
Test-Case Design by Feature Trees

Takashi Kitamura, Ngoc Thi Bich Do, Hitoshi Ohsaki,
Ling Fang, and Shunsuke Yatabe

National Institute of Advanced Industrial Science and Technology (AIST)
{t.kitamura,do.ngoc,hitoshi.ohsaki,fang-ling,shunsuke.yatabe}@aist.go.jp

Abstract. This paper proposes a test-case design method for black-box
testing, called “Feature Oriented Testing (FOT)”. The method is real-
ized by applying Feature Models (FMs) developed in software product
line engineering to test-case designs. We develop a graphical language
for test-case design called “Feature Trees for Testing (FTT)” based on
FMs. To firmly underpin the method, we provide a formal semantics
of FTT, by means of test-cases derived from test-case designs modelled
with FTT. Based on the semantics we develop an automated test-suite
generation and correctness checking of test-case designs using SAT, as
computer-aided analysis techniques of the method. Feasibility of the
method is demonstrated from several viewpoints including its implemen-
tation, complexity analysis, experiments, a case study, and an assistant
tool.

Keywords: black-box testing, combination testing, SAT-based analysis.

1 Introduction

In black-box testing (BBT) test cases are designed by analysing the input domain
of the system under test (SUT) often according to the system’s specification. The
Classification Tree Method (CTM) [5, 9–11] is one of the-state-of-the-art test-case
design methods for BBT. It is a model-based and combination testing method; i.e.,
test cases are designed as a visual model with a given diagram-based language,
and test cases are generated automatically from such a model using combination
techniques. Due to its nice characteristics as a testing method, CTM is often used
in industry including automotive industries [19]. However, for a better testing
method improvements can be considered from several perspectives such as its
theory, higher computer-aided analysis, efficiency of automated technologies, and
modelling paradigms.

Feature-Oriented Domain Analysis/Feature Models (FODA/FMs) is an analysis
method for software product lines (SPLs), first proposed by Kang et al. [14]. This
method takes a model-based approach; i.e., an SPL is modelled with extended
and-or logical trees called “Feature Models (FMs)”, which enable systematic anal-
ysis in a top-down manner, together with their graphical representations of “Fea-
ture Diagrams”. In addition, useful information about the SPL can be derived
by applying analysis techniques to the models. A main characteristic of FMs is
its compact and visual representations by diagrams to capture SPLs as well as a

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 458–473, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Test-Case Design by Feature Trees 459

variety of analysis techniques. So far fruitful research results of FMs have been
made in research and industry, including various model designs [20], semantics
[3, 17, 20, 21], various analysis operations such as consistency checking, diag-
nosis, validations, refactoring, and so on (as summarized in [2, 17]). Also such
analysis operations are carried out on various logic paradigms such as proposi-
tional logic [1, 13, 16, 22], description logic [8] or constraint programming [3] as
well as algorithmic approaches [4, 23].

In this work, we propose a test-case design method by applying FMs, called
“Feature Oriented Testing (FOT)”, identified as a model-based and combination
testing method for BBT. The aims of the work are three-fold: (1) to develop a test-
case design language based on the model designs of FMs, which are characterized
with the compact and visual representations by diagrams of extended and-or
logical trees, (2) to apply rich theories of FMs to the test-case design method
focusing on semantics, and (3) to apply computer-aided analysis techniques of
FMs to the test-case design method, to retrieve useful information for test-case
designs.

The main contributions of this paper are two-fold: (A) to realize these aims as
a test-case design method, and (B) to demonstrate the method’s feasibility from
several viewpoints. For (A), first we analyze the requirements for developing
a test-case design language, and design such a language as “Feature Tree for
Testing (FTT)” that suits the test-case design purpose based on various designs
of FMs proposed in the literature [20]. Then we build a theoretical foundation
of FTT by providing its formal syntax and semantics; which makes a basis of
reliability and computer-aided analysis. Further, we develop two kinds of logic-
based automated analysis techniques for FTT using a SAT solver: a test-suite
generation and correctness checking of test-case designs by FTT.

For (B), first feasibility is shown from the viewpoint of reliability, which is an
important property as a testing method, by building formal semantics and prov-
ing the correctness of the test-case generation algorithm w.r.t. the semantics.
Feasibility is demonstrated from the viewpoint of computational cost on the au-
tomated analysis, by analyzing the computational complexity and by providing
experimental results. A case study is presented, where we apply FOT to test-case
design for OSEK/VDX-OS (OSEK-OS), a standard real-time OS for automotives [18].
We also explain our GUI-based assistant tool for FOT. This show not only how
the method can be assisted by a tool, but also some essential techniques for
test-case designs of FOT using this tool.

2 A Motivating Example

Borrowing an example in [5], we design test cases for BBT for a computer vision
system. As seen in Fig. 1, this system determines the size of various blocks
passing the camera of the system on a belt-conveyor. Fig. 2 shows a test-case
design for BBT for the system by FOT. In FOT, an FM is used to design test
cases; i.e, analysis for test-case design proceeds using FTT by splitting up the
input/(output) domain of the SUT with various test-relevant aspects, which we
also refer to as features.

460 T. Kitamura et al.

large

Fig. 1. Computer vision system for determining the size of building blocks

size color shape

large small blue red circle triangle square

equilateral scalene

<<mutex>><<requires>>

green

isosceles

Blocks

Fig. 2. A simple and small test-case design using an FTT

The analysis of the input domain, i.e., the test-case design for the SUT, pro-
ceeds in a top-down manner with its root as the input domain of SUT, which
is “Blocks” here. First, “Blocks” are decomposed into features of their “size”,
“color” and “shape”. In decompositions (decomp.), we distinguish them with
two kinds of orthogonal and alternative decomp. The “block” is decomposed
with an orthogonal decomp., as we regard its three sub-features are orthogonal
notions. We may also call such decomp. and-decomp., following the convention
of and-or trees and FMs. We clarify such decomp. explicitly in the diagram by
the dot on top of each feature.

Next these three decomposed sub-features are further decomposed into smaller
sub-features. For example, the “size” feature is decomposed into two sub-features:
“small” and “large”. In this case, it is done with an alternative decomp., which
may be also called xor-decomp., by regarding the sub-features as alternatives to
one another. Compositions of this kind are clarified in the diagram in the way
that the edges of a decomp., are tied up with a string. Similarly, the “color”
features are decomposed into “blue”, “green” and “red”, and “shape” into “cir-
cle”, “triangle” and “square” with alternative-decomp. The “triangle” feature is
further decomposed into “equilateral”, “isosceles” and “scalene” alternatively, to
design test cases in a detailed way and hence inspect the system in more details.

Besides such decomp. relations between features, which form the parent-child
relations of trees, “mutex” and “requires” relations drawn globally in the tree
(i.e., crossing the tree) are found in the model in Fig 2. These represent con-
straints between features in the tree globally, which we call cross-tree constraints
(CTCs), to exclude nonsense or undesired test cases according to given specifica-
tions. For example, assume in the above example, the following specifications are
given: (1) “There are no blocks whose color is red and whose shape is a triangle.”
(2) “If the size of blocks is small, then the color of the blocks is green.”. Due
to these specifications, it is nonsense and undesirable to prepare test cases for

Test-Case Design by Feature Trees 461

Table 1. The test suite obtained from test-case design of Fig. 2

1. small, red, circle 7. small, green, square 13. small, green, isosceles
2. small, blue, circle 8. large, green, square 14. small, blue, isosceles
3. large, green, circle 9. large, green, equilateral 15. small, blue, scalene
4. small, green, circle 10. small, blue, equilateral 16. large, green, scalene
5. small, blue, square 11. small, green, equilateral 17. small, green, scalene
6. small, red, square 12. large, green, isosceles

such cases. The CTCs clarify such nonsense test cases. The mutex (an abbr. for
“mutually exclusive with”) constraint between the “red” and “triangle” features
in Fig. 2 is drawn to cover specification (1), and requires between the “small”
to “circle” feature to cover specification (2). Note that each CTC affects all the
features in the sub-tree of the features it involves. E.g., the mutex constraint
stipulates that “red” is mutex not only with “triangle” but also with all the
sub-features of the sub-tree: “equilateral”, “isosceles” and “scalene”.

The test-case design, shown as a diagram in Fig. 2, captures a set of test
cases; i.e., we can obtain a set of test cases (i.e., test suite) from the diagram.
Here, a test case is defined as a set of features in the tree. Table 1 shows the test
suite obtained from the test-case design of Fig. 2. That is, the test suite derived
from the test-case design consists of fifteen test cases; for example, test-case 1
indicates blocks whose size is “small”, color is “red”, is shape “circle”. Roughly,
test cases are derived from such test-case designs by recursively applying the
following standard interpretation of and-or logical tree; i.e., all the sub-features
of and -decomp. or its descendants have to be in any test case, and exactly one
of the sub-features of xor -decomp. or its descendants have to be in any test case.
Besides, the test cases the CTCs are applied to are excluded. The rules to derive
test cases from the diagrams should be more detailed in an exact way, and we
formally explain these rules in Section 4.

3 Feature Trees for Testing

This section develops a test-case design language based on FMs, called Feature
Tree for Testing (FTT), which we regard as the modelling language for test-case
design in FOT. First we analyze requirements for such a language as a model-
based and combination testing method for BBT. According to them we design
such a language as FTT based on FMs, showing its design choices. Then based on
the design of FTT, the syntax and semantics of FTT are provided formally.

3.1 Requirements and Design Choices

Requirements. Though the basic idea of FTT was seen in the previous section,
here we briefly summarize the requirements analysis for developing a test-case
design language for our test-case design purpose of model-based and combination
testing method for BBT, as follows:

462 T. Kitamura et al.

1. The basic structure of FTT is designed as a tree; i.e., the tree structure is
formed by an input-domain analysis of SUT by repeatedly decomposing it
with features from the root, which facilitates systematic test-case design in
a top-down manner.

2. Each decomp. of a feature (i.e., the input domain of SUT) should be dis-
tinguished by two kinds: orthogonal decomp., i.e., all the sub-features are
orthogonal notions to one another, and alternative decomp., i.e., all the sub-
features are alternative notions to one another.

3. Some kinds of constraint operators, imposed on globally (between any fea-
tures crossing a tree), are equipped to exclude non-sense and undesired test
cases according to given specifications.

Design Choices. We design a language for test-case design as FTT to meet the
requirements based on various variants of FMs proposed in the literature [20]. By
following [20] for a scheme of design choices of FMs, FTT is characterized as:

1. FTT are trees (, but not DAGs: Directed Acyclic Graphs).
2. FTT have the following two-kinds of decomp. operators:

(a) and -decomp., to express orthogonal -decomp.
(b) xor -decomp., to express alternative-decomp.

3. FTT have the following constraint representations drawn globally in a tree:

(a) requires ; if a feature f requires a feature g, the inclusion of f in a test
case implies the inclusion of g in such a test case.

(b) mutex ; the two features related by the relation cannot be present simul-
taneously in a test-case.

Some other relations, often common in FMs such as “optional”, “or -decomp.”
and “cardinality”, are not included in FTT, since straightforward interpretations
can not be given on the operators in our test-case design setting. The same is true
for other relations such as “generalization”, “specialization” and “implemented-
by” found in [15]. The language design of FTT is not same as any of the FMs listed
in [20], but similar to the original FM developed by Kang et al. [14]

3.2 Syntax of Feature Trees for Testing

We give a formal syntax of FTT as a basis for the formal developments:

Definition 1. A feature tree is a tuple (F, r, L,⇀,@,
req→,

mex←→) such that

– (F, r,⇀) is a tree, where F is a set of features (as the nodes of a tree), r is
the root, and ⇀ is the parent-child relation on F ,
• we say “feature f is the parent of g” and “g is a child of f” if f ⇀ g,

– L(⊂ F) is a set of leaf features,
– @ is a function from F \ L to {and, xor},
–

mex←→ is a symmetric and irreflexive binary relation over F ,

–
req−→ is an asymmetric and irreflexive binary relation over F . �

Test-Case Design by Feature Trees 463

FTT are trees (F, r,⇀) extended with several notions. First FTT are a variant of
and-or logical trees. We realize this with “node-based design”, where each feature
(i.e., node) of the tree except for leaf features is labeled with “and” or “xor”.
The function @ : F \L→ {and, xor}, which labels each (non-leaf) features with
and or xor, is equipped for this. We call features “and-feature“ or “xor-feature”
if it is associated with “and” and “xor” by @ respectively. Note that, due to the
design, “and ” and “xor”-edges shall not be mixed among the edges out-going
from a feature. The two kinds of CTCs of mutex and requires, which are another

extension of FTT, are expressed by the binary relations “
mex↔ ” and “

req→” on F .

3.3 Semantics

An FTT captures a set of test cases. In other words, the semantics of an FTT is
defined by way of a set of test cases derived from it; i.e., given an FTT, we
formally understand what it means by way of a set of test cases.

Definition 2 (Pre-model). A pre-model M ′(∈ M′) of an FTT t is a subset of
its features: M ′ ∈ PF , where PX denotes the power set of X. �

Definition 3 (Model). A model M(∈ M) of an FTT t is a pre-model that
satisfies the following conditions, and is noted as M |=′ t:

1. The root feature is in the model: r ∈M ,
2. If a feature is in a model, its parent is in the model too: f ∈M⇒parent(f)∈M ,
3. If an and-feature is in a model, all its children are in the model too: f ∈

M ∧@(f) = and⇒ (∀g.f ⇀ g → g ∈M),
4. If an xor-feature is in a model, exactly one of its children is in the model

too; f ∈M ∧@(f) = xor⇒ (∃!g.f ⇀ g ∧ g ∈M),

5. The model must satisfy all formulas from the CTCs set Φ(=
mex↔ ∪ req→): ∀φ ∈

Φ.M |=′ φ, where “M |=′ f
mex←→ g” if f and g are not both in M , and

“M |=′ f
req−→ g” if f is in M , g is in M too. �

The definition of test case and test suite are given by way of the model.

Definition 4 (Test case and test suite). 1. A test case c is a subset of leaves:
c ∈ PL. 2. A test case of the model M , noted M◦, is M ∩ L. 3. A test suite s
is a set of test cases: s = Pc ∈ PPL. 4. The test suite derived from an FTT t is
the set of test cases of models M satisfying t: �t� = {M◦ |M |=′ t} �

4 SAT-Based Automated Analysis of FTT

This section explains several SAT-based automated analysis techniques of FTT, as
computer-aided analysis techniques of FOT. An epoch in the research of FMs is the
provision of encoding FMs to a propositional (prop.) formula, which brings many
interesting logic-based analysis on FMs, often using technologies of SAT-solvers.
Applying these techniques to our setting, we develop SAT-based automated test-
suite generation and correctness checking of test-case designs by FTT.

464 T. Kitamura et al.

Table 2. The encoding rules trans of an FTT into prop. formulas

Feature model relation Corresponding formula

(a) r is the root feature r

(b) p ⇀ c1 c1 → p

(c) @(p) = and and p→ c p→ c

(d) @(p) = xor and p ⇀ c1, · · · , p ⇀ cn p→ ∨

⎛

⎝
(c1 ∧ ¬c2 ∧ · · · ∧ ¬cn)

· · ·
(¬c1 ∧ ¬c2 ∧ · · · ∧ cn)

⎞

⎠

(e) p
mex←→ q ¬(p ∧ q)

(f) p
req−→ q p→ q

An FTT
Prop.

formula
A set of
models Test-suites

Prop.
formula
in CNF

1.encord 2.translate 3.ALLSAT 4. process

miniSat

Fig. 3. The system for test-case generation

4.1 Propositional Formulas Encoding

Table 2 shows the encoding rules (trans) of an FTT to a prop. formula. Lemma 1
shows the rules are correct w.r.t. the semantics in Definition 4. The proof of this
lemma is obvious, but it plays a critical role for guaranteeing the correctness of
our automated analysis techniques.

Lemma 1. For any FTT t, M |=′ t iff M |= trans(t) �

4.2 A SAT-Based Automated Test-Suite Generation

An Algorithm Design and Early Implementation. First we derive the
following theorem from Lemma 1:

Theorem 1. For any FTT t, �t� = {M◦ |M |= trans(t)}. �

This theorem indicates that in order to obtain the test suite of a given FTT t
according to Definition 4, it suffices to follow the procedures of: (1) to derive
all the models that satisfy the prop. formula encoded from the FTT t i.t.o the
classical logic, and (2) to process each of the models by taking one that intersects
with the leaf nodes of the FTT and (3) to take the union of the processed models.
And the algorithm design follows this scheme.

The test-suite generation algorithm is displayed in Fig. 3. The input is an
FTT and the output is a set of corresponding test cases (i.e., a test suite). The
algorithm mainly consists of the following four components.

1. The first component encodes an FTT to a prop. formula according to the
encoding rules in Table 2.

Test-Case Design by Feature Trees 465

2. The second is a conjunctive normal form (CNF) translator, which translates
a prop. formula into it in a CNF.

3. The third is an all-solutions SAT-solver (ALLSAT), inputting the encoded for-
mula of FTT in CNF, finds all models for it. We have implemented an ALL-

SAT using the blocking algorithm (which finds all models by iteratively calling
a SAT solver while at each call blocking clauses which block finding a model
already found is added) by extending MiniSAT[6].

4. The fourth processes a set of models obtained from the ALLSAT, by taking
one that intersects with the leaf nodes of the FTT, and produces the test
suite by collecting the processed models (i.e., test cases).

Computational Complexity. To analyze the complexity of the test-case gen-
eration algorithm, we analyze the complexity of each component 1-4. Given an
FTT t, we denote the number of features as n.

1. The length of a formula derived by trans is the sum of sub-formulas by
applying each rule of (a)–(f). Thus it suffices to analyze rule (d), which
makes the longest sub-formula among of (a)–(f) in Table 2. The length of a
sub-formula by (d) for an xor-decomp. with k-children is bound by O(k×k).
Both the number of children of any feature and that of xor-decomp. in t are
bound by n− 1. Hence the length of a formula by trans is bound by O(n2).

2. We have implemented an algorithm to transform a prop. formula using the
standard laws of logical equivalences, and have produced a clause set that is
exponential w.r.t. the size of the original formula in the worst case.

3. The SAT-problem is NP-complete, and the worst time complexity of the
algorithm we use (i.e., MiniSAT[6, 12]) is O(2n) where n indicates the number
of the prop. variables. Also the number of models for a given formula is bound
by 2n. Hence, the complexity of ALLSAT is bound by 2n ×O(2n) ∈ O(4n).

4. The complexity of the set intersection of two sets with size k is O(k2). The
number of nodes and the leaf nodes of an FTT are bound by n. There are at
most 2n models. Hence, the complexity is bound by 2n×O(n2) ∈ O(2n×n2).

Hence the bottleneck of the algorithm is the component of CNF-transformation
and ALLSAT, whose complexity are exponential to the input FTT t.

Experimental Results. Besides the complexity analysis, we provide experi-
mental results to show feasibility of the implementation from the viewpoint of
computational cost of FOT. According to the above analysis of computational
cost of the test-suite generation algorithm, we know that its bottleneck lies on
computing all the models using ALLSAT, which takes exponential time w.r.t. the
size of FTT. But in practice the computational cost is cheaper than the theoret-
ical analysis. One reason is that the off-the-shelf SAT-solver we use, i.e., MiniSAT,
runs faster than the above analysis. Second, the number of the models for the
formula encoded from an FTT is much less than 2n in real settings. Also, the
number of test cases varies depending on the structures of FTT. The ratio of
and/xor -decomp. and the ratio of CTCs in an FTT mainly affect the number of
test cases; i.e., the more and -decomp. and CTCs there are in an FTT, the less test

466 T. Kitamura et al.

Table 3. Experimental results

Size of an FTT (n)
ctcr(%) 20 30 40 50 60

0
time (s) 0.09 0.67 2.04 9.65 20.43

test cases 120 960 6912 19008 43200

10
time (s) 0.04 0.35 0.82 3.65 4.71

test cases 92 432 2464 8580 9160

20
time (s) 0.03 0.09 0.53 1.52 2.01

test cases 75 238 916 2710 4244

30
time (s) 0.01 0.07 0.17 0.51 0.93

test cases 26 120 288 880 1666

40
time (s) 0.01 0.06 0.06 0.12 0.14

test cases 13 45 96 122 168

cases are derived. Table 3 shows an experimental result, presenting the time and
the number of test cases, where ctcr stands for the CTCs ratio (i.e., the ratio of
CTCs w.r.t the size of FTT). The experiments were conducted on a machine with
an Intel Core2 Duo CPU P8700 @2.53 GHz, 2.96 GB of RAM and Windows 7.

4.3 SAT-Based Correctness Checking of Test-Case Designs

An important class of various computer-aided analysis techniques on FMs is cor-
rectness checking. Generally, correctness checking includes consistency checking
and detecting dead/common features. These notions are interpreted in the set-
ting of test-case design as follows: an FTT, i.e., a test-case design, is inconsistent
if no test case can be derived from it; a feature is dead in an FTT if it does not
appear in any of the test cases of the model derived from it; and a feature is
common in an FTT if it appears in all the test cases derived from it.

Interestingly, these analysis operations on correctness checking can be reduced
to a simple satisfiability checking problem of a prop. formula. The consistency
of a test-case design by a FTT can be examined by checking the satisfiability of
the formula φ encoded from the FTT (t), i.e., φ = trans(t). Existence of a dead
feature f in an FTT can be examined by checking the satisfiability of the formula
φ ∧ f ; i.e., f is a dead feature if φ ∧ f is unsatisfiable. Similarly, existence of a
common feature f in a model can be examined by checking the satisfiability of
φ ∧ ¬f ; i.e., f is a common feature if the formula is unsatisfiable.

We have introduced these analysis operations on correctness checking of test-
case designs in FOT, which help validation of test-case designs by FTT. As shown
in the next section, the consistency checking, especially detecting dead features,
are quite useful for finding defects in test-case designs since they often enter
test-case designs and their existences are undesirable.

Test-Case Design by Feature Trees 467

prioritytypestatus

Task ID

TaskExecution
level

No
constraintsPriemptive

activateTask

Task
ISR2

ISR3

valid

invalid

suspend

run

ready

wait

basic extended high

lowYes NoYes No

max
activation

not
reached

reachedequiv

<<mutex>>

<<mutex>>

<<mutex>>

<<mutex>>
<<mutex>>

<<mutex>>

Fig. 4. A test-case design by FTT for API “activateTask” in OSEK-OS

5 A Case Study: A Test-Case Design for OSEK-OS

To demonstrate feasibility of FOT in real practice, we show a case study where
we applied FOT to test case design for the OSEK-OS[18, 19], a real-time OS for
automotives. Specifically, using FTT we make a test-case design for an API func-
tion “activateTask”, which transfers a task specified with parameter “TaskID”
from the “suspended” state into the “ready” state. We analyzed the specification
[18], and made its test-case design as in Fig. 4. The figure shows the test-case
design with an FTT that consists of 30 features and 6 CTCs, and 192 test cases
are obtained from it.

Several observations obtained from the case-study are as follows:

1. Test-case designs with a variant of and-or tree are easily accepted by de-
velopers in practice because and-or trees are a common analysis technique
and close to human thinking. Also this analysis technique using and-or trees
can allow them to focus on designing test cases released from direct edits on
logical formulas, which are often error-prone.

2. Efficiency of the automated analysis techniques of FOT, i.e, automated test-
suite generation and correctness checking, whose experimental results are
shown in Tab. 3, is practical enough in our case studies.

3. Unfortunately, FTT is not expressive enough to express any desired test suite
in any settings, because test-case designs in real development are sometimes
extremely detailed and beyond the expressiveness of FTT. As a result, manual
arrangements of test cases such as to add, delete and modify test cases are
required to cover some detailed cases. But this should not be taken as a
critical defect of FOT, since CTM, which is the state-of-the-art method of
test-case design for BBT often used in real developments, also inherently has
this aspect of expressiveness. (See related discussions in Section 8.)

4. Detecting dead features for correctness checking of test-case designs by FTT is
quite useful in practice. Test-case designs are often complex, and hence prone
to contain deficiencies. In the test-case design in Fig. 4, the “invalid” and
“No” (under “Preemptive”) features are the dead features. Existence of dead

468 T. Kitamura et al.

Test-case design by an FTT
An automatically
generated test-suite

CTCs are expressed as attachments to a
feature; e.g, the 5 CTCs related to the
“invalid” feature are listed under the feature

Test-case 3 consists of the “ISR2”, “Valid”, “ready”,
“basic”, “high” and “not_reached” feature

Fig. 5. The GUI tool for FOT

features indicates that some errors may be contained in the test-case design,
or these dead features may have to be taken care of by manual arrangements.

5. Test-case designs by FTT can be used for test documentations such as a
system specification for testing. These designs can also be used as communi-
cation media among developers, and as evidence for certification. The high
readability of FTT, achieved by the compact and visual representation by
diagrams, and by the formal semantics to unify interpretation of FTT con-
tributes to the aspect of documentations.

6. The readability of the diagram representations of FTT can be preserved, even
with many CTCs drawn all over the tree, together with the GUI-based assistant
tool. We explain the tool’s support for readability in the next section.

6 Tool Development

We have developed a GUI tool to assist FOT. This section will briefly explain this
tool. The tool development shows not only our current status of the development
of FOT, but is also essential in the test-case design method of FOT.

Describing FTT via the GUI. Fig. 5 shows the main GUI of the tool. It is separated
into two panels: the left-hand-side panel where users describe and input an FTT,
and the right-hand-side panel which displays the automatically generated test
cases in a matrix form.

In designing test cases by describing an FTT via the GUI, several advantages as-
cribed to the properties of FTT become possible. First, the GUI prevents inputting
illegitimate FTT w.r.t. the defined syntax in Definition 1. That is, the GUI lets
users input only a legitimate FTT, which then allows them to concentrate on
the logic of test-case designs. The second advantage centers on scalability w.r.t.

Test-Case Design by Feature Trees 469

Folding/Unfolding of sub-trees by double-clicking

Fig. 6. The number of test-cases can be controlled by folding/unfolding sub-trees

the readability of the diagram representations of FTT. As shown in Fig. 5 in
the FTT description of in the GUI, each CTC is expressed as an attachment to
features involved in the description. Due to the GUI design, even with a number
of CTCs, the diagram representation keeps readability.

Controlling the Number of Test Cases Flexibly. In general, the system quality
guaranteed by testing and its cost is a trade-off. That is, the more the cost for
detailed testing is allowed, the higher the quality of the system is guaranteed.
On the other hand, the resources for testing are limited in real developments.
Therefore, it is desirable for a testing method to be able to flexibly control system
quality guaranteed by testing by depending on its affordable resources.

FOT is equipped with such a mechanism; i.e., it is equipped with a device
to flexibly control the number of test cases. The device is realized by using a
notion of abstraction on tree structures in the FTT such as folding and unfolding
sub-trees. Fig. 6 demonstrates this device in the tool, using the example of the
computer vision system. The left side in Fig. 6 shows the test-case design for
the computer vision system in Section 2 using the tool, where 17 test cases
are obtained. The number can be flexibly reduced, for instance, by abstracting
the “triangle” feature by folding its sub-tree; i.e., the number of the test cases
obtained from the tree whose “triangle” sub-tree is folded, can be reduced to 11.

7 Discussions and Related Work

CTM (Classification Tree Method) [5, 9–11] is a model-based and combination-
based test-case design method for BBT; i.e., a test case is designed as a model
of a tree diagram, and test cases are obtained automatically from it using a
combination technique. In CTM, the model to represent a test-case design consists
of the three separate description components: (1) a “classification-tree diagram”,
which is a tree-based diagram to represent the basic structure of test-case design,

470 T. Kitamura et al.

Combination rule

Dependency rule

Classification diagram

Fig. 7. Test-case design for the computer vision system in CTM

(2) “combination rules” to define combination rules based on the classification-
tree diagram, and (3) “dependency rules”, written in prop. logic, to exclude
nonsense test cases. Fig. 7 shows a descriptive example of a test-case design for
the computer vision system using CTM to produce the same test suite in Tab.
1. FOT can be seen as a comparable test-case design method to CTM, but its
advantages over CTM are the following:

The first advantage is on the modelling paradigm for test-case designs. In
FOT, a test-case design is represented as an FTT in a single diagram based on
and-or logical trees. We inherit the single and compact design of FMs, often rec-
ognized as a characteristic of FMs, in FTT, which brings higher readability. The
model design of FTT requires less complex descriptions than CTM, bringing higher
productivity; i.e., complex descriptions together with direct edits of the logical
formula is often a main barrier preventing wider adoption of such methods in
real developments. Also, the single representations of FTT achieve higher main-
tainability; the separate descriptions in CTM often require efforts because such
changes in a description component may affect the others. Also, the model design
based on and-or trees achieves higher availability as a common and traditional
analysis technique. In fact, the model design is highly inspired by Fault Tree
Analysis (FTA) [7], which is an established analysis technique based on and-or
trees in reliability engineering. Also, the logic-based model of FTT facilitates the
logic-based analysis in FOT.

On the other hand, theoretically CTM is more expressive than FTT. The differ-
ence lies on the expressiveness of a description device to exclude nonsense test
cases: i..e, CTCs in FTT, which consists of the two operators mutex and requires,
and the dependency rules in CTM, which deals with a full prop. formula. But
from our case studies, the advantage of the expressiveness of CTM is mostly in
theory. From the case studies, we learned only simple rules are needed to real-
ize such devices, and CTCs are expressive enough for this purpose. In place of
expressiveness, FTT realizes the above-mentioned nice properties such as read-
ability, productivity, and maintainability, etc. We have mentioned in Section 6
that FTT may not be expressive enough for some settings. But this is due to the

Test-Case Design by Feature Trees 471

tree structure of FTT rather than due to the expressiveness of CTCs, and hence
CTM also has this aspect.

Second, FOT has a formal semantics, which is missing in CTM. The semantics
makes a basis for reliability by preventing the “ambiguity problem” which causes
faulty developments. In addition, FOT has the advantage that due to its compact
model design it can be formalized with a small set of constructs. Conciseness is
not only important in a scientific sense, but also in an engineering sense since it
requires less cost to learn the method and makes the method easy to extend.

Third, a SAT-based algorithm is designed and implemented for automated test-
suite generation. An obvious advantage of the design is efficiency. The design can
benefit from recent advances in theory and in the techniques of SAT-solvers [6].
For instance, FOT takes only about 20 seconds to generate 64200 test cases, while
CTM tool[10, 11] takes 73 minutes in a similar setting. Another advantage is that
the correctness of the algorithm is easy to prove as we did, making FOT more
reliable; i.e., it is guaranteed the test suite generated by the algorithm is always
correct (i.e., the test suite generated by the algorithm is sound and complete
w.r.t a test-case design and the semantics in Definition 3.).

Fourth, FOT is equipped with several automated analysis operations for cor-
rectness checking for test-case designs such as consistency checking and detecting
dead/common features, which are absent in CTM. These analysis operations are
quite useful, and we find them in several case-studies for finding deficiencies in
test-case designs by FTT, and validating test-case designs.

8 Conclusion and Future Research

Conclusion. In this paper, we have developed a test-case design method for
BBT called “FOT (Feature Oriented Testing)”, by applying analysis and design
methods of FMs originally developed for SPLs. We designed a test-case design
language as a model-based and combination testing method for BBT based on
FMs. A formal semantics of FTT is developed by means of test-cases; this makes
a firm underpinning of the method. Also we have develop and implemented an
automated test-suite generation and correctness checking of test-case designs us-
ing SAT, as computer-aided analysis techniques of the method. Furthermore, we
have demonstrated feasibility of FOT with several dimensions of implementation,
analysis of computational cost, experiments, a case study, and an assistant-
tool development. We have also clarified the technical and practical advances of
FOT to CTM, which is the-state-of-the-art testing method for BBT.

Future Research. There are many directions for further research on the method.
The first is to introduce to FOT other theories and computer-aided techniques of
FMs, including refactoring, diagnosis and efficiency analysis. Another direction
is to extend FOT with useful notions for test-case design such as the notion of
priority. In addition, incorporating other testing methods for BBT such as com-
bination testing methods (e.g., n-wise testing, etc) and input-domain analysis
techniques (e.g., equivalent partitioning, boundary value analysis, etc) to FOT are
important directions for our future research.

472 T. Kitamura et al.

References

1. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

2. Benavides, D., Cortes, A.R., Trinidad, P., Segura, S.: A survey on the automated
analyses of feature models. In: XV Jornadas de Ingenieria del Software y Bases de
Datos (2006)

3. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature
Models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

4. Cao, F., Bryant, B.R., Burt, C.C., Huang, Z., Raje, R.R., Olson, A.M., Augus-
ton, M.: Automating feature-oriented domain analysis. In: Software Engineering
Research and Practice, pp. 944–949 (2003)

5. Chen, T.Y., Poon, P.L., Tse, T.H.: An integrated classification-tree methodology
for test case generation. International Journal of Software Engineering and Knowl-
edge Engineering, 647–679 (2000)

6. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Ericson, C.: Fault tree analysis - a history. In: The 17th International Systems
Safety Conference (1999)

8. Fan, S., Zhang, N.: Feature Model Based on Description Logics. In: Gabrys, B.,
Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4252, pp. 1144–1151.
Springer, Heidelberg (2006)

9. Grochtmann, M.: Test case design using classification trees. In: The International
Conference on Software Testing Analysis (1994)

10. Grochtmann, M., Grimm, K., Wegener, J., Grochtmann, M.: Tool-supported test
case design for black-box testing by means of the classification-tree editor. In: The
1st European International Conference on Software Testing Analysis, pp. 169–176
(1993)

11. Grochtmann, M., Wegener, J.: Test case design using classification trees and the
classification-tree editor cte. In: QW (1995)

12. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Comput. Syst. Sci. 62(2),
367–375 (2001)

13. Janota, M.: Do SAT solvers make good configurators? In: ASPL, pp. 191–195
(2008)

14. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon Uni-
versity Software Engineering Institute (November 1990)

15. Kang, K.C., Kim, S., Lee, J., Kim, K.: FORM: a feature-oriented reuse method,
annals of software engineering. Annals of Software Engineering 5, 143–168 (1998)

16. Mannion, M.: Using First-Order Logic for Product Line Model Validation. In:
Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg
(2002)

17. Mendonca, M., Wsowski, A., Czarnecki, K.: SAT-based analysis of feature models
is easy. In: SPLC, pp. 231–240 (2009)

18. OSEK/VDX operating system specification 2.2.3 (2005),
http://www.osek-vdx.org/

19. OSEK/VDX operating system test plan, version 2.0 (1999)

http://www.osek-vdx.org/

Test-Case Design by Feature Trees 473

20. Schobbens, P., Heymans, P., Trigaux, J., Bontemps, Y.: Generic semantics of fea-
ture diagrams. Computer Networks 51(2), 456–479 (2007)

21. Schobbens, P., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a
formal semantics. In: RE, pp. 139–148 (2006)

22. Sun, J., Zhang, H., Li, Y.F., Wang, H.H.: Formal semantics and verification for
feature modeling. In: ICECCS, pp. 303–312 (2005)

23. Zhang, W., Zhao, H., Mei, H.: Binary-Search Based Verification of Feature Models.
In: Schmid, K. (ed.) ICSR 2011. LNCS, vol. 6727, pp. 4–19. Springer, Heidelberg
(2011)

	Test-Case Design by Feature Trees
	Introduction
	A Motivating Example
	Feature Trees for Testing
	Requirements and Design Choices
	Requirements.
	Design Choices.

	Syntax of Feature Trees for Testing
	Semantics

	SAT-Based Automated Analysis of FTT
	Propositional Formulas Encoding
	A SAT-Based Automated Test-Suite Generation
	An Algorithm Design and Early Implementation.
	Computational Complexity.
	Experimental Results.

	SAT-Based Correctness Checking of Test-Case Designs

	A Case Study: A Test-Case Design for OSEK-OS
	Tool Development
	Discussions and Related Work
	Conclusion and Future Research
	References

