correctness check. To overcome this limitation, recently, in some
of these approaches [8, 18, 22] formal methods have been employed with the in-
tention to provide guarantees for web-service compositions.

Diaz et al. describe how BPEL and WS-CDL services can be automatically
translated to timed automata and verified by Uppaal model checker [8]. How-
ever, the described approach is limited to checking service timing properties.
Narayanan et al. show how semantics of OWL-S, described using first-order
logic, can be translated to Petri-nets and then analyzed as such [18]. The analy-
sis includes reachability and liveness properties, and checking if the given service
or service compositions are deadlock free. Weber et al. introduce a formalism to
check control-flow correctness [25]. They first verify whether the given process is
sound, meaning that the control-flow of interest guarantees proper completion
and that there are no deadlocks. Further, they consider process models in which

320 A. Čaušević, C. Seceleanu, and P. Pettersson

the individual activities are annotated with logical preconditions and postcondi-
tions. In the last step, the authors aim to determine whether the interaction of
control flow and logical states of the process is correct. Gilmore et al. present a
model-driven approach for the development of SOS that facilitates the specifica-
tion of extra-functional properties [11]. The benefit of this approach is support
for reliability and performance analysis i.e., performance estimates based on the
timed process algebra PEPA.

Compared to these approaches, Remes services can be both mechanically
reasoned about [6], and also, translated to PTA [2] where one can apply algo-
rithmic computation of the strongest postcondition of PTA, as presented in this
paper. Moreover, Remes services formally described as PTA can be analyzed
with Uppaal , or Uppaal Cora tools3, for functional but also extra-functional
behaviors, in particular, timing and resource-wise behaviors.

5 Conclusions

In this paper, we have presented an approach that facilitates the automated
correctness check for services, formally described as PTA, by providing forward
analysis algorithms that compute the most precise postcondition (strongest post-
condition) that is guaranteed to hold upon termination of the service execution,
which corresponds to reaching a final location of the given PTAn service descrip-
tion. The approach serves as the alternative algorithmic verification method for
services modeled as Remes modes, complementary to the deductive method
that uses Hoare triples and the strongest postcondition semantics to prove ser-
vice correctness [6].

In our previous work, we show that proving the correctness of a Remes service
reduces to showing that the calculated strongest postcondition of that particu-
lar service is at least as strong as the user-defined requirement. The algorithms
that we propose here extend the existing maximum, minimum cost reachabil-
ity algorithms [17], with strongest postcondition calculation. In our case, the
cost variable models the service’s accumulated resource-usage. Consequently, the
computed strongest postcondition of a service modeled as a PTAn could contain
both functional, but also timing and resource-usage information, observable at
the end of the service execution.

The approach is illustrated on a small example, on which we also show resource
usage/cost calculation using symbolic states. However, the complexity of our
algorithms, and their applicability on larger examples have not been investigated
yet. We plan to validate our approach on a more complex case study in which
the direct application of the method on SOS will be emphasized.

As future work, we plan to address the above issues, by first implementing the
strongest postcondition algorithms in the Uppaal Cora tool. We also intend
to extend the Remes tool-chain with a postcondition calculator that would
run Uppaal Cora as a back-end.

3 For more information about the Uppaal and Uppaal Cora tool, visit the web
page www.uppaal.org.

www.uppaal.org.

Checking Correctness of Services Modeled as Priced Timed Automata 321

References

[1] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994), citeseer.nj.nec.com/alur94theory.html

[2] Alur, R., La Torre, S., Pappas, G.J.: Optimal Paths in Weighted Timed Automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

[3] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: BPEL4WS,
Business Process Execution Language for Web Services Version 1.1. IBM (2003)

[4] Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.,
Vaandrager, F.: Minimum-Cost Reachability for Priced Timed Automata. In: Di
Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034,
pp. 147–161. Springer, Heidelberg (2001)

[5] Causevic, A., Seceleanu, C., Pettersson, P.: Formal reasoning of resource-aware
services. Technical Report ISSN 1404-3041 ISRN MDH-MRTC-245/2010-1-SE,
Mälardalen University (June 2010)

[6] Čaušević, A., Seceleanu, C., Pettersson, P.: Modeling and Reasoning about Service
Behaviors and Their Compositions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010,
Part II. LNCS, vol. 6416, pp. 82–96. Springer, Heidelberg (2010)

[7] David, A., H̊akansson, J., Larsen, K.G., Pettersson, P.: Model checking timed
automata with priorities using DBM subtraction. In: Asarin, E., Bouyer, P. (eds.)
FORMATS 2006. LNCS, vol. 4202, pp. 128–142. Springer, Heidelberg (2006)

[8] Dı́az, G., Pardo, J.-J., Cambronero, M.-E., Valero, V., Cuartero, F.: Automatic
Translation of WS-CDL Choreographies to Timed Automata. In: Bravetti, M.,
Kloul, L., Zavattaro, G. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, pp. 230–
242. Springer, Heidelberg (2005)

[9] Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM 18(8), 453–457 (1975)

[10] Dijkstra, E.W., Scholten, C.S.: Predicate calculus and program semantics.
Springer-Verlag New York, Inc., New York (1990)

[11] Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Tribastone, M., Varró, D.: Non-
functional properties in the model-driven development of service-oriented systems.
SoftwareandSystemsModeling10, 287–311 (2011), doi: 10.1007/s10270-010-0155-y

[12] Hsiung, P.-A., Lin, S.-W.: Model checking timed systems with priorities. In: Pro-
ceedings of the 11th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA 2005, pp. 539–544. IEEE Com-
puter Society Press, Washington, DC (2005)

[13] Ivanov, D.: Integrating formal analysis methods in PROGRESS IDE. Master of
science thesis, Malardalen Research and Technology Centre, Vasteras, Sweden
(June 2011)

[14] Ivanov, D., Orlic, M., Seceleanu, C., Vulgarakis, A.: Remes tool-chain - a set
of integrated tools for behavioral modeling and analysis of embedded systems.
In: Proceedings of the 25th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2010 (September 2010)

[15] Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.: Web
services choreography description language version 1.0. World Wide Web Consor-
tium, Candidate Recommendation CR-ws-cdl-10-20051109 (November 2005)

citeseer.nj.nec.com/alur94theory.html

322 A. Čaušević, C. Seceleanu, and P. Pettersson

[16] Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P.,
Romijn, J.: As Cheap as Possible: Efficient Cost-Optimal Reachability for Priced
Timed Automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 493–505. Springer, Heidelberg (2001),
http://portal.acm.org/citation.cfm?id=647770.734117

[17] Larsen, K.G., Rasmussen, J.I.: Optimal reachability for multi-priced timed au-
tomata. Theor. Comput. Sci. 390, 197–213 (2008),
http://portal.acm.org/citation.cfm?id=1330765.1330861

[18] Narayanan, S., McIlraith, S.A.: Simulation, verification and automated compo-
sition of web services. In: WWW 2002: Proceedings of the 11th International
Conference on World Wide Web, pp. 77–88. ACM, New York (2002)

[19] Object Management Group (OMG): Business Process Modeling Notation
(BPMN) version 1.1 (January 2008), http://www.omg.org/spec/BPMN/1.1/

[20] Orlić, M.: Resource usage prediction in component-based software systems. Phd
thesis, Faculty of electrical engineering and computing, University of Zagreb
(November 2010)

[21] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web service modeling ontology. Applied
Ontology 1(1), 77–106 (2005)

[22] Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra. In: ICWS 2004: Proceedings of the IEEE International
Conference on Web Services, p. 43. IEEE Computer Society Press, Washington,
DC (2004)

[23] Seceleanu, C., Vulgarakis, A., Pettersson, P.: Remes: A resource model for em-
bedded systems. In: In Proc. of the 14th IEEE International Conference on Engi-
neering of Complex Computer Systems (ICECCS 2009). IEEE Computer Society
(June 2009)

[24] Ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Formal methods for service compo-
sition. Annals of Mathematics, Computing & Teleinformatics 1(5), 1–10 (2007),
http://journals.teilar.gr/amct/; In: Annals of Mathematics, Computing &
Teleinformatics, vol. 1(5), pp. 1–10. Technological Education Institute of Larissa
(TEIL), Greece (2007)

[25] Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of
semantic business process models. Distrib. Parallel Databases 27, 271–343 (2010),
http://dx.doi.org/10.1007/s10619-010-7060-9

http://portal.acm.org/citation.cfm?id=647770.734117
http://portal.acm.org/citation.cfm?id=1330765.1330861
http://www.omg.org/spec/BPMN/1.1/
http://journals.teilar.gr/amct/
http://dx.doi.org/10.1007/s10619-010-7060-9

Software Aspects of Robotic Systems

Jens Knoop and Dietmar Schreiner

Institute of Computer Languages,
Vienna University of Technology,

1040 Vienna, Austria
{knoop,schreiner}@complang.tuwien.ac.at

http://www.complang.tuwien.ac.at

The development of autonomous robotic systems has experienced a remark-
able boost within the last years. Away from stationary manufacturing units,
current robots have grown up into autonomous, mobile systems that not only
interact with real world environments, but also fulfill mission critical tasks in
collaboration with human individuals on a reliable basis. Typical fields of ap-
plication are unmanned vehicles for exploration but also for transportation, re-
connaissance and search-and-rescue in hazardous environments, and ambient
assisted living for elderly or disabled people.

Hence, algorithms in cognition, computer vision, and locomotion have become
hot-spots of research and development. In addition, modern concepts like evolu-
tionary and bio-inspired design have entered the stage to tackle open issues in
robotics and to cope with domain specific properties like inherent indeterminism.

The back-side of this boost is an even larger increase in complexity of modern
robotic systems. Numerous actuators and sensors have to be controlled simul-
taneously. Complex actions have to be performed via timed parallel execution
of multiple instruction streams on distinct electronic control units. Autonomy,
especially long term autonomy as required by deep-sea or space exploration
missions, necessitates features of fault-tolerance, error recovery, or at least well-
defined fallbacks. Due to the physical interaction of robots with the real world,
safety violations are extremely harmful, in the worst-case they might lead to
severe damage and even to casualties.

This track continues the 1st International ISoLA Workshop on Software As-
pects of Robotic Systems that has been held in October 2011 in Vienna. It brings
together researchers and practitioners who are interested in the software aspect of
robotic systems and stretches from robot programming, to languages and compi-
lation techniques, real-time and fault tolerance, dependability, software architec-
tures, computer vision, cognitive robotics, multi-robot-coordination, simulation,
bio-inspired algorithms to machine-learning.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, p. 323, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.complang.tuwien.ac.at

Process-Oriented Geoinformation Systems

and Applications

Hartmut Asche

FG Geoinformatik, Universität Potsdam (Germany)
gislab@uni-potsdam.de

It is a well-accepted truism that the vast majority of digital data have a geo-
graphical reference. In the past decades geodata have been processed and visu-
alised by dedicated software products of the geoinformation systems (GIS) type
for a limited range of scientific and professional applications. However, For more
than a deacade, however, both geodata and GIS functionalities are having an
increasing, by now almost ubiquitious impact on various fields of everyday life.
Against this background space-related, process-orientend software environments
will play a decisive role in the development and delivery of a variety of geoinfor-
mation and geovisualisation products and services for a wide range of scientific
and practical applications alike. This track aims at providing an update on cur-
rent as well as emerging issues and applications in ubiquitious geoinformation
and geovisualisation.

This track contains four papers concerning

– Concepts, processes and techniques of 3d online atlases, by René Sieber, Livia
Hollenstein, and Remo Eichenberger (ETH Zürich),

– Process Control based on Data Usability for Deriving Remote Sensing Value
Added Data Products, by Erik Borg and Bernd Fichtelmann (DLR Neustre-
litz), and Hartmut Asche (Univ. Potsdam),

– Comparison of topical machine learning algorithms (random forest, artifi-
cial neural network, support vector machine) with maximum likelihood for
supervised crop type classification, by Ingmar Nitze and Urs Schulthess (De-
partment of Geography, University College Cork), and Hartmut Asche (Univ.
Potsdam),

– Web-based on-demand service for the generation of quality maps: concept
and processing pipeline, by Hartmut Asche and Rita Engemaier (FG Geoin-
formatik, Universität Potsdam).

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, p. 324, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 325–326, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Concepts and Techniques of an Online 3D Atlas –
Challenges in Cartographic 3D Geovisualization

René Sieber, Livia Hollenstein, and Remo Eichenberger

Institute of Cartography and Geoinformation, ETH Zurich, Switzerland
{sieber,hollenstein,eichenberger}@karto.baug.ethz.ch

Abstract. During the last two decades numerous interactive atlas and mapping
systems have been developed, offering a variety of mainly statistical 2d map
types like choropleths, point symbols and diagrams but scarcely also some 3d
map types like panoramic views and block diagrams. These systems include a
bundle of atlas functionality for spatial and temporal navigation, map
visualization, and layer handling.

Today, atlas systems have to compete with a multiplicity of freely available
map services, geoportals and virtual globes; thus, atlases have to strive for new
horizons. At the same time, the big popularity of geodata and geo-applications
is offering a unique chance to digital atlas products in order to activate new user
groups and to animate them for collaboration.

Results of a detailed survey on current products of geovisualization are
pointing out that the majority of up-to-date’s applications is originally dedicated
and conceived for web and mobile use. The attractiveness of such applications
is primary based on the immediate benefit in everyday life, on the up-to-
dateness of the data offered, and on their integrative possibilities. In addition,
applications using 3d concepts and virtual globes are persuading users by their
intuitive navigation and spatial clarity. However, these applications are rather
heterogeneous concerning content handling and cartographic quality.

Therefore, the main challenge for future digital atlases will be to merge the
big trends of 3d mapping, online and mobile applications with cartographic
design and atlas-specific functionality. Research and development should focus
on cartographic 3d visualization and interactivity for different user groups and
applications.

The Swiss Atlas Platform (APS) project, launched in 2011, is dealing with
these aspects of online 3d cartography in order to set up a basic 3d atlas
configuration. Based on this APS, the new product line of ATLAS OF

SWITZERLAND and affiliated atlases will be developed.
During the first project phase, the concept of a 3d atlas platform has been

defined, having the potential to realize a unique combination of interactive
thematic cartography and 3d atlas technology. From the point of view of system
design, the Swiss Atlas Platform consists of extensible modules for spatial
navigation, map visualization and information retrieval, unified under a
flexible graphical user interface. These modules contain a large number of
cartographic and general functions; core functionality will be implemented first
which in a later phase can be extended according to user needs.

326 R. Sieber, L. Hollenstein, and R. Eichenberger

Currently, work is done on the visualization core module, allowing for 2d
and 3d mapping by means of osgEarth – a dedicated virtual globe engine. This
visualization engine is capable of handling large amounts of geographical data
and web services. Essentially, the system offers 2d and 3d visualization of
raster data (DTMs, grids, map sheets, aerial and satellite images) and vector
data (choropleths, univariate symbols and diagrams, POIs), and even solid 3d
objects. Moreover, it allows for intuitive spatial navigation, layer management,
information query, and labeling.

Future core development will be necessary to refine cartographic 3d
representation techniques and to implement interactive methods. Concurrently,
a flexible GUI for different platforms has to be set up and a lot of cartographic
and editorial work has to be done to realize an online 3d atlas application.

Handling Heterogeneity in Formal Developments

of Hardware and Software Systems

Yamine Ait-Ameur2 and Dominique Méry1

1 Université de Lorraine, LORIA CNRS UMR 7503, Vandœuvre-lès-Nancy, France
mery@loria.fr

2 Ecole Nationale Supérieure d’Electrotechnique, d’Electronique, d’Informatique,
d’Hydraulique et des Télécommunications (ENSEEIHT), IRIT

2, rue Charles Camichel, B.P. 7122, 31071 Toulouse Cedex 786961
yamine@enseeiht.fr

Nowadays, the formal development of hardware and/or software systems implies
the design of several models on which properties are expressed and then for-
mally verified. Moreover, these models may be expressed in different modeling
languages [1] and semantics. As a consequence, this development process leads to
heterogeneous developments. Heterogeneity may appear in two different forms.

The first one is related to the large variety of formal development techniques
and to the semantics and proof systems carried out by these techniques. Several
formal descriptions may be associated to a given system with different semantics.

The second type of heterogeneity results from the modeling domain [2–4]
chosen for formalizing the described system. Usually, this domain is not explicitly
described nor formalized. Most of the knowledge related to this domain is hardly
encoded by the formal system description. The last decade has made use of
ontologies [5] as an explicit formalization of such modeling domains. Expressing,
in formal models, references to ontological concepts contribute to reduce such a
heterogeneity. It also allows developers to address specific properties related to
interoperable, adaptive, reconfigurable and plastic systems.

This thematic track is considering two technical papers, which are included
into this proceedings and a presentation talk of the related topics by the
organizers.

A first paper [6], entitled Leveraging formal verification tools for DSML users:
a process modeling case study, provides a nice case study on the problems of
model driven development, where a translational semantics is used to link the
client oriented (business) models with the engineer oriented (formal) models.
The key issue is one of feedback - once the client oriented models are translated
to formal models then how to feedback the results of running formal methods
tools to the clients in a language that they can understand.

A second paper [7], entitled An Ontological Pivot Model to Interoperate Het-
erogeneous User Requirements, proposes a conceptual ontology-driven approach
to facilitate the interoperability and to reduce the heterogeneity among different
formalisms using a pivot- model-based approach; it provides a final model, which
encapsulates the different stakeholders requirements.

The two papers highlight the recent advances in this research field and en-
courage further research and prospective activities to tackle questions related to

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 327–328, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

328 Y. Ait-Ameur and D. Méry

multi-modeling and meta-modeling formal techniques, the definition of unified
theories and heterogeneous reasoning, the validation and verification methods for
heterogeneous formal models, specification, design and architecture languages,
ontology based formal modeling, domain ontologies and explicit model annota-
tion, ontology based reasoning for formal verification, formal models for ontolo-
gies and formal models annotation.

Moreover, we are concerned with the separation of concerns when reasoning
about properties of models. An intrinsic property is a property that a model
has of itself, independent of other models, including its context. An extrinsic
(or relational) property of a model depends on that models relationship with
other models, including its context. Without a more formal software engineering
development approach, based on separation of implicit and explicit, the compo-
sition of software components in common contexts risks compromising correct
operation of the resulting system. This is a significant problem when software
systems are constructed from heterogeneous components that must be reliable
in unreliable contexts[8]. As an example, mass is an intrinsic property whereas
weight is an extrinsic property that depends on the contextual gravitational
field. Development of a software control system for a space craft will, very likely,
need models of both mass and weight in order for the system to be verified to
function correctly. Thus, we conjecture the need for separation of intrinsic and
extrinsic concerns by building explicit formal models of contextual semantics. Al-
though the concerns need to be cleanly separated, the models need to be tightly
integrated: achieving both is a significant challenge.

References

1. Bjorner, D., Henson, M.C. (eds.): Logics of Specification Languages. EATCS Text-
book in Computer Science. Springer (2007)

2. Bjorner, D.: Software Engineering 1 Abstraction and Modelling. Texts in Theoretical
Computer Science. An EATCS Series (2006) ISBN: 978-3-540-21149-5

3. Bjorner, D.: Software Engineering 2 Specification of Systems and Languages. Texts
in Theoretical Computer Science. An EATCS Series (2006) ISBN: 978-3-540-21150-1

4. Bjorner, D.: Software Engineering 3 Domains, Requirements, and Software Design.
Texts in Theoretical Computer Science. An EATCS Series (2006) ISBN: 978-3-540-
21151-8

5. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

6. Zalila, F., Crégut, X., Pantel, M.: Leveraging Formal Verification Tools for DSML
Users: A Process Modeling Case Study. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012, Part II. LNCS, vol. 7610, pp. 330–344. Springer, Heidelberg (2012)

7. Boukhari, I., Bellatreche, L., Jean, S.: An Ontological Pivot Model to Interoperate
Heterogeneous User Requirements. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part II. LNCS, vol. 7610, pp. 345–359. Springer, Heidelberg (2012)

8. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In: Pro-
ceedings of the First Workshop on Self-healing Systems, WOSS 2002, pp. 27–32.
ACM, New York (2002)

Leveraging Formal Verification Tools for DSML Users:
A Process Modeling Case Study

Faiez Zalila, Xavier Crégut, and Marc Pantel

Université de Toulouse, IRIT – France
firstname.lastname@enseeiht.fr

Abstract. In the last decade, Model Driven Engineering (MDE) has been used
to improve the development of safety critical systems by providing early Vali-
dation and Verification (V&V) tools for Domain Specific Modeling Languages
(DSML). Verification of behavioral models is mainly addressed by translating
domain specific models to formal verification dedicated languages in order to
use the sophisticated associated tools such as model-checkers. This approach has
been successfully applied in many different contexts, but it has a major draw-
back: the user has to interact with the formal tools. In this paper, we present an
illustrated approach that allows the designer to formally express the expected be-
havioral properties using a user oriented language — a temporal extension of
OCL —, that is automatically translated into the formal language; and then to
get feedback from the assessment of these properties using its domain language
without having to deal with the formal verification language nor with the under-
lying translational semantics. This work is based on the metamodeling pattern
for executable DSML that extends the DSML metamodel to integrate concerns
related to execution and behavior.

Keywords: Domain specific modeling languages, Model formal verification, Be-
havioral properties, Translational semantics, Verification feedback.

1 Introduction

TOPCASED1 is a project2 started in 2005 in the French “Aerospace Valley” cluster that
gathers academic and industrial partners [1]. TOPCASED is dedicated to the develop-
ment of an open source Computer Assisted Software Engineering (CASE) tool for the
development of safety critical aeronautics, automotive and space embedded systems.
Such developments will range from system and architecture specifications to software
and hardware implementation through equipment definition.

TOPCASED provides modeling languages, both domain specific (SAM, EAST-ADL,
SAE AADL, SDL3 and XSPEM4) and general purpose (SYSML, UML, etc.) and

1 Toolkit In OPen source for Critical Applications & SystEms Development, www.topcased.org
2 This work was funded by the French ministries of Industry and Research and the Midi-

Pyrénées regional authorities through the FUI TOPCASED, ANR OpenEmbedd, ITEA
SPICES and ITEA2 OPEES projects.

3 Specification and Description Language: is an object-oriented formal language developed and
standardized by The International Telecommunication Standardization Sector (ITU-T).

4 OMG SPEM extended for execution.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 329–343, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

330 F. Zalila, X. Crégut, and M. Pantel

associated tools like graphical and textual editors, documentation generators, validation
through model animation, verification through model checking, version management,
traceability, etc. TOPCASED relies on MDE generative technologies to define the lan-
guages and build all these tools for all these languages. It is thus an MDE platform
both for building system models and for building the platform itself. MDE technologies
used in TOPCASED for defining and tooling languages are centered around Ecore5 and
configuration models taken as inputs by generative or interpretative tools.

Because the TOPCASED toolkit addresses safety critical systems, Validation and Ver-
ification activities are of primary importance and should be performed as early as pos-
sible at design time on the various models, both to reduce the development costs and to
provide higher quality systems.

Validation is performed through model animation [2]: the designer builds a model
using a graphical editor and can execute it according to scenarios. The runtime data pro-
duced by these executions is displayed as decorations of the graphical representation of
the model or thanks to a dedicated view. Model animation is thus very similar to source
level debugging for software. Scenario driven model execution runs through a single path
in the set of all possible executions for the model. The use of several scenarios provides a
coverage of the various possible executions but this validation is usually not exhaustive.

On the contrary, verification aims to check whether a property holds for all possible
executions of the model. Model-checkers are dedicated tools for that purpose. These
tools usually rely on two formal verification languages: one to model the behavior of
the system and one to express the properties to check. For example, the TINA tool-
box [3], available in TOPCASED, relies on Time Petri nets (TPN) for the behavior and
State-Event Linear Temporal Logic (SE-LTL) for the properties. Thus, the use of such
model checking tools requires to translate the system business domain model into an
equivalent behavior model in the considered formal verification language and to ex-
press the system requirements as properties. Furthermore, results are obtained on the
formal side as execution traces and have to be translated back into the system domain.
This is a well-known technique called translational semantics. Nevertheless, even if
the translations are automated, they are often defined in an ad hoc way, specific to the
considered business domain. Furthermore, system requirements are most of the time di-
rectly written as formal properties, in the verification tool domain and not in the system
domain. Thus, the designer must have a good understanding of: a) the various domain
languages; b) the behavior and property languages from the various tools; and c) on the
translation scheme used to go from one to the other in both directions. Verification is
thus a difficult activity requiring many abilities that are generally not available to the ca-
sual business domain designer. Our purpose is to provide methods and tools in order to
ease the integration of model checking in MDE toolchain. This integration will provide
seamless verification facilities to the business domain designer without requiring him to
deal with target verification language and associated model-checkers. We will describe
a partly automated MDE driven tool chain for expressing the system requirements in the
business domain language, translating the requirements to model checking tools prop-
erty languages, and translating the failure execution traces back to the designer’s world.

5 Ecore is the metalanguage of Eclipse Modeling Framework,

www.eclipse.org/modeling/emf

Leveraging Formal Verification Tools for DSML Users 331

V
er

ifi
ca

ti
o

n
 s

te
p

b
ac

k
re

su
lt

s

model
checker

Transformations level

formal
property

Business level Formal level

business
constraint

business
model

business
results

formal
model

formal
results

Fig. 1. General approach of a translational semantics with feedbacks

Our contribution consists in reifying elements involved in the semantics of a DSML in
order to ease, and partially automate, the different translations that are summarized in
Figure 1. More precisely, it includes:

1. the use of MDE technologies on both sides, business and formal verification do-
mains based on a metamodel architecture that combines concerns related to model
execution, including runtime information and the stimuli that make the model evolve.
This metamodel guides the definition of the translational semantics and simplifies
the production of business domain feedback to the end-user.

2. a user dedicated language for the expression of business properties.
3. automatic translation of business properties into formal verification domain prop-

erties based on the translational semantics.
4. automatic translation of the verification results obtained in the verification domain

to the business domain. When a property does not hold, the obtained counter ex-
ample is presented to the user either as a business domain scenario or a snapshot of
the model completed with runtime information.

The approach is illustrated on a case study which concerns modeling of process using
a process description language derived from the SPEM OMG Standard [4].

The paper is organized as follows. Section 2 presents the case study from the end-
user viewpoint. It defines some constraints to assess and the expected feedback. Sec-
tion 3 describes the formalism used for modeling processes, the language of expression
of temporal constraints and extensions made on the DSML to be able to capture verifi-
cation results. Section 4 presents the formal language and tools. Section 5 describes all
required transformations for process verification and verification feedbacks. Section 6
considers related works and the last section concludes.

2 End-User Concerns

This section presents the business domain – process modelling – considered in the case
study and the concerns of end-users. We first present the kind of process models the
end-user wants to build. Then we explain the kind of properties he wants to check on
his models. Finally we describe the feedback the end-user expects from verification
tools in order to get insight on the errors the models may contain.

332 F. Zalila, X. Crégut, and M. Pantel

2.1 Business Models

2

finishToFinish

2 2

finishToFinish

Programming

Documenting

TestCaseWriting

Designing

startToStart
finishToStart startToStart

Developer

count = 32
1

Designer

count = 2

2

1

Computer

count = 3

1

startToStart

Fig. 2. A business development process

Figure 2 shows an example of a
process model. It corresponds to
a simplified development process
composed of four activities, each
represented in an ellipse: Program-
ming, Designing, Test case writing
and Documenting. Arrows between
activities indicate dependencies: the
target activity depends on the source
activity. The label specifies the kind
of dependency. The word before the
“To” is the state that should have
been reached by the source activity
in order to perform the action on the
target activity, action which appears
after the “To”. For example, the “finishToStart” dependency between Designing and
Programming means that Programming can only be started when Designing has been
finished. Documenting and TestCaseWriting can start once Designing is started (start-
ToStart) but Documenting cannot finish if Designing is not finished (finishToFinish).
The dependencies put between Programming and TestCaseWriting enforces a test
driven development: programming can only starts when test cases are already started
and, obviously, test case writing can only be finished when programming is finished in
order to take into account test coverage.

Rounded rectangles represent the number of available resources (2 Designers, 3 De-
velopers and 3 Computers). Dashed arrows indicate how many resources an activity
requires. Programming needs two developers and two computers. Resources are allo-
cated when an activity starts and freed when it finishes.

These processes are deliberately simplified to avoid overloading this presentation but
time constraints or hierarchical decomposition of activities could be added.

2.2 User Verifications

To validate or to verify a model, the user may check that properties derived from the
system requirements hold on that model. We focus on behavioral properties, properties
that concern the evolution of the model over time. Static properties are also important
for the end user but they can easily be included in the editing tool using for example an
OCL checker.

The user may be interested in general properties not specific to a given process
model. For example, he may want to check whether a process model may finish or
not (P1). A process finishes if all its activities finish while respecting constraints im-
posed by dependencies and resource allocation. If these properties hold, the user may
want to get a terminating scenario and use it to pilot the process execution.

The user may also want to verify properties that are specific to a particular process
model. As an example, he might want to know if in all cases Documenting is finished
before Designing is finished (P2).

Leveraging Formal Verification Tools for DSML Users 333

2.3 Verification Feedback

Once the end user has defined his model and expressed his requirements through prop-
erties, he wants to have feedback on the assessment of those properties. If a property
evaluates to true, then the requirement is fulfilled. But if a property evaluates to false,
the user expects to have feedback in order to understand why the property does not
hold. For example, a counter example may be exhibited. Obviously, this counter exam-
ple should be expressed at the business domain level.

For instance, using the example shown in Figure 2, property P1 does not hold and
there is indeed a deadlock during process execution. The user can be provided with a
counter example that explains the deadlock as a scenario like the one of Figure 3 which
lists the actions (start or finish) applied on activities. The deadlock is due to the fact
that Programming cannot be started because a Computer is missing. If a computer was
added, then the P1 requirement would hold. The property P2 does not hold. Indeed, it
is possible to finish Designing before Documenting is finished. A possible scenario is
shown on Figure 4 (counter-example). The user may want to play those scenarios using
a model animator like the one developed in the TOPCASED project [5].

Start Designing

Finish Designing

Start Documenting

Finish Documenting
Start TestCaseWriting

Fig. 3. A scenario from P1

Start Designing

Finish Designing

Start Documenting

Start TestCaseWriting
Finish Documenting

Fig. 4. A scenario from P2

3 Business Metamodeling

Metamodels generally focus on business domain concerns and do not take into account
other elements required to execute a model. As model execution may be of interest for
most of the modeling languages, especially in the context of safety critical systems, we
have defined a general solution to describe all the data required to define an execution
semantics for any executable modeling language [6]. It is a kind of metamodeling pat-
tern that may be used from design time to run time. This pattern has been applied in the
TOPCASED project to build animators [2] that allow validation of SysML/UML State
Machine and Activity diagrams or SAM (an automate-based language used by Airbus)
models. It is also helpful to ease the definition of forward and backward transformations
toward verification languages in order to get back failure scenarios from model checkers.

The pattern advocates to structure an executable DSML metamodel in such a way
that the different concerns are stressed: the business domain, the queries a user may ask
on a model to assess it satisfies its requirements (i.e. the model business properties), the
stimuli that make the model evolve. The corresponding XSPEM metamodel is shown
on Figure 5 and detailed in the next paragraphs.

3.1 XSPEM Domain Definition Metamodel (DDMM)

A metamodel defines the concepts (metaclasses) of the business domain addressed
by the DSML and the relationships between them (references). In the executable

334 F. Zalila, X. Crégut, and M. Pantel

metamodel pattern defined in TOPCASED, this reference metamodel is called the Do-
main Definition MetaModel, DDMM . The DDMM of XSPEM is shown on Figure 5
(package named DDMM at the bottom). It defines the concepts of process (Process)
composed of a set of (1) workdefinitions (WorkDefinition) that model the activities
(described in section 2.1) performed during the process, (2) worksequences (WorkSe-
quence) that define dependency relationships between workdefinitions and (3) resources
(Resource) allocated to activities (Parameter).

Obviously, this metamodel could be extended with well-formedness rules for exam-
ple using OCL to express constraints not captured by the metamodel definition (names
of workdefinitions have to be unique, worksequences should not be reflexive, resources
counts should be positive, etc.). This aspect related to the static semantics of the DSML
is not in the scope of this paper.

3.2 XSPEM Query Definition Metamodel (QDMM) and Formal Expression of
Requirements

End users’ behavioral properties usually rely on information that is not directly available
in the DDMM because they only exist when the model is executed (runtime information).
For example, the previous properties rely on the state of a workdefinition: started or
finished. As usual, this information has to be reified. Thus, we have chosen to extend
the DDMM with a new metamodel which describes the queries the user can conduct
on his models. We call it QDMM (Query Definition MetaModel). For XSPEM, queries
such as isStarted and isFinished can be applied on a WorkDefinition (see top right of
Figure 5). A query isFinished is defined on Process in order to model the end-user
business requirement, (P1), defined in section 2.2.

To be checked, requirements of section 2.2 have to be formally expressed. OCL is
not well suited for that purpose because it only allows the specification of structural
properties and some Floyd-Hoare behavioral properties for methods. Nevertheless, it is
now a widely known language and a few temporal extensions of OCL have been pro-
posed in order to specify event-based behavioral properties whereas OCL only targets
function-based properties. We have chosen to rely on Temporal OCL and especially on
the proposal from [7] as the syntax of this extension is quite natural for OCL users.
It introduces usual future-oriented temporal operators such as always, sometimes, next,
existsNext as well as their past-oriented duals.

Here-after are the expression of the P1 and P2 requirements identified in section 2.2.
They rely on the DDMM but also on the queries defined in the QDMM.

context Process -- P1 requirement
inv isFinished:

eventually (self.workDefinitions->
forAll(a: WorkDefinition | a.isFinished())))

context Process -- P2 requirement
inv: always self.(getWD("Documenting").isFinished()

precedes self.getWD("Designing").isFinished());
context Process

def: getWD(WDName: String): WorkDefinition =
self.workDefinitions

->select(wd: WorkDefinition | wd.name = WDName)
->asList->first()

Leveraging Formal Verification Tools for DSML Users 335

<<merge>> <<merge>>DDMM

QDMM

isStarted()
isFinished()

WorkDefinition

EDMM
Event

WorkDefinitionEvent

StartWD FinishWD

TM3
Scenario

Trace
name : String
date : Int
Internal : Boolean

RuntimeEvent

startToStart
startToFinish
finishToStart
finishToFinish

<<enumeration>>
WSType

minTime : Int
maxTime : Int

Process

name : String
minTime : Int
maxTime : Int

WorkDefinition
linkType : WSType
WorkSequence

description : String

Guidance

Parameter

name : String
count : Int

Resource

0 .. * workDefinitions

1
successor

0 .. * workSequences

predecessor
1

linkToSuccessor
0 .. *

0 .. *
linkToPredecessor

0..*
guidances 0..*

guidances

0..* parameters

1 workDefinition

1 ressource

0..* ressources

0 .. *
traces

0 .. *
runtimeEvents

1
workDefinition

<<import>>

getWD(String)
isFinished()

Process

Fig. 5. XSPEM Metamodels

We have build a TOCL text editor dedicated to the end-user thanks to the xText tool
from Eclipse Textual Modeling Framework (TMF) and the TOCL grammar of [7].

3.3 XSPEM Event Definition and Trace Management Metamodels (EDMM &
TM3)

The DDMM and QDMM allow to express the requirements but we also need to show
to the user the results obtained in the formal verification domain. A Snapshot can be
expressed using QDMM because it represents all runtime information of interest to the
user. To express the scenario corresponding to a counter example (like the one shown
in Figure 4) we define two other metamodels that also extend the DDMM. The first
one is the Trace Management Metamodel (TM3). It allows definition of a scenario as
a sequence of runtime events — a stimulus that makes the model evolve. The TM3 is
independent of any DSML. On the contrary, the Event Definition Metamodel (EDMM)
is specific to a DSML and defines its runtime events. For instance, runtime events for
XSPEM include “start a workdefinition” and “finish a workdefinition”.

4 Formal Level Metamodeling

In order to represent the semantic data and ease the exchange of verification results
with business domain models, the metamodeling pattern is also applied on the formal

336 F. Zalila, X. Crégut, and M. Pantel

language, TPN in the case of the TINA toolbox [3]. Like XSPEM, the TPN metamodel
is composed of several parts (figure 6). The DDMM describes a Petri net (PetriNet)
composed of nodes (Node) that denote places (Place) or transitions (Transition). Nodes
are linked together by arcs (Arc). Arcs can be normal ones or read-arcs (ArcKind). The
attribute initialtokenCount specifies the number of tokens consumed in the source node
or produced in the target one (in case of a read-arc, it is only used to check whether the
source place contains at least the specified number of tokens). Finally, a time interval
can be expressed on transitions.

The QDMM defines only one query corresponding to the number of token stored
in a place (tokenCount). We can define other queries like for example fireableTransition
corresponding to the set of fireable transitions in a petri net. The SDMM (State Definition
Metamodel) is an implementation of the QDMM, in this case a trivial implementation
that defines an attribute for each query.

Finally, the EDMM defines only one event FireTransitionEvent and, obviously, the
TM3 is the same as the one presented for XSPEM, as it is DSML-independent.

<<import>>

EDMM

PetriNetEvent

time : Double
FireTransitionEvent

TM3

traces
runtimeEvents 0..*

0..*

Scenario

Trace
name : String
date : Int
Internal : Boolean

RuntimeEvent

<<merge>>
DDMM

name : String
PetriNet

weight : Int
kind : ArcKind

Arc

name : String
Node

initialtokenCount : Int

Place

min_time : Int
max_time : Int

Transition

- normal
- readArc

<<enumeration>>
ArcKind

source

target

1

1

arcs
nodes

0..*
0..*

outgoings
0..*

incomings
0..*

firedTransition

QDMM

<<merge>>

SDMM

Place
tokenCount : Int

tokensCount ()

Place

<<merge>>

<<merge>>

1..*
dynamicPlace

Fig. 6. PETRINET metamodels

5 The Transformation Level

The last steps concern the transformation level of Figure 1. It consists first in defin-
ing the translational semantics, that is translating an XSPEM model into a Petri net
one. Then, TOCL properties have to be translated into LTL formulae so that they can
be checked by the TINA toolbox. Finally, results obtained on the formal verification
domain have to be translated back into the business domain. One can notice that busi-
ness metamodel (or model) TOCL invariants may be expressed to assert that they are
preserved by the translational semantics.

All these transformations are defined at the metamodel level. They have thus only to
be defined once by DSML and formal domain experts and the end-user can use them
for any of the XSPEM models.

Leveraging Formal Verification Tools for DSML Users 337

WriteDocumentations_finished

WriteDocumentations_started

WriteDocumentations_notStarted

WriteDocumentations_inProgress

Design_finished

Design_started

Design_notStarted

Design_inProgress

Design_finish

Design_start WriteDocumentations_start

WriteDocumentations_finish

2

Designer

2
2

1
1

Fig. 7. Generated Petri net for parts of Figure 2

5.1 Translation XSPEM 2petrinet

Several translational semantics may be defined for XSPEM according to the level of
details in the execution that we want to model and the kind of properties we want to
assess. Thus, we advocate in [8] that defining the translational semantics should be
property-driven to favor the definition of a minimal semantics, that will allow to answer
to the questions the user may ask about his models.

As the QDMM metamodel records all the aspects of interest to the end user, the expert
has to verify that all the queries may be expressed using the formal language translation.
Thus, the QDMM can be used as a guide to write the translation. For example, in the for-
mal language, one should be able to determine if a workdefinition is started or finished
as these queries are part of the QDMM. A WorkDefinition is thus translated into four
places characterizing its state (notStarted, started, running and finished) linked by two
transitions. These transitions model the actions that we want to observe on a workdefi-
nition: one can start a workdefinition and then finish it. A workdefinition is considered
started if it is either running or finished. This is recorded by the place named started.

AWorkSequence becomes a read-arc6 from one place of the source workdefinition
(either started or finished) to a transition of the target workdefinition (either start or
finish) according to the kind of WorkSequence (linkKind attribute). A resource becomes
a place whose initial marking (initialtokenCount) corresponds to its count. Each Pa-
rameter element is translated into two arcs, the first one to take resources when the
concerned workdefinition starts and the second one to release them when the workdefi-
nition finishes.

Figure 7 contains the Petri net model resulting from the application of the transla-
tional semantics on a part of the XSPEM model from Figure 2 (Designing and Doc-
umenting workdefinitions and worksequences between them as well as the Developer
resource).

The ATL transformation language [9] has been used to implement this translational
semantics. First, an ATL module describes the transformation from an XSPEM model
to a Petri net model [10] (not shown here7). Then, an ATL query8 generates the textual

6 A read-arc only checks that there is enough tokens in the input place but those tokens are not
withdrawn when the transition is fired.

7 http://combemale.svn.enseeiht.fr/proto/fr.irit.acadie.xspem2tina/
8 This query is obviously independent of the translational semantics.

338 F. Zalila, X. Crégut, and M. Pantel

ATL ATL

ATL

xSPEM_queries

ATL2LTLHOT-
TOCL2ATL

mapping

property
.ltl

Process.
netxSPEM2PetriNet

Process.
spem

constraints.
tocl

depends on

Fig. 8. Architecture of the ATL transformations

syntax used by the TINA tools from a Petri net model. This part could be implemented
with any model to text language but it was simpler to rely on the same tool.

5.2 Translating TOCL to SE-LTL

Translating TOCL properties into LTL implies dealing with three main aspects. First,
temporal operators have to be translated. It is straightforward since LTL provides the
same kind of temporal operators. Second, OCL operators have to be evaluated, espe-
cially those that query the model. Finally, queries specified in XSPEM QDMM have to
be translated into LTL. The meaning of these queries obviously depends on the pre-
viously defined translational semantics. Thus, while defining the translational seman-
tics, the expert has to provide an ATL library called XSPEM_queries which defines all
queries as helpers returning the appropriate LTL formulae. For example the WorkDef-
inition query “isFinished” becomes a helper “isFinished()” that computes the string
“self.name + "_finished"”.

The TOCL to LTL transformation is composed of two stages (top of Figure 8). The
first one is a Higher Order Transformation (HOT-TOCL2ATL) that takes as input a
TOCL model and generates an ATL transformation, which is the one executed in the
second stage. This second transformation takes as input the business domain model
(conforming to XSPEM in our case study) upon which the TOCL properties handled in
the first stage will be run to generate the LTL formulae.

This transformation strategy results from two points. First, it is not possible in the
first stage to use the XSPEM_queries library because there is no reflexivity in ATL.
Second, several TOCL operators can be applied to each element of an input model. So,
ATL iteration rules must be generated to traverse the model.

One strong point is that the TOCL2LTL transformation is generic and automated.
It is only parametrized by the ATL module that provides the definitions of the QDMM

queries for the target formal property language.
Applied on P1, the TOCL2LTL transformation produces the following formulae:

<> (Designing_finished /\ Programming_finished
/\ TestCaseWriting_finished /\ Documenting_finished)

The formulae corresponding to P2 is:

[] ([] (- Designing_finished) U Documenting_finished)

Leveraging Formal Verification Tools for DSML Users 339

5.3 Checking SE-LTL Properties

Once the Petri net and the LTL formulae have been generated, the selt model checker
from the TINA toolbox is used. If the LTL formulae does not hold, it exhibits a counter-
example: a specific execution of the model that leads to a state where the property is
not satisfied. Figure 9 shows the counter example corresponding to the P1 property. It
consists of a sequence of states. A state is a snapshot of the model showing the places
marking. After each state, there is the transition fired to go to the next state. The example
shows a deadlock (last transition).

FALSE
state 0: Programming_notStarted Designing_notStarted Documenting_notStarted TestCaseWriting_notStarted computer*3

designer*2 developer*3
-Designing_start->
state 1: Programming_notStarted Designing_inProgress Designing_started Documenting_notStarted

TestCaseWriting_notStarted computer developer*3
-Designing_finish->
state 2: Programming_notStarted Designing_finished Designing_started Documenting_notStarted

TestCaseWriting_notStarted computer*3 designer*2 developer*3
-Documenting_start->
state 3: Programming_notStarted Designing_finished Designing_started Documenting_inProgress Documenting_started

TestCaseWriting_notStarted computer*2 designer developer*3
-Documenting_finish->
state 4: Programming_notStarted Designing_finished Designing_started Documenting_finished Documenting_started

TestCaseWriting_notStarted computer*3 designer*2 developer*3
-TestCaseWriting_start->

* [accepting] state 5: Programming_notStarted Designing_finished Designing_started Documenting_finished
Documenting_started TestCaseWriting_inProgress TestCaseWriting_started computer designer*2 developer*2

-deadlock->
state 5: Programming_notStarted Designing_finished Designing_started Documenting_finished Documenting_started

TestCaseWriting_inProgress TestCaseWriting_started computer designer*2 developer*2
[accepting all]

0.001s

Fig. 9. Selt output for P1 checked on example of Figure 2

5.4 Designer Dedicated Feedback

Model verification based on a translational semantics provides a significant advantage:
the reuse of existing sophisticated model checkers. But there is one significant draw-
back: results are obtained at the verification level and have to be translated back to the
business domain level. This section explains this translation.

Generating PETRINET Scenario and Trace. Using xText, we analyze the output
of the selt model-checker and produce a PETRINET scenario and trace using the
PETRINET metamodels and the TM3 presented in sections 3 and 4. The PETRINET
scenario corresponding to the counter example of Figure 9 is the following:

FireTransitionEvent Designing_start
FireTransitionEvent Designing_finish

FireTransitionEvent Documenting_start

FireTransitionEvent Documenting_finish
FireTransitionEvent TestCaseWriting_start

The same tool builds the PETRINET models that corresponds to each states of the
counter-example (not shown here).

340 F. Zalila, X. Crégut, and M. Pantel

Transformations
level

xSPEM2PetriNet

process.net

TOCL2LTL

property.ltl

FALSE

xSPEM
DDMM

xSPEM
TM3

xSPEM
EDMM

<<import>>

SCN2xSPEM

xSPEM
Simulator

V
er

ifi
ca

ti
o

n
 s

te
p

b
ac

k
re

su
lt

s

xSPEM
QDMM

PetriNet
DDMM

PetriNet
TM3

PetriNet
EDMM

WD_finished

WD_started

WD_notStarted

WD_inProgress

WD_start

WD_finish

<<import>>

<<merge>>

formal
property

Business
model
level

Business
metamodel

level

Formal
metamodel

level

Formal
model
level

<<merge>>

<<merge>>

Fig. 10. General approach illustrated with the XSPEM case study

Translating PETRINET Scenario to XSPEM Scenario. The PETRINET Scenario
is then transformed to an XSPEM Scenario. This transformation converts transition
firing events FireTransitionEvent to XSPEM events, either start (StartWD) or finish
(FinishWD) a WorkDefinition. The naming convention defined in the Mapping ATL
library are used to decode the fired transition names and produce the corresponding
XSPEM events and their target workdefinitions. The XSPEM scenario corresponding
to the previous PETRINET one is the one shown on Figure 3. To obtain the scenario
of figure 4, we have to check the negation of P2 because we want an example which
satisfies P2.

The same approach is used to translate PETRINET snapshots (that is PETRINET

models) into XSPEM ones. It could be automated using traceability data between
source and target models generated during the transformation step.

6 Related Work

Translational semantics with feedbacking verification results: The main advantage of
translational semantics is the reuse of existing tools from the target technical space
like model-checkers. Its major issue is that it provides results in the target space that
must be translated back to the business domain space. Hegedus et al. [11] propose a
method based on a traceability mechanism of model transformations. It relies on a re-
lation between elements of the source (BPEL) and the target (PETRINET) metamodel,

Leveraging Formal Verification Tools for DSML Users 341

implemented by means of annotations in the transformation’s source code. The authors
propose a technique for the back-annotation of simulation traces based on change-
driven model transformations from traces generated by SPIN model checker to the
specific animator named BPEL Animation Controller. However, in our approach, we
try to generate a scenario (a set of events) that will be animated by a generic animator.
In [12], authors use traceability links of the transformation which generates Alloy mod-
els from UML. The back-annotation transformation is automatically generated based on
these traceability links using a QVT-based implementation. Here, the back-annotation is
supported for static model instances, and not for execution traces of Executable DSML
models like in our case. In [13], the authors define an approach named Arcade that
uses SPIN model checker for evaluating safety and liveness properties of a Domain
Reference Architecture that is translated to Promela language. Arcade interprets SPIN
counter-example and generates an Architecture Trace Diagram (ATD) that has two di-
mensions: a vertical dimension that represents time and a horizontal dimension rep-
resenting SPIN processes. Nevertheless, they do not define a high-level abstraction
between business level and formal level. Contrary to our work, we separate the two
domains (DSML and formal verification ones) and we hide all formal aspects by trans-
lating formal results to business ones. In [14], Pelliccione et al. present a software tool
platform for the model-based design and validation of software architectures, named
CHARMY, that offers an extension called SASIM deriving from Theseus approach [15].
Both translate the violation trace from SPIN model checker on a generated sequence
diagram and an animated UML state diagrams. vUML [16] also use the same approach.
CHARMY, Theseus and vUML are based on a very ad hoc approach that uses UML
diagrams and SPIN model checker. On the contrary, we rely on a generic approach that
can be applied to other DSML.

All the above approaches aim at verifying a specific DSML through formal tools by
translating business semantics into formal one and by feedbacking formal verification
results to the initial business level. However, our work provides a generic approach for
the verification of executable DSML. It is based on the explicit definition of the differ-
ent concerns involved in model execution (runtime information expressed as queries,
events) thanks to the executable DSML metamodelling pattern. Based on this pattern
and the translation semantics, generic transformations allow to translate user properties
to logical formulae and verification results back to business level.

Behavioral property Patterns: To verify BPEL service composition schemas, [17]
proposes a property specification language based on ontologies and named PROPOLS
which allows composition of the patterns defined in [18]. These patterns are close to
TOCL temporal operators and composition corresponds to OCL operators. Rather than
relying on a Query Definition MetaModel, a one to one mapping has to be defined for
each property item to the corresponding BPEL operation.

In [19], the authors provide a graphical tool named PSC (Property Sequence Chart),
to specify temporal properties as an extended notation of a selected subset of the UML
2.0 Interaction Sequence Diagrams. Theseus approach [15] uses SPIDER to translate
natural language properties to the property specification language of the targeted anal-
ysis tools. Both, PSC and SPIDER are specific approaches used in a specific domain
between UML and SPIN. User-oriented property languages, graphical or not, are an

342 F. Zalila, X. Crégut, and M. Pantel

important point to make formal verification accessible to end users. TOCL is certainly
not the best-suited language despite it is an extension of OCL, a well accepted lan-
guage in MDE. Nevertheless, we consider it can be used as a pivot language for more
user-oriented languages.

7 Conclusion

Using the XSPEM case study, this paper has illustrated a method to ease the integration
of verification tools for safety and liveness properties on executable models. It relies on
the executable DSML metamodeling pattern using a translation to the Time Petri nets
as formal verification language providing the semantics. This could be applied to any
other kind of formal language providing automated verification tools. We have recently
applied it to the FIACRE intermediate verification language [20], that abstracts several
existing verification toolsets such as TINA and CADP in order to factorize common
aspects and avoid redefining transformations for all toolsets. This experiment results
will be presented in a forthcoming paper. The integration is provided through QDMM

extension to the pattern and automated translations on the property side.
This approach has been designed for domain specific languages and this is a key

point to keep it simple. It is currently being experimented for several significantly dif-
ferent DSMLs (and sub-languages from general purpose languages) such as data flow
models, SAE AADL, SDL, UML and SYSML class, state machine, activity and com-
posite structure diagrams. But, it is still to be shown if it can scale up to more complex
languages or to languages that combine different models of computation.

These preliminary experiments allowed a first validation of our proposal for the
systematic construction of verification tools for behavioral properties expressed on a
DSML. We have chosen to rely on TOCL to express properties at the business domain
level because it is close to OCL. However, some early feedback have shown that it is
still not well suited to many end users. Therefore, we might need to investigate new
user-oriented language for expressing behavioral constraints. It is a problem that has al-
ready been identified in [21]: the authors have defined a new dialect of linear temporal
logic more suitable for control engineers.

Finally, we propose to ease the feedback of verification results. We currently rely on
naming conventions. We are investigating the explicit construction of the links between
the business domain and verification models elements during the downward translation
so that they can be used during the upward feedback.

References

1. Farail, P., Gaufillet, P., Canals, A., Camus, C.L., Sciamma, D., Michel, P., Crégut, X., Pantel,
M.: The TOPCASED project: a toolkit in open source for critical aeronautic systems design.
In: Embedded Real Time Software (ERTS), Toulouse, France (January 2006)

2. Crégut, X., Combemale, B., Pantel, M., Faudoux, R., Pavei, J.: Generative Technologies
for Model Animation in the TOPCASED Platform. In: Kühne, T., Selic, B., Gervais, M.-P.,
Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 90–103. Springer, Heidelberg (2010)

Leveraging Formal Verification Tools for DSML Users 343

3. Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA – Construction of Abstract
State Spaces for Petri Nets and Time Petri Nets. International Journal of Production Re-
search 42(14), 2741–2756 (2004)

4. Software & Systems Process Engineering Metamodel (SPEM) 2.0, Object Management
Group, Inc. (October 2007)

5. Combemale, B., Crégut, X., Giacometti, J.-P., Michel, P., Pantel, M.: Introducing Simulation
and Model Animation in the MDE TOPCASED Toolkit. In: Proceedings of the 4th European
Congress EMBEDDED REAL TIME SOFTWARE (ERTS), Toulouse, France (2008)

6. Combemale, B.: Simulation et vérification de modèle par métamodélisation exécutable, E. U.
Européennes, ed. (June 2010)

7. Ziemann, P., Gogolla, M.: An Extension of OCL with Temporal Logic. In: Jürjens, J., Cen-
garle, M.-V., Fernandez, E., Rumpe, B., Sandner, R. (eds.) Critical Systems Development
with UML – Proceedings of the UML 2002 Workshop, vol. TUM-I0208, pp. 53–62, Univer-
sité Technique de Munich, Institut d’Informatique (September 2002)

8. Combemale, B., Crégut, X., Garoche, P.-L., Thirioux, X., Vernadat, F.: A property-driven
approach to formal verification of process models. In: ICEIS, Selected Papers (2007)

9. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

10. Bendraou, R., Combemale, B., Crégut, X., Gervais, M.-P.: Definition of an executable spem
2.0. In: APSEC, pp. 390–397. IEEE Computer Society (2007)

11. Hegedus, A., Bergmann, G., Rath, I., Varro, D.: Back-annotation of simulation traces with
change-driven model transformations. In: IEEE International Conference on Software Engi-
neering and Formal Methods, vol. 0, pp. 145–155 (2010)

12. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and back again. In: Pro-
ceedings of the 6th International Workshop on Model-Driven Engineering, Verification and
Validation (MODEVVA 2009). ACM International Conference Proceeding Series (2009)

13. Barber, K.S., Graser, T., Holt, J.: Providing early feedback in the development cycle through
automated application of model checking to software architectures. In: Proceedings of the
16th IEEE International Conference on Automated Software Engineering, ASE 2001 (2001)

14. Pelliccione, P., Inverardi, P., Muccini, H.: Charmy: A framework for designing and verifying
architectural specifications. IEEE Trans. Soft. Eng. 35(3), 325–346 (2009)

15. Goldsby, H.J., Cheng, B.H.C., Konrad, S., Kamdoum, S.: A Visualization Framework for the
Modeling and Formal Analysis of High Assurance Systems. In: Wang, J., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 707–721. Springer, Heidelberg
(2006)

16. Lilius, J., Paltor, I.: vuml: a tool for verifying uml models. In: 14th IEEE International Con-
ference on Automated Software Engineering, pp. 255–258 (October 1999)

17. Yu, J., Manh, T., Han, J., Jin, Y., Han, Y., Wang, J.: Pattern Based Property Specification and
Verification for Service Composition, pp. 156–168 (2006)

18. Dwyer, M., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state veri-
fication. In: Proceedings of the Second Workshop on Formal Methods in Software Practice,
pp. 7–15. ACM Press (1998)

19. Autili, M., Inverardi, P., Pelliccione, P.: Graphical scenarios for specifying temporal proper-
ties: an automated approach. Automated Software Engg. 14, 293–340 (2007)

20. Berthomieu, B., Bodeveix, J.-P., Filali, M., Farail, P., Gaufillet, P., Garavel, H., Lang, F.:
FIACRE: an Intermediate Language for Model Verification in the TOPCASED Environment.
In: 4th European Congress EMBEDDED REAL TIME SOFTWARE (ERTS) (January 2008)

21. Ljungkrantz, O., Akesson, K., Fabian, M., Yuan, C.: A formal specification language for plc-
based control logic. In: 2010 8th IEEE International Conference on Industrial Informatics
(INDIN), pp. 1067–1072 (July 2010)

An Ontological Pivot Model to Interoperate

Heterogeneous User Requirements

Ilyès Boukhari, Ladjel Bellatreche�, and Stéphane Jean

LIAS - ISAE-ENSMA - Futuroscope, France
{ilyes.boukhari,bellatreche,jean}@ensma.fr

Abstract. With the globalisation, the development of advanced appli-
cations and complex systems requires the implication of a large number
of designers that may come from different fields, departments, research
laboratories, etc. Usually, they are free to use their favourite vocabular-
ies and formalisms to express the requirements related to their assigned
parts of a given project. Various formalisms exist to express user require-
ments: informal (interviews), semi-formal (UML use case, goal oriented,
etc.) and formal (B-Method, etc.). The concepts and properties used by
these formalisms may belong to different alphabets. This situation makes
the interoperability between user requirement formalism models difficult.
In this paper, we propose a conceptual ontology-driven approach to fa-
cilitate this interoperability and to reduce the heterogeneities between
formalisms. We first present the concepts related to conceptual ontologies
and their connection with the user requirement formalisms. Secondly, a
pivot model allowing the integration of different semi-formal models is
described, through a case study. Finally, an implementation based on
model driven approach (MDA) is given.

Keywords: Requirement Engineering, Ontologies, Goal-oriented, MDA.

1 Introduction

The collection, the representation and the analysis of user requirements (UR)
are the core phases ensuring the success of projects and applications [1]. UR are
used on each stage of the life cycle of information based-applications: concep-
tual, logical and physical. They allow constructing conceptual models of appli-
cations by the means of properties (attributes) identified through UR analysis.
At the logical phase, they facilitate the determination of important properties
and constraints such as primary keys of a database schema. In the physical
phase, they are used for benchmarking and simulating the target applications1.
Their omnipresence of UR generates a design approach called user-centred de-
sign approach (UCDA) [1]. It allows an interactive development of systems and
focuses specifically on making systems usable and safe for their users. It also
empowers users and motivates them to learn and explore new system solutions.

� Corresponding author.
1 Queries are usually exactracted from the UR.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part II, LNCS 7610, pp. 344–358, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Ontology-Driven Approach for User Requirements 345

Databases [2], data warehousing [3], data integration systems [4] are examples
of applications developed according the UCDA.

Usually, most of studies developed according the UCDA assume the pres-
ence of one or several homogenous designers. By homogenous, we mean that
designers use the same formalism to express their UR and the same vocabulary.
Usually, the process of designing complex systems and applications needs to de-
compose them into several sub-systems. According the ANSI-EIA-632 Standard
(Processes For Engineering a System)2, a system is a set of products required
to achieve a goal or function. With the globalization, the process of making
a system requires the involvement of various designers from different depart-
ments, research laboratories, countries, etc. Two successful projects are exam-
ples of such a situation: (i) the project of the jumbo Airbus A380 involving
four sites in different countries: Toulouse (France), Madrid (Spain), Hamburg
(Germany) and Filton (England). The European project Health-e-Child initi-
ated in 2006 aiming at developing a platform for prevention of health children
(www.health-e-child.org/).

Designing such a project represents a big challenge and is time-consuming
for large scale companies. Several factors increase its complexity: (a) the large
number of designers involved in developing the target system, (b) the diversity
of formalisms used by designers, (c) the used vocabularies are heterogeneous
and (d) the autonomy of designers. (a) The large number of designers: devel-
oping complex applications for very large scale companies requires the presence
of various designers and experts. Each designer has her/his habitudes; she/he
uses her/his favourite formalism to express UR. (b) The diversity of the used
formalisms: designers may use different formalisms to express UR that may be
classified into three main categories: (i) informal (linguistic) formalisms: they are
based on natural languages with or without structuring rules. They may gener-
ate ambiguities because neither their syntaxes, nor their semantics are perfectly
defined. Among these techniques, we can quote questionnaires and interviews.
(ii) Semi-formal formalisms are proposed, especially for domains, with struc-
tured knowledge and expertises. We can cite for example, engineering, medicine,
environment, etc. These models are generally based on graphical notations with
a specified syntax. They offer a clear vision of the system and their use facil-
itates the communication between project’s designers. UML notations, KAOS
(Knowledge Acquisition in autOmated Specification) [5], the MERISE method
[6] are examples of this class of formalisms. (iii) Formal formalisms : are based
on mathematical or logical notations which provide a precise and no ambiguous
framework for requirements modelling. They allow automatic verification of UR
(ex., B-method [7]). (c) The diversity of the used vocabularies: each designer
uses her/his vocabulary to express application requirements. This may generate
semantic and syntax conflicts between designers. Structural heterogeneity exists
because designers may use different structures and/or different formats to express
requirements. The criterion concerns the three categories of UR. The autonomy
of the sources significantly increases the heterogeneity between generated UR

2 http://www.geia.org/

www.health-e-child.org/
http://www.geia.org/

346 I. Boukhari, L. Bellatreche, and S. Jean

models. Indeed, the designers may work independently, and usually the inter-
action between them is done at the end of the requirement process phase. The
semantic heterogeneity is due to different interpretations of real world objects,
generating several categories of conflicts (naming conflicts, scaling conflicts, con-
founding conflicts and representation conflicts [4]). Several suggest proposed the
use of ontologies to reduce different conflicts that may exists between actors [8].
They play the role of global conceptual models. Conceptual ontologies can be
defined as explicit, formal descriptions of concepts and their relationships that
exist in a certain universe of discourse, together with a shared vocabulary to
refer to these concepts [9]. They may offer the alphabet on which designers pick
their concepts and properties.

Based on the above discussion, we claim that to interoperate different de-
signer’s models, an integration solution is more feasible. Generally, integration
technology becomes a big industry, where solutions were proposed for integrating
various objects: information sources (called Enterprise Information Integration),
application integration (Enterprise Application Integration), Services (Service
Integration), workflows, etc. Unfortunately, integrating user requirements does
not get more attention compared to other objects, except the research efforts
performed by Lopez et al. [10], where a genetic meta-model (a priori defined)
is proposed. It allows designers expressing their requirements and represent-
ing them by their favourite formalisms. The main drawbacks of this work are:
(1) it does not offer autonomy to designers; (2) designers need to understand
the generic model to express their requirements and (3) it ignores semantic
and syntax heterogeneities that may exist between the expressed requirements.
In this paper, we present an ontology-based integration solution that reduces
the heterogeneity between vocabularies and formalisms using a model driven
architecture.

The rest of this paper is organized as follows: section 2 reviews the related
work. Section 3 describes the different heterogeneities that may occur when
interoperating user requirements. Section 4 describes the case used to illustrate
the steps of our proposal. Section 5 presents our proposal. Section 6 concludes
the paper and suggests some future issues.

2 Related Work

Nowadays, ontologies are largely used in several research and industrial domains
such as Semantic Web [9], data integration [4], e-commerce, data warehousing
[3], natural language processing, data mining, etc. Several industrial and aca-
demic Database Management Systems offer solutions for managing and storing
ontological instances (Oracle, IBM Sor). Ontologies have been incorporated in
the field of requirement engineering since 80s. They contribute largely in speci-
fying, unifying and reasoning on UR [11],[12],[13],[14],[2]. [11] proposed an onto-
logical method for analyzing requirements, where a mapping between specified
requirements and ontological elements is established. This ontology consists of
a thesaurus and inference rules. [14] proposed an approach to improve the natu-
ral language for specifying requirements by the use of linguistic ontologies. The

Ontology-Driven Approach for User Requirements 347

authors propose a tool, called RESI (Requirements Engineering Specification
Improver) to support requirement analysts working with textual specifications.
RESI identifies the linguistic defection and offers a dialog-system suggesting im-
proving the quality of the requirements by marking the ambiguous specifications.
[13] dealt with the problem of expressing UR and their refinement. To do so,
the authors propose the use of goal-oriented analysis language to describe each
requirement that can be refined into sub-goals. A tool called AGORA (Goal-
Oriented Requirements Analysis) supporting this approach is developed. It is
based on domain ontology. [2] proposed the use of linguistic ontologies for facil-
itating the collection and the expression of UR to develop conceptual models of
traditional databases. The majority of these studies dealt with the heterogeneity
of vocabularies, but they ignore the heterogeneity of the used formalisms, except
the work of Lopez et al. [10].

3 Heterogeneity Types

In this section, we present the two heterogeneity types that occur when express-
ing requirements that concern vocabularies and formalisms.

3.1 Heterogeneity of Vocabularies

The autonomy of designers generates vocabulary heterogeneity. This heterogene-
ity is more classical and has been identified in the context of multi-databases and
data source integration. [4] identified the following conflicts: naming conflicts,
scaling conflicts, confounding conflicts and representation conflicts.

– Naming conflicts : occur when naming schemes of concepts differ significantly.
The most frequently case is the presence of synonyms and homonyms. For
example, a naming conflict occurs when actor use Student to express re-
quirements for the England university, other actor uses Scolar to express
requirements for the French university.

– Scaling conflicts : occur when different reference systems are used to measure
a value (for example, marks of a student can be given on 20 or on 10).

– Confounding conflicts : occur when concepts seem to have the same meaning,
but differ in reality due to different measuring contexts. For example, the
weight of a student depends on the date where it was measured.

– Representation conflicts : arise when two formalisms describe the same con-
cept in different ways. For example, in one formalism, student’s information
is represented by four elements (Name, Marks, Weight, Age) and in another
one it is represented by three elements (Name, Marks, Weight).

Figure 1 illustrates these conflicts. Another problem involved in the requirements
engineering is the risk of presence of inconsistencies and ambiguities between
requirements at semantic level. These conflicts may be detected by the use of
ontologies [8].

348 I. Boukhari, L. Bellatreche, and S. Jean

RQ2: The system shall allow the administration

to enter scholar informations

RQ1: The system shall allow the administration

to enter student informations

Local Requirement 1

Student

Informations

Name

Marks (/20)

Scholar

Informations

Name

Marks(/10)

Local Requirement 2

Weight

Naming conflict

Representation conflict

Weight

Age

Scaling conflict

Confounding conflict

Actor 1 Actor 2

RQ2: The system shall allow the administration

to enter scholar informations

RQ1: The system shall allow the administration

to enter student informations

Local Requirement 1

Student

Informations

Name

Marks (/20)

Scholar

Informations

Name

Marks(/10)

Local Requirement 2

Weight

Naming conflict

Representation conflict

Weight

Age

Scaling conflict

Confounding conflict

Actor 1 Actor 2

Fig. 1. Types of semantics conflict

3.2 Heterogeneity of Formalisms

The heterogeneity of vocabularies may impact the formalisms, since they are
defined on these vocabularies. As we said before, several types of formalisms
exist and in each type, various models exist. This generates schematic and rep-
resentations conflicts between formalisms. Sometimes it is hard for a designer
to move from formalism to another; even they share the same knowledge and
terminology (actors, actions, results, etc.).

To reduce the heterogeneity between vocabularies and formalisms, their ho-
mogenisation is required. For the vocabulary homogenisation, we propose the
use of conceptual ontologies allowing designers to pick their concepts and prop-
erties to express their requirements. For formalisms, a pivot model facilitating
their interoperability is proposed. These homogenisations are described in the
next sections.

3.3 Ontologies: Concepts and Formalisms

Several definitions have being proposed for ontology [15,16,9]. [9] defines a do-
main ontology as a domain conceptualization in terms of classes and properties
that is formal, consensual and referencable. This definition emphasizes the three
criteria that distinguish ontologies from all other models used in Computer Sci-
ence such as Conceptual Models. An ontology is:

– Formal : an ontology is a conceptualization based on a formal theory which
allows to check some level of consistency and to perform some level of
automatic reasoning over the ontology-defined concepts and individuals.
In our context, ontologies offer reasoning capabilities that can be used ei-
ther to detect incompleteness and inconsistency included in a requirements
specification.

– Consensual : the consensual aspect that characterizes ontologies allows de-
signer to share/exchange their models with other project groups referencing
the same ontologies.

– Capability to be referenced : each concept in the ontology (i.e., class and
property) has the capability to be referenced through a universally unique
identifier. This mechanism allows defining the semantic of requirements.

Ontology-Driven Approach for User Requirements 349

Two main categories of ontologies have emerged in the literature [9]. Conceptual
Ontologies (CO) and Linguistic Ontologies (LO):

– Conceptual Ontologies (CO) represent object categories and properties that
exist in a given domain whereas.

– Linguistic Ontologies (LO) define the terms that appear in a given do-
main. LOs include relationships between terms such as synonymous-of or
homonymous-of. They are useful for system-user communication as well as
providing the terms used in a given domain in different natural languages.
Wordnet3 is a well-known example of such ontologies.

With the increasing use of ontologies, a number of ontology models and lan-
guages with different formalisms have been proposed: PLIB [9] for engineering
applications or semantic web languages like RDFS [17] and OWL [18]. We focus
in our study on conceptual ontologies, whose schema can be formally defined as
follows: [8]: O :< C,P ,Sub,Applic >:

– C is the set of classes describing the concepts of a given domain.
– P is the set of properties describing the instances of C.
– Sub : C → 2C is the subsumption function, which associates each class Ci its

direct subsumed classes. Two subsumption relationships are introduced in
our framework: (i) OOSub: describes the usual subsumption of inheritance
relationship, where the whole set of applicable properties is inherited. (ii)
OntoSub: describes a subsumption relationship without inheritance, where a
part of the whole applicable properties may be imported from a subsuming
class to the subsumed one. OntoSub is the formal operator. OntoSub is
formalized by ’case-of’ relationships in the PLIB formalism [9]. A similar
mechanism exists in OWL ontologies, where an ontology can refer another
ontology by using different namespaces.

– Applic : C → 2P is a function that associates to each ontology class, the
properties that are applicable for each instance of this class.

3.4 Pivot Model as a Solution for Formalism Heterogeneity

Let D = {D1, D2, ..., Dn} be the set of designers involved in the development
of a given application. Each designer Di (1 ≤ i ≤ n) has to express her/his
requirements URDi using her/his favourite formalism Fi and terminology (al-
phabet) Ti. To interoperate different requirements, a naive solution may exist.

It consists in establishing (n×(n−1)
2) different mappings between n formalisms.

This solution is costly, since it requires considerable efforts to map them, espe-
cially, if the number of used formalisms is large. To reduce this complexity, the
pivot model is suitable. It offers a generic representation of different formalisms.
More precisely, when using a pivot model the number of mapping is reduced to
n mappings.

More formally, a UR integration system according a pivot approach is repre-
sented as a triple: < P ;UR;M >, where P is a pivot schema (generic), expressed

3 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

350 I. Boukhari, L. Bellatreche, and S. Jean

Fig. 2. A partial view of LUBM benchmark ontology

in a given formalismFP over an alphabet T P ; UR is the set of all UR, expressed in
different formalisms and terminologies andM is the mapping between P and UR.

To facilitate the understanding of our heterogeneity of formalisms, we judge
that it is helpful for readers to consider a case study.

4 Case Study

In this study, we suppose the existence of a global domain ontology that rep-
resents University activities. The ontology of the Lehigh University Benchmark
(LUBM) is used [19] (Figure 2). Three designers from three countries (UK,
Spain and France) express their requirements using three different semi-formal
formalisms: the UML use cases (UK), the Goal-Oriented language (Spain) and
MERISE (Process Conceptual Model, MCT) (France). Next sections briefly de-
scribe the three formalisms.

4.1 UML Use Case Model

Use Case modelling is a technique which was developed to define requirements
more than for capturing them [20]. A use case model consists of actors, use
cases and relationships between them. It is used to represent the environment
by actors and the scope of the system by use cases. An actor is an external
element to the system (e.g. a user, another system) that interacts with the
system. According to Jacobson [20], a use case is ”a description of a set of
sequence of actions, including variants, that a system performs that yields an
observable result of value to a particular actor”. Formally, a use case model may
be defined as follows:

UCmodel:<Actor,UseCase,Relationship,ExtentionPoint,Constraint >, where:

– UseCase: is the set of use cases, where each one is described by < A,R >,
where:

Ontology-Driven Approach for User Requirements 351

• A = {a1,a2,...,an}, a set of actions that a system performs that yields an
observable result. For each a ∈ A , a: f(P), such as P = {p1,p2,...,pn},
a set of properties satisfied by the system.

• R = {r1,r2,...,rn}, a set of results realized by the system.

Figure 3 shows an example of use case model used by the UK designer.

« Includes »

Enter study
informations

Administration

Enter personal
informations

- Enter student age

- Enter student name

- Enter student emailAddress

- Enter student doctoralDegreeFrom

Actions

« Includes »

Enter student
informations

University

Properties

« Includes »

Enter study
informations

Administration

Enter personal
informations

- Enter student age

- Enter student name

- Enter student emailAddress

- Enter student doctoralDegreeFrom

Actions

« Includes »

Enter student
informations

University

Properties

Fig. 3. Example of Use Case

Enter student
informations

Enter personal
informationsEnter study

informations

Enter student
emailAddress

Enter student
age

Enter student
name

AND

Enter student
doctoralDegreeFrom

Administration

University

Action 4
Action 1 Action 2 Action 3

Properties

Enter student
informations

Enter personal
informationsEnter study

informations

Enter student
emailAddress

Enter student
age

Enter student
name

AND

Enter student
doctoralDegreeFrom

Administration

University

Action 4
Action 1 Action 2 Action 3

Enter student
informations

Enter personal
informationsEnter study

informations

Enter student
emailAddress

Enter student
age

Enter student
name

AND

Enter student
doctoralDegreeFrom

Administration

University

Action 4
Action 1 Action 2 Action 3

Properties

Fig. 4. Example of a Goal Model

4.2 Goal-Oriented Model

A goal is an objective the system under consideration should achieve. Goal-
oriented requirements engineering is concerned with the use of goals for eliciting,
elaborating, structuring, specifying, analyzing, negotiating, documenting, and
modifying requirements [5]. Goal-oriented produces the so called goal graphs,
which represent goals and their logical relationships in an AND-OR graph form.
According to the definition of Goal Question Metric (GQM) [21] ‘A goal is de-
fined for an object, for a variety of reasons, with respect to various models of
quality, from various points of view, relative to a particular environment’. Note
that this formalism has been used to designing relational data warehouse appli-
cations [22]. Goal formulations thus refer to intended properties to be ensured,
they are optative statements as opposed to indicative ones, and bounded by the
subject matter [23]. Based on the previous definitions and i* framework4, the
goal oriented formalism model may be represented as follows:

Goalmodel: < Actor,Goal,Relationship,AND/OR decomposition >, in which:

– Goal : is the set of goals, where a goal is defined by < A,R,O,Q, C >, such
that:
• A = {a1,a2,...,an}, a set of actions that achieve a goal; For each a ∈ A ,
a: f(P), such as P = {p1, p2, ..., pn}, a set of properties;

• R = {r1,r2,...,rn}, a set of results (reasons) achieved by a goal;
• Q = {q1,q2,...,qn}, a set of models of quality (parameters) are entities
possibly influencing a goal result;

4 Is a framework using notions of Goals and Agents.

352 I. Boukhari, L. Bellatreche, and S. Jean

• O: the goal object;
• C: the goal context (environment).

Figure 4 gives an example of goal model used by the Spanish designer.

4.3 Process Conceptual Model

MERISE is an information system design methodology and developed by the
French Industry Ministry in 70’s [6]. One of its functionalities, it offers a model
that describes the different ordered processes (treatments) that will run on the
target information system. A process is represented by a set of events, syn-
chronisation criteria (using logical connectors between events) and operation.
An event is an activity which, on its own or when synchronised with other
events, can trigger an operation within the system. An event can also result
from an operation and is then issued a result [24]. An operation is a set of or-
dered actions that a system performs that yields a result. More formally, the
process conceptual model of the Merise methodology is defined as: MCTmodel:
< Actor,Event,Operation, Synchronization >, where an operation is described
as follows:

– Operation: is the set of operations. An operation is defined as:< A, E ,R >,
such as:
• A = {a1,a2,...,an}, a set of actions that a system performs in response
to an event that yields an observable result. For each a ∈ A , a: f(P),
such as P = {p1,p2,...,pn}, a set of properties satisfied by the system to
be designed.

• E = {e1,e2,...,en}, a set of emission rules.
• R = {r1,r2,...,rn}, a set of results achieved by an operation.

Figure 5 shows an example of the MERISE diagram of the French designer.
This case study allows us identifying different objects manipulated by the

three formalisms which facilitates the definition of our pivot model.

5 Our proposal

Before presenting in details our proposal, some hypotheses are required:

1. we assume the existence of a shared global ontologyGO :< C,P ,Sub,Applic >.
2. each designer references that ontology ”as much possible” and locally, she/he

may extend it by other concepts and properties to fitfully her/his local re-
quirements. As consequence, each designer will have her/his own ontology
(called local ontology). The designers may communicate through the com-
mon used concepts. This hypothesis is feasible in the context of major con-
tractors (e.g., Airbus company), where they may impose to their designers
to follow a global ontology. The presence of ontologies significantly reduces
the vocabulary heterogeneity. Each designer may pick her/his properties and
concepts from those ontologies (Figure 6).

Based on this reasoning, each local ontology shall then be connected to the used
formalism model as shown in next section.

Ontology-Driven Approach for User Requirements 353

Enter student
informations

Enter personal information

- Enter student name

- Enter student age

- Enter student emailAddress

KO OK

Student
informations

list
Rejected

Administration

Actions

Properties

Enter student
informations

Enter personal information

- Enter student name

- Enter student age

- Enter student emailAddress

KO OK

Student
informations

list
Rejected

Administration

Actions

Enter student
informations

Enter personal information

- Enter student name

- Enter student age

- Enter student emailAddress

KO OK

Student
informations

list
Rejected

Administration

Actions

Properties

Fig. 5. Example of process model

Actor Goal-Oriented

A ND

A ND

OR OR

MERISEUse Cases (UML) ActorActor

Local-Requirements 1 Local-Requirements 2 Local-Requirements 3

INTEGRATION

Extract

Local-Ontology 2Local-Ontology 1 Local-Ontology 3

Global (Shared)
Ontology

Extend

Extend

Pivot model

Extend Extend

Model Transformation

Conform toConform toConform to

Global Requirements

Actor Goal-Oriented

A ND

A ND

OR OR

A ND

A ND

OR OR

MERISEUse Cases (UML) ActorActor

Local-Requirements 1 Local-Requirements 2 Local-Requirements 3

INTEGRATION

Extract

Local-Ontology 2Local-Ontology 1 Local-Ontology 3

Global (Shared)
Ontology

Extend

Extend

Pivot model

Extend Extend

Model Transformation

Conform toConform toConform toConform toConform toConform to

Global Requirements

Fig. 6. Approach overview

5.1 Connection of Ontology Meta Model to Local UR Meta Model

We propose to connect each local formalism to its local ontology. To make this
connection more generic, we propose the use of a meta-modelling approach [25].
This means that each meta-model of a local formalism is connected to the meta-
model of the used formalism.

Example 1. Let us consider the meta-model of the goal oriented language. Its
objects (Action, Result, Object and Parameter) are connected to the ontological
concepts (classes and properties). Figure 7a represents a fragment of the OWL
ontology meta-model [18] extended by our goal meta-model (Figure 7b). Each
requirement expressed by the goal oriented language becomes an instance of this
merged meta-model.

354 I. Boukhari, L. Bellatreche, and S. Jean

b. Goal metamodela. Ontology metamodel b. Goal metamodela. Ontology metamodel

Fig. 7. Mapping metamodel

5.2 Definition of the Pivot Model

To construct our pivot model, our case study permits us to identify the generic
representation a UR: Concepts, Actors, Actions and Results. We define a
meta-model (RequirementsModel) of our pivot model characterized by a name,
a domain, and a date. Each UR has a unique identifier (Id), a name, textual de-
scription (description), an object, a Context, a priority (High, Medium or Low),
a Result and an Action reflecting a set of ordored actions that achieve a given
requirement. Each requirement is issued by an Actor (Person, Company unit
or Autonomous system). Two types of requirement are distinguished: functional
and non-functional. A non-functional requirement is defined as an attribute or
constraint of the system (such as security, performance, flexibility, etc) [26]. Each
requirement involves one or more actors that interact with the system to fulfil
the requirement. Requirements can be related with each other through one of the
following relationships: (Requires, Refines, Contains, Equivalence and Conflicts).
The presence of these relationships may help the reasoning on requirements.

The actions are the most important part of our pivot model. According to
[27], a UR can be viewed as a description of a system property or properties
which need to be fulfilled. According to this, we define formally a requirement
as follows: Requirement :< A,R,S >, in which:

– A = {a1, a2, ..., an}, a set of sequence of actions that a system performs
that yields an observable result. For each a ∈ A , a: f(P), such as P =
{p1, p2, ..., pn}, a set of properties that may belong to a given local ontology.

– R = {r1, r2, ..., rn}, a set of results realized by the system.
– S = {s1, s2, ..., sn}, a set of systems that are satisfied by the A.

Ontology-Driven Approach for User Requirements 355

Fig. 8. Pivot metamodel

Since an action of a UR may be expressed by the means of concepts and prop-
erties of its local ontology, we first need to connect that to its UR model. We
also use the meta-modeling approach to handle these connections. Four types
of meta-models need to be defined: (1) one for each local ontology, (2) one for
each UR formalism, (3) one for the pivot model and (4)and one for the global
ontology. Note that the meta-models of local and global ontologies are similar5.

Similarly to the previous connection, a link between the global ontology meta-
model and the pivot meta-model is established. The merged meta-model, called
OntoPivot is defined as: < GO,P ivot >, such that:

– GO: < C,P ,Sub,Applic >: the global ontology.
– Pivot: a pivot model of requirements.

The Model Pivot is defined as follows: Pivot = < Cp, Pp >, such that:

– Cp: represents the set of classes of the pivot model.
– Pp: represents the set of properties of each requirement are expressed by

using the ontological properties: Pp ∈ 2PGO

5.3 Mapping between Local Formalisms and the Pivot Model

To ensure the mapping between local formalisms (Goal-Oriented ontology, Use
Cases ontology and MCT ontology) and the pivot model, we use transformation
model techniques [28]. For our proposal, we use the ATLAS Transformation
Language (ATL) (http://www.eclipse.org/atl/). It consists of a set of model-
to-model transformation tools integrated into Eclipse framework. ATL provides
ways to produce a set of target models from a set of source models. In our case,

5 Local ontologies are extracted from the global one.

http://www.eclipse.org/atl/

356 I. Boukhari, L. Bellatreche, and S. Jean

Goal

Use case

Operation

� Action

� Action

� Action

OntoLReqs

� Result

� Result

� Result

Requirement

� Action

OntoPivot

� Result

Transformation

Source model
- Goal.instance

- Use Case.instance
- MCT.instance

Target model
OntoPivot .Instance

Target metamodel
OntoPivot (owl.ecore).

Source metamodel
- Goal (owl.ecore)

- UseCase (owl.ecore)
- MCT (owl.ecore)

ConformsTo

Application of transformations

Definition of a model transformation
OWL2OWL

ConformsTo

c d

Goal

Use case

Operation

� Action

� Action

� Action

OntoLReqs

� Result

� Result

� Result

Requirement

� Action

OntoPivot

� Result

Transformation

Goal

Use case

Operation

� Action

� Action

� Action

OntoLReqs

� Result

� Result

� Result

Requirement

� Action

OntoPivot

� Result

Transformation

Source model
- Goal.instance

- Use Case.instance
- MCT.instance

Target model
OntoPivot .Instance

Target metamodel
OntoPivot (owl.ecore).

Source metamodel
- Goal (owl.ecore)

- UseCase (owl.ecore)
- MCT (owl.ecore)

ConformsTo

Application of transformations

Definition of a model transformation
OWL2OWL

ConformsTo

Source model
- Goal.instance

- Use Case.instance
- MCT.instance

Target model
OntoPivot .Instance

Target metamodel
OntoPivot (owl.ecore).

Source metamodel
- Goal (owl.ecore)

- UseCase (owl.ecore)
- MCT (owl.ecore)

ConformsTo

Application of transformations

Definition of a model transformation
OWL2OWL

ConformsTo

c d

Fig. 9. Transformation

source models and the target model represent our three formalisms and the pivot
model, respectively. We have defined two types of rules to ensure the mappings:
one for concept mapping (classes, properties) and another for individual mapping
(Figure 9 c,d).

To illustrate our transformations, let us consider the mapping between the
Goal oriented ontology and the pivot model where class-to-class and instance-
to-instance are defined as follows:

rule Goal2Requirement {

from s: GoalModel!Goal -- source classe (Goal)

to t: PivotModelRequirement!Requirement(-- target classe

uriRef <-s.uriRef, -- mapping properties

IdReq <-s.Id,

NameReq <-s.NameGoal,

DescriptionReq <-s.DescriptionGoal,

ContextReq <-s.Context,

PurposeReq <-s.Purpose,

PriorityReq <-s.Priority

)

}

6 Conclusion

User requirements represent the heart of developing applications and systems.
With the globalisation, various systems are developed by the participation of a
large number of designers; each one uses her/his vocabulary and favourite for-
malism to express requirements. This situation give raises two complementary
problems: heterogeneity of vocabularies and heterogeneity of formalisms. In this
paper, we presented an approach for dealing with both heterogeneities. For the
first one, we propose the use of conceptual models and each designer picks her/his
concepts and properties from that ontologies. This may be feasible for several

Ontology-Driven Approach for User Requirements 357

domains, where concepts are highly formalised and structured (engineering, in-
dustrial, medicine, etc.). To deal with the second heterogeneity, we use a pivot
model connected to the ontologies. A mapping is done between the meta-models
representing the pivot model formalisms. A case study developed by considering
three formalisms belonging to the category of semi formal formalism: UML use
case, goal oriented language and Merise. Our proposal is validated by a tool
using ATLAS Transformation Language (a model driven architecture).

This work leads to many other tasks currently in progress including: (i) eval-
uating our approach for large scale case study by considering other classes of
formalisms (formal and informal), (ii) reasoning about requirements in order to
detect conflicts and (iii) studying of the impact of requirements evolution on our
proposal.

References

1. Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Method-
ologies. McGraw Hill (2009)

2. Sugumaran, V., Storey, V.C.: The role of domain ontologies in database design: An
ontology management and conceptual modeling environment. ACM Transactions
on Database Systems (ACM-TODS) 31(3), 1064–1094 (2006)

3. Khouri, S., Bellatreche, L.: DWOBS: Data Warehouse Design from Ontology-Based
Sources. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS,
vol. 6588, pp. 438–441. Springer, Heidelberg (2011)

4. Goh, C.H., Bressan, S., Madnick, S., Siegel, M.: Context interchange: new features
and formalisms for the intelligent integration of information. ACM Trans. Inf.
Syst. 17, 270–293 (1999)

5. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In:
Proceedings of the Fifth IEEE International Symposium on Requirements Engi-
neering, RE 2010, pp. 249–263. IEEE Computer Society (2001)

6. Rochfeld, A.: Merise, an information system design and development methodol-
ogy, tutorial. In: Proceedings of the Fifth International Conference on Entity-
Relationship (ER), pp. 489–528 (1986)

7. De Sousa, T., Almeida Jr., Viana, S., Pavón, J.: Automatic analysis of requirements
consistency with the b method. ACM SIGSOFT Software Engineering Notes 35(2),
1–4 (2010)

8. Bellatreche, L., Xuan, D.N., Pierra, G., Dehainsala, H.: Contribution of ontology-
based data modeling to automatic integration of electronic catalogues within engi-
neering databases. Computers in Industry Journal Elsevier 57(8-9), 711–724 (2006)

9. Pierra, G.: Context representation in domain ontologies and its use for semantic
integration of data. Journal of Data Semantics (JODS), 173–210 (2008)

10. López, O., Laguna, M.A., Peñalvo, F.J.G.: A metamodel for requirements reuse.
In: VII Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD), pp. 427–428
(2002)

11. Kaiya, H., Saeki, M.: Ontology based requirements analysis: Lightweight seman-
tic processing approach. In: Proceedings of the Fifth International Conference on
Quality Software, pp. 223–230. IEEE Computer Society (2005)

12. Dzung, D.V., Ohnishi, A.: Ontology-based reasoning in requirements elicitation.
In: IEEE International Conference on Software Engineering and Formal Methods
(SEFM), pp. 263–272 (2009)

358 I. Boukhari, L. Bellatreche, and S. Jean

13. Saeki, M., Hayashi, S., Kaiya, H.: A tool for attributed goal-oriented requirements
analysis. In: 24th IEEE/ACM International Conference on Automated Software
Engineering, pp. 674–676 (2009)

14. Körner, J.S., Torben, B.: Natural language specification improvement with ontolo-
gies. Int. J. Semantic Computing 3(4), 445–470 (2009)

15. Gruber, T.: A translation approach to portable ontology specification. Knowledge
Acquisition 5(2), 199–220 (1993)

16. Guarino, N., Poli, R.: Formal ontology in conceptual analysis and knowledge rep-
resentation. Special Issue of the International Journal of Human and Computer
Studies 43(5-6), 625–640 (1995)

17. Connolly, D., Guha, R.: Rdf vocabulary description language 1.0: Rdf schema. w3c
(2002), http://www.w3.org/TR/rdf-schema/

18. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P., Stein, L.: Owl web ontology language reference. w3c (2004),
http://www.w3.org/TR/owl-ref/

19. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
Journal of Web Semantics, 158–182 (2005)

20. Jacobson, I., Bittner, K., Spence, I.: Use Case Modeling. Addison Wesley Profes-
sional (2002) ISBN 0-201-70913-9

21. Victor, R., Gianluigi, C.R.H.D.: The goal question metric approach. computer
science technical report series cs-tr-2956. Computer Science Technical Report Series
CS-TR-2956 (1992)

22. Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., Paraboschi, S.: Designing data
marts for data warehouses. ACM Transactions on Software Engineering and
Methodology 10(4), 452–483 (2001)

23. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), 1–30 (1997)

24. Rochfeld, A., Tardieu, H.: Merise: An information system design and development
methodology. Information and Management, 143–159 (1983)

25. Nissen, H.W., Jeusfeld, M.A., Jarke, M., Zemanek, G., Huber, H.: Managing multi-
ple requirements perspectives with metamodels. IEEE Software 13(2), 37–48 (1996)

26. Glinz, M.: On non-functional requirements. In: 15th IEEE International Require-
ments Engineering Conference, RE 2007, pp. 21–26 (2007)

27. Goknil, A., Kurtev, I., Berg, K., Veldhuis, J.W.: Semantics of trace relations in re-
quirements models for consistency checking and inferencing. Softw. Syst. Model. 10,
31–54 (2011)

28. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-ref/

Author Index

Adedjouma, Morayo II-111
Ahrendt, Wolfgang I-312
Ait-Ameur, Yamine II-327
Alipour, Amin I-572
Asche, Hartmut II-324
Asirelli, Patrizia I-146
Autexier, Serge I-238

Baudry, Benoit I-208
Bauer, Oliver I-554
Bauer, Tim I-572
Bellatreche, Ladjel II-344
Bender, Andreas II-12
Bensalem, Saddek I-327
Beyer, Dirk I-608, II-1
Birken, Klaus II-173
Blech, Jan Olaf I-405
Bobaru, Mihaela I-505
Bodden, Eric I-4, I-162
Bosch, Jan I-19
Boßelmann, Steve II-70
Boukhari, Ilyès II-344
Bozga, Marius I-327
Braun von Reinersdorff, Andrea II-67
Bravetti, Mario I-64, I-269
Breu, Ruth I-112

Čaušević, Aida II-308
Clarke, Dave I-178
Cordy, Maxime I-208
Crégut, Xavier II-143, II-329
Crocker, Paul Andrew I-508

Damiani, Ferruccio I-193
David, Alexandre I-388, II-293
Delahaye, Benoit I-327
de Matos Pedro, André I-508
de Sousa, Simão Melo I-508
Devroey, Xavier I-208
Dietrich, Dominik I-238
Di Giusto, Cinzia I-269
Dimitrova, Rayna I-342
Dinca, Ionut I-539
Do, Ngoc Thi Bich I-458
Doedt, Markus II-75
Dovland, Johan I-253

Eichenberger, Remo II-325
Eklund, Ulrik I-19
Emmerich, Michael T.M. II-12
Ernst, Rolf II-96
Erwig, Martin I-572

Falcone, Yliès I-284, I-405
Falzon, Kevin I-162
Fang, Ling I-458
Fantechi, Alessandro I-146, II-187,

II-276
Farzan, Azadeh I-372
Felderer, Michael I-112
Feller, Christoph I-97
Fern, Alan I-572
Ferrari, Alessio II-216
Finkbeiner, Bernd I-342
Flammini, Francesco II-187, II-190
Follner, Andreas I-4

Ge, Ning II-143
Gigante, Gabriella II-205
Gnesi, Stefania I-146, II-187
Göke, Thomas II-75
Goknil, Arda II-111
Grimshaw, Simon II-12
Groce, Alex I-572
Groz, Roland I-444
Gueguen, Pierre Yves II-111

Hähnle, Reiner I-1, I-32
Hallé, Sylvain I-295
Hartmanns, Arnd I-420
Havelund, Klaus I-292
Haxthausen, Anne E. II-261
Henry, Andrew H. II-12
Hermanns, Holger I-420
Heymans, Patrick I-208
Hollenstein, Livia II-325
Holubek, Andreas II-73
Holzer, Andreas I-372
Howar, Falk I-79, I-554, I-587, I-591,

I-608
Hutter, Dieter I-238

360 Author Index

Ipate, Florentin I-539
Irfan, Muhammad-Naeem I-444
Isberner, Malte I-554, I-587, I-591,

I-608

Jean, Stéphane II-344
Jegourel, Cyrille I-327
Johnsen, Einar Broch I-253
Jonsson, Bengt I-554

Kalb, Philipp I-112
Kamischke, Jochen I-223
Kang, Eun-Young I-208
Katoen, Joost-Pieter II-290
Kirner, Raimund II-158
Kitamura, Takashi I-458
Knoop, Jens II-323
Kok, Joost II-7
Kujath, Bertold II-70
Kurnia, Ilham W. I-97

Lamprecht, Anna-Lena I-47, II-7
Larsen, Kim Guldstrand I-388, II-290,

II-293
Legay, Axel I-208, I-327, I-388, II-293
Leucker, Martin I-127, I-131, I-524
Lienhardt, Michaël I-64, I-178
Lisper, Björn II-78, II-80
Lochau, Malte I-127, I-223
Lu, Zheng I-474
Lüth, Christoph I-238

Maeder, Christian I-238
Margaria, Tiziana I-47, I-591, II-67,

II-70
Marrone, Stefano II-190, II-231
Martelli, Giacomo II-216
Mazzocca, Nicola II-190
McCarthy, Luke II-56
Meinke, Karl I-440, I-488
Menabeni, Simone II-216
Merten, Maik I-79, I-587, I-591, I-608
Méry, Dominique II-327
Metzger, Christian II-73
Mikučionis, Marius I-388, II-293
Mounier, Laurent I-358
Mukhopadhyay, Supratik I-474

Nardone, Roberto II-190, II-231
Neider, Daniel I-524

Nezhinsky, Alexander E. II-42
Niu, Fei I-488
Nordlander, Johan II-78, II-80
Nouri, Ayoub I-327

Ogata, Kazuhiro II-126
Ohsaki, Hitoshi I-458
Orazzo, Antonio II-231
Oriat, Catherine I-444
Ouranos, Iakovos II-126

Pace, Gordon J. I-312
Pantel, Marc II-143, II-329
Pardo, Jan II-75
Păsăreanu, Corina S. I-505
Pascarella, Domenico II-205
Pellicione, Patrizio I-79
Peraldi-Frati, Marie-Agnès II-111
Pérez, Jorge A. I-269
Perrouin, Gilles I-208
Petrenko, Alexander K. II-1
Petrone, Ida II-231
Pettersson, Paul II-308
Pinto, Jervis I-572
Poetzsch-Heffter, Arnd I-97
Poulsen, Danny Bøgsted I-388
Pun, Ka I. I-162

Quinton, Sophie II-78, II-96

Rabe, Markus N. I-342
Rasche, Christoph II-67
Rasthofer, Siegfried I-4
Razavi, Niloofar I-372
Rueß, Harald I-405

Sanchez-Faddeev, Hernando II-12
Sangiorgi, Davide I-64
Schaefer, Ina I-1, I-32, I-127, I-193
Schätz, Bernhard I-405
Schneider, Gerardo I-312
Schobbens, Pierre-Yves I-208
Schreiner, Dietmar II-323
Seceleanu, Cristina II-308
Sedwards, Sean I-388
Sieber, René II-325
Sifakis, Emmanuel I-358
Spagnolo, Giorgio Oronzo II-216
Spaink, Herman P. II-12
Stefaneas, Petros II-126

Author Index 361

Stefanescu, Alin I-539
Steffen, Bernhard I-79, I-554, I-587,

I-591, I-608, II-75
Stolz, Volker I-162

ter Beek, Maurice H. I-146
Thoma, Daniel I-131
Tivoli, Massimo I-79
Tremblay-Lessard, Raphaël I-295

Vandervalk, Ben II-56
van Vlijmen, Herman W. II-12
Velardi, Luigi II-231
Verbeek, Fons J. II-7, II-12, II-25, II-42
Vittorini, Valeria II-190

Walkinshaw, Neil I-440
Welsch, Yannick I-97
Wilkinson, Mark D. II-7, II-56
Winter, Kirsten II-246
Wood, Ian II-56

Yan, Kuan II-25
Yatabe, Shunsuke I-458
Yu, Ingrid Chieh I-253

Zalila, Faiez II-329
Zavattaro, Gianluigi I-269
Zech, Philipp I-112
Zuck, Lenore D. I-284

	Title

	Preface
	Organization
	Table of Contents
	Linux Driver Verification
	Linux Driver Verification
	Overview
	Research Directions
	Conclusion
	References

	Bioscientific Data Processing and Modeling
	Bioscientific Data Processing and Modeling
	References

	Using Multiobjective Optimization and Energy Minimization to Design an Isoform-Selective Ligand of the 14-3-3 Protein
	Introduction
	Methods
	Sequence Data
	Homology Modeling
	Starting Complex of Protein and Ligand
	Estimation of Peptide Binding Energy
	Molecular Search Space and Landscape Analysis
	Multiobjective Optimization

	Results
	Conclusions
	References

	Segmentation for High-Throughput Image Analysis: Watershed Masked Clustering
	Introduction
	High-Throughput Cell Imaging
	Evaluation of Segmentation Algorithms in HT-Imaging

	Watershed Masked Clustering Algorithm
	Region Selection
	Object Segmentation
	Object Optimization

	Performance of the WMC Algorithm
	Artificial Objects and Test Images
	Performance Test with Artificial Images
	Microscope Images
	Performance Test with Microscope Images

	Conclusions and Discussion
	References

	Efficient and Robust Shape Retrieval from Deformable Templates
	Introduction
	Method
	Pre-processing
	Deformable Template Matching
	Post-processing: Straightening the Template

	Case Study
	Pre-processing
	Main Process: Deformable Template Matching

	Experiments and Results
	Conclusions
	References

	OWL-DL Domain-Models as Abstract Workflows
	Introduction
	Materials and Methods
	Technologies Used
	Target, Peer-Reviewed and Published Workflow
	Selection and Deployment of Services

	Results and Discussion
	Conclusions
	References

	Processes and Data Integration in the Networked
Healthcare
	Processes and Data Integration
in the Networked Healthcare
	References

	Simple Modeling of Executable
Role-Based Workflows: An Application in the Healthcare Domain
	Introduction
	Case Study: Diabetes Day-Care Clinic
	References

	Considerations for Healthcare Applications
in a Platform as a Service Environment
	Reha-Sports: The Challenge
of Small Margin Healthcare Accounting
	Introduction
	References

	Timing Constraints: Theory Meets Practice
	Timing Constraints: Theory Meets Practice
	References

	A Simple and Flexible Timing Constraint Logic
	Introduction
	TADL
	TiCL
	Abbreviations
	Expressing TADL Constraints
	Modes
	Related Work
	Conclusions and Further Research
	References

	Generalized Weakly-Hard Constraints
	Introduction
	Strongly-Hard Timing Constraints
	Weakly-Hard Timing Constraints
	Probabilistic Timing Constraints
	Probabilistic Interpretation of Weakly-Hard Constraints
	Conclusion
	References

	Modeling a BSG-E Automotive System with the Timing Augmented Description Language
	Introduction
	TADL2 Language
	TimeBase, Dimension and Unit in TADL2
	Timing Expression in TADL2
	Timing Constraints in TADL2

	Use Case Description: The Box Servitude Generic External (BSG-E)
	Functional /Hardware Architecture of the BSG-E
	BSG-E Requirements Including Timing Characteristics

	Conclusion
	References

	Formal Analysis of TESLA Protocol in the Timed OTS/CafeOBJ Method
	Introduction
	The Timed OTS/CafeOBJ Method
	Timed Observational Transition Systems
	Specifying and Verifying TOTS in CafeOBJ

	Analysis of TESLA Protocol
	Description of the Protocol
	Timed OTS Modeling and Specification
	Verification

	Lessons Learned and Proposals
	Related Work
	References

	Formal Specification and Verification
of Task Time Constraints for Real-Time Systems
	Introduction
	Related Works
	Case Study
	Methodology
	Formal Specification of Task-Level Time Constraints
	Preliminary Definitions
	Coincidence Time Constraint
	Synchronization Time Constraint
	Exclusion Time Constraint
	Sub-occurrence Time Constraint
	Precedence Time Constraint
	Causality Time Constraint

	Verification of Time Property Patterns
	Time Property Patterns
	Observer-Based Model Checking on TPN
	Verification of Time Property Pattern |T(at) − T(bt)| < δ
	Computational Complexity Analysis
	Performance Analysis

	Conclusion
	References

	The WCET Analysis Tool CalcWcet167
	Introduction
	Overview of CalcWcet167
	The Annotation Language
	Processor Modelling
	Enabling Research WCET-Related Research
	Summary and Conclusion
	References

	Abstract Execution for Event-Driven Systems – An Application from Automotive/Infotainment Development
	Introduction
	Related Work
	Event-Driven Systems
	Abstract Execution and Enhancements for Concurrency
	Abstractions Used for Data Types
	Abstract Execution of Event-Driven Systems
	Abstract Event Queue
	Example of Abstract Execution with Abstract Event Queue Handling

	Application to On-board Diagnostics Development
	Typical Architecture of OBD for Infotainment Systems
	Model-Driven Development for OBD Software
	Application of Abstract Execution for Event-Driven OBD Software

	Conclusions and Future Work
	References

	Formal Methods for the Development and
Certification of X-by-Wire Control Systems
	Formal Methods for Intelligent Transportation Systems

	Motivation
	Goals
	Contributions
	References

	Model-Driven V&V Processes for Computer
Based Control Systems: A Unifying Perspective
	Introduction
	The Model-Driven Approach
	Model Driven V&V of Critical Systems
	How It Could Be Used: A Unifying Approach
	Application to Railway Signalling
	Conclusions and Open Issues
	References

	Formal Methods in Avionic Software Certification: The DO-178C Perspective
	Introduction
	Depth and Issues of Application in Formal Methods
	Formal Methods in Support Certification
	DO-178B and DO-178C
	DO-178C Overview
	Formal Methods in DO-178C Processes
	Additional Specific Objectives

	Conclusions and Future Works
	References

	Product Line Engineering
Applied to CBTC Systems Development
	Introduction
	Communications-Based Train Control Systems
	Method Overview
	Domain Analysis
	Product Family Definition
	Product Features Definition
	Related Works
	Conclusion
	References

	Improving Verification Process in Driverless Metro Systems: The MBAT Project
	Introduction
	Verification Processes for Railway and Metro Systems
	Proposal of a New Development Process
	CBTC Case Study
	The CBTC System
	The "Determine Doors Opening Side” Function
	Dynamic Functional Testing
	Static Functional and Non-functional Analysis

	Conclusions and Future Development
	References

	Optimising Ordering Strategies for Symbolic Model Checking of Railway Interlockings
	Introduction
	The Context
	The Signalling Design Tools Project
	Modelling Control Tables

	Symbolic Model Checking
	Variable Ordering
	Transition Orderings

	Optimised Orderings for Railway Interlockings
	Optimising the Variable Ordering
	Improving the Transition Ordering
	Clustering
	Experimental Results

	Conclusion
	References

	Automated Generation of Safety Requirements
from Railway Interlocking Tables
	Introduction
	Train Route Based Interlocking Systems
	State Space
	Safety Requirements
	Experiments
	Conclusions
	References

	Distributing the Challenge of Model Checking
Interlocking Control Tables
	Introduction
	Interlocking Systems Representation
	Safety Requirements
	Limits of Model Checking
	An Alternative Approach
	Conclusions
	References

	Quantitative Modelling and Analysis
	Quantitative Modelling and Analysis
	References

	Schedulability of Herschel-Planck Revisited
Using Statistical Model Checking
	Introduction
	Modeling
	Symbolic Safety Analysis
	Statistical Analysis
	Conclusion
	References

	Checking Correctness of Services Modeled
as Priced Timed Automata
	Introduction
	Preliminaries and a Simple Example
	Algorithms for Calculating Strongest Postconditions of Services
	Discussion and Related Work
	Conclusions
	References

	Software Aspects of Robotic Systems
	Software Aspects of Robotic Systems

	Process-Oriented Geoinformation Systems and
Applications
	Process-Oriented Geoinformation Systems
and Applications
	Concepts and Techniques of an Online 3D Atlas –
Challenges in Cartographic 3D Geovisualization

	Handling Heterogeneity in Formal Development of
HW and SW Systems
	Handling Heterogeneity in Formal Developments
of Hardware and Software Systems
	References

	Leveraging Formal Verification Tools for DSML Users:
A Process Modeling Case Study
	Introduction
	End-User Concerns
	Business Models
	User Verifications
	Verification Feedback

	Business Metamodeling
	
	Domain Definition Metamodel (
	
	Query Definition Metamodel (
	and Formal Expression of Requirements
	
	Event Definition and Trace Management Metamodels (
	&

	Formal Level Metamodeling
	The Transformation Level
	Translation
	
	Translating TOCL to SE-LTL
	Checking SE-LTL Properties
	Designer Dedicated Feedback
	Generating PETRINET Scenario and Trace.
	Translating PETRINET Scenario to
	Scenario.

	Related Work
	Conclusion
	References

	An Ontological Pivot Model to Interoperate
Heterogeneous User Requirements
	Introduction
	Related Work
	Heterogeneity Types
	Case Study
	Our proposal
	Conclusion
	References

	Author Index

