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Abstract. We describe how scientific application domains are charac-
terized by the long-term availability of the basic computational com-
ponents, and how software systems for managing the actual scientific
workflows must deal with changing service interfaces and varying service
compositions. In this light, we explain how rigorous technical and se-
mantic abstraction, which is key to dealing with huge and heterogeneous
application domains in an ”extreme model driven design” framework like
the jABC, supports the management of workflow evolution. We illustrate
the different aspects by means of examples and experiences from the ap-
plication of the framework in different scientific application domains.

1 Introduction

Evolution of software systems and long-lived applications are currently inten-
sively researched topics under many points of view [1, 2]. In the new field of
e-science, workflow management for scientific applications is a key application
domain that combines artifacts with very different timelines and life cycles. The
basic algorithmic components that perform the individual analysis steps are in
fact very long-lived: Many of the popular algorithms, tools, and databases have
been available for over a decade and remained mainly unchanged. Their concrete
use and composition, however, varies considerably from case to case, according
to the current scientific analysis process and the involved data. In fact, progress
and novelty in “in silico” experimentation, where experiments and analyses are
carried out in computers on the basis of preexisting data and knowledge, thus
largely happens “ex aliquo”, and not “ex nihilo”, i.e. from scratch. Therefore
we need to distinguish two fields of progress and evolution: in the application
domain, that originates from fast-paced evolution of analysis and simulation pro-
cesses that use preexisting resources, and the progress and evolution of the IT
ingredients, that makes the first one possible and is itself much less frequent.
Process evolution occurs in the frequent case that an existing analysis process
has to be adapted to new experimental requirements or data. Standard software
evolution on the contrary occurs mainly when existing algorithms, tools and
databases are equipped with new interfaces, which happens relatively seldom.
The overall setting therefore yields a fairly stable basis of software artifacts,
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that are combined and recombined at fast pace to try out new analyses in an
orchestration or coordination-oriented composition.

In this paper we describe how an extreme model driven approach [3, 4] sup-
ports the agile management of process/workflow evolution in the light of such
really huge and truly heterogeneous application domains. The core concept is
that here different levels of abstraction make a completely symbolic treatment
of the involved entities possible. A combination of these abstractions then allows
for handling application-level processes and their evolution at a semantic level,
within the application domain.

The past decade has seen a lot of research on scientific workflow management
in general (see, e.g, [5, 6]) and on the use of semantics-based methods for sup-
porting service composition in particular (see, e.g., [7–10]). We are not aware,
however, of any work that looks at the evolution of scientific workflows from the
broad service-engineering perspective that we describe in this paper, which is
based on the jABC framework [11, 12]. We draw here on the experience of sev-
eral years of usage for the management of scientific workflows both in teaching
and in research projects (cf., e.g., [13–18]),

The paper is structured as follows. Section 2 introduces the abstraction con-
cepts needed to enable and support the fast-paced workflow evolution needed for
”in-silico” e-science; Section 3 illustrates the specific jABC-based approach by re-
porting some exemplary experiences from the bioinformatics and geo-visualization
application domains, and Section 4 concludes the paper.

2 Abstraction for Fast-Paced Workflow Evolution

The conceptual framework of eXtreme Model-Driven Design (XMDD) [3, 4,
19] aims at an agile yet service-oriented modeling, design, and development of
process-style applications within a domain-specific setting. E-science is such a
domain, with specific incarnations e.g. for bioinformatics, or geo-visualisation.

The central assets are here a collection of services (implemented by means
of software artifacts) and a domain knowledge representation (implemented via
taxonomies/ontologies) that can be easily used by domain experts and that
are supported by a sophisticated framework that helps the user in the selec-
tion, composition, validation, and execution of the resulting workflows. While
it is possible to achieve parts of this goal by means of traditional approaches,
that use heterogeneous technologies to cover different aspects and subproblems1,
the jABC [11, 12] is a concrete framework that supports high automation and
consistency in working with processes and workflows by offering a number of
special-purpose plugins in an extreme model-driven setting, where the user only
works at the model level and the necessary compositions and transformations
are largely taken care of by the framework itself via specific plugins.

1 For example, using the standard technologies from the different sub-communities
of software engineering, one could have components modeled in UML, wrapped as
services in a WSDL, with orchestrations expresses in BPEL or BPMN or Petri nets
and domain knowledge expressed in WSMO or OWL ontologies.
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Fig. 1. From the domain knowledge to the IT: Abstraction layers in the jABC frame-
work

In particular, the PROPHETS plugin [20] bundles functionality for semantic
annotations, model checking, and automatic synthesis of workflows according to
the Loose Programming paradigm of [21], which offers abstraction from the con-
crete workflow (see Sect. 3.4). The basis for the models in jABC are libraries of
semantically annotated, behavioral workflow components, called SIBs (Service
Independent Building Blocks). SIBs provide access to encapsulated units of func-
tionality, which can be freely combined into flowchart-like workflow structures
called Service Logic Graphs (SLGs) that are technically service orchestrations.
The concretization of SLGs towards running systems typically happens in a hi-
erarchical fashion via several refinement steps (cf. [22]).

The key to an agile dealing with software evolution is rigorous virtualiza-
tion/abstraction: striving for a completely symbolic treatment of the involved
entities allows one to handle application-level processes at a semantic level, as
illustrated in Figure 1. Concretely, given the usual service or component imple-
mentation customary in component-based design or in service-oriented architec-
tures, the jABC works with three principal layers of abstraction, which address
different challenges of software evolution:

1. The SIBs are the actual behavioral entities of the workflow building blocks
as defined from the application’s/user’s perspective. They tailor the single
workflow building blocks to the specific needs of the application/user. In
essence, a SIB defines an adequate interface for a workflow building block,
and connects it to the services that are provided by the SIB adapters. Thus,
if something in the SIB adapters changes, the corresponding SIB implemen-
tations can be adapted accordingly, but the workflow models themselves are
not affected. In the sense of [23], the concept of a SIB is that of a behavioral
metamodel : it presents all sorts of needed components in a uniform man-
ner to the user and makes them really work in a simple, easy-to-use and
composite fashion.
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2. The SIB adapters absorb the change management of evolving technologies
and evolving components by abstracting from the technical details of the
underlying platforms and service implementations, which are typically im-
plemented in heterogeneous technologies. Thus, if something in the service
implementation changes, the SIB adapters can be changed accordingly, but
the SIBs, as workflow building blocks, are themselves not affected: Workflows
use only the SIB-level information.

3. Semantic domain models on top of the SIB libraries drive the abstraction
even further, allowing in particular for the completely symbolic description
of the SIBs and their parameters in terms of the application’s/user’s domain
language. As shown in Fig. 1, the user’s composition of workflows happens
within the ”business domain” knowledge, that includes SIB selection and
composition, while the IT issues are taken care of within the lower lay-
ers [24, 25]. In particular, this organization facilitates “loose” programming
of workflows, where parts of the workflow model can be left underspecified,
and are only concretized upon request. Thus, if anything in the SIB library
changes, the semantic domain model can be independently adapted, and the
(loose) workflow models themselves are not affected.

In the following sections we describe these notions of technical and semantic ab-
straction in greater detail. Together, they lead to two separate levels in workflow
development: a story level, that takes place between the SIB and the semantic
knowledge layers (the upper two in Fig. 1), where one designs and communicates
the spirit of the analysis/experiment, and the actual executable level (the lower
two layers in Fig. 1), where a concretized version takes care of the coherence and
consistency of all details.

2.1 Handling Technical Abstraction: The SIBs

The SIBs in the jABC are services in the proper sense, encapsulating units of
functionality that are defined from the application’s/user’s perspective. Instead
of being architectural components, as most service component models like in
the standard SCA [26], they are units of behavior oriented to their use within
processes or workflows. As discussed for instance in [25], granularity decisions
are essential for the design of SIBs that are adequate for the envisaged applica-
tions. While standard services are remote software units that offer a collection
of behavior to their users, SIBs only have one behavior and are thus easier to
understand, manage, and compose. A single standard (web) service can thus
correspond to a collection of SIBs. This explains why they are easy to use for
domain experts, much easier than standard services.

Additionally, SIBs provide homogeneous service interfaces that truly abstract
from the technical details of the underlying implementation. Their provision-
ing involves integrating distributed services that are provided via heterogeneous
technologies (such as SOAP and REST web services, legacy tools, and specific
APIs) into homogeneous libraries of workflow building blocks.
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The SIB structure is depicted in the lower three layers of Figure 1:

– The actual SIB2 provides the service interface within the workflow environ-
ment. In addition to service documentation and other usability information,
it defines the service parameters to be configured by the calling applica-
tion/workflow.

– The SIB adapter handles the service call, using the information from the
SIB class that is relevant for its execution (esp. parameters).

– The service implementation defines the actual execution behavior. It can be
arbitrary functionality in any programming language.

Thus, as the underlying implementation changes, a SIB’s adapter has to be
exchanged or adapted too, but the SIB class - which is the actual interface to
the workflow environment - mostly remains unchanged. In practice, this largely
decouples the workflow development in the jABC framework from the evolution
of the underlying platforms and of the concrete algorithms.

2.2 Handling Semantic Abstraction: Loose Programming

Loose programming [21] supports a form of model-based declarative software de-
velopment that enables workflow developers to design their application-specific
workflows in an intuitive (graphical) style driven by their domain knowledge,
rather than from the technicalities of composition and composability. In partic-
ular, it aims at making highly heterogeneous collections of services accessible
to application experts who have no classical programming skills, but who need
to design and manage complex workflows. After an adequate domain modeling,
application experts should ultimately be able to profitably and efficiently work
with a world-wide distributed collection of services and data, using their own do-
main language and understanding services at the behavioral metamodel level. In
particular, the semantic domain models abstract from the SIB interfaces, mak-
ing everything in the workflow environment even more symbolic and intuitively
comprehensible to the scientist.

Concretely, the semantic domain models are defined on top of the SIB libraries
and comprise:

– service and data type taxonomies that provide semantic categories and re-
lations for the involved entities, building the domain vocabulary,

– behavioral interface descriptions, i.e. input and output annotations, in terms
of the domain vocabulary, and

– temporal-logic constraints that express additional knowledge about the ap-
plication domain in general or about the intended workflows in particular.

An example for such models will be discussed in Sect. 3. These semantic do-
main models are entirely based on symbolic names for services and data types,

2 Technically, the SIB class, which we associate with the part of the SIB that belongs
to the IT world in contrast to the view on the SIB from the business domain (from
above), which corresponds to concepts in the domain knowledge model.
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therefore the user-level semantic service descriptions are completely decoupled
from the SIBs that implement the actual functionality. Accordingly, the seman-
tic description(s) provided for a service can be freely defined: it is possible to
use custom terminology, use the same service for different purposes, or simply
omit unnecessary details in the interface description.

With loose programming users specify their intentions about a workflow in
a very sparse way, by just giving an intuitive, high-level rough process flow in
terms of ontologically defined semantic entities from the domain model, without
caring about types, precise knowledge about the available workflow components
or the availability of resources. A synthesis mechanism in the background auto-
matically completes this sketch into a correctly running workflow by inserting
missing details. This is achieved by means of a combination of different formal
methodologies: Data-flow analysis provides information on available and required
resources, which is used by a temporal-logic synthesis algorithm [27] to find se-
quences of services that are suitable to concretize the loose parts. Additionally,
model checking is used to monitor global process constraints continuously.

In loose programming there is thus abstraction from the concrete workflow
that implements a particular analysis process: if the set of available SIBs/services
changes, the framework can automatically find another suitable composition of
services that solves the problem.

In the next section we report some exemplary experiences with software evo-
lution from the application of the jABC framework in the bioinformatics appli-
cation domain.

3 Examples and Experiences

To show the spread of possible applications and techniques, we focus now on four
different aspects: Dealing with the wealth of command line tools (Sect. 3.1),
dealing with a technology migration for entire collections of widely used ser-
vices (Sect. 3.2), dealing with the high volatility of ad-hoc workflow design and
evolution (Sect. 3.3), and dealing with a new, declarative way of describing the
intentions of a workflow that is automatically synthesized in one or more variants
(Sect. 3.4). In the following, we concentrate mainly on examples from bioinfor-
matics, but experiences from the geo-visualization domain are analogous.

3.1 SIBs for “Good Old” Command Line Tools

In scientific application domains, algorithms are often implemented as ”small”
special-purpose tools that can simply be invoked from the command line, with-
out requiring to cope with ”unnecessary” stuff (like fancy GUIs etc.) that is
intended to help the user but often hampers programmatic, systematic access
to the underlying functionality. Thus, classical command line tools are usually
well suited to provide collections of basic building blocks for service composi-
tions. Conveniently, classical command line tools are in fact very popular in the
bioinformatics and geo-visualization domains.
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Fig. 2. Basic multiple sequence alignment workflow

For example, the European Molecular Biology Open Software Suite (EM-
BOSS) [28]3 is a rich collection of freely available tools for the molecular biology
user community dealing with proteins and amino acids. It contains a number of
small and large programs for a wide range of tasks, such as sequence alignment,
nucleotide sequence pattern analysis, and codon usage analysis as well as the
preparation of data for presentation and publication.

This and similar collections have been used in the respective user community
for quite a long time: the first version of EMBOSS was released around 2000, and
their functionalities are still useful as a basis for new workflow applications. This
is an example of the longevity of basic domain-specific ”eternal” components that
support several generations of scientists and serve unchanged the communities
for decades.4

Sometimes such service collections are repackaged and provided as ”modern”
web services. For example, the EMBOSS tools are provided as web services in
the scope of the EBI’s SoapLab project [30, 31]. Often, however, communication
with the web services via these interfaces happens at a quite technical level: the
sheer operations of the web services are not adequate for direct integration as
workflow building blocks.

The jETI technology [32] specifically supports such direct integration for com-
mand line tools in the jABC framework. In fact, command line tools are typically
designed to execute specific well-defined tasks, and usually all inputs and con-
figuration options can be provided upon invocation, so that their execution runs
completely autonomous (headless, in bioinformatics terminology). They also typ-
ically work on files in a pipe-and-filter transformer fashion, which is per se closer
to the user-level than the programming language entities (such as Java objects)
that are required for the communication with, e.g., Web Service APIs. Accord-
ingly, jETI services, which are designed to provide convenient (remote) access to
file-based command line tools as SIBs, are inherently closer to the user-level than
web services. Entire collections of services can be made available to end-users
this way.

3 http://emboss.sourceforge.net/
4 As an example from the geo-visualization domain: the Generic Mapping Tools
(GMT) collection [29] (http://gmt.soest.hawaii.edu/) was released around the
year 1990 and is in heavy use since then, also clearly deserving the denomination of
eternal components used in the title.

http://emboss.sourceforge.net/
http://gmt.soest.hawaii.edu/
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3.2 SIBs for Bioinformatics Web Services: From SOAP to REST

Large bioinformatics institutions like the DDBJ (DNA Data Bank of Japan), EBI
(European Bioinformatics Institute), and NCBI (National Center for Biotechnol-
ogy Information) have been providing publicly available web services to access
databases and computational tools already for a quite long time (that is, since
web services became popular).

Currently, many major service providers are abandoning their SOAP-based
web service interfaces and follow the general trend towards using REST in-
terfaces. Consequently, the SIBs that had been implemented for accessing the
DDBJ and EBI web services [33–35] had to be changed accordingly at some
point, to follow this technology shift on the provider’s side. Luckily, as discussed
in Sect. 2, it was indeed only required to change in the SIB adapters the portion
of code that executes the actual service calls. The SIB classes on the contrary
were not touched at all by the transition: the user/application-level parameters
of the services did not change. Likewise, on the workflow level this change of
underlying technology was not perceptible at all.

This is an example of how the ”changing interfaces” due to technology mi-
gration only locally impact the provisioning of the services. As il lustrated by
Fig. 1, technology agnosticism at the behavioral metamodel level guarantees the
stable fruition of the SIB for the end-users.

3.3 Agile Models for Variable/Evolving Scientific Workflows

Contrary to the stability of the single services offered, scientific workflows are
characterized by being variant-rich and having to be adapted frequently to vary-
ing experimental setups and analysis objectives. Actually, in most cases the
scientist is even searching for the optimal workflow in a cumbersome cycle of
modification, test, analysis, and adaptation. The point of the research is often
to find a data analysis or data processing workflow, that is itself the central
result of the quest. Working by approximation, the volatility of such workflows
is high, yielding series of ”varying” compositions.

XMDD as evolution-oriented paradigm explicitly supports these kinds of ap-
plication evolution and adaptation at a user-accessible level. In jABC, workflows
can easily be modified, adapted, customized and tested in its graphical user in-
terface, and (parts of) workflows can be prepared and flexibly (re-)combined
according to current analysis objectives.

Example: Multiple Sequence Alignment. In the bioinformatics application
domain, the multiple sequence alignment is an example that is particularly suited
to illustrate the agility of workflow design (cf. [17] for further details). Figure 2
shows a simple workflow for this computation. In terms of algorithmic computa-
tions, it consists of just one SIB that calls an alignment service, here ClustalW.
Just this step would however not suffice: it also needs some SIBs that take care
of handling the input and output data. The SIB select sequence file (at the left,
with the underlined name) lets the user select a file from the local file system
and the SIB read sequence file puts the file’s content into the execution context.
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Fig. 3. Flexibly variable multiple sequence alignment workflow

This data is then sent to the DDBJ’s ClustalW web service for the alignment
computation, and finally show alignment displays the result to the user.

This is the simplest, but certainly not the only way an alignment can be
computed. It can be useful to use other algorithms and to manage the input
and output in different ways. Figure 3 shows an orchestration of SIBs (a Service
Logic Graph) with several preconfigured workflow snippets that in detail provide
the following functionalities:

1. Select and read a sequence file from the local file system.
2. Call the DDBJ’s ClustalW alignment service.
3. Show an alignment in a simple text dialog window.
4. Call the DDBJ’s Mafft alignment service.
5. Let the user choose the service.
6. Save the alignment to the local file system.
7. Let the user enter a keyword, which is used for a DDBJ database search (via

the ARSA system). This results in a list of accession numbers (i.e. identifiers)
for which the corresponding sequences are fetched from the DDBJ database.

8. Extract the phylogenetic tree that is part of a ClustalW result (using a reg-
ular expression) and call the phylip2jpg service of the DDBJ that converts
the textual tree representation into an image, followed by retrieving and
displaying the image.

These snippets might have arisen from the work of the same scientist in different
contexts and stored for reusal, or have been designed by different community
members and shared within the community. No matter their origin, they can
now be put together to form various alignment workflows simply by connecting
them appropriately. For instance, connecting the snippets 1, 2 and 3 results in
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the basic alignment workflow of Fig. 2. Connecting the snippets 2, 7, and 8 forms
a more complex workflow (as depicted in Fig. 3), comprising database search by
keyword, sequence retrieval, alignment computation, and visualization of the
implied phylogenetic tree.

We see here that variability and a large selection of alternative subprocesses
arise naturally in this highly dynamic domain and that artifacts are naturally
shared within the community. Variability and reuse at this level, corresponding to
the upper two layers of Fig. 1 are the norm in this kind of scientific applications.

Fig. 4. Part of the service taxonomy of the EMBOSS domain model
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3.4 Loose Models for Variable and Evolving Scientific Workflows

While the previous section described how the jABC framework supports build-
ing variations of preconfigured workflow snippets consisting of known concrete
SIBs, this section demonstrates how the loose programming provided by the
jABC framework facilitates creating workflow variants in an exploratory way,
without concrete knowledge about the available workflow building blocks. The
envisaged workflow is only modeled declaratively, and the framework takes care
of translating the specification into a concrete executable workflow based on the
available collection of workflow building blocks.

With loose programming, workflow design is not only flexible with regard to
changing experimental setups and analysis objectives as described above, but
also with regard to evolving service libraries, as the synthesis framework auto-
matically takes into account all changes and extensions of the domain model.
This enables even more agile workflow development, as shown in [36] it is not
required to pre-define the possible variants. As the underlying constraint lan-
guage allows fully describing the intended solution space without imposing any
overspecification, neither on the structure, nor on the artifacts, our approach
may in particular be regarded as a step from the today typical settings with
closed-world assumption to one with an open-world assumption, where new arti-
facts are automatically and seamlessly integrated in the domain description and
thus in the loose programming solutions as soon as they are available.

Example: Phylogenetic Workflows Based on the EMBOSS Tool Suite.
As an example from the field of bioinformatics, we take a look at loose program-
ming of phylogenetic workflows with the EMBOSS tool suite (cf. [37, 38] for
further details). Conveniently, as of release 6.4.0 from July 2011, the more than
400 tools of the EMBOSS suite and their parameters are annotated in terms
of the EMBRACE Data and Methods Ontology (EDAM) [39], which allows for
automatic generation of the semantic domain models that are required for loose
programming (cf. [38]).

Figure 4 shows excerpts from the service taxonomy of the domain model. The
OWL class Thing is always the root of the taxonomies, below which EDAM
terms provide groups for concrete and abstract service and type representations.
The (part of the) service taxonomy shown there comprises a number of service
categories for different Operations. Note that the type and service taxonomies
comprise 565 and 1425 terms, respectively, directly after being derived from
EDAM. They are then automatically reduced to those parts that are relevant
for the services and data that appear in the domain model in order to avoid
overhead, still covering 236 and 207 terms, respectively. To facilitate the printed
presentation, the figure includes only the parts of the service taxonomy relevant
for this example.

Table 1 lists the services that are relevant for the following examples, along
with their input and output data types. It comprises only 23 of the more than
430 services in the complete domain model. The set of input types contains
all mandatory inputs (i.e., optional inputs are not considered), while the set of
output types contains all possible outputs. The service interface definitions only
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Table 1. Selection of services from the EMBOSS domain model

Service Input types Output types

degapseq Sequence record Sequence record

edialign Sequence record Sequence alignment, Sequence record

ehmmbuild Sequence record (protein) Hidden Markov Model,
Sequence alignment (protein)

ehmmemit Hidden Markov Model Sequence record (protein)

emma Sequence record Phylogenetic tree, Sequence record

eomega Sequence record Phylogenetic tree, Sequence record

eomegash Sequence record, Phylogenetic tree, Sequence record
Sequence-profile alignment (HMM)

eomegasp Sequence record, Sequence-profile Phylogenetic tree, Sequence record,
Sequence distance matrix

fconsense Phylogenetic tree Phylogenetic tree

fdnacomp Sequence record (nucleic acid) Phylogenetic tree

fdnaml Sequence alignment (nucleic acid) Phylogenetic tree

fdnapars Sequence alignment (nucleic acid) Phylogenetic tree

fdnapenny Sequence alignment (nucleic acid) Phylogenetic tree

fdrawgram Phylogenetic tree Phylogenetic tree

fdrawtree Phylogenetic tree Phylogenetic tree

fproml Sequence alignment (protein) Phylogenetic tree

fprotpars Sequence alignment (protein) Phylogenetic tree

ftreedist Phylogenetic tree Phylogenetic report (tree distances)

makenucseq - Sequence record

makeprotseq - Sequence record (protein)

revseq Sequence record Sequence record (nucleic acid)

transeq Sequence record Sequence record (protein)

trimseq Sequence record Sequence record

consider the data that is actually passed between the individual services, that
is, input parameters that are used for configuration purposes are not regarded
as service inputs.

Figure 5 (top) shows a simple loosely specified phylogenetic analysis work-
flow: it begins by generating a set of random nucleotide sequences (using the
EMBOSS service makenucseq) and ends by drawing and displaying a tree image
(using fdrawtree and the viewer SIB of the jETI plugin), respectively. The first
two SIBs are connected by a loosely specified branch (colored red and labeled
with a question mark). This loose branch constitutes a synthesis query to the
PROPHETS plugin.

The lower part of the figure shows three of the millions of possible service
sequences that solve this synthesis problem: The first, which is also one of the
shortest solutions, is a single call to emma (an interface to ClustalW), which
produces a phylogenetic tree in addition to a multiple sequence alignment. In
the second, the reverse complement of the input sequence is built (revseq) and
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Fig. 5. Loosely specified phylogenetic analysis workflow and possible concretizations

then used for phylogenetic tree construction with fdnacomp. In the third, the se-
quences are translated into protein sequences (transeq), which are then aligned
via ehmmbuild and used for phylogenetic tree estimation with fprotpars. The
last solution is a four-step workflow where an additional sequence is pasted
into the input sequences (pasteseq), which are then translated into protein se-
quences (transeq) and aligned via ehmmbuild before fproml is used for the tree
construction.

Since EMBOSS provides various tools for phylogenetic tree construction as
well as for the different sequence processing tasks, the solutions contained in the
figure are by far not the only possible ones. In fact, millions of logically correct so-
lutions are easily possible with the described domain model already when search-
ing only for comparatively short solutions up to length 4. However, they comprise
a lot of solutions that are not desired or adequate. Hence, it is desirable to in-
fluence the synthesis process so that it is more focused, returning less solutions
that are more adequate. Here we see the advantages of the declarative approach
to the problem formulation: we can simply provide temporal-logic constraints
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that express the corresponding intents by describing more precisely the wished
solutions in terms of properties. Conveniently, PROPHETS provides natural-
language templates for frequently occurring constraints, so that the workflow
designer does not need to be trained in temporal logics. As an example, consider
the following three constraints:

– Do not use services that have no inputs. Excludes services that distract from
the actual synthesis problem: such services require no input but provide new
data that is planted into the workflow.)

– Do not use Sequence editing and alignment services. (Avoids particular op-
erations that are not wanted for some reason.)

– Enforce the use of Phylogenetic tree construction (parsimony methods). (In-
cludes a particular kind of operation.)

With these constraints, manageable sets of adequate solutions are now obtained:
there are two solutions of length three and 268 of length four.

This example illustrates how with loose programming workflowmodels remain
robust against evolution of the service infrastructure and the semantic domain
model: Loose workflow models and constraints capture the essential properties
of the envisaged workflow, and can be synthesized at need into a concrete, exe-
cutable workflow based on the currently available components using as services
the SIBs and in the constraints the concepts of the domain model shown in the
upper two layers of Fig. 1.

4 Conclusion

In this paper we focused on a central observation concerning software evolution
in scientific application domains: Their basic software components (databases,
algorithms, tools) remain available in largely unchanged form for a very long
time, even decades, once they have been introduced. New functionality is added
to the pool of available components rather than replacing existing assets. Hence,
it is the periphery of the concrete service interfaces that is subject to sudden
changes, for example when an entire suite of algorithms migrates its provisioning
from SOAP to REST, and their application-specific use and composition are
subject to fast-paced evolution, as the data analysis processes are themselves part
of the research work and object of experimentation. In fields like bioinformatics
and geo-visualization, e-science seems to have a hard core of stable ingredients
(repositories of data and algorithms) and a sizzling outer layer of process-oriented
experimental work that yields the progress of the disciplines today.

We have shown how the rigorous abstraction concepts of the extreme model
driven design paradigm facilitate dealing with changing service interfaces and
varying service compositions and thus with workflow evolution in these appli-
cation domains. The decoupling of concerns due to adequate abstractions and
layers in the semantic service engineering approach we propose, together with
the plugin-based tool support offered by the jABC framework is the key to
a semantics- (or application domain knowledge-) driven workflow design, that
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enables scientists (our end-users) to largely work within their domains of com-
petence, without the need of IT knowledge as required by scripting languages
that are today considered necessary for any ”do it yourself”-style of scientific
workflow composition. In particular the declarative loose specification approach,
coupled with the automatic synthesis of executable workflows, seems to us to
be a promising path towards self-assembling and self-optimizing processes: the
declarative top-down approach (plus synthesis) is knowledge-driven and specifies
just as much as necessary/wanted (but not more), which leads to an open-world
assumption, where new components or services or repositories automatically
appear in the solutions as soon as they are made available. This contrasts tradi-
tional orchestration-based approaches that explicitly define variability as a con-
figuration space, which typically leads to overspecification and a closed-world
assumption, where one actively deselects from a predefined choice of options.
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