
Model Learning and Test Generation

for Event-B Decomposition

Ionut Dinca, Florentin Ipate, and Alin Stefanescu

University of Pitesti, Department of Computer Science
Str. Targu din Vale 1, 110040 Pitesti, Romania

{ionut.dinca,alin.stefanescu}@upit.ro, florentin.ipate@ifsoft.ro

Abstract. Event-B is a formal method for reliable systems specifica-
tion and verification, which uses model refinement and decomposition as
techniques to scale the design of complex systems. In previous work, we
proposed an iterative approach for test generation and state model infer-
ence based on a variant of Angluin’s learning algorithm, which integrates
well with the notion of Event-B refinement. In this paper, we extend the
method to work also with the mechanisms of Event-B decomposition.
Two types of decomposition, i.e. shared-events and shared-variables, are
considered and the generation of a global test suite from the local ones
is proposed at the end. The implementation of the method is evaluated
on publicly available Event-B decomposed models.

1 Introduction

Event-B [1] is a formal method for reliable systems specification and verification,
which was introduced about ten years ago and was tuned up in several industrial-
academic projects. Event-B models are a type of abstract state machines in
which a set of global variables are changed by so called events. When the guard
of an event is satisfied, its action code can executed having an effect on the
global variables. The main modeling approach in Event-B relies on the notion of
refinement, i.e., the modeler starts with an abstract model which is iteratively
enriched and concretized by capturing more and more features of the system to
be specified. Each refinement step is accompanied by formal proofs for properties
of interest for the system. As the complexity of the model increases, so does the
difficulty the proof obligations and verification tasks. One powerful method to
address this situation is to decompose a larger model into smaller sub-models
which can be further refined and analyzed independently [2,3]. There are two
main types of decomposition: shared events style [4,5] and shared variables style
[6,7]. In the former, the communication and consistency between sub-models is
realized via shared events, while in the latter this is done via shared variables.

The current efforts of further developing Event-B are concerted in a large Eu-
ropean project, DEPLOY1, which also includes industrial partners from the em-
bedded and business applications domains (Bosch, Siemens, SAP, SSF).

1 European FP7 project (2008-2012): http://www.deploy-project.eu

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 539–553, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.deploy-project.eu


540 I. Dinca, F. Ipate, and A. Stefanescu

The main platform supporting Event-B, called Rodin [8], is an extensible Eclipse-
based tool offering different capabilities such as model refinement, model de-
composition, theorem-proving, and model-checking. Complementing the formal
verification, test generation from Event-B is a recent topic of interest backed by
concrete requirements from industry.

Essentially, in order to generate test suites for an Event-B model one has to
first construct an equivalent automaton and then apply one of the many finite
state based test generation techniques existing in the literature [9,10]. How-
ever, as the states of this equivalent automaton are given by the combinations
of the model global variables, this may lead to the well-known state explosion
problem. In order to address such issue, in our previous work, we have devel-
oped an automata learning and test generation approach [11], implemented in
a Rodin plug-in [12], that constructs a finite state approximation and an associ-
ated test suite for an Event-B model. The core of the method relies on a variant
of Angluin’s algorithm [13] adapted to finite cover automata [14]. A finite cover
automaton (CA)[15] represents an approximation of the system which only con-
siders sequences of length up to an established upper bound �. Crucially, the
size of the cover automaton, which normally depends on �, can be significantly
lower than the size of the exact automaton model. A powerful (conformance) test
suite, including appropriate test data, is obtained as a by-product of the learning
algorithm. Last but not least, the whole procedure can be applied incrementally,
allowing the reuse of the learned model and test cases from the abstract to the
more concrete levels of refinement.

The main contribution of this paper is an extension of the above method that
integrates not only the Event-B refinement mechanism, but also the different
Event-B decomposition styles. More precisely, for decomposition, we investigate
the generation of CAs for the sub-models by reusing information via projections
from the global model. Also vice-versa, for the recomposition operation we can
reuse the information from the CAs of the sub-models for the construction of a
CA for the global model. Conformance test suites are also generated alongside.
Finally, an integrated approach involving both refinements and (de)compositions
in an Event-B development chain is proposed.

The paper is structured as follows. The next section presents prerequisites
from formal languages and automata theory. Section 3 shortly recalls the pre-
vious work on automata learning for Event-B and Section 4 introduces the ex-
tension of this work to Event-B decomposition and recomposition operators.
Section 5 provides experiments on publicly available Event-B models, while Sec-
tion 6 concludes the paper.

2 Preliminaries

In this section we provide theoretical prerequisites on finite automata, cover
automata and product automata, together with their accepted languages.

Finite Automata - General Concepts. We start by introducing some classic
definitions from automata theory.



Model Learning and Test Generation for Event-B Decomposition 541

A deterministic finite automaton (DFA) M is a tuple (A,Q, q0, F, h), where:
A is the finite input alphabet; Q is the finite set of states; q0 ∈ Q is the initial
state; F ⊆ Q is the set of final states; h is the next-state, h : Q×A −→ Q. A DFA
is usually described by a state-transition diagram. The next-state function h can
be naturally extended to a function h : Q ×A∗ −→ Q, where A∗ :=

⋃
i≥0 A

i. A
state q ∈ Q is called reachable if there exists s ∈ A∗ such that h(q0, s) = q. M is
called reachable if all states of M are reachable.

Given q ∈ Q, the set LM , called the language accepted by M , is defined by
LM = {s ∈ A∗ | h(q0, s) ∈ F}. A DFA M is called minimal if any DFA that
accepts LM has at least the same number of states as M . A classic results states
that there exists a unique (up to a renaming of the state space) minimal DFA
that accepts a given regular language [16].

Now let us also introduce the concept of deterministic finite cover automaton
(DFCA). Informally, a DFCA of a finite language U , as defined by Câmpeanu et
al. [15], is a DFA that accepts all sequences in U and possibly other sequences
that are longer than any sequence in U .

In this paper we use a slightly more general concept, as defined in [14]: given
a finite language U ⊆ A∗ and a positive integer � that is greater than or equal to
the length of the longest sequence(s) in U , a deterministic finite cover automaton
(DFCA) of U w.r.t. � is a DFA M that accepts all sequences in U and possibly
other sequences that are longer than �, i.e. LM ∩ A[�] = U , where A[�] :=⋃

0≤i≤� A
i. A DFCA M of U w.r.t. � is called minimal if any DFCA of U w.r.t

� has at least the same number of states as M . Note that, unlike the case in
which the acceptance of the exact language is required, the minimal DFCA is
not necessarily unique (up to a renaming of the state space) [14].

Naturally, a DFA that accepts a finite language U is also a DFCA of U w.r.t.
any � ≥ ‖U‖. Consequently, the number of states of a minimal DFCA of U w.r.t.
� will not exceed the number of states of the minimal DFA accepting U . Further-
more (and more importantly from the point of view of practical applications),
the size of a minimal DFCA of U w.r.t. � can be much smaller than the size of
the minimal DFA that accepts U [14].

Product Automata and Projections - General Concepts.We now provide
a couple of definitions and results for product automata and languages. This is a
prerequisite for the setting of decomposed Event-B models that we present later
on. To simplify the presentation, we only consider the case the two automata,
but the definitions and the results hold also for more than two automata.

We start by describing formally the product of two automata synchronizing on
their common input symbols. First of all, since the two automata have different
input alphabets A1 and A2, their transition function is extended to the whole
set of symbols A = A1 ∪ A2 using the following definition. Given DFA M =
(B,Q, q0, F, h) and B ⊂ A we define the DFA ExtA(M) = (A,Q, q0, F, h

′) by:
for every q ∈ Q and a ∈ A, h′(q, b) = h(q, b) if b ∈ B and h′(q, a) = q if a ∈ A\B.

When the two automata operate on the same input alphabet, their product
can be described in a traditional fashion, as follows:



542 I. Dinca, F. Ipate, and A. Stefanescu

Definition 1. Let M1 = (A,Q1, q01, F1, h1) and M2 = (A,Q2, q02, F2, h2) be
two DFAs. Then we define the DFA M1 × M2 = (A,Q, q0, F, h) by: Q = Q1 ×
Q2, q0 = (q01, q02), F = F1 × F2 and for every q1 ∈ Q1, q2 ∈ Q2, a ∈ A,
h((q1, q2), a) = (h1(q1, a), h2(q2, a)).

Thus, for two DFAs M1 and M2 over alphabets A1 and A2, we denote by
M1 ‖ M2 := ExtA(M1) × ExtA(M2) the product automaton over alphabet A =
A1 ∪A2 capturing the synchronization on common symbols of M1 and M2. This
is similar to the standard synchronization of labeled transition systems used in
the literature (see e.g. [17]).

The languages accepted by product automata are characterized by the so-
called product languages. For their definition, we first need the notion of projec-
tion. Given a sequence s ∈ A∗ and A1 ⊂ A, the projection of s on A1, denoted
by projA1

(s), is the sequence obtained from s by removing all symbols not in A1.
For a language L ⊆ A∗, projA1

(L) = {projA1
(s) | s ∈ L}. Now, we can define

the notion of product language:

Definition 2. Let A1 and A2 be two alphabets, not necessarily disjoint, and
A := A1 ∪ A2. Then, a language L ⊆ A∗ is called a product language (over A1

and A2) if and only if there exist two languages L1 ⊆ A∗
1 and L2 ⊆ A∗

2 such that

L = {w ∈ A∗ | projA1
(w) ∈ L1 and projA2

(w) ∈ L2}.
Moreover, there exist also a useful result (see e.g. [18]) proving that a product
language is always the product of its projections, i.e. languages L1 and L2 in the
previous definition can be replaced by projA1

(L) and projA2
(L), respectively.

Finally, the expected result relating the languages of product automata with
product languages says that:

Proposition 1. [18] The class of regular product languages coincides with the
class of languages accepted by products of DFAs.

Corollary 1. For a finite alphabet A := A1 ∪ A2, let L ⊆ A∗ be a regular
product language, and M1 and M2 be two DFAs for projA1

(L) and projA2
(L),

respectively. Then, L = LM1‖M2
.

Since any finite language is also a regular language, Corollary 1 holds also when
L is a finite product language. Therefore, we can easily derive:

Corollary 2. For a finite alphabet A := A1 ∪A2, let U ⊆ A∗ be a finite product
language and � a positive bound (larger than the size of any word in U). If M1

and M2 are two DFCAs w.r.t. � for projA1
(U) and projA2

(U), then M1 ‖ M2 is
a DFCA w.r.t. � for U .

3 Cover Automata Based Learning and Test Generation
for Event-B

In this section we present the main elements of the approach proposed in [11],
that can incrementally construct a series of finite state approximations and cor-
responding test suites for a series of Event-B refined models. Before that, we
need to provide the basic elements of Event-B.



Model Learning and Test Generation for Event-B Decomposition 543

A Short Introduction to Event-B. Event-B [1] is a formal methodology
having its mathematical foundations rooted in set theory and first order logic. A
Event-B specification consists of a static part called context and a dynamic part
calledmachine. A context defines a set of datatypes as carrier sets, constants and
axioms that relate the constants to the carrier sets. A machine will be specified
by a set of global variables and a set of events, which are the first-class citizens
of the formalism. Moreover, a set of invariants captures the properties of the
specified system. Proof obligations solved (automatically or manually) by the
supporting platform will ensure that the invariants are always true, i.e. both
before and after the execution of any event.

An event is an element consisting of a set of local parameters, a guard and an
action code. An event evt has the following general form:

evt =̂ any t where G(t, v) then S(v, t) end. (1)

Above, t is a set of local parameters, v is a set of global variables appearing in
the event, G is a predicate over t and v, called the guard, and S(v, t) represents
a substitution. If the guard of an event is false, the event cannot occur and is
called disabled. The substitution S modifies the values of the global variables
in the set v. It can use the old values from v and the parameters from t. For
example, an event that adds a number i smaller than 9 to a global variable n,
in case n is greater than 15, is modeled as:

increment =̂ any i where i ∈ N ∧ i < 9 ∧ n > 15 then n := n+ i end.

The semantics of an Event-B model is based on the execution of its events.
First of all, a special event called Initialisation, which does not have a guard, is
executed; usually, its action will set initial values to the global variables. Then, in
a loop, all the guards of the events are evaluated and the set of enabled events is
established. From them, one event is nondeterministically chosen and its action
is executed, some of the variables being updated. The process then iterates. Note
that the state space of the model is not explicit, but is implicitly given by the
evolving values of the variables.

Given an Event-B model, a test case can be defined as a sequence of events.
This can be either positive, if it corresponds to a feasible (i.e. executable) path
through the Event-B model, or negative, otherwise. The feasibility of a test
case implies the existence of appropriate test data for the events, i.e. an ap-
propriate initialization of the global variables and suitable values for the local
parameters,such that all the guards of the events in the sequence are satisfied.
Furthermore, a test suite is by definition a collection of test cases.

Given an Event-B model Z having its set of events denoted by E, we can
define the language of Z to be the set of feasible sequences over E, i.e.

L(Z) := {w ∈ E∗ | w is feasible in Z}.

Note that L(Z) is not regular in general, since one can easily simulate a two-
counter machine in Event-B, so the formalism is Turing-complete [16]. However,



544 I. Dinca, F. Ipate, and A. Stefanescu

we can naturally obtain a regular subset by considering only a finite subset of
L(Z), namely the sequences of length up to a bound �, i.e. L(Z, �) := L(Z)∩E[�].

Finally, the refinement in Event-B is a mechanism of constructing a series
of more abstract models before reaching a very detailed one. For instance, in a
refinement step, new variables and new events can be introduced and the existing
events can be made more concrete with the assumption (that must be formally
proved) that the concrete guard is not weaker than the abstract one (i.e. the
concrete guard logically implies the abstract one) [1].

Incremental Model Learning Based on Cover Automata. In [11] we
present an automata learning and test generation procedure for Event-B: given
an Event-B model Z and a positive bound �, we produce a DFCA M for U :=
L(Z, �) and an associated test suite. The procedure can be iteratively used for a
series of model refinements.

The core of the procedure is based on a modification of Angluin’s learning
algorithm [14] that is specialized to finite languages, and that is more efficient
than the original Angluin’s algorithm, called L∗, for regular languages [13].

In a similar but not trivial way, in [14] we extend Angluin’s work by proposing
an algorithm, called L�, for learning a DFCA. Given an unknown finite set
U ⊆ A∗ and a known integer � that is greater than or equal to the length of the
longest sequence(s) in U , the L� algorithm will construct a minimal DFCA of
U w.r.t. �. Analogously to L∗, the L� algorithm uses membership and language
equivalence queries to find the automaton in polynomial time.

The L� algorithm constructs two sets: S, a non-empty, prefix-closed set of
sequences and W , a non-empty, suffix-closed set of sequences. Additionally, S
will not contain sequences longer than � and W will not contain sequences longer
than �− 1, i.e. S ⊆ A[�] and W ⊆ A[�− 1]. The algorithm keeps an observation
table, which is a mapping T from a set of finite sequences to {0, 1,−1}. The
sequences in the table are formed by concatenating each sequence of length at
most � from the set S ∪SA with each sequence from the set W . Thus, the table
can be represented by a two-dimensional array with rows labeled by elements
of (S ∪ SA) ∩ A[�] and columns labeled by elements of W . The function T :
((S ∪ SA) ∩ A[�])W −→ {0, 1,−1} is defined by T (u) = 1 if u ∈ U , T (u) = 0 if
u ∈ A[�]\U and T (u) = −1 if u /∈ A[�]. The values 0 and 1, respectively, are used
to indicate whether a sequence is contained in U or not. However, only sequences
of length less than or equal to � are of interest. For the others, an extra value,
−1, is used. Similar to the L∗ algorithm, two properties of the observation table
are defined: consistency and closedness.

The algorithm starts with S = W = {ε}. It periodically checks the consistency
and closedness properties and extends the table accordingly using membership
queries. When both conditions are met, the DFA M(S,W, T ) corresponding to
the table is constructed and it is checked whether the language L accepted by
M(S,W, T ) satisfies L ∩ A[�] = U . If this language query fails, a counterexam-
ple t is produced, the table is expanded to include t and all its prefixes and
the consistency and closedness checks are performed once more. Eventually, the



Model Learning and Test Generation for Event-B Decomposition 545

language query will succeed and the algorithm will return a minimal DFCA of
U w.r.t. �.

The iterative procedure of the algorithm for Event-B is shortly presented
below. The technical details can be found in [11]. The main idea is that we
evolve the observation table based on previous versions of it, by reusing existing
information whenever possible. In particular, for the Event-B refinement, the
observation tables of the refined model is not generated from scratch, but from
the table of the abstract model that is refined, so unlike the original L� algorithm,
the procedure does not start with empty S,W and T , but with some initial values
S0, W0 and T0, which reflect the current knowledge about the DFCA model.
An important observation is that, for efficiency reasons, in the recalculation of
the observation table only a part of the previous information is sufficient, viz.
Smin ⊆ S and Wmin ⊆ W , which satisfy certain properties: they are a proper
state cover and strong characterization set, respectively (see [11] for definitions).

For the first execution of the procedure, the initial sets S0 and W0 are based
on an initial estimation of the states of the model. In the worst case (when no
initial estimation is available), we take S0 = {ε}, W0 = {ε} ∪ E, where E is
the set of events. Note that the alphabet A from L� above is now the set E.
When the procedure has been applied at least once, previous information can
be reused. If the model is not totally accurate and needs to be improved, we can
distinguish the different reasons for that:

– Case 1: the Event-B model has been modified or augmented due to changes
in the requirements.

– Case 2: the Event-B model has not been changed but the associated DFCA
is deemed to be insufficient for testing purposes. In this case, the upper bound
� is increased according to the existing testing needs and the procedure is
executed once more for the new value of �.

– Case 3: the existing Event-B model has been refined and extra detail has
been added (using the Event-B refinement). In this case, information from
the abstract model can be reused in the computation of the refined model.

A test suite TS can be derived from the observation table as follows:

TS := {t ∈ E∗ | t ∈ ((S ∪ SE) ∩ E[�])W such that T (t) = 1}. (2)

Note that we only take positive test cases into account in TS. However, we could
also use the existing information about infeasible sequences, i.e. T(t)=0, to gen-
erate negative tests, if such a testing requirement exists. Moreover, in (2) we
usually take S and W to be the sets Smin and Wmin mentioned above. Further-
more, the test cases from TS are provided with the test data that prove their
feasibility. The test data is obtained during the construction of the observation
table T , because the membership queries, i.e. feasibility checks, are implemented
using a dedicated set-based constraint solver for Event-B, which also returns the
values of variables and local parameters for a given feasible sequence. As dis-
cussed in [11], TS will constitute a conformance test suite for the Event-B model
modulo the bound � (the �-bounded behavior of the model). Such a test suite is



546 I. Dinca, F. Ipate, and A. Stefanescu

more powerful than test suite based on simple state or transition coverage crite-
ria since it covers all states and all transitions of the equivalent automaton and
also checks each state and the initial and destination states of each transition.
Conformance testing is especially relevant in the embedded systems domain.

4 Model Learning for Event-B Decomposition

4.1 Event-B Decomposition Styles

There are two main decomposition styles in Event-B: shared-events [4,5] and
shared-variables [6,7]. Other variants such as atomicity decomposition [4,19] or
modularization [20,3] also exist, but we do not address them in this paper for
the following reasons. Since the atomicity decomposition is in fact a special
case of refinement, our method in [11] works for it out-of-the-box. On the other
hand, modularization defines a different approach to decomposition that reuses
a sub-model in several other models using interface specifications, so we leave its
investigation to the future (moreover, there is some yet to be solved integration
issues between the modularization plug-in and the Event-B constraint solver that
we use).

Shared Events Decomposition. In the case of shared events decomposition,
an Event-B model is decomposed into several sub-models such that all its events
and variables are distributed over the local models. As the name suggests, the
local sets of events may have common events (shared events). However, the local
sets of variables are disjoint, i.e. the partition of the variables will determine the
structure of the decomposition. The left hand side of Fig. 1 presents a minimalis-
tic example of shared events decomposition. At the top, we have a global model
Z with three events {evA, evB, evC} and two global variables {var1, var2}. The
lines between the events and variables suggests the dependencies between them,
e.g evA − var1 means that var1 appears in the guard or/and action of evA. As-
sume that the modeler chose to distribute the variables over two sub-models:
the first one, denoted Z1, takes over var1, and the second, Z2, takes over var2.
Then, the events are distributed to Z1 and Z2 according to the distribution of
the variables, so Z1 has evA and evB as events (because they depend on var1)
and similarly, Z2 has evB and evC as events. In this case, evB is a shared event
for Z1 and Z2.

However, there is a technical issue to be solved for evB; the fact that evB
depends on both var1 and var2, while the local models contain only one of the
variables. This means that the local events corresponding to evB, denoted in
Fig. 1 by evB 1 and evB 2, will only be restricted versions of evB that only
depend on var1 and var2, respectively. So, for the decomposition to be possible,
evB should have such a form that ”separates” the use of var1 and var2 in its
guards and actions. This is a task for the modeler that should design the Event-
B specification in this way as a preparation step for decomposition (refinement
may be use in previous modeling steps to achieve this goal). Below, we present
evB, evB 1, and evB 2 using the general form of an event in (1):



Model Learning and Test Generation for Event-B Decomposition 547

evA evB evC

var1 var2

Z

(a) shared event decomposition

evA evB 1

var1

Z1

evB 2 evC

var2

Z2

evA evB evC

var1 var2

Z
′

(b) shared variable decomposition

evA evB evC e

var1 var2

Z
′

1

evB e evC

var2

Z
′

2

Fig. 1. The shared event vs. shared variable decomposition styles

evB =̂ any t, t1, t2 where G1(t, t1, var1) ∧G1(t, t2, var2)
then S1(var1, t, t1);S2(var2, t, t2) end.

evB 1 =̂ any t, t1 where G1(t, t1, var1) then S1(var1, t, t1) end.
evB 2 =̂ any t, t2 where G2(t, t2, var2) then S2(var2, t, t2) end.

Above, we see that evB has a set of local parameters t, t1, t2, a guard that is
the conjunction of two guards using var1 and var2 separately, and also an ac-
tion that can be split into two actions that do not mix the two global variables.
The local events will then only use the parts of the guards and actions that
refer to their corresponding global variable. Without going into details, it is
also important to observe the existence of the common local parameter t, which
can be used for passing data between evB 1 and evB 2. This makes the shared
event decomposition suitable for specifying distributed systems communicating
via message-passing [19]. Finally, we mention also the fact that the decompo-
sition mechanism is correct in the sense of Event-B refinement [1], by proving
specific proof obligations (e.g. deadlock freedom) and putting restrictions on the
subsequent refinements of the shared events in the local sub-models.

The decomposition operation induces the inverse operation of composition, for
which a dedicated Rodin plug-in exists [21]. It takes a input two models Z1 and
Z2 that may have events with the same name and constructs a composed model
Z (look at Fig. 1 bottom-up). Z is obtained by putting together the variables
and events Z1 and Z2, taking care that the local shared events are merged by
concatenating their guards and actions following the same scheme as for evB 1,
evB 2, and evB above.

Shared Variables Decomposition. Let us also touch upon the shared vari-
ables decomposition, using the exemplification on the right of Fig. 1. In this case,
we partition the set of events and then distribute the variables. If we partition
the events of Z ′ into {evA, evB} and {evC}, due to the variables dependences,
the sub-models Z ′

1 and Z ′
2 have the variables {var1, var2} and {var2}, so they

share variable var2. However, since sub-models have in fact two copies of the
shared variable, they need to learn the changes made to the shared variable
in the other sub-models. This is implemented adding so-called external events.
For instance, in addition to its ”native” event evC , Z ′

2 will also include an



548 I. Dinca, F. Ipate, and A. Stefanescu

external event evB e that is a restricted version of evB, that only simulates
its effect on var2. Note that the shared variables decomposition is suitable for
the specification and verification of parallel programs [7].

4.2 Learning and Test Generation for Shared Events Decomposition

In the rest of the paper, we will present our approach only for the shared events
decomposition. We can do this without loss of generality based on the observation
that, for our purposes, the shared variables decomposition can be reduced to the
shared event decomposition as follows. Suppose Z ′ is decomposed using shared
variables into Z ′

1 and Z ′
2 and the decomposition is based on the partition of set of

events E of Z ′ into E1 and E2 Assume that E11 ⊆ E1 is the set of external events
for Z1 and E21 ⊆ E2 the set of external events for Z2. Then, if we duplicate the
shared variables and consider each of the two Event-B components to work on
its own copy (the definition of the shared variables ensures that they process the
two copies identically), the shared variables decomposition can be transformed
into a shared events decomposition of Z ′ into sub-models with set of events
E′

1 = E1 ∪ E21 and E′
2 = E2 ∪ E12, respectively.

Before we proceed, we establish a formal relation between Event-B decom-
position and the theory of product languages from Section 2. The proofs of the
theoretical results can be found in the long version of our paper [22].

Lemma 1. Let Z be an Event-B model, which is decomposed into Z1 and Z2.
Then, for any w sequence of events in Z, w is feasible if and only if, proj1(w)
and proj2(w) are both feasible in Z1 and Z2, respectively.

Using Lemma 1 and Definition 2 for product languages, we can show that:

Proposition 2. Let Z be an Event-B model, which can be decomposed into Z1

and Z2. Then, the language of Z, L(Z), is a product language over E := E1∪E2,
where E1 are the events of Z1 and E2 are the events of Z2.

As an immediate corollary, the result holds also when we impose a bound �, i.e.
L(Z, �) is also a product language, so Corollary 2 can be applied.

Next we now show how our learning and test generation method can be applied
to the two operations of decomposition and composition.

Approach for Decomposition. Let Z be an Event-B model and E the set of
events of Z. We assume that Z is decomposed, using the shared events scheme,
into models Z1 and Z2 with event sets E1 and E2, respectively. Given a bound
�, our goal is to obtain DFCAs and associated test suites for Z, Z1, and Z2.
Although one can apply the method in Section 3 directly and separately on Z,
Z1, and Z2, we would like to improve the process by reusing information.

We assume that we have a DFCA M and a test suite TS for Z. Then, the
DFCA learning procedure for Z1 will not start with S1 = {ε}, as when no
previous model is available, but with the set S1 = {proj1(s) | s ∈ Smin}, where
Smin is the proper state cover derived from the DFCA model of Z. The set



Model Learning and Test Generation for Event-B Decomposition 549

W1 is initialized with E1 ∪ {ε}. Similarly for Z2. We could also to start with a
projection of the set W obtained for Z (i.e. W1 = {proj1(s) | s ∈ Wmin}), but,
this may not improve performance since W usually contains only singletons [11].

With this input, the learning procedure may not produce a correct DFCA M1

for Z1 from the beginning and more iterations may be needed. The reason is that,
even though Lemma 1 ensures that a feasible path in Z is projected to a feasible
path in Z1, the projection S1 may not be rich enough to cover all the states of
M1. This can be understood from the fact that, in general, there is no concrete
relation between the sizes of a minimal DFA of a regular language L ⊆ A∗ and
of the minimal DFA of its projection on a sub-alphabet A′ ⊂ A. Thus, the size
of a minimal DFA accepting the projection projA′(L) can be smaller, equal to,
or even exponentially larger than the size of the minimal DFA accepting L [23].
The same holds even when L is a finite language. Moreover, in the specific case
of Event-B decomposition, the DFCAs of the sub-models may be larger not only
because of the effects of the projections just mentioned, but also because there
might exist more feasible paths in the projections due to the weakened guards of
the shared events, with the effect that the DFCAs for the local sub-models have
more states. However, our experiments showed that our choice of S1 will speed
up the learning procedure, generating richer DFCAs in less time compared to
the procedure of learning an DFCA for Z1 from scratch.

Approach for Composition. The inverse operation to decomposition is that
of composition [21,5]. Given two models Z1 and Z2 with event sets E1 and E2,
one can construct an Event-B model Z that synchronizes on the shared events.

There are several ways in which we can construct a global DFCAmodel and/or
a test suite for Z from Z1 and Z2 or their DFCAs:

1. Construct Z and then apply the techniques of [11] to derive a DFCA and a
test suite associated to Z. In this case, there is no reuse of information from
Z1 and Z2.

2. Construct the two DFCAs M1 and M2 for Z1 and Z2 and then construct
the product M1 ‖ M2, minimize it and denote it Mmin. Then, construct a
test suite TS from the minimal DFCA Mmin using the W-method adapted
to bounded testing [10]. For every test sequence s for Mmin, the test data
generation process will check if proj1(s) and proj2(s) are test sequences for
M1 and M2, respectively. If this is the case, the test data values for proj1(s)
and proj2(s) will be reused. This variant is sound due to Corollary 2.

3. Construct only a global test suite TS from the local test suites TS1 and TS2

by composing individually the test cases, i.e. TS := {t ∈ E∗ | proj1(t) ∈
TS1 and proj2(t) ∈ TS2}. (Optionally, apply a symmetry reduction by only
keeping traces in TS that are not equivalent modulo swapping of independent
events.)

4. Construct directly a DFCA for the composed model Z without applying the
composition of Z1 and Z2, nor the product of M1 and M2. This is done by
applying a learning algorithm for global sequences of events (of length up
to �) and answering the global membership queries via answering the local
membership queries for the projections (this is sound because of Lemma 1).



550 I. Dinca, F. Ipate, and A. Stefanescu

Z RZ

RZ1

RZ2

RRZ1

RRZ2

Fig. 2. A sample of decomposition flow

The first two proposals above are correct, i.e. the obtained automata are DFCAs
with respect to L(Z, �), while the last two are heuristics that in our experiments
produced reasonable results, even though they are in general only approxima-
tions.

Approach for Integrated Process. Finally, let us sketch how the above pro-
posals can be integrated in our incremental, refinement based, model learning
and test generation strategy presented in [11].

Figure 2 describes a typical incremental development in Event-B involving
decomposition. There, RZ, which is a refinement of Z, is decomposed into RZ1

and RZ2, which are further refined into RRZ1 and RRZ2. For this example,
our approach will first construct a DFCA model for Z, which will be reused
in the construction of a DFCA for RZ. RZ will constitute the basis for the
construction of the DFCAs for RZ1 and RZ2 starting the learning procedure
with the projections as previously explained. The DFCAs for RZ1 and RZ2 will,
in turn, be reused in the construction of the final models, for RRZ1 and RRZ2.
These latter models are used to produce a DFCA model and tests for the overall
system by one of the methods proposed for the composition operator.

5 Experiments

We implemented the methods for decomposition presented in this paper, ex-
tending our Rodin plug-in that previously only addressed refinement [12]. The
experiments were conducted on a Windows 7 Professional 64-bit machine with
an Intel Core i7 2.80GHz (8 CPUs) processor and 12 GB of RAM.

For the benchmark, we investigated all the publicly available Event-B models
involving decomposition from the DEPLOY repository2. From the total of eight
found models, we could not use two of them because they involved some advanced
data types that were not yet supported by the Event-B constraint solver deployed
for the membership queries. From the rest of six models, the first three use shared
events and the last three use shared variables. Their dimensions are presented in
Table 1. The first column gives their name together with a reference. The sec-
ond column gives the evolution of the models by the operations of refinement and
decomposition in a similar fashion to Fig. 2. The ’/’ symbol represents a refine-
ment step, while ’{’ depicts a decomposition. For instance, for BepiColombo SE,
there are three refinement steps m0/m1/m2/m3, followed by a decomposition of
m3 intom4 andm5; then,m4 is further refined tom6 andm7. The third and forth

2 http://deploy-eprints.ecs.soton.ac.uk

http://deploy-eprints.ecs.soton.ac.uk


Model Learning and Test Generation for Event-B Decomposition 551

Table 1. The dimensions of 6 models from DEPLOY repository (development process,
no. of events and no. of variables)

Subject Development process No. events (m0/m1...) No. variables (m0/m1...)

BepiColombo SE from [19] m0/m1/m2/m3

{
m4/m6/m7
m5

6/11/13/17

{
15/19/23
10

5/10/12/16

{
12/16/20
4

UpdateMaster SE from [3] m0/m1/m2

{
m3/m5/m7
m4/m6/m8

5/6/6

{
4/5/5
4/6/6

4/5/5

{
4/6/6
3/8/8

Monitor SE from [3] m0/m1/m2

⎧⎨
⎩

m3/m6/m9
m4/m7/m10
m5/m8/m11

7/7/7

⎧⎨
⎩

7/5/5
4/6/6
4/6/6

4/6/6

⎧⎨
⎩

2/4/4
2/3/3
2/3/3

Monitor SV from [3] m0/m1/m2

⎧⎨
⎩

m3/m6/m9
m4/m7
m5/m8/m10

7/11/11

⎧⎨
⎩

9/11/11
10/10
7/7/9

4/4/4

⎧⎨
⎩

2/5/5
3/4
3/4/6

QResponse SV m0/m1/m2/m3/m4

⎧⎨
⎩

m5
m6
m7

2/3/4/5/5

⎧⎨
⎩

3
5
3

2/3/5/7/9

⎧⎨
⎩

4
7
4

FindP SV from [7] m0

{
m1/m3/m4/m5
m2

6

{
4/5/6/6
4

5

{
3/4/5/6
3

columns provide the corresponding numbers of events and global variables for the
models. For example, BepiColombo starts at m0 with 6 events and 5 global vari-
ables, increases its complexity via refinement to m3 which exhibits 17 events and
16 variables, and ends up having 23 events and 20 variables for the last refinement
m7 of one of the sub-models.

Note that the search space in BepiColombo case can be very large. E.g. the
third refinement m3 of BepiColombo has 17 events, so for � := 8 the number
of possible sequences or tests of length up to 8 is 178 which is almost equal to
7 · 109. Moreover, to this complexity we have to add the computation time for
test data for the generated test cases. The constraint solver performing this task
need to address a search space implied by 16 global variables of type Set and 17
local parameters appearing in the events.

In our experiments, we checked the feasibility of our approach and the scala-
bility of the implementation, by performing the steps for the integrated process
at the end of the previous section, i.e. we incrementally construct DFCAs for the
refinement and decomposition from abstract model to more concrete levels, com-
bining the (integration) tests at the end using a method for composition. Due
to space constraints, we provide the tables with experimental results only in the
extended version of our paper [22]. However, we report a successful generation of
DFCAs and test suites within reasonable time (max. 6 minutes) for sufficiently
high values of � (up to 13 for smaller models). Moreover, the experiments con-
firmed that the reuse improves the quality of the generated DFCAs (i.e. more
states compared to learning from scratch) and reduces the computation time in
many cases.

6 Conclusions

In this paper, we presented a method for automata learning and test generation
that can be applied along the specification process of Event-B. We focused on the



552 I. Dinca, F. Ipate, and A. Stefanescu

mechanism of decomposition, because this is an important way of dealing with
the large models that may occur in industrial practice. Our approach makes use
of the advantages of cover automata and its soundness is based on the theory of
product languages. In the future, we will continue to improve the prototype e.g.
by a better (UI) integration with decomposition and composition plug-ins [2,21]
and extend its use to the modularization plug-in [20]. We will also investigate
the quality of the generated test suites using mutation testing techniques.

In the end, we mention a couple of related papers, even though they solve
different problems in different settings. First, we are not aware of any work
that generates test cases for Event-B decomposed models, see e.g. [24] and the
references therein. An idea of using model projections combined with automata
learning for black-box testing of components is presented in [25]. Our relation
between learning and conformance test suite is similar to the one presented in
[26]. Learning is also used for the generation of communicating automata [27,28]
and for compositional verification of system components [17].

Acknowledgments. This work was supported by project DEPLOY, FP7 EC
grant no. 214158, and Romanian National Authority for Scientific Research
(CNCS-UEFISCDI) grant no. PN-II-ID-PCE-2011-3-0688 (project MuVet) and
grant no. 7/05.08.2010.

References

1. Abrial, J.-R.: Modeling in Event-B – System and Software Engineering. Cambridge
University Press (2010)

2. Silva, R., Pascal, C., Son Hoang, T., Butler, M.: Decomposition tool for Event-B.
Softw., Pract. Exper. 41(2), 199–208 (2011), Plug-in webpage:
http://wiki.event-b.org/index.php/Event_Model_Decomposition

3. Son Hoang, T., Iliasov, A., Silva, R., Wei, W.: A survey on Event-B decomposition.
ECEASST 46, 1–15 (2011)

4. Butler, M.: Decomposition Structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009)

5. Silva, R., Butler, M.: Shared Event Composition/Decomposition in Event-B. In:
Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS,
vol. 6957, pp. 122–141. Springer, Heidelberg (2011)

6. Abrial, J.-R.: Event model decomposition. Technical Report 626, ETH Zurich (May
2009)

7. Hoang, T.S., Abrial, J.-R.: Event-B Decomposition for Parallel Programs. In: Frap-
pier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS,
vol. 5977, pp. 319–333. Springer, Heidelberg (2010)

8. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010), Tool available online at:
http://sourceforge.net/projects/rodin-b-sharp

9. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines –
A survey. Proc. of the IEEE 84(8), 1090–1123 (1996)

10. Ipate, F.: Bounded sequence testing from deterministic finite state machines. The-
oret. Comput. Sci. 411(16-18), 1770–1784 (2010)

http://wiki.event-b.org/index.php/Event_Model_Decomposition
http://sourceforge.net/projects/rodin-b-sharp


Model Learning and Test Generation for Event-B Decomposition 553

11. Ipate, F., Dinca, I., Stefanescu, A.: Model learning and test generation using cover
automata (submitted, 2012)

12. Dinca, I., Ipate, F., Stefanescu, A.: Learn and Test for Event-B – A Rodin Plugin.
In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,
Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 361–364. Springer, Heidelberg
(2012), Plug-in webpage: http://wiki.event-b.org/index.php/MBT_plugin

13. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

14. Ipate, F.: Learning finite cover automata from queries. Journal of Computer and
System Sciences 78, 221–244 (2012)

15. Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages.
Theoret. Comput. Sci. 267(1-2), 3–16 (2001)

16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation, 3rd edn. Addison-Wesley (2006)

17. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L∗ algorithm to automate assume-
guarantee reasoning. Formal Methods in System Design 32(3), 175–205 (2008)

18. Thiagarajan, P.S.: A Trace Consistent Subset of PTL. In: Lee, I., Smolka, S.A.
(eds.) CONCUR 1995. LNCS, vol. 962, pp. 438–452. Springer, Heidelberg (1995)

19. Salehi Fathabadi, A., Rezazadeh, A., Butler, M.: Applying Atomicity and Model
Decomposition to a Space Craft System in Event-B. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 328–342.
Springer, Heidelberg (2011)

20. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K.,
Ilic, D., Latvala, T.: Supporting Reuse in Event B Development: Modularisa-
tion Approach. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves,
S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010),
http://wiki.event-b.org/index.php/Modularisation_Plug-in

21. Poppleton, M.: The Composition of Event-B Models. In: Börger, E., Butler, M.,
Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 209–222. Springer,
Heidelberg (2008),
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B

22. http://tinyurl.com/isola12-with-appendix – extended version of our paper
23. Jirásková, G., Masopust, T.: State Complexity of Projected Languages. In: Holzer,

M. (ed.) DCFS 2011. LNCS, vol. 6808, pp. 198–211. Springer, Heidelberg (2011)
24. Julliand, J., Stouls, N., Bué, P.-C., Masson, P.-A.: Syntactic Abstraction of B

Models to Generate Tests. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS,
vol. 6143, pp. 151–166. Springer, Heidelberg (2010)

25. Shahbaz, M., Li, K., Groz, R.: Learning and Integration of Parameterized Compo-
nents Through Testing. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W.
(eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 319–334. Springer, Heidelberg
(2007)

26. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the
Correspondence Between Conformance Testing and Regular Inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)

27. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M.: Learning communicating automata
from MSCs. IEEE Trans. Software Eng. 36(3), 390–408 (2010)

28. Bohlin, T., Jonsson, B., Soleimanifard, S.: Inferring Compact Models of Commu-
nication Protocol Entities. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I.
LNCS, vol. 6415, pp. 658–672. Springer, Heidelberg (2010)

http://wiki.event-b.org/index.php/MBT_plugin
http://wiki.event-b.org/index.php/Modularisation_Plug-in
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B
http://tinyurl.com/isola12-with-appendix

	Model Learning and Test Generation for Event-B Decomposition
	Introduction
	Preliminaries
	Cover Automata Based Learning and Test Generation for Event-B
	Model Learning for Event-B Decomposition
	Event-B Decomposition Styles
	Learning and Test Generation for Shared Events Decomposition

	Experiments
	Conclusions
	References




