

Lecture Notes in Computer Science 7609
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Tiziana Margaria Bernhard Steffen (Eds.)

Leveraging Applications
of Formal Methods,
Verification andValidation
Technologies for Mastering Change

5th International Symposium, ISoLA 2012
Heraklion, Crete, Greece, October 15-18, 2012
Proceedings, Part I

13

Volume Editors

Tiziana Margaria
Universität Potsdam, Institut für Informatik
August-Bebel-Straße 89, 14482 Potsdam, Germany
E-mail: margaria@cs.uni-potsdam.de

Bernhard Steffen
Technische Universität Dortmund, Fakultät für Informatik
Otto-Hahn-Straße 14, 44227 Dortmund, Germany
E-mail: steffen@cs.tu-dortmund.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34025-3 e-ISBN 978-3-642-34026-0
DOI 10.1007/978-3-642-34026-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012948288

CR Subject Classification (1998): D.2.4-5, D.2.1-3, D.3.3-4, D.4.1, D.4.5, D.4.7,
F.1.1, F.3.1-2, I.2, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to ISoLA 2012, the 4th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation, that was held in
Heraklion, Crete (Greece) during October 14–18, 2012, endorsed by EASST, the
European Association of Software Science and Technology.

This year’s event followed the tradition of its forerunners held 2004 and 2006
in Cyprus, 2008 in Chalkidiki, and 2010 in Crete, and the series of ISoLA Work-
shops in Greenbelt (USA) in 2005, Poitiers (France) in 2007, Potsdam (Germany)
in 2009, and in Vienna (Austria) in 2011.

As in the previous editions, ISoLA 2012 provided a forum for developers,
users, and researchers to discuss issues related to the adoption and use of rigor-
ous tools and methods for the specification, analysis, verification, certification,
construction, test, and maintenance of systems from the point of view of their
different application domains. Thus, since 2004 the ISoLA series of events serves
the purpose of bridging the gap between designers and developers of rigorous
tools on the one hand, and users in engineering and in other disciplines on the
other hand. It fosters and exploits synergetic relationships among scientists, en-
gineers, software developers, decision makers, and other critical thinkers in com-
panies and organizations. By providing a specific, dialogue-oriented venue for the
discussion of common problems, requirements, algorithms, methodologies, and
practices, ISoLA aims in particular at supporting researchers in their quest to
improve the usefulness, reliability, flexibility, and efficiency of tools for building
systems, and users in their search for adequate solutions to their problems.

The program of the symposium consisted of a collection of special tracks
devoted to the following hot and emerging topics

• Adaptable and Evolving Software for Eternal Systems (R. Hähnle, I. Schäfer)
• Approaches for Mastering Change (M. Leucker, M. Lochau, I. Schäfer)
• Bioscientific Data Processing and Modeling (J. Kok, A.-L. Lamprecht,

F. Verbeek, M. Wilkinson)
• Formal Methods for the Development and Certification of X-by-Wire Control

Systems (A. Fantechi, F. Flammini, S. Gnesi)
• Handling Heterogeneity in Formal Development of HW and SW Systems

(Y. Ait-Ameur, D. Mery)
• Learning Techniques for Software Verification and Validation (E.M. Clarke,

M. Gheorghiu Bobaru, C. Pasareanu, D. Song)
• Model-Based Testing and Model Inference (K. Meinke, N. Walkinshaw)
• Processes and Data Integration in the Networked Healthcare (A. Braun v.

Reinersdorff, T. Margaria, C. Rasche)
• Process-Oriented Geoinformation Systems and Applications (H. Asche)
• Quantitative Modeling and Analysis (J.-P. Katoen, K.G. Larsen)
• Runtime Verification: The Application Perspective (Y. Falcone, L. Zuck)

VI Preface

• Software Aspects of Robotic Systems (J. Knoop, D. Schreiner)
• Timing Constraints: Theory Meets Practice (B. Lisper, J. Nordlander,

P. Quinton)

and of the following four events

• LearnLib Tutorial: From Finite Automata to Register Interface Programs
(F. Howar, M. Isberner, M. Merten, B. Steffen)

• The RERS Grey-Box Challenge 2012: Analysis of Event-Condition-Action
Systems (F. Howar, M. Isberner, M. Merten, B. Steffen, D. Beyer)

• Linux Driver Verification Workshop (D. Beyer, A. Petrenko)
• ITSy Day 2012 (T. Margaria, B. Steffen)

The ISoLA Symposium was itself part of the ISoLA Week, which signaled the
steady growth of the community and included the following four co-located
events:

• STRESS 2012 — International School on Tool-Based Rigorous Engineering
of Software Systems (P.Chalin, J. Hatcliff, Robby, T. Margaria, B. Steffen)

• SEW 2012 — 35th IEEE Software Engineering Workshop (M. Hinchey,
J. Bowen, H. Zhu)

• Graduate/Postgraduate Course on Soft Skills for IT Professionals in Science
and Engineering (B. Floyd)

• FRCSS 2012 — 2nd Future Research Challenges for Software and Services
(T. Margaria)

We thank the track organizers, the members of the Program Committee and
their subreferees for their effort in selecting the papers to be presented, the
Local Organization Chair, Petros Stratis, and the Easyconference team for their
continuous precious support during the week as well as during the entire two-
year period preceding the events, and Springer for being, as usual, a very reliable
partner in the proceedings production. Finally, we are grateful to Horst Voigt
for his Web support, and to Maik Merten, Johannes Neubauer, and Stephan
Windmüller for their help with the online conference service (OCS).

Special thanks are due to the following organization for their endorsement:
EASST (European Association of Software Science and Technology), and our
own institutions — the TU Dortmund, and the University of Potsdam.

October 2012 Tiziana Margaria
Bernhard Steffen

Organization

Committees

Symposium Chair Bernhard Steffen

Program Chair Tiziana Margaria

Program Committee

Yamine Ait-Ameur
Hartmut Asche
Dirk Beyer
Mihaela Bobaru
Edmund Clarke
Ylies Falcone
Francesco Flammini
Stefania Gnesi
Reiner Hähnle
John Hatcliff
Falk Howar
Joost-Pieter Katoen
Joost Kok
Jens Knoop
Anna-Lena Lamprecht
Kim G. Larsen
Martin Leucker

Björn Lisper
Malte Lochau
Karl Meinke
Dominique Mery
Alessandro Moschitti
Johan Nordlander
Corina Pasareanu
Alexander K. Petrenko
Sophie Quinton
Ina Schaefer
Dietmar Schreiner
Dawn Song
Fons Verbeek
Neil Walkinshaw
Mark D. Wilkinson
Lenore Zuck

Table of Contents – Part I

Adaptable and Evolving Software for Eternal Systems

Adaptable and Evolving Software for Eternal
Systems (Track Summary) . 1

Reiner Hähnle and Ina Schaefer

Challenges in Defining a Programming Language for Provably Correct
Dynamic Analyses . 4

Eric Bodden, Andreas Follner, and Siegfried Rasthofer

Eternal Embedded Software: Towards Innovation Experiment
Systems . 19

Jan Bosch and Ulrik Eklund

A Liskov Principle for Delta-Oriented Programming 32
Reiner Hähnle and Ina Schaefer

Scientific Workflows: Eternal Components, Changing Interfaces,
Varying Compositions . 47

Anna-Lena Lamprecht and Tiziana Margaria

An Object Group-Based Component Model . 64
Michaël Lienhardt, Mario Bravetti, and Davide Sangiorgi

Automated Inference of Models for Black Box Systems Based on
Interface Descriptions . 79

Maik Merten, Falk Howar, Bernhard Steffen,
Patrizio Pellicione, and Massimo Tivoli

Model-Based Compatibility Checking of System Modifications 97
Arnd Poetzsch-Heffter, Christoph Feller, Ilham W. Kurnia, and
Yannick Welsch

A Generic Platform for Model-Based Regression Testing 112
Philipp Zech, Michael Felderer, Philipp Kalb, and Ruth Breu

Approaches for Mastering Change

Approaches for Mastering Change . 127
Ina Schaefer, Malte Lochau, and Martin Leucker

A Formal Approach to Software Product Families . 131
Martin Leucker and Daniel Thoma

X Table of Contents – Part I

A Compositional Framework to Derive Product Line Behavioural
Descriptions . 146

Patrizia Asirelli, Maurice H. ter Beek, Alessandro Fantechi, and
Stefania Gnesi

Delta-Oriented Monitor Specification . 162
Eric Bodden, Kevin Falzon, Ka I. Pun, and Volker Stolz

Conflict Detection in Delta-Oriented Programming 178
Michaël Lienhardt and Dave Clarke

Family-Based Analysis of Type Safety for Delta-Oriented Software
Product Lines . 193

Ferruccio Damiani and Ina Schaefer

A Vision for Behavioural Model-Driven Validation of Software Product
Lines . 208

Xavier Devroey, Maxime Cordy, Gilles Perrouin,
Eun-Young Kang, Pierre-Yves Schobbens, Patrick Heymans,
Axel Legay, and Benoit Baudry

Parameterized Preorder Relations for Model-Based Testing of Software
Product Lines . 223

Malte Lochau and Jochen Kamischke

SmartTies – Management of Safety-Critical Developments 238
Serge Autexier, Dominik Dietrich, Dieter Hutter,
Christoph Lüth, and Christian Maeder

Tracking Behavioral Constraints during Object-Oriented Software
Evolution . 253

Johan Dovland, Einar Broch Johnsen, and Ingrid Chieh Yu

Towards the Verification of Adaptable Processes . 269
Mario Bravetti, Cinzia Di Giusto, Jorge A. Pérez, and
Gianluigi Zavattaro

Runtime Verification: The Application Perspective

Runtime Verification: The Application Perspective 284
Yliès Falcone and Lenore D. Zuck

What Does AI Have to Do with RV? (Extended Abstract) 292
Klaus Havelund

A Case for “Piggyback” Runtime Monitoring . 295
Sylvain Hallé and Raphaël Tremblay-Lessard

Table of Contents – Part I XI

A Unified Approach for Static and Runtime Verification: Framework
and Applications . 312

Wolfgang Ahrendt, Gordon J. Pace, and Gerardo Schneider

Statistical Model Checking QoS Properties of Systems with SBIP 327
Saddek Bensalem, Marius Bozga, Benoit Delahaye, Cyrille Jegourel,
Axel Legay, and Ayoub Nouri

Monitoring Temporal Information Flow . 342
Rayna Dimitrova, Bernd Finkbeiner, and Markus N. Rabe

Dynamic Information-Flow Analysis for Multi-threaded Applications . . . 358
Laurent Mounier and Emmanuel Sifakis

Bounded-Interference Sequentialization for Testing Concurrent
Programs . 372

Niloofar Razavi, Azadeh Farzan, and Andreas Holzer

Runtime Verification of Biological Systems . 388
Alexandre David, Kim Guldstrand Larsen, Axel Legay,
Marius Mikučionis, Danny Bøgsted Poulsen, and Sean Sedwards

Behavioral Specification Based Runtime Monitors for OSGi Services 405
Jan Olaf Blech, Yliès Falcone, Harald Rueß, and Bernhard Schätz

Modelling and Decentralised Runtime Control of Self-stabilising Power
Micro Grids . 420

Arnd Hartmanns and Holger Hermanns

Model-Based Testing and Model Inference

Model-Based Testing and Model Inference . 440
Karl Meinke and Neil Walkinshaw

Algorithmic Improvements on Regular Inference of Software Models
and Perspectives for Security Testing . 444

Roland Groz, Muhammad-Naeem Irfan, and Catherine Oriat

Test-Case Design by Feature Trees . 458
Takashi Kitamura, Ngoc Thi Bich Do, Hitoshi Ohsaki,
Ling Fang, and Shunsuke Yatabe

Model-Based Static Code Analysis for MATLAB Models 474
Zheng Lu and Supratik Mukhopadhyay

An Incremental Learning Algorithm for Extended Mealy Automata 488
Karl Meinke and Fei Niu

XII Table of Contents – Part I

Learning Techniques for Software Verification and
Validation

Learning Techniques for Software Verification and Validation 505
Corina S. Păsăreanu and Mihaela Bobaru

Learning Stochastic Timed Automata from Sample Executions 508
André de Matos Pedro, Paul Andrew Crocker, and
Simão Melo de Sousa

Learning Minimal Deterministic Automata from Inexperienced
Teachers . 524

Martin Leucker and Daniel Neider

Model Learning and Test Generation for Event-B Decomposition 539
Ionut Dinca, Florentin Ipate, and Alin Stefanescu

Inferring Semantic Interfaces of Data Structures . 554
Falk Howar, Malte Isberner, Bernhard Steffen, Oliver Bauer, and
Bengt Jonsson

Learning-Based Test Programming for Programmers 572
Alex Groce, Alan Fern, Martin Erwig, Jervis Pinto,
Tim Bauer, and Amin Alipour

LearnLib Tutorial: From Finite Automata to Register
Interface Programs

LearnLib Tutorial: From Finite Automata to Register Interface
Programs . 587

Falk Howar, Malte Isberner, Maik Merten, and Bernhard Steffen

Automated Learning Setups in Automata Learning 591
Maik Merten, Malte Isberner, Falk Howar, Bernhard Steffen, and
Tiziana Margaria

RERS Grey-Box Challenge 2012

The RERS Grey-Box Challenge 2012:
Analysis of Event-Condition-Action Systems . 608

Falk Howar, Malte Isberner, Maik Merten, Bernhard Steffen, and
Dirk Beyer

Author Index . 615

Table of Contents – Part II

Linux Driver Verification

Linux Driver Verification (Position Paper) . 1
Dirk Beyer and Alexander K. Petrenko

Bioscientific Data Processing and Modeling

Bioscientific Data Processing and Modeling . 7
Joost Kok, Anna-Lena Lamprecht, Fons J. Verbeek, and
Mark D. Wilkinson

Using Multiobjective Optimization and Energy Minimization to Design
an Isoform-Selective Ligand of the 14-3-3 Protein . 12

Hernando Sanchez-Faddeev, Michael T.M. Emmerich,
Fons J. Verbeek, Andrew H. Henry, Simon Grimshaw,
Herman P. Spaink, Herman W. van Vlijmen, and Andreas Bender

Segmentation for High-Throughput Image Analysis: Watershed Masked
Clustering . 25

Kuan Yan and Fons J. Verbeek

Efficient and Robust Shape Retrieval from Deformable Templates 42
Alexander E. Nezhinsky and Fons J. Verbeek

OWL-DL Domain-Models as Abstract Workflows . 56
Ian Wood, Ben Vandervalk, Luke McCarthy, and Mark D. Wilkinson

Processes and Data Integration in the Networked
Healthcare

Processes and Data Integration in the Networked Healthcare 67
Andrea Braun von Reinersdorff, Tiziana Margaria, and
Christoph Rasche

Simple Modeling of Executable Role-Based Workflows: An Application
in the Healthcare Domain . 70

Tiziana Margaria, Steve Boßelmann, and Bertold Kujath

Considerations for Healthcare Applications in a Platform as a Service
Environment . 73

Andreas Holubek and Christian Metzger

XIV Table of Contents – Part II

Reha-Sports: The Challenge of Small Margin Healthcare Accounting . . . 75
Markus Doedt, Thomas Göke, Jan Pardo, and Bernhard Steffen

Timing Constraints: Theory Meets Practice

Timing Constraints: Theory Meets Practice . 78
Björn Lisper, Johan Nordlander, and Sophie Quinton

A Simple and Flexible Timing Constraint Logic . 80
Björn Lisper and Johan Nordlander

Generalized Weakly-Hard Constraints . 96
Sophie Quinton and Rolf Ernst

Modeling a BSG-E Automotive System with the Timing Augmented
Description Language . 111

Marie-Agnès Peraldi-Frati, Arda Goknil, Morayo Adedjouma, and
Pierre Yves Gueguen

Formal Analysis of TESLA Protocol in the Timed OTS/CafeOBJ
Method . 126

Iakovos Ouranos, Kazuhiro Ogata, and Petros Stefaneas

Formal Specification and Verification of Task Time Constraints for
Real-Time Systems . 143

Ning Ge, Marc Pantel, and Xavier Crégut

The WCET Analysis Tool CalcWcet167 . 158
Raimund Kirner

Abstract Execution for Event-Driven Systems – An Application from
Automotive/Infotainment Development . 173

Klaus Birken

Formal Methods for the Development and
Certification of X-by-Wire Control Systems

Formal Methods for Intelligent Transportation Systems 187
Alessandro Fantechi, Francesco Flammini, and Stefania Gnesi

Model-Driven V&V Processes for Computer Based Control Systems:
A Unifying Perspective . 190

Francesco Flammini, Stefano Marrone, Nicola Mazzocca,
Roberto Nardone, and Valeria Vittorini

Formal Methods in Avionic Software Certification: The DO-178C
Perspective . 205

Gabriella Gigante and Domenico Pascarella

Table of Contents – Part II XV

Product Line Engineering Applied to CBTC Systems Development 216
Alessio Ferrari, Giorgio Oronzo Spagnolo, Giacomo Martelli, and
Simone Menabeni

Improving Verification Process in Driverless Metro Systems: The
MBAT Project . 231

Stefano Marrone, Roberto Nardone, Antonio Orazzo,
Ida Petrone, and Luigi Velardi

Optimising Ordering Strategies for Symbolic Model Checking of
Railway Interlockings . 246

Kirsten Winter

Automated Generation of Safety Requirements from Railway
Interlocking Tables . 261

Anne E. Haxthausen

Distributing the Challenge of Model Checking Interlocking Control
Tables . 276

Alessandro Fantechi

Quantitative Modelling and Analysis

Quantitative Modelling and Analysis . 290
Joost-Pieter Katoen and Kim Guldstrand Larsen

Schedulability of Herschel-Planck Revisited Using Statistical Model
Checking . 293

Alexandre David, Kim Guldstrand Larsen, Axel Legay, and
Marius Mikučionis

Checking Correctness of Services Modeled as Priced Timed
Automata . 308

Aida Čaušević, Cristina Seceleanu, and Paul Pettersson

Software Aspects of Robotic Systems

Software Aspects of Robotic Systems . 323
Jens Knoop and Dietmar Schreiner

Process-Oriented Geoinformation Systems and
Applications

Process-Oriented Geoinformation Systems and Applications 324
Hartmut Asche

XVI Table of Contents – Part II

Concepts and Techniques of an Online 3D Atlas – Challenges in
Cartographic 3D Geovisualization . 325

René Sieber, Livia Hollenstein, and Remo Eichenberger

Handling Heterogeneity in Formal Development of
HW and SW Systems

Handling Heterogeneity in Formal Developments of Hardware and
Software Systems . 327

Yamine Ait-Ameur and Dominique Méry

Leveraging Formal Verification Tools for DSML Users: A Process
Modeling Case Study . 329

Faiez Zalila, Xavier Crégut, and Marc Pantel

An Ontological Pivot Model to Interoperate Heterogeneous User
Requirements . 344

Ilyès Boukhari, Ladjel Bellatreche, and Stéphane Jean

Author Index . 359

Adaptable and Evolving Software

for Eternal Systems

(Track Summary)

Reiner Hähnle1 and Ina Schaefer2

1 Department of Computer Science
Technische Universität Darmstadt, 64289 Darmstadt

haehnle@cs.tu-darmstadt.de
2 Institute for Software Engineering and Automotive Informatics
Technical University of Braunschweig, D-38106 Braunschweig

i.schaefer@tu-braunschweig.de

1 Motivation and Goals

Modern software systems are extremely long-lived and have to adapt to chang-
ing user requirements and evolving environment conditions, such as different
hardware or resource constraints [6,9]. Furthermore, they have to remain op-
erational over long periods of time which requires to alter their functional or
non-functional behavior without halting the system’s operation [3]. These phe-
nomena related to evolving and long-lived software systems pose new challenges
for software engineering concepts, methods and tools.

For this track, we have invited a leading researchers to present their solutions
to tackle the challenge of software evolution in very long-lived systems. The in-
vited format ensures broad coverage of this important topic: diverse solution
approaches (language-based, verification-based, process-based), diverse method-
ologies (learning, modeling and model-driven development, formal verification),
as well as diverse application areas (product line engineering, scientific workflows,
compatibility checking, regression testing) are featured in the eight contributions
of this track. All papers represent systematic rather than ad-hoc proposals which
makes them interesting for a wide audience. Together, the papers in this track
provide a comprehensive and up-to-date overview of the research community’s
response to the challenge of evolving software.

2 Contributions

Bodden et al. [1] present the requirements and challenges for designing a pro-
gramming language that is capable of expressing dynamic analyses of security
properties. Efficiently specifying and guaranteeing security policies is an impor-
tant issue for long-lived software systems. The proposed analyses can be used
to ensure designated security properties and policies, such as access control or
secure information flow, at runtime. A well defined relationship between static

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 1–3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 R. Hähnle and I. Schaefer

compile time analyses and dynamic runtime analyses ensure that the perfor-
mance of program execution is in acceptable bounds.

Bosch & Eklund [2] advocate continuous, user- and test-driven software de-
velopment in an embedded systems scenario. To this end, they introduce the
concept of innovation experiment systems in the context of long-lived embedded
software. Traditional embedded software development strictly follows a water-
fall model, but such systems need to evolve continuously to stay competitive
and provide value to the customer and end-user, especially in domains where
the pace of change is increasing. The paper explores the implications for the ar-
chitecture to support the ability to continuously evolve and conduct experiences
in the deployed product context in a safe and controlled manner.

Hähnle & Schaefer [4] consider the formal verification of variant-rich software
systems developed in delta-oriented programming. Delta-oriented programming
is a flexible, yet modular approach to implement variable and evolvable software
systems. In this paper, the authors provide a foundation for the compositional
verification of delta-oriented software product families by providing a set of cri-
teria when it is possible to establish the specification of single product variants
from the specification of their shared artifacts.

Lamprecht & Margaria [5] present a framework for realizing variable and
evolvable scientific workflows in an agile manner. Their approach is based on
the paradigms of extreme model-driven development and loose programming.
Service independent building blocks (SIBs) abstract functionality towards the
end user and encapsulate implementation-specific details in order to allow a
modular response to change, both to the implementation and to the application.
The end user serves as application designer by arranging SIBs in workflows.
Synthesis algorithms allow agile and evolutionary experimentation with different
SIB orchestrations to achieve the same goal.

Lienhardt et al. [7] propose a new component model cast as a conservative
extension of the concurrent modeling language ABS. The model is able to de-
scribe the structural as well as the behavioral aspects of components, while
staying close to a standard OO language. The model is simpler and easier to use
than competing approaches, which, together with its formal semantics, makes
it amenable to automated analysis. A number of important properties follow
directly from the formal semantics.

Merten et al. [8] combine two separate approaches: first, a dependency relation
between method calls and potential call parameter changes is constructed by an
analysis of the signatures augmented by black-box testing. This information
is used to automatize the construction of mappers (from abstract to concrete
queries) in an automata-based learner. The point of this construction is to exploit
a syntactic, imprecise dependency analysis to automatize the building of an
accurate method that is able to learn system behavior.

Poetzsch et al. [10] present an approach to verify backward compatibility of
a component with respect to the system behavior. The goal is to check whether
a replacement component maintains backward compatibility in an application
where components mediate between an environment input layer (e.g., user or

Adaptable and Evolving Software for Eternal Systems 3

sensor input) and a process layer computing a response. Backward compatibility
is defined precisely in such a context where all components are formally specified
on the basis of the abstract modeling language ABS. Checking backward com-
patibility/trace equivalence is done after a translation from ABS into component
transition systems (CTS).

Zech et al. [11] propose a generic framework for model-based regression test-
ing which is particularly useful to efficiently guarantee correctness of evolving
software systems already in early development stages. They take a tool-centric
perspective and extend the MoVe modeling framework with generic means for
regression test selection and planning. The approach is evaluated using different
UML testing profile showing its general applicability.

References

1. Bodden, E., Follner, A., Rasthofer, S.: Challenges in Defining a Programming Lan-
guage for Provably Correct Dynamic Analyses. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part I. LNCS, vol. 7609, pp. 4–18. Springer, Heidelberg (2012)

2. Bosch, J., Eklund, U.: Eternal Embedded Software: Towards Innovation Exper-
iment Systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS,
vol. 7609, pp. 19–31. Springer, Heidelberg (2012)

3. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dust-
dar, S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle,
H.M., Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S.,
Shaw, M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for
Self-Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R.,
Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525,
pp. 1–26. Springer, Heidelberg (2009)

4. Hähnle, R., Schaefer, I.: A Liskov Principle for Delta-Oriented Programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 32–46.
Springer, Heidelberg (2012)

5. Lamprecht, A.-L., Margaria, T.: ScientificWorkflows: Eternal Components, Chang-
ing Interfaces, VaryingCompositions. In:Margaria, T., Steffen,B. (eds.) ISoLA2012,
Part I. LNCS, vol. 7609, pp. 47–63. Springer, Heidelberg (2012)

6. Lehman, M.M.: Software’s future: Managing evolution. IEEE Software 15(1), 40–44
(1998)

7. Lienhardt, M., Bravetti, M., Sangiorgi, D.: An Object Group-Based Component
Model. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609,
pp. 64–78. Springer, Heidelberg (2012)

8. Merten, M., Howar, F., Steffen, B., Pellicione, P., Tivoli, M.: Automated Inference
of Models for Black Box Systems Based on Interface Descriptions. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 79–96. Springer,
Heidelberg (2012)

9. Parnas, D.: Software aging. In: ICSE, pp. 279–287 (1994)
10. Poetzsch-Heffter, A., Feller, C., Kurnia, I.W., Welsch, Y.: Model-based Compatibil-

ity Checking of SystemModifications. In:Margaria, T., Steffen,B. (eds.) ISoLA2012,
Part I. LNCS, vol. 7609, pp. 97–111. Springer, Heidelberg (2012)

11. Zech, P., Felderer, M., Kalb, P., Breu, R.: A Generic Platform for Model-Based
Regression Testing. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS,
vol. 7609, pp. 112–126. Springer, Heidelberg (2012)

Challenges in Defining a Programming Language

for Provably Correct Dynamic Analyses

Eric Bodden, Andreas Follner�, and Siegfried Rasthofer��

Secure Software Engineering Group
European Center for Security and Privacy by Design (EC SPRIDE)

Technische Universität Darmstadt

Abstract. Modern software systems are not only famous for being ubiq-
uitous and large scale but also infamous for being inherently insecure.
We argue that a large part of this problem is due to the fact that cur-
rent programming languages do not provide adequate built-in support
for addressing security concerns.

In this work we outline the challenges involved in developing Codana,
a novel programming language for defining provably correct dynamic
analyses. Codana analyses form security monitors; they allow program-
mers to proactively protect their programs from security threats such
as insecure information flows, buffer overflows and access-control viola-
tions. We plan to design Codana in such a way that program analyses
will be simple to write, read and prove correct, easy to maintain and
reuse, efficient to compile, easy to parallelize, and maximally amenable
to static optimizations. This is difficult as, nevertheless, Codana must
comprise sufficiently expressive language constructs to cover a large class
of security-relevant dynamic analyses.

For deployed programs, we envision Codana-based analyses to be the
last line of defense against malicious attacks. It is hence paramount to
provide correctness guarantees on Codana-based analyses as well as the
related program instrumentation and static optimizations.

A further challenge is effective but provably correct sharing: dynamic
analyses can benefit from sharing information among another. We plan to
encapsulate such shared information within Codana program fragments.

Keywords: Runtime verification, inline reference monitors, code syn-
thesis, declarative programming languages, information flow, buffer over-
flows.

1 Introduction

Modern software systems are ubiquitous and often large scale, however many
such systems are also inherently insecure. A large part of this problem is caused
by the fact that currently programmers are forced to implement security features

� At the time of writing, Andreas Follner was with the Technikum Wien.
�� At the time of writing, Siegfried Rasthofer was with the Universität Passau.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 4–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Challenges in Defining a Programming Language 5

using general-purpose programming languages. While during the requirements
elicitation phase of the software development process, software architects formu-
late security requirements rather concisely on a high level of abstraction, this
simplicity becomes lost as appropriate security checks are implemented using
generic low-level programming-language constructs.

As an example, consider the same-origin policy, an important security policy
in web-based scripting languages such as JavaScript and ActionScript:

“An origin is defined by the scheme, host, and port of a URL. Generally
speaking, documents retrieved from distinct origins are isolated from
each other.” [35]

The same-origin policy can be concisely and precisely defined in a few paragraphs
of English text. Implementing enforcement of the same-origin policy, however, is
a whole different story, as is evident by a former violation of the same policy in
WebKit [3], the rendering engine used in the Chrome [1] and Safari [2] browsers.
Listing 1 shows change set 52401 in WebKit, which fixes a vulnerability that
allowed for violations of the same-origin policy. The change comprises a single
character; building WebKit involves downloading a software development kit of
several gigabytes.1

This example shows the challenges involved with implementing security poli-
cies in large-scale software systems. Ideally, programming languages would allow
for definitions of security policies at a high level and in a modular fashion, and
implement the enforcement of those policies through automatic means. Today’s
reality, however, are low-level security checks in general-purpose languages, writ-
ten and maintained by hand. The checks are scattered throughout the program,
which makes them hard to trace and maintain. Moreover, they are tangled to
the program’s base functionality.

In this work we outline the challenges involved in developing Codana, a novel
programming language with which we try to rectify some of those problems.
Codana has the goal to be a language for defining provably correct dynamic
analyses for security purposes. In this setting, dynamic analyses effectively form
security monitors. Thus, they allow programmers to proactively protect their
programs from security threats such as insecure information flows, buffer over-
flows and access-control violations. Opposed to design-time analyses, Codana-
based analyses are meant to remain a part of the program even after deployment;
they form an essential security-critical part of the program.

1 - if(protocolIsJavaScript (url) ||

2 + if(! protocolIsJavaScript (url) ||

3 ScriptController :: isSafeScript (newFrame) {

Listing 1. Fix for bug 30660 in WebKit (violation of same-origin policy)

1 Building WebKit: http://www.webkit.org/building/checkout.html

http://www.webkit.org/building/checkout.html

6 E. Bodden, A. Follner, and S. Rasthofer

Codana is not a general-purpose programming language. Instead, we envi-
sion functional concerns of programs to be written in a “base language” such
as Java or C/C++. Codana-based analyses then uses aspect-oriented program-
ming techniques to augment those base programs with instrumentation to fulfill
the stated security goals.

At the time of writing, the language design for Codana has not yet been fixed.
In this paper we outline the challenges involved in designing such a language. We
plan to design Codana in such a way that program analyses will be simple to
write, read and prove correct, easy to maintain and reuse, efficient to compile,
easy to parallelize, and maximally amenable to static optimizations. On the
other hand, Codana must comprise sufficiently expressive language constructs
to cover a large class of security-relevant dynamic analyses.

Dynamic analyses expressed in the Codana language are not just supposed
to be used to determine whether or not a program fulfills its security guarantees,
but rather to implement security features that will establish those guarantees. A
formerly insecure program hence becomes secure by augmenting it with dynamic
analyses formulated in Codana. This programming paradigm requires that dy-
namic analyses be efficient enough to actually remain part of the program even
after deployment time. We hence plan to include a wide range of domain-specific
static optimizations that restrict runtime checks to a necessary minimum.

In such deployed programs, Codana-based analyses are likely to be the last
line of defense against malicious attacks. It is hence paramount to provide cor-
rectness guarantees on Codana-based analyses as well as the related program
instrumentation and static optimizations.

A further challenge is effective but provably correct sharing and reuse: dy-
namic analyses can benefit from sharing information among another. We plan to
encapsulate such shared information within reusable Codana fragments. This
fosters reuse of both Codana implementations and correctness proofs.

To summarize, this paper provides the following original contributions:

– an outline of the challenges in designing a language for correct dynamic
analyses,

– an outline of the impact of the language design on static optimizations to
speed up those analyses,

– an outline of the requirements for providing correctness guarantees, and
– an outline of the potential for reuse of dynamic-analysis definitions.

The remainder of this paper is structured as follows. In Section 2, we discuss
the trade-offs involved in Codana’s language design. Section 3 provides details
about our envisioned static optimizations. Section 4 outlines the challenges in-
volved in providing correctness proofs and guarantees. We discuss our plan to
support sharing, reuse and extensions in Section 5. Section 6 discusses related
work. We conclude in Section 7.

Challenges in Defining a Programming Language 7

2 Dynamic Analysis

We next explain the challenges involved in designing a programming language
for security-related dynamic analyses. First, one may ask why we opt at all to
counter malicious attacks through dynamic and not static program analyses.
The problem is that static-analysis tools are always limited in precision, as they
have to make coarse-grain assumptions about the way a program is used, and
which input a program is provided. In addition, all interesting static-analysis
problems are inherently undecidable. In result, analysis result will always be
approximate, which leaves static-analysis designers two options: design the anal-
ysis to be overly pessimistic or optimistic. An optimistic analysis would not be a
viable option in a security-sensitive setting, as it would allow a potentially large
class of malicious attacks to go unnoticed. A pessimistic static analysis, however,
runs risk of generating false warnings. Such false warnings are a burden to the
programmers, who are often under time pressure and have insufficient resources
at their disposal to manually tell apart false warnings from actual vulnerabilities.

For those reasons, we base our approach primarily on dynamic runtime analy-
sis. With a dynamic analysis, we can actually guarantee to detect certain classes
of vulnerabilities without false warnings and without missed violations. For de-
ployed programs, we envision Codana-based analyses to be the last line of
defense against malicious attacks. The analyses will identify vulnerabilities just
in time, as they are about to be exploited. This allows the program to induce
countermeasures to prevent the exploit from succeeding.

We would like Codana-based analyses to be able to detect and mitigate
different kinds of attacks, such as attacks based on buffer overflows, insecure
information flows and cross-site scripting, circumvention of access control, ex-
ploitation of leaked capabilities, and side channels such as timing channels. To
this end, Codana needs to support various language features. To identify buffer-
overflows, one must be able to reason about numeric values and operations, as
well as pointer assignments. Insecure information flows and cross-site script-
ing vulnerabilities can only be identified if the sources of sensitive information
are known and if values assigned from those sources can be tracked trough all
possible program operations. Access-control and object-capabilities require an
analysis to be able to associate state with objects. Timing channels require an
analysis to reason about real-time data.

In the following, we explain some of those requirements in more detail by given
two examples: the detection of buffer overflows and a mechanism for enforcing
access control. The reliable detection of buffer overflows during runtime could
be realized by comparing the lengths of the buffers right before a vulnerable
function like strcpy is called.

Listing 2 shows what language constructs in Codana could look like that
could support such a use case. We here use a syntax roughly based on a re-
lated static-analysis approach by Le and Soffa [28]. Anytime the strcpy function
is called, the Codana program compares the lengths of the two parameters
and, in case the length of the source buffer exceeds the length of the destination
buffer, raises a violation. To support the user with a concise syntax, the language

8 E. Bodden, A. Follner, and S. Rasthofer

1 Buffer a,b;

2 at ’strcpy(a,b)’ if len(a) < len(b) violation (a)

3 violation (Buffer a) {

4 print("buffer overflow detected in variable " +

5 name (a) + " at " + location); }

Listing 2. Detecting buffer overflows with Codana (based on [28])

will provide built-in constructs such as len, which represents the length of a se-
lected buffer, and location, which represents the current code location. Most of
those constructs will require runtime support. For instance, to be able to tell the
length of a buffer, the Codana runtime must track this value in the first place.
We plan to provide the necessary program instrumentation through technolo-
gies from aspect-oriented programming [27]. The difference between Codana

and general-purpose aspect-oriented programming languages is that Codana

requires a more fine-grained approach. For instance, languages like AspectJ [8]
allow users to instrument calls to methods and assignments to fields but not
assignments between local variables. In this respect, Codana can be seen as a
domain-specific aspect language, for the domain of security monitoring.

As another example of a use case that we envision the Codana language to
support, consider the problem of access control. To this end, we plan to have
Codana support specially associative arrays2 that can be used to keep track of
a user’s authorizations.

Listing 3 shows how one could use an enum construct and associative arrays to
model a dynamic analysis detecting access violations. In the security community,
such dynamic analyses are frequently called security automata [33] or inline
reference monitors [23]. Lines 1–2 define two different classes of internal states
that we use to keep track of whether a user is currently logged in and whether
or not the user has been granted access to a given file. Note that we include such
constructs for modeling finite states on purpose. We plan to conduct effective,
domains-specific optimizations to Codana programs (see Section 3), and those
are easier to conduct when data structures are known to be finite. In lines 4–5,
we use two associative arrays to map users and files to their respective states.
Note that often one will encounter situations in which states must be associated
with combinations of objects such as in line 5, where we associate a state with
a user and file. Line 7 defines local variables u and f. The remainder of the code
uses those typed variables as place holders for runtime objects. Lines 9–12 define
four rules (or pieces of advice) to update the security monitor’s state based on a
range of concrete program events. Lines 9–12 define an error handler. Whenever
the underlying program calls the method fgets, we check whether the third
argument, the file f, may be accessed by user u, who is fetched from the current
context.

2 An associative array is an array that can be indexed not just by numbers but by
objects. Although associative array appears syntactically just as normal arrays, they
are typically implemented through map data structures.

Challenges in Defining a Programming Language 9

1 enum LoginState { LOGGED_OUT , LOGGED_IN }

2 enum Access { GRANTED , FORBIDDEN }

3
4 LoginState [User] loginState = LOGGED_OUT ;

5 Access[User ,File] access = FORBIDDEN ;

6
7 User u, File f;

8
9 after ’u=login()’ loginState [u] = LOGGED_IN ;

10 after ’logout(u)’ loginState [u] = LOGGED_OUT ;

11 after ’grantAccess (u,f)’ access[u,f] = GRANTED;

12 after ’revokeAccess (u,f)’ access[u,f] = FORBIDDEN ;

13
14 at ’fgets(*,*,f)’ with ’u=curr_user ()’

15 if loginState [u] != LOGGED_IN ||

16 access[u,f] != GRANTED violation (u,f);

Listing 3. Access control with Codana

Expressiveness vs. Simplicity. We plan to design Codana in such a way that it
is not only simple to use, but also is amenable to correctness proofs and static
optimizations. Efficiency is a big concern for Codana. If no due care is taken,
dynamic analysis can slow down a program’s execution considerably [14,19]. This
calls for a language design that focuses on simplicity. The simpler the language
constructs that Codana supports the easier it will be, both for compilers and
for programmers, to prove properties about Codana-based analyses. Frequently
found features in general-purpose programming languages that cause problems
for static analyses are infinite state, pointers and aliasing, loops and recursion as
well as exceptions. While it may be necessary for Codana to comprise some of
those features, we plan to thoroughly investigate, which features to include, and
how to make programmers aware of the performance or maintenance penalties
that their use may entail.

Use of infinite state could be excluded or at least discouraged by supporting
language constructs like enum, which we mentioned above. Aliasing could be
excluded by adapting a pass-by-value semantics for variables. In general, this
may increase analysis runtime, as every assignment entails a deep copy. However,
static optimizations could counter this effect. Loops could at least be restricted
to bounded for-each-style loops. Recursion at this point seems unnecessary to
include in Codana altogether.

Another important matter is concurrency. On the one hand, we wish to include
constructs that enable Codana to detect data races [16,17]. On the other hand,
our own data structures need to be thread safe, and preferably, for performance
reasons, lock-free as well. We plan to design and implement such data structures
in the back-end of Codana, e.g. to implement runtime support for associative
arrays.

10 E. Bodden, A. Follner, and S. Rasthofer

3 Static Optimization

We envision Codana to be used to secure end-user programs that are deployed
at the user’s site. But dynamic program analysis often requires an extensive
amount of program instrumentation, which can slow down the analyzed pro-
gram considerably [14, 19]. The fact that Codana will support the analysis of
data-centric information flows (information-flow analysis) such as insecure in-
formation flows or access-control violations yields Codana programs that have
to track a considerable amount of runtime information. Much of the overhead
is attributable to the fact that each variable could track different data-centric
or security-centric information. To improve the dynamic analysis, we and others
have shown in the past that a static analysis can be very effective in speed-
ing up dynamic analyses [15–17, 19, 22, 36]. These approaches, also frequently
called hybrid program analyses, usually build on the idea of only instrument-
ing certain program parts, while at the same time proving that instrumentation
of other parts of the program is unnecessary: monitoring those program parts
would have no effect on the outcome of the dynamic analysis. Those parts are
identified in advance, through static analysis of the program to be monitored
with respect to the definition of the dynamic analysis. The static analysis is
used to eliminate useless instrumentations which causes a reduction of events
dispatched to the dynamic-analysis code, hence reducing its evaluation time. In
the past, we have also applied proof techniques to formally show that our static
optimizations are correct, i.e., that they do not change the outcome of the dy-
namic analyses [14, 15]. So far, this approach is based on control-flow analysis,
but we plan to extend the approach to information-flow analysis as well.

Let’s consider a simple data-centric policy rule which is efficiently enforced by
a typestate analysis as described in [14]. The data-centric policy is a modified
version of the secure coding guideline Sanitize the Output taken from Aderhold
et. al [4]. Figure 1 shows the simplified taint-flow finite-state machine which
could be used as a runtime monitor for the detection of Cross-Side-Scripting
attacks. In Codana, such state machines could be expressed via enums, such as
shown in Listing 3.

This finite-state machine contains three different states whereas s0 and s1
are security-irrelevant states, whereas the error state symbols a policy viola-
tion (Cross-Side-Scripting attack). There are also three different kind of events
(tainted, untainted and output) which get activated by different program state-
ments. For example, the event tainted gets activated by $_GET[’tainted_data’],
the untainted event by statements which assign definitely untainted values and
the output event is activated if the data leaks from the program, for instance
when data is printed to the browser.

An information-flow analysis would associate such a state machine with each
tracked variable. Each variable starts in the initial state (s0) and performs a
transition corresponding to the activated event. Listing 4 shows an example
with tainted and untainted data and also one security-relevant flow along line 1
→ line 5 → line 7, which could allow a Cross-Side-Scripting attack. With the
tracking of the different security events and the corresponding transitions in the

Challenges in Defining a Programming Language 11

s0start s1 error
tainted

untainted || output

untainted

tainted

output

tainted || untainted || output

Fig. 1. Simple taint-flow finite-state machine for the prevention of Cross-Side-Scripting
attacks

finite-state machine, the analysis is able to identify this kind of attack if one of
the variables reaches an error state.

A general, un-optimized dynamical-analysis approach would instrument each
assignment, as shown in 4. In this example, however, the instrumentation of the
untainted variable $number is completely unnecessary: on this variable, no taint
violations can take place, and hence the analysis would never report taint viola-
tions on this variable. A static information-flow analysis, executed in advance,
would allow the Codana compiler to omit instrumentation for this variable
from the dynamic analysis. The result after applying the static analysis and
optimization is shown in Listing 5.

1 $input1 = $_GET[’tainted_data’];
2 makeTransition(input1 , tainted);
3 $number = 1;
4 makeTransition(number ,

untainted);
5 $input2 = $input1 ;
6 propagateTaint(input1 , input2);
7 echo($input2);
8 makeTransition(input2 , output);
9 echo($number);

10 makeTransition(number , output);

Listing 4. Example exposing a Cross-
Side-Scripting attack without static
optimization

1 $input1 = $_GET[’tainted_data’];
2 makeTransition(input1 , tainted);
3 $number = 1;
4 $input2 = $input1 ;
5 propagateTaint(input1 , input2);
6 echo($input2);
7 makeTransition(input2 , output);
8 echo($number);

Listing 5. Example exposing a
Cross-Side-Scripting attack with static
optimization

A significant challenge to such static optimizations are multi-threaded pro-
grams. For such programs, multiple control-flows can be interleaved. In con-
sequence, a single control-flow graph is not sufficient to simulate all possible
control flows. Moreover, the analysis state quickly grows due to the many pos-
sible different schedules that static analyses need to simulate. Many existing
whole-program analysis (including some of our own previous work [14]) ignore
this problem. A promising escape route are flow-insensitive analyses [19]. Such
analyses do not at all take the program’s control-flow into account. Because of
this, the analyses are, by design, agnostic to the different possible schedules. At
the same time, such analyses can be implemented quite efficiently.

12 E. Bodden, A. Follner, and S. Rasthofer

We hence plan to follow a staged analysis approach that applies relatively
inexpensive flow-insensitive analysis first. As we observed in previous work [19],
such analyses can often optimize away already a significant amount of program
optimization. We then execute more expensive, potentially thread-aware, flow-
sensitive analyses only to such parts of the program in which instrumentation
remains after the first analysis stages have been applied.

But multi-threading is not just an annoyance but can also be of help. We plan
to investigate to what extent our static-analysis algorithms can be designed to
exploit parallelism. Rodriguez and Lhoták have recently shown [31] that such
an approach promises significant speed-ups. In addition, parts of the Codana

runtime could be designed to support executing the dynamic analysis in separate
threads.

4 Correctness

Dynamic analyses based on Codana will usually be able to detect bugs and
vulnerabilities just as they are about to be exploited. Because of this, the analyses
are practically the program’s last line of defense. It is hence paramount that
analyses written in Codana be reliable. We plan to prove the correctness of
Codana programs on several levels.

One threat to the correctness of Codana-based analyses are the static opti-
mizations that we apply. In previous work we have demonstrated how a proof
technique based on so-called continuation-equivalent analysis configurations can
be used to prove the correctness of such optimizations [15]. In a nutshell, one
must prove that if a static optimization removes instrumentation at a statement
s, then all possible analysis configurations before and after s must be equivalent
with respect to all possible continuations of the control flow that follow s. If they
are equivalent, then this means that dynamically executing the instrumentation
at s would have no effect, and hence it is sound to omit the instrumentation
at this statement. In the past, we have used this approach to prove the cor-
rectness of a flow-sensitive static typestate-analysis [13, 14]. This process also
revealed bugs in previous approaches [20, 30]. For Codana, we plan to extend
this approach to other classes of static optimizations for dynamic analyses.

Codana programs consist mainly of program instrumentation and accesses
to a runtime library, both of which need to adhere to correctness guarantees.
In recent work, we have developed a clean semantics for weaving of aspect-
oriented code into Java programs [25]. We assume to be able to reuse some
of the results to prove that our instrumentation preserves the behavior of the
instrumented program. A challenge in this area are race conditions and side-
channel attacks. As the instrumentation caused by our dynamic analysis causes
the program to slow down, this may cause certain race conditions or certain
information leaks, e.g., through timing channels to disappear due to this slow-
down. Such so-called “Heisenbugs” are a general problem in dynamic analysis
that cannot be solved without specific modifications to the program’s scheduler.
Essential parts of Codana’s runtime library could be proven correct through
tool-assisted functional-correctness proofs [37].

Challenges in Defining a Programming Language 13

We plan to aid programmers in proving the correctness of analyses formulated
in Codana. Given a high-level security property, programmers should be able
to argue why a given Codana program establishes this property. To this end,
we first plan to keep the language itself as simple as possible (see Section 2),
but also plan to include a standard library with Codana code templates. Along
with those templates, we can provide example proofs that prove important prop-
erties about those templates. Ideally, those proofs could then be composed to a
correctness proof for aCodana program that uses the respective code templates.

5 Reuse, Sharing and Composition

In the previous section, we have already explained the advantages of a standard
library for Codana programs. In addition to this kind of reuse, we still plan to
support reuse on other levels.

For instance, a common use case will be that programs execute augmented
not with only one single dynamic analysis but with multiple ones. For instance,
one may want to secure a program against information-flow violations and buffer
overflows at the same time. Both of those information need to track assignments
to certain classes of variables. When both analyses are performed at the same
time, it is hence advisable to share information among those analyses. This
sharing must be correct, however, it must not lead to unintentional alterations
of the analysis information.

There are multiple ways to implement such information sharing. A simple way
would be to provide certain common analysis elements as parts of the Codana

runtime library. If multiple analyses include the same elements and are executed
at the same time, then this could lead to automatic sharing. A drawback of this
approach is that we as Codana designers must be able to anticipate common use
cases for sharing to provide them in such a library. Another, more sophisticated
approach, could try to identify the potential for information sharing irrespective
of the origin of the analysis code. Such an approach would require a sophis-
ticated analysis of the Codana programs. In recent work, we have outlined
the challenges that arise from composing instrumentations for multiple dynamic
analyses [7].

Many of our static analyses and optimizations, although domain specific, may
have parts that are reusable also for other static-analysis problems. We plan to
encapsulate those analyses such that they can be reused by others. In the past, we
have made accessible static analyses through simple domain-specific extensions
to AspectJ [16–18,21]. A similar approach could be taken also in this project.

In addition, we plan to open our compiler implementation up to others. That
way, other researchers could extendCodana with additional language constructs
or different static optimizations, such as we and others have previously done
with AspectJ [10]. In the past, we have developed the Clara framework, which
is explicitly designed to allow analysis extensions by others [18, 21].

14 E. Bodden, A. Follner, and S. Rasthofer

6 Related Work

One of the most closely related projects is ConSpec [6], another formal specifi-
cation language for security policies. As we propose for Codana, also ConSpec
supports advice-like before/after blocks that allow users to update a finite set of
state variables. ConSpec allows for the definition of two different entities, called
policies and contracts, both of which are defined manually by the user and are
written in the ConSpec language. Contracts are application specific and describe
the kinds of security properties that an application guarantees. Contracts can
be checked against applications through a translation into Spec# [11] and sub-
sequent static verification [5]. Policies are more general than contracts. They are
specific with respect to an execution environment, e.g., a device on which the
program is to be executed. ConSpec assumes that both policies and contracts are
finite-state, which allows ConSpec to use simple algorithms for deciding regular-
language inclusion to decide whether a contract complies with a policy. Further,
ConSpec allows the monitoring of policies against applications, either through
an external monitor or through an inline reference monitor [23]. We believe that
the distinction between policy and contract is an interesting and valuable one.
Similar concepts may be useful also for Codana. On the other hand, Codana

will go much beyond what is supported by ConSpec, in that it will allow the
generation runtime monitors that are statically optimized, and nevertheless will
provide language constructs like associative arrays, which go beyond finite state.
In previous work, we have developed Join Point Interfaces [24,25], a mechanism
to establish clean interfaces for aspect-oriented programs. Those interfaces cur-
rently focus on establishing the ability to type-check aspects independent of the
base program’s code. It may be useful to combine mechanisms of those join point
interfaces with some of those of ConSpec within Codana to achieve a separation
between policies and contracts.

Le and Soffa present a generative approach that has some similarity to
Codana [28]. The approach provides a domain-specific specification language
for program analyses. In the case of Le and Soffa, however, this approach is
restricted to purely static analyses. Programmers can use the language to de-
fine how static-analysis information needs to be updated at particular classes of
statements, and which conditions on the analysis information signal property vi-
olations. Based on the specification, the approach then automatically generates
an appropriate flow-sensitive and path-sensitive static analysis for C/C++ pro-
grams. The authors demonstrate the efficacy of their approach by implementing
analyses to detect buffer overflows, integer violations, null-pointer de-references
and memory leaks. Our approach will provide a language that may have simi-
larities with what Le and Soffa propose. However, due to the fact that we focus
on dynamic analysis, we may be able to provide certain language features that
static analyses cannot provide, and vice versa. Moreover, we plan to not focus
on C/C++ programs but rather on an intermediate representation that allows
us to instrument and analyze programs written in a range of different languages.

DiSL, a domain-specific language for bytecode instrumentation by Marek et
al., is another very related project [29]. DiSL is currently implemented not as a

Challenges in Defining a Programming Language 15

programming language with own, domain-specific syntax, but rather as a set of
annotations and conventions over syntactic constructs defined in pure Java. Us-
ing DiSL, programmers can define pieces of advice to be applied before or after
certain sequences of Java bytecode. DiSL further provides convenience methods
for accessing elements on the stack or from other parts of the execution context.
As DiSL programs are compiled, accesses to those methods are then automati-
cally replaced by low-level (stack) operations. One important advantage of DiSL
over other instrumentation tools is that DiSL allows for the uniform instrumen-
tation of entire Java programs, including relevant parts of the Java runtime
library. Codana differs from DiSL in that it will provide domain-specific pro-
gramming constructs with a simple and well-defined semantics. The intricacies
of bytecode instrumentation will be hidden from the user. This not only suggests
that Codana programs may be easier to read and understand that programs
written in DiSL, but also that they are more amenable to static optimizations.
It may be interesting, though, for Codana to use DiSL as a back-end instru-
mentation technology, and we are currently discussing this opportunity with the
developers of DiSL.

In the past, the first author has developed the Clara [18, 21] framework for
static typestate analysis. Similar to the approach we propose here, also Clara
uses static optimizations to speed up dynamic analyses. Also Clara provides
a domain-specific aspect language for this purpose. In contrast to Codana,
however, Clara is restricted to finite-state runtime monitors, and hence only
supports static typestate analyses. While Codana will reuse some ideas of Clara,
in this paper we showed that implementing a language such as Codana comes
with many challenges that go beyond our previous experience with Clara.

Austin and Flanagan present a purely dynamic information-flow analysis for
JavaScript. Their approach “detects problems with implicit paths via a dynamic
check that avoids the need for an approximate static analyses while still guaran-
teeing non-interference” [9]. We plan to investigate whether we can use similar
tricks in our implementation of Codana. Zhivich et al. compare seven different
dynamic-analysis tools for buffer overflows [38]. XSS-Guard [12] by Bisht and
Venkatakrishnan is a dynamic approach for detecting cross-site scripting attacks.
The approached is based on a learning strategy; it learns the set of scripts that
a web application can create for any given HTML request. This is different from
Codana in that it gathers information among multiple program runs. We will
investigate whether such an extension of the scope of Codana can be of more
general use. Vogt et al. [34] implement a hybrid dynamic/static analysis to find
cross-site scripting vulnerabilities. Interestingly, they use static analysis not to
enhance efficiency, but to detect attacks that through a purely dynamic analysis
may go unnoticed. We plan to investigate whether such analyses would be useful
to have within Codana.

Jones and Kelly propose an approach to dynamically enforce array bounds
through the use of a table which holds information about all valid storage el-
ements [26]. The table is used to map a pointer to a descriptor of the object
to which it points, which contains its base and extent. To determine whether

16 E. Bodden, A. Follner, and S. Rasthofer

an address computed off an in-bounds pointer is in bounds, the checker locates
the referent object by comparing the pointer with the base and size information
stored in the table. Then it checks if the new address falls within the extent
of the referent object. The authors implemented their bounds checking scheme
in the GNU C compiler (GCC), where it intercepts all object creation, address
manipulation and de-reference operations and replaces them with their own rou-
tines. A problem observed with their approach is that it sometimes incorrectly
crashes working code and that it considerably slows down program execution.
Ruwase and Lam took the basic concepts, improved them and created CRED
(C Range Error Detector) [32], which eradicated mentioned problems. We will
investigate if some of the basic ideas used in either of the approaches could be
adapted for Codana.

7 Conclusion

We have presented a range of important design decisions involving the develop-
ment of Codana, a novel programming language for correct dynamic analysis.
Challenges arise in the areas of dynamic analysis, static optimization, correct-
ness, as well as reuse, information sharing and analysis composition. Codana

has the goal to allow programmers to write dynamic program analyses that will
be simple to write, read and prove correct, easy to maintain and reuse, efficient
to compile, easy to parallelize, and maximally amenable to static optimizations.
We have explained how we wish to achieve those goals, and which implications
those goals will probably have on the language design.

Acknowledgements. This work was supported by the Deutsche Forschungsge-
meinschaft within the project RUNSECURE, by the German Federal Ministry
of Education and Research (BMBF) within EC SPRIDE and by the Hessian
LOEWE excellence initiative within CASED. We thank Andreas Sewe, Walter
Binder and Mira Mezini for discussions and suggestions on the topics presented
in this paper.

References

1. Chrome Browser, https://www.google.com/chrome
2. Safari Browser, http://www.apple.com/safari/
3. The WebKit Open-Source Project, http://www.webkit.org/
4. Aderhold, M., Cuéllar, J., Mantel, H., Sudbrock, H.: Exemplary formalization of

secure coding guidelines. Technical Report TUD-CS-2010-0060, TU Darmstadt,
Germany (2010)

5. Aktug, I., Gurov, D., Piessens, F., Seehusen, F., Vanoverberghe, D., Vétillard, E.:
Static analysis algorithms and tools for code-contract compliance, Public Deliver-
able D3.1.2, S3MS (2006), http://s3ms.org

6. Aktug, I., Naliuka, K.: ConSpec–a formal language for policy specification.
Electronic Notes in Theoretical Computer Science 197(1), 45–58 (2008)

https://www.google.com/chrome
http://www.apple.com/safari/
http://www.webkit.org/
http://s3ms.org

Challenges in Defining a Programming Language 17

7. Ansaloni, D., Binder, W., Bockisch, C., Bodden, E., Hatun, K., Marek, L., Qi, Z.,
Sarimbekov, A., Sewe, A., Tůma, P., Zheng, Y.: Challenges for Refinement and
Composition of Instrumentations: Position Paper. In: Gschwind, T., De Paoli,
F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS, vol. 7306, pp. 86–96. Springer,
Heidelberg (2012)

8. The Aspect J. home page (2003)
9. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In:

Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages
and Analysis for Security, PLAS 2009, pp. 113–124. ACM, New York (2009)

10. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Abc: an extensible aspectj
compiler. In: Proceedings of the 4th International Conference on Aspect-Oriented
Software Development, AOSD 2005, pp. 87–98. ACM, New York (2005)

11. Barnett, M., Leino, K., Schulte, W.: The spec# programming system: An overview.
Construction and analysis of safe, secure, and interoperable smart devices, 49–69
(2005)

12. Bisht, P., Venkatakrishnan, V.: Xss-guard: precise dynamic prevention of cross-site
scripting attacks. Detection of Intrusions and Malware, and Vulnerability Assess-
ment, 23–43 (2008)

13. Bodden, E.: Verifying finite-state properties of large-scale programs. PhD thesis,
McGill University, Available in print through ProQuest (June 2009)

14. Bodden, E.: Efficient hybrid typestate analysis by determining continuation-
equivalent states. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering ICSE 2010, vol. 1, pp. 5–14. ACM, New York (2010)

15. Bodden, E.: Continuation equivalence: a correctness criterion for static optimiza-
tions of dynamic analyses. In: WODA 2011: International Workshop on Dynamic
Analysis, pp. 24–28. ACM (July 2011)

16. Bodden, E., Havelund, K.: Racer: Effective race detection using AspectJ. In: In-
ternational Symposium on Software Testing and Analysis (ISSTA 2008), Seattle,
WA, pp. 155–165. ACM, New York (2008)

17. Bodden, E., Havelund, K.: Aspect-oriented race detection in Java. IEEE Transac-
tions on Software Engineering (TSE) 36(4), 509–527 (2010)

18. Bodden, E., Hendren, L.: The Clara framework for hybrid typestate analysis. Inter-
national Journal on Software Tools for Technology Transfer (STTT), 1–20 (2010)

19. Bodden, E., Hendren, L., Lhoták, O.: A Staged Static Program Analysis to Improve
the Performance of Runtime Monitoring. In: Bateni, M. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 525–549. Springer, Heidelberg (2007)

20. Bodden, E., Lam, P., Hendren, L.: Finding programming errors earlier by eval-
uating runtime monitors ahead-of-time. In: 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (SIGSOFT 2008/FSE-16),
pp. 36–47. ACM, New York (2008)

21. Bodden, E., Lam, P., Hendren, L.: Clara: A Framework for Partially Evaluating
Finite-State Runtime Monitors Ahead of Time. In: Barringer, H., Falcone, Y.,
Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann,
N. (eds.) RV 2010. LNCS, vol. 6418, pp. 183–197. Springer, Heidelberg (2010)

22. Dwyer, M.B., Purandare, R.: Residual dynamic typestate analysis exploiting static
analysis: results to reformulate and reduce the cost of dynamic analysis. In: Pro-
ceedings of the Twenty-Second IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2007, pp. 124–133. ACM, New York (2007)

23. Erlingsson, U.: The inlined reference monitor approach to security policy
enforcement. PhD thesis, Cornell University (2003)

18 E. Bodden, A. Follner, and S. Rasthofer

24. Inostroza, M., Tanter, É., Bodden, E.: Modular reasoning with join point interfaces.
Technical Report TUD-CS-2011-0272, CASED (October 2011)

25. Inostroza, M., Tanter, E., Bodden, E.: Join point interfaces for modular reason-
ing in aspect-oriented programs. In: ESEC/FSE 2011: Joint Meeting of the Eu-
ropean Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pp. 508–511 (2011)

26. Jones, R.W.M., Kelly, P.H.J.: Backwards-compatible bounds checking for arrays
and pointers in C programs. In: AADEBUG, pp. 13–26 (1997)

27. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin,
J.: Aspect-Oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

28. Le, W., Soffa, M.L.: Generating analyses for detecting faults in path segments.
In: Proceedings of the 2011 International Symposium on Software Testing and
Analysis, ISSTA 2011, pp. 320–330. ACM, New York (2011)

29. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: Disl: a domain-
specific language for bytecode instrumentation. In: AOSD 2012, pp. 239–250. ACM,
New York (2012)

30. Naeem, N.A., Lhotak, O.: Typestate-like analysis of multiple interacting objects.
In: Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems Languages and Applications, OOPSLA 2008, pp. 347–366.
ACM, New York (2008)

31. Rodriguez, J., Lhoták, O.: Actor-Based Parallel Dataflow Analysis. In: Knoop, J.
(ed.) CC 2011. LNCS, vol. 6601, pp. 179–197. Springer, Heidelberg (2011)

32. Ruwase, O., Lam, M.S.: A practical dynamic buffer overflow detector. In: Proceed-
ings of the 11th Annual Network and Distributed System Security Symposium,
pp. 159–169 (2004)

33. Schneider, F.: Enforceable security policies. ACM Transactions on Information and
System Security (TISSEC) 3(1), 30–50 (2000)

34. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross-site
scripting prevention with dynamic data tainting and static analysis. In: Proceeding
of the Network and Distributed System Security Symposium (NDSS), vol. 42 (2007)

35. W3C. Same-Origin Policy,
http://www.w3.org/Security/wiki/Same_Origin_Policy

36. Yong, S.H., Horwitz, S.: Using static analysis to reduce dynamic analysis overhead.
Form. Methods Syst. Des. 27(3), 313–334 (2005)

37. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data struc-
tures. In: PLDI 2008, pp. 349–361. ACM, New York (2008)

38. Zhivich, M., Leek, T., Lippmann, R.: Dynamic buffer overflow detection. In:
Workshop on the Evaluation of Software Defect Detection Tools (2005)

http://www.w3.org/Security/wiki/Same_Origin_Policy

Eternal Embedded Software:
Towards Innovation Experiment Systems

Jan Bosch and Ulrik Eklund

Chalmers University of Technology
Software Engineering Division, Dept. Computer Science & Engineering

Göteborg, Sweden
jan.bosch@chalmers.se

Abstract. The paper discusses the concept of innovation experiment
systems in the context of long-lived embedded systems. These systems
need to evolve continuously to stay competitive and provide value to the
customer and end-user, especially in domains where the pace of change
is increasing.

Innovation experiment systems provide a natural mechanism that al-
lows an embedded system, its architecture and underlying platform to
continuously evolve in response to changes in the user requirements and
system context. It uses a rapid feedback loop to evaluate the benefits of
small variations to users with the intent of continuous improvements.

The paper explores the architectural implications as the ability to con-
tinuously evolve and conduct experiences in the deployed product context
in a safe and controlled manner must be supported by the architecture
of the embedded systems.

Finally, the paper illustrates these concepts using a case study con-
cerning an infotainment system in the automotive industry.

Keywords: innovation experiment system, embedded systems, software
architecture, automotive software.

1 Introduction

Software has made an amazing journey since its first introduction in the middle
of the 20th century. Initially considered as a handy configuration mechanism for
electronic systems, it has managed to increasingly become the core of virtually
any modern system supporting individuals, companies and entire societies. With
the constantly expanding role of software, the lifespan of software systems has
extended as well with examples existing where the lifespan of the software is
longer than the entire working career of the software developers that initially
developed it. This trend occurs not only in the area of information systems,
but is starting to become a key challenge for embedded software as well. For
the purpose in this paper, there are two main categories of “eternal” embedded
software:

The first is infrastructure software, which is completely pervasive today, where
the deployment of new systems requires huge investment or effort and therefore

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 19–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

20 J. Bosch and U. Eklund

occurs very seldom. Examples could be traffic lights in a city, railway signaling,
public transport automated ticket systems etc. This category increases since
previously “unconnected” systems are becoming software dependent, such as car-
to-car and car-to-infrastructure communication.

The second is mass-produced embedded systems, where some domains overlap
the first category. Even in the world of fast moving electronics the software plat-
form lives significantly longer than the manufacturing of any individual product,
including the microprocessor the software runs on. The extreme example here
would be cars, where a single car model could be manufactured for seven years,
longer than any CPU, and would have requirements of spare parts availability
up to twenty years after the manufacturing has stopped. In many cases the un-
derlying software platform providing end-user functionality evolves beyond the
initial purpose, but the services of the platform also reuse existing software from
previous product generations.

These kind of systems need to evolve continuously to stay competitive and
provide value to the customer and end-user, especially in domains where the pace
of change is ever increasing. Whereas earlier this was achieved by period, e.g.
yearly, new releases of software, we recognize a trend where continuous testing
of new, innovative functionality in deployed systems is increasingly applied in
especially on-line, software-as-a-service (SaaS) systems.

In our research, however, we have studied this phenomenon and realized that
this can be applied to embedded systems as well and, in fact, allows for significant
improvements in the rate of innovation and the ability of systems to adjust to
their continuously evolving environment. We refer to this trend as innovation
experiment systems (IES) [1].

Common for SaaS software and software in connected embedded systems is
that allows for an approach where instead of freezing the requirements before
starting product development, the requirements constantly evolve and also affect
already deployed systems that are actively used by customers. Consequently,
requirements evolve in real-time based on data collected from systems in actual
use with customers instead of being frozen early based on the opinions of product
management about the likely customer needs 12, 18 or 24 months from now.

The contribution of the paper is a discussion of the concept of innovation
experiment systems in the context long-lived embedded systems. In addition, it
explores the architectural implications as the ability to continuously evolve and
conduct experiences in the actual real setting in a safe and controlled manner
must be supported by the architecture of the embedded systems. Finally, it
illustrates these concepts using a case study concerning an infotainment system
in the automotive industry.

The remainder of the paper is organized as follows. In the next section, we
discuss contemporary and future embedded systems. Subsequently, we introduce
the concept of innovation experiment systems in more detail. This is followed by a
discussion of the application of innovation experiment systems in the embedded
systems domain. Then, we present a case study that illustrates the discussed
concepts in the context of the automotive domain. Finally, we conclude with a

Eternal Embedded Software: Towards Innovation Experiment Systems 21

discussion of the relation between innovation experiment systems and “eternal”
embedded software and an outline of future work.

2 Characteristics of Current and Future Embedded
Systems

It is difficult to identify a single perspective on software development among
original equipment manufacturers (OEM) of products with embedded software.
The view ranges from focusing on efficient manufacturing of products with the
software as difficult necessity to seeing software as a key business differentiator.
Software is often an enabler for new innovation in embedded systems, for example
in cars [2], and marketed innovative features are often realized by software. One
indicator for this is the amount of software is increasing exponentially over time
in many embedded domains [4].

A common development approach for embedded systems is using a traditional
stage-gate process, where the gates are driven by decisions on investment in the
manufacturing of the product, i.e. driven by the hardware, towards a new peri-
odical release. The finalization of software artifacts often correspond to process
gate progression, e.g. user requirements, system requirements, software archi-
tecture, component requirements, and software implementation, i.e. a waterfall
process even if the artifacts are updated as the project progresses.

We define the domain of mass-produced software-intensive embedded systems
by four characteristics:

– Deep integration between hardware and software for significant parts of the
functionality

– Strong focus on manufacturing aspects of the product in the development
(e.g. by development process gates)

– Strong supplier involvement in the form of subcontractors
– Some elements of the system realize safety-critical functionality

Examples of mass-produced embedded products include cars and trucks, wash-
ing machines and other home utensils, sewing machines, printers and copying
machines [4]. We will give some examples from the automotive industry since
cars are arguably the most complex product of this category, both in terms of
conflicting requirements and longevity of the platform in production.

Over the last years, cloud computing and SaaS solutions are rapidly becoming
the norm and enjoy enormously rapid growth. The key reasons for this include
the lower cost for the customer, the simplicity associated with not having to
own hardware and the freedom from long-term constraints associated with most
licensed software solutions. Interestingly, these benefits extend in part also to
software-intensive embedded systems and increasingly companies building con-
nected embedded systems, from mobile phones to cars, are starting to exploit the
advantages of frequent, post-deployment updating of software and the collection
of usage and other performance data from systems in the field.

22 J. Bosch and U. Eklund

3 Concept of Innovation Experiment Systems

Innovation is lifeblood of any organization, but notoriously hard to get right in
many companies. Innovation in large organization is often characterized by an
enormous imbalance between the number of ideas that, informally or formally,
exist in the organization and the number of concepts that are in fact tested with
customers. The ratio, depending on the attention the organization puts towards
idea generation by its employees, can range from one in a hundred to one in
thousands. With that strict selection process and the high cost associated with
testing, the importance of selecting the most promising ideas, turning these into
concepts and then designing a (prototype) product to test the concept with cus-
tomers becomes such that it receives significant attention by senior management
and many other functions and layers in the organization.

The selection process is, unavoidably, driven by the earlier experiences and
beliefs of the people in the selection process. In most organizations, it is the
opinions of the more senior persons in the organization that tend to weigh the
heaviest. The challenge with this approach is threefold. First, opinions are a very
poor substitute for real customer data and the innovation literature has many
examples of successful innovations that were resisted for years inside the orga-
nization before made successful by a small “skunk works” team working under
the radar. Second, even if the organization is sufficiently open minded to explore
more innovative ideas and concepts, there is a natural risk avoidance that causes
organizations to settle on the safe bets. Human psychology, as has been stud-
ied extensively in behavioral economics, experiences a loss much more strongly
than it experiences a win, causing a selection process where losses are as much
as possible avoided, resulting in mundane innovations. Finally, the demands on
the system from its users as well as the overall context in which it operates
evolve constantly and this requires continuous validation and experimentation
to determine in which direction the system needs to evolve.

The solution is, obviously, to find ways to decrease the dependence on opinions
and to increase reliance on real customer or other data. Traditional metrics such
as the Net Promoter Score [8] have been used for the last decade or more, but
often fail to provide timely feedback during the development process as these
are backward looking and focus on the entire product. To collect customer or
performance data early in the innovation process, the organization needs to find
mechanisms to test more ideas and concepts with customers and in the installed
base in real-time and obviously at a much lower cost than earlier. This requires
new behaviors at the business level, i.e. involving customers in feature and prod-
uct concept validation without an, initially clear, business model. Also, it requires
changes to the R&D processes as customers need to be involved much earlier and
deeper in the R&D process. Finally, this requires changes to the architecture of
the products and platforms to facilitate testing versions of screens, components,
subsystems and entire products in order to determine customer preference and
interest. The mechanisms used for achieving customer involvement and the effi-
cient execution of experiments on the deployed product base depend heavily on
the type of experiments, system, stage and purpose.

Eternal Embedded Software: Towards Innovation Experiment Systems 23

Connected, software-intensive embedded systems offer a particularly well-
suited context for building an innovation experiment system. Connected systems
allow for the rapid and low-cost deployment of new functionality. In addition, the
collection of customer feedback as well as usage and other performance metrics
is simple and the connection to business goals is virtually real-time.

In Figure 1, we present the concept of innovation experiment systems in R&D
graphically. The loop between deploying new functionality, measuring usage and
other performance metrics and subsequently using the collected data to drive de-
velopment is the main process. The goal of an innovative product is to maximize
the number of iterations that can be executed per time unit, e.g. per quarter.
The rationale is that the faster the organization learns about the customer and
the real world operation of the system, the more value it will provide and con-
sequently the more successful it will be compared to its competitors.

Fig. 1. Overview of the Innovation Experiment System with the iteration of experi-
ments

When embedded systems are network connected and the development teams
have adapted to rapid development and deployment i short cycles, allows the
manufacturers to have the ability to conduct innovation experiments with the
deployed embedded systems on a scale comparable to the full customer base.

A perhaps less obvious but very important advantage of connected products
is that the cost of collecting active and passive information from and about the
customer is much lower. Active customer feedback is concerned with surveys
and other mechanisms where the customer is aware that he or she is providing
feedback. Passive feedback and usage data is collected while the customer is
using the system. Examples include the amount of time a user spends using a
feature, the relative frequency of feature selections, the path that the user takes
through the product functionality, etc. The low cost and ease of data collection
leads to the next major difference between IES-based and traditional software.

In connected, embedded systems, in addition to usage data, several kinds
of other performance data can be collected. For example, connected cars can
collect fuel consumption data whereas telecom equipment can collect real-time
bandwidth data. In many systems, this data is already collected for operational
management purposes, but hardly used in evolution of already deployed systems.

24 J. Bosch and U. Eklund

An automotive OEM gains a significant competitive advantage from building
products as innovation experiment systems compared to present practices of
customer clinics and consumer surveys1; with the former being labor-intensive
even for a very small sample size and the latter has a very long cycle time
from development to survey results. The second advantage is for the customers,
who continuously will get a vehicle with new or improved features, and a better
retained second-hand value when selling to the 2nd and 3rd customers.

Due to the approach that companies like Google have taking concerning “per-
petual beta”, customers expect a continuous evolution of product functionality.
Customers are becoming increasingly accustomed to frequent, trouble-free up-
dates that provide relevant additional value and consequently this is increasingly
an expectation also for traditional embedded products.

4 Applying Innovation Experiment Systems to
Modern/Future Embedded Systems

4.1 Overall Implications on R&D Process

Innovative ideas for embedded products are typically collected and prioritized
during the roadmapping and requirement management process as part of the
yearly release cycle, which usually is determined by manufacturing concerns of
the hardware. Feedbacks on innovations from real customers are collected only
on new product models, if collected at all.

For a car there is a long innovation cycle for the mechanical parts, involv-
ing heavy investment in the manufacturing plants, typically 7-10 years. The
electronics have a much shorter innovation cycle owing to the life-cycle of semi-
conductors, typically 1-3 years. Oddly enough the cycle of software is longer than
for electronics, with a common feature being updated maybe once as a mid-cycle
action on a car model.

Since more and more embedded products also are connected [5], it is conceiv-
able to develop, deploy and measure usage on new software in iterations which
length is determined by the speed of the software development teams instead
of the setup of the manufacturing process, going from years to weeks. Such an
innovation experiment system would utilize feedback from real customers in a
scale comparable to the entire customer base and would require a product ar-
chitecture embedded in each product together with an infrastructure capable of
collecting and analyzing the data.

The driver for having such an innovation experiment system is that business
and design decisions should be based on data, not opinions among developers,
domain experts or managers. The company running the most experiments among
the customer base against the lowest cost per experiment outcompetes the others
by having the decision basis to engineer products with outstanding customer
experience.

1 http://autos.jdpower.com/

http://autos.jdpower.com/

Eternal Embedded Software: Towards Innovation Experiment Systems 25

Developing software in an innovation experiment system is different from de-
velopment approaches for traditional embedded software. First, it frequently
deploys new versions focusing on continuously evolving the embedded software
in short cycles of 2-4 weeks, as seen in Figure 1. Second, the design decisions are
based on customers and customer usage data throughout the entire development
process. Third, the goal of the development process is to test as many innovations
as possible with customers to enhance customer satisfaction and, consequently,
revenue growth. Last, it allows for software updates to the customer during the
entire life-span of the product thereby counteracting declining customer value
as the products becomes older.

4.2 Business Model Implications

One of the main trends affecting several embedded systems industries is the tran-
sition from products to services. Whereas companies such as telecom equipment
manufacturers, automotive companies as well as others earlier were selling prod-
ucts that were static after leaving the factory, more and more customers are re-
questing the product to be offered as a service. This means that the company re-
mains the owner of the product and offers the use of the product to its customers.
As the switching cost for customers typically is much lower and the company is
interested in minimizing total cost of ownership, it is important to exploit the post-
deployment evolution of the software in the embedded system. This allows for con-
stantly offering (and hopefully monetizing) new functionality as well as maximiz-
ing the useful life of products in the field through new software.

The capability significantly broadens the set of business models available to
an organization. In addition to traditional products sales, pure service contracts,
hybrid contracts combining product acquisition with service contracts, as well
as usage-based pricing become feasible and all of these are exploited by different
companies in the embedded systems industry.

4.3 Architecture Implications

The embedded devices are only one part of the innovation experiment system, the
other two being the development environment and the experiment infrastructure,
as seen in Figure 2.

The experiment infrastructure allows developers to deploy new software and
collect data how it behaves in a real-world settings being used by actual users.
The infrastructure support deployment of software experiments and collection of
data over-the-air on a scale comparable to the entire customer base, for an auto-
motive developer this means devices in the order of 105. To lessen the burden on
the development teams on experimental design with automated randomization
and factorial designs [7], it is supported by the infrastructure, sufficient to draw
statistical conclusions from the experimental scenarios.

The architecture on the embedded device must support composability of the
applications to be experimented upon. It must be easy to add or exchange appli-
cations when running new experiments with minimal impact on the rest of the

26 J. Bosch and U. Eklund

Fig. 2. The infrastructure enabling the innovation experiment system

embedded software. This goes against the current trend for cars which tends to
integrate more and more functions [3]. The applications included in an experi-
ment must be possible to activate independently of each other, and the product
behavior must not depend on the order in which experiments are carried out.

In order to remove the burdensome control and synchronization of develop-
ment teams, and allow independent updates of software experiments, there are
three dimensions where decoupling between development parties/teams must
take place, and which should be supported by the platform and infrastructure:

1. Decoupling between applications, this would otherwise require all experi-
ments to be synchronized and make future feature growth impossible at
some point.

2. Decoupling in time, i.e. all software must not be integrated with the product
at the time of manufacturing.

3. Decoupling of applications from the underlying hardware, both from choice
of e.g. CPUs and by using suitable sensor/actuator abstractions.

The simplest architecture for the embedded device involved in an IES is seen in
Figure 3. This architecture is suitable when the memory and processing footprint
of the experimental software needs to be kept to a minimum, or when it is
desirable to keep the on-board software as simple as possible, at expense of
having a more complicated infrastructure.

Eternal Embedded Software: Towards Innovation Experiment Systems 27

Fig. 3. The architecture for running a thin experiment client on an embedded device
with scarce resources or when ease of implementation is desired

The software part under experimentation is usually a small part of embedded
software, and all other software parts are kept invariant. If multiple experiments
are to be performed in parallel a suitable experiment design has to be used in
determining the number of different configurations of the deployed software and
how many variants needs to be deployed.

Measurement is done on-board, but analysis is done off-board. This collects
more data and requires better connection with the infrastructure, but allows
exploration of unforeseen behavior from users and allows for posing additional
questions after the application is deployed since more raw data is available.

This architecture can even be combined with a continuous connection: No
data is actually stored on the device, all measurement are uploaded as soon as
they are made. This may be the only solution if persistent memory is scarce.
When the device has no connection all measurements are lost.

Since the management of which experiments are run where and when is done
off-board to the devices, this architecture demands the infrastructure to keep
track of the individual devices and which software is downloaded to each of
them. If A/B testing is performed it is the infrastructure that keeps track of
which order to do the tests. If needed to revert to a non-experimental version it
must be done by re-deploying a previous unit of software. If the infrastructure
does not permit the user to do this it can be detrimental to the user experience.

Many embedded domains have stringent dependability requirements. More
specifically this means the architecture of the embedded device must satisfy
real-time requirements for the execution of individual applications, integrity re-
quirements, high availability, and mechanisms to eliminate undesired feature
interaction if several applications interact with the same actuators. If the exper-
iment should run out-of bounds of what is considered safe it must immediately
be disabled and a fallback, safe, version of the software application runs instead.

28 J. Bosch and U. Eklund

The safety mechanisms should probably be developed and run independently of
the experiment software; otherwise it would inherit the necessary safety integrity
level causing unnecessary development effort.

5 Case Study

The case implementing an architecture for an IES was a development project
of a prototype to establish a proof-of-concept for some radically different devel-
opment strategies compared to current software development in the automotive
industry. The system was an infotainment system based on an open platform,
Android.

The project was executed in an industrial setting, but the resulting embedded
system was not intended to go into mass production and be sold to customers.
The primary goal of the project was to establish whether it was possible to do
feature development with extremely short lead-times from decision to implemen-
tation compared to present industrial projects, from a nominal lead-time of 1-3
years to 4-12 weeks. The short lead-times were accomplished by a small devel-
opment team using Scrum from a consultancy firm with automotive software
experience, which had a supplier relationship to Volvo car Corporation as prod-
uct owner. Working software was continuously validated in “real” environments,
i.e. the infotainment system was installed in both a driving simulator and real
test cars and users evaluated the system during the project.

5.1 Experimentation

A user story in the first sprint covered measurement / logging how the user uses
the system with the purpose to provide input to the product backlog and future
sprints, in terms of tuning of current features and new ideas. In a subsequent
sprint an A/B experiment was defined evaluating two layouts of the start screen
of the infotainment system, implemented as two different launchers in Android.
The system was mounted in a vehicle and two set of test drivers were requested to
perform some common task with the intent to measure which launcher “worked
best”.

Even though the test sample was too small to draw any conclusions, 7 drivers
in total, the test drives showed that the on-board innovation experiment system
worked as intended and collected the required data, which was then analyzed
off-board.

5.2 Architecture

The system implemented the experiment architecture with a logger from Sec-
tion 4.3. Architecture for more advanced experiments in future generations of
the systems is in the design phase, but is not yet implemented. The system used
a logger in the same layer as the observed application, in this case launcher of
the android system, seen in Figure 4. The data from the logger was stored in a

Eternal Embedded Software: Towards Innovation Experiment Systems 29

text-file with a batch upload of the data pulled by the developers. The logger
kept track of the user’s actions by storing different strings in the text-file, de-
scribing the actions that the user has performed, such as adding widgets to the
workspace or starting an application. The logger was initiated from within the
Android launcher by creating the logger variable and call the constructor of the
generic logger-class developed and provided in the platform.

Fig. 4. The launcher, which was deployed in two versions, and the logger were both
implemented as Android applications, which minimize changes to the platform and
utilizes how easy it is to update Android applications

6 Conclusion

Since its first introduction in the middle of the 20th century, software has evolved
from a handy configuration mechanism for electronic systems to the core of virtu-
ally any modern system supporting individuals, companies and entire societies.
This has causes a significant expansion of the lifespan of software systems to
the point that it is measured in decades rather than years. This trend is start-
ing to become a key challenge for embedded software as well. In the context
of connected embedded systems, this results in two main categories of “eternal”
embedded software, i.e. infrastructure software and mass-produced embedded
systems.

Examples of embedded infrastructure software include traffic lights, railway
signalling, public transport automated ticket systems etc. Systems previously
“unconnected” are becomening more and more software dependent, such as car-
to-car and car-to-infrastructure communication, which increses this category of
software ssystems. The investments necessary in infrastructure software makes
deployment of new systesm a rare occasion.

Mass-produced embedded systems are usually built on a software platform
that outlives the hardware platform, e.g. the microprocessor the software runs on.
The software platform evolves beyond its initial purpose, and reuse of software is
common between product generations. Cars are a typical example of this, where

30 J. Bosch and U. Eklund

a new car model may reuse software from previous generation, and where the
manufacturing life-cycle of a car model, typically seven years, is usually longer
than the production of a single micro-controller.

The long life-cycle of these kind of systems demand that they evolve in order
to prvide continuous value to the customer, especially if the competition drives
an increasing pace of change. The typicla approach to this was to have period
releases, e.g. yalry modle changes, but connected embedded systems allow con-
tinuous testing of new, innovative functionality to be deployed. This allows for
significant improvements in the rate of innovation and the ability to systems
to adjust to their continuously evolving environment. We refer to this trend as
innovation experiment systems. In practice, this offers product producers the
ability to conduct innovation experiments with the deployed systems.

The contribution of the paper is that it discussed the concept of innovation
experiment systems in the context of long-lived embedded systems. In addition,
it explored the architectural implications as the ability to continuously evolve
and conduct experiences in the deployed product context in a safe and controlled
manner must be supported by the architecture of the embedded systems. Finally,
it illustrates these concepts using a case study concerning an infotainment system
in the automotive industry.

Not all embedded systems are suitable for innovation experiment systems, we
can identify at least three categories of systems where an IES may be of limited
use. The first category are systems which have long lead-times due to heavy veri-
fication & validation, such as safety-critical systems and other systems requiring
certification before deployment, e.g. nuclear power plants, medical devices etc.
Second are embedded domains where the rate of innovation is secondary to
other concerns, i.e. very mature domains, from a business or technical perspec-
tive.. Third, embedded domains where the product is viewed as a product, i.e.
an item which can be bought and owned. The customer is less concerned with
the services the product can supply.

The trend towards “eternal” embedded software is strong and is starting to af-
fect many aspects of traditional product development in the industry. Our notion
of innovation experiment systems provides a natural mechanism that allows an
embedded system, its architecture and its underlying platform to continuously
evolve in response to changes in the user requirements and system context. It
uses a rapid feedback loop to evaluate the benefits of small variations to users
of the product with the intent of continuously improving the system.

6.1 Future Work

In future work, we intend to significantly expand the number of examples in
which we study the application of innovation experiment systems to real indus-
trial contexts, to further develop the conceptual framework and to report on our
findings. Further validation of IES for software in connected embedded systems
would focus on: Investigations of further technical challenges of the embedded
platform, beyond what was briefly described in the case in Section 5. Increase the
number of involved devices to identify the challenges involved in large scale IES.

Eternal Embedded Software: Towards Innovation Experiment Systems 31

Studying the implications for development teams involved in short cycle develop-
ment and deployment. And finally, investigate the business implications of IES in
various embedded domains. These would probably require other methodological
approaches besides case studies.

Since the management of which experiments are run where and when is done
off-board to the devices, the infrastructure needs to keep track of the individual
devices and which software units are downloaded to each of them. This could
pose security and specifically privacy issues, which could be an obstacle in wide-
spread acceptance among users, and is thus also some thing that needs to be
investigated further. Future work on IES need to address these privacy issues,
some possible solutions could be: Adapting present practices, e.g. a modern ve-
hicle has it’s software configuration stored in an in an off-device database [6].
Tracking software configurations of connected devices as part of the business
model, e.g. as in Apple App Store or Google Play (formerly Android Market).
A third option could be getting consent through an opt-in scheme, common in
many desktop programs collecting anonymous data. In all of these care must be
taken in sufficiently anonymize usage data from the device, and person, identi-
fication.

Acknowledgments. The case was financially supported by the Swedish Agency
for Innovation Systems (VINNOVA), EIS by Semcon and Volvo Car Corporation
within the partnership for Strategic Vehicle Research and Innovation (FFI).

References

1. Bosch, J.: Building Products as Innovation Experiment Systems. In: Cusumano,
M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39.
Springer, Heidelberg (2012)

2. Broy, M.: Challenges in automotive software engineering. In: Proceedings of the In-
ternational Conference on Software Engineering, pp. 33–42. ACM, Shanghai (2006),
http://portal.acm.org/citation.cfm?id=1134285.1134292

3. Di Natale, M., Sangiovanni-Vincentelli, A.L.: Moving from federated to integrated
architectures in automotive: The role of standards, methods and tools. Proceedings
of the IEEE 98(4), 603–620 (2010),
http://dx.doi.org/10.1109/JPROC.2009.2039550

4. Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. Computer 42(4),
42–52 (2009), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
5054871&isnumber=5054856

5. Koslowski, T.: Your connected vehicle is arriving. Technology Review (January
2012), http://www.technologyreview.com/business/39407/

6. Melin, K.: Volvo s80: Electrical system of the future. Volvo Technology Report 1,
3–7 (1998), http://www.artes.uu.se/mobility/industri/volvo04/elsystem.pdf

7. Montgomery, D.C.: Design and Analysis of Experiments, 3rd edn. Wiley (1991)
8. Reichheld, F.F.: The one number you need to grow. Harvard Business Review 81(12),

46–54 (2003), http://hbr.org/2003/12/the-one-number-you-need-to-grow/ar/1

http://portal.acm.org/citation.cfm?id=1134285.1134292
http://dx.doi.org/10.1109/JPROC.2009.2039550
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=5054871&isnumber=5054856
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=5054871\&isnumber=5054856
http://www.technologyreview.com/business/39407/
http://www.artes.uu.se/mobility/industri/volvo04/elsystem.pdf
http://hbr.org/2003/12/the-one-number-you-need-to-grow/ar/1

A Liskov Principle

for Delta-Oriented Programming�

Reiner Hähnle1 and Ina Schaefer2

1 Department of Computer Science
Technische Universität Darmstadt, 64289 Darmstadt

haehnle@cs.tu-darmstadt.de
2 Institute for Software Systems Engineering

Technical University of Braunschweig, D-38106 Braunschweig
i.schaefer@tu-braunschweig.de

Abstract. In formal verification of software product families one not
only analyses programs, but must act on the artifacts and components
which are reused to obtain software products. As the number of products
is exponential in the number of artifacts, it is crucial to perform verifi-
cation in a modular way. When code reuse is based on class inheritance
in OO programming, Liskov’s principle is a standard device to achieve
modular verification. Software families, however, employ other variability
modeling techniques than inheritance. Delta-oriented programming is an
approach to implement a family of programs where code reuse is achieved
via gradual transformation of a core program. We define a Liskov prin-
ciple for delta-oriented programming and show that it achieves modular
verification of software families developed in that paradigm.

1 Introduction

Diversity is prevalent in modern software systems in order to meet different
customer requirements and application contexts. Formal modeling and veri-
fication of software product families have attracted considerable interest re-
cently [23,2,8,4]. The challenge is to devise validation and verification methods
that work at the level of families, not merely at the level of a single product.
Given the combinatorial explosion in the number of possible products even for
small software families, efficient verification techniques for families are essential.
For verification techniques to scale, they have to be modular in the artifacts that
are reused to build the different variants of the software family.

In the area of object-oriented programming, Liskov’s principle of behavioral
subtyping [17] is an important means and guideline to achieve modular verifi-
cation. It is also an important theoretical tool to investigate theories of specifi-
cation and refinement. However, in the majority of approaches to family-based
software development the principles of reuse are not founded on class-based in-
heritance. Instead, more suitable program modularization techniques, such as

� Partly funded by the EU project FP7-231620 HATS (http://www.hats-project.eu)
and by the German Science Foundation (SCHA1635/2-1).

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 32–46, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Liskov Principle for Delta-Oriented Programming 33

aspect-oriented programming , feature-oriented programming , or delta-oriented
programming are applied. For this family of languages, there exist insular ap-
proaches to incremental verification [4,23], however, there is no notion corre-
sponding to Liskov’s principle for inheritance. As a consequence, there is no
approach that would allow modular functional verification for software families.

Here we analyse delta-oriented programming (DOP) of software families [19].
In DOP, a software family is developed from a designated core program and a set
of delta modules that alter the core program to realize other program variants.
In Sect. 2, we provide background on DOP. We specify functional program prop-
erties based on design-by-contract [18] by providing class invariants and method
contracts. The core program is specified like any standard program, while the
deltas can add or remove method contracts and class invariants to reflect the
changes in the code carried out by a delta. As detailed in Sect. 3, by applying the
deltas and their specifications to a core program and its specification, a program
variant (called product) and its corresponding specification is generated.

To support modular reasoning for software families implemented by DOP, we
develop a Liskov principle for delta modules in Sect. 4. This principle restricts the
changes that a delta module may make to the specification of the core program.
Based on this principle, in Sect. 5 we devise a modular proof principle that relies
on the approximation of called methods by their first introduced variant. If the
Liskov principle for DOP holds, we show that it suffices to analyze the core
program and each delta in isolation to establish the correctness of all products.
In Sect. 6, we discuss the consequences of DOP for reasoning about invariants. In
Sect. 7, we review related work. We conclude and discuss future work in Sect. 8.

2 Delta-Oriented Programming

The basis of this paper is the modeling language ABS (Abstract Behavioral Spec-
ification Language) [5] where program variability is represented by DOP. ABS
is a class-based, concurrent OO language without class inheritance. Interfaces
which are implemented by classes can be extended to provide a taxonomy similar
to class inheritance. We consider sequential ABS programs, because there is no
standard notion of contract or Liskov principle for concurrent programs.

2.1 Preliminaries

A family of ABS programs is represented by an ABS core program C and a
partially ordered set of deltas D, together called delta model. Deltas can add, re-
move, and modify classes from the core program. Modification of a class changes
the internal class structure by adding and removing fields and methods and by
changing method implementations. A method implementation can be completely
replaced or wrapped using the original call. The keyword original denotes a call
to the most recent version of a method with the same name (possibly already
wrapped by a previous original call). Calls to original are resolved when building
a concrete product. It is characteristic of DOP that the selection of features is

34 R. Hähnle and I. Schaefer

factored out of the executable code into the product building phase. This makes
the code base of a given product smaller and potentially more efficient.

An occurrence of original requires to know exactly which delta has been used
most recently in order to arrive at the current partial product. Therefore, we de-
fine products in such a way that the target of original is uniquely determined [5].

To avoid technical complications that are orthogonal to the problem of mod-
ular product family analysis treated here, we exclude recursive calls.

A partial order between deltas resolves conflicts if two deltas alter the same
entity of an ABS program. This ensures that for a given set of deltas a unique
ABS program variant is always generated. Without loss of generality, we assume
that the partial order of the deltas is expressed as a total order on a partition [20]
denoted as [δ11 · · · δ1n1] < · · · < [δh1 · · · δhnh

]. We assume that all deltas in
one element

[
δj1 · · · δjnj

]
of the partition are compatible and that the partitions

are disjoint. A set of deltas is called compatible if no class added or removed
in one delta is added, removed or modified in another delta contained in the
same set, and for every class modified in more than one delta, the fields and
methods added, modified or removed are distinct. Thus, the order of application
of the deltas in the same partition element does not matter. The parts of the
partition, however, must be applied in the specified order to ensure that a unique
product is generated for a selected subset of deltas. We call h the height of the
delta model and max{n1, . . . , nh} its width. The number of possible products in
a delta model is bounded by (2w)h (the number of subsets that can be selected).

On an abstract level, variability is usually represented by features, that is,
user-visible product characteristics. A feature model [12] defines the set of valid
feature combinations: the products of the software family. To connect feature
models and program variability specified by the delta model, a product line spec-
ification is provided where an application condition over the features is attached
to each delta. These conditions can be Boolean constraints over the features and
specify for which feature configurations a delta can be applied.

A program for a particular feature configuration is generated by selecting the
subset of deltas with a valid application condition and applying them to the core
program in a linear order compatible to the partial order of the delta model. The
generation of a program variant from a core program C and a delta model D is
written as Cδ1 · · · δp where for all 1 ≤ i ≤ p, it holds that δi = δkl and δi+1 = δk′l′

such that δi �= δi+1 and k ≤ k′. We know that the number of applied deltas is
bounded by p ≤ h ∗ w. We use the following obvious notation to access classes
C, fields f, and methods m within (partial) products: Cδ1 · · · δn.C.m.f, etc.

It is possible that a sequence of delta applications Cδ1 · · · δn is not a prod-
uct, for example, when an accessed method or field was not declared before.
Since we want to reason only about well-defined products, this causes techni-
cal complications. One way to avoid them is to stipulate that all sequences of
deltas lead to type-safe products which can be enforced by adding suitably com-
posed intermediate deltas. As this would bloat delta models, we employ a more
natural restriction sufficient for our purposes: assume P = Cδ1 · · · δn is any prod-
uct and Pδn+1 · · · δn+k is a product with a minimal number of deltas obtained

A Liskov Principle for Delta-Oriented Programming 35

module Account;

interface IAccount { Unit deposit(Int x); }

class Account implements IAccount {

Int balance = 0 ;

Unit deposit(Int x) { balance = balance + x; }

}

delta DFee(Int fee) {

modifies class Account {

modifies Unit deposit(Int x) { if (x>=fee) original(x-fee); }

}

}

delta DOverdraft() {

modifies class Account{

adds Int limit;

modifies Unit deposit (Int x) { if (balance + x > limit) original(x); }

}

}

productline AccountPL {

features Basic, Overdraft, Fee;

delta DFee (Fee.amount) when Fee;

delta DOverdraft after DFee when Overdraft;

}

Fig. 1. A Bank Account Product Family in ABS [5]

from P (that is, the same product cannot be produced with less deltas); then
any method is introduced or modified at most once in δn+1, . . . , δn+k (removing
and re-introducing a method corresponds to modification). We call a delta model
with this property regular. In addition, we assume that without loss of generality
each delta occurring in a regular delta model is used in at least one product.

2.2 Running Example

We illustrate our ideas with a product family of bank accounts depicted in Fig. 1.
The core program contains a class Account implementing an interface IAccount.
The class Account contains a field balance for storing the balance of the account
and a method deposit to update the balance. The product family contains two
deltas. Delta DFeemodifies Account by introducing a transaction fee modeled by
a parameter that is instantiated when a concrete program variant is generated.
Delta DOverdraft adds a limit to the account restricting the possible overdraft.

The feature model for this product family contains the mandatory feature
Basic implemented by the Account class. There are optional features Fee (with
an integer parameter amount) and Overdraft. The product line declaration in
Fig. 1 provides the connection between features and deltas in the when clauses.

36 R. Hähnle and I. Schaefer

These state that the delta DFee realizes feature Fee and that delta DOverdraft

implements feature Overdraft. The after clause provides the application order
between the deltas, generally described by an ordered partition (as above). The
bank account product family gives rise to four program variants: one with only
the Basic features, one with Basic and Overdraft, one with Basic and Fee,
and one with all three features where each product containing Fee varies in the
concrete value of the fee that is instantiated when a specific product is generated.

3 Specifying Deltas

To reason about behavioral properties of program variants a specification tech-
nique for core programs and deltas must be provided that allows generating
program variants together with their specification.

3.1 Design by Contract

We use a specification discipline for both core programs and deltas that is derived
from design by contract [18] and closely modelled after the JML approach [15].

Definition 1. A program location is an expression referring to an updatable
heap location (variable, formal parameter, field access, array access). Signatures
include all locations of a target program. A contract for a method m consists of:

1. a first-order formula r called precondition or requires clause;
2. a first-order formula e called postcondition or ensures clause;
3. a set of program locations a (called assignable clause) that occur in m and

whose value can potentially be changed during execution.

We extend our notation for accessing class members to cover the constituents of
contracts: C.m.r is the requires clause of method m in class C, etc.

Let m(p) be a call of method m with parameters p. A total correctness program
formula in dynamic logic [3] has the form 〈m(p)〉Φ and means that whenever
m is called then it terminates and in the final state Φ holds where Φ is either
again a program formula or a first-order formula. One aspect of the semantics
of a method contract is expressed as a total correctness formula of the form
r → 〈m(p)〉e. (Partial correctness adds nothing to our discussion: we omit it for
brevity.) The second aspect of contract semantics is correctness of the assignable
clause. It says that m can change only the value of program locations in a. One can
encode this property with program formulas [11]. The specifics of the encoding
are of no interest: we assume there is a program formula A(a, m) expressing
correctness of the assignable clause. The following monotonicity condition holds:

a′ ⊆ a ∧ A(a, m) → A(a′, m) (1)

Definition 2. A method m of class C satisfies its contract if the following holds:

C.m.r → 〈m(p)〉C.m.e ∧ A(C.m.a, C.m) (2)

A Liskov Principle for Delta-Oriented Programming 37

class Account implements IAccount {

Int balance = 0;

@requires x > 0;

@ensures balance <= \old(balance) + x;

@assignable balance;

Unit deposit(Int x) { balance = balance + x }

}

Fig. 2. Specification of Core Bank Account

The presence of contracts makes formal verification of complex programs feasible,
because each method can be verified separately against its contract and called
methods can be approximated by their contracts. The assignable clause of a
method limits the program locations a method call can have side effects on.1

We allow first-order formulas i to be attached as invariants to classes. We
permit to write invariants directly in front of the element they relate to (e.g.,
a field declaration). However, as we consider all specifications to be globally
visible in this paper, these simply are part of the invariant of a class. Hence, we
assume that each class C has a unique invariant C.i. As usual, the semantics of
invariants requires to establish two properties: (i) after initialization of a class
its invariant holds and it does not invalidate the invariant of any other class,
and (ii) if an invariant holds just before the execution of a method, then it holds
again immediately after termination of that method. As a consequence of global
visibility of invariants and of public visibility of fields, the invariants of all classes
must be maintained by all methods. In the absence of modularity constructs,
this is the usual situation in specification of object-oriented programs.

Fig. 2 shows the specification of the core program of our example product
family. The method deposit is specified with a contract whose precondition in
the @requires clause says that the balance should be positive. The postcondition
in the @ensures clause expresses that the balance after the method call is at
most the balance before the method call (accessed by the JML \old keyword)
plus the value of the parameter x. As there is no explicitly specified invariant,
the class invariant of Account is simply true.

3.2 Specification Deltas

We want to denote in a structured manner those parts of contracts and invariants
that must be modified in order to reflect the changes embodied in a given delta.
The specification approach of [4] allows (i) to add and remove invariants as well
as (ii) to add and remove whole contracts in deltas. This is too coarse for our
purposes, so we make the following refinement:

1 We are aware that this basic technique is insufficient to achieve modular verifica-
tion. Advanced techniques for modular verification would obfuscate the fundamental
questions considered in this paper and can be superimposed later.

38 R. Hähnle and I. Schaefer

delta DFee(Int fee) {

modifies class Account {

adds @invariant fee >= 0;

modifies @ensures balance <= \old(balance) + max(x-fee,0) ;

modifies Unit deposit(Int x) { if (x>=fee) original(x-fee); }

} }

Fig. 3. Delta DFee with its Specification Delta

– in deltas, the addition, removal, and modification of contracts can be speci-
fied separately for requires clauses, ensures clauses, and assignable clauses;

– we permit the usage of the keyword original in clauses of contracts with the
obvious semantics provided that the contract to which original refers can be
uniquely determined;

– since the invariant of a (partial) product is always global and the implicit
conjunction of all invariants introduced in the core and in the constituent
deltas, the modification of invariants and the usage of original in invariants
does not make any sense. Hence, invariants can only be explicitly added or
removed in deltas.

A missing specification clause is equivalent to, for example, “@requires origi-
nal” (or to “@requires true” in the case of the first occurrence of a method).
Fig. 3 shows the modification to the specification caused by the delta DFee. The
contract of method deposit is changed by replacing the postcondition. The pre-
condition remains unchanged. Additionally, an invariant for the field fee is added
to the class Account which states that the value of fee should be non-negative.

4 Liskov’s Principle

Liskov’s principle of behavioral subtyping [17] is an important means to achieve
modularity for behavioral specification and verification. In this section, we recall
Liskov’s principle for standard class-based inheritance and transfer it to DOP.

4.1 Standard Object-Oriented Design with Code Inheritance

In standard object-oriented programming with code inheritance Liskov’s [17]
principle states the following:

1. The invariant of a subclass must imply the invariant of its superclasses.
2. The precondition of a method overridden in a subclass must be implied by

the precondition of the superclass method and its postcondition must imply
the postcondition of the superclass method.

3. When assignable clauses are present, the assignable locations in a subclass
must be a subset of the assignable locations in the superclass.

We distill the essence of the last two points into a relation on contracts:

A Liskov Principle for Delta-Oriented Programming 39

Definition 3. For two methods m, m′ let m.r, m.e, m.a, and m′.r′, m′.e′, m′.a′ be
different contracts (m = m′ allowed). The first contract is more general than the
second (or the second is more specific than the first) if the following holds:

(m.r → m′.r′) ∧ (m′.e′ → m.e) ∧ (m′.a′ ⊆ m.a) (3)

The next lemma is immediate by the definition of contract satisfaction (Def. 2),
propositional reasoning, monotonicity of postconditions in total correctness for-
mulas, and monotonicity of assignable clauses (1). It will be tacitly used in the
following to establish satisfaction of method contracts.

Lemma 1. If a method m′ satisfies its contract then its satisfies as well any
contract that is more general.

Consequently, if a specification follows Liskov’s principle, then behavioral subtyp-
ing is guaranteed provided that all methods satisfy their contract and maintain
the invariants. This means that an object can be replaced by any object with a
subtype without changing the behavior of the program.

4.2 Delta-Oriented Specification

We propose delta-oriented programming (DOP) [19] as the fundamental tech-
nique for code reuse, in contrast to inheritance. Therefore, it is necessary to
understand how Liskov’s principle can be ported to a DOP setting.

To cast Liskov principle for DOP we consider the code and specification el-
ements that can be changed by deltas: adding and removing methods together
with their contracts is uncritical, since our assumption on type-safety guarantees
that such a method has never been called before, respectively, will not be called
afterwards. It is sufficient to prove the contract of newly added methods, but
that of existing methods cannot be affected. If a newly added method should be
integrated into an existing program, modifications of existing methods have to
be specified in other applied deltas. This leaves modification of existing methods
and contracts as well as the removal and addition of invariants to look at.

To preserve the behavior of a method that is modified by a delta, it is sufficient
to follow the same principle as in behavioral subtyping, i.e, to make contracts
more specific (Def. 3). This is automatically the case, whenever the modified
contract of m has a requires clause of the form C.m.r.original ∨ r′, an ensures
clause of the form C.m.e.original ∧ e′, and for the assignable clause a of the
modified contract, a ⊆ C.m.a.original holds. The tricky issue is that references to
original, hence to method calls and contracts are only resolved when a product
is being built. In Sect. 5, we show that under certain restrictions one can verify
a delta model without having to look at all its exponentially many products.

Regarding removal and addition of invariants, certainly, we must exclude the
possibility to remove invariants, because this might invalidate the contracts of
arbitary methods added either in the core or in any delta. This would require
to reprove all contracts in all exponentially many products. A straightforward
counterpart of the first item in Liskov’s principle stated at the beginning of

40 R. Hähnle and I. Schaefer

Sect. 4.1 requires adding only invariants implied by previously existing ones. We
discuss essentially this situation in Sect. 6.1 below. This approach is restrictive;
adding new invariants and reproving them in a compositional manner is non-
trivial and discussed in Sect. 6.2.

5 Compositional Verification of Delta Models

The advantage of a Liskov principle for the specification of deltas is that one can
follow a compositional verification approach. This means one can ensure with
a polynomial number of proofs the behavioral correctness of an exponential
number of products. Clearly, this is a key property for feasibility of product
family verification, because even small product families have a vast number of
products. In this section, we focus on the verification of method contracts and
cover the verification of invariants in Sect. 6. We need to ensure that all methods
in any product satisfy their contract. We do this in two steps:

Verification of the Core. This is standard and means simply to prove that
all methods m in a core program C satisfy their contract (Def. 2).

Verification of the Deltas. For each method m added or modified in a delta δ,
we must establish its contract. We allow the usage of the keyword original
in contracts only in the syntactically restricted form mentioned in Sect. 4.2.
For each method m, we must show the proof obligation

δ.m.r → 〈m(p)〉δ.m.e ∧ A(δ.m.a, δ.m) (4)

Additionally, we need to ensure that the contract of each δ.m is more specific
than the contracts provided and verified for m in all previous deltas used for any
product. As the actual set of applied deltas cannot be known before product
generation, to get a compositional verification method avoiding the generation
of exponentially many products, we have to assume “the worst”.

For the verification of (4), let us first analyse the methods called inside δ.m:
if a method n is called2 in δ.m and does not occur in δ itself, then we use the
method contract associated with the first introduction of n in the given delta
model (i.e., in a δij with minimal index i). As subsequent contracts of n can only
get more specific according to our Liskov principle, this ensures that the call is
valid for all possible versions of n. Likewise, we use the “largest” assignable set
of locations. If n occurs in δ, we simply use the contract of δ.n.

Definition 4. If all methods occurring in a delta δ satisfy their contract, where
the contracts of called methods have been selected as outlined above, we say that
the δ is verified.

Next, we ensure that the contract of δ.m is more specific than all previous con-
tracts of m. As each method may occur at most once in each part of the partition

2 In case the call is done via the keyword original this simply means n = m where m is
not the one in δ.

A Liskov Principle for Delta-Oriented Programming 41

D (by compatibility of the deltas within that part), it suffices to compare the
contract of δ.m with the contract of the most recent (Def. 5) occurrence of m
from δ.m, say δ′.m. (If δ.m was the first occurrence in D there is nothing to do.)
It remains to show that the contract of δ′.m is more general than that of δ.m.

Definition 5. Assume that a method m occurs at least twice in a delta model
with core C and partition D = ([δ11 · · · δ1n1] , . . . , [δh1 · · · δhnh

]), and one of the
occurrences is in δjk. For convenience, we refer to the core as δ00. Then an
occurrence of m in δil is called most recent from δjk.m if there is no occurrence
of m in any δi′r with i < i′ < j.

Together Defs. 4, 5 provide a static (i.e., at the level of the product family)
approximation of the deltas used in any possible concrete product. A straight-
forward induction over the height of a delta model lifts the property that a
method contract for a method m is more specific than the contract of the most
recent occurrence from m to arbitrary previous occurrences of the method m:

Lemma 2. Let C and D be a delta model as in Def. 5. Assume that for the core
C and for any δ occurring in D the following holds: the contract of any method
m in δ is more specific than the contract of the most recent occurrence from δ.m.

Then for any two method contracts of a method m occurring in any δik and
δjk′ such that i ≤ j we have that the contract of m in δik is more general than
its contract in δjk′ .

We formalize the considerations above in the following theorem:

Theorem 1. Given a regular delta model consisting of a core C and a partition
of deltas D = ([δ11 · · · δ1n1] , . . . , [δh1 · · · δhnh

]). Assume the following holds:

1. C satisfies its contract, i.e., equation (2) holds for all its methods.
2. For all δ occurring in D:

(a) δ is verified.
(b) The contract of each method m added or modified in δ either is the first

occurrence of m in the delta model or it must be more specific than the
contract of the most recent method in D from δ.m.

Then every product obtained from the given delta model satisfies its specification,
i.e., each of its methods satisfies its contract.

Example. In the bank account product family, the contract of method deposit

that is modified by the delta DFee in Fig. 3 satisfies condition (2b). The contract
of method deposit in delta DFee is more specific than the contract of method
deposit in the class Account given in Fig. 2. Delta DOverdraft does not change
any specification and fulfills condition (2b) trivially. During the verification of
DFee.deposit the contract of Account.deposit needs to be used. One can ap-
ply Thm. 1 to the bank account example and infer that all four products satisfy
their respective method contracts.

42 R. Hähnle and I. Schaefer

The significance of Thm. 1 is that the number of proof tasks is polynomial in
h, w, and the number M of different methods occurring in D: in the core and
in each of at most h ∗ w deltas we need at most three proofs for each modified
method which is in O(h ∗ w ∗M). This is a clear advantage over providing a
separate proof for each product, resulting in O(2(h∗w) ∗M) many proofs.

Proof (Thm. 1). By induction on the length p of delta sequences where we con-
sider only such sequences that result in a product. The induction hypothesis says:
each delta sequence of length p results in a product that satisfies its specification.

The base for p = 0 amounts to show the claim for the core C of the delta
model which is taken care of by the first assumption.

Now assume that we have a product P = Cδ1 · · · δp that satisfies its specifi-
cation and P ′ = Pδp+1 · · · δp+k is any product with a minimal number of deltas
obtained from it. We show that

1. any method m occurring in P ′, but not in P , satisfies its contract;
2. that the contracts of all other methods called in P ′ still hold.

Regarding the first item, by regularity of the delta model we can assume that
there is exactly one δ in δp+1, . . . , δp+k where m is introduced or modified. By
assumption (2a), from equation (4) we know that all methods in δ satisfy their
contract where the method n called in m can be approximated by the “first”,
i.e., most general existing contract. In P ′, these calls to n are replaced by some
implementation introduced or modified in a delta.

The actual contract of n was either introduced in δ itself or in a different
δp+1, . . . , δp+k or somewhere in P . In the first case, since δ is verified, n was
proven against its actual contract. If n came from one of the “new” deltas,
by assumption (2b) the contract of n is more specific than the contract of the
most recent occurrence in the delta model. By Lemma 2, the contract of that
occurrence is more specific than the first occurrence of n in the delta model which
was used for approximating the contract of n during verification of m. This means
that the previous proof supplied by the induction hypothesis still applies.

Finally, assume the contract of n was introduced in P . By Lemma 2, we
know that this contract must be either identical to or more specific than the
first occurrence of n in the delta model. Since the latter contract was used in
verification of m the result holds.

For proving the second item above, assume m is any method that is defined
and verified in a δ ∈ P . The case which we need to check is that m calls a method
n whose specification was overridden in δp+1, . . . , δp+k. From Lemma 2 we know
that the contract of the later occurrence is more specific than the contract of
m used in P . Therefore, the new contract is still applicable. Together with the
assumption that all δp+1, . . . , δp+k are verified, this closes the proof. �

6 Verification of Invariants

Recall that we assume that all invariants are global: each method must satisfy
all invariants. Therefore, one can assume there is exactly one invariant for each

A Liskov Principle for Delta-Oriented Programming 43

product. In more fine-grained approaches, one can limit the visibility of invariants
by making them private and attaching them to specific class features or restrict
their accessibility with type systems, however, this is an orthogonal issue.

Invariants can be viewed as a special case of method contracts where the re-
quires and ensures clause are identical. But this is exactly what makes it difficult
to fit invariants into the above framework where contracts become more specific
after the application of deltas causing requires and ensures clauses to diverge.
For the reason stated in Sect. 4.2 we exclude removal of invariants.

6.1 Core Invariants

The first take on invariants is a direct rendering of the first item in Liskov’s
principle. As explained in Sect. 4.2, this means only invariants implied by existing
ones are added. This amounts to permit the introduction of invariants only in
the core. All subsequent deltas use the same invariant. Proof obligations of the
kind (2) and (4) are extended with the core invariant C.i:

(m.r ∧ C.i) → 〈m(p)〉m.e ∧ C.i → 〈m(p)〉C.i (5)

We continue to use the specification and verification discipline of Sect. 5, but
employ proof obligations of the form (5). The number of proofs stays the same,
even though some may be harder to establish. The proof of Thm. 1 is done such
that at the first occurrence of a method declaration its contract and the invariant
is established: the invariant is available in subsequent verification steps.

Even though it may seem rather restrictive to use only core invariants, there
are a number of important advantages:

1. The number and complexity of proof tasks stays manageable.
2. Thm. 1 providing a compositional verification approach stays valid.
3. If an invariant i′ in a delta was added, then this invariant must be shown

to hold even for the methods not changed in that delta. Hence, either i′ has
a signature disjoint from the core or it would have been possible to add and
show i′ already in the core. We discuss the first possibility in Sect. 6.2.

6.2 Family Invariants

As soon as invariants can change during delta application, it is no longer possible
to reason precisely over product invariants on the level of the delta model. The
reason is that invariants behave non-monotonically: if equation (5) holds for i
it may not hold anymore for an i′ that is logically weaker or stronger than i.

It might seem harmless to make existing invariants stronger during delta ap-
plication, that is, a δ in a delta model may introduce an invariant δ.i which
is conjoined to the existing invariant. This, however, requires to prove that all
methods still satisfy the strengthened invariant. The problem is that at the level
of the delta model we do not know which concrete deltas are going to be used to
build a product. The best we can do is to approximate the required invariant for

44 R. Hähnle and I. Schaefer

each delta δ by collecting the invariants of all previous deltas. A safe approxima-
tion is to establish the invariant I≤δ =

∧
δ′≤δ δ

′.i for each existing method (not
only for the methods mentioned in the delta) as part of the verification of each
δ in assumption (2a) of Thm. 1. This is more expensive than the core invariant
approach outlined in Sect. 6.1, but there is still only a polynomial number of
proofs in terms of the number of deltas and method calls.

Invariants of a δ whose signature is disjoint relative to previous deltas (such as
invariants about newly introduced fields) trivially satisfy I≤δ and can be added
without penalty in terms of proof effort.

The main drawback of the approach just sketched is not merely the increased
number of proofs, but that the invariant that can be shown on the family level
might be much stronger than necessary for a specific product.

7 Related Work

Behavioral subtyping is often criticized as too restrictive to be practical [21].
This is addressed by a number of relaxations, such as incremental reasoning [22]
or lazy behavioral subtyping [10]. None is directly applicable to DOP.

Product line analysis can be classified in three categories [23]: (i) product-
based analysis considers each product variant separately. Product-based analyses
can use any standard techniques for single products, but are in general infeasible
for product lines due to the exponential number of products. (ii) family-based
analysis checks the complete code base of the product line in a single run to
obtain a result about all possible variants. Family-based product line analyses
are currently used for type checking [1,7] and model checking [6,14] of product
lines. They rely on a monolithic model of the product line which hardly scales
to large and complex product lines. (iii) feature-based analysis considers the
building blocks of the different product variants (deltas in DOP) in isolation to
derive results on all variants. Feature-based analyses are used for compositional
type checking [20] and compositional model checking of product lines [16]. The
compositional verification approach presented here can be classified as feature-
based, since the core and deltas are verified in isolation.

A product-based approach for deductive verification of behavioral properties
is [4]. Assuming one product variant has been verified, the structure of a delta to
generate a new program variant is analyzed to obtain the proof obligations that
remain valid for the new variant and need not be reproven. This does not limit the
variability between two product variants, but requires to consider exponentially
many products. As there is no systematic link between two variants (like the
Liskov principle employed here), it is hard to optimize proof reuse.

In [23], a combination of feature-based and product-based verification for be-
havioral properties is proposed where for each feature module a partial Coq proof
script is generated. These scripts are composed and checked for single products.
In [2], feature-based proof techniques for type system soundness of language
extensions are proposed where proofs for single language features are incremen-
tally constructed. In [8] Coq proofs for the soundness of a small compiler are

A Liskov Principle for Delta-Oriented Programming 45

composed feature-wise by modeling the concept of variation points. Composition
scripts must be built by hand and it is not clear whether the technique is applica-
ble to functional verification in general. Our approach relies on a compositional
proof principle and is modular for behavioral program properties.

Besides DOP, other program modularization techniques have been applied to
compositionally implement software variability, for instance, feature modules,
aspects, or traits. Apart from initial work regarding modular deductive verifica-
tion for aspects [13] and traits [9], no compositional verification approach based
on an adaptation of a Liskov principle exists.

8 Discussion and Future Work

This is a theoretical and conceptual paper which constitutes the first systematic
incremental specification and verification framework for diverse systems imple-
mented in DOP. DOP is amenable to formal analysis, because its granularity is
at the method-level which coincides with the best-understood contract-based ap-
proaches (JML, Spec#). Another reason is that the result of a delta application
is a standard program which has an undisputed correctness semantics.

The main contribution of this paper is to provide a Liskov principle for DOP
which gives rise to an efficient, compositional verification approach for soft-
ware families. As in Liskov’s principle for class inheritance, some restrictions
are needed to make this work: (i) delta application leads to type-safe products
(Sect. 2.1), (ii) the contracts of subsequent deltas must become more specific
(Sect. 4.2, item (2b) of Thm. 1), (iii) invariants cannot be removed, but only
added (Sect. 4.2, Sect. 6.2), (iv) methods called in deltas use the contract of the
first implementation of that method (Def. 4). Restriction (i) is desirable for DOP
independently of verification [20]; (ii)–(iii) originate from Liskov’s principle for
OO programs and restrict the product lines that can be handled as described:
future work will consist in devising mitigating strategies similar as in the OO
world [10]; (iv) is specific to our approach and to DOP.

References

1. Apel, S., Kästner, C., Grösslinger, A., Lengauer, C.: Type safety for feature-
oriented product lines. Automated Software Engineering 17(3), 251–300 (2010)

2. Batory, D.S., Börger, E.: Modularizing theorems for software product lines: The
Jbook case study. J. UCS 14(12), 2059–2082 (2008)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS, vol. 4334. Springer (2007)

4. Bruns, D., Klebanov, V., Schaefer, I.: Verification of Software Product Lines with
Delta-Oriented Slicing. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS,
vol. 6528, pp. 61–75. Springer, Heidelberg (2011)

5. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J., Schlatte,
R., Wong, P.Y.H.: Modeling Spatial and Temporal Variability with the HATS Ab-
stract BehavioralModeling Language. In: Bernardo,M., Issarny,V. (eds.) SFM2011.
LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011)

46 R. Hähnle and I. Schaefer

6. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model check-
ing lots of systems: Efficient verification of temporal properties in software product
lines. In: ICSE. IEEE (2010)

7. Delaware, B., Cook, W., Batory, D.: A Machine-Checked Model of Safe Composi-
tion. In: FOAL, pp. 31–35. ACM (2009)

8. Delaware, B., Cook, W., Batory, D.: Theorem Proving for Product Lines. In:
OOPSLA 2011 (to appear, 2011)

9. Dovland, J., Damiani, F., Johnsen, E.B., Schaefer, I.: Verifying Traits: A Proof
System for Fine-Grained Reuse. In: Workshop on Formal Techniques for Java-like
Programs, FTfJP 2011 (2011)

10. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Lazy behavioral subtyping. Jour-
nal of Logic and Algebraic Programming 79(7), 578–607 (2010)

11. Engel, C., Roth, A., Schmitt, P.H., Weiß, B.: Verification of modifies clauses in
dynamic logic with non-rigid functions. Technical Report 2009-9, Department of
Computer Science, University of Karlsruhe (2009)

12. Kang, K., Lee, J., Donohoe, P.: Feature-Oriented Project Line Engineering. IEEE
Software 19(4) (2002)

13. Kiczales, G., Mezini, M.: Aspect-oriented programming and modular reasoning. In:
ICSE, pp. 49–58. ACM (2005)

14. Lauenroth, K., Pohl, K., Toehning, S.: Model checking of domain artifacts in prod-
uct line engineering. In: ASE, pp. 269–280 (2009)

15. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M.: JML Reference Manual (September 2009)

16. Li, H., Krishnamurthi, S., Fisler, K.: Modular Verification of Open Features Using
Three-Valued Model Checking. Autom. Softw. Eng. 12(3) (2005)

17. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

18. Meyer, B.: Applying design by contract. IEEE Computer 25(10), 40–51 (1992)
19. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-Oriented

Programming of Software Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010.
LNCS, vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

20. Schaefer, I., Bettini, L., Damiani, F.: Compositional type-checking for delta-
oriented programming. In: 10th International Conference on Aspect-Oriented Soft-
ware Development, AOSD 2011, pp. 43–56. ACM (2011)

21. Soundarajan, N., Fridella, S.: Inheritance: From code reuse to reasoning reuse. In:
Proc. 5th Intl Conf. on Software Reuse, pp. 206–215. IEEE Comp. Soc. (1998)

22. Soundarajan, N., Fridella, S.: Incremental Reasoning for Object Oriented Systems.
In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal
Methods. LNCS, vol. 2635, pp. 302–333. Springer, Heidelberg (2004)

23. Thüm, T., Schaefer, I., Kuhlemann, M., Apel, S.: Proof composition for deductive
verification of software product lines. In: Proc. Int’l Workshop Variability-Intensive
Systems Testing, Validation and Verification, pp. 270–277. IEEE CS (2011)

Scientific Workflows: Eternal Components,

Changing Interfaces, Varying Compositions

Anna-Lena Lamprecht and Tiziana Margaria

Chair for Service and Software Engineering
Potsdam University, Germany

{lamprecht,margaria}@cs.uni-potsdam.de

Abstract. We describe how scientific application domains are charac-
terized by the long-term availability of the basic computational com-
ponents, and how software systems for managing the actual scientific
workflows must deal with changing service interfaces and varying service
compositions. In this light, we explain how rigorous technical and se-
mantic abstraction, which is key to dealing with huge and heterogeneous
application domains in an ”extreme model driven design” framework like
the jABC, supports the management of workflow evolution. We illustrate
the different aspects by means of examples and experiences from the ap-
plication of the framework in different scientific application domains.

1 Introduction

Evolution of software systems and long-lived applications are currently inten-
sively researched topics under many points of view [1, 2]. In the new field of
e-science, workflow management for scientific applications is a key application
domain that combines artifacts with very different timelines and life cycles. The
basic algorithmic components that perform the individual analysis steps are in
fact very long-lived: Many of the popular algorithms, tools, and databases have
been available for over a decade and remained mainly unchanged. Their concrete
use and composition, however, varies considerably from case to case, according
to the current scientific analysis process and the involved data. In fact, progress
and novelty in “in silico” experimentation, where experiments and analyses are
carried out in computers on the basis of preexisting data and knowledge, thus
largely happens “ex aliquo”, and not “ex nihilo”, i.e. from scratch. Therefore
we need to distinguish two fields of progress and evolution: in the application
domain, that originates from fast-paced evolution of analysis and simulation pro-
cesses that use preexisting resources, and the progress and evolution of the IT
ingredients, that makes the first one possible and is itself much less frequent.
Process evolution occurs in the frequent case that an existing analysis process
has to be adapted to new experimental requirements or data. Standard software
evolution on the contrary occurs mainly when existing algorithms, tools and
databases are equipped with new interfaces, which happens relatively seldom.
The overall setting therefore yields a fairly stable basis of software artifacts,

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 47–63, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

48 A.-L. Lamprecht and T. Margaria

that are combined and recombined at fast pace to try out new analyses in an
orchestration or coordination-oriented composition.

In this paper we describe how an extreme model driven approach [3, 4] sup-
ports the agile management of process/workflow evolution in the light of such
really huge and truly heterogeneous application domains. The core concept is
that here different levels of abstraction make a completely symbolic treatment
of the involved entities possible. A combination of these abstractions then allows
for handling application-level processes and their evolution at a semantic level,
within the application domain.

The past decade has seen a lot of research on scientific workflow management
in general (see, e.g, [5, 6]) and on the use of semantics-based methods for sup-
porting service composition in particular (see, e.g., [7–10]). We are not aware,
however, of any work that looks at the evolution of scientific workflows from the
broad service-engineering perspective that we describe in this paper, which is
based on the jABC framework [11, 12]. We draw here on the experience of sev-
eral years of usage for the management of scientific workflows both in teaching
and in research projects (cf., e.g., [13–18]),

The paper is structured as follows. Section 2 introduces the abstraction con-
cepts needed to enable and support the fast-paced workflow evolution needed for
”in-silico” e-science; Section 3 illustrates the specific jABC-based approach by re-
porting some exemplary experiences from the bioinformatics and geo-visualization
application domains, and Section 4 concludes the paper.

2 Abstraction for Fast-Paced Workflow Evolution

The conceptual framework of eXtreme Model-Driven Design (XMDD) [3, 4,
19] aims at an agile yet service-oriented modeling, design, and development of
process-style applications within a domain-specific setting. E-science is such a
domain, with specific incarnations e.g. for bioinformatics, or geo-visualisation.

The central assets are here a collection of services (implemented by means
of software artifacts) and a domain knowledge representation (implemented via
taxonomies/ontologies) that can be easily used by domain experts and that
are supported by a sophisticated framework that helps the user in the selec-
tion, composition, validation, and execution of the resulting workflows. While
it is possible to achieve parts of this goal by means of traditional approaches,
that use heterogeneous technologies to cover different aspects and subproblems1,
the jABC [11, 12] is a concrete framework that supports high automation and
consistency in working with processes and workflows by offering a number of
special-purpose plugins in an extreme model-driven setting, where the user only
works at the model level and the necessary compositions and transformations
are largely taken care of by the framework itself via specific plugins.

1 For example, using the standard technologies from the different sub-communities
of software engineering, one could have components modeled in UML, wrapped as
services in a WSDL, with orchestrations expresses in BPEL or BPMN or Petri nets
and domain knowledge expressed in WSMO or OWL ontologies.

Scientific Workflows: Eternal Components, Changing Interfaces 49

Fig. 1. From the domain knowledge to the IT: Abstraction layers in the jABC frame-
work

In particular, the PROPHETS plugin [20] bundles functionality for semantic
annotations, model checking, and automatic synthesis of workflows according to
the Loose Programming paradigm of [21], which offers abstraction from the con-
crete workflow (see Sect. 3.4). The basis for the models in jABC are libraries of
semantically annotated, behavioral workflow components, called SIBs (Service
Independent Building Blocks). SIBs provide access to encapsulated units of func-
tionality, which can be freely combined into flowchart-like workflow structures
called Service Logic Graphs (SLGs) that are technically service orchestrations.
The concretization of SLGs towards running systems typically happens in a hi-
erarchical fashion via several refinement steps (cf. [22]).

The key to an agile dealing with software evolution is rigorous virtualiza-
tion/abstraction: striving for a completely symbolic treatment of the involved
entities allows one to handle application-level processes at a semantic level, as
illustrated in Figure 1. Concretely, given the usual service or component imple-
mentation customary in component-based design or in service-oriented architec-
tures, the jABC works with three principal layers of abstraction, which address
different challenges of software evolution:

1. The SIBs are the actual behavioral entities of the workflow building blocks
as defined from the application’s/user’s perspective. They tailor the single
workflow building blocks to the specific needs of the application/user. In
essence, a SIB defines an adequate interface for a workflow building block,
and connects it to the services that are provided by the SIB adapters. Thus,
if something in the SIB adapters changes, the corresponding SIB implemen-
tations can be adapted accordingly, but the workflow models themselves are
not affected. In the sense of [23], the concept of a SIB is that of a behavioral
metamodel : it presents all sorts of needed components in a uniform man-
ner to the user and makes them really work in a simple, easy-to-use and
composite fashion.

50 A.-L. Lamprecht and T. Margaria

2. The SIB adapters absorb the change management of evolving technologies
and evolving components by abstracting from the technical details of the
underlying platforms and service implementations, which are typically im-
plemented in heterogeneous technologies. Thus, if something in the service
implementation changes, the SIB adapters can be changed accordingly, but
the SIBs, as workflow building blocks, are themselves not affected: Workflows
use only the SIB-level information.

3. Semantic domain models on top of the SIB libraries drive the abstraction
even further, allowing in particular for the completely symbolic description
of the SIBs and their parameters in terms of the application’s/user’s domain
language. As shown in Fig. 1, the user’s composition of workflows happens
within the ”business domain” knowledge, that includes SIB selection and
composition, while the IT issues are taken care of within the lower lay-
ers [24, 25]. In particular, this organization facilitates “loose” programming
of workflows, where parts of the workflow model can be left underspecified,
and are only concretized upon request. Thus, if anything in the SIB library
changes, the semantic domain model can be independently adapted, and the
(loose) workflow models themselves are not affected.

In the following sections we describe these notions of technical and semantic ab-
straction in greater detail. Together, they lead to two separate levels in workflow
development: a story level, that takes place between the SIB and the semantic
knowledge layers (the upper two in Fig. 1), where one designs and communicates
the spirit of the analysis/experiment, and the actual executable level (the lower
two layers in Fig. 1), where a concretized version takes care of the coherence and
consistency of all details.

2.1 Handling Technical Abstraction: The SIBs

The SIBs in the jABC are services in the proper sense, encapsulating units of
functionality that are defined from the application’s/user’s perspective. Instead
of being architectural components, as most service component models like in
the standard SCA [26], they are units of behavior oriented to their use within
processes or workflows. As discussed for instance in [25], granularity decisions
are essential for the design of SIBs that are adequate for the envisaged applica-
tions. While standard services are remote software units that offer a collection
of behavior to their users, SIBs only have one behavior and are thus easier to
understand, manage, and compose. A single standard (web) service can thus
correspond to a collection of SIBs. This explains why they are easy to use for
domain experts, much easier than standard services.

Additionally, SIBs provide homogeneous service interfaces that truly abstract
from the technical details of the underlying implementation. Their provision-
ing involves integrating distributed services that are provided via heterogeneous
technologies (such as SOAP and REST web services, legacy tools, and specific
APIs) into homogeneous libraries of workflow building blocks.

Scientific Workflows: Eternal Components, Changing Interfaces 51

The SIB structure is depicted in the lower three layers of Figure 1:

– The actual SIB2 provides the service interface within the workflow environ-
ment. In addition to service documentation and other usability information,
it defines the service parameters to be configured by the calling applica-
tion/workflow.

– The SIB adapter handles the service call, using the information from the
SIB class that is relevant for its execution (esp. parameters).

– The service implementation defines the actual execution behavior. It can be
arbitrary functionality in any programming language.

Thus, as the underlying implementation changes, a SIB’s adapter has to be
exchanged or adapted too, but the SIB class - which is the actual interface to
the workflow environment - mostly remains unchanged. In practice, this largely
decouples the workflow development in the jABC framework from the evolution
of the underlying platforms and of the concrete algorithms.

2.2 Handling Semantic Abstraction: Loose Programming

Loose programming [21] supports a form of model-based declarative software de-
velopment that enables workflow developers to design their application-specific
workflows in an intuitive (graphical) style driven by their domain knowledge,
rather than from the technicalities of composition and composability. In partic-
ular, it aims at making highly heterogeneous collections of services accessible
to application experts who have no classical programming skills, but who need
to design and manage complex workflows. After an adequate domain modeling,
application experts should ultimately be able to profitably and efficiently work
with a world-wide distributed collection of services and data, using their own do-
main language and understanding services at the behavioral metamodel level. In
particular, the semantic domain models abstract from the SIB interfaces, mak-
ing everything in the workflow environment even more symbolic and intuitively
comprehensible to the scientist.

Concretely, the semantic domain models are defined on top of the SIB libraries
and comprise:

– service and data type taxonomies that provide semantic categories and re-
lations for the involved entities, building the domain vocabulary,

– behavioral interface descriptions, i.e. input and output annotations, in terms
of the domain vocabulary, and

– temporal-logic constraints that express additional knowledge about the ap-
plication domain in general or about the intended workflows in particular.

An example for such models will be discussed in Sect. 3. These semantic do-
main models are entirely based on symbolic names for services and data types,

2 Technically, the SIB class, which we associate with the part of the SIB that belongs
to the IT world in contrast to the view on the SIB from the business domain (from
above), which corresponds to concepts in the domain knowledge model.

52 A.-L. Lamprecht and T. Margaria

therefore the user-level semantic service descriptions are completely decoupled
from the SIBs that implement the actual functionality. Accordingly, the seman-
tic description(s) provided for a service can be freely defined: it is possible to
use custom terminology, use the same service for different purposes, or simply
omit unnecessary details in the interface description.

With loose programming users specify their intentions about a workflow in
a very sparse way, by just giving an intuitive, high-level rough process flow in
terms of ontologically defined semantic entities from the domain model, without
caring about types, precise knowledge about the available workflow components
or the availability of resources. A synthesis mechanism in the background auto-
matically completes this sketch into a correctly running workflow by inserting
missing details. This is achieved by means of a combination of different formal
methodologies: Data-flow analysis provides information on available and required
resources, which is used by a temporal-logic synthesis algorithm [27] to find se-
quences of services that are suitable to concretize the loose parts. Additionally,
model checking is used to monitor global process constraints continuously.

In loose programming there is thus abstraction from the concrete workflow
that implements a particular analysis process: if the set of available SIBs/services
changes, the framework can automatically find another suitable composition of
services that solves the problem.

In the next section we report some exemplary experiences with software evo-
lution from the application of the jABC framework in the bioinformatics appli-
cation domain.

3 Examples and Experiences

To show the spread of possible applications and techniques, we focus now on four
different aspects: Dealing with the wealth of command line tools (Sect. 3.1),
dealing with a technology migration for entire collections of widely used ser-
vices (Sect. 3.2), dealing with the high volatility of ad-hoc workflow design and
evolution (Sect. 3.3), and dealing with a new, declarative way of describing the
intentions of a workflow that is automatically synthesized in one or more variants
(Sect. 3.4). In the following, we concentrate mainly on examples from bioinfor-
matics, but experiences from the geo-visualization domain are analogous.

3.1 SIBs for “Good Old” Command Line Tools

In scientific application domains, algorithms are often implemented as ”small”
special-purpose tools that can simply be invoked from the command line, with-
out requiring to cope with ”unnecessary” stuff (like fancy GUIs etc.) that is
intended to help the user but often hampers programmatic, systematic access
to the underlying functionality. Thus, classical command line tools are usually
well suited to provide collections of basic building blocks for service composi-
tions. Conveniently, classical command line tools are in fact very popular in the
bioinformatics and geo-visualization domains.

Scientific Workflows: Eternal Components, Changing Interfaces 53

Fig. 2. Basic multiple sequence alignment workflow

For example, the European Molecular Biology Open Software Suite (EM-
BOSS) [28]3 is a rich collection of freely available tools for the molecular biology
user community dealing with proteins and amino acids. It contains a number of
small and large programs for a wide range of tasks, such as sequence alignment,
nucleotide sequence pattern analysis, and codon usage analysis as well as the
preparation of data for presentation and publication.

This and similar collections have been used in the respective user community
for quite a long time: the first version of EMBOSS was released around 2000, and
their functionalities are still useful as a basis for new workflow applications. This
is an example of the longevity of basic domain-specific ”eternal” components that
support several generations of scientists and serve unchanged the communities
for decades.4

Sometimes such service collections are repackaged and provided as ”modern”
web services. For example, the EMBOSS tools are provided as web services in
the scope of the EBI’s SoapLab project [30, 31]. Often, however, communication
with the web services via these interfaces happens at a quite technical level: the
sheer operations of the web services are not adequate for direct integration as
workflow building blocks.

The jETI technology [32] specifically supports such direct integration for com-
mand line tools in the jABC framework. In fact, command line tools are typically
designed to execute specific well-defined tasks, and usually all inputs and con-
figuration options can be provided upon invocation, so that their execution runs
completely autonomous (headless, in bioinformatics terminology). They also typ-
ically work on files in a pipe-and-filter transformer fashion, which is per se closer
to the user-level than the programming language entities (such as Java objects)
that are required for the communication with, e.g., Web Service APIs. Accord-
ingly, jETI services, which are designed to provide convenient (remote) access to
file-based command line tools as SIBs, are inherently closer to the user-level than
web services. Entire collections of services can be made available to end-users
this way.

3 http://emboss.sourceforge.net/
4 As an example from the geo-visualization domain: the Generic Mapping Tools
(GMT) collection [29] (http://gmt.soest.hawaii.edu/) was released around the
year 1990 and is in heavy use since then, also clearly deserving the denomination of
eternal components used in the title.

http://emboss.sourceforge.net/
http://gmt.soest.hawaii.edu/

54 A.-L. Lamprecht and T. Margaria

3.2 SIBs for Bioinformatics Web Services: From SOAP to REST

Large bioinformatics institutions like the DDBJ (DNA Data Bank of Japan), EBI
(European Bioinformatics Institute), and NCBI (National Center for Biotechnol-
ogy Information) have been providing publicly available web services to access
databases and computational tools already for a quite long time (that is, since
web services became popular).

Currently, many major service providers are abandoning their SOAP-based
web service interfaces and follow the general trend towards using REST in-
terfaces. Consequently, the SIBs that had been implemented for accessing the
DDBJ and EBI web services [33–35] had to be changed accordingly at some
point, to follow this technology shift on the provider’s side. Luckily, as discussed
in Sect. 2, it was indeed only required to change in the SIB adapters the portion
of code that executes the actual service calls. The SIB classes on the contrary
were not touched at all by the transition: the user/application-level parameters
of the services did not change. Likewise, on the workflow level this change of
underlying technology was not perceptible at all.

This is an example of how the ”changing interfaces” due to technology mi-
gration only locally impact the provisioning of the services. As il lustrated by
Fig. 1, technology agnosticism at the behavioral metamodel level guarantees the
stable fruition of the SIB for the end-users.

3.3 Agile Models for Variable/Evolving Scientific Workflows

Contrary to the stability of the single services offered, scientific workflows are
characterized by being variant-rich and having to be adapted frequently to vary-
ing experimental setups and analysis objectives. Actually, in most cases the
scientist is even searching for the optimal workflow in a cumbersome cycle of
modification, test, analysis, and adaptation. The point of the research is often
to find a data analysis or data processing workflow, that is itself the central
result of the quest. Working by approximation, the volatility of such workflows
is high, yielding series of ”varying” compositions.

XMDD as evolution-oriented paradigm explicitly supports these kinds of ap-
plication evolution and adaptation at a user-accessible level. In jABC, workflows
can easily be modified, adapted, customized and tested in its graphical user in-
terface, and (parts of) workflows can be prepared and flexibly (re-)combined
according to current analysis objectives.

Example: Multiple Sequence Alignment. In the bioinformatics application
domain, the multiple sequence alignment is an example that is particularly suited
to illustrate the agility of workflow design (cf. [17] for further details). Figure 2
shows a simple workflow for this computation. In terms of algorithmic computa-
tions, it consists of just one SIB that calls an alignment service, here ClustalW.
Just this step would however not suffice: it also needs some SIBs that take care
of handling the input and output data. The SIB select sequence file (at the left,
with the underlined name) lets the user select a file from the local file system
and the SIB read sequence file puts the file’s content into the execution context.

Scientific Workflows: Eternal Components, Changing Interfaces 55

Fig. 3. Flexibly variable multiple sequence alignment workflow

This data is then sent to the DDBJ’s ClustalW web service for the alignment
computation, and finally show alignment displays the result to the user.

This is the simplest, but certainly not the only way an alignment can be
computed. It can be useful to use other algorithms and to manage the input
and output in different ways. Figure 3 shows an orchestration of SIBs (a Service
Logic Graph) with several preconfigured workflow snippets that in detail provide
the following functionalities:

1. Select and read a sequence file from the local file system.
2. Call the DDBJ’s ClustalW alignment service.
3. Show an alignment in a simple text dialog window.
4. Call the DDBJ’s Mafft alignment service.
5. Let the user choose the service.
6. Save the alignment to the local file system.
7. Let the user enter a keyword, which is used for a DDBJ database search (via

the ARSA system). This results in a list of accession numbers (i.e. identifiers)
for which the corresponding sequences are fetched from the DDBJ database.

8. Extract the phylogenetic tree that is part of a ClustalW result (using a reg-
ular expression) and call the phylip2jpg service of the DDBJ that converts
the textual tree representation into an image, followed by retrieving and
displaying the image.

These snippets might have arisen from the work of the same scientist in different
contexts and stored for reusal, or have been designed by different community
members and shared within the community. No matter their origin, they can
now be put together to form various alignment workflows simply by connecting
them appropriately. For instance, connecting the snippets 1, 2 and 3 results in

56 A.-L. Lamprecht and T. Margaria

the basic alignment workflow of Fig. 2. Connecting the snippets 2, 7, and 8 forms
a more complex workflow (as depicted in Fig. 3), comprising database search by
keyword, sequence retrieval, alignment computation, and visualization of the
implied phylogenetic tree.

We see here that variability and a large selection of alternative subprocesses
arise naturally in this highly dynamic domain and that artifacts are naturally
shared within the community. Variability and reuse at this level, corresponding to
the upper two layers of Fig. 1 are the norm in this kind of scientific applications.

Fig. 4. Part of the service taxonomy of the EMBOSS domain model

Scientific Workflows: Eternal Components, Changing Interfaces 57

3.4 Loose Models for Variable and Evolving Scientific Workflows

While the previous section described how the jABC framework supports build-
ing variations of preconfigured workflow snippets consisting of known concrete
SIBs, this section demonstrates how the loose programming provided by the
jABC framework facilitates creating workflow variants in an exploratory way,
without concrete knowledge about the available workflow building blocks. The
envisaged workflow is only modeled declaratively, and the framework takes care
of translating the specification into a concrete executable workflow based on the
available collection of workflow building blocks.

With loose programming, workflow design is not only flexible with regard to
changing experimental setups and analysis objectives as described above, but
also with regard to evolving service libraries, as the synthesis framework auto-
matically takes into account all changes and extensions of the domain model.
This enables even more agile workflow development, as shown in [36] it is not
required to pre-define the possible variants. As the underlying constraint lan-
guage allows fully describing the intended solution space without imposing any
overspecification, neither on the structure, nor on the artifacts, our approach
may in particular be regarded as a step from the today typical settings with
closed-world assumption to one with an open-world assumption, where new arti-
facts are automatically and seamlessly integrated in the domain description and
thus in the loose programming solutions as soon as they are available.

Example: Phylogenetic Workflows Based on the EMBOSS Tool Suite.
As an example from the field of bioinformatics, we take a look at loose program-
ming of phylogenetic workflows with the EMBOSS tool suite (cf. [37, 38] for
further details). Conveniently, as of release 6.4.0 from July 2011, the more than
400 tools of the EMBOSS suite and their parameters are annotated in terms
of the EMBRACE Data and Methods Ontology (EDAM) [39], which allows for
automatic generation of the semantic domain models that are required for loose
programming (cf. [38]).

Figure 4 shows excerpts from the service taxonomy of the domain model. The
OWL class Thing is always the root of the taxonomies, below which EDAM
terms provide groups for concrete and abstract service and type representations.
The (part of the) service taxonomy shown there comprises a number of service
categories for different Operations. Note that the type and service taxonomies
comprise 565 and 1425 terms, respectively, directly after being derived from
EDAM. They are then automatically reduced to those parts that are relevant
for the services and data that appear in the domain model in order to avoid
overhead, still covering 236 and 207 terms, respectively. To facilitate the printed
presentation, the figure includes only the parts of the service taxonomy relevant
for this example.

Table 1 lists the services that are relevant for the following examples, along
with their input and output data types. It comprises only 23 of the more than
430 services in the complete domain model. The set of input types contains
all mandatory inputs (i.e., optional inputs are not considered), while the set of
output types contains all possible outputs. The service interface definitions only

58 A.-L. Lamprecht and T. Margaria

Table 1. Selection of services from the EMBOSS domain model

Service Input types Output types

degapseq Sequence record Sequence record

edialign Sequence record Sequence alignment, Sequence record

ehmmbuild Sequence record (protein) Hidden Markov Model,
Sequence alignment (protein)

ehmmemit Hidden Markov Model Sequence record (protein)

emma Sequence record Phylogenetic tree, Sequence record

eomega Sequence record Phylogenetic tree, Sequence record

eomegash Sequence record, Phylogenetic tree, Sequence record
Sequence-profile alignment (HMM)

eomegasp Sequence record, Sequence-profile Phylogenetic tree, Sequence record,
Sequence distance matrix

fconsense Phylogenetic tree Phylogenetic tree

fdnacomp Sequence record (nucleic acid) Phylogenetic tree

fdnaml Sequence alignment (nucleic acid) Phylogenetic tree

fdnapars Sequence alignment (nucleic acid) Phylogenetic tree

fdnapenny Sequence alignment (nucleic acid) Phylogenetic tree

fdrawgram Phylogenetic tree Phylogenetic tree

fdrawtree Phylogenetic tree Phylogenetic tree

fproml Sequence alignment (protein) Phylogenetic tree

fprotpars Sequence alignment (protein) Phylogenetic tree

ftreedist Phylogenetic tree Phylogenetic report (tree distances)

makenucseq - Sequence record

makeprotseq - Sequence record (protein)

revseq Sequence record Sequence record (nucleic acid)

transeq Sequence record Sequence record (protein)

trimseq Sequence record Sequence record

consider the data that is actually passed between the individual services, that
is, input parameters that are used for configuration purposes are not regarded
as service inputs.

Figure 5 (top) shows a simple loosely specified phylogenetic analysis work-
flow: it begins by generating a set of random nucleotide sequences (using the
EMBOSS service makenucseq) and ends by drawing and displaying a tree image
(using fdrawtree and the viewer SIB of the jETI plugin), respectively. The first
two SIBs are connected by a loosely specified branch (colored red and labeled
with a question mark). This loose branch constitutes a synthesis query to the
PROPHETS plugin.

The lower part of the figure shows three of the millions of possible service
sequences that solve this synthesis problem: The first, which is also one of the
shortest solutions, is a single call to emma (an interface to ClustalW), which
produces a phylogenetic tree in addition to a multiple sequence alignment. In
the second, the reverse complement of the input sequence is built (revseq) and

Scientific Workflows: Eternal Components, Changing Interfaces 59

Fig. 5. Loosely specified phylogenetic analysis workflow and possible concretizations

then used for phylogenetic tree construction with fdnacomp. In the third, the se-
quences are translated into protein sequences (transeq), which are then aligned
via ehmmbuild and used for phylogenetic tree estimation with fprotpars. The
last solution is a four-step workflow where an additional sequence is pasted
into the input sequences (pasteseq), which are then translated into protein se-
quences (transeq) and aligned via ehmmbuild before fproml is used for the tree
construction.

Since EMBOSS provides various tools for phylogenetic tree construction as
well as for the different sequence processing tasks, the solutions contained in the
figure are by far not the only possible ones. In fact, millions of logically correct so-
lutions are easily possible with the described domain model already when search-
ing only for comparatively short solutions up to length 4. However, they comprise
a lot of solutions that are not desired or adequate. Hence, it is desirable to in-
fluence the synthesis process so that it is more focused, returning less solutions
that are more adequate. Here we see the advantages of the declarative approach
to the problem formulation: we can simply provide temporal-logic constraints

60 A.-L. Lamprecht and T. Margaria

that express the corresponding intents by describing more precisely the wished
solutions in terms of properties. Conveniently, PROPHETS provides natural-
language templates for frequently occurring constraints, so that the workflow
designer does not need to be trained in temporal logics. As an example, consider
the following three constraints:

– Do not use services that have no inputs. Excludes services that distract from
the actual synthesis problem: such services require no input but provide new
data that is planted into the workflow.)

– Do not use Sequence editing and alignment services. (Avoids particular op-
erations that are not wanted for some reason.)

– Enforce the use of Phylogenetic tree construction (parsimony methods). (In-
cludes a particular kind of operation.)

With these constraints, manageable sets of adequate solutions are now obtained:
there are two solutions of length three and 268 of length four.

This example illustrates how with loose programming workflowmodels remain
robust against evolution of the service infrastructure and the semantic domain
model: Loose workflow models and constraints capture the essential properties
of the envisaged workflow, and can be synthesized at need into a concrete, exe-
cutable workflow based on the currently available components using as services
the SIBs and in the constraints the concepts of the domain model shown in the
upper two layers of Fig. 1.

4 Conclusion

In this paper we focused on a central observation concerning software evolution
in scientific application domains: Their basic software components (databases,
algorithms, tools) remain available in largely unchanged form for a very long
time, even decades, once they have been introduced. New functionality is added
to the pool of available components rather than replacing existing assets. Hence,
it is the periphery of the concrete service interfaces that is subject to sudden
changes, for example when an entire suite of algorithms migrates its provisioning
from SOAP to REST, and their application-specific use and composition are
subject to fast-paced evolution, as the data analysis processes are themselves part
of the research work and object of experimentation. In fields like bioinformatics
and geo-visualization, e-science seems to have a hard core of stable ingredients
(repositories of data and algorithms) and a sizzling outer layer of process-oriented
experimental work that yields the progress of the disciplines today.

We have shown how the rigorous abstraction concepts of the extreme model
driven design paradigm facilitate dealing with changing service interfaces and
varying service compositions and thus with workflow evolution in these appli-
cation domains. The decoupling of concerns due to adequate abstractions and
layers in the semantic service engineering approach we propose, together with
the plugin-based tool support offered by the jABC framework is the key to
a semantics- (or application domain knowledge-) driven workflow design, that

Scientific Workflows: Eternal Components, Changing Interfaces 61

enables scientists (our end-users) to largely work within their domains of com-
petence, without the need of IT knowledge as required by scripting languages
that are today considered necessary for any ”do it yourself”-style of scientific
workflow composition. In particular the declarative loose specification approach,
coupled with the automatic synthesis of executable workflows, seems to us to
be a promising path towards self-assembling and self-optimizing processes: the
declarative top-down approach (plus synthesis) is knowledge-driven and specifies
just as much as necessary/wanted (but not more), which leads to an open-world
assumption, where new components or services or repositories automatically
appear in the solutions as soon as they are made available. This contrasts tradi-
tional orchestration-based approaches that explicitly define variability as a con-
figuration space, which typically leads to overspecification and a closed-world
assumption, where one actively deselects from a predefined choice of options.

References

1. Mens, T., Demeyer, S. (eds.): Software Evolution. Springer (2008)
2. : EternalS: EU FET Coordination Action on Trustworthy Eternal Systems via

Evolving Software, Data and Knowledge
3. Margaria, T., Steffen, B.: Thinking in User-Centric Models. In: Margaria, T.,

Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and
Validation. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg (2009)

4. Margaria, T., Steffen, B.: Service-Orientation: Conquering Complexity with
XMDD. In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217–236.
Springer, London (2012)

5. Oinn, T., Greenwood, M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble,
C., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M.R., Senger, M.,
Stevens, R., Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow envi-
ronment for the life sciences: Research Articles. Concurr. Comput.: Pract. Ex-
per. 18(10), 1067–1100 (2006)

6. Taylor, I.: Workflows for E-Science: Scientific Workflows for Grids. Springer (2007)
7. Chen, L., Shadbolt, N.R., Goble, C., Tao, F., Cox, S.J., Puleston, C., Smart, P.R.:

Towards a Knowledge-Based Approach to Semantic Service Composition. In: Fensel,
D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 319–334.
Springer, Heidelberg (2003)

8. Ludäscher, B., Altintas, I., Gupta, A.: Compiling Abstract ScientificWorkflows into
Web Service Workflows. In: International Conference on Scientific and Statistical
Database Management, p. 251 (2003)

9. Potter, S., Aitken, S.: A Semantic Service Environment: A Case Study in Bioin-
formatics. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532,
pp. 694–709. Springer, Heidelberg (2005)

10. Withers, D., Kawas, E., McCarthy, L., Vandervalk, B., Wilkinson, M.:
Semantically-Guided Workflow Construction in Taverna: The SADI and BioMoby
Plug-Ins. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415,
pp. 301–312. Springer, Heidelberg (2010)

11. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-
velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

62 A.-L. Lamprecht and T. Margaria

12. Kubczak, C., Jörges, S., Margaria, T., Steffen, B.: eXtreme Model-Driven Design
with jABC. In: CTIT Proc. of the Tools and Consultancy Track of the Fifth Eu-
ropean Conference on Model-Driven Architecture Foundations and Applications
(ECMDA-FA), vol. WP09-12, pp. 78–99 (2009)

13. Kubczak, C., Margaria, T., Fritsch, A., Steffen, B.: Biological LC/MS Preprocess-
ing and Analysis with jABC, jETI and xcms. In: Proceedings of the 2nd Inter-
national Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA 2006), Paphos, Cyprus, November 15-19, pp. 308–313. IEEE
Computer Society, Paphos, Cyprus (2006)

14. Margaria, T., Kubczak, C., Njoku, M., Steffen, B.: Model-based Design of Dis-
tributed Collaborative Bioinformatics Processes in the jABC. In: Procedings of
11th IEEE International Conference on Engineering of Complex Computer Sys-
tems (ICECCS 2006), Stanford, California, Los Alamitos, CA, USA, August 15-17,
pp. 169–176. IEEE Computer Society (August 2006)

15. Margaria, T., Kubczak, C., Steffen, B.: Bio-jETI: a service integration, design,
and provisioning platform for orchestrated bioinformatics processes. BMC Bioin-
formatics 9(suppl. 4), S12 (2008)

16. Lamprecht, A.L., Margaria, T., Steffen, B., Sczyrba, A., Hartmeier, S., Giegerich,
R.: GeneFisher-P: variations of GeneFisher as processes in Bio-jETI. BMC Bioin-
formatics 9 (suppl. 4), S13 (2008)

17. Lamprecht, A.-L., Margaria, T., Steffen, B.: Seven Variations of an Alignment
Workflow - An Illustration of Agile Process Design and Management in Bio-jETI.
In: Măndoiu, I., Wang, S.-L., Zelikovsky, A. (eds.) ISBRA 2008. LNCS (LNBI),
vol. 4983, pp. 445–456. Springer, Heidelberg (2008)

18. Lamprecht, A.L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-
based service composition. BMC Bioinformatics 10(suppl. 10), S8 (2009)

19. Margaria, T., Steffen, B.: Business Process Modelling in the jABC: The One-Thing-
Approach. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on
Business Process Modeling. IGI Global (2009)

20. Naujokat, S., Lamprecht, A.-L., Steffen, B.: Loose Programming with PROPHETS.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 94–98. Springer,
Heidelberg (2012)

21. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose
Programming. In: Proceedings of the 7th International Conference on the Quality
of Information and Communications Technology, QUATIC (September 2010)

22. Steffen, B., Margaria, T., Braun, V., Kalt, N.: Hierarchical Service Definition.
Annual Review of Communications of the ACM 51, 847–856 (1997)

23. Jung, G., Margaria, T., Nagel, R., Schubert, W., Steffen, B., Voigt, H.: SCA and
jABC: Bringing a Service-Oriented Paradigm to Web-Service Construction. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 139–154. Springer,
Heidelberg (2008)

24. Margaria, T., Steffen, B.: Service Engineering: Linking Business and IT. Com-
puter 39(10), 45–55 (2006)

25. Margaria, T., Bosselmann, S., Doedt, M., Floyd, B. D., Steffen, B.: Customer-
Oriented Business Process Management: Visions and Obstacles. In: Hinchey, M.,
Coyle, L. (eds.) Conquering Complexity, pp. 407–429. Springer London (2012)

26. Service Component Architecture (SCA), http://www.oasis-opencsa.org/sca/

(2012) (online; last accessed July 26, 2012)
27. Steffen, B., Margaria, T., Freitag, B.: Module Configuration byMinimal Model Con-

struction. Technical report, Fakultät für Mathematik und Informatik, Universität
Passau (1993)

http://www.oasis-opencsa.org/sca/

Scientific Workflows: Eternal Components, Changing Interfaces 63

28. Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European Molecular Biology Open
Software Suite. Trends in Genetics: TIG 16(6), 276–277 (2000)

29. Wessel, P., Smith, W. H. F.: Free software helps map and display data. EOS Trans.
Amer. Geophys. U. 72(41) (1991)

30. Soaplab, http://soaplab.sourceforge.net/soaplab1/ (online; last accessed
June 25, 2012)

31. Soaplab2, http://soaplab.sourceforge.net/soaplab2/ (online; last accessed
June 25 2012)

32. Margaria, T., Nagel, R., Steffen, B.: jETI: A Tool for Remote Tool Integration.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 557–562.
Springer, Heidelberg (2005)

33. DDBJWeb API for Biology, http://xml.nig.ac.jp/workflow/ (online; temporar-
ily suspended since February 15, 2012)

34. Pillai, S., Silventoinen, V., Kallio, K., Senger, M., Sobhany, S., Tate, J., Velankar,
S., Golovin, A., Henrick, K., Rice, P., Stoehr, P., Lopez, R.: SOAP-based services
provided by the European Bioinformatics Institute. Nucleic Acids Research 33(Web
Server issue), W25–W28 (July 2005)

35. Labarga, A., Valentin, F., Anderson, M., Lopez, R.: Web services at the European
bioinformatics institute. Nucleic Acids Research 35(Web Server issue), W6–W11
(2007)

36. Lamprecht, A., Margaria, T., Schaefer, I., Steffen, B.: Synthesis-based variabil-
ity control: correctness by construction. In: Proceedings of FMCO 2011, Software
Technologies Concertation Meeting on ”Formal Methods for Components and Ob-
jects”, Torino, Italy (October 2011)

37. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based com-
position of EMBOSS services. Journal of Biomedical Semantics 2(suppl. 1), S5
(2011)

38. Lamprecht, A.L., Naujokat, S., Steffen, B., Margaria, T.: Constraint-Guided Work-
flow Composition Based on the EDAM Ontology. In: Burger, A., Marshall, M.S.,
Romano, P., Paschke, A., Splendiani, A. (eds.) Proceedings of the 3rd Workshop on
Semantic Web Applications and Tools for Life Sciences (SWAT4LS 2010). CEUR
Workshop Proceedings, vol. 698 (December 2010)

39. Pettifer, S., Ison, J., Kalas, M., Thorne, D., McDermott, P., Jonassen, I., Li-
aquat, A., Fernandez, J.M., Rodriguez, J.M., Partners, I., Pisano, D.G., Blanchet,
C., Uludag, M., Rice, P., Bartaseviciute, E., Rapacki, K., Hekkelman, M., Sand,
O., Stockinger, H., Clegg, A.B., Bongcam-Rudloff, E., Salzemann, J., Breton, V.,
Attwood, T.K., Cameron, G., Vriend, G.: The EMBRACE web service collection.
Nucl. Acids Res., gkq297 (May 2010)

http://soaplab.sourceforge.net/soaplab1/
http://soaplab.sourceforge.net/soaplab2/
http://xml.nig.ac.jp/workflow/

An Object Group-Based Component Model�

Michaël Lienhardt, Mario Bravetti, and Davide Sangiorgi

Focus Team, University of Bologna, Italy
{lienhard,bravetti,davide.sangiorgi}@cs.unibo.it

Abstract. Dynamic reconfiguration, i.e. changing at runtime the com-
munication pattern of a program is challenging for most programs as it
is generally impossible to ensure that such modifications won’t disrupt
current computations. In this paper, we propose a new approach for the
integration of components in an object-oriented language that allows safe
dynamic reconfiguration. Our approach is built upon futures and object-
groups to which we add: i) output ports to represent variability points,
ii) critical sections to control when updates of the software can be made
and iii) hierarchy to model locations and distribution. These different
notions work together to allow dynamic and safe update of a system. We
illustrate our approach with a few examples.

1 Introduction

Components are an intuitive tool to achieve unplanned dynamic reconfigura-
tions. In a component system, an application is structured into several distinct
pieces called components. Each of these components has dependencies towards
functionalities located in other components; such dependencies are collected into
output ports. The component itself, however, offers functionalities to the other
components, and these are collected into input ports. Communication from an
output port to an input port is possible when a binding between the two ports
exists. Dynamic reconfiguration in such a system is then achieved by adding and
removing components, and by replacing bindings. Thus updates or modifications
of parts of an application are possible without stopping it.

Related Work. While the idea of components is simple, bringing it into a
concrete programming language is not easy. The informal description of compo-
nents talks about the structure of a system, and how this structure can change
at runtime, but does not mention program execution. As a matter of fact, many
implementations of components [1, 3, 5, 15, 2, 11, 13] do not merge into one
coherent model i) the execution of the program, generally implemented using
a classic object-oriented language like Java or C++, and ii) the component
structure, generally described in an annex Architecture Description Language
(ADL). This approach makes it simple to add components to an existing stan-
dard program. However, unplanned dynamic reconfigurations become hard, as
� Partly funded by the EU project FP7-231620 HATS.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 64–78, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Object Group-Based Component Model 65

it is difficult to express modifications of the component structure using objects
(since these are rather supposed to describe the execution of the programs). For
instance, models like Click [13] do not allow runtime modifications while OSGi
[1] allows addition of new classes and objects, but no component deletions or
binding modifications. In this respect, a more flexible model is Fractal [3], which
reifies components and ports into objects. Using an API, in Fractal it is possible
to modify bindings at runtime and to add new components; Fractal is however
rather complex, and it is informally presented, without a well-defined model.

Formal approaches to component models have been studied e.g., [4, 8, 14, 12, 10,
9]. These models have the advantage of having a precise semantics, which clearly
defines what is a component, a port and a binding (when such a construct is in-
cluded). This helps understanding how dynamic reconfigurations can be imple-
mented and how they interact with the normal execution of the program. In par-
ticular, Oz/K [10] and COMP [9] propose a way to integrate in a unified model
both components and objects. However, Oz/K has a complex communication pat-
tern, and deals with adaptation via the use of passivation, which, as commented in
[7], is a tricky operator — in the current state of the art it breaks most techniques
for behavioral analysis. In contrast, COMP offers support for dynamic reconfigu-
ration, but its integration into objects appears complex.

Our Approach. Most component models have a notion of component that is
distinct from the objects used to represent the data and the main execution of
the software. The resulting language is thus structured in two different layers,
one using objects for the main execution of the program, one using components
for the dynamic reconfiguration. Even though such separation seems natural, it
makes difficult the integration of the different requests for reconfiguration into
the program’s workflow. In contrast, in our approach we tried to have a uni-
form description of objects and components. In particular, we aim at adding
components on top of the Abstract Behavioral Specification (ABS) language [6],
developed within the EU project HATS. Core ingredients of ABS are objects,
futures and object groups to control concurrency. Our goal is to enhance ob-
jects and object groups with the basic elements of components (ports, bindings,
consistency and hierarchy) and hence enable dynamic reconfigurations.

We try to achieve this by exploiting the similarities between objects and object
groups with components. Most importantly, the methods of an object closely
resemble the input ports of a component. In contrast, objects do not have explicit
output ports. The dependencies of an object can be stored in internal fields,
thus rebinding an output port corresponds to the assignment of a new value
to the field. Objects, however, lack mechanisms for ensuring the consistency
of the rebinding. Indeed, suppose we wished to treat certain object fields as
output ports: we could add methods to the object for their rebinding; but it
would be difficult, in presence of concurrency, to ensure that a call to one of
these methods does not harm ongoing computations. For instance, if we need
to update a field (like the driver of a printer), then we would want to wait
first that all current execution using that field (like some printing jobs) to finish
first. This way we ensure that the update will not break those computations.

66 M. Lienhardt, M. Bravetti, and D. Sangiorgi

In Java, such consistency can be achieved using the synchronized keyword, but
this solution is very costly as it forbids the interleaving of parallel executions,
thus impairing the efficiency of the program. In ABS, object groups offer a
mechanism for consistency, by ensuring that there is at most one task running
in an object group. This does ensure some consistency, but is insufficient in
situations involving several method calls. A further difference between objects
and components is that only the latter talks about locations. Locations structure
a system, possibly hierarchically, and can be used to express dynamic addition
or removal of code, as well as distribution of a program over several computers.

To ensure the consistent modifications of bindings and the possibility to ship
new pieces of code at runtime, we add four elements to the ABS core language:

1. A notion of output port distinct from the object’s fields. The former (iden-
tified with the keyword port) corresponds to the objects’ dependencies and
can be modified only when the object is in a safe state, while the latter
corresponds to the inner state of the objects and can be modified with the
ordinary assignments.

2. The possibility of annotating methods with the keyword critical: this spec-
ifies that the object, while an instance of the method is executing, is not in
a safe state.

3. A new primitive to wait for an object to be in a safe state. Thus, it be-
comes possible to wait for all executions using a given port to finish, before
rebinding the port to a new object.

4. A hierarchy of locations. Thus an ABS program is structured into a tree
of locations that can contain object groups, and that can move within the
hierarchy. Using locations, it is possible to model the addition of new pieces
of code to a program at runtime. Moreover, it is also possible to model
distribution (each top-level location being a different computer) and code
mobility (by moving a sub-location from a computer to another one).

The resulting language remains close to the underlying ABS language. Indeed,
the language is a conservative extension of ABS (i.e., an ABS program is a
valid program in our language and its semantics is unchanged), and, as shown
in our following example, introducing the new primitives into an ABS program
is simple. In contrast with previous component models, our language does not
drastically separate objects and components. Three major features of the infor-
mal notion of component — ports, consistency, and location — are incorporated
into the language as follows: (i) output ports are taken care of at the level of our
enhanced objects; (ii) consistency is taken care of at the level of object groups;
(iii) the information about locations is added separately.

We believe that the separation between output ports and fields is meaningful
for various reasons:

• Output ports represent dependencies of an object towards its environment
(functionalities needed by the object and implemented outside it, and that
moreover might change during the object life time). As such they are logically
different from the internal state of the object (values that the object may
have to consult to perform its expected computation).

An Object Group-Based Component Model 67

P ::= I P | C P | { T x; s }
T ::= I | Fut〈T 〉

I ::= interface I { S }

C ::= class C(T x) [implements I] { F M }
s ::= skip | s;s | e | x = e | await(g) | if e { s } else { s }

| while e { s } | return e

e ::= v | x | this | new [cog] C (e) | e.m(e) | e!m(e) | get(e)
v ::= null | true | false | 1 | . . .

g ::= e | e? | g ∧ g

F ::= T x

S ::= T m(T x)

M ::= S{ T x; s }

Fig. 1. Core ABS Language

• The separation of output ports allows us to have special constructs for them.
Examples are the constructs for consistency mentioned above. Moreover,
different policies may be used for updating fields and output ports. For
instance, in our model while a field of an object o may be updated only by
o, an output port of o may be modified by objects in the same group as o.
This difference of policy is motivated in Section 3.1

• The separation of output ports could be profitable in reasoning, in particular
in techniques of static analysis.

• The presence of output ports may be useful in the deployment phase of
a system facilitating, for instance, the connection to local communication
resources.

Roadmap. §2 describes the core ABS language. §3 presents our extension to
the ABS language. §4 presents the semantics of the language. The main features
of core ABS and our extensions are illustrated along the document with several
examples.

2 Core ABS

We present in Figure 1 the object core of the ABS language. For the full description
of the language, including its functional aspect, see [6]. We assume an overlined
element to be any finite sequence of such element. A program P is defined as a set
of interface and class declarations I and C, with a main function { T x; s }. The
production T types objects with interface names I and futures with future types
Fut〈T 〉, where T is the type of the value returned by an asynchronous method call
of the kind e!m(e) (versus e.m(e) representing synchronous calls): the actual value
of a future variable can be read with a get. An interface I has a name I and a
body declaring a set of method headers S. A class C has a name C, may implement
several interfaces, and declares in its body its fields with F and its methods with
M . In the following examples: for simplicity we will omit “?” in await guards (in
ABS “e?” guards are used for expressions “e” returning a future, instead simple
“e” guards are used for boolean expressions) and we will follow the ABS practice
to declare the class constructor like a method, named init.

68 M. Lienhardt, M. Bravetti, and D. Sangiorgi

class Printer {

Status s; int printPhy(File f) {...}

Status getStatus() { return s; }

int print(File f) { }

int id = s.addToQueue(f);

await(s!isCurrent(id)); class Status {

...

int code = this.printPhy(f); int addToQueue(File f) {...}

await(s!popFromQueue(id)); void popFromQueue(int id){...}

return code; void isCurrent(int id) {...}

} void isCurrentFile(File f) {...}

}

Fig. 2. Example, the class Printer

Object Groups and Futures. One of the main features of ABS is its concur-
rency model which aims to solve data races. Objects in ABS are structured into
different groups called cogs which are created with the new cog command. These
cogs define the concurrency of a program in two ways: i) inside one cog, at most
one object can be active (i.e. execute a method); ii) all cogs are concurrent (i.e.
all method calls between objects of different cogs must be asynchronous). Con-
currency inside a cog is achieved with cooperative multitasking using the await
statement, and synchronization between concurrent executions is achieved with
the await and get statements, based on futures.

We illustrate this concurrency model with a simple class Printer in Figure 2,
modeling a printer driver with a job queue stored in a Status s. The principle
of the print method of Printer is as follow: i) the printing request is added to
the queue of jobs, which returns the identifier for that new job; ii) the method
waits until all previous jobs have been processed; iii) the method does the actual
printing (using the method printPhy) and waits for its completion, which returns
a code describing if the printing was successful or not; and iv) the job is removed
from the queue and the code is returned to the user.

3 Component Model

3.1 Ports and Bindings

The ABS concurrency model as it is cannot properly deal with runtime modifi-
cations of a system, in particular with unplanned modifications. Let us consider
the client presented in Figure 3. This class offers a little abstraction over the
Printer class with three extra features: i) the possibility to change printer; ii)
some notification messages giving the current status of the printing job (count
being the identifier of the job); and iii) the possibility to get the number of jobs
handled by this object.

An Object Group-Based Component Model 69

class PrintClient {

Printer p;

int count;

void setPrinter(Printer pr) { p = pr }

void print(File f) {

Fut<int> err = p!print(f);

count = count + 1;

System.out.println("Job " + count + ": Waiting to begin");

await ((get(p!getStatus())!isCurrentFile(f));
System.out.println("Job " + count + ": Being processed");

await err;

System.out.println("Job " + count

+ ": Completed with error code = " + (get(err)));
}

int GetNumberOfJobs() { return count; }

void init() { count = 0; }

}

Fig. 3. An evolved Printing Client

This class is actually erroneous: let us consider the scenario where a printing
job is requested, followed by the modification of the printer. The print method
sends the job to the first printer p1, then waits for the notification from p1’s
status. While waiting, the printer gets modified into p2: the following requests
will fail as they will be directed to p2 and not p1. A possible solution would be
to forbid the interleaving of different methods execution by replacing the awaits
by gets, which corresponds to the synchronized in Java.

We overcome this inconsistency problem by forbidding the modification of
the field p while it is in use. For this, we combine the notions of output port
(from components) and of critical section. Basically the field p, which references
an external service that can change at runtime, is an output port; the print
method that needs stability over this port, creates a critical section to avoid the
modification of p while it is executing; the count field and the GetNumberOfJobs
method, that have no link to an external service, remain unchanged.

The syntax for our manipulation of output port and critical section is as
follows.

F ::= . . . | port T f

S ::= . . . | critical T m(T x)
s ::= . . . | rebind e.x = e

g ::= . . . | ‖e‖

Here, a field can be annotated with the keyword port, which makes it an out-
put port, supposedly connected to an external service that can be modified at

70 M. Lienhardt, M. Bravetti, and D. Sangiorgi

class PrintClient {

port Printer p;

int count;

void setPrinter(Printer pr) {

await (‖this‖);
rebind p = pr

}

critical void print(File f) { ... }

int GetNumberOfJobs() { return count; }

void init() { count = 0 }

}

Fig. 4. An improved Printing Client

runtime. Moreover, methods can be annotated with the keyword critical, which
ensures that, during the execution of that method, the output ports of the object
will not be modified.

Output ports differ from ordinary fields in two aspects:

1. output ports cannot be freely modified. Instead one has to use the rebind

statement that checks if the object has an open critical section before chang-
ing the value stored in the port. If there are no open critical sections, the
modification is applied; otherwise an error in a form of a dead-lock is raised;

2. output ports of an object o can be modified (using the rebind statement) by
any object in the same object-group of o. This capacity is not in opposition to
the classic object-oriented design of not showing the inner implementation of
an object: indeed, a port does not correspond to an inner implementation but
exposes the relationship the object has with independent services. Moreover,
this capacity helps achieving consistency as shown in the next examples.

Finally, to avoid errors while modifying an output port, one should first ensure
that the object has no open critical sections. This is done using the new guard
‖e‖ that waits for the object e not to be in critical section. Basically, if an object
o wants to modify output ports stored in different objects oi, it first waits for
them to close all their critical section, and then can apply the modifications
using rebind.

3.1.1 Examples
Printing Client. In Figure 4 we show how to solve our previous example (from
Figure 3). The changes are simple: i) we specify that the field p is a port; ii) we
annotate the method print with critical (to protect its usage of the port p);
and iii) we change the method setPrinter that now waits for the object to be
in a consistent state before rebinding its output port p.

An Object Group-Based Component Model 71

class OperatorFrontEnd {

port Operator _op;

critical Document modify(Document doc) { ... }

void init(Operator op) { rebind _op = op; }

}

class WFController {

port Document _doc;

port Printer _p;

OperatorFrontEnd _opfe;

critical void newInstanceWF() { ... }

void changeOperator(Operator op) {

await(‖this‖ ∧ ‖ opfe‖);
rebind _opfe._op = op;

}

void init(Document doc, Operator op, Printer p) {

rebind _doc = doc;

rebind _p = p;

_opfe = new OperatorFrontEnd(op);

}

}

Fig. 5. Dynamic Reconfiguration Example

Workflow Controller. For the purpose of this example, we suppose we want
to define a workflow that takes a document (modeled by an instance of the class
Document), modifies it using an Operator and then sends it to a Printer. We
suppose that the protocol used by Operator objects is complex, so we isolate it
into a dedicated class. Finally, we want to be able to change protocol at runtime,
without disrupting the execution of previous instances of the workflow. Such a
workflow is presented in Figure 5.

We thus have two classes: the class OperatorFrontEnd implements the protocol
in themethodmodify; the class WFController encodes theworkflow.The elements
op, doc and p are ports, and correspond to dependencies to external resources.
In consequence they are annotated as port. It is only possible to modify their value
using the construct rebind, which checks if the object is in a safe state (no critical
method in execution) before modifying the port. Moreover, methods modify and
newInstanceWF make use of these ports in their code, and are thus annotated as
critical as it would be dangerous to rebind ports during their execution.

The key operations of our component model are shown in the two lines of code
describing the method changeOperator.First is the await statement, which waits
for the objects this and opfe to be in a safe state. By construction, these objects

72 M. Lienhardt, M. Bravetti, and D. Sangiorgi

are in a safe state only when there are no running instances of the workflow: it is
then safe to modify the ports. Second is the rebind statement; the statement will
succeed since the concurrency model of object-groups ensures that no workflow
instance can be spawned between the end of the await and the end of the method.
Moreover, the second line shows that it is possible to rebindaport of another object,
provided that this object is in the same group as the one doing the rebinding.

3.2 Locations

The final layer of our language introduces locations that are used to model the
different elements of our virtual office, like printers, computers, rooms and build-
ings. The idea is that components stand at a certain location. Thus every lo-
cation, e.g. a room, is endowed with its own resources/services, e.g. printers,
scanners, etc. . . , and a worker computer that stands at a certain location may
exploit the location information to use resources at the same location.

Locations themselves are structured into trees according to a sublocation re-
lation, such that we can have several locations at the top level (roots of trees) and
object groups can only occur as leaves of such trees (andnot as intermediate nodes).

We modify slightly the syntax of our previous calculus to introduce locations
in it. We use l to represent location names. We represent with (l, g) and (l, l′)
the father-to-son sublocation relation where object groups can only appear as
leaves of the location tree. We use l⊥ to stand for a name which is either ⊥ or
l, where ⊥ is used to represent absence of a father, i.e. (⊥, g) and (⊥, l) mean
that g and l, respectively, do not have a father. We also use n to represent node
names which can be location names l or group names g.

The additions are presented as follows.
s ::= . . . | move e in e

e ::= . . . | new loc

First, we add the possibility to create a new location (with a fresh name l)
with a command new loc, then we add the possibility of modifying the father
of a location/group n returned by an expression (or to establish a father in
the case n does not possess one, or to remove the father of n) with the com-
mand move n in l⊥: the new father becomes the location l⊥ (returned by an
expression). Technically, we also introduce a new type for location values, called
location, which is added to the syntax of types T .

3.2.1 Examples
In the Virtual Office case study we use locations to express the movement of a
worker from a location to another one. The worker moves with his laptop, in
which we suppose a workflow document has been previously downloaded. The
worker component has a set of output ports for connection to the services at the
current worker location, which are needed to execute the downloaded workflow.
Therefore the worker movement from a location to another one requires rebinding
all such output ports, which can only be done if the workflow (a critical method)
is not executing. Therefore, compared to previous examples, we need to model
simultaneous rebinding of multiple output ports.

An Object Group-Based Component Model 73

Example 1. We represent the movement of a worker to a different environment
as the movement of the worker to a new location, which includes:

• a set of object groups representing the devices that the worker needs to per-
form the workflow (here represented by services “ServiceA” and “ServiceB”)

• possibly, a local registry component, providing to the worker laptop compo-
nent the links to the devices above; this will be modeled in Example 2.

More precisely, whenever the worker moves to a location l, first we wait for
possible current workflow executions to be terminated, then we rebind to the
(possibly discovered, see Example 2) new devices in the new location.

We represent the worker component as an object group composed by two
objects:

• a “ServiceFrontEnd” object endowed by all the required output ports (here
ports “a” and “b” for services “ServiceA” and “ServiceB”, respectively),

• a “manager” object, called “WorkerFrontEnd” which: changes the ports
in the “ServiceFrontEnd” object (possibly performing the service discovery
enquiring the local service registry, see Example 2).

Finally, in the example code below, we make use of a primitive function “group”
which is supposed to yield the group of a given object.

class ServiceA { ... }

class ServiceB { ... }

class ServiceFrontEnd {

port ServiceA a;

port ServiceB b;

critical void workflow() { ... }

}

class WorkerFrontEnd {

ServiceFrontEnd s;

void changeLocation(location l2, ServiceA a2, ServiceB b2) {

await ‖s‖;
move group(this) in l2;
rebind s.a = a2;
rebind s.b = b2;

}

void init(location l, ServiceA a, ServiceB b) {

move group(this) in l;

s = new ServiceFrontEnd();

rebind s.a = a;

rebind s.b = b;

}

}

74 M. Lienhardt, M. Bravetti, and D. Sangiorgi

Example 2. In this example we also model the local registry component for
each location, providing links to the local devices for the worker component, and
the global root registry (which has a known address) which, given a location,
provides the link to the local register at that location.

More precisely, whenever the workermoves to a location l, first we have a discov-
ery phase via a global root register so to obtain the local registry at location l, then
we wait for possible currentworkflowexecutions to be terminated, then a discovery
phase via the registry component of the new location, and finally a rebinding to the
discovered devices in the new location.

class ServiceA { ... }

class ServiceB { ... }

class Register {

ServiceA discoverA() { ... }

ServiceB discoverB() { ... }

}

class RootRegister {

Register discoverR(location l) { ... }

}

class ServiceFrontEnd {

port ServiceA a;

port ServiceB b;

critical void workflow() { ... }

}

class WorkerFrontEnd {

RootRegister rr;

ServiceFrontEnd s;

void changeLocation(location l2) {

Fut<Register> fr=rr!discoverR(l2); await(fr); Register r=get(fr);

await ‖s‖;
move group(this) in l2;
rebind s.a = get(r!discoverA());

rebind s.b = get(r!discoverB());

}

void init(location l, RootRegister rr2) {

rr = rr2;

Fut<Register> fr=rr!discoverR(l); await(fr); Register r=get(fr);

move group(this) in l;

s = new ServiceFrontEnd();

rebind s.a = get(r!discoverA());

rebind s.b = get(r!discoverB());

}

}

An Object Group-Based Component Model 75

N ::= ε | I | C | N N

| ob(o, σ,Kidle, Q)
| cog(c, oε)
| fut(f, v⊥)
| invoc(o, f, m, v)
| (γ⊥, γ)

Q ::= ε | K | Q Q

K ::= { σ, s }
v ::= null | o | f | 1 | . . .

σ ::= ε | σ;T x v

| σ; this o

| σ; class C

| σ; cog c

| σ; nbcr v

v⊥ ::= v | ⊥
oε ::= o | ε

Kidle ::= K | idle

γ⊥ ::= γ | ⊥

Fig. 6. Runtime Syntax; here o, f and c are object, future, and cog names

4 Semantics

We present in this section the semantics of our language. Our semantics is de-
scribed as a virtual machine based on i) a runtime syntax that extends the basic
language; ii) some functions and relations to manipulate that syntax; and iii) a
set of reduction rules describing the evolution of a term.

4.1 Runtime Syntax
The runtime syntax consists of the language extended with constructs needed
for the computations, like the runtime representation of objects, groups, and
tasks. Figure 6 presents the global runtime syntax. Configurations N are sets of
classes, interfaces, objects, concurrent object groups (cogs), futures, invocation
messages and hierarchy statements between components. The associative and
commutative union operator on configurations is denoted by a whitespace and
the empty configuration by ε. An object is a term of the form ob(o, σ, Kidle, Q)
where o is the object’s identifier, σ is a substitution representing the object’s
fields, Kidle is the active task of the object (or Kidle = idle, when the object
is idle and it is not executing anything), and Q is the queue of waiting tasks
(the union of such queue, denoted by the whitespace, is associative with ε as
the neutral element). A cog is a term of the form cog(c, oε) where c is the cog’s
identifier, oε is either ε, which means that there is nothing currently executing
in the cog, or an object identifier, in which case there is one task of the object
o executing in c. A future is a pair of the name of the future f and a place
v⊥ where to store the value computed for this future. An invocation message
invoc(o, f, m, v) specifies that some task called the method m on the object o
with the parameters v, this call corresponding to the future f. An hierarchy
statement (γ⊥, γ) states that the component γ is a child of the component γ⊥
(⊥ being the name of the top level component). A task K consists of a pair
with a substitution σ of local variable bindings, and a statement s to execute.
A substitution σ is a mapping from variable names to values. For convenience,
we associate the declared type of the variable with the binding, and, in case of
substitutions directly included in objects, we also use substitutions to store, the
“this” reference, the class, the cog of an object and an integer denoted by nbcr

which, as we will see, will be used for critical section management. Finally, we
extend the values v with object and future identifiers.

76 M. Lienhardt, M. Bravetti, and D. Sangiorgi

4.2 Reduction Relation

The semantics of the component model is an extension of the semantics of core
ABS in [6]. It uses a reduction relation → over configurations, N → N ′ meaning
that, in one execution step, the configuration N can evolve into N ′. We extend
that relation in four different aspects. First, we extend the reduction definition
with three reduction rules that define the semantics of the Rebind and subloc

operator.

Rebind-Local
σ(nbcr) = 0

ob(o, σ, { σ′, rebind o.f = v; s }, Q) → ob(o, σ[f �→ v], { σ′, s }, Q)

Rebind-Global
σo(nbcr) = 0 σo(cog) = σo′(cog)

ob(o, σo, Kidle, Q) ob(o′, σo′ , { σ′, rebind o.f = v; s }, Q)
→ ob(o, σo[f �→ v], Kidle, Q) ob(o′, σo′ , { σ′, s }, Q)

Loc-Move

(γ⊥, γ) ob(o, σ, { σ′,move γ in γ′
⊥; s }, Q) → (γ′

⊥, γ) ob(o, σ, { σ′, s }, Q)

The rule Rebind-Local is applied when an object rebinds one of its own ports.
The rule first checks that the object is not in a critical section by testing the
special field nbcr for zero and then updates the value of the field. The rule
Rebind-Global is applied when an object rebinds a port of another object
and is similar to the previous one. The rule Loc-Move moves a location γ
(initially put inside the location γ⊥) inside another location γ′

⊥.
The second aspect of our extension defines the semantics of our new expres-

sion, the creation of location new loc. In [6], the reduction rules defining the
semantics of expressions are written using statements of the form σ � e → σ � e′

to say that in the context σ mapping some variables to their values, e reduces
to e′. Because expression new loc has a side effect (adding the new location
to the configuration), we extend this statement to include the configuration:
N, σ � e → N ′, σ � e′.

New-Location
γ fresh

N, σ � new loc → N (⊥, γ), σ � γ

That rule simply states that the new loc commands creates a new location and
returns it.

The third aspect of our extension concerns method call. In our system, we
indeed have two kinds of methods: normal ones and critical ones, the second
ones creating a critical section on the callee. We model opened critical sections
with the special hidden field nbcr, that is initialized to zero, incremented each
time a critical section is opened, and decremented each time a critical section
is closed. Then, when an object calls a method, it creates an invoc message
describing who is the callee, the method to execute, the parameters and the

An Object Group-Based Component Model 77

return future. This message is then reduced into a task in the queue of the callee
using the function bind that basically replaces the method by its code. To give
the semantics of our critical methods, we extend this bind function to add, to the
code of a critical method, some statements that manipulate the nbcr field.

NM-bind
class C . . . { T m(T x){ T ′ x′ s } . . . } ∈ N

bind(o, f, m, v, C) = { T x = v; T ′ x′ = null; this = o, s }
CM-bind

class C . . . { critical T m(T x){ T ′ x′ s } . . . } ∈ N
s′ = nbcr = nbcr + 1; s; nbcr = nbcr − 1

bind(o, f, m, v, C) = { T x = v; T ′ x′ = null; this = o, s′ }
The rule NM-bind corresponds to the normal semantics of the bind function,
while the rule CM-bind is the one used to bind a critical function. Basically,
the first thing a critical method does is to increment the field nbcr, opening the
critical section, and the last thing it does is to decrement the field, thus closing
it.

Finally, the last aspect of our extension concerns our guard extension ‖e‖.
CSGuard1
N, σ � e � N, σ � o ob(o, σo, Kidle, Q) ∈ N σo(nbcr) = 0

σ, N � ‖e‖ � σ, N � true

CSGuard2
N, σ � e � N, σ � o ob(o, σo, Kidle, Q) ∈ N σo(nbcr)
= 0

σ, N � ‖e‖ � σ, N � false

These two rules simply state that, when the object o has its field nbcr different
from zero, it has a critical section opened.

4.3 Properties

Important properties that show the adequateness of our machinery for port
rebinding are: (i) we never modify a port while being in a critical section (this
property is a consequence of the reduction rule Rebind: the execution of the
rebind expression can only occur when the object’s lock is 0) and (ii) when await
statements are not used in between, modification of several ports is atomic (due
to cooperative concurrency in the object group model): this can be used, like in
the second example of the location extension, to ensure consistency.

References

[1] OSGi Alliance. Osgi Service Platform, Release 3. IOS Press, Inc. (2003)
[2] Bhatti, N.T., Hiltunen, M.A., Schlichting, R.D., Chiu, W.: Coyote: A system for

constructing fine-grain configurable communication services. ACM Trans. Com-
put. Syst. 16(4) (1998)

78 M. Lienhardt, M. Bravetti, and D. Sangiorgi

[3] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: The Frac-
tal Component Model and its Support in Java. Software - Practice and Experi-
ence 36(11-12) (2006)

[4] Castagna, G., Vitek, J., Nardelli, F.Z.: The Seal calculus. Inf. Comput. 201(1)
(2005)

[5] Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, J.: OpenCOM v2:
A Component Model for Building Systsms Software. In: Proceedings of IASTED
Software Engineering and Applications, SEA 2004 (2004)

[6] Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

[7] Lenglet, S., Schmitt, A., Stefani, J.-B.: Howe’s Method for Calculi with Passi-
vation. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710,
pp. 448–462. Springer, Heidelberg (2009)

[8] Levi, F., Sangiorgi, D.: Mobile safe ambients. ACM. Trans. Prog. Languages and
Systems 25(1) (2003)

[9] Lienhardt, M., Lanese, I., Bravetti, M., Sangiorgi, D., Zavattaro, G., Welsch, Y.,
Schäfer, J., Poetzsch-Heffter, A.: A Component Model for the ABS Language.
In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS,
vol. 6957, pp. 165–183. Springer, Heidelberg (2011)

[10] Lienhardt, M., Schmitt, A., Stefani, J.-B.: Oz/K: A kernel language for
component-based open programming. In: GPCE 2007: Proceedings of the 6th In-
ternational Conference on Generative Programming and Component Engineering,
pp. 43–52. ACM, New York (2007)

[11] Miranda, H., Pinto, A.S., Rodrigues, L.: Appia: A flexible protocol kernel sup-
porting multiple coordinated channels. In: 21st International Conference on Dis-
tributed Computing Systems (ICDCS 2001). IEEE Computer Society (2001)

[12] Montesi, F., Sangiorgi, D.: A Model of Evolvable Components. In: Wirsing, M.,
Hofmann, M., Rauschmayer, A. (eds.) TGC 2010, LNCS, vol. 6084, pp. 153–171.
Springer, Heidelberg (2010)

[13] Morris, R., Kohler, E., Jannotti, J., Frans Kaashoek, M.: The Click Modular
Router. In: ACM Symposium on Operating Systems Principles (1999)

[14] Schmitt, A., Stefani, J.-B.: The Kell Calculus: A Family of Higher-Order Dis-
tributed Process Calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS,
vol. 3267, pp. 146–178. Springer, Heidelberg (2005)

[15] Sun Microsystems. JSR 220: Enterprise JavaBeans, Version 3.0 – EJB Core
Contracts and Requirements (2006)

Automated Inference of Models
for Black Box Systems Based on Interface Descriptions�

Maik Merten1, Falk Howar1, Bernhard Steffen1,
Patrizio Pellicione2, and Massimo Tivoli2

1 Technical University Dortmund, Chair for Programming Systems,
Dortmund, D-44227, Germany

{maik.merten,falk.howar,steffen}@cs.tu-dortmund.de
2 Università dell’Aquila, Dipartimento di Informatica, Via Vetoio, L’Aquila, Italy

{patrizio.pelliccione,massimo.tivoli}@univaq.it

Abstract. In this paper we present a method and tool to fully automatically in-
fer data-sensitive behavioral models of black-box systems in two coordinated
steps: (1) syntactical analysis of the interface descriptions, here given in terms
of WSDL (Web Services Description Language), for instantiating test harnesses
with adequate mappers, i.e., means to bridge between the model level and the
concrete execution level, and (2) test-based exploration of the target system by
means of active automata learning. The first step is realized by means of the
syntactic analysis of StrawBerry, a tool designed for syntactically analyzing
WSDL descriptions, and the second step by the LearnLib, a flexible active
automata learning framework. The new method presented in this paper (1) over-
comes the manual construction of the mapper required for the learning tool, a
major practical bottleneck in practice, and (2) provides global behavioral models
that comprise the data-flow of the analyzed systems. The method is illustrated in
detail along a concrete shop application.

1 Introduction

Documentation of IT-systems is, in well-known practice, usually found to be incom-
plete and inaccurate or otherwise lacking. This can be a major obstacle for continued
development of affected systems, where, e.g., extensions to the systems should not lead
to regressions: without an informative specification of the expected behavior it is dif-
ficult to ensure that all relevant regressions have been discovered during testing and
remedied before product deployment.

Inaccurate specifications also create major challenges when trying to connect remote
Networked Systems (NSs). Thus making such specifications precise is one of the major
challenges of the CONNECT project [4], which, even more ambitiously, aims at creating
an infrastructure where networked connectors can be synthesized fully automatically.

In this paper we present a method and tool to fully automatically infer dataflow-
sensitive behavioral models of black-box systems based on interface descriptions in
WSDL, the Web Services Description Language. This solves the problem of deriving

� This work is partially supported by the European FP7 project CONNECT (IST 231167).

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 79–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

80 M. Merten et al.

system specifications of black box systems adequate to, e.g., serve as a basis for the
connector synthesis of the CONNECT platform. This is done in two coordinated steps:
(1) syntactical analysis of the interface descriptions, here given in terms of WSDL, for
instantiating test harnesses with adequate mappers, i.e., means to bridge between the
model level an the concrete execution level, and (2) test-based exploration of the target
system by means of active automata learning.

The first step is realized by means of StrawBerry, a tool designed for syntacti-
cally analyzing WSDL descriptions, and the second step by the LearnLib, a flexible
active automata learning framework. The combination of the two tools (1) overcomes
the manual construction of the mapper required for the learning tool, a major practi-
cal bottleneck in practice, and a show stopper for automated model generation, and
(2) provides global behavioral models that comprise the data-flow of the analyzed sys-
tems. Thus it is unique in combining the general applicability of StrawBerry, which
simply requires WSDL interfaces, with the ability of active automata learning to infer
data-sensitive behavioral models.

The presentation of our method is accompanied by a discussion along a concrete
shop application, which illustrates the main features and highlights the essence of
dataflow sensitive modeling.

The paper is structured as follows. Sect. 2 presents a motivating and running exam-
ple. Sect. 3 provides background information on StrawBerry and Sect. 4 provides in-
formation on LearnLib. The integration of syntactic interface analysis and automata
learning is discussed in Sect. 5, for which results are provided and discussed in Sect.
6. Related work is discussed in Sect. 7, before Sect. 8 closes with our conclusions and
directions to future work.

2 Motivating Example

The explanatory example that we use in this paper is a web service (WS) called
EcommerceImplService. This service simulates a small e-commerce service, where
clients can open a session, retrieve a list of products, add products to a shopping cart and
finally conclude buying the items previously added to the cart. The following operations
are defined in the WSDL interface description:

• openSession: this operation is used by registered users to login into the WS. The
operation gets the username and password as input and returns a session. session
is a complex type composed of a session id and creationTime.

Input data Output data
user: string; return: session;
password: string;

• destroySession: this operation gets as input a session, destroys this session, and
returns a string denoting success.

Input data Output data
session: session; return: string;

• getAvailableProducts: this operation gets no inputs and returns productArray,
i.e., a list of products, where a product is a complex type composed of the product id,
its description, and its price.

Automated Inference of Models for Black Box Systems 81

Input data Output data
return: productArray;

• emptyShoppingCart: this operation gets as input a session, empties the shopping
cart, and returns the current session.

Input data Output data
session: session; return: session;

• getShoppingCart: this operation gets as input a session and returns the current
shoppingCart. shoppingCart is a complex type composed of a cart id, a list of
products, and the price.

Input data Output data
session: session; return: shoppingCart;

• addProductToShoppingCart: this operation gets as input a session and a
product, adds the product to the shopping cart, and returns the current session.

Input data Output data
session: session; return: session;
product: product;

• buyProductsInShoppingCart: this operation gets as input a session, buys the
array of products contained into the shopping cart and returns this array.

Input data Output data
session: session; return: productArray;

The particular implementation of this service has the following three semantic prop-
erties, which we will use for the illustration of our method. We will see that
StrawBerry fails to detect all of them, but that the integrated approach detects them
all:

– The operation buyProductsInShoppingCartwill only successfully conclude if
the shopping cart connected to the current session is not empty. Otherwise an error
will be raised.

– In contrast, the operation emptyShoppingCartwill return successfully even if the
shopping cart was empty already, as long as a valid session is provided.

– The shopping cart is emptied on successful invocations of
buyProductsInShoppingCart.

This behavior was modeled to reflect actual web shops. That is, web shops usually do
not allow for empty orders, as sending, e.g., empty packages to customers will nonethe-
less inflict costs. Performing a clearing operation on an empty shopping cart, however,
is not hurtful. Upon concluding a purchase, customers will expect a “fresh” shopping
cart, so they can resume shopping without having to worry about potentially shopping
items twice.

There are several reasons why we chose to use a simulated e-commerce service over,
e.g., an actual e-commerce service available on the Internet. First, public e-commerce
services usually do not offer an experimental mode where orders will not actually result
in costly deliveries and extensive test runs during the extrapolation of the service will
not be interpreted as, e.g., a denial of service attack. Second, the simulated e-commerce
service is comparatively small, which allows for easy comparison of the extrapolated
models with the actual implementation.

82 M. Merten et al.

3 StrawBerry

By taking as input a WSDL of a WS (Web Service), StrawBerry derives in an au-
tomated way a partial ordering relation among the invocations of the different WSDL
operations. This partial ordering relation is represented as an automaton that we call Be-
havior Protocol automaton. It models the interaction protocol that a client has to follow
in order to correctly interact with the WS. This automaton also explicitly models the in-
formation that has to be passed to the WS operations. The behavior protocol is obtained
through synthesis and testing stages. The synthesis stage is driven by syntactic interface
analysis (aka data type analysis), through which we obtain a preliminary dependencies
automaton that can be optimized by means of heuristics. Once synthesized, this depen-
dencies automaton is validated through testing against the WS to verify conformance,
and finally transformed into an automaton defining the behavior protocol.

WSDL
Dependency
Elicitation

Input/
Output

Dependencies

Saturated
Dependency
Automaton
Synthesis

Dependency
Automaton Refinement
Through Testing

Test-cases
Generation

SOAP
envelop

Saturated
Dependency
Automaton

Validated
Dependency
Automaton

No Error found Error found

Behavior
Protocol Synthesis

Behavior Protocol
Automaton

3

5

1

2

4

Fig. 1. Overview of the StrawBerry method

StrawBerry is a black-box and extra-procedural method. It is black-box since it
takes into account only the WSDL of the WS. It is extra-procedural since it focuses
on synthesizing a model of the behavior that is assumed when interacting with the
WS from outside, as opposed to intra-procedural methods that synthesize a model of
the implementation logic of the single WS operations [15,24,25]. Figure 1 graphically
represents StrawBerry as a process split in five main activities.

The Dependencies Elicitation activity elicits data dependencies between the I/O pa-
rameters of the operations defined in the WSDL. A dependency is recorded whenever
the type of the output of an operation matches with the type of the input of another op-
eration. The match is syntactic. The elicited set of I/O dependencies may be optimized
under some heuristics [6].

The elicited set of I/O dependencies (see the Input/Output Dependencies artifact
shown in Figure 1) is used for constructing a data-flow model (see the Saturated De-
pendencies Automaton Synthesis activity and the Saturated Dependencies Automaton
artifact shown in Figure 1) where each node stores data dependencies that concern the
output parameters of a specific operation and directed arcs are used to model syntactic
matches between output parameters of an operation and input parameters of another

Automated Inference of Models for Black Box Systems 83

Fig. 2. Model created by StrawBerry. The edge labels are abbreviated for improved readabil-
ity.

operation. This model is completed by applying a saturation rule. This rule adds new
dependencies that model the possibility for a client to invoke a WS operation by di-
rectly providing its input parameters. The resulting automaton is then validated against
the implementation of the WS through testing (see Dependencies Automaton Refine-
ment Through Testing activity shown in Figure 1).

The testing phase takes as input the SOAP messages produced by the Test-cases gen-
eration activity. The latter, driven by coverage criteria, automatically derives a suite of
test cases (i.e., SOAP envelop messages) for the operations to be tested, according to
the WSDL of the WS. In StrawBerry tests are generated from the WSDL and aim at
validating whether the synthesized automaton is a correct abstraction of the service im-
plementation. Testing is used to refine the syntactic dependencies by discovering those
that are semantically wrong. By construction, the inferred set of dependencies is syn-
tactically correct. However, it might not be correct semantically since it may contain
false positives (e.g., a string parameter used as a generic attribute is matched with an-
other string parameter that is a unique key). If during the testing phase an error is found,
these false dependencies are deleted from the automaton.

Once the testing phase is successfully terminated, the final automaton models, fol-
lowing a data-flow paradigm, the set of validated “chains” of data dependencies.
StrawBerry terminates by transforming this data-flow model into a control-flow
model (see the Behavior Protocol Synthesis activity in Figure 1). This is another kind
of automaton whose nodes are WS execution states and whose transitions, labeled with
operation names plus I/O data, model the possible operation invocations from the client
to the WS.

The primary result of StrawBerry used in the subsequent learning phase is the set
of validated “chains” of data dependencies.

StrawBerry at Work: referring to the example described in Section 2, Figure 4
shows states of the dependencies automaton produced by StrawBerry. Each state

84 M. Merten et al.

contains dependencies that each operation has with other operations. Dependencies
marked with � represent dependencies that are validated by testing activities. Fig-
ure 2 shows the obtained behavioral automaton. In our approach, it is both neces-
sary and reasonable to assume that, for some of the WSDL input parameters, a set
of meaningful values, called an instance pool [11], is available. Nodes of the behav-
ioral automaton contain the matured “knowledge”, i.e., the data that are provided with
the instance pool or that are obtained as result of previously invoked operations. The
S0 state contains only information that comes from the instance pool, i.e., username
and password. In S0 only openSession and getAvailableProducts can be in-
voked. Once invoked the openSession operation, the service reaches the state S2

in which session is available, since it is returned by the openSession operation.
Similarly, by executing getAvailableProducts the service reaches the state S1 in
which both productArray and product are available since productArray is the re-
turn value of getAvailableProducts and product is nested into the complex type
productArray.

Let us now focus on the state S5; in this state each operation can be invoked. Indeed
this automaton does not represent an accurate model for EcommerceImplService.
In particular the semantic properties introduced above are not revealed. For instance,
buyProductsInShoppingCart might fail when the shopping cart is empty. In other
words, there exist a sequence of operations that might lead to S5 with an empty cart.
The lack of behavioral information in the produced model can be attributed to the fact
that web service interfaces are not concerned with describing behavioral aspects and
thus provide incomplete information to any analysis approach merely focusing on in-
terfaces. As discussed in the following sections, the approach that we present in this
paper overcomes this limitation.

4 LearnLib and Active Automata Learning

LearnLib is a framework for automata learning and experimentation. Active au-
tomata learning tries to automatically construct a finite automaton that matches the
behavior of a given target automaton on the basis of active interrogation of target sys-
tems and observation of the produced behavior.

Active automata learning originally has been conceived for language acceptors in
the form of deterministic finite automata (DFAs) (cf. Angluin’s L∗ algorithm [3]). It
is possible, however, to apply automata learning to create models of reactive systems
instead. A more suited formalism for this application are Mealy machines:

Definition 1. A Mealy machine is defined as a tuple 〈Q, q0, Σ,Ω, δ, λ〉 where

– Q is a finite nonempty set of states (be n = |Q| the size of the Mealy machine),
– q0 ∈ Q is the initial state,
– Σ is a finite input alphabet,
– Ω is a finite output alphabet,
– δ : Q×Σ → Q is the transition function, and
– λ : Q ×Σ → Ω is the output function.

Automated Inference of Models for Black Box Systems 85

Intuitively, a Mealy machine evolves through states q ∈ Q, and whenever one applies
an input symbol (or action) a ∈ Σ, the machine moves to a new state according to
δ (q, a) and produces an output according to λ (q, a).

In the context of reactive systems, the input alphabet contains actions which can be
executed on the target system, while the output alphabet is determined by the output the
system produces in response to the executed input actions.

Mealy machines are deterministic and thus are not a fitting modeling approach for,
e.g., systems with truly erratic behavior, such as slot machines. However, many (if not
most) systems serving a specific purpose are deterministic in nature, i.e., provided with
a fixed set of inputs applied to a preset internal state, these systems will always produce
the same output. Spurious errors (e.g., due to errors in communication) can be detected
and eventually corrected by means of repeated experimentation.

When employed to create models in the form of Mealy machines, active automata
learning employs two distinct types of queries to gather information on the System
Under Learning (SUL):

– Membership Queries (MQs) retrieve behavioral information of the target system.
Consisting of traces of system stimuli (each querymq ∈ Σ∗), MQs actively trigger
behavioral outputs which are collected and analyzed by the learning algorithm.
MQs are used to construct a hypothesis, which is subject of a verification by a
second class of queries, the equivalence queries.

– Equivalence Queries (EQs) are used to determine if the learned hypothesis is a
faithful representation of the target system. If the equivalence oracle handling the
EQ finds diverging behavior between the learned hypothesis and the target system
a counterexample ex ∈ Σ∗ will be produced, which is used to refine the hypothesis
after restarting the learning process.

With those two query types, learning algorithms, such as L∗i/o [17], create minimal
automata models, i.e., the learned result never contains more states than the minimized
representation of the target system, and also guarantee termination with an accurate
learned model.

It is worth noting that while MQs are relatively straightforward to employ on actual
systems by execution of test runs, EQs pose a more challenging problem: while systems
will readily produce output in response to input as normal mode of operation, they
usually will neither confirm nor disprove a learned hypothesis in a direct manner. This
is easy to see, as systems usually do not possess a formal model of their inner-workings
fit for comparison. Thus, in practice, EQs can only be approximated, e.g., by executing
additional test runs by means of MQs. Employing approximated EQs does impact the
statement on correctness presented above: while the learned model will still be minimal,
its accurateness is no longer guaranteed. In certain applications, however, it is possible
to construct perfect EQs by employing MQs, e.g., if an upper bound on system size in
terms of states is known. For the experiments presented in this paper, however, a simple
approximation was used that generates random test runs.
LearnLib contains several learning algorithms fit for learning reactive systems,

including EQ approximations, embedded in a flexible framework.

86 M. Merten et al.

In practice, to learn concrete reactive systems, a test-driver has to translate the gen-
erated queries composed of abstract and parameterized symbols into concrete system
interaction and conduct the actual invocations. In turn, the produced (concrete) system
output has to be gathered and translated into abstract output symbols. Figure 3 shows
the essential components of such a test-driver, embedded into a learning setup.

Fig. 3. Schematic view of a test driver for learning a reactive system

– A mapper is responsible for translating abstract queries generated by the learning
algorithm into concrete queries comprised of actions that can be executed on the
SUL. For parameterized actions, fitting valuations have to be inserted. Mappers are
discussed, e.g., in [14].

– To fill in values for parameterized actions, a data value context maintains a set of
value instances, that can be stored, retrieved and updated by the mapper.

– The proxy maintains a connection to the SUL and interacts with the SUL on be-
half of the test-driver, using the concretized parameterized actions created by the
mapper. Invocation results are gathered and returned to the mapper, which creates
fitting abstract output symbols. For remote services which deliver an interface de-
scription in a standardized format (for instance, WSDL), such proxies can often be
generated using specialized tools.

LearnLib at Work: LearnLib employs active automata learning algorithms that
belong to the family of L∗-like algorithms. Models are constructed by gathering obser-
vations triggered by active infusion of test queries. This approach works without hav-
ing any knowledge on the syntactic structure of the system’s interface. In fact, queries
are assembled from a provided alphabet without any notion of syntactic correctness,
although having such a notion can speed up the learning process by filtering not well-
formed queries (e.g., in the test driver) and only executing syntactically correct on the
target system. Even the alphabet from which queries are constructed may be comprised
of arbitrary bit-strings, which, of course, do not bode well regarding the chances of
creating an insightful model.

To be able to learn models for systems on a sophistication level of the discussed
example system, it is necessary to handle data dependencies of the actions to be in-
voked. This means that the abstract alphabet symbols in fact are parameterized, with
fitting valuations being inserted at runtime and returned data values being retained as
needed. This is done in the test-driver by the mapper component with data values being
organized in a data value context, as discussed in Sect. 4.

In current practice, both the learning alphabet and the according mapper are con-
structed manually. This can be a time-consuming task, with, for example, more than a

Automated Inference of Models for Black Box Systems 87

openSession.return

openSession
destroySession.session

session

string

destroySession
destroySession.return

getAvailableProducts
getAvailableProducts.return.item

getShoppingCart
getShoppingCart.return.id

string

openSession.return
openSession.return
openSession.return
openSession.return

openSession.return.id

session
session

session

session

emptyShoppingCart.session
getShoppingCart.session
addProductToShoppingCart.session
buyProductsInShoppingCart.session

openSession.return.id
string

openSession.username
openSession.password

getShoppingCart.return.items
getShoppingCart.return.items.id

getShoppingCart.return.items.description

getShoppingCart.return.id
string

openSession.username
openSession.password

product
addProductToShoppingCart.product

getShoppingCart.return.items.id
string

string

openSession.username
openSession.password

string

string

openSession.username
openSession.passwordgetShoppingCart.return.items.description

string

string

openSession.username
openSession.password

addProductToShoppingCart.return.id

addProductToShoppingCart

addProductToShoppingCart.return.id

getAvailableProducts.return.item.id
addProductToShoppingCart.product

getAvailableProducts.return.item.id
string

string

openSession.username
openSession.password

getAvailableProducts.return.item.description
getAvailableProducts.return.item.description

string

string

openSession.username
openSession.password

string
openSession.username

destroySession.return
string

openSession.password

emptyShoppingCart

emptyShoppingCart.return.id
emptyShoppingCart.return.id

string
string

openSession.username
openSession.password

product

buyProductsInShoppingCart.return.item
buyProductsInShoppingCart.return.item.id

addProductToShoppingCart.product

buyProductsInShoppingCart.return.item.id
string

string

openSession.username
openSession.password

buyProductsInShoppingCart.return.item.description
buyProductsInShoppingCart.return.item.description

string

string

openSession.username
openSession.password

product

buyProductsInShoppingCart

emptyShoppingCart.return destroySession.session
session

emptyShoppingCart.return
session
session

session

session

emptyShoppingCart.session
getShoppingCart.session
addProductToShoppingCart.session
buyProductsInShoppingCart.session

emptyShoppingCart.return
emptyShoppingCart.return
emptyShoppingCart.return

destroySession.session
session

session
session

session

session

emptyShoppingCart.session
getShoppingCart.session
addProductToShoppingCart.session
buyProductsInShoppingCart.session

addProductToShoppingCart.return
addProductToShoppingCart.return
addProductToShoppingCart.return
addProductToShoppingCart.return
addProductToShoppingCart.return

Fig. 4. States of the dependencies automaton produced by StrawBerry

quarter of the total effort being attributed to theses tasks in [23]. This manual approach
of creating automata learning setups induces clear limitations on where automata learn-
ing can be employed. For example, this is unsustainable in scenarios where behavioral
models are to be learned automatically for a wide range of systems, which is a require-
ment, e.g., for automated connector synthesis.

A central bottleneck of current practice is that the test-driver components such as the
mapper must be constructed manually for any specific SUL. This is overcome by our
approach which uses a generic mapper that is automatically instantiated with informa-
tion derived from the syntactic interface analysis performed by StrawBerry.

5 The Integrated Approach

The integrated approach that is proposed in this paper solves limitations of both
StrawBerry and LearnLib. Conceptually, the new solution integrates learning
techniques with syntactic analysis that helps identifying potential dependencies be-
tween input and output parameters of different service operations. The integrated ap-
proach is an automata learning method, which is automated by a tool, that is realistic
since it requires as input only a WSDL interface. As far as we know this is the only
method with such minimal input assumption. It is worthwhile to note that, although
StrawBerry shares the same minimal input assumption, it does not perform automata
learning. In fact, it performs a totally different approach (based on data analysis and
testing) that is less accurate than automata learning. Accuracy is a key aspect related to
the behavioral model inference problem.

As typical usage scenario of the integrated approach let us imagine that a user needs
to understand the behavior automaton of an existing black-box WS, such as the Amazon
E-Commerce Service (AECS) as shown in [7]. The overall information that the user has

88 M. Merten et al.

to provide are: (i) the URL of the service to be learned; (ii) predetermined data values
for an instance pool; (iii) alphabet symbols which refer to parameterized actions on
the target system; and (iv) parameters and return variables for each alphabet symbol.
Even though in this paper we consider a mock-up service built in house with the aim of
carrying out meaningful validation, this usage scenario points it out that our approach
is realistic in the sense that it can be applied to third-parties black-box services. As it is
usual in the current practice of web-services development, service providers give access
to a testing version of the same service that allows developers to extensively test web-
services while avoiding negative side effects on the availability of production services.
For instance, this is the case for the Amazon case study described in [7] and for other
well-known third-parties services, such as PayPal.

The integrated approach enhances LearnLib with syntactic analysis that extracts
from running services a WSDL enriched with explicit I/O data dependencies. In
LearnLib, and in general in active learning, this information is assumed to be pro-
vided by users and to be part of the learning setup. However, producing this information
would be complex and for sure tedious.

Glue connectors have been realized to enable LearnLib to take as input the depen-
dency analysis results produced by syntactic analysis. More precisely, glue connectors
have been realized to take as input the enriched WSDL and to allow for the automatic
construction of a mapper required for the learning tool to bridge between the model
level (abstract alphabet symbols) and the concrete execution level (concrete actions
outfitted with live data values and return values of invocations).

The syntactic analysis of the integrated approach, which is needed to allow the con-
struction of an alphabet and a mapper accounting for data flow concerns, is inherited by
StrawBerry. This part of StrawBerry, i.e. activities 1 and 2 referring to Figure 1,
produces an automaton that is handed over to LearnLib in form of an artifact called
setup specification (an overview is given in Figure 5).

We recall that Figure 4 shows the states of the saturated dependencies automaton
produced by StrawBerry’s syntactic analysis and syntactic dependencies that each
operation has with the other operations. This information is used in the integrated ap-

Fig. 5. Integration of StrawBerry’ syntactic analysis (steps 1-2) and LearnLib (steps 4, 5,
and 6). Step 3 is a newly added feature. wsimport provides proxy classes to interact with the
target system.

Automated Inference of Models for Black Box Systems 89

proach to determine the data-flow between method invocations and to choose parameter
and return variables for the setup specification.

This means that information on data dependencies between operations, as deduced
by StrawBerry, are used to construct an alphabet of parameterized actions. This al-
lows for carrying enough information so that the mapper can translate abstract alphabet
symbols into concrete actions outfitted with live data values and manage return values
of invocations.

To illustrate how an automated learning setup can be instantiated with the help of the
generated setup descriptor (an activity represented as Test-driver and mapper instanti-
ation in Figure 5), it is helpful to recall which concerns have to be addressed:

– Means for instrumentation of the SUL have to be provided, e.g., by means of a
proxy that is accessible by the test-driver.

– An alphabet for the learner has to be constructed, as well as a mapping between
the abstract alphabet and concrete system actions. This is where the dependency
information provided by Strawberry is essential.

– Facilities for handling communicated data-values have to be present and configured
to account data-flow between operations.

In the following we will discuss these points in more detail:

5.1 Instrumentation

Within a setup for active automata learning, the instrumentation layer is responsible for
injecting system stimuli and gathering the target system’s output for every invocation.
For WSDL services, injecting system stimuli can be done in a straightforward way,
e.g., by using automatically generated proxy classes that expose system functionalities
while hiding the specifics of operating the target system through networked messages.
For the experiments discussed in this paper, proxy classes for the remote system are
generated by the wsimport [18] utility, which can serve as instrumentation layer for
the test driver (denoted as WS import activity in Figure 5).

5.2 Determining an Alphabet and Mapper Configuration

The interface description is a natural source for the alphabet employed for the learn-
ing process, as every message defined in the WSDL description usually has a direct
mapping to system features intended for remote consumption. It appears most sensible
to choose the names of the defined WSDL messages as abstract alphabet symbols for
the learner, which the test-driver concretizes into actual operation invocations of the
generated proxy classes. As such the mapping between the abstract learning alphabet
and concrete system input is one from operation names to actual invocations of the
corresponding operation.

For parameterized operations, abstract alphabet symbols also have to include infor-
mation for the mapper on how to retrieve values from the data value context to enable
actual invocation. Thus the abstract symbols for parameterized operation calls will con-
tain references to this context in form of instructions on how to retrieve data values from
it.

90 M. Merten et al.

To populate the data value context, data values returned by the SUL will be stored
as named variables. Thus the abstract symbols also have to contain information on the
name of the variable the return value is assigned to. For each stored value the abstract
output symbol forwarded to the learner will simply be the variable name in which the
return value was stored, abstracting from the actual content of the return message that
the system under test produced. A similar approach to abstraction is taken for error
messages: if the SUL produces an elaborate error message, the output returned to the
learner usually will be a generic “error” symbol, abstracting from all the details related
to this error instance. No data value will be stored in this case.

5.3 Storing and Accessing Data-Values

When concretizing learning queries into actual system input, fitting data values have to
be inserted into parameterized system messages. Thus the system driver has to be able
to store received data values and generate concrete system input by resorting to these
stored values.

To accommodate data values, the data value context is realized as an embedded
JavaScript environment. The reason for choosing a JavaScript environment over, e.g.,
a map of variable names and variable values, lies in the ability of a scripted context to
access stored data with utmost flexibility. A scripted data value context is, e.g., able to
access fields of complex data structures and provide those as parameter values.

Not every parameter can be filled with data values that are results of preceding sys-
tem invocations. One notable example for this are login credentials, which have to be
known beforehand. Such values have to be included in the setup specification and are
copied into the data value context.

6 Application to the Example and Discussion

In the following, we will apply the presented approach to the running example.
Figure 6 shows an excerpt of the setup descriptor created byStrawBerry as a result

of the interface analysis. The serviceurl declaration in line 2 provides an URL to
the SUL, which can be directly used as an input for wsimport. Predetermined values
(credentials in this case) are provided in lines 3 to 6 and are used to populate the instance
pool.

The remainder of the specification file defines a sequence of symbols. Each symbol

includes a sequence of parameter declarations, which refer to named variables in
the data value context. It can be seen that the symbol declarations include informa-
tion on parameters and on the variables where return values are stored. Parameter val-
ues stored in the data value context are addressed by named keys that are specified by
the alternative environment. The reason for having alternative declarations is
that parameters may have several potential data sources. For example, the second pa-
rameter of the symbol addProductToShoppingCart may take data values from the
variables productArray and shoppingCart. Each alternative induces the instantia-
tion of additional abstract symbols, meaning that for the presented example the learn-
ing alphabet has in fact two addProductToShoppingCart symbols, one referring to
productArray as parameter value, the other referring to shoppingCart.

Automated Inference of Models for Black Box Systems 91

Fig. 6. Excerpt of the setup descriptor for LearnLib generated by StrawBerry by means of
syntactical analysis

92 M. Merten et al.

Fig. 7. Model created by LearnLib using the setup description created by StrawBerry. The
edge labels are abbreviated for improved readability.

The parameters of the symbol addProduct- ToShoppingCart illustrate why
realizing the data value context as scriptable environment is advantageous: the
alternative declaration in line 31 of Figure 6 includes attributes that specify how the
data value for the corresponding parameter has to be extracted from the context. Instead
of directly filling in the parameter value with the complete data structure that is pointed
by the variable productArray, only the field “item” of this data structure should
be considered. However, the field “item” references a set of products and not a single
product. Thus, the selector “elementOf” is specified as well. From this information
the JavaScript expression elementOf(productArray.getItem()) is derived and
evaluated on the data value context at run time, where the function elementOf() is
predefined and simply returns the first value of any provided collection.

The result of learning a behavioral model with this setup specification is shown in
Figure 7. Please note that this figure presents a view onto the learned Mealy machine
that omits error transitions, only showing actions that do not raise an exception during
execution. The impact of the experimental semantical analysis is already apparent from
the fact that this model contains more states than those created by StrawBerry by
means of syntactic analysis and test runs, with the effect that all the three properties
mentioned in Section 2 are correctly revealed:

– When no products have previously been added to the shopping cart, the operation
to purchase products does not conclude successfully: the purchase action only suc-
ceeds in states s4 and s5, which can only be reached when adding at least one
product to the shopping cart.

– As long as a session is open, it is possible to empty its associated shopping cart:
the action to empty the shopping cart succeeds in all states except the states s0,
s1 and s7, where the session either has not been openend yet or was subsequently
destroyed.

Automated Inference of Models for Black Box Systems 93

– After a purchase operation it is not possible to immediately trigger another pur-
chase. Instead, it is necessary to put another item into the shopping cart, which
implies that the purchase operation does clear the shopping cart. This can be wit-
nessed at the s4/s3 and s5/s6 transitions.

Apart from these facets even more subtle behavioral aspects are captured. For exam-
ple, once a non-empty shopping cart is retrieved, its contents can be added to another
session’s shopping cart. This means that the data structure representing products in a
shopping cart is not bound to session instances, which is another implementation de-
tail influencing how the service can be operated that is not explicitly contained in the
service’s interface description.

7 Related Work

Inferring formal properties of software components has been a major research interest
for the past decade. Most available approaches fall into one of two classes. One class
generates extrinsic properties (e.g., invariants). The other class generates intrinsic prop-
erties, e.g., models describing the actual behavior of components. In both classes active
and passive approaches, as well as black-box and white-box variants can be found.
While StrawBerry falls into the first category, LearnLib is of the second kind.

The class of methods for generating properties can be further subdivided into meth-
ods that “mine” statistical models and methods that generate invariants. In the class
of methods that generate statistical models, the approaches described in [25,24] mine
Java code to infer sequences of method calls. These sequences are then used to produce
object usage patterns and operational preconditions, respectively, that serve to detect
object usage violations in the code. StrawBerry shares with [24] the way an object
usage pattern is represented, i.e., as a set of temporal dependencies between method
calls (e.g.,m < n means “calls tom precede calls to n”).

The work of [19] presents a passive method for the automated generation of
specifications of legal method call sequences on multiple related objects from from
method traces of Java programs, [9] extends this method by active testing. As for
StrawBerry, tests are used to refine the invariants that have been generated induc-
tively from the provided information. However, in contrast to StrawBerry, none of
these approaches focuses on data-flow invariants explicitly. A tool that infers invariants
from data is Daikon [10].

In the class of methods that generate intrinsic properties, especially automata learn-
ing has been used to generate behavioral models of systems. Active learning, as im-
plemented in LearnLib, has been used to infer behavioral models of CTI systems as
early as 2002 [12,13]. It has since then been applied in a number of real-life case stud-
ies (e.g., [21,20]). In these case studies, however, data has never been treated explicitly
but was rather hidden from the learning algorithm. In [22], systems with data param-
eters are considered. However, this work does not consider relations between different
parameters. Recently, automata learning has been extended to deal with data param-
eters and data dependencies explicitly by means of hand-crafted mappers [14,1]. Our
approach is unique in generating mappers automatically.

94 M. Merten et al.

There are only few approaches that combine inference of behavioral models and
invariants on data-flow. The authors of [5] present an approach for inferring state ma-
chines (by means of active learning) for systems with parameterized inputs. They first
infer a behavioral model for a finite data domain, and afterwards abstract this model
to a symbolic version, encoding extrapolated invariants on data parameters as guarded
transitions.

The authors of [16,15] demonstrate how behavioral models can be created with pas-
sive learning from observations gathered by means of monitoring. In addition, this ap-
proach tries to capture the behavioral influence of data values by applying an invariance
detector [10]. This approach, however, is subject to the issue of all passive approaches:
they are limited to the (possibly small) set of observed executions. If a piece of code or
part of the application is not executed, it will not be considered in the generated model.

The work described in [11] (i.e., the SPY approach) aims at inferring a behavioral
specification (in this case: graph transformation rules) of Java classes that behave as
data containers components by first observing their run-time behavior on a small con-
crete data domain and then constructing the transformation rules inductively from the
observations.

It is common to all these approaches that they work on a large basis of concrete
information that by induction is condensed into symbolic behavioral models. Invariants
on data values are obtained in a post-processing step after construction of behavioral
models.

In [2] an approach is presented that generates behavioral interface specifications for
Java classes by means of predicate abstraction and active learning. Here, predicate ab-
straction is used to generate an abstract version of the considered class. Afterwards
a minimal interface for this abstract version in obtained by active learning. This is a
white-box scenario, and learning is used only to circumvent more expensive ways of
computing the minimal interface.

Our approach, in contrast, provides a solution for the black-box scenario. Similarly,
however, we use StrawBerry to compute an interface alphabet, and mapper, which
in combination work as an abstraction, and infer a model at the level of this abstraction,
using LearnLib.

8 Conclusions and Perspectives

We have presented a method and tool to fully automatically infer dataflow-sensitive
behavioral models of black-box systems based on interface descriptions in WSDL by
combining StrawBerry, a tool for syntactical analysis of the interface descriptions
and the LearnLib, a flexible active automata learning framework. This combination
allows us to overcome a central bottleneck, the manual construction of the mapper re-
quired for the learning tool to bridge between the model level and the concrete execution
level.

Our method has been illustrated in detail along a concrete shop application exam-
ple. The results are promising, but further case studies are required to fully explore the
application profile of the approach. Scalability is certainly an issue here, and it has to
be seen how stable the approach is concerning varying versions of WSDL-based in-
terface specifications. Particularly interesting is here to investigate how our approach

Automated Inference of Models for Black Box Systems 95

may profit from extra information provided e.g. through semantic annotations, a point
explicitly addressed also in the CONNECT context. There, full automation is not suffi-
cient as CONNECT’s support is meant to happen fully online. Finally, we are currently
working on an extension of our technology to generate even more expressive models
in terms of register automata [8]. These models are designed to make the currently
only implicitly modeled dataflow information explicit by introducing transitions with
explicit conditions and assignments.

References

1. Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communication Proto-
cols Using Regular Inference with Abstraction. In: Petrenko, A., Simão, A., Maldonado, J.C.
(eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer, Heidelberg (2010)

2. Alur, R., Cerný, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java
classes. In: POPL, pp. 98–109 (2005)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75,
87–106 (1987)

4. Bennaceur, A., Blair, G., Chauvel, F., Gang, H., Georgantas, N., Grace, P., Howar, F., In-
verardi, P., Issarny, V., Paolucci, M., Pathak, A., Spalazzese, R., Steffen, B., Souville, B.:
Towards an Architecture for Runtime Interoperability. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2010, Part II. LNCS, vol. 6416, pp. 206–220. Springer, Heidelberg (2010)

5. Berg, T., Jonsson, B., Raffelt, H.: Regular Inference for State Machines Using Domains
with Equality Tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961,
pp. 317–331. Springer, Heidelberg (2008)

6. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of behavior pro-
tocols for composable web-services. In: ESEC/SIGSOFT FSE, pp. 141–150. ACM (2009)

7. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of behavior pro-
tocols for composable web-services. In: Proceedings of The 7th Joint Meeting of the Euro-
pean Software Engineering Conference (ESEC) and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE), pp. 141–150 (August 2009)

8. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A Succinct Canonical Regis-
ter Automaton Model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996,
pp. 366–380. Springer, Heidelberg (2011)

9. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases for specifi-
cation mining. In: Proceedings of ISSTA 2010, pp. 85–96. ACM, New York (2010)

10. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao,
C.: The Daikon system for dynamic detection of likely invariants. Sci. Comput. Program-
ming 69(1-3), 35–45 (2007)

11. Ghezzi, C., Mocci, A., Monga, M.: Synthesizing Intentional Behavior Models by Graph
Transformation. In: ICSE 2009, Vancouver, Canada (2009)

12. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model Generation by Moderated Regular
Extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95.
Springer, Heidelberg (2002)

13. Hungar, H., Margaria, T., Steffen, B.: Test-based model generation for legacy systems. In:
Proceedings of the International Test Conference, ITC 2003, September 30-October 2, vol. 1,
pp. 971–980 (2003)

14. Jonsson, B.: Learning of Automata Models Extended with Data. In: Bernardo, M., Issarny, V.
(eds.) SFM 2011. LNCS, vol. 6659, pp. 327–349. Springer, Heidelberg (2011)

96 M. Merten et al.

15. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic Generation of Software Behavioral Models.
In: ICSE 2008, pp. 501–510. ACM, NY (2008)

16. Mariani, L., Pezzè, M.: Dynamic Detection of COTS Component Incompatibility. IEEE Soft-
ware 24(5), 76–85 (2007)

17. Niese, O.: An Integrated Approach to Testing Complex Systems. PhD thesis, University of
Dortmund, Germany (2003)

18. Oracle.com. JAX-WS RI 2.1.1 – wsimport, http://download.oracle.com/javase
/6/docs/technotes/tools/share/wsimport.html
(2011) (online; accessed September 13, 2011)

19. Pradel, M., Gross, T.: Automatic generation of object usage specifications from large method
traces. In: Proceedings of ASE 2009, pp. 371–382 (November 2009)

20. Raffelt, H., Margaria, T., Steffen, B., Merten, M.: Hybrid test of web applications with
webtest. In: Proceedings of TAV-WEB 2008, pp. 1–7. ACM, New York (2008)

21. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: Learnlib: a framework for extrapolating be-
havioral models. Int. J. Softw. Tools Technol. Transf. 11, 393–407 (2009)

22. Shahbaz, M., Li, K., Groz, R.: Learning Parameterized State Machine Model for Integration
Testing, vol. 2, pp. 755–760. IEEE Computer Society, Washington, DC (2007)

23. Shahbaz, M., Shashidhar, K.C., Eschbach, R.: Iterative refinement of specification for com-
ponent based embedded systems. In: Proceedings of ISSTA 2011, pp. 276–286. ACM, New
York (2011)

24. Wasylkowski, A., Zeller, A.: Mining Operational Preconditions (Tech. Rep.),
http://www.st.cs.uni-saarland.de/models/papers/wasylkowski-
2008-preconditions.pdf

25. Wasylkowski, A., Zeller, A., Lindig, C.: Detecting Object Usage Anomalies. In: ESEC-FSE
2007, pp. 35–44. ACM (2007)

http://download.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html
http://download.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html
http://www.st.cs.uni-saarland.de/models/papers/wasylkowski-2008-preconditions.pdf
http://www.st.cs.uni-saarland.de/models/papers/wasylkowski-2008-preconditions.pdf

Model-Based Compatibility Checking
of System Modifications∗

Arnd Poetzsch-Heffter, Christoph Feller, Ilham W. Kurnia, and Yannick Welsch

University of Kaiserslautern, Germany
{poetzsch,c_feller,ilham,welsch}@cs.uni-kl.de

Abstract. Maintenance and evolution of software systems require to modify or
exchange system components. In many cases, we would like the new component
versions to be backward compatible to the old ones, at least for the use in the
given context. Whereas on the program level formal techniques to precisely de-
fine and verify backward compatibility are under development, the situation on
the system level is less mature. A system component C has not only commu-
nication interfaces to other system components, but also to human users or the
environment of the system. In such scenarios, compatibility checking of different
versions of C needs more than program analysis:

– The behavior of the users are not part of the program, but needs to be consid-
ered for the overall system behavior.

– If the user interaction in the new version is different from the old one, the
notion of compatibility needs clarification.

– Analyzing the user interface code makes checking technically difficult.

We suggest to use behavioral software models for compatibility checking. In our
approach, the underlying system, the old and new component, and the nonde-
terministic behavior of the environment are modeled with the concurrent object-
oriented behavioral modeling language ABS. Abstracting from implementation
details, the checking becomes simpler than on the program level.

1 Introduction

Software systems play a key role in the infrastructure for modern societies. The size and
cost of these systems forbid to create them “de novo” time and again. Thus, we need to
systematically evolve systems and adapt them to new requirements. A typical evolution
step is the exchange of a component C by a new version C ′. We say that C ′ is backward
compatible with C if the behaviors of C are also provided by C ′. Backward compati-
bility is a central notion for quality assurance in software evolution and has different
variants. Weaker forms of backward compatibility ensure that some well-defined prop-
erties are maintained during evolution steps, but not necessarily all behaviors. Another
line of variation is with respect to the contexts in which backward compatibility should

∗ This research is partly funded by the EU project FP7-231620 HATS (Highly Adaptable and
Trustworthy Software using Formal Models) and the German Research Foundation (DFG) un-
der the project MoveSpaci in the priority programme RS3 (Reliably Secure Software Systems).

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 97–111, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

98 A. Poetzsch-Heffter et al.

be guaranteed. For example, we can require that a component is backward compatible
in all possible contexts or just for the use in certain systems.

In this paper, we investigate compatibility of components that have a bipartite con-
text consisting of, on the one hand, interactions with users or the environment and, on
the other hand, communication with an underlying system. A common example is an
application component C with a GUI that talks to an underlying database. Our goal is to
show that a new version C ′, having possibly a very different GUI, can be used instead
of C . More precisely, we want to make sure that users of C ′ can trigger the same inter-
actions with the underlying system as in the old version. That is, we allow modifying
the interactions with users or the environment1, but want to maintain the behavior at the
interface to the underlying system. Checking this kind of compatibility is challenging:

– Usual program analysis techniques are not sufficient, because we have to also take
the user behavior into account.

– As the user interactions in the new version might be quite different from the old one,
we have to be able to compose user and component behavior to derive the behavior
at the interface to the underlying system.

– We have to abstract from the complexities of GUI software.

The central contribution of this paper is a new method for reasoning about compat-
ibility of components with bipartite contexts. The method is based on the following
framework:

– An executable behavioral modeling technique: Software components and users are
modeled using the concurrent, object-oriented modeling language ABS [8]. ABS
models abstract from implementation details (e.g., event handling and layout man-
agement in GUIs) and capture the concurrent behavior among possibly distributed
components. They can faithfully reflect the software structure, simulate the imple-
mentation2 and allow validation of models. ABS also supports modeling internal
nondeterminism, which is, e.g., crucial to model the possible behavior of users.

– Component transition systems: The semantics of each component of the ABS model
is represented by a component transition system (CTS) receiving and sending mes-
sages. In contrast to ABS which is very good for modeling, the CTS-level simpli-
fies composition and reasoning. The consistency between an ABS component and
a CTS can be verified by programming logics (see, e.g., [4]).

– A reasoning technique for compatibility with bipartite contexts based on CTS com-
position and simulation proofs.

In this paper, we describe the framework, use it to model a system with a GUI, and
demonstrate a typical evolution step for such systems, in which the GUI and the possi-
ble user interactions are modified. Then, we define compatibility of components with
bipartite contexts and describe how to check compatibility.

1 For brevity, we will only consider user interactions in the following. However, we claim that
our approach can also be used in settings in which sensors and actors are used to communicate
with a modeled environment.

2 ABS also supports code generation.

Model-Based Compatibility Checking of System Modifications 99

Overview. Section 2 presents the executable behavioral modeling technique, the lan-
guage ABS, and our running example. Section 3 describes evolution steps and defines
compatibility. Section 4 introduces CTSs, their composition, and compatibility check-
ing. Finally, Sects. 5 and 6 discuss related work and present conclusions.

2 Modeling Software Systems

This section describes our behavioral modeling technique. It is more abstract than im-
plementations, e.g., by abstracting from the event handling mechanisms of GUIs, but
still reflects the structure and communication behavior of implementations which is
important for component-based reasoning. We illustrate the modeling technique by an
example that will also be used to explain our reasoning technique in subsequent sec-
tions.

2.1 ABS Modeling

To model software systems, we use the modeling language ABS, an object-oriented
language with a concurrency model based on concurrent object groups (COGs). COGs
follow the actor paradigm [6] and are developed to avoid data races and the complexity
of multithreading. COGs are the unit of concurrency and distribution. During execution,
each object is a member of exactly one COG for its entire lifetime. This is similar to
the Java RMI setting where objects belong to certain JVM instances, which may run
distributed on different machines. Groups can be created dynamically and work concur-
rently. Execution within a single group is sequential. Communication between groups is
asynchronous. This concurrency model is used in the abstract behavioral specification
language ABS [8] and in JCoBox [11], a Java based realization of COGs.

ABS supports object-oriented concepts using a Java-like syntax and immutable re-
cursive datatypes in the style of functional languages. In ABS, the creation of COGs
is related to object creation. The creation expression specifies whether the object is
created in the current COG (using the standard new expression) or is created in a fresh
COG (using the new cog expression). Communication in ABS between different COGs
happens via asynchronous method calls which are indicated by an exclamation mark (!).
A reference in ABS is far when it targets an object of a different COG, otherwise it
is a near reference. Similar to the E programming language [10], ABS restricts syn-
chronous method calls (indicated by the standard dot notation) to be made only on near
references.

2.2 Example: Flight Booking System

As an example, we consider a simple flight booking system. It follows a two-tier archi-
tecture with an application accessing an underlying repository. The application has a
GUI with several state-dependent views. The system consists of the two main compo-
nents:

– Agent, modeling the application and graphical user interface layer, and
– Server, modeling the database upon which the actual booking takes place.

100 A. Poetzsch-Heffter et al.

agentgui

logoffViewairlineView destinationView

server

session

user

COG object far reference near reference

Fig. 1. Runtime structure of ABS model

In addition to these two software components, we provide an explicit user model in
ABS. All three components are modeled as COGs. The runtime structure of the system
is given in Fig. 1. As the details of the server behavior are not relevant for our model,
we represent that part of the system by a generic server object and a session object
that handles the connection to the agent. The agent component consists of a main agent
object that does the actual booking and various view objects that are used to present the
steps of the booking process to the user. For example, the airlineView object presents
the user with choices of the bookable airlines and the buttons to select the airline. The
gui object is used as a proxy for the various views of the agent. Initially it delegates to
the airlineView, but over time, it may delegate to other views. Encapsulating the various
views by the gui proxy allows the agent to control which views are presented to the user.

The gui object together with the view objects realize the graphical user interface of
the system where the gui object represents the part corresponding to a GUI toolkit. The
design of our very simple GUI model is based on two principles:

– The communication between users and the GUI is asynchronous and triggered by
the user, and the used methods are application-independent.

– The presentation of views is controlled by the software system.

Asynchronous communication is obtained by using ABS; application independency is
achieved by realizing the communication over a generic interface. In our simple model,
the interface View (see Fig. 2) allows users to click on buttons (method clickOn where
the parameter identifies the button) and to inspect the view: method viewContent returns
the shown content and getNbt yields the number of enabled buttons. The user interacts
with the system by invoking these methods (the software system cannot call methods on
the user). The gui object is the boundary between the software and the user. It delegates
calls to the currently visible view and allows the software system to change between
views using the setView method (see Fig. 2). Based on the illustrated principles, one can
develop more realistic GUI models by providing sufficiently elaborate view interfaces.

The interfaces of the two main components (see Fig. 2) describe a small two-tier
system. The server object implements the Server interface which provides a method to
create new sessions; session objects implement the Session interface which provides
methods to do the actual booking. The method checkAndReserve inquires the price for
a certain flight to a certain destination. Note that String, Price, Airline and Destination
are data types and represent immutable data instead of objects. The agent object imple-
ments the Agent interface. For reference types, the type annotations N and F provide
enhanced type information, namely whether references of this type point to near or far

Model-Based Compatibility Checking of System Modifications 101

1 interface Server {
2 SessionN createSession(); }
3 interface Session {
4 Price checkAndReserve(Airline al,
5 Destination dest);
6 Unit buy();
7 Unit cancel();
8 Unit close(); }

9 interface Agent {
10 ViewN getView(); }
11 interface GUI extends View {
12 Unit setView(ViewN v); }
13 interface View {
14 Unit clickOn(Int position);
15 String viewContent();
16 Int getNbt(); }

Fig. 2. Interfaces of ABS model

objects (i.e., objects in the same COG or not). For example, the session objects returned
by the server are in the same COG as the server, which the type SessionN illustrates for
the createSession method. This enhanced typing information can either be manually
specified or automatically inferred by the ABS tools [17]. The architecture in Fig. 1 is
configured in a main COG (that is the reason why all references are far (F)):

1 ServerF s = new cog ServerImpl();
2 AgentF a = new cog AgentImpl(s);
3 Fut<ViewF> vfut = a!getView();
4 ViewF v = vfut.get;
5 new cog User(v);

The server is passed to the agent in the constructor (line 2). The view is obtained from
the agent and passed to the user to enable the interaction with the agent. Asynchronous
calls like the call to getView directly return a future. The value of a future is accessed
by get (line 4) which blocks execution until the futures is resolved. Note that the agent
is a component with a bipartite context: It interacts with the user and the server COG.

Users are modeled as nondeterministic and active components. In ABS, active com-
ponents are described by classes with a run method which is automatically called when
a new COG is created. Thus, user behavior is described in the run method of class User
(see below). A user looks at the view content (calls viewContent) and at the number of
buttons (calls getNbt) and then randomly clicks on one of the available buttons (line 9).
The lines 5, 7, and 9 are asynchronous method calls and represent the communication
from the user to the agent. The user waits for the futures to the first two calls to be
resolved at line 6 and 8, representing the communication from the agent to the user.

1 class User(ViewF v) {
2 Unit run() {
3 Bool abort = False;
4 while(~abort) {
5 Fut<String> contentfut = v!viewContent();
6 String content = contentfut.get; // look at content
7 Fut<Int> crtNmbBtfut = v!getNbt();
8 Int crtNmbBt = crtNmbBtfut.get;
9 if (crtNmbBt > 0) { v!clickOn(random(crtNmbBt)); } else { abort = True; }
10 } } }

102 A. Poetzsch-Heffter et al.

The agent COG includes the View objects (see Fig. 1 and below). When a user calls
a method on the GUI object, the GUI object delegates the call to the current view (e.g.,
AirlineView). This specific view can then call the Agent (e.g., slctAirline, slctDestination or
buyOffer) which might lead to change the current view (e.g., gui.setView(destinationView)
in line 17). Initially, the GUI object delegates to the AirlineView object, which allows the
user to select an airline. After the selection (call of the method clickOn), the AirlineView
object calls slctAirline method on the AgentImpl object, which then tells the GUI object
to switch to the DestinationView. After buying a ticket, the connection to the server is
closed and the view is changed to the logoffView that does not react to user inputs.

1 class AgentImpl(ServerF myserv)
2 implements Agent, ... {
3 ViewN aView;
4 ViewN dView;
5 GUIN gui;
6 SessionF session;
7 ... {
8 aView = new AirlineView(this);
9 dView = new DestinationView(this);
10 ...
11 gui = new GUIImpl();
12 gui.setView(aview);
13 }

14 ...
15 Unit slctAirline(Airline al) {
16 slctdAl = al;
17 gui.setView(dView);
18 }
19 ...
20 Unit buyOffer() {
21 Fut<Unit> f = session!buy();
22 f.get;
23 session!close();
24 gui.setView(logoffView);
25 }
26 }

We finish this section on modeling with summarizing the five aspects of the modeling
technique that are important for our method:

1. The models should be read and written by software developers that might not master
formal reasoning. They should be executable for validation.

2. The models should be sufficiently close to realistic implementations, particularly
in reflecting the component structure and interfaces. This eases the conformance
checking with implementations when they are not generated from the models.

3. The models should express the behavior of the software system and the users/envi-
ronment in order to define and analyze the overall system behavior.

4. The models should allow for abstraction (e.g., in our example, we abstract from the
details of GUI implementations).

5. To allow reasoning, the models need a precise formal semantics that also covers the
concurrency aspects.

In the following, we consider evolution steps for components with bipartite contexts.

3 Evolution of Systems

Evolvable systems must be open to change. Often, new component versions should not
change the overall behavior of the system. For example, we might want to change the
implementation of the agent but still guarantee that the same kind of flight booking

Model-Based Compatibility Checking of System Modifications 103

operations are possible. Compatibility of the new agent implementation with the old
one then means that the observable behavior of the system remains the same.

There are different ways to define what should be considered as observable. If we
consider all interactions of the agent as its behavior, we could not modify the GUI,
because GUI modification in general changes the interactions with the user. Thus, we
focus on the communication with the underlying system, namely on the communication
between the agent and the server component. This is the communication that leads to
the actual flight bookings. More precisely, we allow new components to change the
views (different content and buttons) and the way the views are presented and how they
react to button clicks. But, we want to guarantee that every behavior at the interface
to the underlying system that could be achieved with the old component can also be
achieved with the new version. We formalize behavior as traces, that is, sequences of
interactions.

Definition 1 (Backward compatibility). Let U be a nondeterministic user model, C be
an application component with a GUI, and D be a component such that Sys=(U ,C ,D)
is a closed system. A component C ′ with a GUI is backward compatible with C if
Sys′=(U ,C ′,D) is a closed system and the traces between C and D in Sys are a sub-
set of the traces between C ′ and D in Sys′.

To illustrate this definition by our example, let us consider a second implementation of
the agent sketched in Fig. 3. For this implementation, the airline view and destination
view are combined into a single view that is directly implemented by the agent object
itself. This means that the agent class also implements the View interface:

1 class AgentImpl(ServerF myserv)
2 implements Agent, View ... { ...
3 { ...
4 gui = new GUIImpl();
5 gui.setView(this);
6 } ...
7 }

The new view allows the selection of airlines and destinations in one view and in any
order3. Thus, the user interactions in the two versions are very different. Nevertheless,
the new implementation should allow users to make the same bookings as in the old
version. Thus, the new version is backward compatible,although the communication
between the user and the agent component is very different. To make this more tangible,
consider a concrete trace of events between the agent and the server s:

1 〈 f1 = s!createSession(), f1!(sess), f2 = sess!checkAndReserve(al,dest),
2 f2!(price), f3 = sess!buy(), f3!(), sess!close() 〉

Here, f!(x) denotes the resolution of future f by value x. One can now see that the order
in which the airline al and the destination dest have to be selected is irrelevant for the
trace because these choices are transmitted by only one message. So this trace will be a
trace for both the old and the new version of the system.

3 For brevity, we do not show the complete ABS description of it.

104 A. Poetzsch-Heffter et al.

agent

logoffview

gui server

session

user

Fig. 3. Runtime structure of ABS model after evolution

agent1user agent2 userABS

agent1GTSuserGTS agent2GTS userGTS

conforms conforms conformsconforms

CTS1 CTS2simulation

Fig. 4. Reasoning approach

4 Reasoning Approach

At the end of the last section, we postulated that two agent components are backward
compatible. In this section, we describe our approach to checking compatibility for such
components. The approach is based on three well-known techniques:

– Finite representation of behavior by rule-based transition systems
– Composition of transition systems
– Proving compatibility by using simulation

The ABS language makes it easy to read and write behavioral models of concurrent and
distributed software systems. A logic to prove properties about ABS models is under
development ([4] presents such a logic for a subset of ABS). As there is no logic to
directly prove the compatibility of two COGs, we use a two-step approach:

1. First, we represent the behavior of a COG by a suitable kind of transition systems
that we call group transition systems (GTS). Logics such as the one in [4] allow us
to prove that a GTS faithfully represents the semantics of the corresponding COG.

2. Second, we compose and enclose the GTSs into shells called component transition
systems (CTS) in order to produce the trace semantics of the component. Then we
use composition and simulation techniques for CTSs to reason about compatibility.

Figure 4 illustrates the approach using the flight-booking example: For the ABS model
of the user and the two agent models agent1 and agent2, we derived the GTSs userGTS,
agent1GTS, and agent2GTS, respectively. We compose each agent GTS with the user
GTS to produce CTS1 and CTS2, and show that CTS2 simulates CTS1 in the context of
the underlying server. The following subsections explain these steps in more detail.

4.1 Group Transition Systems

GTSs are special labeled transition systems to abstractly represent the behavior of
COGs written in ABS. A COG processes an incoming message by executing a cor-
responding method. The execution outputs a number of messages until the method

Model-Based Compatibility Checking of System Modifications 105

reaches its end or the COG needs to wait for a future to be resolved. The way a COG pro-
cesses an incoming message also depends on its current state. Thus, a GTS state should
contain an abstract representation of the internal COG state and a bag of incoming mes-
sages that the COG must process. The transitions represent an interleaving semantics of
the COG, matching nicely the asynchronous nature of the messages. Transitions are la-
beled by the outgoing messages that the component produces in that transition. As such,
the incoming message being processed is obtained from the state information. In gen-
eral, the state space of GTSs is infinite. To specify GTSs finitely, we utilize first-order
logic.

The GTS is based on two sets, namely O as the set of all object and future instances,
or simply names, and M as the set of all messages that can be produced. A message
can be either an asynchronous method call o!mtd(p) to object o calling method mtd with
parameters p or a future resolution f!(v) of the future f with value v. In asynchronous
method calls, the last parameter is a future name that is used to return the result of
the method call. Future names are freshly produced by the sender. Given a message
m, the function target(m) extracts the target object o or future f from the message. In
this paper, we assume that futures are not passed as parameters and that all COGs are
created during program start up. In particular, we do not consider messages for dynamic
COG creation.

Definition 2 (GTS). A group transition system is a quadruple T = (L,S,R, s0) where

– L ⊆ O is the set of object and future names local to the group,
– S ⊆ Bag(M)×O×Q is the set of states consisting of a message bag, a set of exposed

local names and the set of (abstract) local states,
– R ⊆ S×Bag(M)×S is a transition relation describing the processing of a message

in the incoming message bag by the group, and
– s0 is the initial state.

The message bag stores the incoming messages that the COG is yet to process. Each
transition is labeled with a bag of output messages, sent by the COG when it processes

a message. We write (M ,q)
Mo−→ (M ′,q′) to represent a transition in R, where M , M ′

and Mo are message bags, and q and q′ are local states. The locality of the objects and
futures can be guaranteed using the ownership type system as mentioned in Sect. 2.2.

To ensure that a GTS captures the behavioral properties satisfied by all ABS COGs,
we enforce a simple well-formedness criterium on the states and relations. For this pur-
pose, we need a projection function M↓L . This projection function on a message bag M
with respect to local names L produces the message bag ML ⊆ M where each message
is targeted to some local object in L or a future resolution of a future in L.

Definition 3 (Well-formed GTS). A GTS T = (L,S,R, s0) is well-formed if

1. ∀(M ,q) ∈ S •M↓L = M , and

2. ∀(M ,q)
Mo−→ (M ′,q′) • ∃m ∈ M •M ′ = M ∪Mo↓L − {m}4.

4 We take the union operator on bags as adding all elements from one bag to the other and the
difference operator as removing corresponding elements from one bag.

106 A. Poetzsch-Heffter et al.

The first item states that the message bag contains only incoming messages. The second
states when a transition is taken, the processed incoming message m is taken out from
the message bag, while messages produced by the COG directed to the COG are added
to the message bag. In other words, every transition of a GTS is a reaction to a method
call or a future resolution. Thus, GTSs can represent the behavior of reactive COGs and
active COGs that receive messages from other COGs (like User), but they cannot model
active COGs that generate infinitely many messages without expecting any response.

We use rules of the form min : P −→ P ′ � Mo to describe the transition relation of
a GTS where:

– min is an incoming message contained within the message bag of the COG before
the transition occurs and target(min) is in the set of local names L,

– P and P ′ are boolean expressions over the local state and the message parameters,
– Mo is the bag of outgoing messages resulting from the transition. For each outgoing

asynchronous method call, there is always a future created by the component which
is represented by new f .

A transition (M ,q)
Mo−→ (M ′,q′) satisfies a rule if M ′ = M ∪Mo↓L −{min}, P evaluates

to true for the current state q and the parameters of min, P ′ evaluates to true for the
post-state q′ and the parameters of the messages in Mo. The rules describe the largest
transition relation R where each transition satisfies at least one of the rules. Moreover,
the transition relation is such that each future name is created fresh. In GTSs that are
consistent with ABS models, futures will be resolved at most once.

As an example, let us take a look at the User COG. Users have an application-
independent behavior. Local states are pairs of a control state and the GUI reference
v. The user looks at the view content and sees a number of buttons. Then, he clicks on
some random button (i.e., the nb-th button), unless no buttons are present, indicating
the end of the interaction. In the expressions, we use special variable $ to denote the
local state:

u!run() : $=(u0,v) −→ $=(u1,v) � v!viewContent(new f1)
f1!(s) : $=(u1,v) −→ $=(u2,v) � v!getNbt(new f2)
f2!(n) : $=(u2,v)∧ n>0 −→ $=(u3,v)∧ (0≤nb<n) � v!clickOn(nb,new f3)
f3!() : $=(u3,v) −→ $=(u1,v) � v!viewContent(new f1)
f2!(n) : $=(u2,v)∧ n=0 −→ $=(u4,v) � ε

For the overall understanding of our method, the details of the GTS construction are not
so important. Important are the following three points:

1. GTSs are appropriate for formal analysis, but are not a good language for designing
realistic software models (see the requirements mentioned at at the end of Sect. 2).

2. The general theory to verify that a COG, considered as a program, conforms to a
GTS, considered as a specification, is available. A specialization of the theory to
the particular setting considered here is under development (cf. [4]).

3. Techniques for composition and compatibility checking of transition systems are in
general well-developed. A specialization to our setting will be discussed next.

Model-Based Compatibility Checking of System Modifications 107

4.2 Component Transition Systems

We introduced GTSs as faithful representations of COGs. In the following, we construct
transition systems that exhibit exactly the observable traces that we need for compatibil-
ity checking. In particular, they allow us to prove trace inclusion by simulation methods.
Technically, we construct a component transition systems CTST from a set T of GTSs.
CTST hides internal messages. By composing two CTSs C1 and C2, written as C1 | C2,
we obtain a closed system that generates the traces at the boundary between C1 and C2.
Construction and composition can be fully automated.

To illustrate the approach, let us again consider our example with GTSU being the
GTS for the user, GTSA and GTSA′ for the first and second version of the agent, and
GTSD for the underlying system. Compatibility checking is then realized as follows:

– construct CTS{U ,A} from GTSU and GTSA ,
– construct CTS{U ,A′} from GTSU and GTSA′ ,
– construct CTS{D} from GTSD , and
– check that CTS{U ,A′} | CTS{D} simulates CTS{U ,A} | CTS{D}.

In summary, construction essentially puts GTSs together and hides internal messages.
Composition yields an executable system in which traces at the boundary of the two5

components are observable, allowing the checking of compatibility as defined in Def. 1.
Construction and composition are illustrated in Fig. 5.

Definition 4 (CTS construction). Let T = {T1, . . . , Tn} be a set of GTSs where Ti =
(Li,Si ,Ri , s0i), i ∈ {1, . . . n} and Li pairwise disjoints. Let si = (Mi ,qi), s′i = (M ′i ,q′i) be
states of Ti . The component transition system of T is CTST = (L,S,R, s0) where

– L =
n⋃

i=1
Li , S ⊆ Bag(M)× S1× . . .× Sn×Bag(M), s0 = (�, s01, . . . , s0n,�),

– R ⊆ S× (M∪ {τ})× S is the smallest relation such that

1. ∀i, si
Mo−→i s′i • (I, s1, . . . , sn,O)

τ−→ (I, s′1, . . . , s′n,O∪Mo↓O−L) where
∀ j �= i • s′j = (Mj ∪Mo↓L j

,qj);

2. ∀m • ∀(I ∪ {m}, s1, . . . , sn,O) ∈ S • (I ∪ {m}, s1, . . . , sn,O)
τ−→ (I, s′1, . . . , s′n,O)

where if target(m) ∈ Li then si = (Mi ∪ {m},qi) otherwise si = s′i;
3. ∀m • ∀(I, s1, . . . , sn,O∪ {m}) ∈ S • (I, s1, . . . , sn,O∪ {m}) m−→ (I, s1, . . . , sn,O).

Similar to GTS, a CTS is described by a set of local names L, a set of states S, a labeled
transition relation R and an initial state s0. L is a union of all local names of the GTSs. S
includes not just the states of all GTSs, but also two sets of message bags IN and OUT,
which act as input and output ports of the component, respectively. s0 is the empty
message bags with the initial states of the GTSs. The labels on R can be a message m
that is transmitted out of the CTS or an internal transition τ. The relation is built from
the transition relation of the GTSs in the following way. For each transition in some Ti
(Case 1), we insert a relation labeled with τ to R by distributing the output messages Mo
to the corresponding message bags. If a message m ∈Mo is targeted to some local name

5 Composition can be easily generalized to a finite set of components.

108 A. Poetzsch-Heffter et al.

GTS1 GTSn
. . .

M1 Mn

CTS1
IN1

OUT1

CTS2
IN2

OUT2

τ

τ

τ

τ

m

m′

Fig. 5. Component transition systems and their composition

in L j , that message is inserted into the incoming message bag Mj . Otherwise, m goes
to the output port OUT of the CTS, as portrayed in the figure by the dotted lines. The
second rule (Case 2) states the nondeterministic distribution of messages in the input
port to the appropriate incoming message bag. As this is a hidden step, it is labeled with
τ (represented by the dashed line). The last rule (Case 3) dispenses nondeterministically
the messages in the output port one by one as long as OUT is not empty. This message
sending is visible from outside of the component, thus the transition is labeled with the
corresponding message m (the solid line in Fig. 5). This treatment of output guarantees
that outputs from different enclosed GTSs can be interleaved.

To represent CTSs, we use the same rule format as for GTSs. For example, the tran-
sition corresponding to the button click in CTS{User,Agent} can be formulated as follows
where the underscore is a wildcard for any agent state:

f2!(n) : $=((u2,v),_)∧ n>0 −→ $=((u3,v),_)∧ (0≤nb<n) � v!clickOn(nb,new f3)

A CTS represents an open system that needs a context in which it can work. We use
another CTS as a context and observe the communication traces between them:

Definition 5 (CTS composition). Let Ci = (Li ,Si ,Ri , s0i) for i = {1,2} be two CTSs.
The composed CTS of C1 and C2 is C = (C1 | C2) = (L,S,R, s0) where

– L = L1 ∪ L2, S ⊆ S1× S2, s0 = (s01, s02),
– R ⊆ (S1× S2)× (M∪ {τ})× (S1× S2) such that

1. ∀s1 ∈ S1 • ∀s2
τ−→2 s′2 • (s1, s2)

τ−→ (s1, s′2),
2. ∀s2 ∈ S2 • ∀s1

τ−→1 s′1 • (s1, s2)
τ−→ (s′1, s2),

3. ∀(I2, s21, . . . , s2n,O2) ∈ S2 • ∀s1
m−→1 s′1 •

(s1, (I2, s21, . . . , s2n,O2))
m−→ (s′1, (I ′2, s21, . . . , s2n,O2)) where

I ′2 = I2 ∪ {m} if target(m) ∈ L2, otherwise I ′2 = I2, and

4. ∀(I1, s11, . . . , s1n,O1) ∈ S1 • ∀s2
m−→2 s′2 •

((I1, s11, . . . , s1n,O1), s2)
m−→ ((I ′1, s11, . . . , s1n,O1), s′2) where

I ′1 = I1 ∪ {m} if target(m) ∈ L1, otherwise I ′1 = I1.

The composition of two CTSs C1 and C2 corresponds to the interaction illustrated
in Fig. 5. The local names L are combined from the respective components, the same

Model-Based Compatibility Checking of System Modifications 109

with the states S and the initial state s0. The transition relation R lifts up all internal
transitions of the components (Cases 1, 2), and for each non-internal transition (Cases
3, 4), we update the input port of the corresponding component if the outgoing message
is targeted to that component. The standard computation of the composed CTS provides
the necessary ingredients for producing the traces of the components.

Definition 6 (Computation and trace of composed CTS). A computation of a com-
posed CTS C = (L,S,R, s0) is a sequence

s0
m1−→ s1

m2−→ s2
m3−→ s3

A trace of the composed CTS is the sequence of the non-internal labels of a computation.

For our flight-booking system, the traces of CTS{U ,A} | CTS{D} and CTS{U ,A} | CTS{D} are
the ones we need for compatibility checking according to in Def. 1.

4.3 Checking Compatibility

As explained in Sect. 3, compatibility is defined based on the traces at the boundary be-
tween the combined user and application component on the one side and the underlying
system on the other side. The CTSs give us a finite representation of the infinite trace
sets and allow us to formally prove compatibility using simulation techniques (cf. [3]).

Essentially, we have to find a simulation relation and show that from two related
states we can make a step in both systems and end up again in related states. Simulations
for CTSs slightly deviate from the standard simulations because we have to account for

the τ-transitions. We write s
m
=⇒ s′, m �= τ, if there is a sequence of states s0 . . . sn with

s = s0, s′ = sn, and an i < n such that

s0
τ−→ . . .

τ−→ si
m−→ si+1

τ−→ . . .
τ−→ sn

Definition 7 (Simulation relation on composed CTSs). Let Ca = (La,Sa,Ra , s0a) and
Cb = (Lb,Sb,Rb , s0b) be two composed CTSs. We call SR⊆ S×S′ a simulation relation
on composed CTSs iff

– (s0a, s0b) ∈ SR, and

– ∀(sa, sb) ∈ SR•∀s′a • sa
m
=⇒a s′a implies ∃s′′a , s′b •sa

m
=⇒a s′′a ∧sb

m
=⇒b s′b∧(s′′a , s′b) ∈ SR.

If there exists such a simulation relation, we say that Cb simulates Ca.

The initial states have to be in the simulation relation. If a pair (sa , sb) of states in
Ca and Cb, respectively, is in the relation, then for every computation in Ca starting in
sa that emits a message m there must be corresponding computation in Cb emitting m
such that they end up in related states. The following theorem states that we can use
simulation to prove compatibility:

Theorem 1. Let Ca and Cb be two composed CTS, Tra and Trb the set of traces of Ca
and Cb, respectively. If Cb simulates Ca, Tra ⊆ Trb.

Proof. We show by induction that for all t ∈ Tra, t = m1 . . . mn, of length n there are
sequences of states s0a . . . sna and s0b . . . snb with

s0a

m1
==⇒ . . .

mn
==⇒ sna and s0b

m1
==⇒ . . .

mn
==⇒ snb

110 A. Poetzsch-Heffter et al.

and (sia , sib) ∈ SR for all i ∈ {0, . . . , n}. In particular, t ∈ Trb. This is obviously true
for the empty trace and the induction step is directly obtained from the definition of
simulation relations.

For our flight-booking system, the simulation relation can include the initial state pairs,
the state pairs when the session is requested, the session is returned, checking and re-
serving a route, getting the price, buying the ticket and closing the session. All the
internal state changes of the different versions are hidden.

5 Related Work

Several techniques for modeling the behavior of object-oriented systems are available
(e.g., VDM++ [5] or Object-Z [12]). ABS has the advantage that it is easier to handle for
programmers, that it is executable, and that it supports a important form of concurrency.

In contrast to the novel approach taken here, where we use an abstract model to
reason about compatibility (see Sect. 4). Compatibility or equivalence of components
has also been studied directly at the code level [7,9,15]. Using our sound and complete
simulation techniques developed in [15] which relate two different implementations, we
have made first steps towards automated verification of compatibility for object-oriented
libraries [16]. We believe that using a more abstract model like the one in Sect. 4 can
further improve the level of automation.

GTS and CTS are a variant to the well-known concept of labeled transition systems
tailored to the Actor model [1]. Having all outgoing messages as the label of a single
transition in GTS is similar to the big-step semantics of Specification Diagrams [13]
without the internal operations. Because the states contain incoming message bags, there
is no need to synchronize the messages in the composition. Furthermore it allows lifting
up the specification of the subcomponents’ GTS to form the specification of the CTS.

Another way to obtain a trace-based interpretation of GTS is by building an indepen-
dent relation between messages caused by transitions which is produced by different
COGs during the composition of GTSs. One can then extract trace equivalence classes
that represent the complete behavior of the system as shown in [14]. Coming up with
this independent relation, however, is not a trivial task.

6 Conclusion and Future Work

Software maintenance and evolution steps modify some properties of a system and
should maintain others. In this paper, we presented a method to reason about modifi-
cations of components that have both an interface to users (or an environment) and an
interface to other system parts. Whereas changes at the interface to the users should be
allowed, we wanted to maintain the behavior at the interface to other system parts. Our
approach addresses three challenges:

1. Modeling of user behavior, i.e., of behavior that is not represented by software
2. Abstraction from technical complexities such as GUI frameworks
3. Reasoning about compatibility of two component versions

Model-Based Compatibility Checking of System Modifications 111

The first two challenges were met by using the behavioral modeling language ABS. To
solve the third challenge, we developed CTS, a special form of transition systems. A
CTS finitely represents the semantics of ABS components and is suitable for composi-
tion and verifying compatibility of components using simulation proofs.

Our central goal for the future is to develop tools supporting the presented method.
We would like to use model mining techniques [2] for automating the constructing of
the GTS for a COG. Where full automation is not possible, we need verification support
to prove conformance. In addition, we need tools helping with the simulation proofs.

References

1. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor computation. J.
Funct. Program. 7(1), 1–72 (1997)

2. Ammons, G., Bodík, R., Larus, J.R.: Mining specifications. In: POPL, pp. 4–16. ACM, New
York (2002)

3. Baier, C., Katoen, J.: Principles of Model Checking, vol. 950. MIT Press (2008)
4. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed sys-

tems: Component reasoning for concurrent objects. Journal of Logic and Algebraic Program-
ming 81(3), 227–256 (2012)

5. Dürr, E., Katwijk, J.: VDM++, A Formal Specification Language for Object Oriented De-
signs. In: COMP EURO, pp. 214–219. IEEE (May 1992)

6. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for artificial in-
telligence. In: IJCAI, pp. 235–245 (1973)

7. Jeffrey, A., Rathke, J.: Java JR: Fully Abstract Trace Semantics for a Core Java Language.
In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 423–438. Springer, Heidelberg (2005)

8. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core Language
for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

9. Koutavas, V., Wand, M.: Reasoning about class behavior. In: Informal Workshop Record of
FOOL (2007)

10. Miller, M.S., Tribble, E.D., Shapiro, J.S.: Concurrency Among Strangers. In: De Nicola, R.,
Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 195–229. Springer, Heidelberg (2005)

11. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing Active Objects to Concurrent Com-
ponents. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299. Springer,
Heidelberg (2010)

12. Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers (2000)
13. Smith, S.F., Talcott, C.L.: Specification diagrams for actor systems. Higher-Order and Sym-

bolic Computation 15(4), 301–348 (2002)
14. Vasconcelos, V.T.: Trace semantics for concurrent objects. MA Thesis, Keio University

(March 1992)
15. Welsch, Y., Poetzsch-Heffter, A.: Full Abstraction at Package Boundaries of Object-Oriented

Languages. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS, vol. 7021, pp. 28–43.
Springer, Heidelberg (2011)

16. Welsch, Y., Poetzsch-Heffter, A.: Verifying backwards compatibility of object-oriented li-
braries using Boogie. In: FTfJP, Beijing, China (2012)

17. Welsch, Y., Schäfer, J.: Location Types for Safe Distributed Object-Oriented Programming.
In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS, vol. 6705, pp. 194–210. Springer,
Heidelberg (2011)

A Generic Platform
for Model-Based Regression Testing

Philipp Zech, Michael Felderer, Philipp Kalb, and Ruth Breu

Institute of Computer Science, University of Innsbruck, Austria
{philipp.zech,michael.felderer,philipp.kalb,ruth.breu}@uibk.ac.at

Abstract. Model-based testing has gained widespread acceptance in the
last few years. Models enable the platform independent analysis and de-
sign of tests in an early phase of software development resulting in effort
reduction in terms of time and money. Furthermore, test models are eas-
ier to maintain than test code when software systems evolve due to their
platform independence and traceability support. Nevertheless, most re-
gression testing approaches, which ensure that system evolution does not
introduce unintended effects, are solely code-based. Additionally, many
model-based testing approaches do not consider regression testing when
applied in practice, mainly due to the lack of appropriate tool support.
Therefore, in this paper we present a generic tool platform for model-
based regression testing based on the model versioning and evolution
framework MoVE. Our approach enhances existing model-based testing
approaches with regression testing capabilities aiming at better tool sup-
port for model-based regression testing. In a case study, we apply our
platform to the model-based testing approaches UML Testing Profile and
Telling TestStories.

1 Introduction

In recent years, model-based testing found its way into practice and is still an
active area of research [1, 2]. Model-based testing (MBT) applies model-based
design for the modeling of test artifacts and/or the automation of tests activi-
ties. MBT has several advantages like the abstractness of test cases, the early
detection of faults, and the high level of automation that justify the additional
effort of test model design and maintenance.

However, if considering existing model-based testing approaches in terms of
providing a complete testing process, most of them suffer from one important
feature, namely their tool support for regression testing [1]. Regression testing
is the selective retesting of a system or component to verify that modifications
have not caused unintended side effects and that the system or component still
complies with its specified requirements [3]. Under consideration of the modeling
effort, model-based regression test selection has several advantages to test selec-
tion on the code level [4]. The effort for testing can be estimated earlier, tools
for regression testing can be largely technology independent, the management of
traceability and test automation at the model level is more practical, no complex
static and dynamic code analysis is required, and models are smaller compared
to the size of modifiable elements because they are more abstract.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 112–126, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Generic Platform for Model-Based Regression Testing 113

A potential solution to the missing model-based regression testing support
dilemma is provided by theModel Versioning and Evolution (MoVE) platform [5].
MoVE provides a platform for versioning various software models based on the
well known Subversion versioning system. The versioning procedure of MoVE is
based on state machines attached to model elements. When a new version of a
model is committed, a change set of modified model elements is identified which
triggers change events processed by the attached state machines to calculate a new
consistent version of the model in the repository. MoVE is based on the generic
machine-readable exchange format XML Metadata Interchange (XMI) and not
tailored to any specific type of model representation. Thus, due to its changeman-
agement, model versioning and model representation capabilities MoVE provides
a promising platform for generic model-based regression testing.

In this paper we present an approach for generic model-based regression test-
ing based on the MoVE platform. The approach provides regression testing sup-
port for arbitrary XMI-based model representations and can be parameterized
with different change identification, impact analysis, and regression test selec-
tion strategies defined in the Object Constraint Language (OCL). Additionally,
the approach guarantees full traceability between various artifacts for efficient
fault detection, and assures model consistency and validity and hence, also test
suite validity, due to the change management capabilities of MoVE. To show
the applicability of our generic model-based regression platform we apply it to
regression testing of two independent model-based testing approaches, namely
the UML Testing Profile (UTP) [6] and Telling TestStories (TTS) [7].

The remainder of this paper is structured as follows. Section 2 positions our
approach in respect to related work. Section 3 introduces the various technologies
underlying the platform and its case study, and Section 4 introduces our generic
model-based regression testing platform and its implementation. We then pro-
vide a case study applying our approach for regression testing of two different
model-based testing approaches, i.e. UTP and TTS in Section 5, and finally
conclude in Section 6.

2 Related Work

Rerunning every test after each modification is not feasible, thus a trade-off
has to be found between the confidence gained from regression testing, and re-
sources used for it. For this reason, several regression testing techniques for test
case minimization, prioritization and selection were proposed over the years [8].
Most regression testing approaches operate on the source code [9], although
model-based regression testing has several advantages as mentioned in the in-
troduction [4].

Most model-based regression testing approaches are built on UML and se-
lect tests based on change identification and impact analysis [10]. Our platform
provides tool support for this important class of model-based regression test-
ing techniques. UML-based system models typically consider class models and
a specific type of UML behavior models, such as state machines in Farooq et
al. [11], sequence diagrams in Briand et al. [4] or activity diagrams in Chen et
al. [12]. Some of the proposed UML-based regression testing approaches have

114 P. Zech et al.

quite mature but very specific tool implementations like START (STAte-based
Regression testing Tool) [11] or RTSTool (Regression Test Selection Tool) [4] not
providing a generic platform (as MoVE does) applicable to other model-based
testing approaches.

Although some industrial model-based testing tools are available and applied
in practice, advanced model-based regression testing is still not supported ad-
equately by these tools. A generic model based regression testing platform like
MoVE provides additional support for model-based regression testing. For code-
based regression testing several industrial and research tools are available. In-
dustrial regression testing tools and platforms used nowadays - both commercial,
e.g. [13] and open source (see [14] for an overview) - usually focus only on the
automatic execution of tests, the collection of results, and creation of test re-
ports when talking about regression testing. These tools typically do not apply
the advanced regression testing techniques supported on the model level. More
advanced academic regression testing tools [15, 16] are very specific and only
available on the code level. For instance, TestTube [15] has been developed for
selective retesting of C programs. It instruments the source code to capture
which part of the system is covered by each test, and then computes which tests
are needed for a given modification.

Beside MoVE, other platforms have recently been developed for model ver-
sioning [17–19]. Differing from MoVE, these platforms focus on a single model-
ing tool and have not yet been applied to model-based regression testing. The
Eclipse Modeling Group provides two solutions for model persistence [20, 21].
These approaches do not provide model versioning support which is needed for
model-based regression testing and provided by our approach.

3 Building Blocks

In this section we give an overview of the model versioning framework MoVE
which our model-based regression testing approach is based on. Besides, we also
introduce two model-based testing approaches, i.e. the UML Testing Profile and
Telling TestStories which our model-based regression testing approach is applied
to later on in a case study (see Section 5).

3.1 MoVE - Model Versioning and Evolution

MoVE is a model repository supporting versioning of arbitrary models. In the
MoVE context we do not only consider models like in UML, but also other mod-
els, e.g. an Excel spreadsheet which can be interpreted as instance in tabular
representation of a previously specified metamodel. Modeling tools can be inte-
grated into the MoVE tool using MoVE adapters. Adapters consist of two parts:
the server side part is responsible to provide the data in a readable format to
MoVE. The client side adapter integrates into the modeling tool, using the tool’s
Application Programming Interface (API), and provides communication meth-
ods for the modeling tool with the MoVE server. A minimal requirement for the
tool’s API is the possibility to access the data stored in the tool and to call an
external script or process. Both features are standard features of a tool-API.

A Generic Platform for Model-Based Regression Testing 115

MoVE supports a change-driven process as described by Breu [22]. A change-
driven process combines three aspects: change-propagation, states and support
of state machines. Fig. 3.1 shows the change-driven process in MoVE: on every
commit the MoVE repository calculates the changes of the new version of the
model to the previous version of the model and generates change events for each
change. MoVE provides an API to develop plugins and register each plugin for a
certain type of event. Each change event is sent to the registered plugin(s) which
may trigger further change events and alter the model.

«Plug-in»
MetaModel Evolution

«Plug-in»
State Machine

«Plug-in»
TestCalculation

«Model»
Base Model

«Model»
Working Model «component»

Plugin Registry
«component»

Change
Detection

Class A2 added

Class A1 changed

Class A2 added

Class A1 changed

State of A1 changed

Class A2 added1 State of A1 changed

Fig. 1. Change-Driven Process in MoVE

In the MoVE context every model element can have a state machine attached,
which is defined in the common metamodel. The state machine can define tran-
sitions between states of the model element and also actions that are triggered
if a state is reached. This extension of state machines allow us to define a be-
havior not only on the model element under focus but also on different model
elements which have a relation to the current model element. A task system en-
riches the state machines by user interaction. The change-driven process is used
to identify state changes. In case a state change occurred, the state machines are
used to calculate the correctness of the state change and derive possible actions
belonging to the state change. As part of several industrial projects, the MoVE
approach is currently evaluated and enhanced for large models.

3.2 Model-Based Testing Approaches

In this section we describe two actual model-based testing approaches, i.e. the
UML Testing Profile and Telling TestStories.

UML Testing Profile. The UML Testing Profile (UTP) [23] provides concepts
to develop test specifications and test models for black-box testing. UTP has been
standardized by the OMG andmapping rules to the executable test definition lan-
guages TTCN-3 and JUnit have been defined. The profile introduces four concept
groups for Test Architecture, Test Behavior, Test Data and Time.

The concepts of the test architecture are related to the structure and the con-
figuration of tests, each consisting of test components and a test context. Test

116 P. Zech et al.

components interact with each other and the SUT to realize the test behavior.
The test context encapsulates the SUT and a set of tests as well as the neces-
sary arbiter and scheduler interfaces for verdict generation and controlling test
execution, respectively. The composite structure of the test context is referred
to as the test configuration.

The concepts of the test behavior specify a test in terms of sequences, alter-
natives, loops, stimuli, and observations from the SUT. During execution a test
verdict is returned to the arbiter. The arbiter assesses the correctness of the SUT
and finally sets the verdict of the whole test.

The test data is supplied via so-called data pools. These either have the form
of data partitions (equivalence classes) or as explicit values. The test data is
used in stimuli and observations of a test. A Stimulus represents the test data
sent to the SUT in order to assess its reaction.

The concepts of test time are related to time constraints and observations
within a test specification. A timer controls the test execution and reacts to
start and stop requests as well as timeout events. In Baker et al. [24] all UTP
concepts and their meaning are explained in detail.

Telling TestStories. Telling TestStories (TTS) [7] is a model-based method-
ology for the requirements-driven system testing of service centric systems. TTS
is based on tightly integrated, yet separated platform-independent requirements,
system and test models annotated with a UML profile.

The requirements model is based on a hierarchy of functional and non-
functional requirements, attachable to test cases.

The system model describes the system structure and system behavior in a
platform independent way. Its static structure is based on the notions of services,
components and types.

The test model contains the test scenarios as so called test stories. Test stories
are controlled sequences of service operation invocations exemplifying the interac-
tion of components. The necessary test data is provided in a table-based manner
to each test story. The manual test design process is supported by validation and
coverage checks in and between the requirements, system and test model guaran-
teeing a high quality of the models. TTS is capable of test-driven development on
the model level and provides full traceability between all system and testing ar-
tifacts. The test stories are transformed to executable test code in Java invoking
running services via adapters which are automatically generated fromWSDL files.

Felderer et al. [25] proposed a test evolution management methodology for
TTS attaching state machines to model elements and propagating changes.
Based on the actual state of model elements regression tests are selected. How-
ever, the proposed approach has not been implemented so far. But it can be
implemented based on our generic regression testing platform.

4 Model-Based Regression Testing Platform

In this section we unroll our idea of a generic platform for model-based regression
testing. Besides discussing the theoretical foundations of our approach we also
present an implementation of the framework based on the Eclipse platform.

A Generic Platform for Model-Based Regression Testing 117

4.1 A Generic Model-Based Regression Testing Approach

If developing a generic approach for model-based regression testing, the primary
issue to overcome and deal with is to not only provide support for a certain type
of model but instead for a broad range of different types of (meta)models. This
simply comes by the broad diversity of currently existing model-driven andmodel-
based testing approaches [1], using different types of models and metamodels.

context Activity:
 self.base_Property.owner.
 getAppliedStereotype('Test::Testcase') <> null;

context Class:
 self.base_Property.owner -> asSequence() ->
 union(self.base_Property.ownedElements);

context Class:
 self.base_Property.owner.
 getAppliedStereotype('Test::SUT') <> null;

System Model
(working copy)

Delta
Expansion

Delta
Calculation

Test Set
Generation

System Model
(base copy)

«activity»
TC3

«activity»
TC5

Expanded
Delta

«activity»
TC4

«activity»
TC6

Test Model

 Delta

C6

C5

C4

C3

C5

C6

C2 C3

C6

C5

C6

C1

C3

C5

C1

C2

C4

C4

Fig. 2. Overview of the Generic Model-based Regression Testing Approach

Fig. 2 gives an overview of our idea of model-based regression testing. We start
by comparing two different versions of the same model, i.e. the Base Model (ini-
tial development model) and the Working Model (current development model)
and calculate a delta from it, the so called change set, containing the differences
between the two model versions. As a next step, a regression test selection strat-
egy is used to expand the delta by means of including additional elements from
the SUT model. Finally, with the given expanded delta, a new test set is derived
by means of selection. To support the necessary level of genericity our approach
is completely unaware of any model, however, by allowing to customize and con-
strain the calculations in each step by means of OCL queries, we successfully
circumvent this problem and enable to support a broad range of existing models.
In the following, the three tasks, namely, delta calculation, delta expansion and
test set generation are discussed in more detail.

118 P. Zech et al.

Delta Calculation. The calculation of the delta (change set) is the initial task
of our model-based regression testing approach. However, prior to calculating the
delta, the scope of SUT needs to be defined. For example, if one wants to restrict
the scope only to elements of type Class, the OCL query shown below the Base
Model in Fig. 2 achieves this task. This query also assumes, that each SUT element
has a stereotype SUT, defined in a profile named Test, applied. At this point it
should be mentioned, that, depending on whether one uses a combined SUT/test
model or separated ones, OCL queries at such an early point may be omitted.

With the SUT scope defined, the change set is ready to be calculated. The
underlying brainchild hereby is to use the notion of a left (Base Model) and a
right (Working Model) model to calculate the change set from left to right. Put
it another way, elements from the right model are compared to elements from the
left model by their matching IDs and changes are extracted. If in the right model,
an element has been newly added or deleted, this actually poses no difficulty,
as in the former case it is already ignored, as it is non-existent anymore in the
right model. In the case of a newly created element, it is automatically added to
the change set, as no matching already existing element can be found. In case
that the IDs of the model elements change, we use a backup strategy based on
metrics to define the similarity of model elements from the left and right model,
respectively. Section 4.2 gives a detailed description of how this backup strategy
works. In the case of Fig. 2, the change set would contain classes C5 and C6, as
they had been changed in the Working Model.

Delta Expansion. After successfully calculating the change set, next, the dis-
tinct regression test selection strategy enters the stage, as it defines in which way
the delta is expanded. Basically, the initially calculated delta already represents
a regression test selection strategy, based on the minimal change set, viz., only
taking the modified elements but nothing else into account. However, in most
cases this clearly does no suffice. Hence, we allow to customize the expansion of
the delta by means of OCL queries. For example, the OCL query as depicted at
the right picture margin in Fig. 2 would expand the delta by all classes either
referring to elements of the delta or refereed to by elements from the delta. Subse-
quently, the delta would be expanded by adding C3 and C4 to it, as both classes
either use one or both of C5 and C6. Section 4.2 gives a detailed description of
how the expansion actually works in a programmatic way.

Test Set Generation. As a last step, we calculate the new test set based
on the expanded delta. As first step, like during the previous tasks, the scope
for possible test cases needs to be constrained by means of an OCL-based test
set generation strategy. For example, the OCL query shown at the bottom of
Fig. 2 searches for possible test cases, based on activity diagrams. Also the query
assumes that each test case has a distinct stereotype Testcase applied, defined
in a profile named Test.

With the given set of possible test cases, in a last substep, the new test set is
calculated. We evaluate associations between elements of the delta and possible
test cases, i.e. we attempt to resolve the links which interconnect each element
of the SUT with a given test case. If such a link exists either from an element

A Generic Platform for Model-Based Regression Testing 119

of the delta to a test case or vice versa (from a test case to an element of the
delta), the test case is selected and added to the new test set.

The definition of the OCL queries for each of the above mentioned steps cur-
rently happens manually, yet, we are about to create a library of OCL queries
to be used for regression testing. In defining any kind of query for the purpose
of regression testing, a tester must not follow any requirements posed by our ap-
proach, yet solely the application of the respective model-based testing approach
must be valid. Hence, our approach also is completely language independent, as
it can deal with any kind of model and hence, any kind of target language, used
to generate test cases into.

As our approach emerges out of the area of model versioning and not software
testing, our terminology slightly differs from a testers’ one, defined e.g. in [26].
The delta calculation corresponds to change identification in [26], the delta ex-
pansion to impact analysis, and the test set generation to regression test selection.

4.2 A Generic Model-Based Regression Testing Implementation

In the previous section we have given a generic description of our approach. This
section provides more details on our implementation and shows how the MoVE
tool is used to automate our model-based regression testing approach.

The implementation of our regression testing methodology has two parts,
one on the client and one on the server side. On the client-side we provide
MoVE adapters (as described in Section 3.1), tightly integrated into modeling
tools such as MagicDraw, Eclipse or Papyrus. Therefore we support modeling
versioning among various tools and do not restrict our approach to a single tool,
respectively. Fig. 3 shows a component based view of the MoVE Environment
with the testing plugin. In this view MagicDraw is used to model tests with
TTS, whereas Papyrus is used to model scenarios with UTP.

«component»
MoVE Repository

«artifact»
base model

«component»
Testing Plugin

«artifact»
Plugin Configuration

«component»
MoVE Configuration

View

«component»
Papyrus

«component»
Magic Draw

«component»
MoVE Client

«artifact»
UTP Model

«artifact»
TTS Model

Fig. 3. Architecture of the MoVE Regression Testing Plugin

On the server-side MoVE is a repository containing previous versions of the
test models (see Base Model in Fig. 3). The MoVE server also provides a plugin
interface which we used to write and deploy a testing plugin. The Testing Plugin
is our implementation for the concepts as explained in Section 4.1. The plugin
can be configured with the MoVE configuration view which creates a plugin
configuration for each model or project. The plugin configuration is an XML

120 P. Zech et al.

file that consists of three parts, corresponding to the three tasks identified in
Section 4.1, i.e. delta calculation, delta expansion and test set generation. For
each task we define a strategy in the configuration file. Fig. 4 shows the schema
of the XML file and shows each part containing an OCL expression which is
used in our methodology, respectively.

PluginConfiguration

Delta Calculation Strategy

Delta Expansion Strategy

Test Generation Strategy

OCL Statement

OCL Statement

OCL Statement

Fig. 4. Schema of Plugin Configuration

Our testing plugin for MoVE follows the workflow shown in Fig. 2. The delta
calculation consists of two minor subtasks: the calculation of the change set and
the restriction of this very set. MoVE supports difference calculation as part
of the change-driven process. This calculation is based on a modified version of
EMF Compare [27], which was enhanced by several small patches to improve
the comparison of UML models. The result is a delta model containing all ele-
ments which were either changed, added, deleted or moved in the current version
of the model compared to the base model in the MoVE repository. The delta
model is very fine-grained and usually contains elements that are not relevant
for regression testing. To restrict the set of delta model elements we use the
OCL expression that was defined in the plugin configuration section delta cal-
culation strategy. The result is a sanitized delta, containing only elements which
are important for the regression testing strategy.

In the next step the sanitized delta is expanded. Therefore our implementation
reads the delta expansion strategy from the plugin configuration and iteratively
applies the OCL expression to each element of the sanitized delta. This strategy
strongly depends on the regression testing method that one wants to apply and
is profile independent.

The last step is to identify test cases associated to the elements of the ex-
panded delta. In doing so, we read the test set generation strategy from the
plugin configuration. Again, this strategy consists of an OCL expression, that
returns the affected test cases for the context element. This query is applied to
every element of the expanded delta and returns a set of test cases. The final
result of the plugin is a map that contains all elements of the expanded delta
and the associated test cases.

5 Case Study

In this section we present a case study applying our generic regression testing
platform on the two model-based testing approaches UTP and TTS. The goal of

A Generic Platform for Model-Based Regression Testing 121

the case study is to show that nevertheless which model-based testing approach
is used, the regression test sets, as calculated by our approach, do not differ for
identical changes in the system model.

5.1 System Under Test

For the purpose of our case study, we use a simple calculator service. Its sys-
tem model is shown in Fig. 5. The service offers five different components,
i.e. AdderService, SubtractService, DivideService, MultiplyService and
PowService (see Fig. 5a). Each of the service components offers a distinct calcu-
lation interface with corresponding name (see Fig. 5b) via an implementing class,
e.g. the interfaceIAdder is implemented by the class AdderServiceImpl, which
itself is offered via the component AdderService. In case of the PowService,
its implemented interface IPow extends IMultiply. Each of the interfaces offers
two operations providing the mathematical operation of the declared type name
(in this case the interface) for both, integer and float types, e.g. IAdder offers
the operations addInt and addFloat.

5.2 Application of the Model-Based Regression Testing Platform

In this section we apply our model-based regression testing platform to UTP and
TTS. Due to space limitations we skip the explicit presentation of the modeling
fragments of TTS and only print the UTP modeling artifacts in this paper. But
for the interpretation of the findings, we consider the results achieved with UTP
and TTS. Additionally, we refer to [7] for an in-depth explanation of TTS.

Test Modeling. Fig. 5 shows the model of the SUT with the UTP specific
stereotypes applied. As one can see in Fig. 5a each component is tagged as a
SUT. Yet, the interfaces (see Fig. 5b) and also the classes remain untagged, as
they are inherently part of the tagged SUT components.

Fig. 6 shows some of the UTP test artifacts, i.e. a test case and a test context.
In the context of the UTP, test cases are often modeled using notions of UML
sequence diagrams. The test case in Fig. 6a validates the proper behavior of

«SUT»
DivideService

DivideServiceImpl

«SUT»
SubtractService

SubtractServiceImpl

«SUT»
PowService

PowServiceImpl

«SUT»
AdderService

AdderServiceImpl

«SUT»
MultiplyService

MultiplyServiceImpl

(a) Component Diagram

+multiplyInt(a : int, b : int) : int
+multiplyFloat(a : float, b : float) : float

IMultiply
+divideInt(a : int, b : int) : int
+divideFloat(a : float, b : float) : float

IDivide

+subtractInt(a : int, b : int) : int
+subtractFloat(a : float, b : float) : float

ISubtract
+addFloat(a : float, b : float) : float
+addInt(a : int, b : int) : int

IAdder

+powInt(x : int, y : int) : int
+powFloat(x : float, y : float) : float

IPow

(b) Interface Diagram

Fig. 5. SUT model with the necessary UTP Stereotypes applied

122 P. Zech et al.

«TestContext»
 : CalculatorUnitTestContext

return pass;

 : AdderServiceImpl

addInt(a="10", b="20"):"30"1:

addInt(a="5", b="-12"):"-7"2:

(a) Add Integers Test

«TestCase»+addIntegersTest() : Verdict
«TestCase»+addFloatTest() : Verdict
«TestCase»+subtractIntegerTest() : Verdict
«TestCase»+subtractFloatTest() : Verdict
«TestCase»+multiplyIntegerTest() : Verdict
«TestCase»+multiplyFloatTest() : Verdict
«TestCase»+divideIntegerTest() : Verdict
«TestCase»+divideFloatTest() : Verdict
«TestCase»+powIntegerTest() : Verdict
«TestCase»+powFloatTest() : Verdict

«TestContext»
CalculatorUnitTestContext

(b) Test Context

Fig. 6. UTP Test Model Artifacts

the operation addInt of the AdderService. Fig. 6b shows the associated testing
context as required by the UTP. The test context itself is a collection of test cases
which is the basis for the configuration and execution of tests. In our example
the test context contains ten test cases, one for each of the operations defined
in Fig. 5b.

We skip the presentation of any further UTP specific test artifacts like an
arbiter or a scheduler both, due to space restrictions but also as they are hardly
relevant for regression testing.

Changing the System Model. We show the derivation of a regression test
set by means of expanding the initial delta after a system change. In Section 4.1
the approach is generally introduced, in this section we explain the approach by
an example and its interpretation.

The system model shown in Fig. 7 has been changed compared to Fig. 5
by adapting the return type of the operations divideInt, multiplyInt, and
multiplyFloat.

«SUT»
DivideService

DivideServiceImpl

«SUT»
SubtractService

SubtractServiceImpl

«SUT»
PowService

PowServiceImpl

«SUT»
AdderService

AdderServiceImpl

«SUT»
MultiplyService

MultiplyServiceImpl

(a) Component Diagram

+multiplyInt(a : int, b : int) : long
+multiplyFloat(a : float, b : float) : double

IMultiply
+divideInt(a : int, b : int) : float
+divideFloat(a : float, b : float) : float

IDivide

+powInt(x : int, y : int) : int
+powFloat(x : float, y : float) : float

IPow

+addFloat(a : float, b : float) : float
+addInt(a : int, b : int) : int

IAdder
+subtractInt(a : int, b : int) : int
+subtractFloat(a : float, b : float) : float

ISubtract

(b) Interface Diagram

Fig. 7. Changed SUT Model with Applied UTP Stereotypes

Now, with the changed system model, first, the initial change set is calculated
(delta calculation) with MoVE. As already described before, this set contains the

A Generic Platform for Model-Based Regression Testing 123

set of model elements of the SUT model with immediate changes (compared to
model elements, referring change elements, which would be an implicit change).
By applying the procedure presented in Section 4.1, the initially calculated delta
is as follows:

Delta = {IDivide, IMultiply}

1 context Dif fElement :
2 or s e l f . oc l IsTypeOf (ReferenceChange) ;
3 context NamedElement:
4 s e l f . ownedElement−>s e l e c t (e |
5 e . oc l I sKindOf(D i r e c t edRe l a t i on sh ip))−>
6 c o l l e c t (obj : Element |
7 obj . oclAsType (D i r e c t edRe l a t i on sh ip) . t a r ge t)−>
8 asSet()−> i t e r a t e (obj2 : Element ; r e s u l t 2 :
9 Set (Element) = Set{} |

10 r e su l t 2−>union (obj2−>asSet ())−>
11 union (obj2 . ownedElement−>
12 s e l e c t (e | e . oc l I sKindOf(D i r e c t edRe l a t i on sh ip))−>
13 c o l l e c t (obj3 : Element |
14 obj3 . oclAsType (D i r e c t edRe l a t i on sh ip) . t a r ge t))) ;

Listing 1. OCL Query for Link-based Delta Expansion Strategy

After the initial delta has been calculated, we expand this very delta by means
of applying a delta expansion strategy onto the delta (delta expansion). For
instance, the query as shown in Listing 1 allows to identify model elements, as-
sociated with the elements, contained in the initial delta, by means of links. Such
an expansion is reasonable, i.e. in the case if a component refers (implements or
extends) a changed component.

The link strategy, as depicted in Listing 1, extends the sanitized delta by
all components that are linked with an association or inherit from a changed
component. Hence, by applying this strategy we retrieve the expanded delta
which is as follows:

Deltaexp = {IDivide, IMultiply, IPow}

We implemented two more delta expansion strategies for our model-based regres-
sion testing approach. (1) The minimal strategy does not extend the delta but
only retests elements that changed. Therefore, the result is the sanitized delta.
It is also possible to use the type of change as impact. (2) The added strategy re-
stricts the sanitized delta to all elements that were added to the changed model.
Since our case study does not add components or interfaces, the result of the
added strategy is an empty set.

Finally, as a last step, based oh the expanded delta, we are ready to derive the
new test set (test set generation). With the expanded delta and by subsequently
applying another OCL query, evaluating the associations between system ar-
tifacts and test cases, we retrieve the set of associated test cases which is as
follows:

TestSet = {divideIntegerT est, diviveF loatT est,multiplyIntegerT est,
multiplyF loatT ets, powIntegerT est, powF loatT est}

The generated set of regression tests which is equal for UTP and TTS (see
Table 1), is then further processed and executed by the respective model-based
testing environment. The number of test cases in this case study for sure does

124 P. Zech et al.

not suffice if performing some real world testing of the Calculator system.
However, as we are not about to prove that the Calculator system works, but
instead to show to proper workings of our approach, the number of test cases
clearly suffices.

Table 1. Number of Test Cases for Different Regression Testing Strategies

Number of Testcases UTP TTS
Minimal Link Added Minimal Link Added

10 4 6 0 4 6 0

Table 1 shows the results of our case study with the delta expansion strategies
minimal, link and added as explained before. Each component has two tests (one
test for each of its operations). Therefore, the sum of all tests is 10 which is shown
in the first column of the table. The minimal strategy results in 4 tests which are
the tests for IMultiply and IDivide. The missing errors in the interface IPow
are only detected with the link strategy that adds the missing 2 tests of IPow.
The added strategy does not execute any tests since no component was added.
The results of UTP and TTS profile were equal which shows that our approach
delivers the same results for different profiles, i.e. model-based testing approaches.

Table 2. Metrics on the used OCL Queries for Regression Testing

Strategy UTP TTS
Calculation Expansion Generation Calculation Expansion Generation

Minimal 10/5/18 – 12/10/30 5/3/11 – 15/9/35
Link 10/5/18 19/21/50 12/10/30 5/3/11 19/21/50 15/9/35
Added 10/5/18 25/30/60 12/10/30 5/3/11 25/30/60 15/9/35

The variation points of our regression testing approach, namely the delta
calculation, the delta expansion, and the test set generation are controlled purely
by OCL-based strategies. Table 2 shows that complexity of the OCL queries for
the various phases delta calculation (Calculation), delta expansion (Expansion),
and test set generation (Generation), for the approaches UTP and TTS, and
for the minimal, link and added delta expansion strategies. Each table entry has
the form x/y/z, where x denotes the lines of code, y the number of referenced
metamodel/profile elements, and z the overall number of words of the respective
OCL query. As the delta expansion strategies are independent of the profile or
metamodel, the values are equal for UTP and TTS. The OCL queries for delta
expansion are the most complex ones, i.e. they have the highest values for lines
of code, number of profile elements, and the overall number of words. But the
OCL queries for expansion strategies are independent of the metamodel. Thus,
there is a trade-off between complexity and genericity of the OCL queries for
delta calculation, delta expansion and test set generation.

A Generic Platform for Model-Based Regression Testing 125

6 Conclusion

In this paper we presented a generic model-based regression testing platform
based on the model versioning tool MoVE. The model-based regression testing
approach consists of the three phases delta calculation, delta expansion, and test
set generation which are controlled purely by OCL queries. After an overview
of the platform’s implementation we performed a case study where we applied
our platform to the model-based testing approaches UML Testing Profile (UTP)
and Telling TestStories (TTS). In the case study, we have applied the minimal,
link and added delta expansion strategies to UTP and TTS.

We have shown that our platform derives the same regression test sets for
UTP and TTS for each of the three delta expansion strategies providing evidence
that our approach is applicable to various model-based testing approaches. On
the one side, it turned out that the OCL queries for delta expansion are more
complex than the OCL queries for delta calculation and test set generation. On
the other side, the delta expansion queries are independent of the applied testing
memtamodel.

Our approach is based on the standardized XMI model interchange format
and not tailored to a specific test model representation. Currently, our approach
only supports selection based regression testing strategies based on delta
expansion. As future work, we also consider prioritization based regression
testing techniques. Another future research task is to define a library of
parameterized OCL queries implementing various regression testing strategies.
The queries are parameterized with stereotypes or other metamodel elements.
Such a library concept would greatly enhance the applicability of our plat-
form as the tedious task of writing custom OCL queries is reduced to a minimum.

Acknowledgement. This research was partially funded by the research projects
MATE (FWF P17380), and QE LaB - Living Models for Open Systems (FFG
822740).

References

1. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A Survey on
Model–based Testing Approaches: A Systematic Review. In: 1st ACM Interna-
tional Workshop on Empirical Assessment of Software Engineering Languages and
Technologies, pp. 31–36. ACM (2007)

2. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco (2007)

3. IEEE: Standard Glossary of Software Engineering Terminology. IEEE (1990)
4. Briand, L.C., Labiche, Y., He, S.: Automating Regression Test Selection based on

UML Designs. Inf. Softw. Technol. 51(1) (2009)
5. Breu, M., Breu, R., Low, S.: Living on the MoVE: Towards an Architecture for a

Living Models Infrastructure. In: The Fifth International Conference on Software
Engineering Advances, pp. 290–295 (2010)

6. OMG: OMG UML Testing Profile (UTP), V1.0 (2007)
7. Felderer, M., Zech, P., Fiedler, F., Breu, R.: A Tool–based methodology for System

Testing of Service–oriented Systems. In: The Second International Conference on
Advances in System Testing and Validation Lifecycle, pp. 108–113. IEEE (2010)

126 P. Zech et al.

8. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Software Testing, Verification and Reliability 22(2), 67–120 (2012)

9. von Mayrhauser, A., Zhang, N.: Automated Regression Testing using DBT and
Sleuth. Journal of Software Maintenance 11(2) (1999)

10. Fahad, M., Nadeem, A.: A Survey of UML Based Regression Testing. In: Shi, E.,
Mercier-Laurent, D., Leake, D. (eds.) Intelligent Information Processing IV. IFIP,
vol. 288, pp. 200–210. Springer, Boston (2008)

11. Farooq, Q., Iqbal, M., Malik, Z., Riebisch, M.: A model-based regression testing
approach for evolving software systems with flexible tool support. In: International
Conference and Workshops on Engineering Computer-Based Systems (2010)

12. Chen, Y., Probert, R.L., Sims, D.P.: Specification–based Regression Test Selection
with Risk Analysis. In: CASCON 2002 (2002)

13. IBM: IBM Rational Quality Manager (2011),
http://www-01.ibm.com/software/rational/offerings/quality/ (accessed:
January 5, 2011)

14. Mark Aberdour: Opensourcetesting (2011), http://www.opensourcetesting.org/
(accessed: January 5, 2011)

15. Chen, Y.F., Rosenblum, D.S., Vo, K.P.: TestTube: A System for Selective Regres-
sion Testing. In: ICSE, pp. 211–220 (1994)

16. Seidl, H., Vojdani, V.: Region Analysis for Race Detection. In: Palsberg, J., Su, Z.
(eds.) SAS 2009. LNCS, vol. 5673, pp. 171–187. Springer, Heidelberg (2009)

17. Aldazabal, A., Baily, T., Nanclares, F., Sadovykh, A., Hein, C., Ritter, T.: Au-
tomated Model Driven Development Processes. In: ECMDA Workshop on Model
Driven Tool and Process Integration (2008)

18. Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Schwinger, W., Seidl,
M., Wimmer, M.: AMOR — Towards Adaptable Model Versioning. In: 1st Int.
Workshop on Model Co-Evolution and Consistency Management (2008)

19. Amelunxen, C., Klar, F., Königs, A., Rötschke, T., Schürr, A.: Metamodel–based
tool integration with MOFLON. In: ICSE (2008)

20. Eclipse Teneo, http://wiki.eclipse.org/Teneo#teneo (accessed: April 25, 2012)
21. Eclipse CDO, http://wiki.eclipse.org/CDO (accessed: April. 25, 2012)
22. Breu, R.: Ten Principles for Living Models - A Manifesto of Change-Driven Soft-

ware Engineering. In: CISIS, pp. 1–8. EIEE Computer Society (2010)
23. OMG: UML Testing Profile, Version 1.0 (2005),

http://www.omg.org/spec/UTP/1.0/PDF (accessed: February 25, 2011)
24. Baker, P., Ru Dai, P., Grabowski, J., Haugen, O., Schieferdecker, I., Williams,

C.E.: Model-Driven Testing - Using the UML Testing Profile. Springer (2007)
25. Felderer, M., Agreiter, B., Breu, R.: Evolution of Security Requirements Tests

for Service–Centric Systems. In: Erlingsson, Ú., Wieringa, R., Zannone, N. (eds.)
ESSoS 2011. LNCS, vol. 6542, pp. 181–194. Springer, Heidelberg (2011)

26. Farooq, Q.U.A., Iqbal, M.Z., Malik, Z., Riebisch, M.: A Model-Based Regression
Testing Approach for Evolving Software Systems with Flexible Tool Support, pp.
41–49 (2010)

27. EMF Compare Project, http://www.eclipse.org/emf/compare/ (accessed: April
8, 2012)

http://www-01.ibm.com/software/rational/offerings/quality/
http://www.opensourcetesting.org/
http://wiki.eclipse.org/Teneo#teneo
http://wiki.eclipse.org/CDO
http://www.omg.org/spec/UTP/1.0/PDF
http://www.eclipse.org/emf/compare/

Approaches for Mastering Change

Ina Schaefer1, Malte Lochau2, and Martin Leucker3

1 Institute for Software Engineering and Automotive Informatics
Technical University of Braunschweig, Germany

i.schaefer@tu-braunschweig.de
2 Institute for Programming and Reactive Systems
Technical University of Braunschweig, Germany

lochau@ips.cs.tu-bs.de
3 Institute for Software Engineering and Programming Languages

University of Lübeck, Germany
leucker@isp.uni-luebeck.de

1 Motivation

Modern software systems are highly configurable and exist in many different vari-
ants in order to operate different application contexts. This is called static vari-
ability and predominantly considered in software product line engineering [6,14].
Furthermore, software systems have to evolve over time in order to dealwith chang-
ing requirements which is referred to by the term temporal evolvability [10,13].
Additionally, modern software systems are designed to dynamically adapt their
internal structure and behavior at runtime dependent on their environment in or-
der to efficiently use the available resources, such as energy or computing power [5].
These three dimensions of change, static variability, temporal evolvability and dy-
namic adaptation, increase the complexity of system development in all phase,
from requirements engineering and system design to implementation and quality
assurance. In [15], the challenges of static variability and temporal evolution in all
phases of the software development process are discussed. In [15], the engineering
challenges of self-adaptive systems are described and future research directions are
pointed out.

2 Goals

The ISoLA track ”Approaches for Mastering Change” focusses on the particular
challenges change imposes on efficient quality assurance techniques for software
systems. The goal of the track was to bring together researchers and practi-
tioners working in the area of verification and validation for diverse software
systems covering all three dimensions of change. In the current state-of-the-art
in diverse systems, there are only insulated approaches focussing on one analysis
technique, such as testing, type checking, model checking or theorem proving,
for one dimension of change. For instance, in [17], a survey and classification
of existing analysis techniques for software product lines, i.e., static variability,
is presented, but temporal evolution and dynamic adaption are not considered.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 127–130, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

128 I. Schaefer, M. Lochau, and M. Leucker

Thus, his track aimed at identifying and discussing synergies between the exist-
ing approaches to develop uniform techniques tackling the challenges of software
variability, evolvability and adaptation by the same or similar means.

3 Contributions

Most contributions to the track ”Approaches for Mastering Change” address
static variability as treated by software product line engineering [14,6]. The first
half of these contributions considers different modeling formalisms for describ-
ing the (behavioral) variability of product lines. Thoma et al. [16] develop an
algebraic specification for capturing the variability structure of product lines.
As an instantiation, an extension of the process algebra CCS with variability is
presented that lends itself well to analysis via model checking. Asirelli et al. [1]
concentrate on behavioral variability modeling with modal transition systems ex-
tended with variability constraints in deontic logics. They disucss different ways
to obtain such an behavioral model of a product line from the feature model
capturing variability at the requirements level. Bodden et al. [3] describe an ap-
proach for specifying variable monitors for runtime analysis of product lines. To
this end, they adapt the concept of delta modeling for product line variability
to the specific case of modeling and realizing runtime monitors.

The second half of the contributions targeting static variability aims at ana-
lyzing product line artifacts and implementations. Both Lienhardt et al. [11] and
Damiani et al. [7] present type systems for analyzing delta-oriented product line
implementations. While Lienhardt et al. [11] concentrate on discovering conflicts
during program variant generation via row types, Damiani et al. [7] improve
type checking of the actually generated programs via a family-based analysis
technique. Devroey et al. [8] propose a comprehensive framework for product
line verification and validation by intertwining product-based and product-line-
based analysis steps. They exemplify their approach by the analysis of timed
properties of product lines in the embedded domain. Lochau et al. [12] consider
the challenges of efficiently testing software product lines by test case and test
result reuse. They develop a formal framework to reason about commonality of
test cases and results with respect to feature-parametric preorder conformance
relations.

The last three papers of the track are conceded with either temporal evolution
of software and associated documentation or the dynamic adaptation of commu-
nicating systems. Autexier et al. [2] consider the evolution of heterogenous doc-
uments, code and testing artifacts as required for certification of safety-critical
software. They determine the impact of changes in some parts of the docu-
mentation to other parts in order to ease the task for maintaining consistency
between the documents in case of changes during the development process. Dov-
land et al. [9] focus on the conflicting aspects between developing and verifying
object-oriented software in agile development approaches. In order to allow an
interleaving of development and verification steps, they propose an incremental
reasoning framework which keeps track of the established and remaining proof

Approaches for Mastering Change 129

obligations during program verification. Bravetti et al. [4] describe a process
algebra with explicit operators for updating the behavior of processes at run-
time in order to capture reactions of the system to changes in its environment.
They provide a logic to formulate general properties about the adaptable sys-
tem, e.g., that an error can be resolved within a defined number of steps, and
prove (un)decidability results for this logic.

References

1. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A Compositional Framework to
Derive Product Line Behavioural Descriptions. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part I. LNCS, vol. 7609, pp. 146–161. Springer, Heidelberg (2012)

2. Autexier, S., Dietrich, D., Hutter, D., Lüth, C., Maeder, C.: SmartTies Management
of Safety-Critical Developments. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part I. LNCS, vol. 7609, pp. 238–252. Springer, Heidelberg (2012)

3. Bodden, E., Falzon, K., Pun, K.I., Stolz, V.: Delta-oriented Monitor Specification.
In:Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 162–176.
Springer, Heidelberg (2012)

4. Bravetti, M., Di Giusto, C., Pérez, J.A., Zavattaro, G.: Towards the Verification
of Adaptable Processes. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I.
LNCS, vol. 7609, pp. 269–283. Springer, Heidelberg (2012)

5. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar, S.,
Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer,
J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy,
M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-Adaptive Sys-
tems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi,
P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer,
Heidelberg (2009)

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman (2001)

7. Damiani, F., Schaefer, I.: Family-based Analysis of Type Safety for Delta-Oriented
Software Product Lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I.
LNCS, vol. 7609, pp. 193–207. Springer, Heidelberg (2012)

8. Devroey, X., Cordy, M., Perrouin, G., Kang, E., Schobbens, P.-Y., Heymans, P.,
Legay, A., Baudry, B.: Towards Behavioural Model-Driven Validation of Software
Product Lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS,
vol. 7609, pp. 208–222. Springer, Heidelberg (2012)

9. Dovland, J., Johnsen, E.B., Yu, I.C.: Tracking Behavioral Constraints During
Object-Oriented Software Evolution. In:Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part I. LNCS, vol. 7609, pp. 253–268. Springer, Heidelberg (2012)

10. Lehman, M.M.: Software’s future: Managing evolution. IEEE Software 15(1), 40–44
(1998)

11. Lienhardt, M., Clarke, D.: Conflict Detection in Delta-Oriented Programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 178–192.
Springer, Heidelberg (2012)

130 I. Schaefer, M. Lochau, and M. Leucker

12. Lochau, M., Kamischke, J.: Parameterized Preorder Relations for Model-based
Testing of Software Product Lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part I. LNCS, vol. 7609, pp. 223–237. Springer, Heidelberg (2012)

13. Parnas, D.: Software aging. In: ICSE, pp. 279–287 (1994)
14. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering -

Foundations, Principles, and Techniques. Springer, Heidelberg (2005)
15. Schaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G.,

Pathak, A., Trujilol, S., Villela, K.: Software Diversity – State of the Art and
Perspectives. In: STTT (October 2012)

16. Leucker, M., Thoma, D.: A Formal Approach to Software Product Families. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 131–145.
Springer, Heidelberg (2012)

17. Thüm, T., Apel, S., Kästner, C., Kuhlemann, M., Schaefer, I., Saake, G.: Analysis
Strategies for Software Product Lines. Technical Report FIN-004-2012, School of
Computer Science, University of Magdeburg, Germany (April 2012)

A Formal Approach to Software Product

Families

Martin Leucker and Daniel Thoma

Institute for Software Engineering and Programming Languages
Universität zu Lübeck

Abstract. Software product line engineering deals with the combined
development of a family of similar software systems. These systems pro-
vide a similar set of features and should therefore share a large number
of common components. We study the user perspective of features and
the engineering perspective of components and present a formal notion
of features, component-based product families and their interaction. We
then demonstrate using Milner’s CCS how our formalism can be applied
to extend an arbitrary modelling formalism with support for product
lines. To verify that certain products indeed realize certain features, we
propose μ-calculus model-checking for multi-valued Kripke-structures.
The model checking result in that case no longer is a simple truth-value,
but a set of products, conforming to a certain property.

1 Introduction

The vast majority of electronic devices with which we interact is mainly con-
trolled by software—in fact, software-intensive systems pervade our daily life.
Typically, not only a single software-intensive system is constructed but rather
a family of similar systems that share certain commonalities. Prominent exam-
ples of such families of software-intensive systems can be found in a multitude of
different application domains, comprising embedded as well as business informa-
tion systems. For example the model variants of the same model series of a car
manufacturer, e.g. the variants of the 7-series BMW, or the various variants of
an operating system, e.g. the various editions of the operating system Microsoft
Windows 7, constitute such families. Typical commonalities for such systems can
be found for example in their (conceptual) functionality, their architectural com-
ponent structure, or code. To enhance the efficiency of the software development
and maintenance process, the integrated development of a family of software-
intensive systems by explicitly making use of (reusing) their commonalities in a
strategic and planned way seems a promising approach. This is the subject of
software product family engineering.

Despite its obvious motivation, the way of constructing a family of systems
by taking advantage of commonalities is not sufficiently explored—in particular
with respect to its theoretical foundation. How can reuse based on commonalities
between system variants take place in a systematic way? What are the funda-
mental concepts behind commonalities and differences of related systems, and

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 131–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

132 M. Leucker and D. Thoma

how can we formally represent them? How can commonalities between family
members be determined and even schematically computed? How can the rela-
tion between family members be modelled, and how are commonalities integrated
into the construction of the individual family members? How can we verify cor-
rectness properties of a whole software product family instead of looking at the
properties of each family member individually?

In this paper we address these questions from a formal point of view and
provide an axiomatization of product family concepts using the language of al-
gebraic specification [Wir90]. The axiomatization formalizes the key character-
istics of any software product family, where the concept of commonality and the
ability to compute the commonalities of an arbitrary subset of family members
is the most important aspect for us.

The formal specification may be used as a guidance when defining explicit
formalisms supporting the concept of software product families. In this paper, we
recall (and slightly simplify) the account of [GLS08] which extends Milner’s CCS
by a variant operator yielding the product-line aware calculus PL-CCS. With
the help of the specification, we can check that PL-CCS is indeed a reasonable
product family extension of CCS.

Finally, to make this overview paper self-contained, we recall the model check-
ing approach for PL-CCS that allows to check a whole family of systems with
respect to μ-calculus specifications.

2 Related Work

Most of the related approaches which deal with modelling of software product
families are found in the area of Feature Oriented Software Development (FOSD)
[CE00]. FOSD deals with the construction of variable software systems. A com-
mon specification technique for software product lines in FOSD are so-called
feature models [KHNP90]. Feature models are used to model optional, manda-
tory and variable features, and in particular their dependencies. In that way a
feature model allows to restrict the set of possible configurations of a product
line, but in general it does not incorporate the information of how to construct
the family members, nor does it allow to compute common parts of a given sub-
set of family members. Thus, a feature model serves the same purpose as our
dependency model, but does not represent a product family in our sense, i.e.
as a construction blueprint that shows how the family members can actually
be constructed from the common and variable parts, or how the members are
related with respect to reusing common parts. Moreover, feature models usu-
ally lack a precise semantics which impedes to reason about features or feature
combinations using formal methods.

To make these issues more precise, we recall the concept of features in the
next section.

Regarding the algebraic treatment of software product families, there are
some approaches which also unify common concepts, techniques and methods
of feature-oriented approaches by providing an abstract, common, formal basis.

A Formal Approach to Software Product Families 133

In this context, we consider especially the approaches [HKM06,HKM11,BO92]
to be of interest.

The closest to our axiomatization of a software product family is an approach
by Höfner et al. [HKM06,HKM11], introducing the notion of a feature algebra,
and a product family, respectively, which describes the features of a family of
products, and their typical operations from a semi-ring, algebraic perspective.
The elements of a feature algebra are called product families. A product family
corresponds to a set of products, where individual products are considered to be
flat collections of features. In general, the structure of a feature algebra largely
agrees with the structure of a software product family of type Spfα, as it can
be built using the constructors (cf. Section 4) only. While Höfner et al. nicely
characterize the structure of a product line from an algebraic point of view,
they do not include operations that describe the manipulation or alteration of
product families into their algebraic components. For example, Höfner et al.
do not explicitly express the notion of configuration. In contrast, our approach
defines functions that characterize how to manipulate and work with a product
family, e.g. the functions selL and selR that formalize the act of configuring a
product family, or the function is mand that formalizes the notion of mandatory
parts. In our opinion these additional operations are as essential as the basic
constructors in order to formalize the notion of a product family.

The first work on verifying software product families via model checking is,
to best of our knowledge, in [GLS08]. A slightly different verification approach
is given in [CHSL11].

3 Features

Intuitively, a product family subsumes a number of products with similar func-
tionality. From an engineering perspective, organizing products in product fam-
ilies is beneficial, as it allows for a single development process, and eases the
identification of common components. While product variants sometimes evolve
over time for technical reasons, they are often specifically developed out of mar-
keting concerns or to meet similar but different customer needs. In the latter
case, a product family is first designed from an external, user perspective in
terms of features without considering their technical structure. A feature in this
context is the ability of a product to cover a certain use case or meet a certain
customer need. Thus, it is frequently impossible to map features independently
to certain technical properties.

An established method to design and structure the feature domain of a prod-
uct family is the use of feature diagrams [KHNP90]. Feature diagrams do not
describe the meaning of different features, since at that stage no common for-
malism to describe such properties and product behaviour is applicable. Instead
they define the compositional structure and dependencies between features from
a user perspective.

We use a product family for a fictional windscreen wiper system as running
example. Figure 1 shows the corresponding feature diagram. The variants of our

134 M. Leucker and D. Thoma

WiperSystem

manual mode interval mode

semi-automated fully automated

1..1

Fig. 1. Feature diagram for a product family of a windscreen wiper system

wiper systems may have a manual mode. They are required to have an interval
mode controlled by a rain sensor. This mode can either be semi-automated and
control only some operation modi of the wiper or fully automated. Thus, from
our feature diagram we can derive four different feature combinations.

There are a lot of different variations of feature diagrams. All of them allow
to express the compositional structure and optional, mandatory and alternative
features. For most types the semantics can be given by translation into proposi-
tional logic with features as atomic propositions [SHT06].

Feature diagrams only describe possible combinations of features. To be able
to express statements about products and their technical structure, we need to
bind features to products.

Definition 1. F : P → 2F is a feature function, mapping products p ∈ P to the
features f ∈ F they have.

Since feature diagrams only describe feature dependencies from a user or product
designer perspective, some possible feature combinations might not actually be
feasible, i.e. it is impossible for technological reasons to combine those features.

Definition 2. The set F ⊆ F is a feasible feature combination if ∃p ∈ P : F ⊆
F(p).

Conversely, feasible feature combinations may not be possible with respect to a
feature diagram as feasible combinations might be undesirable.

4 Specification of Product Lines

At a technological level, different feature combinations have to be realized by
different products. To be able to manage complexity, products are usually de-
scribed and built in a compositional manner. Consequently, sets of products
are usually specified by introducing variation points at different levels of their
compositional structure. A concrete product can be derived from such a descrip-
tion by selecting one alternative at each variation point. Widespread instances

A Formal Approach to Software Product Families 135

of these concepts for software development are source code preprocessors and
dependency injection frameworks.

Consider again the wiper system introduced above. To specify a certain wiper
system, we would compose a wiper and a sensor component into one system.

wiper‖sensor

To realize the different feature combinations, we would use different variations
of those components. To do so, we introduce variation points.

wiper := wiper1 ⊕1 wiper2; wiper := sensor1 ⊕2 sensor2

To support product families in an arbitrary specification formalism, we intro-
duce several generic operators. As we want to define product families following
the compositional structure of the underlying formalism, we need an operator
asset(A), that converts an atomic product into a product family. To express
shifting operators from products to product families in a generic way, we need
an operator op ◦ arg, that applies an operator op (partially) to all products de-
scribed by arg. In the case of the binary operator ‖, we would write (‖ ◦A) ◦B,
to express that ‖ is shifted to product families by applying it to all products
described by A using its first parameter. The resulting unary operator is then
applied to each product from B.

Using these three operators, it is possible to lift the semantics of any product
specification formalism to product families.

We can now add choice points in the same manner as in our example above.
A choice operator A ⊕i B describes the product family, where a left choice for
i results in the products from A, and a right choice in the products from B.
As the choice between left and right variants is bound to the index i, for every
occurrence of an operator with the same index the same choice has to be made.
It is thus possible to express dependencies between different choice points in a
system.

It is usually the case that not all possible configurations of a product family
describe a system that is technologically feasible. Thus, we introduce the empty
product family ⊥, containing no products. Using ⊥, dependencies on choices
may be expressed. For example, we could write A⊕i ⊥ to express, that at some
point in our product family specification, only a left choice may be made for
i. To ease notation of these dependencies, we introduce a dependency operator
(i1, L/R), . . . , (ik, L/R) ↪→ A, meaning A requires left or right choices for certain
i1, . . . ik.

Using the operators described so far a product family can be completely
described. To derive products from such descriptions we only need the oper-
ator conf(A), returning all possible products annotated with the choices lead-
ing to them. For convenience we further introduce operators products(A) and
choices(A), yielding the set of all products and choices, respectively.

A further common mechanism observed in product line development is the
instantiation of components. Considering our wiper system example, a car might
use separate systems to control front and rear wipers, which can be different

136 M. Leucker and D. Thoma

variants of the same product. Thus, we introduce a renaming operator A[f],
which renames all choice indices i in A by applying function f . Consider the
description of the above wiper system. To compose two of them in one system
allowing independent choices for each, we could write:

wipersys‖ wipersys [1/3, 2/4]

We give a formal definition of all those operators in Figure 2. We use higher
order functions to define the operator ◦ and most signatures are defined using a
type variable α known from polymorphic function types.

Given our formal notion of both the user and engineering perspective on
product families, we are now able to precisely describe their connection.

Definition 3. The technologically feasible configurations for a product famliy P
providing a set of features F with respect to a feature function F is given by

CP,F,F = {c | (c, p) ∈ conf(P),F(p) ⊆ F}

There usually is a multitude of possible product family specifications, where the
same products can be derived using the same configuration. This observation
warrants the following equivalence relation between product family specifica-
tions.

Definition 4. Product family specifications P and Q are called configuration-
equivalent

P ≡c Q iff conf (P) ≡ conf(Q)

Using that equivalence and the axioms from Figure 2 we can prove several laws
that facilitate restructuring product family specifications and identifying com-
mon parts in different variants.

The operator for lifting operators from an underlying formalism to product
families ◦ is (left and right) distributive over the choice operator ⊕i.

(P ◦Q)⊕i (P ◦R) ≡c P ◦ (Q ⊕i R)

(P ◦R)⊕i (Q ◦R) ≡c (P ⊕i Q) ◦R

Thus all operators of an underlying formalism are distributive over the choice
operators. We can therefore pull out common parts.

Choice operators with different index are distributive.

(P ⊕j Q)⊕i (P ⊕j R) ≡c P ⊕j (Q⊕i R) with i �= j
(P ⊕j R)⊕i (Q⊕j R) ≡c (P ⊕i Q)⊕j R with i �= j

It is thus possible to change the way choices are nested and to pull out common
choices.

Dependencies between choices can render certain parts of a specification inac-
cessible. When two dependent operators are directly nested, the following laws
can be applied to simplify the specification.

P ⊕i (Q ⊕i R) ≡c P ⊕i R

(P ⊕i Q)⊕i R ≡c P ⊕i R

A Formal Approach to Software Product Families 137

SPEC Softwareproductfamily = {

defines Spf
α

based on Bool, Nat, Set, HOFunc

functions

⊥α : Spf
α

assetα : α → Spf
α

◦α,β : Spf
β
α × Spf

α
→ Spf

β

⊕α : Spf
α
× N× Spf

α
→ Spf

α

[]α : Spf
α
× (NN)× N → Spf

α

↪→α: 2N×{L,R} × Spf
α
→ Spf

α

confα : Spf
α
→ 2 2N×{L,R}

×α

products : Spf
α
→ 2α

choices : Spf
α
→ 2N

comp : 2N×{L,R} → 2 2N×{L,R}
×α

confdα : {L,R} × Spf
α
→ 2 2N×{L,R}

×α

axioms

comp(C) =
∧

(i,d),(i,d′)∈C
d = d′

confd(d, P) = {({(i, d)} ∪ c, p) | (c, p) ∈ conf(P), comp({(i, d)} ∪ c)}

conf(⊥) = ∅

conf(asset(a)) = (∅, a)

conf(apply(F, P)) =
⋃

(c1,f)∈conf(F),(c2,p)∈conf(P),comp(c1∪c2)
(c1 ∪ c2, f(p))

conf(P ⊕i Q) = confd(L,P) ∪ confd(R,Q)

conf(P [f]) = {(c′, p) | (c, p) ∈ conf(P), c′ = {(f(i), d) | (i, d) ∈ c}, comp(c′)}

products(P) =
⋃

(c,p)∈conf(P){p}

choices(P) =
⋃

(c,p)∈conf(P),(i,d)∈c
{i}

∅ ↪→ P = ⊥

({(i, L)} ∪ I) ↪→ P = P ⊕i (I ↪→ P)

({(i, R)} ∪ I) ↪→ P = (I ↪→ P)⊕i P

}

Fig. 2. Algebraic specification of a generic product line formalism

138 M. Leucker and D. Thoma

Since the configuration of product family specifications is defined inductively
replacing a part by a configuration-equivalent expression yields a configuration-
equivalent specification.

P ≡c Q then R ≡c R[P/Q]

Note that in this case [P/Q] refers to the syntactic replacement of a sub-
expression.

The empty product family ⊥ can be used to prohibit certain configurations.
The laws involving ⊥ facilitate the simplification of product family specifica-
tions in certain cases. It is possible to reduce expressions without any choices
containing ⊥.

P ◦ ⊥ ≡c ⊥
⊥ ◦ P ≡c ⊥
⊥[f] ≡c ⊥

It is further possible to eliminate choices yielding ⊥ for both the left and right
choice.

⊥⊕i ⊥ ≡c ⊥

When similar components are used at multiple locations in a system, it often
is beneficial to factor those components out into a single specification that can
then be instantiated appropriately. Using the following laws, renamings of choice
indices can be introduced bottom-up.

asset(a)[f] ≡c asset(a)

(P ◦Q)[f] ≡c P [f] ◦Q[f]
(P ⊕i Q)[f] ≡c P [f]⊕f(i) Q[f]

In doing so, identical sub-expressions using different indices can be defined over
the same indices.

The laws discussed so far allow for refactorings of product family specifications
that preserve the possible configurations of a product family. Often changes to
the configurations are acceptable though, when they allow for more radical refac-
torings and the derivable products are still being preserved. That observation
gives rise to the follow, more relaxed equivalence relation.

Definition 5. Product family specifications P and Q are called product-equiva-
lent

P ≡p Q iff products (P) ≡ products(Q)

Using this equivalence, we can prove some additional laws.
Obviously, two configuration-equivalent specifications are also product-equi-

valent.
P ≡c Q⇒ P ≡p Q

A Formal Approach to Software Product Families 139

Leaving out a top level renaming does not change the set of products.

P ≡p P [f]

Choices, resulting in the same set of products, may be left out.

P ⊕i P ≡p P

While it is possible to apply the laws for configuration-equivalence on any sub-
expression, this is no longer the case for product-equivalence as there might be
dependencies defined on certain configurations. It is still possible though when
respecting some side conditions.

If F ≡pF [P/Q] then

F ⊕i G ≡p F [P/Q]⊕i G with i �∈ choices(P,Q)

G⊕i F ≡p G⊕i F [P/Q] with i �∈ choices(P,Q)

F ◦G ≡p F [P/Q] ◦G with choices (P,Q) ∩ choices(G) = ∅

G ◦ F ≡p G ◦ F [P/Q] with choices (P,Q) ∩ choices(G) = ∅

F [f] ≡p F [P/Q][f] with i ∈ choices(P,Q) ⇒ i = f(i)

5 PL-CCS

In the previous section, we have worked out an algebraic specification for the
concept of product families. It is meant to serve as a meta model pointing out
the fundamental ideas of any formalism having a notion of families.

In this section, we present a concrete modelling formalism for product fami-
lies. We enrich Milner’s CCS by a variation operator. As the resulting calculus,
which we call PL-CCS, is a model of the algebraic specification given in the pre-
vious section, it is a valid realization of a product family concept. The approach
followed in this section is a slight simplification and extension of the account
presented in [GLS08]. The syntax of PL-CCS is given as follows:

Definition 6 (Syntax of PL-CCS)

e ::= Q | Nil | α.e | (e+ e) | (e ‖ e) | (e)[f] | (e) \ L | μQ.e | (e⊕i e) | (e)[g]

Thus, we use a fixpoint-oriented account to CCS as in and enrich CCS by the
variant operator ⊕, which may cater for additional renaming.

The semantics of PL-CCS may now be given in several, as we will show equiv-
alent, ways. First, one might configure a PL-CCS specification in every possible
way to obtain a set of CCS specifications, which may act as the, here called flat,
semantics of a product family, which is basically a set of Kripke structures. To
this end, we recall the definition of a Kripke structure and the semantics of a
CCS process.

140 M. Leucker and D. Thoma

Definition 7 (KS). A Kripke structure K is defined as

K = (S,R ⊆ S ×A× S, L ⊆ S × P)

where S is a set of states, R is a set of A-labelled transitions, and L labels states
by its set of valid propositions.

Next, we recall the definition of CCS. Due to space constraints, it is given
according to Figure 3, ignoring the product label ν in the SOS-rules shown.

Now, we are ready to define the notion of a flat semantics for a PL-CCS
family.

Definition 8 (Flat Semantics of PL-CCS)

�P �flat = {(c, �p�) | (c, p) ∈ conf(P)}

Especially for verification purposes, it is, however, desirable, to provide a com-
prehensive semantics, which we do in terms of a multi-valued Kripke structure.

A lattice is a partially ordered set (L,�) where for each x, y ∈ L, there exists
(i) a unique greatest lower bound (glb), which is called the meet of x and y, and
is denoted by x�y, and (ii) a unique least upper bound (lub), which is called the
join of x and y, and is denoted by xy. The definitions of glb and lub extend to
finite sets of elements A ⊆ L as expected, which are then denoted by

�
A and⊔

A, respectively. A lattice is called finite iff L is finite. Every finite lattice has
a least element, called bottom, denoted by ⊥, and a greatest element, called top,
denoted by �. A lattice is distributive, iff x � (y z) = (x � y) (x � z), and,
dually, x (y � z) = (xy)� (x z). In a DeMorgan lattice, every element x has
a unique dual element ¬x, such that ¬¬x = x and x � y implies ¬y � ¬x. A
complete distributive lattice is called Boolean iff the x¬x = � and x�¬x = ⊥.

While the developments to come do not require to have a Boolean lattice, we
will apply them only to the Boolean lattices given by the powerset of possible
configurations. In other words, given a set of possible configurations N , the
lattice considered is (2N ,⊆) where meet, join, and dual of elements, are given
by intersection, union, and complement of sets, respectively.

Definition 9 (MV-KS). A multi-valued Kripke structure K is defined as

K = (S,R : S ×A× S → L, L : S × P → L)

where S is a set of states, R is a set of A-labelled transitions, denoting for
which product the transition is possible, and L identifies in which state which
propositions hold for which product.

Based on this notion, we provide the so-called configured semantics of a PL-CCS
specification.

Definition 10 (Configured Semantics of PL-CCS). The configured seman-
tics of PL-CCS is given according to the SOS-rules shown in Figure 3.

A Formal Approach to Software Product Families 141

P
α,ν−−→ P ′

μQ.P
α,ν−−→ P ′[Q/μQ.P]

(recursion)

α.P
α,2{R,L}n
−−−−−−−→ P

(prefix)

P
α,ν−−→ P ′

P +Q
α,ν−−→ P ′

(nondet. choice (1))

Q
α,ν−−→ Q′

P +Q
α,ν−−→ Q′

(nondet. choice (2))

P
α,ν−−→ P ′

(P ‖ Q)
α,ν−−→ (P ′ ‖ Q)

(par. comp. (1))

Q
α,ν−−→ Q′

(P ‖ Q)
α,ν−−→ (P ‖ Q′)

(par. comp. (2))

P
α,ν−−→ P ′ Q

ᾱ,ν̄−−→ Q′

(P ‖ Q)
τ,ν∩ν̄−−−−→ (P ′ ‖ Q′)

(par. comp. (3))

P
α,ν−−→ P ′

P [f]
f(α),ν−−−−→ P ′[f]

(relabeling)

P
α,ν−−→ P ′

(P \ L) α,ν−−→ (P ′ \ L)
, α /∈ L

(restriction)

P
α,ν−−→ P ′

P ⊕i Q
α, ν|i/L−−−−−→ P ′

(conf. sel. (1))

Q
α,ν−−→ Q′

P ⊕i Q
α, ν|i/R−−−−−→ Q′

(conf. sel. (2))

P
α,ν−−→ P ′

P [g]
α,ν[g]−−−−→ P ′[g]

(conf. relabeling)

Fig. 3. The inference rules for the semantics of PL-CCS (and CCS when ignoring the
second component of each transition label)

We conclude the introduction of PL-CCS stating that the flat semantics and
the configured semantics are equivalent, in the following sense:

Theorem 1 (Soundness of Configured Semantics)

{(c, p) | p = Πc(�P �conf)} = �P �flat

Here, Πc denotes the projection of a transition system to the respective config-
uration c, which is defined in the expected manner.

6 Model-Checking PL-CCS

In this section, we sketch a game-based and therefore on-the-fly model checking
approach for PL-CCS programs with respect to μ-calculus specifications.

We have chosen to develop our verification approach for specifications in the
μ-calculus as it subsumes linear-time temporal logic as well as computation-
tree logic as first shown in [EL86,Wol83] and nicely summarized in [Dam94].
Therefore we can use our approach also in combination with these logics, and in
particular have support for the language SALT [BLS06] used with our industrial
partners.

142 M. Leucker and D. Thoma

Multi-valued modal μ-calculus combines Kozen’s modal μ-calculus
[Koz83] and multi-valued μ-calculus as defined by Grumberg and Shoham
[SG05] in a way suitable for specifying and checking properties of PL-CCS pro-
grams. More specifically, we extend the work of
[SG05], which only supports unlabelled diamond and box operators, by providing
also action-labelled versions of these operators, which is essential to formulate
properties of PL-CCS programs.1

Multi-valued modal μ-calculus. Let P be a set of propositional constants, and
A be a set of action names.2A multi-valued modal Kripke structure (MMKS)
is a tuple T = (S, {Rα(. , .) | α ∈ A}, L) where S is a set of states, and
Rα(. , .) : S × S → L for each α ∈ A is a valuation function for each pair
of states and action α ∈ A. Furthermore, L : S → LP is a function yielding
for every state a function from P to L, yielding a value for each state and
proposition. For PL-CCS programs, the idea is that Rα(s, s

′) denotes the set
of configurations in which there is an α-transition from state s to s′. It is a
simple matter to translate (on-the-fly) the transition system obtained via the
configured-transitions semantics into a MMKS.

A Kripke structure in the usual sense can be regarded as a MMKS with values
over the two element lattice consisting of a bottom ⊥ and a top � element,
ordered in the expected manner. Value � then means that the property holds in
the considered state while⊥means that it does not hold. Similarly,Rα(s, s

′) = �
reads as there is a corresponding α-transition while Rα(s, s

′) = ⊥ means there
is no α-transition.

Let V be a set of propositional variables. Formulae of the multi-valued modal
μ-calculus in positive normal form are given by

ϕ ::= true | false | q | ¬q | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈α〉ϕ | [α]ϕ | μZ.ϕ | νZ.ϕ

where q ∈ P , α ∈ A, and Z ∈ V . Let mv -Lμ denote the set of closed formulae
generated by the above grammar, where the fixpoint quantifiers μ and ν are
variable binders. We will also write η for either μ or ν. Furthermore we assume
that formulae are well-named, i.e. no variable is bound more than once in any
formula. Thus, every variable Z identifies a unique sub-formula fp(Z) = ηZ.ψ
of ϕ, where the set Sub(ϕ) of sub-formulae of ϕ is defined in the usual way.

The semantics of a mv -Lμ formula is an element of LS—the functions from S
to L, yielding for the formula at hand and a given state the satisfaction value.
In our setting, this is the set of configurations for which the formula holds in the
given state.

Then the semantics [[ϕ]]Tρ of a mv -Lμ formula ϕ with respect to a MMKS

T = (S, {Rα(. , .) | α ∈ A}, L) and an environment ρ : V → LS , which explains

1 Thus, strictly speaking, we define a multi-valued and multi-modal version of the
μ-calculus. However, we stick to a shorter name for simplicity.

2 So far, for PL-CCS programs, we do not need support for propositional constants.
As adding propositions only intricates the developments to come slightly, we show
the more general account in the following.

A Formal Approach to Software Product Families 143

[[true]]ρ := λs.�
[[false]]ρ := λs.⊥

[[q]]ρ := λs.L(s)(q)

[[¬q]]ρ := λs.L(s)(q)

[[Z]]ρ := ρ(Z)

[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ 	 [[ψ]]ρ
[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ � [[ψ]]ρ
[[〈α〉ϕ]]ρ := λs.

⊔
{Rα(s, s

′) � [[ϕ]]ρ(s
′)}

[[[α]ϕ]]ρ := λs.
�
{¬Rα(s, s

′) 	 [[ϕ]]ρ(s
′)}

[[μZ.ϕ]]ρ :=
�

{f | [[ϕ]]ρ[Z �→f] � f}
[[νZ.ϕ]]ρ :=

⊔
{f | f � [[ϕ]]ρ[Z �→f]}

Fig. 4. Semantics of mv -Lμ formulae

the meaning of free variables in ϕ, is an element of LS and is defined as shown
in Figure 4. We assume T to be fixed and do not mention it explicitly anymore.
With ρ[Z �→ f] we denote the environment that maps Z to f and agrees with
ρ on all other arguments. Later, when only closed formulae are considered, we
will also drop the environment from the semantic brackets.

The semantics is defined in a standard manner. The only operators deserving a
discussion are the ♦ and �-operators. Intuitively, 〈α〉ϕ is classically supposed to
hold in states that have an α-successor satisfying ϕ. In a multi-valued version,
we first consider the value of α-transitions and reduce it (meet it) with the
value of ϕ in the successor state. As there might be different α-transitions to
different successor states, we take the best value. For PL-CCS programs, this
meets exactly our intuition: A configuration in state s satisfies a formula 〈α〉ϕ
if it has an α-successor satisfying ϕ. Dually, [α]ϕ is classically supposed to hold
in states for which all α-successors satisfy ϕ. In a multi-valued version, we first
consider the value of α-transitions and increase it (join it) with the value of ϕ
in the successor state. As there might be several different α-successor states, we
take the worst value. Again, this meets our intuition for PL-CCS programs: A
configuration in state s satisfies a formula [α]ϕ if all α-successors satisfy ϕ.

The functionals λf.[[ϕ]]ρ[Z �→f] : LS → LS are monotone wrt. � for any Z,ϕ

and S. According to [Tar55], least and greatest fixpoints of these functionals
exist.

Approximants ofmv -Lμ formulae are defined in the usual way: if fp(Z) = μZ.ϕ
then Z0 := λs.⊥, Zα+1 := [[ϕ]]ρ[Z �→Zα] for any ordinal α and any environment

ρ, and Zλ :=
�

α<λ Z
α for a limit ordinal λ. Dually, if fp(Z) = νZ.ϕ then

Z0 := λs.�, Zα+1 := [[ϕ]]ρ[Z �→Zα], and Z
λ :=

⊔
α<λ Z

α.

Theorem 2 (Computation of Fixpoints, [Tar55]). For all MMKS T with
state set S there is an α ∈ Ord s.t. for all s ∈ S we have: if [[ηZ.ϕ]]ρ(s) = x
then Zα(s) = x.

The following theorem states that the multi-valued modal semantics of the μ-
calculus is indeed suitable for checking the different configurations of a PL-CCS
program.

Theorem 3 (Correctness of Model Checking). For all PL-CCS programs
P and formulae ϕ ∈ mv-Lμ, we have

(c,K) ∈ �P �flat with K |= ϕ iff c ∈ (�P �conf |= ϕ)

144 M. Leucker and D. Thoma

The proof follows by structural induction on the formula.
While Theorem 2 also implies a way for computing the satisfaction value of an

mv -Lμ-formula and a given MMKS, this naive fixpoint computation is typically
expensive. Game-based approaches originating from the work by [EJS93] and
[Sti95] allow model checking in a so-called on-the-fly or local fashion. In the
context of multi-valued μ-calculus, the game-based setting becomes technically
more involved, as described in detail in [SG05]. Nevertheless, the essence of
the game-based approach of computing a satisfaction value based on the so-
called game graph is similar. For the multi-valued modal μ-calculus, a slight
adaptation of the approach taken in [SG05] yields a game-based approach for
the full multi-valued modal μ-calculus. Furthermore abstraction-techniques like
those presented in [CGLT09] may be applied.

Due to space limitations, we skip details of the game-based model checking
approach for the multi-valued modal μ-calculus.

7 Conclusion

In this paper, we have presented a formal foundation for product families, both
from a feature as well as a technical perspective and their connection. Based
on that foundation we have shown several equivalence laws, that allow for save
transformations between different product family specifications. Hence, they fa-
cilitate reliable refactorings.

We then applied our formal framework to the well-established, parallel spec-
ification formalism, CCS to derive Product-Line-CCS. We have further shown,
how PL-CSS can be used to model product lines and efficiently apply model
checking to verify properties of a whole product family at once.

We believe this combination of reliable refactorings and verifiable properties
yields a robust, formal framework to develop software product families in a safe
manner.

References

BLS06. Bauer, A., Leucker, M., Streit, J.: SALT—Structured Assertion Language
for Temporal Logic. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 757–775. Springer, Heidelberg (2006)

BO92. Batory, D., O’Malley, S.: The design and implementation of hierarchical
software systems with reusable components. ACM Transactions on Soft-
ware Engineering and Methodology 1(4), 355–398 (1992)

CE00. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods,
Tools, and Applications. Addison-Wesley (2000)

CGLT09. Campetelli, A., Gruler, A., Leucker, M., Thoma, D.: Don’t Know for Multi-
valued Systems. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799,
pp. 289–305. Springer, Heidelberg (2009)

CHSL11. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A.: Symbolic model
checking of software product lines. In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, pp. 321–330. ACM, New
York (2011)

A Formal Approach to Software Product Families 145

Dam94. Dam, M.: CTL* and ECTL* as fragments of the modal μ-calculus. Theo-
retical Computer Science 126(1), 77–96 (1994)

EJS93. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On Model-Checking for Fragments
of μ-Calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp.
385–396. Springer, Heidelberg (1993)

EL86. Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the
propositional μ-calculus. In: LICS 1986: Proceedings of the 1st Annual
Symposium on Logic in Computer Science, pp. 267–278. IEEE Computer
Society Press, Washington, D.C., USA (1986)

GLS08. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and Model Checking
Software Product Lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS
2008. LNCS, vol. 5051, pp. 113–131. Springer, Heidelberg (2008)

HKM06. Höfner, P., Khedri, R., Möller, B.: Feature Algebra. In: Misra, J., Nipkow,
T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 300–315. Springer,
Heidelberg (2006)

HKM11. Höfner, P., Khedri, R., Möller An, B.: algebra of product families. Software
and Systems Modeling 10, 161–182 (2011) 10.1007/s10270-009-0127-2

KHNP90. Sholom, G., Cohen Kyo, C., Kang, J.A., Hess, W.E.: Novak, and A. Spencer
Peterson. Feature oriented design analysis (FODA) feasibility study. Tech-
nical Report CMU/SEI-90-TR-21-ESD-90/TR-222, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

Koz83. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer
Science 27, 333–354 (1983)

SG05. Shoham, S., Grumberg, O.: Multi-valued Model Checking Games. In:
Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 354–
369. Springer, Heidelberg (2005)

SHT06. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C.: Feature diagrams: A sur-
vey and a formal semantics. In: 14th IEEE International Requirements
Engineering Conference RE 2006, pp. 139–148 (2006)

Sti95. Stirling, C.: Local Model Checking Games. In: Lee, I., Smolka, S.A. (eds.)
CONCUR 1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

Tar55. Tarski, A.: A lattice-theoretical fixpoint theorem and its application. Pacific
Journal of Mathematics 5, 285–309 (1955)

Wir90. Wirsing, M.: Algebraic specification. In: Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Semantics (B), pp. 675–788
(1990)

Wol83. Wolper, P.: A translation from full branching time temporal logic to one
letter propositional dynamic logic with looping (unpublished manuscript)

A Compositional Framework
to Derive Product Line Behavioural Descriptions�

Patrizia Asirelli1, Maurice H. ter Beek1,
Alessandro Fantechi1,2, and Stefania Gnesi1

1 ISTI–CNR, Pisa, Italy
2 DSI, University of Florence, Italy

Abstract. Modelling variability in product families has been the subject
of extensive study in the literature on Software Product Lines, especially
that concerning Feature Modelling. In recent years, we have laid the basis
for the study of the application of temporal logics to the formal modelling
of behavioural variability in product family definitions. A critical point
in this formalization is to give an adequate representation of the elements
of the feature model and their relation with the behaviour of the many
products that are to be derived from the family. To this aim, we propose
a methodology to systematize this step as much as possible, in order to
allow the derivation of behavioural models that are general enough to
capture the behaviour of all consistent products belonging to the family.

1 Introduction

Product Line Engineering (PLE) is a paradigm for the development of a vari-
ety of products from a common product platform [23]. Its aim is to lower the
production costs of individual products by letting them share an overall refer-
ence model of a product family, while allowing them to differ w.r.t. particular
features in order to serve, e.g., different markets. Commonality and variabil-
ity are often defined in terms of features and managing variability consists of
identifying variation points in a family design as those places where a choice
must be made among (optional, mandatory or alternative) features and decid-
ing which combinations of features define valid products. Software Product Line
Engineering (SPLE) is a discipline for developing a diversity of software prod-
ucts and software-intensive systems based on the underlying architecture of the
product platform [25]. Variability management is what distinguishes SPLE from
‘conventional’ software engineering.

Since many variability-intensive systems are safety-critical, there is a strong
need for rigour and formal modelling and verification (tools). Our contribution
in making the development of product families more rigorous consists in an on-
going research effort to investigate upon a suitable formal modelling structure
for describing behavioural product variability and a temporal logic than can be
� Research supported by the TRACE-IT project funded by the Tuscany Region under

the programme PAR FAS 2007–2013.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 146–161, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Framework to Derive Product Line Behavioural Descriptions 147

interpreted over that structure [13,6,7,9]. We opted for Modal Transition Sys-
tems (MTSs) [4], which were recognized in [15,20,21] as a useful formal method
for describing in a compact way the possible operational behaviour of all prod-
ucts of a product family. We defined a suitable action-based branching-time
temporal CTL-like logic over MTSs and developed efficient algorithms to derive
valid products from families and to verify properties over products and families
alike. We moreover implemented these algorithms in an experimental tool [9].

In this paper, we propose a methodology to systematize the step of formally
representing the features from a feature model in relation with the behaviour of
the products that can be derived from the family feature model. We also discuss
several strategies for the compositional refinement of such behavioural models.
We illustrate our approach by means of a simple and intuitive running example.

2 Running Example: A Family of Coffee Machines

For easy comparison, we use the running example from [6,7,11]. It describes a
family of (simplified) coffee machines through the following list of requirements:

1. Initially, a coin must be inserted: either a euro, exclusively for European
products, or a dollar, exclusively for Canadian products;

2. After inserting a coin, the user has to choose whether (s)he wants sugar,
after which (s)he may select a beverage;

3. The choice of beverage (coffee, tea, cappuccino) varies, but coffee must be
offered by all products of the family, while cappuccino may be offered solely
by European products;

4. Optionally, a ringtone may be rung after delivering a beverage. However, a
ringtone must be present in all products offering cappuccino;

5. After the beverage is taken, the machine returns idle.

This list contains a mix of a kind of static constraints defining the differences
in configuration (features) between products and more operational constraints
defining the behaviour of products through admitted sequences (temporal or-
derings) of actions/operations implementing features.

The de facto standard variability model in SPLE are feature diagrams or fea-
ture models [19,5] providing compact representations of all products of a product
family in terms of their features, and additional constraints among them. Graph-
ically, features are represented as the nodes of a tree, with the family as its root
and relations between these features representing constraints. The first three
relations below form the tree, the latter two model additional constraints:

Optional features may (but need not) be present only if their parent is present;
Mandatory features are (have to be) present iff their parent is present;
Alternative features are such that only one is present if their parent is present;
Requires is a partial preorder relation indicating that the presence of one fea-

ture requires that of the other;
Excludes is a partial symmetric relation indicating the presence of two features

to be mutually exclusive.

148 P. Asirelli et al.

Fig. 1. Feature model of the family of coffee machines (with shorthand names)

Fig. 1 shows a feature model for the coffee machine family, obtained from the list
of requirements by considering only the static requirements (1, 3, and part of 4).
The behavioural requirements are ignored, since feature models only represent
static variability. The feature model defines the following family of 10 products
(coffee machines defined by their features):

{m, o, b, c, e},{m, o, b, c, e, r},{m, o, b, c, e, t},{m, o, b, c, e, t, r}, {m, o, b, c, e, p, r},
{m, o, b, c, $},{m, o, b, c, $, r},{m, o, b, c, $, t},{m, o, b, c, $, t, r},{m, o, b, c, e, p, r, t}

A feature model can be characterized by a propositional logic formula [5,26]:

(m ⇐⇒ true) ∧ (o ⇐⇒ m) ∧ ((e⇐⇒ (¬$ ∧ o)) ∧ ($ ⇐⇒ (¬ e ∧ o))) ∧ (r =⇒ m)
∧ (b ⇐⇒ m) ∧ ((p =⇒ b) ∧ (c ⇐⇒ b) ∧ (t =⇒ b)) ∧ (p =⇒ r) ∧ (¬($ ∧ p))

Suppose we have defined two coffee machines with the following sets of features:

CM1 = {m, o, b, c, e} and CM2 = {m, o, b, c, e, p}
Without generating all products, it is easy to see that coffee machine CM1
belongs to the product family since it satisfies the characteristic formula of the
feature model, whereas CM2 obviously does not: it falsifies the constraint that
a cappuccino requires a ringtone (p =⇒ r). This can be formally verified by in-
terpreting its set of features as a conjunction of axioms (m∧o∧b∧c∧e∧p) that
when added to the characteristic formula makes it either true or false, according
to whether or not the product belongs to the family. In general, the problem of
finding a product that satisfies the characterization of a feature model is reduced
to the problem of finding a satisfying assignment to a set of boolean variables.
Efficient SAT solvers can therefore be used to address this kind of problems [5].

In the next sections, we present the way MTSs can provide behavioural de-
scriptions of product families (based on a combination of their initial lists of
requirements and their feature models) over which we can then verify temporal
properties. To this end, we first provide their features with a temporal ordering
and then step-by-step refine the resulting behavioural descriptions.

A Framework to Derive Product Line Behavioural Descriptions 149

{T1}

may(euro) may(dollar)

{T2}

coffeemay(cappuccino) may(tea)

{T3}

may(ring_a_tone) may(no_ring)

T1 = may(euro).T2 + may(dollar).T2
T2 = coffee.T3 + may(cappuccino).T3

+ may(tea).T3
T3 = may(ring_a_tone).T1 + may(no_ring).T1
net SYS = T1

Constraints {
euro ALT dollar
dollar EXC cappuccino
cappuccino REQ ring_a_tone
ring_a_tone ALT no_ring }

Fig. 2. Coffee machine family: MTS (�) and its textual encoding with constraints (r)

3 Modelling Product Family Behaviour with MTSs

Before defining MTSs, we define their underlying Labelled Transition Systems.

Definition 1. A Labelled Transition System (LTS) is a 4-tuple (Q, A, q, δ), with
set Q of states, set A of actions, initial state q ∈ Q, and transition relation
δ ⊆ Q×A×Q; we may write q

a−→ q′ if (q, a, q′) ∈ δ.

An MTS is an LTS which distinguishes between may and must transitions.

Definition 2. A Modal Transition System (MTS) is a 5-tuple (Q, A, q, δ�, δ�)
such that (Q, A, q, δ� ∪ δ�) is an LTS and δ� ⊆ δ�. An MTS distinguishes
the may transition relation δ�, expressing admissible transitions, and the must
transition relation δ�, expressing necessary transitions; we may write q

a−→� q′

for (q, a, q′) ∈ δ� and q
a−→� q′ for (q, a, q′) ∈ δ�.

The inclusion δ� ⊆ δ� formalises that necessary transitions are also admissible.
Reasoning on the existence of transitions is like reasoning with a 3-valued logic
with truth values true, false, and unknown [16]: necessary transitions (δ�) are
true, admissible but not necessary transitions (δ� \ δ�) are unknown, and im-
possible transitions ((q, a, q′) /∈ δ� ∪ δ�) are false. Graphically, an MTS is a
directed edge-labelled graph where nodes model states and edges model tran-
sitions: solid edges are necessary ones and dotted edges are admissible but not
necessary ones. Edges are labelled with actions executed as the result of state
changes. A sequence of state changes is called a path.

An MTS can provide an abstract description of the set of (valid) products of a
product family, defining both the behaviour that is common to all products and
the behaviour that varies among different products. This requires an interpre-
tation of the requirements of a product family and its constraints w.r.t. certain
features as may and must transitions labelled with actions/operations, and a
temporal ordering among these transitions.

The methodology we propose in this paper foresees a step-by-step approach,
initiated by ordering the features of the feature model. For our running example,
the first step of this methodology results in the MTS depicted in Fig. 2(�).

150 P. Asirelli et al.

The standard derivation methodology for obtaining a product (which becomes
an LTS) from an MTS modelling a product family is defined as including all its
(reachable) must transitions and a subset of its (reachable) may transitions; each
selection is a product. Unfortunately, MTSs alone are incapable of modelling all
common variability constraints. While an MTS is apparently able to model the
constraints concerning optional and mandatory features, by means of may and
must transitions, no MTS is able to model the constraints regarding alternative
features nor those regarding the requires and excludes inter-feature relations.
The solution elaborated in [6,7] is to enrich the MTS description with a set of
constraints that allow one to define which of the standardly derivable products
should be considered as acceptable valid products. In particular, an appropri-
ate variability and action-based temporal logic to formalize these constraints
is defined in [6] and an algorithm to derive all and only LTSs describing valid
products in [7]. For now, we consider three kinds of (binary1) constraints:

F1 ALT F2 Features F1 and F2 are alternative;
F1 EXC F2 Feature F1 excludes feature F2;
F1 REQ F2 Feature F1 requires feature F2.

Their intuitive meaning is as expected: if F1 and F2 are alternative, then all valid
products must contain either F1 or F2, but not both; if F1 requires (excludes) F2,
then a product which contains F1 must (may not) contain F2. These constraints
allow us to define in more detail the set of valid products derivable from the MTS
of Fig. 2(�), namely those satisfying each of the constraints specified in Fig. 2(r).
Note, however, that these constraints do not imply a temporal ordering among
the involved features: a coffee machine that rings a tone before delivering a
cappuccino cannot be excluded as a product of the family based on the constraint
cappuccino REQ ring_a_tone. Such orderings are imposed by the associated
behavioural description of a product (family) in the form of an LTS (MTS).

4 Generating and Analyzing Valid Products with VMC

We implemented the above solution in an experimental tool for the modelling and
analysis of variability in product lines: the Variability Model Checker VMC [9].
Given a product family specified as an MTS, possibly with additional variability
constraints, it can automatically generate all the valid products of a family (ac-
cording to the given constraints), visualize the family/products as MTS/LTSs,
and efficiently model check properties expressed in an action- and state-based
branching-time temporal CTL-like logic over products and families alike.

VMC takes as input the textual encoding of an MTS in the form of a simple
process algebra and an additional set of constraints of the form ALT, EXC, REQ,
and IFF (a shorthand for bilateral REQs). The distinction among may and must
transitions is encoded in the resulting LTS by structuring action labels of may
transitions as may(·) (i.e., typed actions). The LTS modelling an MTS through

1 We plan to extend our approach and tool to deal also with n-ary constraints.

A Framework to Derive Product Line Behavioural Descriptions 151

typed actions shown in Fig. 2(�) is in fact generated by VMC taking as input
the textual representation (without the constraints) depicted in Fig. 2(r).

VMC implements the algorithm in [7] to generate all valid products derivable
from an MTS when an associated set of constraints is taken into account. Be-
yond generating all valid products (LTSs), VMC allows browsing them, verifying
whether they satisfy a certain property (a logic formula) and investigating why
a specific valid product does (not) satisfy the verified property. To do so, for
each product a new window with its textual encoding can be opened.

From the MTS defined in Fig. 2(r) VMC indeed generates the 10 products of
the family defined by the feature model depicted in Fig. 1, listing for each product
moreover which admitted but not necessary (may) transitions it contains:

product14-dollar-ring_a_tone product23-euro-cappuccino-tea-ring_a_tone
product15-dollar-no_ring product26-dollar-tea-ring_a_tone
product17-euro-cappuccino-ring_a_tone product27-dollar-tea-no_ring
product20-euro-tea-ring_a_tone product8-euro-ring_a_tone
product21-euro-tea-no_ring product9-euro-no_ring

Clicking on a product, its specification appears in a new window. For instance:

---------------------------------- ---
-- product14-dollar-ring_a_tone -- product23-euro-cappuccino-tea-ring_a_tone
---------------------------------- ---
T1 = dollar.T2 T1 = euro.T2
T2 = coffee.T3 T2 = coffee.T3 + tea.T3 + cappuccino.T3
T3 = ring_a_tone.T1 T3 = ring_a_tone.T1
net SYS = T1 net SYS = T1

After having provided an initial temporal ordering of the features, the next step
of our methodology is to start refining the behavioural description of a family
through the addition of more detailed (operational) information. In our running
example, we consider the possibility of distinguishing beverages with and without
sugar, as well as different ways of actually mixing the ingredients of beverages:

T1 = may(euro).T2 + may(dollar).T2 Constraints {
T2 = coffee.T3 + may(cappuccino).T4 + may(tea).T5 euro ALT dollar
T3 = may(pour_sugar).T6 + pour_coffee.T11 dollar EXC cappuccino
T4 = may(pour_sugar).T7 + pour_coffee.T9 + pour_milk.T10 cappuccino REQ ring_a_tone
T5 = may(pour_sugar).T8 + pour_tea.T11 ring_a_tone ALT no_ring
T6 = pour_coffee.T11 }
T7 = pour_coffee.T9 + pour_milk.T10
T8 = pour_tea.T11
T9 = pour_milk.T11
T10 = pour_coffee.T11
T11 = may(ring_a_tone).T12 + may(no_ring).T12
T12 = take_cup.T1
net SYS = T1

Given this refined family, VMC generates a total of 36 products. This explosion
is due to the way we introduced the possibility of pouring sugar into a beverage,
allowing coffee machines in which certain beverages are offered only sugared
and others only unsugared. For instance, it allows the two products below: in
one only coffee can be sugared while in the other only tea can be sugared. The
MTSs of these two products as generated by VMC are shown in Fig. 3; they are
obtained by taking as input the following textual representations:

152 P. Asirelli et al.

{T1}

euro

{T2}

coffee

tea{T3}

pour_coffee

pour_sugar {T5}

pour_tea

{T7}

no_ring

{T6}

pour_coffee

{T12}

take_cup

{T1}

euro

{T2}

coffee tea

{T3}

pour_coffee

{T5}

pour_tea

pour_sugar

{T7}

no_ring

{T11}

pour_tea

{T12}

take_cup

Fig. 3. Valid products of the refined family model as generated by VMC

--- ---
-- product55-euro-tea-pour_sugar-no_ring -- product58-euro-tea-pour_sugar-no_ring
--- ---
T1 = euro.T2 T1 = euro.T2
T2 = coffee.T3 + tea.T5 T2 = coffee.T3 + tea.T5
T3 = pour_coffee.T7 + pour_sugar.T6 T3 = pour_coffee.T7
T5 = pour_tea.T7 T5 = pour_tea.T7 + pour_sugar.T11
T6 = pour_coffee.T7 T7 = no_ring.T12
T7 = no_ring.T12 T11 = pour_tea.T7
T12 = take_cup.T1 T12 = take_cup.T1
net SYS = T1 net SYS = T1

There are several ways of resolving this, assuming that coffee machines that offer
sugared versions of only some of the available beverages is not what we want.
One way, leading to the model of [6,7] depicted in Fig. 4, is to further refine
the family by explicitly modelling the choice for sugar upfront (in line with the
requirements), so distinguishing the beverages being sugared, and to extend the
constraints enforcing that all available beverages may but need not be sugared:

T1 = may(euro).T2 + may(dollar).T2 Constraints {
T2 = sugar.T3 + no_sugar.T4 euro ALT dollar
T3 = sugared_coffee.T5 sugared_tea IFF unsugared_tea

+ may(sugared_cappuccino).T6 sugared_cappuccino IFF unsugared_cappuccino
+ may(sugared_tea).T7 dollar EXC sugared_cappuccino

T4 = unsugared_coffee.T8 sugared_cappuccino REQ ring_a_tone
+ may(unsugared_cappuccino).T9 ring_a_tone ALT no_ring
+ may(unsugared_tea).T10 }

T5 = pour_sugar.T8
T6 = pour_sugar.T9
T7 = pour_sugar.T10
T8 = pour_coffee.T13
T9 = pour_coffee.T11 + pour_milk.T12
T10 = pour_tea.T13
T11 = pour_milk.T13
T12 = pour_coffee.T13
T13 = may(ring_a_tone).T14 + may(no_ring).T14
T14 = take_cup.T1
net SYS = T1

A Framework to Derive Product Line Behavioural Descriptions 153

{T1}

may(euro) may(dollar)

{T2}

sugarno_sugar

{T3}

sugared_coffeemay(sugared_cappuccino)may(sugared_tea)

{T4}

unsugared_coffeemay(unsugared_cappuccino)may(unsugared_tea)

{T5}

pour_sugar

{T6}

pour_sugar

{T7}

pour_sugar

{T8}

pour_coffee

{T9}

pour_coffeepour_milk

{T10}

pour_tea

{T13}

may(ring_a_tone) may(no_ring)

{T11}

pour_milk

{T12}

pour_coffee

{T14}

take_cup

Fig. 4. MTS of refined coffee machine family as generated by VMC

From this refined family MTS, VMC generates the following 10 product LTSs:
product11-euro-ring_a_tone
product12-euro-no_ring
product20-dollar-ring_a_tone
product21-dollar-no_ring
product65-euro-sugared_cappuccino-unsugared_cappuccino-ring_a_tone
product77-euro-sugared_tea-unsugared_tea-ring_a_tone
product78-euro-sugared_tea-unsugared_tea-no_ring
product89-euro-sugared_cappuccino-sugared_tea-unsugared_cappuccino-unsugared_tea-ring_a_tone
product95-dollar-sugared_tea-unsugared_tea-ring_a_tone
product96-dollar-sugared_tea-unsugared_tea-no_ring

Rather than clicking on the products to analyze them, we can use the model-
checking features of VMC to verify whether all valid European products offer
both sugared and unsugared cappuccino by checking the following logic formula:2

[euro] ((EF 〈sugared_cappuccino〉 true) and EF 〈unsugared_cappuccino〉 true)

VMC produces a table of the above 10 products listing whether or not they sat-
isfy this formula (recall that cappuccino is optional even for European products):
2 Operators 〈 〉 (“possibly”) and [] (“necessarily”) are the classic diamond and box

modalities, while EF (“eventually”) is a combination of the classic existential path
operator E (“exists”) and the classic state operator F (“future”).

154 P. Asirelli et al.

product11-euro-ring_a_tone Formula is FALSE
product12-euro-no_ring Formula is FALSE
product20-dollar-ring_a_tone Formula is TRUE
product21-dollar-no_ring Formula is TRUE
product65-euro-(un)sugared_cappuccino-ring_a_tone Formula is TRUE
product77-euro-sugared_tea-unsugared_tea-ring_a_tone Formula is FALSE
product78-euro-sugared_tea-unsugared_tea-no_ring Formula is FALSE
product89-euro-(un)sugared_cappuccino-(un)sugared_tea-ring_a_tone Formula is TRUE
product95-dollar-sugared_tea-unsugared_tea-ring_a_tone Formula is TRUE
product96-dollar-sugared_tea-unsugared_tea-no_ring Formula is TRUE

Likewise we can verify whether all valid products offer both sugared and unsugar-
ed coffee, in which case VMC reports that this property holds for all 10 products:

[euro] ((EF 〈sugared_coffee〉 true) and EF 〈unsugared_coffee〉 true)

5 Compositional Modelling of Feature Models and MTSs

The step-by-step refinement described in the previous sections is one way to build
a large behavioural model of a product family in a bottom-up fashion: a minimal
feature model leads to an initial MTS which is subsequently refined by repeatedly
adding functionality. Two alternative strategies are based on composition: several
minimal feature models, representing different functionalities, are first composed
and then interpreted as MTSs or first interpreted and then composed. These
strategies require two compositional operators, namely one for feature models
and one for MTSs. For feature models, we can use the feature model composition
operators described in [1], while for MTSs we can use the classic process-algebraic
choice operator (+) and apply it to their textual encodings. Ideally, all strategies
should lead to the same refined model. We show that this is not yet the case by
applying also the latter two strategies to our running example.

Fig. 5. Sugared Beverage aspect feature model for sugared beverages

Consider the feature model of Fig. 1 and suppose that we want to explicitly
add to this configuration the aspect (taken from the list of requirements) that
coffee machines come equipped with a functionality that allows the user to choose
between sugared and unsugared beverages. Following [1], we can do this by
defining the so-called aspect feature model depicted in Fig. 5 and compose it
with the feature model depicted in Fig. 1 through the so-called insert operator:

insert(Sugared Beverage, Beverage, And-Mandatory)

A Framework to Derive Product Line Behavioural Descriptions 155

Sugared Beverage is the feature to insert (from the aspect feature model), Bev-
erage the target feature (in the base feature model), and And-Mandatory the
operator (i.e., the relation defining how the feature is to be included in the tree).

Fig. 6. Aspect inserted into feature model of the family of coffee machines

This composition by insertion results in the feature model depicted in Fig. 6.
As before, our methodology now advocates a step-by-step interpretation of the
feature model, initially providing a mere ordering of the features. This may result
in the MTS depicted in Fig. 7 and its following process-algebraic representation:

T1 = may(euro).T2 + may(dollar).T2 Constraints {
T2 = sugar.T3 + no_sugar.T4 euro ALT dollar
T3 = sugared_coffee.T5 + may(sugared_cappuccino).T5 dollar EXC cappuccino

+ may(sugared_tea).T5 cappuccino REQ ring_a_tone
T4 = unsugared_coffee.T5 + may(unsugared_cappuccino).T5 ring_a_tone ALT no_ring

+ may(unsugared_tea).T5 }
T5 = may(ring_a_tone).T1 + may(no_ring).T1
net SYS = T1

Now we run into a problem that is mentioned as future work in [1] and also in
later work by the same authors and which — to the best of our knowledge —
has not yet been solved: the current composition operators for feature models do
not consider inter- and intra-feature constraints between features (such as, e.g.,
the requires and excludes relations). Translated into our example: composing the
feature models depicted in Figs. 5 and 6 should ideally result in a composition
(feature model) that incorporates the following constraints:

sugared_tea IFF unsugared_tea sugared_cappuccino IFF unsugared_cappuccino

These constraints serve to guarantee that whenever a specific beverage is offered
in a valid coffee machine, it can always be obtained sugared as well as unsugared.
While this hopefully can be done automatically in the future, for now we have
no other choice than to add these constraints by hand.

156 P. Asirelli et al.

{T1}

may(euro) may(dollar)

{T2}

sugarno_sugar

{T3}

sugared_coffeemay(sugared_cappuccino) may(sugared_tea)

{T4}

unsugared_coffee may(unsugared_cappuccino)may(unsugared_tea)

{T5}

may(ring_a_tone) may(no_ring)

Fig. 7. Coffee machine family interpretation of the feature model of Fig. 6

The next step of our methodology is to refine this behavioural description of
the family by adding more detailed (operational) information. If we consider, as
before, the different ways of actually mixing the ingredients of the beverages,
then this may lead us — once more — to the model of [6,7] depicted in Fig. 4.

This concludes one of the two alternative bottom-up strategies based on com-
position mentioned in the beginning of this section, namely first composing min-
imal feature models, representing different functionalities, and then interpreting
the resulting composition as an MTS.

The remaining strategy (first interpreting the minimal feature models as
MTSs, and then composing these) requires a compositional operator for MTSs.

Consider the MTS and its textual encoding depicted in Fig. 2 (interpreting
the feature model depicted in Fig. 1). As before, we want to add the aspect
that coffee machines come equipped with a functionality that allows the user to
choose between sugared and unsugared beverages as represented by the aspect
feature model depicted in Fig. 5. The latter can be interpreted as follows:

T = sugared_coffee.Tx + may(sugared_cappuccino).Ty + may(sugared_tea).Tz

To compose this with the textual encoding, depicted in Fig. 2(r), of the MTS
depicted in Fig. 2(�), we use the well-known process-algebraic choice operator:3

T1 = may(euro).T2 + may(dollar).T2 Constraints {
T2 = sugar.T3 + no_sugar.T4 euro ALT dollar
T3 = sugared_coffee.T5 + may(sugared_cappuccino).T5 dollar EXC cappuccino

+ may(sugared_tea).T5 cappuccino REQ ring_a_tone
T4 = coffee.T5 + may(cappuccino).T5 + may(tea).T5 ring_a_tone ALT no_ring
T5 = may(ring_a_tone).T1 + may(no_ring).T1 }
net SYS = T1

In this way, we interpret properly the functionality (originating from the list of
requirements) that allows the user to choose between sugared and unsugared
beverages after having inserted a coin. However, as before, we need to add con-
straints to guarantee that whenever a specific beverage is offered in a valid coffee
machine, it can always be obtained sugared as well as unsugared.
3 a.Tx + b.Ty represents a system which may behave either as a.Tx or as b.Ty.

A Framework to Derive Product Line Behavioural Descriptions 157

After having done so, the next step of our methodology would be — once
again — to refine this behavioural description of the family by adding more
detailed (operational) information. If we consider, as before, the different ways
of actually mixing the ingredients of the beverages, then this may lead us —
once again — to the model of [6,7] depicted in Fig. 4.

This concludes the second of two alternative bottom-up strategies based on
composition mentioned in the beginning of this section, namely first interpret-
ing minimal feature models, representing different functionalities, as textual en-
codings of MTSs and then composing the resulting textual encodings into one
textual encoding of an MTS.

6 Getting Acquainted with VMC

The core of VMC consists of a command-line-oriented version of the model
checker and by a product generation procedure. These programs are stand-alone
executables written in Ada and can easily be compiled for the Windows / Linux /
Solaris / MacOSX platforms. These core executables are wrapped with a set of
CGI scripts handled by a web server; in this way, a graphical html-oriented GUI
can easily be built, and the integration with other tools for LTS minimization
and graph drawing is easily achieved. (Cf. [9] for further details and references.)

The development of VMC is still in progress, but a prototypical version of the
tool is being used at ISTI–CNR for academic and experimental purposes. VMC is
publicly usable online (http://fmtlab.isti.cnr.it/vmc/) and its executables
are available upon request. The reader is warmly invited to experiment with
VMC. The definition of the refined model of the running example used in this
paper is available as coffeemodel2.txt from one of the examples.

The current version of VMC is not targeted to the verification of very large sys-
tems. Its main limitation, however, lies in generating the model from its process-
algebraic input language, while its on-the-fly verification engine and advanced
explanation techniques are those of the highly optimized family of on-the-fly
model checkers developed during the last decades at ISTI–CNR [8,14]. The on-
the-fly nature of their underlying model-checking algorithms means that in gen-
eral not the whole state space needs to be generated and explored. This feature
improves performance and allows to deal with infinite-state systems.

7 Related Work

We first discuss work related to our behavioural modelling and analysis frame-
work based on MTSs and temporal logic, after which we discuss work related to
the compositional modelling approach of Archer et alii [1,2,3] that we adopted
in the compositional framework presented in this paper.

Behavioural framework. The approach closest to ours is that based on Featured
Transition Systems (FTSs) [11,12]. An FTS is a (doubly-labelled) transition
system with an associated feature diagram and a specific distinction among its

http://fmtlab.isti.cnr.it/vmc/

158 P. Asirelli et al.

transitions by means of a labelling indicating which transitions correspond to
which features. This approach, like ours, thus models product families in terms
of specific transition systems that define family behaviour in terms of actions
(features). Likewise, both approaches require the addition of further structural
relationships between actions to manage (advanced) variability constraints.

In [11], an explicit-state model-checking technique, progressing one state at
a time, to verify Linear Temporal Logic (LTL) properties over FTSs is defined.
This results in a means to check that whenever a behavioural property is satisfied
by an FTS modelling a product family, then it is also satisfied by every product of
that family, and whenever a property is violated, then not only a counterexample
is provided but so are the products violating the property. In [12], this approach
is improved by using symbolic model checking, examining sets of states at a
time, and a feature-oriented version of classic CTL (Computation Tree Logic).

SNIP [10] is a model checker for product families modelled as FTSs specified
in a language based on that of the well-known SPIN (http://spinroot.com/)
model checker. Features are declared in the Text-based Variability Language
TVL and are taken into account by the explicit-state model-checking algorithm
of SPIN for verifying properties expressed in fLTL (feature LTL) interpreted over
FTSs (e.g., to verify a property only over a subset of valid products). Exhaustive
model-checking algorithms (continuing their search after a violation was found)
moreover allow to verify all the products of a family at once and to output all the
products that violate a property. Unlike VMC, SNIP is a command-line tool with
no graphical interface. Moreover, it was built from scratch, while VMC profits
from numerous optimization techniques that were implemented over the years in
the family of on-the-fly model checkers to which it belongs (cf. [8]). SNIP, how-
ever, treats features as first-class citizens, with built-in support for feature dia-
grams, and implements model-checking algorithms tailored for product families.

As said before, MTSs were recognized as a suitable behavioural model to
describe product families in [15,20,21]. In [15], a fixed-point algorithm, imple-
mented in a tool, is defined to check whether an LTS conforms to an MTS w.r.t.
several different branching relations. In the context of SPLE, it allows to check
the conformance of the behaviour of a product against that of its product family.

In [21], variable I/O automata are introduced to model product families. Like
modal I/O automata [20], they extend I/O automata with a distinction among
may and must transitions. A model-checking approach to verify conformance of
products w.r.t. the variability of a family is also defined. This is achieved by us-
ing variability information in the model-checking algorithm (while exploring the
state space an associated variability model is consulted continuously). Properties
expressed in CTL can be verified through explicit-state model checking.

Finally, in [22] an algebraic approach to behavioural modelling and analysis
of product families is described, while feature Petri nets are introduced in [24]
to model behaviour of product families with a high degree of variability.

Compositional framework. The compositional framework presented in this paper
is based on the compositional feature modelling approach of [1]. Archer et alii
define a number of operators to separate, relate and compose feature models and

A Framework to Derive Product Line Behavioural Descriptions 159

semantic properties that must be preserved during such (de)compositions. These
operators include the insert operator used in Sect. 5 and the more generic merge
operator built on top of it, as well as the slice decomposition operator. To sup-
port the manipulation of feature models, they moreover developed the domain-
specific language FAMILIAR [3]. For a systematic overview and comparison of
their approach with a number of related approaches, we refer to [2]. One of its
conclusions is that generic model composition frameworks are outperformed by
domain-specific approaches, which convinces us to pursue the development of
the compositional framework proposed in this paper.

Two more related domain-specific component-based development approaches
are constraint-oriented variability modelling [28], in which behavioural models
are constructed by iteratively refining the constraints to determine the admissible
solutions, and hierarchical variability modelling [18], which integrates component
variability and component hierarchy and is equipped with compositional LTL-
based verification techniques for SPL behaviour implemented in a tool set [27].
Compared to our approach, the former uses a top-down rather than a bottom-up
approach, while the latter is an architectural rather than behavioural approach
to variability modelling.

Finally, in [17] a feature-oriented approach to modelling product families in
Event-B by means of a chain of refinements is explored by applying existing
Event-B (de)composition techniques to two case studies, using a prototypical
feature composition tool. Behavioural variability is not considered, but it would
be interesting to explore the feasibility of using this Feature Event-B as a high-
level specification language on top of the semantic model of our approach.

8 Conclusions and Future Work

We have proposed and illustrated three different methodologies for the deriva-
tion of product line behavioural descriptions from feature models, one through
refinement and two by means of composition. To complete the variant based on
composing MTSs, we are currently working out the details of domain-specific
composition operators for MTSs. Subsequently, we intend to implement the re-
sulting compositional framework in VMC.

References

1. Acher, M., Collet, P., Lahire, P., France, R.: Composing Feature Models. In: van
den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 62–81.
Springer, Heidelberg (2010)

2. Acher, M., Collet, P., Lahire, P., France, R.: Comparing Approaches to Implement
Feature Model Composition. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F.
(eds.) ECMFA 2010. LNCS, vol. 6138, pp. 3–19. Springer, Heidelberg (2010)

3. Acher, M., Collet, P., Lahire, P., France, R.B.: Managing Feature Models with
FAMILIAR: a Demonstration of the Language and its Tool Support. In: Heymans,
P., Czarnecki, K., Eisenecker, U.W. (eds.) Proceedings 5th Workshop on Variability
Modelling of Software-intensive Systems (VaMoS 2011), pp. 91–96. ACM (2011)

160 P. Asirelli et al.

4. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wąsowski, A.: 20 Years of Modal
and Mixed Specifications. Bulletin of the EATCS 95, 94–129 (2008)

5. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

6. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A Logical Framework to Deal
with Variability. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp.
43–58. Springer, Heidelberg (2010)

7. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: Formal Description of Vari-
ability in Product Families. In: Proceedings 15th International Software Product
Line Conference (SPLC 2011), pp. 130–139. IEEE (2011)

8. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Science of Com-
puter Programming 76(2), 119–135 (2011)

9. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: A Tool for Product Variability
Analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
450–454. Springer, Heidelberg (2012)

10. Classen, A., Cordy, M., Heymans, P., Schobbens, P.-Y., Legay, A.: SNIP: An Ef-
ficient Model Checker for Software Product Lines. Technical Report P-CS-TR
SPLMC-00000003, PReCISE Research Center, University of Namur (2011)

11. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model Check-
ing Lots of Systems: Efficient Verification of Temporal Properties in Software Prod-
uct Lines. In: Proceedings 32nd International Conference on Software Engineering
(ICSE 2010), pp. 335–344. ACM (2010)

12. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A.: Symbolic Model Checking of
Software Product Lines. In: Proceedings 33rd International Conference on Software
Engineering (ICSE 2011), pp. 321–330. ACM (2011)

13. Fantechi, A., Gnesi, S.: Formal Modelling for Product Families Engineering. In:
Proceedings 12th Software Product Lines Conference (SPLC 2008), pp. 193–202.
IEEE (2008)

14. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A Log-
ical Verification Methodology for Service-Oriented Computing. ACM Transactions
on Software Engineering and Methodology 21(3), article 16, 1–46 (2012)

15. Fischbein, D., Uchitel, S., Braberman, V.A.: A Foundation for Behavioural Con-
formance in Software Product Line Architectures. In: Hierons, R.M., Muccini, H.
(eds.) Proceedings ISSTA 2006 Workshop on the Role of Software Architecture for
Testing and Analysis (ROSATEA 2006), pp. 39–48. ACM (2006)

16. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-Based Model Checking Using
Modal Transition Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)

17. Gondal, A., Poppleton, M., Butler, M.: Composing Event-B Specifications - Case-
Study Experience. In: Apel, S., Jackson, E. (eds.) SC 2011. LNCS, vol. 6708, pp.
100–115. Springer, Heidelberg (2011)

18. Haber, A., Rendel, H., Rumpe, B., Schaefer, I., van der Linden, F.: Hierarchical
Variability Modeling for Software Architectures. In: Proceedings 15th International
Software Product Line Conference (SPLC 2011), pp. 150–159. IEEE (2011)

19. Kang, K., Choen, S., Hess, J., Novak, W., Peterson, S.: Feature Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report SEI-90-TR-21. Carnegie Mel-
lon University (1990)

A Framework to Derive Product Line Behavioural Descriptions 161

20. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 64–79. Springer, Heidelberg (2007)

21. Lauenroth, K., Pohl, K., Töhning, S.: Model Checking of Domain Artifacts in Prod-
uct Line Engineering. In: Proceedings 24th International Conference on Automated
Software Engineering (ASE 2009), pp. 269–280. IEEE (2009)

22. Leucker, M., Thoma, D.: A Formal Approach to Software Product Families. In:
Margaria, T., Steffen, B.(eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 131–145.
Springer, Heidelberg (2012)

23. Meyer, M.H., Lehnerd, A.P.: The Power of Product Platforms: Building Value and
Cost Leadership. The Free Press (1997)

24. Muschevici, R., Clarke, D., Proença, J.: Feature Petri Nets. Schaefer, I., Carbon,
R., (eds): Proceedings 1st Workshop on Formal Methods in Software Product Line
Engineering (FMSPLE 2010). Technical Report, University of Lancaster (2010)

25. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles, and Techniques. Springer (2005)

26. Roos-Frantz, F.: Automated Analysis of Software Product Lines with Orthogonal
Variability Models: Extending the FaMa Ecosystem. Ph.D. Thesis, University of
Seville (2012)

27. Schaefer, I., Gurov, D., Soleimanifard, S.: Compositional Algorithmic Verification
of Software Product Lines. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2011. LNCS, vol. 6957, pp. 184–203. Springer, Heidelberg (2011)

28. Schaefer, I., Lamprecht, A.-L., Margaria, T.: Constraint-oriented Variability Mod-
eling. In: Proceedings 34th Annual IEEE Software Engineering Workshop (SEW
2011), pp. 77–83. IEEE (2012)

Delta-Oriented Monitor Specification

Eric Bodden1, Kevin Falzon1, Ka I. Pun2, and Volker Stolz2,3

1 Secure Software Engineering Group,
European Center for Security and Privacy by Design (EC SPRIDE),

Technische Universität Darmstadt, Germany
2 Dept. of Informatics, University of Oslo, Norway

3 UNU-IIST, Macau S.A.R.

Abstract. Delta-oriented programming allows software developers to
define software product lines as variations of a common code base, where
variations are expressed as so-called program deltas. Monitor-oriented
programming (MOP) provides a mechanism to execute functionality
based on the execution history of the program; this is useful, e.g., for
the purpose of runtime verification and for enforcing security policies.

In this work we discuss how delta-oriented programming and MOP
can benefit from each other in the Abstract Behavior Specification Lan-
guage (ABS) through a new approach we call Delta-oriented Monitor
Specification (DMS). We use deltas over monitor definitions to concisely
capture protocol changes induced by feature combinations, and propose
a notation to denote these deltas. In addition, we explore the design
space for expressing runtime monitors as program deltas in ABS.

A small case study shows that our approach successfully avoids code
duplication in monitor specifications and that those specifications can
evolve hand in hand with feature definitions.

Keywords: Runtime Verification, Monitor-oriented Programming,
Interface Protocols, Software Product Lines.

1 Introduction

Delta-oriented programming (DOP) allows software developers to define software
product lines as variations of a common code base. Variations are expressed
as program deltas, which can add, remove, and re-define units of code such as
classes or methods [5]. Delta-oriented programming has been proposed as a way
to structure software product lines (SPL) [6] and as a more structured alternative
to other conditional-compilation constructs such as #ifdef [12].

The application interfaces (APIs) of software products frequently come with
implicit or explicit usage contracts that describe how the individual methods of
the API are to be called, e.g., in which order or with what parameters. Runtime
monitoring is commonly used to verify the adherence to such usage contracts at
runtime [3]. In runtime monitoring, the program under test is instrumented with
(often stateful) runtime checks that signal an error if clients of the API violate
the usage rules at runtime. In practice, the runtime monitoring machinery can
be used for other purposes. More specifically, runtime monitors can be seen as

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 162–177, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Delta-Oriented Monitor Specification 163

a declarative programming paradigm in which code is executed based on events
observed in the execution history of the program — a programming style coined
Monitor-oriented Programming (MOP) [3].

Subjecting a product line’s code to program deltas complicates its monitoring,
as the introduction of the deltas may modify or extend usage contracts, or in
the more general case of MOP, may expose new or altered execution histories.
Thus, it follows that any runtime monitors present in the system may need to
be updated as well.

In this work, we describe an initial design of Delta-oriented Monitor Spec-
ification (DMS), our approach to updating finite-state-machine based monitor
specifications in line with delta definitions for regular program code. DMS allows
programmers to deploy monitors as deltas, and to define deltas over monitor def-
initions comprising additions, removal or replacements of individual transitions,
the introduction of new initial states and variable bindings or the additions,
removal or replacement of transition guards.

We situate our approach in the context of the Abstract Behaviour Specifica-
tion language (ABS), a modelling language for active objects [4] that has built-in
support for DOP. Concretely, we provide an example based on ABS and propose
a tool approach for integration with the ABS platform. We also report on the
suitability of ABS for Monitor-oriented Programming.

To assess the viability of our approach, we apply Delta-oriented Monitor Spec-
ification to a small case study of a cashier system from the component-based
development community. The Common Component Modelling Example (Co-
CoME) [15] is given as a use case with optional variabilities, which we treat as
features in a software product line. Firstly, we use the example to introduce the
ABS language, and then use the same language mechanism to instrument the
example program, to monitor and enforce consistent API use through DMS. We
give an implementation strategy that generates the necessary deltas which aug-
ment every method with monitoring code. As DMS are rather explicit since they
describe changes with respect to a base automaton, we also introduce a more
accessible, graphical high-level notation, from which one can automatically cal-
culate the delta automaton.

To summarize, this paper contains the following original contributions:

– The idea of and a design for Delta-oriented Monitor Specifications, including
a formalization and an implementation strategy.

– A discussion of the suitability of ABS for Monitor-oriented Programming.
– An assessment of the viability of the approach using a small case study.

The remainder of this paper is organized as follows: we present the salient fea-
tures of the ABS language and its support for SPLs in the context of a running
example in Sec. 2. A short motivation for runtime verification and protocols is
provided in Sec. 3. We formalize the base automata with variable bindings and
delta-automata to capture protocol changes in Sec. 4. Sec. 5 outlines how deltas
can be used to enforce protocols as an optional feature in SPL products. Sec. 6
concludes with related work and a few suggested features to improve ABS’s
support for runtime verification.

164 E. Bodden et al.

2 Overview

ABS is very much in the style of traditional programming languages like Java or
C++, but also models asynchronous behaviour, similar to Actors [9]. Every ob-
ject can be understood as a process receiving and sending messages, with explicit
release points in method bodies over boolean guards on the object state. On the
static level, ABS uses subtyping through interfaces, but not code inheritance,
making formal reasoning in ABS simpler than in other languages that support
code inheritance. However, the language supports another important mechanism
for reuse, since it directly includes a notion of software product lines (SPL), a
feature language, and a low-level assembly mechanism for so-called “deltas”.

In an SPL, features are mapped to sets of deltas, each of which may modify the
program by removing/adding fields or methods, and overriding method-bodies
with new code that can call back into the original code, allowing a construct
similar to the around()-advice with super-calls of aspect-oriented programming.
ABS is thus closer to an aspect-oriented programming language, although it lacks
the flexibility of, e.g., wildcard matches on method invocation.

In previous work [2], we have used techniques from aspect-oriented program-
ming [10] to instrument applications with runtime checks that enforce a particu-
lar protocol between objects. In runtime verification, one is generally interested
in detecting patterns in the execution history, usually described by linear tempo-
ral logic formulas or regular expressions. Additionally, one may specify an action
which must be taken when a monitor is triggered. When a monitor matches, the
behaviour of the program is overridden with the behaviour annotated to the
monitor. Enforcing protocols can be useful to add security aspects to an API,
or guard against the misuse of an interface. Monitor specifications are often
domain-specific, and can often be derived from the (informal) documentation.

In this paper, instead of using the full power of aspect-oriented programming
techniques, we show that the more restricted subset of ABS programs is—in
general, save some minor elements which have not yet been implemented in the
prototype of the ABS language—sufficient to implement runtime verification.

Most importantly, we lift the notion of deltas to the level of monitoring.
This allows us to customize protocols for features and products using a similar
mechanism that customizes the code. Deltas are thus used twice in our approach:
as part of the input, they define the products, and our approach contributes an
additional delta which implements the monitoring per product.

Next, we give an overview of the ABS language and its support for SPLs.

ABS in the CoCoME Case Study. We illustrate our approach with an exam-
ple derived from the CoCoME case study [15]. It specifies a simple supermarket
system on various levels (single cashdesk, single shop, enterprise) using compo-
nents (the cashdesk, a store-component providing back-end services, a bank for
credit card payments, etc.).

Delta-Oriented Monitor Specification 165

Based on an informal description of the principal use case, we focus here on
the design of the cashdesk and how the cashier interacts with it. The scenario
also conveniently specifies variabilities which we can express using features.

For each customer, the cashier initiates a new sale, and processes the purchases
by scanning them with a barcode scanner. The backend provides necessary in-
formation such as price and description. All purchases are aggregated into a sale,
and after indicating that the processing has finished, the system calculates the
total. The cashier retrieves the money from the customer and enters the amount
into the system. The system displays the amount of change to return. After
receiving the change, the customer leaves, and the cashier starts over.

We obtain a self-explanatory program for the cashdesk with interface functions
startSale, enterItem, finishSale and pay. In addition to the business logic in
the form of methods, data types and (pure) functions over those data types are
defined in the functional subset of ABS, e.g., key/value maps.

module CoCoME;
class Cashdesk (Store s) implements Cashdesk {

Store s t o r e = s ;
Int t o t a l = −1;
Bool f i n i s h ed = Fal se ;
L i s t<Item> i tems = Ni l ;

Unit s t a r t S a l e () { t o t a l = 0 ; f i n i s h e d = Fal se ; i tems = Ni l ; }
Unit ente r I tem(Int code , Int qty) {

assert s t o r e != nu l l ;
Item item = s t o r e . lookup (code) ;
t o t a l = t o t a l + qty∗ p r i c e (item) ;
items = Cons (item , items) ;

}
Unit f i n i s h S a l e () { f i n i s h e d = True ; }
Int pay (Int g iven) {

assert g iven >= t o t a l ;
return given−t o t a l ;

}
}

Features of CoCoME. On top of this base program, we define the following
optional features: the system should permit credit-card payment as an alterna-
tive, and support an express-checkout lane for customers with only a few items.
When a cash-desk is in express checkout mode, customers may only purchase a
bounded number of products, and only cash payments are allowed.

Instead of changing the program to support those features directly using
object-oriented design, we use ABS’s software product lines to specify the dif-
ferent products. Delta Credit introduces a new method Bool cardPay(CCData

cc). Likewise, we ignore the details of refusing a customer should she try to buy
too many items when the desk is in express mode—note that the number k of
items is configurable by the feature through the delta. We also trigger an as-
sertion when she attempts a credit-card payment while in this mode. The other
requirement involving the interaction between both features is specified in delta
ExpressCC. In express mode, no card payments are allowed:

166 E. Bodden et al.

delta Cred i t {
modifies class Cashdesk {
adds Bool cardPay (CCData cc)

{ return s t o r e . au tho r i z e (cc) ;}
adds Int cashPay (Int g iven)

{ return this . pay (g iven) ; }
}}

delta ExpressCC {
modifies class Cashdesk {
modifies Bool cardPay (CCData cc) {

// Not al lowed in express mode
assert ˜mode ;
return orig inal (cc) ;

}}}

It is evident that the sequence in which deltas are applied is relevant, such as
when overwriting the cardPay()method following its introduction by a previous
delta, or when accessing the mode attribute. Here, we need ABS’s mechanism
of explicitly ordering deltas for a particular feature. This is recorded through
the after-clause in the product-line specification, which assembles the features
shown below. We will later show that from our protocol deltas, we can derive a
delta which is almost identical to this, since the functionality expressed in the
requirement is exactly a protocol issue (enabledness of a method based on the
execution history).

As a last ingredient, we need to define the valid products in this product line.
We have the base product without any features, and both optional features,
yielding four possible products in total.1

productline CoCoME
features Express , Cred i t ;
delta Cred i t when Cred i t ;
delta Express (10) when Express ;
delta ExpressCC after Cred i t

when Express && Cred i t ;

product Base () ;
product Cred i t (Cred i t) ;
product Ex(Express) ;
product CCEx(Express , Cred i t) ;

3 Enforcing Correct Behaviour

The intended use of a programming API, such as our Cashdesk system, is usually
not directly inferable from the code. This is problematic, and frequently leads to
usage errors. It is therefore desirable to support programmers by documenting
and checking usage restrictions.

In [2], we have formalized usage protocols to make their intended use explicit
within the code, and to make it automatically checkable. The protocol is spec-
ified in a machine-readable notation as annotations in the Java code. Method
invocations, including constructors, are specified via atomic propositions (or
equivalently, as transition labels). Any violation of the contract, i.e., a method
invocation that is not allowed by the protocol, will terminate the execution.
While this is generally undesired for production code (there should not be any
runtime errors), this approach is useful for defining testing oracles.

Extension to deltas. As the protocol is clearly application specific, if the appli-
cation is the product of an SPL, there must be support for various protocols in
different products. This gives us two possible options: specifying the full proto-
col per product, or incrementally changing the protocol, similarly to how deltas
change code. We argue that the latter approach is preferable.

1 ABS supports a product-selection language from, e.g., mutually-exclusive features,
or dependencies, which is more than we can make use of in our example. See [6].

Delta-Oriented Monitor Specification 167

To correctly assemble a product from features, which map to sets of deltas,
a designer needs intricate knowledge of the internal structure of the program.
Features, and consequently their deltas, manipulate a potentially large base ap-
plication. Clearly, a major focus on the protocol design will be on the base
system. Modification of existing methods may make it necessary to update the
protocol, and new methods must be incorporated (unless they require no special
interaction protocol). Deletion of methods is straightforwardly handled by re-
moving any occurrence of the method call in the protocol. Thus, we expect that
specifying the changes in the protocol per feature is cheaper in terms of syntax
and effort than re-specifying the complete protocol for each product.

Base Protocol. The intended API use of our component can be specified
through a labelled transition system, where the labels are (guarded) method
calls, as shown in Fig. 1. The intended usage, as indicated by the system use case,
is that the cashier starts a sale for a new customer, records all items, indicates
that all items have been processed, and handles the payment. Correspondingly,
the state labels s, b, f are mnemonics for “starting”, “buying”, “finished”. In
Sec. 4, we will formalize the automaton construction.

s

b

f

startSale

finishSale

enterItempay

Fig. 1. Base protocol

finishSale

startSale

cardPay [pay/cashPay]

Fig. 2. Credit card payment

setExpress(bool mode)

startSale

startSale

Fig. 3. Mode switch

finishSale

!mode & cardPay

startSale
setExpress

Fig. 4. ExCC

For the behaviour of the different products, we informally give the relative
change in the protocol. Fig. 2 shows that after finishSale(), there are now
two payment methods available. We have renamed the existing method from
pay to cashPay for clarity, and added the cardPay method. The diagram shows
wildcard states that the changed transitions attach to; the intention here is to
add the new option as an alternative to the existing edge. Any existing edges that
are not referred to in the protocol delta are left unchanged. The dashed transi-
tions are used to determine which states in the original protocol to attach to.

168 E. Bodden et al.

Since state names should only be used implicitly, one of our design goals is to
avoid referring to states, matching, instead, on existing transitions. We elaborate
on the necessary pointcut expressions in Sec. 4.

Fig. 3 introduces the mode-switch method, which can optionally be called
before the startSalemethod. We make use of a binding occurrence with formal
parameter mode that must match the signature of the operation. Note that the
state s before the startSale invocation in the original protocol is an initial state.
Therefore, the semantics of “before” should include relocation of the initial state.

Fig. 4 illustrates the interaction between the two available features of credit-
card payment and express mode, where the previous mode switch pattern binds
data (the current mode), and the new, additional part uses the data in the guard.
Here, the intention is that the (existing) cardPay transition is only enabled when
the mode-flag is not set to express mode. It is obvious that applying the second
protocol constraint can only be valid in the presence of the former with the
binding occurrence. This corresponds to the delta ExpressCC in our product
line from the previous section.

4 Formalization

We model our protocols as finite automata with an extension to bind formal
parameters of method calls to their instantiated values upon taking a transition.
A transition in the automaton refers to variables used as placeholders in its
binding function.

4.1 Defining Base Automata

Given that Θ := VAR → VAL is a set of functions that resolve the name of a
variable to its bound value, a base automaton M is a tuple 〈Q,Σ×−−→

VAR, q0, θ0, Γ 〉,
with Q states, an alphabet Σ with a list of formal parameters, an initial state
q0 ∈ Q, an initial variable binding θ0 ∈ VAR → VAL and a set of transitions Γ ,
where:

Γ ⊆ Q︸︷︷︸
current
state

× (Σ ×−−→
VAR)︸ ︷︷ ︸

method
signature

× (Θ→ B)︸ ︷︷ ︸
guard

× ((Θ ×−−→
VAL) → Θ)︸ ︷︷ ︸

variable-binding
transformation

× Q︸︷︷︸
next
state

Each transition relates a pair of states via a symbol with its parameters, a
guard function and a state-binding function. The guard function is evaluated
during traversal, with an outgoing transition only being chosen when its guard
evaluates to true. The state-binding function will return a new binding function
derived from the current bindings s and the input parameters �c. For the sake of
brevity, one may forego specifying a guard or a state-binding function, in which
case the functions are replaced by an always-true guard and an identity function,
respectively. Thus, (q, e, q′) := (q, e, λs.true, λ(s,�c).s, q′). We also assume correct
arity of formal parameters and binding functions.

Delta-Oriented Monitor Specification 169

Configurations. A base automaton configuration is a pair consisting of a state
and a variable binding. The initial configuration Φ0 is thus defined as (q0, θ0).

Configurations Over Single Transitions. An automaton M accepts an in-
put a := e(c0, . . . , cn), e ∈ Σ, ci ∈ VAL if, given its current configuration, there
is an outgoing transition for the input symbol e whose guard evaluates to true.
The evolution from a configuration Φ to Φ′ within automaton M on receiving
input a is denoted by Φ

a−→M Φ
′ and is defined as follows:

(q, θ)
e(c0,...,cn)−−−−−−−→M (q′, θ′) := (q, e(x0, . . . , xn), guard, binding, q

′) ∈ Γ
∧ guard(θ) ∧ binding(θ, (c0, . . . , cn)) = θ′

Trivially, Φ
ε−→M Φ′ := Φ = Φ′. All states in the automaton are implicitly

accepting, and the system is in a correct state as long as a next state is defined
for the given input. Conversely, if the automaton cannot progress, then the
input is invalid, signalling a failure. One can think of such an automaton as
being implicitly total, with the complement of the defined transitions leading to
a failure state. We define single step rejection from configuration Φ on input a:

a �∈ LM(Φ) := ¬(∃q′ ∈ Q, θ′ ∈ VAR → VAL · Φ a−→M (q′, θ′))

Accepting and Rejecting Runs. The notion of accepted and rejected ele-
ments can be lifted onto sequences of inputs (or runs). Given a run as, with

a ∈ Σ ×−−→
VAL and s ∈ (Σ ×−−→

VAL)∗, one can define the acceptance of a sequence of
elements as:

(q, θ)
as
=⇒M (q′, θ′) := ∃q′′ ∈ Q, θ′′ ∈ VAR → VAL · (q, θ) a−→M (q′′, θ′′)

∧ (q′′, θ′′)
s
=⇒M (q′, θ′)

Trivially, Φ
ε
=⇒M Φ

′ := Φ = Φ′.
A rejected sequence w starting from a configuration Φ is denoted as follows:

w �∈ LM(Φ) := ¬(∃q′ ∈ Q, θ′ ∈ VAR → VAL · Φ w
=⇒M (q′, θ′))

Thus, a run w is within the base automaton language if ∃Φ·Φ0 w
=⇒M Φ. Similarly,

a run is not in the language (invalid) if w �∈ LM(Φ0).

4.2 Well-Formedness of Automata

Our use of variables in guards necessitates a notion of well-formedness that
ensures that every variable occurring in a guard on a transition has been assigned
a value on all paths leading to this transition.

Assuming a function vars : Γ → −−→
VAR which yields the used variables in a

guard, a transition 〈S, a, g, b, T 〉 is well-formed, iff vars(g) ⊆ defsM(S) where

defsM(S) : Q→ −−→
VAR:

170 E. Bodden et al.

defsM(S) := dom(θ0) iff s = q0;⋂
(Sp,e(x0,...,xn),g,θ,S)∈Γ

(defsM(Sp) ∪ {x0, . . . , xn}) otherwise

where the Sp are the predecessors of the state S. An automaton is well-formed
if all its transitions are well-formed.

4.3 Deltas

Deltas are structures that augment a base automaton by adding, modifying or
removing transitions. It can also redefine the initial state and variable bindings
of the base automaton.

Defining Deltas. A delta automaton is a tuple 〈QΔ, ΣΔ×−−→
VAR, qΔ0 , θ

Δ
0 , Γ

Δ
+ , Γ

Δ
− 〉,

where QΔ is the set of (possibly new) introduced states, ΣΔ × −−→
VAR is a set

of symbols, qΔ0 is an optional redefined start state, θΔ0 is a binding function
to be composed with any existing initial binding function, and ΓΔ

+ and ΓΔ
−

are the transitions to be added and removed, respectively. It is assumed that
ΓΔ
+ ∩ ΓΔ

− = ∅.

Applying Deltas. Given a base automatonM = 〈QM, ΣM×−−→
VAR, qM0 , θ

M
0 , Γ

M〉
and a delta automaton Δ = 〈QΔ, ΣΔ×−−→

VAR, qΔ0 , θ
Δ
0 , Γ

Δ
+ , Γ

Δ
− 〉, the application of

Δ to M yields a base automaton M′ := M ↓ Δ, and is defined as follows:

Q′ := QM ∪QΔ

Σ
′ ×−−→

VAR := ΣM ×−−→
VAR ∪ ΣΔ ×−−→

VAR

q′0 := qM0 if qΔ0 = ⊥, qΔ0 otherwise
θ′0 := θM0 if θΔ0 = ⊥,

λc.(case θΔ0 (c) = ⊥ ⇒ θM0 (c); otherwise, θΔ0 (c)) otherwise
Γ ′ := (ΓM ∪ ΓΔ

+)− ΓΔ
−

where ⊥ is an undefined element. Deltas can introduce or redefine bindings
stated within the initial binding. In the case of redefinitions, the latest updated
binding will be used. If the empty base automaton is M∅ := 〈∅, ∅,⊥, λc.⊥, ∅〉,
one can redefine a base automaton M as a delta operation on M∅. Formally,
M := M∅ ↓ ΔM, where ΔM := 〈QM, ΣM×−−→

VAR, qM0 , θ
M
0 , Γ

M, ∅〉. Unreachable
states after applying a delta automaton can be pruned implicitly as they can no
longer influence the behaviour of the monitor.

Example 1. The delta automaton for the credit card payment (Fig. 2) is

ΔCC := 〈 ∅, {cashPay, cardPay} no new state/new symbols
⊥,⊥, no initial state/no new initial binding
{(f, cashPay, s), (f, cardPay, s)}, transitions added
{(f, pay, s)}〉 transition removed

As the transitions within the delta do not make use of guards or alter variable
bindings, the shorthand transition notation is used.

Delta-Oriented Monitor Specification 171

Example 2. The delta automaton for switching Express mode (Fig. 3) is

ΔM := 〈 {m}, {setExpress},m, new state/symbol/initial state
λc.(case c = “mode” ⇒ true), new initial binding
{(m, setExpress, λs.true, λ(s, x). transitions added

(λy.(case y = “mode” ⇒ x0; otherwise, s(y))), s),
(m, startSale, b)},

∅〉 no transitions removed

The newly-added transition redefines the variable binding function, adding a
binding for “mode”. Its value, x0, is the first element of the list of values x
passed on to the setExpress function.

Example 3. The delta automaton for Fig. 4 is

ΔExCC := 〈 ∅, ∅,⊥,⊥, no new state/symbols/initial state/initial binding
{(f, cardPay, λs. !s(“mode”), λ(s,�c).s,m)}, transition added
{(f, cardPay,m)}〉 transition removed

The delta effectively modifies a transition in the original automaton, adding a
guard on the value of “mode”.

Applying all three delta automata to our initial protocol, we obtain the re-
sulting automaton M′ := M ↓ ΔCC ↓ ΔM ↓ ΔExCC , as shown in Fig. 5.

4.4 Further Design Decisions

Conceptually, and based on the examples shown, it is clear that explicitly spec-
ifying the source- and target states for a transition does not scale very well:
in general, a method may be used at various times, and accordingly occur in
multiple places in the protocol (our example here is a degenerate case, as every
method only occurs once). Ideally, graph-matching, as intended in Sec. 3, will
take care of this. Matching the transitions in the base protocol and binding the
wild-card states si allows us to calculate the set of transitions to add or remove.

The second important feature, that of binding of values during a run, requires
a suitable representation of terms and a useful collection of function symbols
over primitive types and their interpretation. In [2], we included functions to
test object-identities, and allow invoking arbitrary methods over bound values
in guards. We refer to the aforementioned paper for a detailed discussion.

The third and last important feature is quantification: in our running example,
the protocol pertains to exactly one interface (or its implementing classes). A
monitor is instantiated per-object. Conceivably, a protocol can cover coordinated
interaction with several objects. Then, the aforementioned object-identities be-
come a mandatory feature. Labels are then of, e.g., the form o.m(x), and guards
could use a more flexible form which allows reference to the variables just bound
in the current call, e.g. o �= p & o.m(x), denoting that the invoked object must
not correspond to the previously bound p (which could come from either the
callee-, or an argument position in a preceding transition).

172 E. Bodden et al.

m

s

b

f

setExpress(bool mode)

startSale startSale

finishSale

enterItem

cashPay
!mode & cardPay

Fig. 5. The resulting automaton

delta ExpressMon {
modifies class Cashdesk {

adds Maybe<Bool> monMode = Just (True) ;
modifies Unit se tExpre ss (Bool m) {

monMode = Just (m) ; // record mode
// Only al lowed between sa l e s
i f (s t a t e == M) {

orig inal (m) ;
s t a t e = S ;

} else {assert False ; }
}

}}

Listing 6. Binding of argument value

Instantiation of such a truly crosscutting monitor would then occur on the
initial matching transitions, and care must be taken when assigning meaning to

a fragment such as
o.m()−→ · p.n()−→. The “hidden” reference in the second transition to

the monitor instantiated by the first one requires static access to the monitor,
which alas is currently not feasible in the ABS language (see our evaluation of
suitability of ABS in Sec. 6).

5 Implementation

In the following, we outline how delta-protocols can be enforced for an interface
by keeping track of progress through the state machine and generating assertions,
which we naturally deploy using deltas. We will also comment on the use of
annotations to make the protocol formally part of the model.

We have two different options for deploying monitors into an existing product
line: either we first deploy the base monitor, and then the delta-protocols on
top, or we first “flatten” the base protocol automaton and its deltas, and then
generate code based on the resulting automaton. The former approach would
require subsequent overwriting of previous enforcement code: we can see this
clearly in the two different protocols that cardPay is involved in, depending on
whether express mode is enabled or not. Although in principle the ABS language
supports targeted original calls, which would aid the implementation, we would
like to avoid redundant manipulation, and settle for the latter option.

For a monitor, we first need to introduce a datatype over all states, and a
corresponding state variable per class which needs monitoring. Next, we collect
all (reachable) transitions from the automaton that a method is involved in. We
modify each method to assert that the transition is enabled, execute the original
code, and update the state variable before returning from the method, similarly
to around-advices in aspect-oriented programming (AOP). For ε-transitions, we
collect the subsequent transitions. For the bindings, we need to introduce a state
variable of the corresponding type, and read (write) the value in guards (binding)
events. Listing 6 shows the generated code for binding the mode-switch.

Delta-Oriented Monitor Specification 173

As ABS lacks the means to apply deltas to classes implementing a particular
interface, we also have to designate or compile the list of classes to be instru-
mented in a preprocessing step as well.

Storing the base protocol and the protocol deltas as part of the model is
another problem. ABS has built-in support for annotations, which could be a
suitable way of storing the protocol data as part of the file. Annotations attach
values over user-defined datatypes to methods or statements. We can then define
a datatype to specify the transitions of a protocol as annotations. These are then
available during compilation when using the ABS toolchain.

A prototypical implementation of monitoring for the ABS compiler frontend
is available from http://www.mn.uio.no/ifi/english/research/projects/rvabs/.

6 Related Work and Conclusion

We contrast our work with other works from the areas of aspect-oriented pro-
gramming, model-driven development, monitor-oriented programming, runtime-
verification for software product lines and typestate checking.

Aspect-oriented programming. Both AOP and DOP have in common that they
use programming-language elements that allow programmers to insert code into
some existing “base code” systems. However, both approaches fundamentally
differ in their intent and methodology. The goal of AOP is to modularize con-
cerns that are inherently crosscutting. Most AOP languages therefore support
quantification constructs that allow programmers, for instance, to insert code
before all method calls or after all field accesses. In addition, most AOP lan-
guages have a purely dynamic semantics. While AOP tools typically modify
code through static weaving, their semantics are defined through dynamic en-
tities, e.g., the interception of runtime events. Aspects are often intended to be
re-used among several software systems. DOP, on the other hand, aims to allow
structured compile-time variations of a given piece of software. This is a purely
static view; after compilation, deltas are “flattened away”, there is no notion of
intercepted runtime events. There is also no quantification: in DOP, program-
mers need to explicitly specify the code elements that need to be modified, and
there is no way to specify a whole range of such elements in a declarative style.
This lack of quantification makes it less convenient to implement highly cross-
cutting features such as runtime monitoring. On the other hand, DOP makes
it simpler to define delta-oriented monitor specifications, because the code-level
effects of applying a delta are immediately obvious. The monitors can thus be
defined in terms of the unmodified and modified interface. In AOP, such defini-
tions would be more complex, as the weaving process in AOP is typically hidden
from the user, and thus the modified interface is not as easy to deduce.

Model-driven development. The lifting of aspect-oriented techniques to UML
models has been done for activity diagrams in [13]. As activity diagrams are
syntactically richer than state machines, correspondingly we expect a concrete

http://www.mn.uio.no/ifi/english/research/projects/rvabs/

174 E. Bodden et al.

aspect to be equally verbose. The article does not give a detailed example, but
this is confirmed in earlier work, where matching is clearly not based on the
diagrammatic representation [14]. In the same paper, the authors also indicate
their own and other existing approaches to weave state machines. The manipu-
lations are purely structural, independent of state machine semantics, whereas
in contrast, we have well-formedness requirements on the resulting model due to
the specific nature of our automata. Similar checks could of course be employed
on their resulting models as well.

In the field of SPLs, the Common Variability Language CVL [7] uses an
approach to match fragments in the base model which could be useful to imple-
ment user-friendly matching on the graphical notation and calculate the delta
automata. CVL uses matching on boundary elements (which would be states or
transitions in our setting) to define anchor points for substitutions; these anchors
are defined in terms of concrete elements of the base model, which indicates that
only exactly one substitution can be carried out (a suitable matching mechanism
for our purposes should find all instances of a pattern in the base automaton).
Again, defining delta automata through substitutions will result in a very ver-
bose notation, whereas we envision a more convenient, dedicated notation for
adding and removing edges in fragment automata.

Monitor-oriented programming. MOP, prominently advocated by Chen and
Roşu [3], is a programming model in which program features can be implemented
in a declarative style, as responses to sequences of events in the program’s exe-
cution history. One natural application of MOP is runtime verification, in which
one uses MOP to define testing oracles, notifying the user of a failed test run
after having observed a property-violating sequence of program events. How-
ever, there are other uses of MOP. For example, one can envision using MOP
to implement an auto-save feature that saves a file after every 1000 key strokes.
Our delta-oriented monitor specifications allow the delta-oriented adaptation of
monitors for the general case of MOP.

Runtime verification for software product lines. Our work on delta-oriented mon-
itor specifications allows monitor specifications to evolve together with delta-
oriented code. As explained above, this can be particularly useful in the area of
runtime verification. However, there are other ways to combine runtime verifi-
cation with software product lines. Kim et al. exploit the constraints imposed
by a feature model, paired with a static program analysis to restrict runtime
verifications only to products that actually have the potential of violating the
property in question [11]. This approach could be extended for delta-oriented
monitor specifications, and we consider such an extension for future work.

Typestate checking. The stateful patterns that runtime monitors match against
can also be checked statically through a mechanism called typestate checking,
if appropriate annotations are present in the code. Plaid, for example, is a pro-
gramming language for implementing software in a typestate-checkable way [1].
In Plaid, programmers annotate methods with the effects that they have on

Delta-Oriented Monitor Specification 175

the internal state of a (virtual) state-based monitor. A static type-checker then
verifies whether the usage of those methods complies with the given finite-state
patterns. The annotations necessary for Plaid bear some similarities to the an-
notations that we propose in this paper, but in Plaid are much more verbose. In
particular, the programmer must add non-trivial aliasing annotations.

General Runtime Verification. In earlier work [2], we have used more general fi-
nite alternating automata with variable bindings to support verification of linear-
time logics (LTL) properties at runtime. So-called tracecheck are defined per
Java-interface, and a program is instrumented using AOP. We did not envision
variable protocols, and—given their difficult readability—are of the opinion that
LTL-specifications are unsuitable candidates to relative modifications.

An interface behaviour specification language for the actor-language Creol was
proposed in [8]. It is a regular language over constructor- and method invocations
with variable bindings, which only supports matching of bound object-identities.
In combination with a model checker, a Creol object can then be checked against
an interface specification through synchronous parallel composition, with the
usual limitations on state space explosion when model checking OO systems. It
does not address the runtime of a system, and does not support guards, although
this could probably be added.

Conclusion. We have presented a definition and implementation strategy for
DMS. Interface protocols, such as [2], for the different products in an SPL can be
specified as relative changes to the protocol of the base product, just as relative
changes describe a software product in the ABS language. Instrumentation of
methods to enforce protocols is done through deltas, as well. Protocol deltas can
be generated based on our notion of flattening a base- and delta automaton.

As future work, we will follow up on using annotations to store protocol
deltas and develop a preprocessor for the ABS toolchain. Also, we would like to
formalize calculation of the delta automata from the (graphical) specification of
relative changes as indicated in Sec. 3. This can most likely be discharged by
referring to existing graph-matching approaches. Naturally, we are also interested
in applying our approach to a non-trivial example.

Currently, one of the limitations of the ABS language is that it neither has con-
structors, nor can a class-initializer be modified by a delta. This makes it difficult
to inject, e.g., a factory for monitor-instances, where many objects communicate
with a single monitor. As an immediate workaround, all call-sites of object in-
stantiations would need to be instrumented, which in general cannot be done
with simple advice and an original-call, but would require code-duplication.

In this paper, we have not made use of ABS as an actor language. Its release
points, where execution is suspended until a boolean condition on the object state
holds, could be used to alternatively model the protocol: in an actor-based, or
even distributed system, in our opinion it would feel much more natural to ignore
a “babbling” participant which sends messages out of turn, instead of terminat-
ing execution (since, e.g., the assertions which we have used would terminate the
callee, not the actually misbehaving caller). We could envision await statements

176 E. Bodden et al.

on the state variable tracking progress through the protocol. Also, the implicit
identity of the caller could be incorporated into protocols (avoiding its explicit
occurrence in an argument position). In addition, an actor-based setting would
encourage the study of the use of protocols in an asynchronous environment.

Acknowledgements. This work was supported by the German Federal Min-
istry of Education and Research (BMBF) within EC SPRIDE, by the Hessian
LOEWE excellence initiative within CASED, the project Runtime Verification
for ABS Product Lines funded by DAAD and Forskningsr̊adet, and by the
project ARV funded by Macau Science and Technology Development Fund. We
thank Franziska Kühn from U. Lübeck for her work on prototyping the imple-
mentation.

References

1. Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.: Typestate-oriented programming.
In: Proc. 24th ACM SIGPLAN Conf. Companion on Object Oriented Programming
Systems Languages and Applications, OOPSLA 2009, pp. 1015–1022. ACM (2009)

2. Bodden, E., Stolz, V.: Tracechecks: Defining Semantic Interfaces with Temporal
Logic. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 147–162.
Springer, Heidelberg (2006)

3. Chen, F., Roşu, G.: MOP: an efficient and generic runtime verification framework.
In: OOPSLA 2007, pp. 569–588. ACM (2007)

4. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J., Schlatte,
R., Wong, P.Y.H.: Modeling Spatial and Temporal Variability with the HATS Ab-
stract BehavioralModeling Language. In: Bernardo,M., Issarny,V. (eds.) SFM2011.
LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011)

5. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. In: Visser, E.,
Järvi, J. (eds.) GPCE, pp. 13–22. ACM (2010)

6. Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R.: Variability Mod-
elling in the ABS Language. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 204–224. Springer, Heidelberg (2011)

7. Fleurey, F., Haugen, Ø., Møller-Pedersen, B., Olsen, G.K., Svendsen, A., Zhang,
X.: A generic language and tool for variability modeling. Technical Report A13505,
SINTEF, Oslo, Norway (2009)

8. Grabe, I., Kyas, M., Steffen, M., Torjusen, A.B.: Executable Interface Specifications
for Testing Asynchronous Creol Components. In: Arbab, F., Sirjani, M. (eds.)
FSEN 2009. LNCS, vol. 5961, pp. 324–339. Springer, Heidelberg (2010)

9. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2–3), 202–220 (2009)

10. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin,
J.: Aspect-oriented programming. In: Aksit, M., Auletta, V. (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

11. Kim, C.H.P., Bodden, E., Batory, D., Khurshid, S.: Reducing Configurations to
Monitor in a Software Product Line. In: Barringer, H., Falcone, Y., Finkbeiner, B.,
Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010.
LNCS, vol. 6418, pp. 285–299. Springer, Heidelberg (2010)

Delta-Oriented Monitor Specification 177

12. Liebig, J., Apel, S., Lengauer, C., Kästner, C., Schulze, M.: An analysis of the
variability in forty preprocessor-based software product lines. In: ICSE 2010 (1),
pp. 105–114. IEEE (2010)

13. Mouheb, D., Alhadidi, D., Nouh, M., Debbabi, M., Wang, L., Pourzandi, M.: As-
pect Weaving in UML Activity Diagrams: A Semantic and Algorithmic Framework.
In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010. LNCS, vol. 6921, pp. 182–199.
Springer, Heidelberg (2010)

14. Mouheb, D., Talhi, C., Nouh, M., Lima, V., Debbabi, M., Wang, L., Pourzandi, M.:
Aspect-Oriented Modeling for Representing and Integrating Security Concerns in
UML. In: Lee, R., Ormandjieva, O., Abran,A., Constantinides, C. (eds.) SERA2010.
SCI, vol. 296, pp. 197–213. Springer, Heidelberg (2010)

15. Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.): The Common Compo-
nent Modeling Example. LNCS, vol. 5153. Springer, Heidelberg (2008)

Conflict Detection

in Delta-Oriented Programming�

Michäel Lienhardt1 and Dave Clarke2

1 University of Bologna, Italy
lienhard@cs.unibo.it

2 IBBT-DistriNet Katholieke Universiteit Leuven, Belgium
Dave.Clarke@cs.kuleuven.be

Abstract. This paper studies the notion of conflict for a variant of
Delta-Oriented Programming (DOP) without features, separating out
the notions of hard and soft conflict. Specifically, we define a language
for this subset of DOP and give a precise, formal definitions of these
notions. We then define a type system based on row-polymorphism that
ensures that the computation of a well-typed product will always succeed
and has an unambiguous result.

1 Introduction

Delta-oriented programming (DOP) [21,22] is a recent approach to developing
Software Product Lines (SPLs) [6] that addresses several limitations of previous
approaches: it completely dissociates feature models from feature modules (now
called deltas), which allows features to be implemented using more than one
delta and deltas to be used by several features, thus improving modularity, reuse
and flexibility; moreover, DOP enables non-monotonic modifications of the core
architecture, including the removal of fields, methods and even classes. DOP is
flexible and enables the modular construction of SPLs. However, tool support
for DOP is not as mature as for other SPL approaches. In particular, the issue
of validating delta-oriented programs has not fully been addressed. Schaefer et
al. [20] propose to generate a collection of constraints for delta-oriented product
lines, ensuring that the manipulations done on the core product are sound and
the resulting products are type safe. However, this work has several limitations:
i) as it is based on constraints, the types do not reflect the structure of the
deltas; ii) it presupposes that the order in which the deltas are applied on a core
is totally specified; and iii) it generates a set of constraints per product, which
means that the complexity is exponential in the number of deltas. More recently,
the present authors proposed an approach [16] that addresses the first of these
limitations using row polymorphism [19] to capture the structure of products and
the semantics of deltas in the types. The underlying computational model takes
� This research is partly funded by the EU project FP7-231620 HATS:

Highly Adaptable and Trustworthy Software using Formal Models
(http://www.hats-project.eu).

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 178–192, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.hats-project.eu

Conflict Detection in Delta-Oriented Programming 179

core k {

c lass Settings {

int coffee;

}

c lass CMachine {

Settings conf;

void make() {...}

void makeCoffee () {...}

}

}

delta Choco {

modifies c lass Settings {

adds int chocolate;

}

modifies c lass CMachine {

adds makeChoco () {...}

modifies make() {...}

}

}

delta Sugar {

modifies c lass Settings {

adds int sugar;

}

modifies c lass CMachine {

modifies make {...}

}

}

delta ColorPrint {

modifies c lass CMachine {

modifies make() {...}

modifies makeCoffee () {...}

modifies makeChoco () {...}

}

}

product ps {Choco Sugar} k

product ph {Choco ColorPrint} k

Fig. 1. Soft and Hard Conflicts

a collection of classes as its basis and applies deltas in some order to update
them. This paper presents an extension of this approach to deal with the second
limitation.

In DOP, if feature modules are applied to a core product in a different order
it is not necessarily the case that all computations give the same result. This is
illustrated by the code in Figure 1.

This example models a coffee machine with core k comprised of a class Setting
storing the type of coffee to brew, and a class CMachine with a generic make
method and a method makeCoffee, called by make to prepare coffee. In addi-
tion to this core, there are three deltas: Choco adds the capability of brewing
hot chocolate; Sugar adds the possibility of setting the quantity of sugar; and
ColorPrint changes the make*methods so that messages are printed in color. Fi-
nally, there are two different products: ps applies deltas Choco and Sugar on the
core k, and product ph is constructed by applying deltas Choco and ColorPrint
to the core. The order in which the deltas are applied is free in this example,
and thus ps and ph can either be computed by applying either delta Choco or
the other one first.

180 M. Lienhardt and D. Clarke

PL ::= 0 | PLE PL
PLE ::= core k {CL}

| delta d after DL {COL}
| product p = {DL} k

COL ::= CO | CO; COL
FOL ::= FO | FO; FOL
CO ::= adds C | removes c | modifies c {FOL}
FO ::= adds F | removes f | modifies f

DL ::= ε | d DL
CL ::= ε | C CL
FL ::= ε | F ; FL

C ::= class c {FL}
F ::= T f def

Fig. 2. Calculus Syntax

Applying first Choco and then Sugar in ps results in a product with the
method make defined by the delta Sugar, whereas if Sugar is applied first, the
method make is defined by Choco: the computation of ps is ambiguous (i.e. it can
have different results), caused by a soft conflict between the deltas Choco and
Sugar. Such soft conflicts can be dealt with in two ways: by defining a partial
order between delta: for instance, by stating that Choco is always applied after
Sugar, the computation of ps is unambiguous; and by defining another delta to
resolve the conflict: adding to ps delta SweetChoco that replaces the method make
after applying Choco and Sugar will also make the computation unambiguous.

The product ph presents another kind of conflict, called hard conflicts. While
first applying the delta Choco and then ColorPrint, the computation suc-
ceeds without any error, first applying ColorPrint results in an error because
ColorPrint tries to modify method makeChoco before it exists. Such hard con-
flicts can only be resolved by imposing an ordering on the deltas specifying that
ColorPrint must be applied after Choco. The work on Abstract Delta Mod-
elling discussed only soft conflicts—otherwise hard conflicts did not cause an
error—though the theory could easily encompass both [4].

Roadmap. The paper is structured as follows. Section 2 describes a DOP lan-
guage focusing on deltas and conflicts. Section 3 presents a formal definition of
soft and hard conflicts. Section 4 introduces our type system to capture runtime
errors and conflicts. Section 5 compares our approach with related work and
Section 6 concludes the paper.

2 Delta-Oriented Programming

In the rest of the paper, we will use the term member for either a method or
a field of a class. The syntax of our delta-oriented programming language is
presented in Figure 2. A product line PL is a sequence of element declaration
PLE. An element can either be a delta delta d after DL { COL }, where DL
is used to construct the partial order between deltas (see Definition 2) and COL
is the body of d; a core product core k { CL }, where CL is the set of classes
defining the core k; or a product product p = { DL } k, where DL are the
deltas to be applied to the core k to produce p.

Conflict Detection in Delta-Oriented Programming 181

CO and FO are the operations on classes and members, respectively. It is
possible to add, remove and modify both classes and members. The modification
of a class is done with a sequence of operations on members FOL, while the
modification of members is not specified in our language that only focuses on
the manipulation on the structure of the cores, not their behavior.

Free names. The declaration of a new delta d, of a new core k or of a new
product p, respectively binds d, k or p in the rest of the program. This notion
of binders and free names implicitly creates a form of α-conversion on our PL
terms. We note PL =α PL′ when PL is α-equivalent to PL′. Using this notion
of α-conversion, we can assume that all declared deltas, cores and products of a
product line PL have different names.

Definition 1. A product line PL with no free names is said to be closed. We
denote Pcl the set of all closed product lines.

Semantics. The full semantics of the language is presented elsewhere [5,15]. The
principle of the computation of a product in our language is quite simple. The
delta names in DL are sorted to match the order given by the keyword after.
When the order is not total, several sequences of deltas are possible, creating the
possibility of conflicts. Then, the code of the deltas are applied in order to the
core, thus computing the product. The following definition presents the formal
construction of the order between deltas, which is necessary to define the notion
of conflicts (hard and soft).

Definition 2. A general context G is a product line with a hole •. Given a
product line PL and a term t given by one of the productions in Figure 2. Say
that t is in PL (denoted t ∈ PL) if there exists a general context G such that
PL = G[t]. The relation <PL between delta names is defined as the smallest
transitive relation satisfying the following property

delta d after d1 . . . dn {COL} ∈ PL ⇒ di <PL d.

Finally, the next definition presents the equivalence relation used to sort delta
names, which is used in our type system.

Definition 3. A relation R is closed under general context iff

∀G, x, y, x R y ⇒ G[x] R G[y]

Define the relation ≡dl as the smallest equivalence relation closed under general
context validating the following rule (where d1 and d2 are delta names):

DL ≡dl DL′

d1 d2 DL ≡dl d2 d1 DL′ .

3 Conflicts

Clarke et al. [4] define the notion of conflict for an abstract notion of delta,
but they do not capture hard conflicts. This section proposes a more precise
definition based on the notion of action.

182 M. Lienhardt and D. Clarke

actc(adds class c {FL}) � {c} ∪ members(c, FL) → add

actc(removes class c) � {c} ∪ {c.f | f ∈ F} → rem

actc(modifies class c {FOL}) � {c} → mod � actf (c, FOL)

actc(CO; COL) � actc(CO) � actc(COL)

actf (c, adds T f def) � {c.f} → add actf (c, removes f) � {c.f} → rem

actf (c, modifies f) � {c.f} → mod

actf (c, FO; FOL) � actf (c, FO) � actf (c, FOL)

A � ⊥ = A ⊥ � A = A

add � add � add add � rem � ⊥ add � mod � add

rem � add � mod rem � rem � rem rem � mod � rem

mod � add � mod mod � rem � rem mod � mod � mod

Fig. 3. Actions of Operations

Actions. The following syntax gives the elements E manipulated by a delta and
how they can be manipulated:

E ::= c | c.f
A ::= ⊥ | add | rem | mod

Given a class c or an member c.f (annotated with its class name c), a delta
can either do nothing with it (⊥); add it (add); remove it (rem); or modify it
(mod). Denoting the set of all elements E (resp. all actions A) by E (resp. A),
we define the effect (or action by language abuse) of a delta d as the function
f : E → A which maps every element E to the action performed by d on E.
The action of the code of a delta is defined inductively in Fig. 3, based on the
following notions.

Definition 4. Given a set of elements S ⊆ E and an action A. Use S → A to
denote the function f : E → A such that f(E) = A when E ∈ S and f(E) = ⊥
for all E
∈ S. Given two functions f, g : E → A. Use f 	g to denote the function
h : E → A such that h(E) = f(E) 	 g(E), where 	 is defined in Fig. 3.

Adding a class corresponds to the action add on the class and on all of its mem-
bers (denoted by the set members(c, FL)). Removal corresponds to the action
rem on the class and on all of its possible members (noted F). Modification
corresponds to mod, plus all the actions done on the member level. Sequential
composition of operators is handled by the operator 	.

Finally, the action of a product line that maps all delta names to their actions
for a closed product line is defined as follows.

Conflict Detection in Delta-Oriented Programming 183

TP ::= {TCL∅}
TCLc ::= Absc | ρc | c : CP; CL{c}�c

CP ::= PreJ (TC) | AbsJ(TC)

TC ::= {FL∅}
TFLf ::= Absf

J | ρf
γ | f : FP; FL{f}�f

TFP ::= AbsJ | PreJ

TD ::= TP → TP | ∀α.TD
TO ::= TC → TC | ∀α.TO

J ::= γ | ⊥ | J ; (d, A) | J ; (d1 . . . dn)

Fig. 4. Type Syntax

Definition 5. Given a closed product line PL. The action of PL, denoted act(PL),
is a function that maps all the deltas declared in PL to their code’s action:

act(PL)(d) �
{

actc(COL) if delta d after DL {COL} ∈ PL

E → ⊥ otherwise

Conflicts. The following definition captures the two kinds of conflict:

Definition 6. Given a closed product line PL, an element E, a product
product p = {DL} k ∈ PL, and two delta names d1, d2 ∈ DL such that
d1 ≮PL d2 ∧ d2 ≮PL d1. Product line PL has a soft conflict, denoted PL �E

p

d1 � d2, iff E is a member c.f and act(PL)(d1)(E) = act(PL)(d2)(E) = mod.
There is a hard conflict, denoted PL �E

p d1 �� d2, iff both deltas are acting on
E and one of them is not doing a simple modification. That is,

(act(PL)(d1)(E), act(PL)(d2)(E))
∈ ({⊥} × A) ∪ (A× {⊥}) ∪ {(mod,mod)}

A conflict occurs when two operations on the same element may not produce
the same result. An example soft conflict results from two modifications of an
member: the two possible sequences can produce a different result, thus causing
ambiguity. Hard conflicts produce an error during the computation of a product.
For instance, first modifying an element and then removing it is correct, whereas
trying to modify an element that was removed is erroneous. Finally, it is possible
to resolve soft conflicts with another delta that acts on the element after the
conflict:

Definition 7. Given a soft conflict PL �E
p d1 � d2. This conflict is resolved iff

there exists d ∈ dep(p) such that d1 <PL d, d2 <PL d and act(PL)(d)(E)
= ⊥,
with

dep(p) � {d1 . . . dn | product p = {d1 . . . dn} k ∈ PL}

Theorem 1. A closed product line PL with no unresolved conflicts is unam-
biguous.

184 M. Lienhardt and D. Clarke

4 Type System

The type system extends our previous work [16] to capture conflicts. Its syntax
is presented in Figure 4.

Row types [19] capture the structure of products and classes, row polymor-
phism is used to type deltas and annotations, J , capture the action of deltas
and conflicts. The type of a product TP consists of a mapping between class
names c and presence information that can either be PreJ (TC), meaning that
the class is present, where TC specifies which members are present and which are
absent from the class, and J specifies the previous actions done on the class; or
AbsJ(TC), meaning that the class is not part of the product, where TC spec-
ifies all members absent and stores the past actions done to them—normally
this component would not be present, but the type system needs to track the
previously applied actions, even when a member has been removed. Row poly-
morphism is enabled with variables ρ which stands for an unknown mapping.
The structure of the type TC is similar to TP with two differences: as members
do not have an inner structure, presence information for them do not contain an
inner type; and empty rows Abs

f
J (resp. row variables ρf

γ) are annotated with a
general annotation J (resp. a conflict variable γ) to solve the technical difficulty
of storing the past actions done on the members of a deleted class. More details
can be found in the companion report [15]. Mappings TCLc (resp. TFLf) are
annotated with sets of class names c (resp. member names f) to ensure that
they are just defined once in a type. Deltas are typed with functional types TD
where α can either be a row variable ρ or a conflict variable γ.

Annotations, J , are used for conflict detection, which is structured into two
steps. We first define the action of deltas inductively on their structure: each
simple operator acting on an element E is typed with an annotation on E of
the form γ; (d, A), where d is the name of the delta performing the operation,
A is the performed action, and γ represents past actions done on E. Using type
unification, sequential composition of operators on the same element E result
in annotations of the form γ; (d, A1); . . . ; (d, An), which are transformed using a
rewriting relation into γ; (d, A1	. . .	An), corresponding to the action of d on the
element E. These annotations are used later, during the typing of products, to
detect if they contain conflicts. This detection is done inductively on the struc-
ture of the list of delta DL declared in each product: given a list d1 . . . dn that
result in annotation J on an element E and a delta d that performs the action
A
= ⊥ on E, using type unification, the list d1 . . . dn d results in annotation
J ; (d, A) on E, which is then checked and possibly transformed to record soft
conflicts using helper function called detect. Terms of the form J ; (d1 . . . dn)
generally represent soft conflicts involving the n deltas di (but can also be used
to store delta names in some specific cases). Hard conflicts, corresponding to
possible errors, are ill-typed and thus have no syntactic representation in J .

Finally, to ensure the correctness of the conflict detection algorithm, past ac-
tions done on deleted members need to be remembered, even when the class itself
has been deleted. This means that the type of the deletion of the class c should be
able to identify each member fi in c, take their annotation Ji, and specify that

Conflict Detection in Delta-Oriented Programming 185

the output product is typed with c : Abs({fi : AbsJi;(d,rem)}). As discussed
in the companion report [15], it is not possible using standard unification to
compute such a type. We solve this problem by using local substitutions [17,15],
which allow conflict variables γ to be substituted locally into an element E. For
instance, it is possible to type the removal of class c with

{c : Preγ({ργ′})} → {c : Absγ;(d,rem)({Absγ′;(d,rem)})}.
It is possible to type the application of this operator to a product with class c
by first unifying ρ with the structure of c, producing an input type of the form
{c : PreJ({f1 : Preγ′ ; . . . ; fn : Preγ′ ;Absγ′})}, and then unifying each instance
of variable γ′ with the annotation local to each member.

Relations. We define two relations on our type syntax: a structural equivalence
that identifies types with the same semantics, and the rewriting relation used
for the computation the action of a delta.

Definition 8. A type context T is any type term with a hole •. Moreover, we
say that a relation R is closed under type context iff

∀T, x, y, x R y ⇒ T[x] R T[y]

The structural equivalence ≡ between types is the smallest equivalence closed
under type context satisfying the following rules, where a denotes either a class
name or a member name, K denotes either Abs, Pre or Pre(TC) and W l denotes
either a class list TCLc or a member list TFLf :

a : K; b : K′; W l ≡ b : K′; a : K; W l

Absc�{c} ≡ c : Abs⊥;Absc Abs
f�{f}
J ≡ f : AbsJ ;Absf

J .

The rewriting relation � is the smallest reflexive and transitive relation that is
closed under type context satisfying the following rules:

(d, A); (d, A′) � (d, A � A′)

This equivalence relation states that the order in which the classes and members
are typed is not important, and that the empty row Absl corresponds to classes
and members being absent. Moreover, the rewriting relation states that when
we have two consecutive actions for the same delta d (typically coming from two
operators used in the definition of d), we can combine them using the operator
	, thus computing the action of d. Finally, let Norm � TD denote when the
annotations J in TD have been fully reduced with the rewriting relation, i.e.
when the actions of the deltas have been computed.

Typing Rules. The rules defining our type system are structured in three parts:
classes and core products; operators on classes and products; and product lines,
i.e. deltas, core definitions and products.

186 M. Lienhardt and D. Clarke

T:FL
Φ = ⊥ ⇒ (J = J ′ = ⊥) Φ = d, γ ⇒ (J = γ; (d,add) ∧ J ′ = γ)

Φ � T1 f1 def 1; . . . ;Tn fn def n : {f1 : PreJ; . . . ;fn : PreJ;AbsJ′}

T:CL
Φ � FLi : TCi i ∈ 1..n Φ = ⊥ ⇒ J = ⊥ Φ = d, γ ⇒ J = γ; (d,add)

Φ � class C1 {FL1} . . . class Cn {FLn}
: {C1 : PreJ (TC1); . . . ;Cn : PreJ (TCn);Abs}

Fig. 5. Typing Core Products

Core Products. The typing rules for core products are presented in Figure 5.
The rules for cores and classes have the form Φ � E : T , where Φ is a delta
context, either a pair (d, γ) or ⊥, E is the typed term and T its type. When Φ is
a pair (d, γ), we are currently typing the addition of some classes performed by
delta d, where γ is the previous actions done on the elements. the annotation J
is γ; (d,add). Otherwise, when Φ is ⊥, we are typing a core and the annotation
is ⊥. The rule T:FL types the body of a class with a mapping stating that all
the members of the class are present. The rule T:CL types a core product with
a mapping stating that all the classes of the core are present, with their bodies
typed with the previous rule.

Operators. The typing rules for operators are presented in Figure 6. Our typ-
ing statements for operators have the form d � E : T where d is the delta in
which the operators are declared, E is the typed operator and T is its type.
The typing rules for operators on members and core products are almost iden-
tical to the ones presented in our previous work [16], with the addition of the
annotations J describing the actions performed by the operator on the typed
element. For instance, the addition of a member f by a delta d, typed with the
rule T:AddMem, states that the operator expects: as input, a class with the
member f absent and annotated with a variable γ to capture manipulation done
by previous deltas; as output, the same class with member f added (i.e. present)
and with (d,add) added to γ, thus capturing the addition action performed by
d after the previous manipulations stored in γ.

To avoid duplication of typing rules, in the six last typing rules, we use E for
any language term, T for any type and Λ for either a delta name d or a typing
environments Γ that map delta names and core names to their types (these en-
vironments are used to type product lines). The rule T:Seq types the sequential
composition of operators. The rules T:Equiv and T:Rew introduce the usage
of the structural equivalence ≡ and rewriting relation ≺ in our type system.
Finally, the rules T:Inst, T:Gen and T:Subst deal with type generalization
and substitution, which can be freely applied.

Product Lines. The type rules for product lines are presented in Figure 7. The
typing judgements have the form Γ � E : T , where Γ is the typing environment
storing the type of deltas and cores, E is the typed term and T is its type in the

Conflict Detection in Delta-Oriented Programming 187

T:AddMem
J = γ J ′ = γ; (d,add)

d � adds T f def : ∀ρ, γ.{f : AbsJ;ργ} → {f : PreJ′;ργ}

T:DelMem
J = γ J ′ = γ; (d, rem)

d � removes f : ∀ρ, γ.{f : PreJ;ργ} → {f : AbsJ′;ργ}

T:ModMem
J = γ J ′ = γ; (d,mod)

d � modifies f : ∀ρ, γ.{f : PreJ;ργ} → {f : PreJ′;ργ}
T:DelClass

J = γ J ′ = γ; (d, rem)

d � removes class c : ∀ρ, γ, ρ′, γ′.{c : PreJ ({ργ′});ρ′} → {c : AbsJ′(Absγ′);ρ′}

T:AddClass
J = γ J ′ = γ; (d,add) d, γ′ � FL : TC

d � adds class c FL : ∀ρ, γ, γ′.{c : AbsJ (Absγ′);ρ} → {c : PreJ′(TC);ρ}

T:ModClass
J = γ J ′ = γ; (d,mod) d � FOL : TC1 → TC2 ρ, γ fresh

d � modifies class c FOL : ∀ρ, γ.{c : PreJ (TC1);ρ} → {c : PreJ ′(TC2);ρ}
T:Seq
d � E : T1 → T2 d � E′ : T2 → T3

d � E; E′ : T1 → T3

T:Rew
Λ � E : TP → TP ′ TP ′ � TP ′′

Λ � E : TP → TP ′′

T:Inst
Λ � E : ∀ρ.T

Λ � E : T

T:Gen
Λ � E : T

Λ � E : ∀ρ.T

T:Subst
Λ � E : T

Λ � E : σ(T)

T:Equiv
Λ � E : T T ≡ T ′

Λ � E : T ′

Fig. 6. Typing Operators

context Γ . The type T can either be the type of a delta TD or a mapping Π
between product names and their type. The rule T:D types delta declarations
by: i) computing the type TD of the delta’s body COL; ii) computing the action
of the delta: the statement Norm � TD means that the annotations in TD have
been completely rewritten by � (by construction of �, every annotation thus
corresponds to the action performed by the delta on the annotated element);
and iii) continuing the typing of the product line with the environment Γ ex-
tended with a mapping between the delta and its type. The rule T:K types core
declarations by typing the declared classes and continuing the typing of PL with
the extended typing environment. The rule T:P types a product by typing the
list of deltas DL, ensuring that the core k is a valid input for DL, and adding
the type of the product to the rest of the mapping Π . The rule T:Name is used
to type names, where n is either a core or a delta name.

The type of a list of delta names DL is constructed using the four last typing
rules; it works as follows. Using the typing rule T:Eq based on the relation ≡dl,

188 M. Lienhardt and D. Clarke

T:D
d � COL : TD Norm � TD Γ ; d : TD � PL : Π

Γ � delta d after DL {COL} PL : Π

T:K
⊥ � CL : TP Γ ;k : TP � PL : Π

Γ � core k {CL} PL : Π

T:P
Γ � DL : TP → TP ′ Γ � k : TP Γ � PL : Π

Γ � product p = {DL} k PL : Π ;p : TP ′

T:DL-D

Γ � d : TP2 → TP3 Γ � d1 . . . dn : TP1 → TP2

∀1 ≤ i ≤ n, d ≮PL di detect(d, TP3) = TP4

Γ � d1 . . . dn d : TP1 → TP4

T:Name
Γ � n : Γ (n)

T:DL-E
Γ � ε : ∀ρ.{ρ}{ρ}

T:Eq
PL ≡dl PL′ PL : Π

PL′ : Π

Fig. 7. Typing Product Lines

we sort the list of delta names to match <PL: DL is thus replaced by DL′,
corresponding to a valid computation of the product. This sorting is enforced
by the statement ∀d′ ∈ D1 . . . Dn, d ≮PL d′ in rule T:DL-D. Then, the list
is typed inductively using T:DL-E for the empty list and T:DL-D to add new
deltas to the list. Finally, the rule T:DL-D types the deltas in sequence, with the
additional application of the function detect(d, TP3) to detect conflicts added
or resolved by d using the annotations in TP3. This function traverses type TP3,
applying detectClass on all annotations at the class level, and detectMem on
all annotations at the member level. We present in Figure 8 these two func-
tions detectClass and detectMem (we omit the straightforward presentation of
detect) together with an helper function check which is used to check for hard
conflicts between the delta in input and all the previous actions performed on
the element. Note that because there are soft conflicts only at the member level,
the function detectMem returns a modified annotation or an error ERR when an
hard conflict is detected; detectClass returns only either OK when there are no
conflicts, or ERR otherwise.

Properties. The type system combines the properties of the classic row types
system and the conflict detection performed using annotations.

Definition 9. A type Π is said to be conflict free if there are no product name p,
type context T and annotation J of the form J ′; (d1 . . . dn) such that Π(p) = T[J].

Definition 10. A product line PL has a delta application error iff during its
reduction, either: i) a delta d that adds an element E is applied on a core that
already contains E; ii) a delta d that removes or modifies an element E is applied
on a core that does not contain E.

Conflict Detection in Delta-Oriented Programming 189

detectClass (d,J) {

i f J = J ′; (d, A) then

i f J ′ = J ′′; (d′, A′) then

i f d′ <PL d then

OK

e l se i f A = A′ = mod then

check(d,J ′′)
e l se ERR

e l se OK

e l se OK

}

check(d,J) {

i f J = J ′; (d′, A) then

i f d′ <PL d then OK

e l se i f A = mod then

check(d,J ′)
e l se ERR

e l se i f J = J ′; (d1 . . . dn) then

i f ∃i, di < d then OK

e l se check(d,J ′)
e l se OK

}

detectMem (d,J) {

i f J = J ′; (d, A) then

i f J ′ = J ′′; (d′, A′) then

i f d′ <PL d then J
e l se i f A = A′ = mod then

i f check(d,J ′′) = OK then

J ′′; (d1, d2)
e l se ERR

e l se ERR

e l se i f J ′ = J ′′; (d1 . . . dn) then

S ← {dj | 1 ≤ j ≤ n ∧ dj ≮PL d}
i f S = ∅ then

J
e l se i f A = mod then

i f check(d,J ′) = OK then

S′ ← {dj | 1 ≤ j ≤ n} \ S
J ′′; (S′); (d, S)

e l se ERR

e l se ERR

e l se J
e l se J

}

Fig. 8. Conflict Detection function

Theorem 2 (Soundness). Given a closed product line PL and type Π such
that ∅ � PL : Π holds, there exists PL′ with PL′ ≡dl PL such that PL′ does
not have any delta application error.

Proof. Consider the derivation K of ∅ � PL : Π . K can be transformed it into a
derivation K ′ where we apply the rule T:Eq only once, at the end. Consider the
term PL′ typed by K ′ just before the application of T:Eq: this term will not
have an error as our type system without T:Eq is more restrictive than [19].

Theorem 3 (Freedom). Given a closed product line PL and conflict free type
Π such that ∅ � PL : Π holds. Then PL is conflict free.

5 Related Work

The goal of type checking the code base of a software product line is to en-
sure that the generated products are type safe, up to the degree of type safety
provided by the base language, without having to actually generate the prod-
ucts. Other static analysis techniques can instead be employed to check for other
potential deficiencies, without aiming to be ensure complete type safety.

Thaker et al. [23] describe an informally specified approach to the safe compo-
sition of software product lines that guarantees that no reference to an undefined

190 M. Lienhardt and D. Clarke

class, method or variable will occur in the resulting products. The approach is
presented modulo variability given in the feature model and deals especially with
the resulting combinatorics. The lack of a comprehensive formal model of the
underlying language and type system was rectified with Lightweight Feature Java
(LFJ) [8]. Underlying LFJ is a constraint-based type system whose constraints
describe composition order, the uniqueness of fields and methods, the presence
of field and methods along with their types, and feature model dependencies.
The soundness of LFJ’s type system was validated using theorem prover Coq.

A formal model of a feature-oriented Java-like language called Featherweight
Feature Java (FFJ) [2] presents a similar base language that also formalizes
Thaker et al. [23]’s approach to safe composition, although for this system type
checking occurs only on the generated product. Coloured Featherweight Java [11],
which employs a notion of colouring of code analogous to but more advanced
than #ifdefs, lifts type checking from individual products to the level of the
product line and guarantees that all generated products are type safe. More
recent work [1] refines the work on FFJ, expressing code refinements as modules
rather than low-level annotations. The resulting type system again works at the
level of the product line and enjoys soundness and completeness results, namely,
that a product line is well-typed if and only if all of its derived products are
well-typed.

In the above mentioned work the refinement mechanisms are monotonic, so no
method/class removal or renaming is possible. Kuhlemann et al. [14] addresses
the problem of non-monotonic refinements, though their approach does not con-
sider type safety. They consider the presence of desired attributes depending
upon which features are selected. Checking is implemented as an encoding into
propositional formulas, which are fed into a SAT solver. Recent work addresses
non-monotonic refinement mechanisms that can remove or rename classes and
methods. An alternative approach due to Schaefer et al. [20] generate detailed
dependency constraints for checking delta-oriented software product lines. The
checking of the constraint is performed per product, rather than at the level of
product lines. This approach to typing delta-oriented programs is complemen-
tary to our work, providing part of the checking we have omitted.

A number of static analysis techniques have been developed for the design
models or code of software product lines. Heidenreich [10] describes techniques
for ensuring that the correspondence between feature models, solution-space
models, and problem-space models, which is realised in the FeatureMapper tool.
In this tool, models are checked for well-formedness against their meta-model.
Similarly, Czarnecki and Pietroszek [7] provide techniques for ensuring that no
ill-structured instance of a feature-based model template will be generated from
a correct configuration. Apel et al. [3] present a general, language independent,
static analysis framework for reference checking—checking which dependencies
are present and satisfied. This is one of the key tasks of type checking a software
product line. Similar ideas are applied in a language-independent framework for
ensuring the syntactic correctness of all product line variants by checking only
the product line itself, again without having to generate all the variants [12].

Conflict Detection in Delta-Oriented Programming 191

Clarke et al. [4] present an abstract framework for describing about conflicts
between code refinements and conflict resolution in the setting of delta-oriented
programming. Padmanabhan and Lutz [18] describe the DECIMAL tool, which
performs a large variety of consistency checks on software product line require-
ments specifications, in particular, when a new feature is added to an existing
system. Techniques developed for the analysis and resolution of interference of
aspects in AOP [13,9] address similar problems to analyses of software product
line conflicts, but they do not consider variability.

6 Conclusion

This paper presented a simple language for delta-oriented programming and
defines notions soft and hard conflicts, a type system based on row polymorphism
to capture errors and on a new concept of annotations to capture conflicts. This
paper also shows that, in contrast to Clarke et al. [4], the notion of conflict is
not simple and accurately detecting them is not easy. Much work remains to be
done. First, we need to extend our type system to ensure type safety not only of
delta application, but also of the generated products. Then, we need to extend
our calculus and type system to include features models. Whether this can be
done while keeping the time complexity of our type system polynomial in the
size of the product line remains to be seen.

References

1. Apel, S., Kästner, C., Größlinger, A., Lengauer, C.: Type safety for feature-oriented
product lines. Autom. Softw. Eng. 17(3), 251–300 (2010)

2. Apel, S., Kästner, C., Lengauer, C.: Feature Featherweight Java: A calculus
for feature-oriented programming and stepwise refinement. In: Smaragdakis, Y.,
Siek, J.G. (eds.) GPCE, pp. 101–112. ACM (2008)

3. Apel, S., Scholz, W., Lengauer, C., Kästner, C.: Language-independent reference
checking in software product lines. In: Proceedings of the 2nd International Work-
shop on Feature-Oriented Software Development, FOSD 2010, pp. 65–71. ACM,
New York (2010)

4. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. In: Proceedings
of the Ninth International Conference on Generative Programming and Component
Engineering, GPCE 2010, pp. 13–22. ACM, New York (2010)

5. Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R.: Variability Mod-
elling in the ABS Language. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 204–224. Springer, Heidelberg (2011)

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

7. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

8. Delaware, B., Cook, W.R., Batory, D.S.: Fitting the pieces together: a machine-
checked model of safe composition. In: van Vliet, H., Issarny, V. (eds.) ESEC/
SIGSOFT FSE, pp. 243–252. ACM (2009)

192 M. Lienhardt and D. Clarke

9. Douence, R., Fradet, P., Südholt, M.: A Framework for the Detection and Resolution
of Aspect Interactions. In: Batory, D.S., Consel, C., Taha, W. (eds.) GPCE 2002.
LNCS, vol. 2487, pp. 173–188. Springer, Heidelberg (2002)

10. Heidenreich, F.: Towards systematic ensuring well-formedness of software product
lines. In: Proceedings of the 1st Workshop on Feature-Oriented Software Develop-
ment, pp. 69–74. ACM, New York (2009)

11. Kästner, C., Apel, S.: Type-checking software product lines - a formal approach.
In: ASE, pp. 258–267. IEEE (2008)

12. Kästner, C., Apel, S., Trujillo, S., Kuhlemann, M., Batory, D.: Guaranteeing Syn-
tactic Correctness for All Product Line Variants: A Language-Independent Ap-
proach. In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE 2009. LNBIP, vol. 33,
pp. 175–194. Springer, Heidelberg (2009)

13. Katz, E., Katz, S.: Incremental analysis of interference among aspects. In: Clifton,
C. (ed.) FOAL, pp. 29–38. ACM (2008)

14. Kuhlemann, M., Batory, D., Kästner, C.: Safe composition of non-monotonic fea-
tures. In: Siek, J.G., Fischer, B. (eds.) GPCE, pp. 177–186. ACM (2009)

15. Lienhardt, M., Clarke, D.: Conflict detection in delta-oriented programming. Tech-
nical report, University of Bologna (2012), http://proton.inrialpes.fr/~
mlienhar/reports/2012-Conflict-Detection.pdf

16. Lienhardt, M., Clarke, D.: Row types for delta-oriented programming. In: Pro-
ceedings of the Sixth International Workshop on Variability Modeling of Software-
Intensive Systems, VaMoS 2012, pp. 121–128. ACM, New York (2012)

17. Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Typing Component-
Based Communication Systems. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.)
FMOODS 2009. LNCS, vol. 5522, pp. 167–181. Springer, Heidelberg (2009)

18. Padmanabhan, P., Lutz, R.R.: Tool-supported verification of product line require-
ments. Autom. Softw. Eng. 12(4), 447–465 (2005)

19. Rémy, D.: Type inference for records in natural extension of ML, pp. 67–95. MIT
Press, Cambridge (1994)

20. Schaefer, I., Bettini, L., Damiani, F.: Compositional type-checking for delta-
oriented programming. In: Proceedings of the Tenth International Conference on
Aspect-Oriented Software Development, AOSD 2011, pp. 43–56. ACM, New York
(2011)

21. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-Oriented
Programming of Software Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010.
LNCS, vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

22. Schaefer, I., Damiani, F.: Pure delta-oriented programming. In: Proceedings of the
2nd International Workshop on Feature-Oriented Software Development, FOSD
2010, pp. 49–56. ACM, New York (2010)

23. Thaker, S., Batory, D., Kitchin, D., Cook, W.R.: Safe composition of product lines.
In: Consel, C., Lawall, J.L. (eds.) GPCE, pp. 95–104. ACM (2007)

http://proton.inrialpes.fr/~mlienhar/reports/2012-Conflict-Detection.pdf
http://proton.inrialpes.fr/~mlienhar/reports/2012-Conflict-Detection.pdf

Family-Based Analysis of Type Safety
for Delta-Oriented Software Product Lines�

Ferruccio Damiani1 and Ina Schaefer2

1 Università di Torino, Dipartimento di Informatica, C.so Svizzera, 185 - 10149 Torino, Italy
ferruccio.damiani@unito.it

2 Technische Universität Braunschweig, 38106 Braunschweig, Germany
i.schaefer@tu-braunschweig.de

Abstract. Delta-oriented programming (DOP) is a modular, yet flexible
approach for implementing software product lines extending feature-oriented pro-
gramming. Delta modules allow adding, modifying and removing code for gener-
ating product variants. The connection between code modifications and product
features and the application ordering of delta modules is less restrictive than in
FOP. However, the additional flexibility of DOP increases the complexity for en-
suring that all possible product variants of a DOP SPL are well-typed. In previous
work, we presented a constraint-based type system which allows analyzing each
delta module in isolation, but requires a subsequent analysis step for each prod-
uct variant. Some FOP SPL type systems generate a representation of all possible
product variants and use a family-based analysis to ensure that all possible prod-
uct variants are type safe. In this paper, we enhance the existing constraint-based
type checking approach for DOP by providing a family-based analysis step which
improves the product-based analysis of our previous work by making it possible
to reuse the intermediate results of the analysis associated to the product variants.

1 Introduction

Delta-oriented programming (DOP) [14,15] is a flexible, modular approach to imple-
ment software product lines [13] which can be seen as an extension to feature-oriented
programming (FOP) [4] (see [16] for a straightforward encoding of FOP into DOP).
In DOP, the product line code base is structured in delta modules encapsulating mod-
ifications to object-oriented programs. For a particular feature selection, the set of ap-
plicable delta module is applied in an ordering given by a product line declaration to
the empty product in order to obtain the implementation of the desired product vari-
ant. Since delta modules may also contain removals of code, DOP supports proactive
product line development, where all possible products are planned in advance, as well
as extractive product line development [10] which starts from existing legacy product
implementations. The application conditions over the product features that are associ-
ated the with delta modules allow handling combinations of features explicitly. This
provides an elegant way to counter the optional-feature problem [9] where two optional
features require additional glue code to cooperate properly.

� Authors listed in alphabetical order. Work partially supported by the German Science Founda-
tion (DFG - SCHA1635/2-1) and Italian MIUR (PRIN 2008 DISCO).

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 193–207, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

194 F. Damiani and I. Schaefer

The additional flexibility provided by DOP makes it challenging to ensure that for
every feature configuration a unique product can be generated and that all generated
products are well-typed. Type checking techniques for software product lines can be
classified according to the applied analysis strategy [17]. Product-based strategies con-
sider every possible product of the product line. Family-based analyses check a com-
bined representation of all possible products, i.e., the family, in a single analysis run.
In our previous work [15], we have presented a constraint-based type system for DOP
SPLs following a product-based analysis strategy. It allows analyzing each delta mod-
ule in isolation to generate a type abstraction of the delta module expressing the type
expectations of the delta modules about the context in which they can safely be used.
For each possible product variant, an abstract product generation process is necessary,
in order to generate a type abstraction of the product that can be checked to establish
whether the corresponding concrete product would be well typed.

In this paper, we enhance the existing constraint-based type checking approach for
DOP [15] by providing a family-based analysis step which improves the product-based
analysis step by making it possible to reuse the intermediate results of the analysis
associated to the product variants. Using the product line declaration, we construct a
representation of all possible products in a product family generation trie. Type check-
ing all possible product variants amounts to traversing the trie and computing the type
abstractions for all (intermediate) products associated to the nodes of the trie. Type ab-
stractions for intermediate products that occur during the generation of several product
variants can be reused while the product-based analysis step requires to regenerate the
type abstractions of the intermediate products. If the generation of the type abstrac-
tion of an intermediate product fails, it can be concluded that the associated product
and all products in the underlying subtree are not well typed (without actually gener-
ating and checking their type abstractions). If the product line evolves, only subtrees
including changed delta modules need to be rechecked to ensure type safety of all pos-
sible product variants. The presented family-based analysis approach relies solely on
the information contained in the product line declaration and is parametric in both the
checked property and the language used to implement the products. Thus, the approach
can, for instance, be used to check applicability and context conditions in Δ -MontiArc
architectural delta models [7].

2 Recalling Delta-Oriented Programming

In order to illustrate DOP, we use a variant of the expression product line (EPL) as
described, for instance, in [12,15]. We consider the following grammar:
Exp ::= Lit | Add | Neg Lit ::= <non−negative integers> Add ::= Exp "+" Exp Neg ::= "-" Exp

Two operations can be performed on the expressions described by this grammar: print-
ing, which returns the expression as a string, and evaluating, which returns the value
of the expression. The products in the EPL can be described by the features concerned
with data Lit, Add, Neg and the features concerned with operations Eval and Print. Lit
and Print are mandatory features. The features Add, Neg and Eval are optional. The
example aims at illustrating the main DOP concepts, rather than to provide an elegant
implementation of the EPL.

Family-Based Analysis of Type Safety for Delta-Oriented SPLs 195

features Lit, Add, Neg, Print, Eval
configurations Lit & Print
deltas
{ DLitAddPrint,

DNeg when Neg }

{ DLitEval when Eval,
DNegPrint when Neg,
DNegEval when (Neg & Eval),
DremAdd when !Add }

{ DAddEval when (Add & Eval),
DAddNegPrint when (Add & Neg) }

delta DLitAddPrint{
adds class Exp extends Object { // only used as a type

String toString() { return ""; }
}
adds class Lit extends Exp {

int value;
Lit setLit(int n) { value = n; return this; }
String toString() { return value + ""; }

}
adds class Add extends Exp {

Exp expr1;
Exp expr2;
Add setAdd(Exp a, Exp b)
{ expr1 = a; expr2 = b; return this; }

String toString()
{ return expr1.toString() + "+" + expr2.toString(); }

}
}

Listing 1. Left: Declaration of the EPL. Right: Delta module for a legacy product.

2.1 Concepts of Delta-Oriented Programming

The main concept of DOP are delta modules. A delta module may add, remove or
modify classes. Modifying a class means to change the super class, to add or to remove
fields or methods or to modify methods. The modification of a method can either replace
the method body by another implementation, or wrap the existing method using the
original construct. The original construct expresses a call to the method with the
same name before the modifications and is bound at the time the product is generated.
The right part of Listing 1 contains a delta module for introducing an existing legacy
product, realizing the features Lit, Add and Print. Listing 2 contains the delta modules
for adding the evaluation functionality to the classes Lit and Add, for incorporating the
Neg feature by adding and modifying the class Neg, for facilitating the two optional
features Add and Neg to cooperate properly and for removing the Add feature from the
legacy product.

A delta-oriented product line consists of its code base comprising the delta modules
and a product line declaration. The product line declaration creates the connection to
the product features. The left part of Listing 1 shows a product line declaration for the
EPL. The features clause lists the features. The configurations clause declares
the set of valid feature configurations by means of a propositional formula over the set
of features [3]. A when clause, attached to each delta module, declares (by means of
a propositional formula over the set of features) for which feature configurations the
delta module has to be applied. Since valid feature configurations are used for product
generation, the formula specified by the when clause is understood as a conjunction with
the formula describing the set of valid feature configurations. Additionally, the possible
application orders of the delta modules are described by defining a total order on a
partition of the set of delta modules. Deltas in the same part can be applied in any order
to the previous product, but the order of the parts is fixed. The order of delta module
application is defined by an ordered list of the delta module sets which are enclosed by
{ .. }.

196 F. Damiani and I. Schaefer

delta DLitEval {
modifies Exp {

adds int eval() { return 0; }
}
modifies Lit {

adds int eval() { return value; }
}

}

delta DAddEval {
modifies Add {

adds int eval() { return expr1.eval() + expr2.eval(); }
}

}

delta DNeg {
adds class Neg extends Exp {

Exp expr;
Neg setNeg(Exp a) { expr = a; return this; }

}
}

delta DNegPrint {
modifies Neg {

adds String toString() { return "-" + expr.toString(); }
}

}

delta DNegEval{
modifies Neg {

adds int eval() { return (−1) ∗ expr.eval(); }
}

}

delta DAddNegPrint {
modifies Add {

modifies toString { return "(" + original + ")"; }
}

}

delta DremAdd {
removes Add

}

Listing 2. Delta modules for Add, Neg, Print and Eval features

In order to obtain a product for a particular feature configuration, the modifications
specified in the delta modules with valid application conditions are applied incremen-
tally to the previously generated product. The first delta module is applied to the empty
product. The modifications of a delta model are applicable to a (possibly empty) prod-
uct if each class to be removed or modified exists and, for every modified class, if each
method or field to be removed exists, if each method to be modified exists and has the
same header as the modified method, and if each class, method or field to be added does
not exist. During the generation of a product, every delta module must be applicable.
Otherwise, the generation of the product fails.

2.2 IFΔJ: A Core Calculus for Product Lines of JAVA Programs

This section recalls IFΔJ (IMPERATIVE FEATHERWEIGHT DELTA JAVA) [15], a core
calculus for delta oriented programming of product lines of JAVA programs. IFΔJ is
based on IFJ, an imperative version of FJ [8].

IFJ: A Core Calculus for JAVA Programs. The abstract syntax of the IFJ constructs
is given in Figure 1. Following [8], we use the overline notation for possibly empty
sequences. The set of variables includes the distinguished variable this (implicitly
bound in any method declaration), which cannot be used as the name of a method’s
formal parameter. A class table CT is a mapping from class names to class definitions.
The subtyping relation<: on classes (types) is the reflexive and transitive closure of the
immediate extends relation (the immediate subclass relation, given by the extends

clauses in CT). The class Object has no members and its definition does not appear
in CT. We assume that a class table CT satisfies the following sanity conditions: (i)
CT(C) = class C . . . for every C∈ dom(CT); (ii) for every class name C (except Object)
appearing anywhere in CT, we have C ∈ dom(CT); and (iii) there are no cycles in the
transitive closure of the immediate extends relation.

Family-Based Analysis of Type Safety for Delta-Oriented SPLs 197

CD ::= class C extends C { FD; MD } classes
FD ::= C f fields
MD ::= C m (C̄ x̄){return e;} methods
e ::= x

∣∣ e.f ∣∣ e.m(e) ∣∣ new C() ∣∣ (C)e
∣∣ e.f= e

∣∣ null expressions

Fig. 1. Syntax of classes (x ∈ variable names, including this and original)

DM ::= delta δ {CO} delta modules
CO ::= adds CD | removes C | modifies C [extending C] { AO } class operations
AO ::= adds FD

∣∣ adds MD | removes a | modifies MD attribute operations

Fig. 2. Syntax of delta modules (δ ∈ delta module names; a ∈ field or method names)

IFΔJ Delta Modules. The abstract syntax of the IFΔJ constructs is given in Figure 2.
The constructs for class definitions CD, field definitions FD and method definitions MD
are those of IFJ, given in Figure 1. A delta module DM (see Figure 2) specifies a se-
quence class operations. A class operation CO can add, remove or modify a class. A
class-modify operation possibly specifies the change of the super class and specifies
a sequence of attribute operations. An attribute operation AO can add/remove a field-
/method or modify a method. A method-modify operation can either replace the method
body by another implementation, or wrap the existing method using the distinguished
variable original (which can occur only in method-modify operations and cannot be
used as the name of a method’s formal parameter). In both cases, the modified method
must have the same header as the unmodified method. An occurrence of original rep-
resents a call to the unmodified method where the formal parameters of the modified
method are passed implicitly as arguments.

IFΔJ Product Lines. In the following, we use the metavariables ϕ and ψ to range
over feature names. A delta module table DMT is a mapping from delta module names
to delta modules. An IFΔJ product line is a 5-tuple L = ({ϕ},Φ,DMT,Δ,Π) consisting
of:

1. the set of the features {ϕ}= {ϕ1, . . . ,ϕn} (n ≥ 1) of the product line,
2. the non-empty set of the valid feature configurations Φ ⊆ P({ϕ}) (abstracting

from the concrete representation of the feature model),
3. a delta module table DMT containing the delta modules,
4. a mapping Δ : Φ → P(dom(DMT)) determining for which feature configurations a

delta module must be applied (which is denoted by the when clause in the concrete
examples), and

5. a totally ordered partition Π of dom(DMT), determining the order of delta module
application.

The 4-tuple ({ϕ},Φ,Δ,Π) represents the product line declaration, while the delta mod-
ule table DMT represents the code base.

198 F. Damiani and I. Schaefer

Product Generation. An application order is a total order on the delta modules δ =
δ1 · · ·δm (m ≥ 0) of the product line that respects the ordered partition Π = S1 . . .Sp

(m ≥ p ≥ 0) (i.e., for all i < j ∈ 1..p, the elements of Si occur before the elements
of S j). An application order defines a product generation mapping, that is, a partial
mapping from each feature configuration {ψ} in Φ to the class table of the product
that is obtained by applying the delta modules in Δ({ψ}) to the empty class table ac-
cording to the application order. The product generation mapping can be partial since a
non-applicable delta module may be encountered during product generation, such that
the resulting product is undefined. The product line is unambiguous if all application
orders define the same product generation mapping. The products generated by this
product generation mapping are the products of L. We write CT{ψ} to denote the class
table generated for the feature configuration {ψ} and write<:{ψ} to denote the subtype
relation associated with the class table CT{ψ}.

Strongly Unambiguous and Type-Safe IFΔJ Product Lines. An IFΔJ product line
is strongly unambiguous if every set S of delta modules in Π is consistent. That is, if
no class added or removed in a delta module of S is added, removed or modified in
another delta module of S, and for every class modified in more than one delta module
of S, its direct superclass is changed at most by one delta clause and the fields and
methods added, modified or removed are distinct. Strong unambiguity is a sufficient
condition for unambiguity, i.e., if a product line is strongly unambiguous, then it is also
unambiguous. For strong unambiguity, two delta modules that modify the same method
cannot be placed in the same partition even if they are never applied together. An IFΔJ
product line is type-safe if the following conditions hold: (i) it is strongly unambiguous,
(ii) its product generation mapping is total, and (iii) all its products are well-typed IFJ
programs.

2.3 Constraint-Based Typing for IFΔJ Product Lines

This section recalls the constraint-based type system for IFΔJ [15]. The system analyzes
each delta module in isolation. Afterwards, a type abstraction of every possible product
variant needs to be checked.

Constraint-Based Typing for IFJ and Type Abstraction of a Program. A class sig-
nature CS is a class definition deprived of the bodies of its methods. A class signature
table CST is a mapping from class names to class signatures. We write signature(CT) to
denote the class signature table consisting of the signatures of the classes in the class ta-
ble CT. The subtyping relation<: can be read off from the class signature table such that
it is possible to check that there are no cycles in the transitive closure of the extends

relation. Moreover, by inspecting a class signature table, it is possible to check, for ev-
ery class C in dom(CST), that the names of the fields defined in C are distinct from the
names of the fields inherited from its superclasses, and that the type of each method
defined in C is equal to the type of any method with the same name defined in any of
the superclasses of C. Therefore, in the following we can safely assume that a class sig-
nature table satisfies the following sanity conditions: (i) CS(C) = class C . . . for every
C ∈ dom(CS); (ii) for every class name C (except Object) appearing anywhere in CS,

Family-Based Analysis of Type Safety for Delta-Oriented SPLs 199

we have C ∈ dom(CS); (iii) the transitive closure of the immediate extends relation is
acyclic; (vi) C1 <: C2 implies that, for all method names m, if a m is available in C2 then
both the version of m available in C1 and the version of m available C2 have the same type;
and (v) C1 <: C2 and C1 �= C2 imply that, for all field names f, if f ∈ dom(CST(C2)) then
f �∈ dom(CST(C1)). The constraint-based type system of IFJ [15] infers a set of class
constraints C for a given program CT collecting the necessary type checks. These con-
straints can then be checked against the class signature table signature(CT) to establish
whether CT is a well-typed IFJ program. Therefore, the pair 〈signature(CT),C 〉 suf-
fices to establish whether CT is type safe. We call the pair 〈signature(CT),C 〉 the type
abstraction of the program CT.

Constraint-Based Typing for IFΔJ and Type Abstraction of a Delta Module. A
delta module signature DMS is the analogue of a class signature for a delta module. The
abstract syntax of delta module signatures is obtained from the syntax of delta modules,
in Fig. 2, by replacing class definitions (CD) with class signatures (CS) and by replac-
ing method definitions (MD) with method headers (MH). Delta module signatures can be
obtained by a straightforward inspection of each delta module in isolation. We write
signature(δ) to denote the signature of the delta module δ . For each valid feature con-
figuration {ψ}, the class signature table CST{ψ} of the product CT{ψ} can be generated
by applying the signature of the delta modules in Δ({ψ}) to the empty class signa-
ture table according to the given application order (similarly to product generation).
The generation of the product signature succeeds if and only if the generation of the
corresponding product would succeed. The constraint-based type system of IFΔJ [15]
infers, for each delta module, a set of class-constraint operations Dδ which transform
the class constraints in the same way as the delta module operations transform the class
implementations. For each valid feature configuration {ψ}, the set of class constraints
C{ψ} of the product CT{ψ} can be generated by applying the sets of class-constraint op-
erations inferred for the delta modules in Δ({ψ}) to the empty set of class constraints.
We call the pair 〈signature(δ),Dδ 〉 the type abstraction of the delta module δ denoted
by typeAbstraction(δ).

Product-Based Analysis of Type-Safety for IFΔJ Product Lines. For every valid fea-
ture configuration {ψ}, we write typeAbstraction({ψ}) to denote the type abstraction
of the product CT{ψ}, which is the pair 〈CST{ψ},C{ψ}〉. A delta module type abstrac-
tion table is a mapping from delta module names to delta module type abstractions.
We write typeAbstraction(DMT) to denote the table of the type abstractions of the delta
modules in the table DMT. The type abstraction typeAbstraction(L) of an IFΔJ prod-
uct line L = ({ϕ},Φ,DMT,Δ,Π) is the 5-tuple ({ϕ},Φ, typeAbstraction(DMT),Δ,Π).
Strong unambiguity can be efficiently established by only considering delta module
signatures and the declaration of the partition Π (since the consistency of a set of delta
modules, cf. the end of Section 2.2, can be checked by only considering delta module
signatures). Then, type safety of an IFΔJ product line can be established only based on
its type abstraction by a straightforward product-based analysis step that generates the
type abstraction of each product (without generating the actual implementation of the
product).

200 F. Damiani and I. Schaefer

3 Family-Based Analysis of Type-Safety for IFΔJ Product Lines

In this section, we present a family-based analysis step which enhances the product-
based analysis step illustrated at the end of Section 2 by making it possible to reuse the
intermediate results of the analysis associated to the product variants.

In the following, without loss of generality, we assume: a fixed IFΔJ product line
L = ({ϕ},Φ,DMT,Δ,Π); the set of feature is non-empty; the set of valid feature con-
figurations in non-empty and does not contain the empty feature configuration; there is
at least one delta module; and each delta module is used in at least one valid feature
configuration.

3.1 Product Family Generation Trie

For every application order δ = δ1 · · ·δm (m ≥ 1) and every feature configuration {ψ} ∈
Φ, we write πδ

{ψ} to denote the product generation string of {ψ}, that is, the subse-

quence of δ obtained by keeping only the delta modules that are in Δ({ψ}). The Prod-
uct Family Generation Strings (PFGS) of the product line for the application order δ
are the sequences of delta modules required to obtain the valid products of the product
line, i.e., the elements of the set {πδ

{ψ} | {ψ} ∈ Φ}. We write τδ to denote the Product

Family Generation Trie (PFGT) of the product line for the application order δ , that is,
the trie [6] that represents the PFGS for δ . A trie is a tree that represents a set of strings
by factoring out the common prefixes. Its structure is uniquely determined by the set
of strings it represents, so the order in which the strings are inserted into the tree does
not change its structure. The PFGT can be built from the PFGS by exploiting standard
algorithms for trie construction.

Formally, τδ is the largest node-labelled, edge-labelled tree such that: each node is
labeled by either the empty label or by a valid feature configuration, the edges of the
tree are labeled by delta modules names, and the following structural properties are
satisfied: (i) for each node, the edges that connect the node to its children have pairwise
distinct labels; (ii) for each node, the labels of the path from the root to the node are
a prefix of a sequence πδ

{ψ} for some feature configuration {ψ} ∈ Φ; (iii) each node

such that the path from the root to the node is the sequence πδ
{ψ}, for some feature

configuration {ψ} ∈ Φ, is labeled by the feature configuration {ψ}; and (iv) the other
nodes are labeled by the empty label.

By construction, it holds that: the root is labeled with the empty label (since the
empty product never corresponds to a valid feature configuration); the leaves are la-
belled by valid feature configuration corresponding to the respective product variants;
and each valid feature configuration labels exactly one node corresponding to the re-
spective product variant. A trie τδ describes a strategy for generating the products (or
their type abstractions) by reusing the intermediate results obtained during product gen-
eration.

Family-Based Analysis of Type Safety for Delta-Oriented SPLs 201

Example 1. Consider the EPL example introduced in Section 2. The partition Π is

{ DLitAddPrint, DNeg } { DLitEval, DNegPrint, DNegEval, DremAdd } { DAddEval, DAddNegPrint }

Therefore, there are 96 (= (2!) ∗ (4!) ∗ (2!)) possible application orders. The PFGTs
associated to the following three application orders

1. DLitAddPrint DNeg DLitEval DNegPrint DNegEval DremAdd DAddEval DAddNegPrint

2. DLitAddPrint DNeg DLitEval DNegPrint DremAdd DNegEval DAddEval DAddNegPrint

3. DNeg DLitAddPrint DremAdd DNegEval DNegPrint DLitEval DAddEval DAddNegPrint

are listed in Fig.s 3(a), 3(b) and 4, respectively.

LAP

LANPE

DNegAddPrint

LNPE

DremAdd DAddEval

DNegEval

LNPLANP

DNegAddPrint

DremAdd

DLitEval

DNegPrint

LPELAPE

DAddEval DremAdd

LP

DremAdd

DLitEval

DNeg

DLitAddPrint

(a) First ordering

LAP

LANPE

DNegAddPrint

DAddEval

LNPE

DNegEval

DremAdd DNegEval

LNPLANP

DNegAddPrint

DremAdd

DLitEval

DNegPrint

LPELAPE

DAddEval DremAdd

LP

DremAdd

DLitEval

DNeg

DLitAddPrint

(b) Second ordering

Fig. 3. PFGTs for the EPL example

3.2 Checking Type-Safety by Using the Product Family Generation Trie

The type-safety of the product line can be checked by choosing an application order δ
and traversing the trie τδ in depth-first order to generate and check the type abstractions
of all the products as follows:

– when the root is visited, the type abstraction of the empty program is generated;
– when a child node is reached from a parent note by means of an edge with label

δ , the delta module type abstraction typeAbstraction(δ) is applied to the program
type abstractions generated when visiting the parent node;

– when a node labeled by a valid feature configuration {ψ} is reached, the prod-
uct type abstraction typeAbstraction({ψ}) is used to check whether the associated
product is well typed; and

– when a non-applicable delta module abstraction typeAbstraction(δ) is encountered,
the associated subtree is pruned and the checking of the products associated to the
valid feature configurations that occur in the pruned subtree is considered as failed.

202 F. Damiani and I. Schaefer

LANPE

DNegAddPrint

DAddEval

DLitEval

DNegPrint

LNP

LNPE

DNegPrint

DNegEval DNegPrint

LANP

DNegAddPrint

DNegPrint

DremAdd

DNegEval

DLitAddPrint

LAP

LAPE

DAddEval

LP

LPE

DLitEval

DremAdd DLitEval

DLitAddPrint DNeg

Fig. 4. PFGTs for the EPL example with Third Ordering

In order to reuse the intermediate program type abstractions, it is enough to store only
the program type abstractions associated to the nodes that have at least a child that has
not yet been visited. Changing the product line declaration and/or the delta modules in
the code base of a type safe product line in most cases only affects the checks within a
subtree of the PFGT. Therefore, type safety of the new product line can be checked by
redoing only the checks within that subtree while for the product-based approach [15]
all affected products need to be completely re-generated and checked.

3.3 Minimizing the Size of PFGTs

The number of operations needed to check the type safety of the product line can be
minimized by choosing an application order δ that minimizes the number of nodes in
the trie τδ .

Example 2. The PFGTs associated to the first application order, depicted in Figure 3(a),
requires to compute 14 type abstractions (excluding the root), the second application
order, depicted in Figure 3(b), requires 15 type abstractions, and the third application
order, depicted in Figure 4, requires 18 type abstractions. Indeed, the number of nodes
of the first PFGT is minimal. As a comparison, the product-based analysis step de-
scribed at the end of Section 2 requires to compute 30 type abstractions for analyzing
each product in isolation.

Given the totally ordered partition Π = S1 . . .Sp (p ≥ 1) of the delta modules, there are
(|S1|!) ∗ · · · ∗ (|Sp|!) possible application orders. Some of these application orders may
generate the same PFGT. In order to describe the application orders that minimize the
number of nodes of the PFGT, we consider how the delta modules are applied for dif-
ferent feature configurations. For each feature ϕ in the set of the product line features
{ϕ}, we consider a propositional variable with the same name. We say that a propo-
sitional formula P characterizes a set of feature configurations Ψ ⊆ P({ϕ}) to mean

Family-Based Analysis of Type Safety for Delta-Oriented SPLs 203

that: { {ψ} ⊆ {ϕ} | P[ψ := true, (ϕ/ψ) := false] } = Ψ . Additionally, we consider
a propositional formula VFC that characterizes the set of valid feature configurations Φ;
and for each delta module δ in dom(Δ), we consider a propositional formula Wδ such
that the formula VFC∧Wδ characterizes the set of the feature configurations {ψ} such
that δ ∈ Δ({ψ}). In the examples in Section 2, the formulas Wδ are introduced by using
the when clauses. Furthermore, we consider the abbreviations:

– impliesδ ′,δ ′′ = VFC→ (Wδ ′ → Wδ ′′) to say that the application condition of delta δ ′

implies the application condition of delta δ ′′.
– iffδ ′,δ ′′ = impliesδ ′,δ ′′ ∧ impliesδ ′′,δ ′ to say that both delta modules δ ′ and δ ′′ are

always applied together.

For the totally ordered partition Π = S1 . . .Sp (p ≥ 1) of the delta modules in a product
line, we say that a linear order of the delta modules in one partition Si is:

– implication-compliant to mean that for all δ ′,δ ′′ ∈ Si such that δ ′ �= δ ′′:
1. if impliesδ ′,δ ′′ is a tautology and impliesδ ′′,δ ′ is not a tautology, then δ ′′ pre-

cedes δ ′, and
2. if iffδ ′,δ ′′ is a tautology, then for every delta module δ that occurs between δ ′

and δ ′′ also iffδ ′,δ is a tautology;
– implication-determined to mean that it is implication compliant and all the impli-

cation compliant orders of Si may only differ by permutation of delta modules δ ′

and δ ′′ where iffδ ′,δ ′′ is a tautology.

An application order is implication-compliant if, for each set Si in Π, the elements of Si

occur in implication-compliant order, and implication-determined if, for each set Si in
Π, the elements of Si occur in implication-determined order.

Example 3. Both the first and the second application order in Example 1 are implication-
compliant. The third application order is not implication-compliant (since, e.g., DNeg
precedes DLitAddPrint, while impliesDNeg,DLitAddPrint is a tautology and
impliesDLitAddPrint,DNeg is not a tautology).

For every product line such that each delta module is used for at least one valid feature
configuration there is at least one implication-compliant application order. However, a
product line may not have an implication-determined application order (like in the EPL
example in Section 2). The following theorem shows that any application order that
minimizes the number of nodes of the PFGT must be implication-compliant.

Theorem 1. If the application order δ minimizes the nodes of the PFGT τδ , then δ is
implication-compliant.

Proof (sketch). Assume that δ minimizes the nodes of the PFGT τδ and δ is not
implication-compliant. Then there are δ1,δ2 ∈ Si ∈ Π such that δ2 precedes δ1,
impliesδ2,δ1

is a tautology and impliesδ1,δ2
is not a tautology. Any generation string

that contains δ1 contains also δ2, while there is at least one generation string that con-
tains δ2 and does not contain δ1. Therefore, swapping δ1 and δ2 in the application order
decreases the number of nodes in the associated PFGT, which is incompatible with the
assumption that τδ is minimal. �

204 F. Damiani and I. Schaefer

The following theorem shows that any implication-determined application order mini-
mize the number of nodes of the PFGT.

Theorem 2. If the application order δ is implication-determined, then for any other
application order δ

′
the number of nodes in the PFGT τδ is less or equal than the

number of nodes in the PFGT τδ ′
.

Proof (sketch). Assume that there is an implication determined application order. Con-
sider δ1,δ2 ∈ Si ∈ Π such that δ1 �= δ2.

– If iffδ1,δ2
is a tautology, then any generation string π contains δ1 if and only if π

contains δ2. Therefore, swapping δ1 and δ2 does not change the number of nodes
in the associated PFGT.

– If iffδ1,δ2
is not tautology, then either (i) impliesδ2,δ1

is a tautology or (ii) impliesδ1,δ2
is a tautology (since the application order is implication-determined). Assume the
first case (the second is symmetric). Any generation string that contains δ1 contains
also δ2, while there is at least one generation string that contains δ2 and does not
contain δ1. Therefore, putting δ1 before δ2 in the application order decreases the
number of nodes in the associated PFGT. �

An implication-compliant application order can be computed by building, for each set
Si in Π, a directed graph Gi (that we call the implication graph of Si) where the nodes
are the elements of Si, and for each pair δ ′,δ ′′ ∈ S such that δ ′ �= δ ′′ and impliesδ ′,δ ′′

is a tautology, there is an edge from δ ′′ to δ ′. Any topological order of the strongly
connected components of Gi represents a class of implication-compliant orders on Si

(the order of the delta modules in the same strongly connected component does not
matter). There exists an implication-determined application order if and only if for every
Si there is a unique topological order of the strongly connected components of Gi.

If there is no implication-determined application order for a product line, the pro-
grammer might, for instance:

– change the partition (e.g., by splitting some sets) in order to create an implication-
determined application order (this might increase the number of nodes of the mini-
mal PFGT, since some application orders are ruled out), or

– ask the system to iterate over all the classes of implication-compliant application
orders to find the PFGT with minimum number of nodes, or

– ask the system to apply some heuristic to select an implication-compliant applica-
tion order that generates a PFGT with the minimum number of nodes or a number
of nodes that approximates the minimum.

3.4 Heuristics

A heuristic can be specified by defining a function �m that associates to each delta
module δ a natural number �m(δ), the measure of δ . Using this measure, the delta
modules δ ′ and δ ′′ in one partition can be sorted if impliesδ ′,δ ′′ and impliesδ ′′,δ ′ are
not tautologies. We say that a linear order of the delta modules in a partition Si is
implication-measure-compliant if it is implication-compliant and, for each δ ′,δ ′′ ∈ Si,

Family-Based Analysis of Type Safety for Delta-Oriented SPLs 205

if impliesδ ′,δ ′′ and impliesδ ′′,δ ′ are not tautologies, then δ ′ and δ ′′ are sorted by non-
increasing measure order. An application order is implication-measure-compliant if, for
each set Si in Π, the elements of Si occur in implication-measure-compliant order.

In the following, we define two measures, the height and the size of a delta module
δ , giving rise to specific heuristics. The height of a delta module δ ∈ Si, denoted by
�h(δ), is the length of the longest PFGS postfix that contains only delta modules in the
set

⋃
j∈i..n S j (that is, in Si or in a subsequent set of the partition). In a PFGT, this is the

length of the longest ascending subpath that starts from a leaf and contains only delta
modules in

⋃
j∈i..n S j. Since all application orders respect the total order on the partition

Π, the height of a delta module is independent of the actually selected application order.
For defining the size of a delta module δ ∈ Si, denoted by �s(δ), we consider the for-

mula togetherδ ′,δ ′′ = VFC∧Wδ ′ ∧Wδ ′′ which states that there are feature configurations
in which the two deltas are applied together. The size of a delta module δ ∈ Si is the
number of delta modules in the set

⋃
j∈i..n S j that can be applied with δ , which is the

number of elements of the set: { togetherδ ,δ ′ satisfiable | δ ′ ∈ S j for some j ≥ i }.
The following proposition shows that both the height and the size heuristics refine

implication-compliance.

Proposition 1. Let δ ′,δ ′′ ∈ S ∈ Π. If impliesδ ′,δ ′′ is a tautology, then both �s(δ ′) ≤
�s(δ ′′) and �h(δ ′)≤ �h(δ ′′) hold.

Proof. Since impliesδ ′,δ ′′ is a tautology, any path in a PFGT containing δ ′ contains also
δ ′′. �
Example 4. For the EPL example given in Section 2, the height and the size heuris-
tics are equivalent (and work well). We have �h(DNegEval) = 5, �h(DremAdd) = 4,
�h(DAddEval) = �h(DAddNegPrint) = 1, and �s(DNegEval) = 5, �s(DremAdd) = 4,
�s(DAddEval) = �s(DAddNegPrint) = 1. Thus, the implication-height and implication-
size orders are equivalent. The first application order in Example 1, which generates
a minimal PFGT, is both implication-height and implication-size compliant, while the
second is implication-compliant and not height/size-compliant. The third application
order in Example 1 is a (not implication-compliant) reverse height/size-compliant or-
der. Changing the order in the first given application ordering by swapping the delta
modules DLitEval and DNegPrint and/or by swapping the the delta modules DAddE-
val and DAddNegPrint, which are the only delta modules that can be swapped while
preserving implication-height/size-compliance, does not change the number of nodes
of the associated PFGT.

For each set Si in Π, let Ci be the set of the strongly connected components of the
implication graph Gi, and let Di be subset of Ci containing only the strongly connected
components c such that: for some other c′ in Ci, either in Gi there exists no path from
c to c′ or vice versa. An implication-measure-compliant application order for the delta
modules in Si can be found by computing, for each c in Di, the measure of one of
the delta modules in c, since, by Proposition 1, all delta modules in c have the same
measure.

206 F. Damiani and I. Schaefer

4 Related Work

Type checking techniques for software product lines can be classified according to the
applied analysis strategy. Product-based strategies consider every possible product of
the product line. Family-based analyses check a combined representation of all possible
products, i.e., the family, in a single analysis run. Feature-based analyses consider the
building blocks of the products, e.g., the feature or delta modules, one by one.

FEATHERWEIGHT FEATURE JAVA (FFJ) [2] is a calculus for stepwise-refinement. It
provides a product-based type system which requires to generate and check all possible
products. The FFJ for Product Lines (FFJPL) calculus [1] extends FFJ. In FFJPL, feature-
oriented mechanisms, such as class/method refinements, are modeled by the dynamic
semantics of the language leading to a family-based representation of all products. The
FFJPL typing rules directly analyze this representation resulting in a family-based type
checking strategy. The resulting analysis is not feature-based since each feature module
is analyzed by relying on information of the complete product line.

The type system of LIGHTWEIGHT FEATURE JAVA (LFJ) [5] first uses a feature-
based analysis step where constraints for the feature modules are generated, similar to
the approach presented in this paper. Afterwards, the generated constraints based on
propositional formulation of the feature model and the composition ordering are used
to construct a propositional formula for the whole family of products. This formula is
checked in a single run, leading to a combined feature-family-based analysis strategy.
In order to deal with the additional flexibility provided by delta modules, the constraint-
based type system for delta-oriented product lines (cf. Section 2) infers more complex
constraints (including constraint operations) which seems not suitable to be efficiently
encoded by a propositional formula.

In this paper, we enhance the existing constraint-based type checking approach for
DOP [15] by providing a family-based analysis step which improves the product-based
analysis step by making it possible to reuse the intermediate results of the analysis as-
sociated to the product variants. An orthogonal approach to analyzing delta-oriented
product lines [11] aims at analyzing the product generation process and the applica-
bility of the delta modules. However, it does not consider the actual type safety of the
generated products.

The use of a tree structure for a family-based analysis of delta-oriented product lines
is first proposed for architectural variability modeling in Δ -MontiArc [7]. Using a fam-
ily application order tree (FAOT), it is checked that each delta is applicable in its posi-
tions of the possible delta sequences. The FAOT provides an over-approximation of the
set of possible products. Instead, PFGTs presented in this paper give an exact represen-
tation of all possible product variants and generation sequences.

5 Conclusions and Future Work

The family-based analysis framework presented in Section 3 relies solely on the in-
formation contained in the product line declaration (cf. Section 2.2) and is parametric
in both the checked property and the language used to implement the products. Thus,
the framework can, for instance, be instantiated to check applicability and context con-
ditions in Δ -MontiArc architectural delta models [7]. In future work, we aim at building

Family-Based Analysis of Type Safety for Delta-Oriented SPLs 207

a tool for managing the generation of a minimal (and/or of an approximation of a min-
imal) PFGT associated to a given DOP product line declaration. We also plan to re-
fine the notion of PFGT minimality by taking into account, for instance, the number of
changes in a single delta module (number of attributes added/modified/removed). In the
formulation of DOP considered in this paper, the partial order between delta modules
(to be respected by every application order) is specified by means of a totally ordered
partition of the set of the delta modules. The original formulation of DOP [14] and the
Δ -MontiArc architectural delta models make it possible to specify any partial order be-
tween delta modules. Although we believe that from the programmer’s point of view the
specification by ordered partitions is intuitive to use, the ability to specify an arbitrary
partial order might open more possibilities for PFGT minimization.

References

1. Apel, S., Kästner, C., Grösslinger, A., Lengauer, C.: Type safety for feature-oriented product
lines. Automated Software Engineering 17(3), 251–300 (2010)

2. Apel, S., Kästner, C., Lengauer, C.: Feature Featherweight Java: A Calculus for Feature-
Oriented Programming and Stepwise Refinement. In: GPCE, pp. 101–112. ACM (2008)

3. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

4. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE Trans. Soft-
ware Eng. 30(6), 355–371 (2004)

5. Delaware, B., Cook, W., Batory, D.: A Machine-Checked Model of Safe Composition. In:
FOAL, pp. 31–35. ACM (2009)

6. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)
7. Haber, A., Kutz, T., Rendel, H., Rumpe, B., Schaefer, I.: Towards a family-based analysis of

applicability conditions in architectural delta models. In: VARY: Variability for You (Work-
shop Co-Located with MODELS 2011) (2011)

8. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus for Java and
GJ. ACM TOPLAS 23(3), 396–450 (2001)

9. Kästner, C., Apel, S., ur Rahman, S.S., Rosenmüller, M., Batory, D., Saake, G.: On the Impact
of the Optional Feature Problem: Analysis and Case Studies. In: SPLC, pp. 181–190. ACM
(2009)

10. Krueger, C.: Eliminating the Adoption Barrier. IEEE Software 19(4), 29–31 (2002)
11. Lienhardt, M., Clarke, D.: Row types for delta-oriented programming. In: VaMoS,

pp. 121–128 (2012)
12. Lopez-Herrejon, R.E., Batory, D., Cook, W.: Evaluating Support for Features in Ad-

vanced Modularization Technologies. In: Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586,
pp. 169–194. Springer, Heidelberg (2005)

13. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering - Foundations,
Principles, and Techniques. Springer (2005)

14. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-Oriented Program-
ming of Software Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287,
pp. 77–91. Springer, Heidelberg (2010)

15. Schaefer, I., Bettini, L., Damiani, F.: Compositional Type-Checking for Delta-Oriented Pro-
gramming. In: AOSD 2011. ACM (2011)

16. Schaefer, I., Damiani, F.: Pure Delta-oriented Programming. In: FOSD 2010 (2010),
http://www.fosd.de/2010

17. Thüm, T., Apel, S., Kästner, C., Kuhlemann, M., Schaefer, I., Saake, G.: Analysis Strategies
for Software Product Lines. Technical Report FIN-004-2012, School of Computer Science,
University of Magdeburg, Germany (April 2012)

http://www.fosd.de/2010

A Vision for Behavioural Model-Driven Validation
of Software Product Lines

Xavier Devroey1, Maxime Cordy1, Gilles Perrouin1, Eun-Young Kang1,
Pierre-Yves Schobbens1, Patrick Heymans1,2, Axel Legay3, and Benoit Baudry3

1 PReCISE Research Center, Faculty of Computer Science,
University of Namur, Belgium

2 INRIA Lille-Nord Europe, Université Lille 1 – LIFL – CNRS, France
3 INRIA Rennes Bretagne Atlantique, France

Abstract. The Software Product Lines (SPLs) paradigm promises faster devel-
opment cycles and increased quality by systematically reusing software assets.
This paradigm considers a family of systems, each of which can be obtained by a
selection of features in a variability model. Though essential, providing Quality
Assurance (QA) techniques for SPLs has long been perceived as a very difficult
challenge due to the combinatorics induced by variability and for which very few
techniques were available. Recently, important progress has been made by the
model-checking and testing communities to address this QA challenge, in a very
disparate way though. We present our vision for a unified framework combining
model-checking and testing approaches applied to behavioural models of SPLs.
Our vision relies on Featured Transition Systems (FTSs), an extension of tran-
sition systems supporting variability. This vision is also based on model-driven
technologies to support practical SPL modelling and orchestrate various QA sce-
narios. We illustrate one of such scenarios on a vending machine SPL.

Keywords: Software Product Line, Model-Based Testing, Model-Checking.

1 Introduction

The manufacturing industry achieved economies of scope based on the idea that a prod-
uct of a certain family (e.g., cars) may be built by systematically reusing assets, with
some of them common to all family members (e.g., wheels, bodywork, etc.) and others
only shared by a subset of the family (e.g., automatic transmission, manual transmis-
sion, leather seats, etc.). The Software Product Line (SPL) paradigm [35] applies this
idea to software products. In SPL engineering, we usually associate assets with so-
called features and we regard a product as a combination of features. Features can be
designed and specified using modelling languages such as UML, while the set of le-
gal combinations of features (that is, the set of valid products) is captured by a feature
model (FM) [24].

As in single-system development, the engineer will have to improve confidence in
the different products of an SPL, using appropriate Quality Assurance (QA) techniques.
Two popular QA approaches are model-checking and testing. Model checking [6] per-
forms systematic analyses on behavioural models in order to assess the satisfaction of

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 208–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Vision for Behavioural Model-Driven Validation of Software Product Lines 209

the intended temporal and qualitative requirements and properties. As a complement to
model-checking, testing [27] determines whether or not actual executions of the system
behave as expected.

In this SPL context, testing or model checking every possible software product
rapidly becomes unfeasible, due to a possibly huge number of different combinations
of features. This explains why, despite being identified as a research area for years, the
development of practical SPL testing techniques is still in an immature stage [14].

This is not a reason to give up, though. On the one hand, we observe significant
progress in the SPL verification area and the emergence of efficient model-checking
techniques [2,3,7,9,17,20,25,26]. On the other hand, the testing community has also
progressed in this direction by adapting combinatorial interaction testing techniques to
the SPL context [32,33,34]. Furthermore, Model-Based Testing (MBT) [39] is a very
efficient approach for addressing test concerns for large and complex systems.

These promising results motivate our will to unify MBT and model checking tech-
niques in one framework in order to perform practical, model-based QA of SPLs. It
relies upon UML [30] and Featured Transition Systems (FTSs) [8], a formalism for
modelling the behaviour of SPLs.

This vision paper sketches this future framework, presenting actual achievements in
QA of SPLs and challenges ahead. Section 2 presents a state of the art in variability
modelling, model checking and model-based testing. Section 3 gives an overview of
the framework and its different QA activities. Section 4 describes how SPL behaviour
can be given in UML and how products of interest elicited. Section 5 illustrates QA ac-
tivities on a running example. Finally, section 6 wraps up with conclusions and outlines
future research directions.

2 Background

In this section, we recapitulate theoretical background regarding management of vari-
ability and formal verification in SPLs engineering.

2.1 Variability Management

Variability Modelling. Pohl et al. define features in [35] as an end-user visible char-
acteristic of a system. Features are used by the different stakeholders of a project as
an abstraction to support reasoning and are generally represented in a FM. The most
common representation for a FM is a Feature Diagram (FD) [24]. For example, Fig. 1
presents the FD of a soda vending machine [8]. A product derived from this diagram
will correspond to a set of selected features, for example {v,b,s,cur,eur} corresponds
to a machine that sells soda (and only soda) in euro. Such a set is called a configuration
of the FM. Feature models have been equipped with formal semantics [36], automated
analyses and tools [24] for more than 20 years.

SPL Behavioural Modelling. Formalisms allowing the description of SPL behaviour
can be classified according to the kind of language they rely upon:

210 X. Devroey et al.

VendingMachine
v

CancelPurchase
c

Beverages
b

FreeDrinks
f

Currency
cur

Soda
s

Tea
t

Euro
eur

Dollar
usd

Or

Xor

Fig. 1. Example of Feature Diagram: the soda vending machine [8]

– UML-based approaches. Several approaches consider using UML to model SPL
behaviour. For example, Ziadi and Jézéquel [42] illustrate the usage of UML 2
sequence diagrams and statecharts in the context of product derivation. Czarnecki
et al. [12] map features to UML activity diagrams. Our proposal, based on state
machines, will be detailed in Section 4.

– Transition system approaches. Fischbein et al. propose in [17] to use Modal Tran-
sition Systems (MTSs) to model SPLs with some extensions, which were provided
by Fantechi and Gnesi in [15,16]. Li et al.[26] model each feature as an indepen-
dent state machine. The behaviour of a given product is then the state machine that
results from the combination of its features.

– Algebraic Approaches. Gruler et al. [20,19] augment process algebra with an op-
erator that allows to model variability in the form of alternative choice between two
processes.

UML-based approaches are easy to adopt, based on the lingua franca of modelling.
Since UML has no formal semantics, one should be provided [42], especially for QA
purposes. MTSs are transition systems with compulsory and optional transitions. Al-
though they are able to model optional behaviour, they do not include an explicit notion
of features. The same issue arises in the approach proposed by Gruler et al. Finally, Li
et al. do not consider cross-cutting features that cannot be modelled as an automaton.

To allow the explicit mapping from feature to SPL behaviour, FTSs [8] were pro-
posed. FTSs are Transition Systems (TSs) where each transition is labelled with a fea-
ture expression (i.e., a boolean expression over features of the SPL), specifying for a
given FD in which products the transition may be fired. Thus it is possible to determine
which products are the cause of a violation or a failed test.

The semantics of an FTS is a function that associates each valid product with its set
of finite and infinite executions, i.e. all the possible paths in the graph available for this
specific product. According to this definition, an FTS is actually a behavioural model of
a whole SPL. Fig. 2 presents the FTS modelling a vending machine SPL. For instance,

A Vision for Behavioural Model-Driven Validation of Software Product Lines 211

1 2 3

4

5

6

7 8 9
pay/¬f change/¬f

free / f

take / f

close/¬f

open/¬f take/¬f

cancel / creturn / c
soda / s serveSoda / s

tea / t serveTea / t

Fig. 2. FTS example: the soda vending machine [8]

transition 1 pay/¬ f−→ 2 is labelled with the ¬ f feature expression. This means that only
the products that do not have the feature FreeDrinks f are able to execute the transition.

While FTSs can be efficiently analysed and verified [9,7], they are not meant to be
designed directly by engineers. In particular, they lack structuring mechanisms. We will
illustrate how UML can be combined with FTSs in Section 5.

2.2 Model Checking and Product Lines

Many variability-intensive systems are safety critical. Embedded systems, for instance,
are often developed as product lines [13]. The highest levels of QA, including formal
verification, are thus needed. Existing verification techniques were mostly developed
for single systems. Using those techniques to verify SPLs is tedious, since the number
of possible products is exponential in the number of features.

Model checking [6,4] has proven to be a powerful technique for verifying systems
against properties expressed in temporal logics. Classical model checking is currently
restricted to single systems, but we started to investigate how to use it efficiently on
product lines, taking advantage of the fact that large parts of the behaviour are com-
mon to many products. This commonality must already be present in the model. We
presented above FTSs. Model-checking also requires a specification formula, that must
take variability into account. To this purpose, we defined fCTL and fLTL, that are the
well-known logics CTL and LTL (resp.) with additional feature symbols. These sym-
bols (called quantifiers) restrict the set of products verified against a given temporal
property. As an alternative, one could use the products-restraint operator on FTSs [10].
This operator modifies an FTS so that only the behaviour of specific products is rep-
resented in the model. Our model-checking algorithms take the commonality between
the products into account and avoid to re-check common behaviour.

Some of the modelling approaches presented above [17,26,20,19] offer model-
checking facilities. Yet, because of their feature mapping limitations, they are unable
to keep track of the exact behaviour of each product during QA tasks.

212 X. Devroey et al.

2.3 Model-Based Testing and Product Lines

Testing each product of an SPL also faces the same exponential explosion. We there-
fore need to reason on testing activities at the SPL level, in an abstract manner. MBT
[39], like model checking, starts from models of the system under test but provides
automated means to derive tests according to test criteria. MBT is thus an excellent
candidate to solve this issue. Although behavioural MBT is well established for single-
system testing [38], a recent survey [31] shows insufficient support of SPL-based MBT,
both in terms of automation and of integration in the development lifecycle. In this
paper, we will illustrate a possible integration of testing activities within SPL mod-
elling and QA efforts and focus on the selection of relevant products for testing or/and
verification.

3 Overview

Our vision, sketched in Fig. 3, is based on formal model-driven engineering and aims
to provide an end-to-end QA framework for SPL. This framework organizes SPL mod-
elling and QA activities within two layers: modelling and design & validation. These
activities are orchestrated by three cooperating roles (roles’ interaction is not shown in
the figure): functional architect who defines SPL behaviour and specifies criteria for
selecting products of interest at the requirements level; QA manager responsible of QA
artifacts and the orchestration of QA tasks; and Designer who may refine FTSs with
specific behaviour.

Our framework supports the following sequence of activities. First, the SPL is mod-
elled according to its requirements. The functional architect specifies the FM repre-
senting the variability of the SPL and expresses SPL behaviour in a State Diagram
Variability Analysis (SDVA) model. The SDVA formalism is currently under develop-
ment and will be defined as a UML profile for state machine diagrams. The purpose
of the SDVA model is to facilitate behavioural modelling by using a standard notation
that offers richer constructions than pure FTSs. Amongst other things, we will support
hierarchical constructs (composite states), useful to abstract details during requirements
elicitation and orthogonal states used to model parallel behaviours in sub-states. In ad-
dition to this SDVA model, criteria for selecting products of interest are defined.

Second, the obtained SPL model is validated. The hierarchical behavioural models
(namely, the SDVA) are flattened into FTSs. The QA manager then proceeds with the
selection of a specific set of products, test cases, and temporal properties to verify. As
we explain in the sequel, the selection of products can be achieved through the specifi-
cation of conditions over the features, test coverage, or model checking. These criteria
have been previously defined by the functional architect. The designer may refine the
validation model with product-specific properties. For example, one may refine actions
defined on FTS transitions with TSs to obtain a full behavioural model of the SPL (de-
noted by FTS’ in Fig. 3), allowing in-depth analysis of the selected products. Finally,
the product QA manager sets various parameters for the application of validation tools
and retrieves validation outcomes (not shown in the figure). The selected products are
then verified against the chosen temporal properties and refined test cases define the
scenarios to be executed on the SPL’s implementation.

A Vision for Behavioural Model-Driven Validation of Software Product Lines 213

Coverage
criteria

Temporal
Logic

Flat QA Model

 Functional
Architect

Model
Transformation

SDVA
model

+

Modelling

Design
&

Validation

Designer

Feature
model

Requirements

SPL Model

Coverage
criteria

Temporal
Properties

QA Model

FTS
model

Feature
model

Flat SPL Model

Input/output

Validation
Model

FTS'
model

Test generation

Model-checking

2. Product Selection

1. Flattening

Test Execution

3. Product Validation

Verification

Coverage
criteria

Temporal
Logic

Design QA Model

Unit Test
Cases

ActivityMandatory
Information

Optional
Information

QA
Manager

 Creates

3. Refinement

Operates

Fig. 3. Framework overview

214 X. Devroey et al.

4 Modelling SPL Behaviour with SDVA

An SDVA is an extension of a state machine diagram with variability operators. As in
FTSs, transitions in SDVAs are annotated with constraints over the set of features. A
given software product is able to execute a transition if and only if its features satisfy the
associated constraint. SDVAs thus combine the modelling constructs of state machines
with the conciseness of FTSs (when it comes to representing the behaviour of a set
of products). Given that the theory surrounding SDVAs is still undergoing, we present
here but a small and intuitive instance of this formalism. Fig. 4 presents an example
of SDVA for the FM in Fig. 1. The high-level behaviour of the system as described in
the diagram entitled SodaVendingMachine is as follows. The vending machine starts
in state Idle. It can transit to either state Pay or Free if the feature f is disabled or
enabled, respectively. In both cases, the system can move to state Soda (if the feature
s is enabled) or to state Tea (if t is enabled). These two features not being exclusive,
there exist products able to execute both transitions. Finally, the system reaches state
Retrieve and then goes back to Idle.

This small example already gives account of the advantage of SDVAs over a funda-
mental formalism like FTSs. Indeed, one can observe that this SDVA actually models
the same behaviour as the FTS shown in Fig. 2. However, the hierarchical construct in
SDVAs allows one to define this behaviour at different levels of abstractions. Indeed,
we see that the aforementioned high-level behaviour of the system is detailed in five
additional diagrams. The effect of features on the system is thus refined as the model
reaches deeper abstraction levels.

In addition to the SDVA, the functional architect also has to specify coverage crite-
ria. For example, one may be interested in the behaviour of all the vending machines
where a drink is eventually served. Through coverage criteria, one can thus drive the
selection of relevant execution traces. Alternatively, intended requirements for the sys-
tem can be expressed as temporal properties. Once defined, the SPL model and the
criteria will be automatically flattened into an FTS and a suitable QA model. Flattening
thus provides the SDVA model with a formal semantics in a transformational way. The
transformation is an ongoing work and will be based on the flattening algorithm imple-
mented using Kermeta [28] and proposed by Holt et al. in their state machine flattener
Eclipse plug-in [22]. Although it is possible to flatten some of the most advanced UML
state machine diagrams features [40], we currently consider only the hierarchical and
orthogonal constructs.

By using FTSs as formal semantics for SDVAs, we want our framework to benefits
from the accessibility, attractiveness, and usability of UML-based approaches and from
the last advances in behavioural SPL model checking techniques. It is an open method-
ological challenge to determine when to stop detailing the SDVA model and proceed to
FTS generation and refinement. We believe the SPL size and roles’ skills are important
factors impacting this decision. This has to be evaluated in practice.

To define the link between an SDVA and an FM, we propose to use the UML pro-
filing mechanism [30, p. 659–688], which allows one to extend metaclasses to adapt
them to specific needs and thus to map variable behaviour with the FM. Ziadi et al. [42]
use the same profiling mechanism to introduce variability in UML class and sequence

A Vision for Behavioural Model-Driven Validation of Software Product Lines 215

SodaVendingMachine

Idle
(0)

Pay

Free

Soda

Tea

Retrieve

[t]

[s]

[s]

[t]

Pay

cancel() [c]

Waiting
(1)

Paid
(2)

pay() [¬f]

Changed
(3)

change() [¬f]

Canceled
(4)return() [c]

Free

Canceled
(4)

ForFree
(3)

free() [f]Waiting
(1)

cancel() [c]
return() [c]

Soda
serveSoda() [s]

Tea
serveTea() [t]

Retrieve

Opened
(8)

take() [¬f]
Taken
(9)

open() [¬f] close() [¬f]

take() [f]

(7) (7)

[f]

[¬f]

X
X

X
X

soda()

tea()

X

X

X

X

soda()

tea()

PrepareSoda
(5)

PrepareTea
(6)

Served
(7)

Fig. 4. Vending machine SDVA model

diagrams by “tagging” variants and optional elements and incorporating the constraints
expressed in the FM using OCL and algebraic specification. The diagrams are then
used to synthesize state machines for a given product of the product line. Contrary
to this approach where the UML models may be used as standalone, the purpose of
SDVA models is (for now) only to facilitate behavioural modelling by using a standard
notation that offers richer constructions than pure FTSs. Amongst other things, we will
support hierarchical constructs (composite states), useful to abstract away from details
during requirements elicitation and orthogonal states used to model parallel behaviours
in sub-states.

216 X. Devroey et al.

From the SPL model, the last step consists in defining the products that will be cov-
ered by the validation activities. Various coverage criteria have been proposed for state
machines such as edge coverage or location coverage [29]. One approach to express
this coverage is to directly annotate relevant elements of the model. Although prag-
matic, this solution has the disadvantage to increase visual clutter and may become
error-prone for large models. Rather, we are in favour of an explicit modelling language
to specify coverage criteria. In particular, we rely on the observer automata concept
proposed by Blom et al. [5]. Intuitively, an observer monitors the system under test and
“accepts” a trace (a possible execution of the state machine) whenever a coverage item
defined by the observer is found. We may thus use an observer to select only the traces
of a specific subset of products. For example, we may only be interested in products
providing drinks for free. Furthermore, we are not interested in cancelling orders for
free drinks. The resulting observer is illustrated in Fig. 5. From the initial location, the
observe can reach the accepting location freeDrinks if the predicate on the transition
evaluates to true, that is if the feature f is selected and c is not.

selected(f ⋀¬c)

freeDrinks

Fig. 5. An observer covering “free drinks” products

In principle, given an SDVA model and an observer, it would be possible to derive
all products satisfying the freeDrinks predicate. However, the SDVA model above
has only an intuitive semantics and since it is hierarchical, this model raises an issue
for the application of the coverage criteria. Indeed, as explained by Weißleder [41],
it is not obvious how to traverse outgoing transitions of a composite state. To resolve
these issues, we gave our SDVA model a formal semantics by translating it into an FTS.
Since FTSs are flat, the application of the coverage criteria can be made more explicit.
For example, flattening the SDVA model of Fig. 4 yields the FTS is presented in Fig.
2. The flattening operation usually consists in three steps [1,18,23]. First, the SDVA
machine is recursively flattened by replacing all states by their sub-machines. We then
have one “expanded state machine” with redundancy (e.g., the Waiting state in the Pay
and Free sub-machines) and empty transitions (e.g., from Retrieve to Idle). The
second step consists in simplifying the expanded state machine by merging redundant
states (e.g., Changed and ForFree) and deleting useless ones (e.g., Idle since it has
only unconstrained incoming transitions). In the last step, the SDVA operations are
transformed into FTS actions. The complete mapping of the SDVA states to the FTS is
given under each state of Fig. 4. Note that Idle state is mapped to 0. It means that this
state is useless and will not appear in the FTS. To merge equivalent states in FTS, one
could apply algorithms like simulation quotient to FTS. Simulation quotient is more
complex in FTS than in usual TSs and has been studied in [11]. In the end, we are
able to verify the correctness of the flattening transformation and the preservation of
properties.

A Vision for Behavioural Model-Driven Validation of Software Product Lines 217

Since the observer’s predicate is expressed in terms of feature expressions and does
not directly involve composite states (such as Idle, Retrieve on top of Fig. 4), it does
not have to be translated. The definition of compact and reusable observers is an open
research question.

An alternative to achieve the selection of products is the explicit specification of the
desired and forbidden features. In this case, the validation will rely on the use of a
formal operator to prune the flattened FTS from the behaviour of the products that must
be ignored, as we will explain in the following section.

5 Validation of Refined SPLs

In this section, we consider a validation scenario exemplifying the SPL validation using
a design QA model provided by the QA manager and refinements of the validation
model provided by the designer. We illustrate this possible scenario on our vending
machine example.

5.1 Design and Validation

The first step in the design and validation part is the product selection, solely based on
the flat SPL and QA models or on those models with an additional design QA model
provided by the QA manager. The selected products are then refined by the designer
according to the desired detail level and validated in the last step.

Product Selection. As mentioned in Section 3, product selection can be performed via
two ways: by using a test coverage algorithm or a model checker:

1. Considering our observer automata (see Fig. 5), an algorithm computing a TS sat-
isfying this observer has been provided [21,5]. It consists in composing the ob-
server and the TS to systematically explore possible transitions (i.e., transitions
whose associated feature expression is compatible with the formula f ∧¬c) and
form “traces”, which are in our case the desired products’ TSs. There are various
strategies to generate such traces (e.g., longest [21]). We also need to ensure the
uniqueness of traces. Providing feature-oriented strategies as well as an extension
of the observer language (to deal with predicates defined over features as shown
above) is a research challenge to be tackled.

2. Use the products-restraint operator defined in [10]. Given an FTS and a feature
valuation function (i.e., a partial function that associates features with Boolean val-
ues), this operator removes any transition in the FTS whose feature expression is
incompatible with the feature valuation function. Also note that the behaviour of an
individual product can be extracted from the individual FTS thanks to a total fea-
ture valuation function. Applied on our vending machine example and the function
that associates f to true and c to false, the products-restraint operator produces the
FTS shown Fig. 6. This FTS models exactly the behaviour of the products with free
drinks and no possibility to cancel orders.

218 X. Devroey et al.

1 2 3

4

5

6

7 8 9

free / f

take / f

close/¬f

soda / s serveSoda / s

tea / t serveTea / t

Fig. 6. Restrained FTS for free and non-canceling products

Refinement. Once the products of interest have been selected, we may refine them to
perform targeted verification and generate detailed test scenarios. This refinement con-
sists in providing more behaviour to the FTS’ actions and adding new transitions. Let
us assume that we are interested to validate serveTea behaviour; we detail it by pro-
viding three actions, prepare (setting up tea leaves), boil (boil water at the adequate
temperature) and pour (having the water pass through the leaves and and pour the tea
in the cup when it is infused). The refined FTS is shown Fig. 7.

1 2 3

4

5

6

7 8 9

free / f

take / f

soda / s
serveSoda / s

tea / t

prepare / t

6 6

boil / t pour / t

Fig. 7. Refined FTS detailing “serveTea” behaviour

Product Validation. The last step is the validation of the actual products defined in the
validation model.

The QA manager is also responsible for designing and managing test cases of the
SPL. For instance, the QA manager may want to test that serving tea is correctly
handled by the vending machine. To do so, she can provide a new observer as il-
lustrated in Fig. 8. We can reuse the algorithm mentioned above [21,5] to compute
traces. However, the role of these traces is different: they form abstract test case sce-
narios to be applied on the selected products rather than the new set of products to be

A Vision for Behavioural Model-Driven Validation of Software Product Lines 219

serveTea

serveTea

Fig. 8. An observer covering all traces where the serveTea action appears

considered. Thus, the algorithm would return a list of actions, like the following one:
{free, tea, serveTea, take}.

During selection, relevant observers may be elicited by pruning those related to ac-
tions not present in the restrained FTS (or the set of product TSs). During refinement,
actions can be detailed. This implies that traces have to be refined as well. However,
refining traces directly may represent a huge task and may not be easily automated as
selection may affect the un-restrained FTS in many ways. Rather, we propose to derive
a refined observer as shown in Fig. 9. This observer is much easier to model by the QA
manager and may be generated by an automated model transformation, provided that
traceability during refinement is maintained. Once obtained, the observer is enabled to
derive traces like {free, tea, prepare, boil, pour, take}.

prepare

serveTea'

6 6
boil pour

Fig. 9. Refined observer

Generated traces serve as specification for testers to write concrete test cases to be
run on the system implementation.

As in single-system engineering, model checking is an alternative validation tech-
nique. In our other work, we have designed efficient algorithms to verify FTSs against
properties expressed in temporal logic [9,7] or as automata [11]. Given a property, such
an algorithm returns the exact set of products that do not satisfy the property. To reduce
the overhead of verification, our methods tend to take the commonality between the
products into account and to avoid redundant checking. We are still extending our work
with the aim of providing a wider range of increasingly efficient techniques for formal
verification of SPLs.

6 Conclusion and Perspectives

In this paper, we have presented a vision for a model-based behavioural SPL QA frame-
work. Our approach relies on formal techniques without sacrificing usability in a unified
and flexible enough model-driven framework. We believe that this combination will fos-
ter the usage of efficient QA techniques for SPLs thus improving the confidence in the
SPL paradigm.

220 X. Devroey et al.

By working on domain artefacts with a variability model, we want our framework
to be family-based [37]. The output of the whole chain will be a validation model for
(potentially) one product, a subset of products or even the whole product line according
to the provided select criteria.

Although some achievements have been made in model checking SPL behavioural
models [8], there is still a long way to go before having a complete and coherent SPL
quality assessment framework. First, we need to completely define SDVA with appro-
priate hierarchical constructs and its semantics as a mapping function from SDVA to
FTS. To do this, we will explore existing UML state machines flattening techniques
and see how we can adapt them to our needs.

The second challenge is the definition of observers to generate relevant test cases
(i.e., interesting traces in the FTS). To define what an “interesting trace” is, we will
need to adapt existing test selection criteria and probably create new SPL-dedicated
ones.

This leads us to our third challenge: the definition of appropriate test selection al-
gorithms dedicated to SPLs. In addition to well-known criteria like all-transitions, we
would like to define new ones related to the SPL’s features, which may be relevant from
the functional architect’s perspective.

References

1. Ali, S., Hemmati, H., Holt, N., Arisholm, E., Briand, L.: Model Transformations as a Strategy
to Automate Model-Based Testing-A Tool and Industrial Case Studies. Simula Research
Laboratory, Technical Report, pp. 1–28 (January 2010)

2. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Design and validation
of variability in product lines. In: Proceedings of the 2nd International Workshop on Prod-
uct Line Approaches in Software Engineering, PLEASE 2011, pp. 25–30. ACM, New York
(2011)

3. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Formal description of variability in prod-
uct families. In: Proceedings of the 2011 15th International Software Product Line Confer-
ence, SPLC 2011, pp. 130–139. IEEE Computer Society, Washington, DC (2011)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2007)
5. Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and Generating Test Cases Using

Observer Automata. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 125–139. Springer, Heidelberg (2005)

6. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
7. Classen, A., Heymans, P., Schobbens, P., Legay, A.: Symbolic model checking of soft-

ware product lines. In: Proceedings 33rd International Conference on Software Engineering
(ICSE 2011). ACM Press, New York (2011)

8. Classen, A.: Modelling and Model Checking Variability-Intensive Systems. Ph.D. thesis,
PReCISE Research Center, Faculty of Computer Science, University of Namur, FUNDP
(2011)

9. Classen, A., Heymans, P., Schobbens, P., Legay, A., Raskin, J.: Model checking lots of
systems: efficient verification of temporal properties in software product lines. In: Proceed-
ings of the 32nd ACM/IEEE International Conference on Software Engineering, ICSE 2010,
vol. 1, pp. 335–344. ACM, New York (2010)

10. Cordy, M., Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Managing evolution in
software product lines: A model-checking perspective. In: Proceedings of VaMoS 2012,
pp. 183–191. ACM (2012)

A Vision for Behavioural Model-Driven Validation of Software Product Lines 221

11. Cordy, M., Classen, A., Perrouin, G., Heymans, P., Schobbens, P.Y., Legay, A.: Simulation
relation for software product lines: Foundations for scalable model-checking. In: Proceedings
of the 34th International Conference on Software Engineering, ICSE 2012. IEEE (to appear,
2012)

12. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach Based
on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676,
pp. 422–437. Springer, Heidelberg (2005)

13. Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. Computer 42(4), 42–52
(2009)

14. Engström, E., Runeson, P.: Software product line testing-a systematic mapping study. Infor-
mation and Software Technology 53(1), 2–13 (2010)

15. Fantechi, A., Gnesi, S.: A behavioural model for product families. In: Proceedings of the the
6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC-FSE 2007, pp. 521–524.
ACM, New York (2007)

16. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In: Proceedings of
the 2008 12th International Software Product Line Conference, pp. 193–202. IEEE Computer
Society, Washington, DC (2008)

17. Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural conformance in
software product line architectures. In: Proceedings of the ISSTA 2006 Workshop on Role
of Software Architecture for Testing and Analysis, ROSATEA 2006, pp. 39–48. ACM,
New York (2006)

18. Gogolla, M., Parisi Presicce, F.: State diagrams in UML: A formal semantics using graph
transformations. In: Proceedings PSMT, pp. 55–72 (1998)

19. Gruler, A., Leucker, M., Scheidemann, K.: Calculating and modeling common parts of soft-
ware product lines. In: Proceedings of the 2008 12th International Software Product Line
Conference, SPLC 2008, pp. 203–212. IEEE Computer Society, Washington, DC (2008)

20. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and Model Checking Software Product
Lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 113–131.
Springer, Heidelberg (2008)

21. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing
Real-Time Systems Using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.)
FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

22. Holt, N.E., Arisholm, E., Briand, L.: Technical report 2009-06: An eclipse plug-in for the
flattening of concurrency and hierarchy in uml state machines. Tech. Rep. 2009-06, Simula
Research Laboratory AS (2009)

23. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA. In: Aßmann,
U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 62–76. Springer,
Heidelberg (2005)

24. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Spencer Peterson, A.: Feature-Oriented
domain analysis (FODA) feasibility study. Tech. rep., Software Engineering Institute,
Carnegie Mellon University (1990)

25. Lauenroth, K., Pohl, K., Toehning, S.: Model checking of domain artifacts in product line
engineering. In: Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, ASE 2009, pp. 269–280. IEEE Computer Society, Washington, DC
(2009)

26. Li, H.C., Krishnamurthi, S., Fisler, K.: Interfaces for modular feature verification. In: Pro-
ceedings of the 17th IEEE International Conference on Automated Software Engineering,
ASE 2002, pp. 195–204. IEEE Computer Society, Washington, DC (2002)

27. Mathur, A.: Foundations of software testing. Pearson Education (2008)

222 X. Devroey et al.

28. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-Oriented Meta-
languages. In: Briand, L., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264–278.
Springer, Heidelberg (2005)

29. Myers, G.: The art of software testing. Wiley (1979)
30. OMG: OMG Unified Modeling Language TM (OMG UML), Superstructure. Tech. Rep.

OMG (August 2011), http://www.omg.org/spec/UML/
31. Oster, S., Wöbbeke, A., Engels, G., Schürr, A.: Model-based software product lines testing

survey. In: Zander, J., Schieferdecker, I., Mosterman, P.J. (eds.) Model-Based Testing for
Embedded Systems. Computational Analysis, Synthesis, and Design of Dynamic Systems,
pp. 339–382. CRC Press (September 2011)

32. Oster, S., Zink, M., Lochau, M., Grechanik, M.: Pairwise feature-interaction testing for spls:
potentials and limitations. In: Proceedings of the 15th International Software Product Line
Conference, SPLC 2011, vol. 2, pp. 6:1–6:8. ACM, New York (2011)

33. Oster, S., Zorcic, I., Markert, F., Lochau, M.: MoSo-PoLiTe: tool support for pairwise and
model-based software product line testing. In: Proceedings of the 5th Workshop on Vari-
ability Modeling of Software-Intensive Systems, VaMoS 2011, pp. 79–82. ACM, New York
(2011)

34. Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B., le Traon, Y.: Pairwise testing for
software product lines: Comparison of two approaches. Software Quality Journal, 1–39
(August 2011)

35. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering: foundations,
principles, and techniques. Springer-Verlag New York Inc. (2005)

36. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of feature
diagrams. Computer Networks 51(2), 456–479 (2007)

37. Thüm, T., Apel, S., Kästner, C., Kuhlemann, M., Schaefer, I., Saake, G.: Analysis Strate-
gies for Software Product Lines. Tech. Rep. FIN-004-2012, School of Computer Science,
University of Magdeburg, Germany (April 2012)

38. Tretmans, J.: Model Based Testing with Labelled Transition Systems. In: Hierons, R.M.,
Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38. Springer, Heidelberg
(2008)

39. Utting, M., Legeard, B.: Practical model-based testing: a tools approach. Morgan Kaufmann
(2007)

40. Wasowski, A.: Flattening statecharts without explosions. SIGPLAN Not. 39(7), 257–266
(2004)

41. Weißleder, S.: Test models and coverage criteria for automatic model-based test generation
with UML state machines. Ph.D. thesis, Humboldt-Universität zu Berlin (2010)

42. Ziadi, T., Jézéquel, J.M.: Product Line Engineering with the UML: Deriving Products.
In: Pohl, K. (ed.) Software Product Lines, pp. 557–586. Springer (2006)

http://www.omg.org/spec/UML/

Parameterized Preorder Relations for
Model-Based Testing of Software Product Lines

Malte Lochau and Jochen Kamischke

TU Braunschweig, Institute for Programming and Reactive Systems, Germany
{m.lochau,j.kamischke}@tu-bs.de

Abstract. Software Product Lines (SPLs) are a promising approach
for efficiently engineering similar variants and/or evolving versions of
software products. SPLs propagate systematic reuse of design artifacts
between variants based on commonality and variability specifications in
terms of features. Adopting reuse principles also to methods for behav-
ioral conformance verification of product variants to their formal speci-
fications, e.g., using model-based testing, is still an open problem. The
sound reuse of verification artifacts such as test cases and test results
is challenging due to the syntax-oriented and cross-cutting nature of re-
cent feature-oriented SPL modeling approaches which obstructs reason-
ing about the behavioral impact of variability. Therefore, we introduce a
formal framework for reasoning about artifact reuse in model-based SPL
conformance testing. Based on a modal labeled transition system with
explicit feature annotations as semantical ground model, we propose a
behavioral notion of commonality by means of parameterized testing pre-
order relations for decorated trace semantics. Thereupon, applications to
the reuse of SPL test artifacts are proposed.

1 Introduction

In many nowadays application domains, the software is an integral part of a de-
pendable system, thus constituting a safety- and/or mission-critical factor, where
erroneous implementations may have fatal consequences. Therefore, software im-
plementations are strongly imposed to behave as intended, i.e., to be reliable up
to a certain extent. Formally speaking, ensuring the behavioral conformance of
a software implementation impl to a behavioral specification spec requires the
verification of an implementation relation impl ≡ spec w.r.t. a behavioral equiv-
alence ≡ (cf. [10,9]). In many cases, it is sufficient (or even only possible) to es-
tablish a preorder relation impl � spec requiring the implementation to show at
most the behaviors as specified. When applying model-based testing for confor-
mance verification, the behavioral specification is given as a test model, whereas
the implementation under test is considered to be a black-box, solely offering an
interface for injecting controllable inputs and observable outputs [26]. Hence, the
preorder relation is weakened to a testing preorder �te (cf. [10]), as well as to hold
for a finite set behaviors from a usually infinite execution domain by means of
finite sets of test cases [12]. Verifying the behavioral conformance in the presence

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 223–237, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

224 M. Lochau and J. Kamischke

of variability over time and/or space within specifications and implementations
is even more challenging. Software Product Lines (SPLs) propagate approaches
for the efficient development of families of similar software products based on ex-
tensive reuse of engineering artifacts among variants throughout all development
phases [8]. Therefore, commonality and variability between different variants is
managed in terms of feature parameters being explicitly related to artifacts for
assembling product variants from reusable components. However, corresponding
techniques for efficient, i.e., redundancy-reduced, yet reliable quality assurance
of entire SPLs by adapting reuse principles also to verification artifacts is chal-
lenging [19,7,11]. Considering model-based SPL testing, the reuse of test cases
among product variants is complicated, because (1) different product variants
are, in general, incomparable under testing preorder relations and (2) variability
modeling based on explicit feature parameters often crosscut semantical entities.

We address these challenges by providing a unifying semantical framework
for variability-enriched SPL test models for formal reasoning about test artifact
reuse among SPL product variants. Therefore, we define a parameterizable for-
malism based on labeled transition systems (LTS) as a semantical ground model
for SPL test models. The model incorporates explicit modalities as propositional
formulas over feature parameters for integrating behaviors of entire product fam-
ilies under test. We introduce different decorated trace semantics for abstract
test case specifications and corresponding parameterized testing preorder rela-
tions. We correlate product configuration refinement and behavioral refinement
w.r.t. those preorders for deriving reusable test cases from partial product con-
figurations. We then decompose the sets of decorated traces of different full
product configurations into subsets of test cases denoting those behaviors com-
monly specified for these variants. This allows us to reason about the reuse of
test cases among arbitrary product variants although being initially incompara-
ble under testing preorders. We also discuss assumptions for the reliable reuse
of test results in a model-based SPL test setting.

This paper is organized as follows. In Sec. 2, we review basic notions of model-
based testing using decorated LTS trace semantics and define parameterizable
testing preorder relations for adopting reuse principles to model-based SPL test-
ing. In Sec. 3, we introduce our LTS-based semantical framework for variability-
enriched test models based on explicit feature annotations, which is used in
Sec. 4 to reason about the reuseability of SPL test artifacts in a formal way.
Sec. 5 discusses related work and Sec. 6 concludes.

2 Model-Based Conformance Testing of SPLs

We introduce basic notions of model-based testing, preorder relations using LTS
test models and outline reuse principles in SPL testing.

2.1 Foundations of Model-Based Conformance Testing

In model-based conformance testing, a test model tm serves as a formal behav-
ioral specification for an implementation impl under test. In practice, high-level

Parameterized Preorder Relations for Model-Based Testing of SPLs 225

modeling languages with rich syntactical constructs like UML state machines
are frequently used by test engineers to capture the intended behaviors of the
software under test [26]. However, for reasoning about the formal aspects of test
case derivations, test case applications and testing equivalences for behavioral
conformance verification, a translation of those high-level languages onto a more
fundamental model is required that provides formalized semantics [25]. Labeled
transition systems [14] offer such a semantical basis.

Definition 1 (Labeled Transition System). A labeled transition system is
a triple (Proc, Act, →), where

– Proc is a countable, non-empty set of states, ranged over by s,
– Act is a countable set of actions, ranged over by a, b, c,
– → ⊆ Proc × Act × Proc is a transition relation and we write s

a−→ s′ if
(s, a, s′) ∈ → holds.

We write s
a

�→ if there is no s′ ∈ Proc such that s
a−→ s′ and s

a−→, otherwise.
An LTS specifies the behaviors of all its processes, i.e., states s ∈ Proc of the
transition system specification. By choosing an initial state s0 ∈ Proc, all be-
haviors of that process are given by its process graph, i.e., the LTS subgraph
containing only those states reachable from s0 via sequences of zero or more
transitions. We assume transition labels a ∈ Act to represent abstract, visible
actions performed by the system. We omit τ -transitions representing invisible,
i.e., internal behaviors in our following considerations. When using LTS speci-
fications as fundamental semantical foundation for concrete test models tm, an
interpretation of transition labels a ∈ Act is usually given in terms of disjoint
input/output alphabets ActI , ActO visible to an observer process, i.e., a tester
(cf., e.g., [25]). Hence, each transition s

a−→ s′ denotes a basic test step, where
a ∈ ActI refers to controllable input stimuli injected into the system under test,
whereas a ∈ ActO refers to expected output behaviors to be observed as system
reactions. Due to the black-box view of model-based testing, the internal states
of an implementation under test are not accessible to external observers. How-
ever, for establishing a preorder relation � between a specification, e.g., a test
model tm and the implementation impl, a test assumption has to be made [4],
where the existence of an (imaginary) implementation model im is assumed to
relate a black-box under test to its test model. As a result, the verification of the
preorder relation im � tm requires the behaviors observed for the (unknown)
model im of the implementation under test to conform to those specified in the
test model tm. Here, we assume both, tm and im to be LTS models.

Applying model-based testing to verify the behavioral conformance relation
between implementation model and test model imposes a certain testing preorder
relation �te based on a testing equivalence relation ≡te [10]. The choice of a
preorder �te depends, e.g., on the constructs available for test case specifications
and their application [1], i.e., to what extent the tester is able to stimulate and
investigate the implementation under test. In a black-box setting, we assume the
testing preorder to be based on traces, i.e., sequences of visible actions, whereas
internal actions, choice structures and process states of the implementation are

226 M. Lochau and J. Kamischke

not accessible to the tester. Therefore, we define LTS trace semantics as the
basic notion for the definition of testing preorder relations.

Definition 2 (LTS Trace Semantics). A sequence tr = (a1, a2, . . . , an) ∈
Act∗ is a trace of a process s0 ∈ Proc of an LTS if there exists a path

s0
a1−→ s1

a2−→ s2
a2−→ · · · an−−→ sn

in the process graph of s0.

We write s0
tr−→ sn for short. By Tr(s0, spec) ⊆ Act∗ we denote the set of all

traces of process s0 ∈ Proc of an LTS specification spec = (Proc, Act, →). Traces
provide the fundamental notion for LTS testing preorders such that

im �T tm :⇔ Tr(s0, im) ⊆ Tr(s′
0, tm)

where T denotes trace preorder as testing preorder, i.e., the implementation
behaviors are required to exhibit at most the set of traces specified in tm. We
assume some process s0 to be the predefined initial process of the implementation
under test and s′

0 to refer to the corresponding initial process of the test model.
Conformance testing verifies whether all potential sequences of visible actions of
the implementation under test conform those specified in the test model.

In addition to plain traces solely representing action sequences, further deco-
rated versions of trace semantics were proposed in the literature [5]. Decorations
are, again, based on the notion of visible actions. But, in addition to plain se-
quences of actions, further details on the enabling and/or disabling of actions in
intermediate states reached by traces are taken into account using the notions of
readies and failures. Here, we consider the following decorated trace semantics:

– Completed traces: traces tr ∈ Tr(s0, spec) are completed traces if s0
tr−→ s and

s
a

�→ for each a ∈ Act.
– Failures: a pair (tr, X) with tr ∈ Tr(s0, spec) and X ⊆ Act is a failure if

s0
tr−→ s and for each a ∈ Act with s

a−→ s′, a �∈ X .
– Readies: a pair (tr, X) with tr ∈ Tr(s0, spec) and X ⊆ Act is a ready if

s0
tr−→ s and for each a ∈ Act with s

a−→ s′, a ∈ X .
– Failure traces: a sequence X0a1X1 · · · anXn with Xi ⊆ Act, 0 ≤ i ≤ n is a

failure trace if s0
a1−→ s1

a2−→ · · · an−−→ sn is a trace of s0, and for each a ∈ Act
with si

a−→ si+1, a �∈ Xi.
– Ready traces: a sequence X0a1X1 · · · anXn with Xi ⊆ Act, 0 ≤ i ≤ n is a

ready trace if s0
a1−→ s1

a2−→ · · · an−−→ sn is a trace of s0, and for each a ∈ Act
with si

a−→ si+1, a ∈ Xi.

Inclusion hierarchies on decorated trace semantics can be found, e.g., in [5], where
�te ⊆ �te′ implies that testing preorder te is stricter than te′. We enhance the def-
inition of LTS trace semantics accordingly: Trte(s0, spec) denotes the set of deco-
rated traces of process s0 ∈ Proc for testing preorder te ∈ {T, CT, F, R, FT, RT}.

Parameterized Preorder Relations for Model-Based Testing of SPLs 227

s0

s4

s5

s1

s3

a a

b c

(a) LTS1

s0

s1

s3s2

a

bc

(b) LTS2

s0

s4s1

s3s2

a a

bc

(c) LTS3

Fig. 1. Sample LTS Specifications

Example 1. Consider the sample LTS models in Fig. 1 with Act = {a, b, c}, where
we omit empty traces ε ∈ Act∗ in our discussions. Considering undecorated
traces, we have

TrT (s0, LTS1) = TrT (s0, LTS2) = TrT (s0, LTS3) = {a, ab, ac}
thus all three LTS are trace equivalent. For completed trace semantics, we have

TrCT(s0, LTS1) = TrCT(s0, LTS2) = {ab, ac}
whereas a ∈ TrCT(s0, LTS3), thus LTS1 �CT LTS3 and LTS2 �CT LTS3 holds.
Failures further distinguish LTS1 and LTS2, e.g., for trace a we have

{(a, {a, b}), (a, {a, c})} ∈ TrF(s0, LTS1) , whereas {(a, {a})} ∈ TrF(s0, LTS2)

thus LTS2 �F LTS1, because {(a, {a})} ∈ TrF(s0, LTS1) as failures are subset
closed. In contrast, for readies, we have

{(a, {b}), (a, {c})} ∈ TrR(s0, LTS1) , whereas {(a, {b, c})} ∈ TrR(s0, LTS2)

thus no ready preorder relation holds between LTS1 and LTS2.

The verification of a testing preorder relation �te such that

im �te tm :⇔ Trte(s0, im) ⊆ Trte(s0, tm)

requires observation capabilities for a tester to be rich enough to deliver, e.g.,
failures, readies etc. as required by the decorations of te.

So far, we require for testing preorder relations between implementations and
specifications the inclusions of complete sets of behaviors in form of a usually
infinite number of (decorated) traces. When applying model-based testing as
verification method, this notion is to restrictive due the natural limitation of
testing campaigns to finite sets of behaviors. Therefore, we further weaken the
notion of implementation conformance.

2.2 Parameterized Decorated Trace Preorder Relation

The verification of the behavioral conformance of an implementation im and a
test model tm using model-based testing is done by selecting finite sets TC of test

228 M. Lochau and J. Kamischke

cases, i.e., experimental comparisons of sample behaviors of im with those of tm.
Sets of (abstract) test cases TC correspond to finite subsets TC ⊆ Trte(s0, tm)
of decorated traces of finite length for testing preorder te under consideration.
To denote the resulting weakened testing preorder relation, we introduce a pa-
rameterized testing preorder relation (cf. [12]).

Definition 3 (Parametrized Testing Preorder Relation). A parameter-
ized testing preorder �TC

te is defined such that

im �TC
te tm :⇔ (Trte(s0, im) ∩ TC) ⊆ (Trte(s0, tm) ∩ TC)

where TC ⊆ Trte(s0, im) is a finite set of decorated traces.

The parameterization restricts the inclusion of the preorder relation to a finite
subset TC of (decorated) traces. The construction and application of concrete
observer processes for exercising abstract test cases tc ∈ TC obtained from a
test model tm on the implementation under test is discussed elsewhere [1,23].
Parameterized testing preorders help us to characterize behavioral commonality
between similar product variants of an SPL, thus building the basis for reuse
reasoning in model-based SPL conformance testing.

2.3 Model-Based SPL Conformance Testing

The adaption of model-based conformance testing principles to software product
lines requires to cope with a family of similar product variants under test [11].
Thus, a set PC = {p1, p2, . . . , pn} of implementations of product configuration
variants is to be verified against a set TM = {tm1, tm2, . . . , tmn} of product
variant test model specifications using collections TC = {TC1, TC2, . . . , TCn}
of product variant specific test cases, such that imi �TC

te tmi holds for 1 ≤ i ≤ n,
where imi denotes the imaginary implementation model of product pi.

Besides those families of products, an SPL defines structural capabilities to
explicitly specify commonality and variability among the variants [8]. Those
structural entities are given as features, i.e., product characteristics stating ex-
plicit product configuration parameters [13]. Hence, feature-oriented software
product line engineering supports the reuse of feature-related artifacts between
products throughout all development phases. Due to the crosscutting nature
of those feature assets, promoting reuse principles to behavioral commonality
and variability w.r.t. semantical artifacts like LTS traces is not straight for-
ward. Thus, considering a set P of product variants, we usually have to assume
its elements to be incomparable under preorder �te, i.e., for any two variants
p, p′ ∈ P , neither tm �te tm′, nor tm �te tm′ holds. But, when restricting behav-
ioral conformance relations to parameterized preorders by decomposition into
sets of test cases, subsets TC of behaviors common to p and p′ may exist, such
that tm �T C

te tm′ and/or vice versa holds. Although the feature configurations
of p and p′ provide explicit specifications of commonality and variability be-
tween both variants, they do not induce a one-to-one correspondence between
test cases and features. Instead, feature parameterizations of product variants

Parameterized Preorder Relations for Model-Based Testing of SPLs 229

usually affect artifact assemblies at the syntactical level. For reasoning about
the behavioral impacts of variations, approaches are required for tracing the
explicit modalities of syntactical elements onto the semantical level such as dec-
orated traces of LTS models. Therefore, three essential challenges concerning
the reuse of test artifacts in model-based SPL testing are apparent: (1) pro-
vide a generic, reusable SPL test model tm(p) integrating all behavioral variants
tm ∈ TM of any potential product configuration p ∈ P , (2) for the reuse of sets
TC ⊆ Trte(s0, tm) of test cases selected from a test model tm of variant p for
variant p′, a subset TC ′ ⊆ TC is to be identified such that tm �TC ′

te tm′ holds,
and (3) for the reuse of test results obtained from the execution of test cases
TC ′ ⊆ Trte(s0, tm) of p for p′, a subset TC ′′ ⊆ TC ′ is to be identified such that
im �TC ′′

te im′ where TC ′′ ⊆ TC ′.

3 Parameterized LTS Test Model

We now enhance LTS test models with explicit variability using feature pa-
rameters organized in feature models. We characterize interrelations among test
model variants in terms of a refinement relation similar to modal automata [15].

3.1 Feature Parameters and Feature Models

For enhancing modeling languages with capabilities to express variability, most
approaches provide explicit connections to domain features by annotating
modeling entities with selection conditions over feature parameters [7]. Corre-
spondingly, we propose a description of commonality and variability between
different product variant test models in terms of finite sets F = {f1, f2, . . . , fn}
of (abstract) feature parameters. This set together with their hierarchical decom-
position relation and further constraints are usually captured in domain feature
models such as FODA feature diagrams [13]. According to [3], we simply assume
a feature model to be represented as a propositional formula FM ∈ B(F) over fea-
ture parameters interpreted as a set of boolean variables f ∈ F . Feature models
tailor the product space of an SPL by restricting the set of valid product config-
urations. A product configuration is a function Γ : F → B such that Γ |= FM
holds, i.e., it assigns boolean values to feature parameters denoting either their
selection, or deselection within the configuration in a way that complies to the
feature model constraints. We distinguish (1) full product configurations, i.e.,
total functions Γ̂ : F → B(F), where every feature parameter is either selected,
or unselected and (2) partial configurations, i.e., partial functions Γ̃ : F ⇀ B(F),
where selection of feature parameters f �∈ dom(Γ) is undecided.

The product space PCFM of feature model FM contains the set of all full
and partial product configurations Γ ∈ PCFM satisfying the feature model. We
require a given feature model FM to be satisfiable in the following, i.e., PCFM �=
∅. We define a refinement relation �FM on feature models FM, FM ′ ∈ B(F) in
terms of product space refinement such that

FM ′ �FM FM :⇔ PCFM ′ ⊆ PCFM

230 M. Lochau and J. Kamischke

Feature model refinement results from binding feature variables as done in prod-
uct configurations Γ ∈ PCFM. We write

Φ(Γ) =
∧

f∈dom(Γ)

φ(f) , where φ(f) = f if Γ (f) = true, φ(f) = ¬f if Γ (f) = false

to represent configuration decisions in Γ as propositional formulas additionally
constraining FM. We assume feature model refinement to result from staged
product (pre-)configurations via Γ which incrementally reduces variability.

Lemma 1. For FM ′ = FM ∧ Φ(Γ), where Γ ∈ PCFM, FM ′ �FM FM holds.

We use this notion of feature models to enrich LTS-based test models with
explicit variability.

3.2 Feature-annotated Labeled Transition Systems

To apply a feature model to annotate an LTS test model with variable behaviors,
we introduce a function σ that assigns selection conditions over sets of feature
parameters f ∈ F of a feature model FM ∈ B(F) to transitions. Please note that
the abstract syntax of F-LTS is similar to those of FTS by Classen et al. [7].

Definition 4 (F-LTS). A feature-annotated labeled transition system (F-LTS)
is a 5-tuple (Proc, Act, →, FM, σ) such that (Proc, Act, →) is an LTS, FM ∈ B(F)
is a feature model over features F and σ : Proc × Act × Proc → B(F) is an
annotation function, where s

a
� s′ implies σ(s, a, s′) � FM.

To annotate LTS models with infinite sets of states and transitions, one can
assume σ to be a partial function, where triples (s, a, s′) �∈ dom(σ) are implic-
itly mapped to constant false. Similar to modal automata [22], the annotation
function σ assigns three potential modalities to transitions (s, a, s′):

– may-transitions →may ⊆ →, where s
a−→may s′ :⇔ ∃Γ ∈ PCFM : Γ |=

σ(s, a, s′)
– must-transitions →must ⊆ →, where s

a−→must s′ :⇔ ∀Γ ∈ PCFM : Γ |=
σ(s, a, s′)

– prohibited-transitions �→ ⊆ Proc × Act × Proc, where s
a

�→ s′ :⇔ ¬∃Γ ∈
PCFM : Γ |= σ(s, a, s′)

The may-transitions includes those being annotated with a selection condition
that is satisfiable by at least one valid product configuration, whereas anno-
tations of must-transition are satisfied by any valid configuration. Annotations
of prohibited-transitions are never satisfied for any product configuration. The
following holds for F-LTS models.

Proposition 1. For an F-LTS, it holds that (1) →may ⊆ →, (2) →must ⊆ →may
and (3) �→ ∩ →may = ∅.

Proof. Follows from the definition of function σ.

Parameterized Preorder Relations for Model-Based Testing of SPLs 231

We introduce a refinement relation on F-LTS. In contrast to the implicit refine-
ment relation of modal automata [15], refinement of F-LTS is explicitly coupled
to feature model refinement.

Definition 5 (F-LTS Refinement). An F-LTS (Proc, Act, →, FM ′, σ) is a re-
finement of F-LTS (Proc, Act, →, FM, σ) if FM ′ �FM FM.

We write F-LTS ′ �F-LTS F-LTS for short. We obtain refinement relationships
similar to those of modal automata.

Proposition 2. For F-LTS ′ �F-LTS F-LTS it holds that (1) →′
may ⊆ →may, (2)

→must ⊆ →′
must and (3) �→ ⊆ �→′.

Proof. Follows from Prop. 1.

The set of may-transitions is constantly reduced by refinement, either becoming
must-transitions, or prohibited-transitions. We further have →′

may ∩ �→ = ∅, i.e.,
no previously prohibited transitions may become valid again after refinement,
and →must ∩ �→′ = ∅, i.e., no previous must-transition may become prohibited
after refinement. For associating product configurations Γ ∈ PCFM with F-LTS
variants, we assign F-LTS refinements to product configurations.

Definition 6 (PC-LTS). The PC-LTS of an F-LTS (Proc, Act, →, FM, σ) for
product configuration Γ ∈ PCFM is an F-LTS (Proc, Act, →, FM ′, σ) with FM ′ =
FM ∧ Φ(Γ).

For (Proc, Act, →, FM ′, σ) being a PC-LTS with FM ′ = FM ∧ Φ(Γ), we derive
the corresponding LTS variant LTSΓ = (Proc, Act, →Γ) by restricting the set
of transitions to →Γ = {s

a−→ s′ | σ(s, a, s′) |= FM ′}, i.e., to those with selec-
tions condition satisfying the refined feature model. We have →Γ = →may ⊆ →
which follows from the definition of may-transitions. The following correspon-
dence holds between full configurations and complete F-LTS refinement.

Lemma 2. For a PC-LTS of the F-LTS for a full product configuration Γ̂ it
holds that →Γ̂ = →may = →must.

As a convention, we assume for the F-LTS of an unrefined FM, i.e., dom(Γ) = ∅,
that →may = → holds.

Example 2. Consider F-LTS1 in Fig. 2(a), where FM = f1 ∧ (f2 ∨ f3). Dashed
transitions denote may-transitions and feature annotations are written in [. . .].
The LTS variants of the three full product configurations Φ(Γ̂1) = (f1 ∧ f2 ∧ f3),
Φ(Γ̂2) = (f1 ∧ ¬f2 ∧ f3), and Φ(Γ̂3) = (f1 ∧ f2 ∧ ¬f3) correspond to LTS1, LTS2,
and LTS3 in Fig. 1. The F-LTS2 in Fig. 2(b) results from the refined feature
model FM ′ = FM∧ (f1 ∧f2) for partial configuration Γ̃ with Φ(Γ̃) = (f1 ∧f2),
where the transition leading from s0 to s4 becomes a must-transition, therefore
F-LTS2 �F-LTS F-LTS1 holds.

Feature-annotated LTS models build the basis for reasoning about commonality
and variability among product variants in terms of decorated trace semantics as
reusable (abstract) test cases.

232 M. Lochau and J. Kamischke

s0

s4

s5

s1

s3s2

a [f1] a [f2]

b [f1]c [¬f2 ∨ ¬f3] c [f2 ∧ f3]

(a) F-LTS1

s0

s4

s5

s1

s3s2

a [f1] a [f2]

b [f1]c [¬f2 ∨ ¬f3] c [f2 ∧ f3]

(b) F-LTS2

Fig. 2. Sample F-LTS and F-LTS Refinement

4 Reuse of LTS Test Artifacts

Based on F-LTS refinement, we develop a formal framework for selecting reusable
test artifacts w.r.t. different testing preorders.

4.1 Reuse of Test Cases

Sets TC ⊆ Trte(s0, LTSΓ) of abstract test cases for product configuration Γ ∈
PCFM are given as sets of (decorated) traces reachable from s0 via →Γ of
LTSΓ , where →Γ coincides with the may-transition relation of the corresponding
PC-LTS for the feature model refined by Γ . To correlate semantics of different
product configurations to reason about abstract test case reuse, we first intro-
duce a refinement relation �PC on configurations Γ such that

Γ ′ �PC Γ :⇔ dom(Γ) ⊆ dom(Γ ′) ∧ ∀f ∈ dom(Γ) : Γ ′(f) = Γ (f)

thus imposing a partial ordering on PCFM, where each configuration Γ ∈ PCFM
corresponds to a refined feature model FM′ �FM FM. We obtain the following
relationship between product configuration refinement and F-LTS refinement.
Proposition 3. For product configurations Γ, Γ ′ ∈ PCFM with corresponding
PC-LTS and PC-LTS ′, it holds that Γ ′ �PC Γ ⇒ PC-LTS ′ �F-LTS PC-LTS.

Proof. Follows from Prop. 2.

For variants LTSΓ and LTSΓ ′ , the refinement relation induces the following
correspondence.
Proposition 4. From Γ ′ �PC Γ it follows that LTSΓ ′ �T LTSΓ holds.

Proof. From Prop. 3 and Prop. 2 it follows that →Γ ′ ⊆ →Γ holds, and therefore
LTSΓ ′ �T LTSΓ as LTSΓ ′ contains at most those traces of LTSΓ .

The opposite direction does not hold as two product configuration refinements
incomparable under �PC may however yield LTS variants related under �T.

F-LTS refinement causes may-transitions to either become (1) must-tran-
sitions, (2) prohibited-transitions, or (3) to stay may-transitions. Hence, the sets
of traces are successively reduced such that trace inclusion as required for the
corresponding trace preorder relation coincides with F-LTS refinement. This
correspondence does not hold for decorated trace semantics.

Parameterized Preorder Relations for Model-Based Testing of SPLs 233

Proposition 5. From Γ ′ �PC Γ it does not follow that LTSΓ ′ �te LTSΓ if
te ∈ {CT, F, R, FT, RT}.

Proof. As stated in Prop. 4, inclusion for traces without decorations holds,
whereas the set of completed trace, failures, and failure traces may increase as
may-transitions may be refined to prohibited-transitions. For readies and ready
traces, we require maximum sets of actions enabled in the state reached, whereas
refinement may lead to reduced readies when prohibiting may-transitions.

To obtain a refinement relation that coincides with decorated trace semantics for
testing preorder relations, we require actions a ∈ Act of transitions s

a−→may s′

to be not only interpreted as actions that may be ready, but also to be actions
that may become failures after refinement.

Definition 7 (Decorated May-Trace Semantics). For the PC-LTS of an
F-LTS, decorated may-trace semantics is defined as follows:

– May-Failures: a pair (tr, X) with tr ∈ Tr(s0, spec) and X ⊆ Act is a failure
if s0

tr−→ s and for each a ∈ Act with s
a−→must s′, a �∈ X.

– May-Readies: a pair (tr, X) with tr ∈ Tr(s0, spec) and X ⊆ Act is a ready if
s0

tr−→ s and (1) for each a ∈ Act with s
a−→must s′, a ∈ X and (2) for each

a ∈ Act with s
a
� s′, a �∈ X

Completed may-traces, may-failure traces and may-ready traces are defined ac-
cordingly. We denote may-testing preorder relations by �te-may and reformulate
the F-LTS refinement property.

Theorem 1 (F-LTS Refinement coincides with May-Trace Preorders).
If Γ ′ �PC Γ then LTSΓ ′ �te-may LTSΓ holds.

Proof. Prop. 4 still holds for undecorated trace preorder. In addition, completed
traces, readies, failures, etc. are now likewise included, because may-transitions
are now considered to potentially become enabled as well as prohibited.

Example 3. Consider F-LTS2 (Fig. 2(b)), LTS1 (Fig. 1(a)) and LTS3 (Fig. 1(c)),
where LTS1 �F −LT S F-LTS2 and LTS3 �F −LT S F-LTS2 holds. For trace s0

a−→
s4

c−→ s5, LTS1 contains, e.g., the completed trace ac, the ready (a, {c}) and
the failure (a, {a, b}), and LTS3 contains, e.g., the completed trace a, the ready
(a,∅) and the failure (a, {a, b, c}). Under may-trace semantics, F-LTS2 includes
all these decorated traces, as the may-transition s4

c−→ s5 constitutes a potential
failures as well as a ready.

The F-LTS refinement relates PC-LTS of partial product configurations with full
product configurations as minimal elements of �F-LTS. As a direct consequence,
sets of abstract test cases TC ∈ Trte-may(s0, PC-LTS) selected from the PC-LTS
of a partial product configuration Γ̃ can now be refined to sets TC ′ ⊆ TC for
configurations Γ ′ �PC Γ̃ . As a consequence, symbolic test cases generated from
the F-LTS of the unrefined FM based on the adapted notion of may-testing

234 M. Lochau and J. Kamischke

preorders suffices to provide appropriate sets of test cases for every product
variant Γ ∈ PCFM (cf. [6]).

However, considering test case reuse between full product configurations Γ̂ , Γ̂ ′ ∈
PCFM being unrelated under �PC, so are their corresponding sets of (decorated)
traces w.r.t. testing preorder �te. To reason about the reusability of test cases
TC ⊆ Trte(s0, LTSΓ̂) of Γ̂ in the set of test cases TC ′ ⊆ Trte(s0, LTSΓ̂ ′) of Γ ′,
we introduce the least upper bound of two configurations.

Definition 8 (Least Upper Bound Configuration). The least upper bound
of two product configurations Γ, Γ ′ ∈ PCFM is defined to be lub(Γ, Γ ′) = Γ ′′ ∈
PCFM such that Γ ′′(f) = v iff Γ (f) = Γ ′(f) = v, and f �∈ dom(Γ ′′) else.

The least upper bound shares those feature parameter values on which both
configurations agree, whereas for contradicting and/or undecided values, the
parameter is undecided.

Example 4. F-LTS2 in Fig. 2(b) is lub for Γ̂1 and Γ̂3, but not for Γ̂2.

For the least upper bound configuration Γ ′′ = lub(Γ, Γ ′) being uniquely de-
fined for any pair Γ, Γ ′ ∈ PCFM, it holds that Γ ′′ ∈ PCFM, Γ �P C Γ ′′ and
Γ ′ �P C Γ ′′. The PC-LTS of that least upper bound then contains the maxi-
mum set of behavioral commonality of both variants. More precisely, the behav-
iors solely referring to must- and prohibited-transitions are definitely shared by
both variants, against what the may-behaviors may vary between both variants.
Therefore, we introduce the notion of must-trace semantics.

Definition 9 (Decorated Must-Trace Semantics). For an PC-LTS of an
F-LTS, decorated must-trace semantics is defined such that traces s0

tr−→ sn are
must-traces, i.e., si

a−→must si+1, 0 ≤ i ≤ n holds, and

– Must-Failures are pairs (tr, X), where s0
tr−→ s is a must-trace and for each

a ∈ Act with s
a−→may s′, a �∈ X, and

– Must-Readies are pairs (tr, X), s0
tr−→ s is a must-trace and (1) for each

a ∈ Act with s
a−→must s′, a ∈ X, and (2) there is no a′ ∈ Act with s

a′
−→may

Again, must versions of completed traces, failure traces and ready traces are
defined correspondingly. Condition (2) for readies is required as readies must
be maximum sets of enabled actions, thus no undecided transitions are allowed,
whereas failures are subset closed. Accordingly, we write �te-must for must-testing
preorder relations. The must-trace semantics of an PC-LTS captures the max-
imum set of decorated traces common to product variants having the related
product configuration as least upper bound.

Theorem 2 (Reuse of Decorated Must-Traces). For any two PC-LTS,
PC-LTS ′ of an F-LTS and Γ ′′ = lub(Γ, Γ ′), LTSΓ �TC

te LTSΓ ′ , where TC =
Trte-must(s0, PC-LTS ′′).

Proof. If Γ and Γ ′ are related under �P C , then one is the least upper bound of
the other and the correspondence holds because of Theorem 1. Otherwise, Γ ′′

Parameterized Preorder Relations for Model-Based Testing of SPLs 235

contains the maximum set of commonality in terms of must- and prohibited-
transitions, whereas may-behavior refinements are contradicting, because other-
wise there would be a more specific least upper bound which contradicts Prop. 3
and �P C being a partial ordering.

Example 5. Consider LTS1 in Fig. 1(a), LTS3 in Fig. 1(c) and F-TS2 in Fig. 2(b)
being their lub. LTS1 has, e.g., failures (a, {a, b}) and (a, {a, c}), whereas LTS3
has failures (a, {a, b, c}) and (a, {a}) for trace a. The must-failures of F-LTS2 for
trace a are (a, {a, b}) and {a, {a}}, thus being common to LTS1 and LTS3. The
sets of traces of LTS1 and LTS3 are both {a, ab, ac}, whereas the must-traces of
F-LTS2 only contains {a, ab}. This is due to the fact, that the trace ac refers to
the same behaviors, but to different paths within F-LTS2, thus being unrelated
under F-LTS refinement.

4.2 Reuse of Test Results

The reuse of sets TC of test cases obtained from the test model tm of product
variant p for variant p′ requires tm �T C

te tm′ to hold. For the reuse of test results
observed for test cases TC ′ when applied to product p also for p′, we require
(1) TC ′ ⊆ TC, i.e., only results of test cases addressing common behaviors
of p and p′ may be propagated from p to p′ and (2) im �TC

te im′, i.e., the
test cases refer to equivalent behaviors in the implementations of p and p′. In
model-based black-box testing, the second condition is rather complicating as
the implementation details are unknown, thus requiring assumptions about the
reliability and reproducibility of test execution results [4]. Apart from classical
retesting criteria known from regression testing [26] such as retest-all, i.e., TC ′ =
∅, retest-none, i.e., TC ′ = TC and retest-random, i.e., TC ′ ⊆ TC, analytical
criteria based on change impact analyses on test models tm and tm′ can be taken
into account such as test model slicing [18]. Finally, testing preorder hierarchies
can be considered for result reuse as follows: select a subset TC ′ from TC with
tm �TC ′

te′ tm′ for retesting on p′ such that tm �TC ′
te′ tm′ holds, where �te′ ⊆ �te.

Thus, a set of abstract test cases derived for a testing preorder te, e.g., is assumed
to show equivalent behaviors on p and p′ if the corresponding traces are still
related in tm and tm′ for a more discriminating preorder te′ relation.

5 Related Work

Three approaches are prevalent for reusable test models: (1) selective, i.e., by
so-called 150% models with explicit selection condition annotations over feature
parameters [6,17], (2) compositional, i.e., by assembling from smaller modules re-
lated to specific features [27] and (3) transformative, i.e., by applying variant spe-
cific model transformations to a core test model [18]. However, those approaches
mainly focus on syntactical variations. Moreover, two major directions for reduc-
ing SPL testing efforts exist: (1) subset selection heuristics, and (2) incremental
SPL regression-based testing. For (1), i.e., selections of representative products-
under-test, feature-model-based combinatorial criteria such as pairwise [20] and

236 M. Lochau and J. Kamischke

T -wise [21] feature coverage, feature-interaction coverage criteria [17] and SPL test
model coverage criteria [6] were proposed. In [6], an annotated SPL test model is
used to derive reusable, symbolic, reusable test cases for a set of test goals. For the
adaption of incremental approaches for testing SPL product variants (cf. [24]), a
specification-based approach is proposed in [27], whereas in [18] test artifact reuse
informations are derived by analyzing a delta-oriented SPL test model. In all these
approaches, the reuse of test case base a strong notion of identical paths in the
test model variants. Recent semantical frameworks for reasoning about behav-
ioral commonality in product families aim at applications to formal verification
techniques. The FTS formalism by Classen et al. [7] is a basis for symbolic model-
checking complete SPLs using explicit transition annotations over features, thus
implicitly considering (weak) bisimulation equivalence. Larsen et al. [15] were the
first to propose modal specifications for product line engineering. Asirelli et al. [2]
model-check complete SPLs using modal automata combined with deontic logics
instead of explicit constraining annotations.

6 Conclusion
We proposed a formal semantical framework for reuse reasoning in model-based
testing of software product lines. We use labeled transition systems enhanced
with explicit feature parameters to express behavioral commonality and vari-
ability between product variants on the basis of decorated trace preorder re-
lations. Thereupon, we developed a notion of refinement that corresponds to
that of modal automata to capture behavioral commonality among variants. As
a future work, we want to investigate further semantical phenomena and their
potential impacts on SPL conformance testing, e.g., τ -transitions, timing, may-
vs. must-testing preorders, LTS with state predicates, and further meaningful
testing equivalences. We are further interested in experiments to get a better
understanding of what sound criteria for of black-box test result reuse might be.
Therefore, we plan to translate existing high-level test modeling languages with
variability capabilities such as UML state machines [16] into our framework.

References
1. Abramsky, S.: Observation Equivalence as a Testing Equivalence. Theor. Comput.

Sci. 53, 225–241 (1987)
2. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A Model-Checking Tool for

Families of Services. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE 2011.
LNCS, vol. 6722, pp. 44–58. Springer, Heidelberg (2011)

3. Batory, D.: Feature Models, Grammars, and Propositional Formulas, pp. 7–20.
Springer (2005)

4. Bernot, G.: Testing against Formal Specifications: A Theoretical View. In: Abramsky,
S. (ed.) TAPSOFT 1991. LNCS, vol. 494, pp. 99–119. Springer, Heidelberg (1991)

5. Bloom, B., Fokkink, W., van Glabbeek, R.J.: Precongruence Formats for Decorated
Trace Semantics. ACM Trans. Comput. Logic 5(1), 26–78 (2004)

6. Cichos, H., Oster, S., Lochau, M., Schürr, A.: Model-Based Coverage-Driven Test
Suite Generation for Software Product Lines. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 425–439. Springer, Heidelberg (2011)

Parameterized Preorder Relations for Model-Based Testing of SPLs 237

7. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model Check-
ing Lots of Systems: Efficient Verification of Temporal Properties in Software Prod-
uct Lines. In: ICSE 2010 (2010)

8. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc. (2001)

9. DeNicola, R.: Extensional Equivalence for Transition Systems. Acta Inf. 24, 211–237
(1987)

10. DeNicola, R., Hennessy, M.C.B.: Testing Equivalences for Processes. Theoretical
Computer Science, 83–133 (1984)

11. Engström, E., Runeson, P.: Software Product Line Testing - A systematic Mapping
Study. Information and Software Technology 53(1), 2–13 (2011)

12. Grabowski, J., Heymer, S.: Formal Methods and Conformance Testing - or - What
are we testing anyway? In: FBT 1998. Shaker Verlag, Aachen (1998)

13. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep., CMU-SEI (1990)

14. Keller, R.M.: Formal Verification of Parallel Programs. Commun. ACM 19(7),
371–384 (1976)

15. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

16. Lochau, M., Goltz, U.: Feature Interaction Aware Test Case Generation for Em-
bedded Control Systems. ENTCS 264, 37–52 (2010)

17. Lochau, M., Oster, S., Goltz, U., Schürr, A.: Model-based Pairwise Testing for Fea-
ture Interaction Coverage in Software Product Line Engineering. Software Quality
Journal, 1–38 (2011) (to appear)

18. Lochau, M., Schaefer, I., Kamischke, J., Lity, S.: Incremental Model-based Testing
of Delta-oriented Software Product Lines. In: 6th TAP. Prague (to appear, 2012)

19. Olimpiew, E.M.: Model-Based Testing for Software Product Lines. Ph.D. thesis,
George Mason University (2008)

20. Oster, S., Markert, F., Ritter, P.: Automated Incremental Pairwise Testing of Soft-
ware Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp.
196–210. Springer, Heidelberg (2010)

21. Perrouin, G., Sen, S., Klein, J., Le Traon, B.: Automated and Scalable T-wise Test
Case Generation Strategies for Software Product Lines. In: ICST 2010, pp. 459–468
(2010)

22. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
Modal Interfaces: Unifying Interface Automata and Modal Specifications. In: EM-
SOFT, pp. 87–96 (2009)

23. Tschaen, V.: Test Generation Algorithms Based on Preorder Relations. In: Broy, M.,
Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing
of Reactive Systems. LNCS, vol. 3472, pp. 151–171. Springer, Heidelberg (2005)

24. Tevanlinna, A., Taina, J., Kauppinen, R.: Product Family Testing: A Survey. ACM
SIGSOFT Software Engineering Notes 29, 12–18 (2004)

25. Tretmans, J.: Testing Concurrent Systems: A Formal Approach. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer,
Heidelberg (1999)

26. Utting, M., Legeard, B.: Practical Model-Based Testing. A Tools Approach. M.
Kaufmann (2007)

27. Uzuncaova, E., Khurshid, S., Batory, D.S.: Incremental Test Generation for Soft-
ware Product Lines. IEEE Trans. Software Eng. 36(3), 309–322 (2010)

SmartTies –

Management of Safety-Critical Developments�

Serge Autexier, Dominik Dietrich, Dieter Hutter,
Christoph Lüth, and Christian Maeder

Cyber-Physical Systems, DFKI Bremen, Germany

Abstract. Formal methods have been successfully used to establish as-
surances for safety-critical systems with mathematical rigor. Based on
our experience in developing a methodology and corresponding tools for
change management for formal methods, we have generalised this ap-
proach to a comprehensive methodology for maintaining heterogeneous
collections of both formal and informal documents. Although informal
documents, like natural language text, lack a formal interpretation, they
still expose a visible structure that reflects different aspects or parts
of a development and follows explicit rules formulated in development
guidelines. This paper presents our general methodology for maintain-
ing heterogeneous document collections and illustrates its instantiation
in the SmartTies tool that supports the development of safety-critical
systems. SmartTies utilises the structuring mechanisms prescribed in a
certification process to analyze and maintain the documents occurring
in safety-critical development processes.

1 Introduction

With the advent of sophisticated intelligent systems (so-called cyber-physical
systems), there is an increasing need to guarantee the safety of such systems.
Formal methods have been successfully used to establish such assurances by
providing mathematical proofs that specifications or implementations satisfy re-
quired properties. Industrial applications revealed that a flexible, evolutionary
formal development approach which efficiently supports changes is absolutely
indispensable as it was hardly ever the case that the development steps were
correctly designed in the first attempt.

In contrast, standards like IEC 61508 [10] or DO-178B [14] address the prob-
lem of establishing trust in such systems by regulating the development process,
requiring that all design decisions and safety arguments are documented in metic-
ulous detail. The documents arising during the development mutually depend on
each other, and changes in one document typically give rise to changes in oth-
ers. This makes changes cumbersome, thus decreasing flexibility. Further, the
amount of these dependencies explodes with the size of the developed system.

� This work was funded by the German Federal Ministry of Education and Research
under grants 01 IW 07002 and 01 IW 10002 (projects FormalSafe and SHIP).

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 238–252, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

SmartTies – Management of Safety-Critical Developments 239

There is a need for an efficient computer-aided document management that keeps
track of the various dependencies in and between documents occurring during
the development of safety-critical systems.

Existing tools do not cover this in full generality. They either cover specific
aspects of the development process (like DOORS [9], which handles require-
ments, or the iACMTool [6], which handles UML models), or are specialised
to a specific application domain and development methodology (for example,
PREEvision [12] to develop safety-critical systems in the automotive industry
using a model-based approach); they incorporate specialised knowledge about
the underlying domain in fixed rules for maintenance.

Our goal is a generic maintenance and change management tool that can be
tailored to deal with heterogeneous document collections, to maintain the cor-
responding dependencies and relationships, and to exploit them to propagate or
to restrict the impact of changes made in the documents [8]. The contribution
of this paper is the SmartTies tool, which supports the document types, opera-
tions and the workflow typically occurring in the development and certification
of safety-critical software.

SmartTies is built on top of the pure document-management system DocTip,
which is entirely parametric in the document type and change impact analysis
rule systems, and extends it by specific document types, impact analysis rules
systems, support for the development and certification workflow, as well as a
web-based front-end and mediators converting between the document formats
edited by the user and their internal, semantics-oriented representation. In the
following, we will not explicitly distinguish between SmartTies and DocTip.

The paper is organised as follows: In Sec. 2 we introduce all the documents,
relationships and consistency properties occurring in a software development
process regulated by the IEC 61508 and required by a certification authority
like the German TÜV. In Sec. 3 we present the different document types and
relationships in order to analyse the properties of the whole document collection.
Sec. 4 discusses the principles of document-type specific difference analysis and
change impact propagation and Sec. 5 presents the structures, relationships and
properties maintained in SmartTies as well as the supported workflow.

2 Developing Safety Critical Systems

Our running example here is the development of a system that calculates a
safety zone for a moving, autonomous robot, thus safeguarding the robot against
collisions with static obstacles. It is a very much simplified version of an actual
development in the SAMS project [15] which was certified as conforming to
IEC 61508 by the German TÜV. The documents occurring in this example are
representative of a typical medium-sized certification effort.

Document-type specific structure. Table 1 shows the document types occurring
in our example. We mainly have documents in OOXML (Office Open XML,
MS-Word’s native format) and C source code. All documents have an internal

240 S. Autexier et al.

Table 1. Document types occurring in a safety-critical development process, together
with their inherent structure and document format

Document type Content Structure Format

Concept paper Describe fundamental concepts of the sys-
tem

Prose OOXML

FTA Fault Tree Analysis, models combinations
of fault events leading to a safety failure

Table OOXML

FMEA Software Failure Modes and Effects Anal-
ysis, describes possible causes of failure

Table OOXML

SRS Safety Requirement Specification, enu-
merates requirements that are necessary
to guarantee system safety

Table OOXML

Test plan Enumerates all test cases, together with
their current status

Table XML

Test suites Contains the test driver functions Functions C code
Implementation The actual implementation Functions C code

structure that results from their designation and the formalisation prescribed
by the certification process. The concept paper introduces the underlying phys-
ical models for computing movement and braking of a vehicle that are used
as given assumptions in the software design process. It consists of prose text
possibly containing images and mathematical formulae. The fault tree analy-
sis (FTA) decomposes the undesired event of a collision with an obstacle down
to low-level fault events. The failure mode and effects analysis (FMEA) starts
from possible failures and analyses how they may contribute to a failure of the
safety function. The safety requirement specification (SRS) is an enumeration of
functional requirements ensuring the safety of the vehicle based on the afore-
mentioned physical models. All these documents are OOXML documents and
have document type specific structure and content: a row in a table of the fault
tree analysis document describes one undesired event, and a row in the FMEA
describes a single failure mode, while a row in a table of an SRS document de-
scribes a safety requirement. A table in a concept paper, however, is simply a
table without further document type specific semantics. The test plan consists
of all the test cases, stored in plain XML and edited over the web front-end;
implementation and test suites are MISRA-C source files, structured by the
underlying programming language (here, function definitions and declarations).

Document graph. The structure gives rise to relationships within and between
documents. Each basic semantic entity, such as safety requirements, fault events,
failure modes, test cases, or functions, can be linked to others. This resulting
graph structure, visualised exemplarily in Fig. 1, must satisfy a number of prop-
erties, which encode the restrictions on the development process prescribed by
the certification standard.

SmartTies – Management of Safety-Critical Developments 241

SR-1 The braking area should
be calculated according to (2).

TC_023,
TC_024.

The braking distance
is calculated as

 S = (2)
v0

2 abrk

Concept paper
Safety Requirement Spec

Test plan

TC-023
Tests wether the function
comp_safetyzone
calculates the braking area
correctly for w= 0.13, v= 0.75.

test_023

Test suite

void test_023()
{
 double w= 0.13, v= 0.75;
 double res; int st;
 ...
 st= comp_safetyzone(w, p, &res);
 CU_ASSERT_EQUAL(res, 0.46356);
 ...
}

int comp_safetyzone(double w,
 double v, double res);
{
 double s= 0;
 ...
 s= v / 2* conf-> a_brk;
 ...
 return OK;
}

Implementation

Fig. 1. Example document graph

Document collection properties. As a simple property, identifiers must be unique
throughout the whole document collection. Further, each leaf fault event must
reference at least one existing requirement. A requirement must either be decom-
posed into other requirements, or reference an existing function implementing
the requirement and an existing test case in the test plan. Each test case must
reference the function it is testing and the test driver function implementing the
test. For sanity reasons, each test case must serve a purpose, so it must either be
directly referenced from a requirement or it must be a precondition of at least
one other test case. As a last example, safety requirements are the outcome of
a hazard analysis documented in an FTA or FMEA, and we specify that each
safety requirement has to be referenced by a fault event or failure mode. Though
some automatic testing of properties exists for specific documents, checking all
properties is typically done manually and automation is highly desirable. In
particular, while we can check the presence of a link automatically, we cannot
check that it is justified — we cannot deduce that a test case really tests the
desired property. While we can assume that initially manual reasoning and re-
view will be sufficient (if performed and documented properly), it is essential
that when changes occur we can pinpoint their effects in terms of the manual
reviews necessary.

242 S. Autexier et al.

Fig. 2. Excerpt of the Safety Requirements Specification (in German)

3 Document Management

Each version of a document arising during the development process represents
the state of the development, documenting and justifying design decisions made
at that particular point in time. In early software development methodologies
these documents were developed sequentially (waterfall model [13]). While this
has the advantage that design decisions once made never have to be reconsidered,
and thus assumptions can never become invalid, the underlying premiss that de-
velopment can be finished successfully with the first attempt has proven highly
unrealistic. Therefore, recent methodologies (such as agile development [5]) ad-
vocate an intertwined approached resulting in a parallel evolution of numerous
documents. In this approach, changes occur frequently, and system support is
needed to ensure they do not break the development.

Thus, we need systems which can handle and maintain change. However, as
demonstrated in Sect. 2, there are number of different document types and for-
mats, all with different editing tools, accompanied by tools such as compilers,
test frameworks which run test suites and analyse the result, or verification tools
to analyse and prove formal specifications. To handle change in this setting uni-
formly, we have developed a document broker called DocTip1 that maintains and
propagates changes and advances of individual documents to related documents.
The general idea is that DocTip is notified about changes in documents made
in the individual editing or analysis tools, computes their effects on other doc-
uments and initiates the necessary changes in the affected documents. DocTip
is generic with respect to the document types supported and provides generic
mechanisms to add new document types to the system [1,3].

Generic Representation of Documents. We use XML as a common metalan-
guage to represent explicitly the structure of documents that is intrinsic to their

1 http://www.dfki.de/cps/projects/doctip

http://www.dfki.de/cps/projects/doctip

SmartTies – Management of Safety-Critical Developments 243

<Document>
...
<srs>
<csrs component="Primäre Sicherheitsanforderungen">

<reqspec>
<reqid name="SR-1"/>
<description>

<paragraph>
<text> Das berechnete Schutzfeld muss die gesamte beim Bremsen bis zum Stillstand

wie durch das Bremsmodell beschrieben überstrichene Fläche überdecken.
</text>

</paragraph>
</description>
<measures>

<paragraph> <ref kind="function" name="IMPL-compute_safetyzone"/> </paragraph>
<paragraph> <ref kind="testcase" name="TC-test_safetyzone"/> </paragraph>
<paragraph> <ref kind="label" docid="DOK-K-1" name="TestSafetyzone"/> </paragraph>

</measures>
</reqspec>
<reqspec>

<reqid name="SR-2"/>
<description><paragraph><text>Das berechnete Schutzfeld muss eine Latenzzeit von </text>

<formula style="inline">...</formula>
<text> beinhalten, in der das Fahrzeug mit unveränderter Geschwindigkeit

und Richtung weiterfährt.</text></paragraph>
</description>
<measures><paragraph><ref kind="requirement" name="SR-3"/> <text>, </text>
<ref kind="requirement" name="SR-4"/></paragraph></measures>

</reqspec>
...

</csrs>
</srs>
</Document>

Fig. 3. Corresponding XML version of the excerpt of the Safety Requirement Table

individual types. For instance, consider the safety requirement specifications.
While written and edited in MS-Word, DocTip maintains an XML representa-
tion that explicitly segments the document in tables of safety requirements and
their relations to implementation and environment descriptions. Document type
specific parsers encode documents in XML and thus enable DocTip to maintain
them but also decode modified XML versions back to the original document
language. In SmartTies we developed encoders and decoders for the individual
document types that are, for instance, used by MS-Word (which uses a different,
richer layout information, but provides less content structure). The correspond-
ing document type specific XML languages provide the structuring mechanisms
for both, the generic outline of OOXML documents and the (partial) knowl-
edge about the semantics of the individual document parts. Depending on the
degree of natural language understanding and of syntactical restrictions by the
document type (e.g. by using domain specific languages), we obtain a more shal-
low or deep XML encoding of informally written documents containing more
or less chunks of non-parseable document fragments. As an example, consider
Fig. 2 showing the original document as presented by MS-Word, and Fig. 3 the
representing XML document making the implicit structure explicit.

Generic Document Analysis. The key idea to design change impact analysis
(CIA) for informal documents is the explicit semantics method which represents

244 S. Autexier et al.

both the syntax parts (i.e., the documents) and the intentional semantics con-
tained in the documents in a single, typed hyper-graph (see [4] for details).
Document-type specific graph rewriting rules are used to extract the intentional
semantics of documents and the extracted semantic entities are linked to their
syntax source, i.e. their origin. The semantic graph is then analyzed to determine
and propagate the impact of changes through the semantic graph, which are then
projected backwards along the origin links to the syntactic nodes of the graph.
A corresponding impact annotation for the syntactic part of the documents is
then generated.

Generic Difference Analysis. Changes made to documents are recognised by
analysing the differences between the different versions of the corresponding
XML documents. Encoding all sorts of documents into different XML-based
languages allows us to make use of XML-based tree-difference algorithms to
compute differences between different versions of a document and represent the
changes in terms of a uniform language and protocol (XML update, [4]). While
we use a uniform XML diff algorithm to analyze differences of documents, this
algorithm is adjusted to the individual document types by defining individual
equivalence relations for each of them. These equivalence relations are used to de-
termine which subtrees in two documents are similar and thus should be related
to each other. This allows the diff algorithm to abstract from syntactical presen-
tation issues that would otherwise prohibit the matching of related document
parts. Equivalence relations are defined in terms of XML elements, attributes
and subelements which identify corresponding XML subtrees.

DocTip relies on the XML update protocol to integrate changes obtained
from the user interfaces or supporting analysis systems. Any change reported to
DocTip is analyzed by the change management, which computes the impacts of
these changes on other parts of a document or even in other documents. The
propagated impacts are included in the documents maintained by DocTip, and
passed along to the affected user interfaces and support systems.

In general, adding a new document type to DocTip involves the definition of
the following:
• an XML language by an XML schema S and an additional predicate P to
enforce properties of a document that are not covered by schema definitions.
A document D is of type S iff D satisfies the scheme S. It is admissible with
respect to S, P iff D satisfies S and P (D) holds.

• an invertible extraction function ω to extract the XML representation from the
actual syntax A of the documentD, and to generate the actual syntax from the

A D T Ker Mod
ω
 ϕ ρ

π

Fig. 4. Document type specific analysis: A are the documents of that type in their
actual syntax, D the XML sublanguage for those documents, T the corresponding
text-graphs, Ker the model kernels, and Mod the model graphs

SmartTies – Management of Safety-Critical Developments 245

ST Testcase
ST Function
name: IMPL Bremsweg

ST ContentTracker

CodeFragment

...

Testcase

Testcase Status

Attribute
value: success

Testcase specification Function implementation

ST TestFunction

ST IsContentOf

Origin

Origin

:isin

IsAttribute

Fig. 5. Examples for text graph, model kernel and full model from the safety-critical
software development domain

XML representation. The extraction process then works as follows: Given A,
check whether ω(A) is admissible. If so, a text graph is computed. The graph
structure correlates to the (parse) tree representation of XML documents.
Hence, there is a one-to-one relationship between an XML document and its
corresponding text graph, i.e. we can construct the XML document from its
text graph and vice versa. A text graph is admissible iff its corresponding
XML document is admissible. The subtrees in dotted boxes in Fig. 5 show
parts of the text graphs from a testcase specification and an implementation.

• a document type specific ontology that describes the semantic concepts and
their relationships.

• an abstraction function ϕ that computes the model kernel from the text graph.
In contrast to the text graph, the model graph operates on semantic entities
and their relationships, i.e., it consists of nodes and edges that correspond to
the concepts and relationships that are defined in the corresponding ontology.
The model kernel has the property that each of its entities is linked to a
fragment of the text document, i.e. a node/link in the text graph, that caused
its generation. E.g. a safety requirement node in the model kernel graph is
linked to the corresponding text (i.e. the corresponding subtree in the XML
description, representing the row in a table) defining it. Or the test case node
in the model kernel graph is linked to the corresponding textual description,
and the source code node in the model kernel graph is linked to the original
source code (see Fig. 5). The idea is that the text graph will generate a model
kernel which is expanded by semantic analysis to a fully fledged model graph.

• a document type specific propagation function ρ that computes the model
graph by adding new nodes and edges to the model kernel (also from the
corresponding ontology), representing derived information. E.g., in Fig. 5 the
test case node in the model kernel is related to the tested source code node.

• a document type specific projection function π that maps derived information
back to the text graph such that it can be presented to the user via ω.

• a document type specific equivalence model ≡ to be able to compute the
difference between two documents D and D′ of the same type.

246 S. Autexier et al.

Fig. 4 summarises the functions that need to be provided for each document
type, as well as their relations. The typical workflow is as follows: (1) Extract
the XML representation using ω, (2) generate the text graph, (3) generate the
initial model using ϕ, (4) compute the enriched model using ρ, (5) projecting
the changes back using π, and (6) propagating the information back to the user
document using ω−1.

4 Change Management

In [2,11] we presented tools to maintain structured specification and verification
work in order to minimise the amount of proofs to be redone when modifying a
specification. This idea is now extended from theories to heterogeneous document
collections and from provers to arbitrary semantic analysis tools: we propagate
the syntactical changes observed by the XML diff algorithm towards a change
in the semantics and analyse these changes with respect to the deduced or user-
postulated properties. In the following we will elaborate in more detail.

As explained in Sec. 3, each document A gives rise to an XML document
ω(A) which induces a text graph T . Changes A → A′ in the document thus
result in changes T → T ′ of the corresponding text graph, which in turn cause
changes ϕ(T) → ϕ(T ′) in the model kerneland therefore also changes in the
preconditions of derived entities, rendering parts of the old model graph invalid
but also potentially enabling the deduction of new entities.

Since we are interested in the development process of documents, it is crucial
to encode explicitly what information changed from one version to another. This
is because stateful information, e.g., the result of executing a test case, might
invalidate due to a change, e.g., a change of the source code of the function that is
tested. Therefore, recomputing the model graph from scratch is not an option, as
it would not give us information about the changed parts, and therefore restrict
our approach to stateless properties.

Our solution consists in specifying graph rewrite rules that adapt a given
model graph based on the result of the difference analysis of the text graphs.
Thus, applying the rules propagates the differences ΔT to the kernel, such that
they are explicitly represented in ΔKer (c.f. Fig. 6). Finally, the analysis function
ρ is invoked in ΔKer to change derived properties in the model graph.

The transformation is successful if we reach a model graph that is consistent
with the new model kernel and incorporates the same level of analysis as the old
model graph. We define consistency by specifying the set of all consistent model
graphs by providing a predicate Pmod. Pmod(D) is true iff D is an element of
this set. Pmod is invariant with respect to the insertion of derived knowledge, i.e.
starting with a consistent model kernel the model graphs that are derived step
by step by applying transformation rules (assuming an empty old model graph)
will always stay consistent. Typically, Pmod is provided by a set of consistency
rules defining (sub)graph properties that each model graph has to satisfy.

Adapting an old model graph to a changed model kernel, we have to adjust,
delete or insert derived entities in the old graph to match the consistency rules

SmartTies – Management of Safety-Critical Developments 247

A ω(A) T Ker Mod

ΔA ΔT
Ker∩Ker’
+ΔKer

Mod∩Mod’
+ΔMod

A′ ω(A′) T ′ Ker’ Mod’

ω
 ϕ ρ

ω
 ϕ ρ

ϕ ρΔKer

Fig. 6. Change Management: Changing a document A to A′ induces changes in the
text graph T , in the model kernel Ker, and in the model graph Mod. The differences
ΔT of the text graph are propagated to determine ΔKer and finally analyzed to derive
the changes of the model graph.

together with the new kernel graph. This transformation process will start at
differences between old and new kernel graph and will ripple along the lines of
analysis of the old model graph computing implicitly the differences between old
and new model subgraphs. This process obviously stops when there is no way
to adapt the lines of reasoning appropriately without violating the consistency
rules. As usual there are two ways to resolve such a conflict. First, we can drop
the further adoption of the old model graph (i.e. throwing away knowledge about
old bits that have been changed in the meanwhile). Second, we can speculate
about necessary changes in the already computed model (sub)graph in order to
satisfy the violated consistency rule and to propagate these required changes
back to the model kernel (and further to the text graph). Which way we proceed
depends on the character of the violated consistency rule.

Change Management in the Small. The graph transformation process is imple-
mented with the help of a graph rewriting tool GrGen [7], which operates on
typed and directed multi-graphs with multiple inheritance on node and edge
types. In addition these types can be equipped with typed attributes and con-
nection assertions to formulate restrictions on graphs.

For example, consider the relationship between the code of IMPL Bremsweg

and the corresponding test cases that are used to validate the implementation.

ST Testcase
FunctionChanged
descr: IMPL Bremsweg

ST Function
name: IMPL Bremsweg

ST ContentTracker
CIAStatus: modified

CodeFragment

...

Testcase

Testcase Status

Attribute
value: Open

Testcase specification Function implementation

CIAAnnotate ST TestFunction

ST IsContentOf

Origin

Origin

:isin

IsAttribute

Fig. 7. Excerpt of the document graph and its changes

248 S. Autexier et al.

Changing the implementation, the corresponding tests specified in the test plan
have to be redone. Fig. 7 presents the part of the model graph concerning the
relation between the implementation of IMPL Bremsweg and the test case specifi-
cation. The model kernels of implementation and test cases are indicated by dot-
ted lines. The model graph connects both kernels making the relation between
both documents explicit (linking test case and code fragment via ST Testcase,
ST Function and ST ContentTracker).

Now suppose the implementation of IMPL Bremsweg is changed. Comparing
the XML versions of old and new version with the help of the XML-diff algo-
rithm SmartTies localises the changes and adds both old and new version of
the implementation of IMPL Bremsweg into the model graph. The propagation of
such a change is done with the help of GrGen graph rewrite rules. Since we are
not interested in the details of the changes here, the GrGen rewrite rules will
simply annotate the new implementation as changed by setting the CIA Status

attribute of ST ContentTracker to “modified” and removing the old version from
the model graph. In a second propagation phase this local change has to be
propagated to the entire development using GrGen rewrite rules.

In general, GrGen rules specify rewrite rules on graphs allowing for pattern,
replace and modify specification. A pattern matcher performs plain isomorphic
subgraph matching as well as homomorphic matching for selectable sets of nodes
and edges. Fig. 8 shows the rule used to propagate the modification of the imple-
mentation to the status of the tests. The block between iterated and modify con-
stitutes the pattern of subgraphs on which the rule is applicable. Furthermore,
the matches can be restricted by arithmetic and logical conditions on attributes
and types, in our example we are only interested in changed implementation
nodes, i.e if { c.status == CIAStatus::modified; }. Applying this rule to
the subgraph printed in black in Fig. 7 results in the red additions: a node Func-

tionChanged is added to the graph and linked to ST Testcase. Additionally, the
value in the node Attribute is changed to “open”, indicating the necessary re-
run of the test cases. In a third phase the impacts of the change propagation to
individual document parts are computed. Either they are automatically adapted
or if this is impossible (because, e.g., manual interaction is required) comments
on necessary changes are added (e.g. as comments) to the document (cf. Fig. 10
for such annotations within the Safety Requirement Specification, SRS).

rule resetTestsWithChangedFunction {
iterated {
stc :ST Testcase <−:ST TestcaseFunction− stcused:ST Function;
stcused <−l:ST IsContentOf− c:ST ContentTracker;
if { c. status == CIAStatus::modified; }
stc −:Origin−> tc2:testcase;
tc2 <−:isin− status: testcasestatus <−:IsAttribute− statusattr : Attribute ;
modify {
stc <−:CIAAnnotate− a:ST FunctionChanged;
eval { a. description = a. description + stcused.name;

statusattr . value = "open"; } }
}

modify {}
}

Fig. 8. Graph Transformation Rule to Actualize Tests

SmartTies – Management of Safety-Critical Developments 249

Change Management in the Large. In the following we sketch a typical scenario
illustrating the cascade of changes during a development. In our running exam-
ple, suppose a prototype of the system has been developed, comprising a concept
paper, which contains the formula to calculate the braking distance, an FTA and
an SRS which state inter alia that the braking distance must be calculated ac-
cording to this formula, an implementation of the calculation of the safety zone,
and test cases which check correctness of the calculation for various inputs.

The prototype is presented for internal review to the quality assurance depart-
ment, and sure enough there is an error in the actual formula calculating the

braking distance (it was s = v0
2abrk

, and should have been s =
v2
0

2abrk
). This causes

a series of corrections which ripple down the development graph (see Fig. 1):

1. The formula is corrected, and an analysis is triggered. Because there is a
reference link to the formula from safety requirement SR-1, the correction in
the formula will flag up an annotation in the safety requirement specification
at SR-1 to check this event or requirement, respectively. Because we do not
deal with the semantics of the formula, we cannot deduce what changes
need to be made, but we can ask the specifier to recheck that SR-1 and its
handling are still valid.

2. The specifier discovers that SR-1 as written is still valid, because they refer-
ence the formula and do not copy it verbatim, but SR-1 references test cases
TC-023 and others. Test case TC-023 refers to rest function test_023. This
test function is now wrong (or rather, the reference link is wrong), because
the test data are calculated using the old (wrong) formula. The test functions
are corrected, and another document analysis is run. This will invalidate the
test results, as the test functions are now newer than the results.

3. The tests are re-run, and the their results uploaded into SmartTies. The
changed tests covering SR-1 now fail, because the implementation in function
comp_safetyzone uses the old formula.

4. The function comp_safetyzone is adapted, and assuming this is done in
the correct way, the tests will now succeed again. A final document analysis
asserts everything is consistent again, and we can re-present the documents
for the next internal review.

Of course, in an example as small as this, a circumspect developer might make all
changes in one go, but in larger developments, this type of support rippling small
changes along the dependencies is the key to handling changes efficiently. Also,
the initial error may have been rather obvious, but it is typical of a class errors
which occur quite often but have wide-ranging consequences on the development
process, namely modelling assumptions that do not quite hold in the real world
(normally more subtle).

5 Document Semantics and Implementation

SmartTies supports the documents enumerated Table 1 which occur in the de-
velopment of safety-critical software in a certification context. We have defined

250 S. Autexier et al.

Fig. 9. The SmartTies web interface

XML schemata which encode the semantic structure described rather straight-
forwardly. For these documents, SmartTies provides extraction functions ω as
follows:

– For concept papers, FMEAs, FTAs and SRSs, the structured content is ex-
tracted by functions which parse OOXML;

– The source code is parsed by the frontend of the SAMS verification frame-
work, and split into a sequence of external declarations;

– The test plan is kept as an XML document, and edited through the web
interface.

The consistency checks and change propagation rules have been implemented
using 49 graph rewrite rules and 66 graph test patterns.

As tools, SmartTies uses MS-Word for editing the informal text documents,
an IDE of the user’s choice for the source code, CUnit as the unit test framework
(with a simple parser extracting the test results from the log file and inserting
them into the test plan), and Subversion as the configuration management and
version control backend.

The system architecture is web-based: the SmartTies server allows the user
to upload or download documents, trigger the document analysis, and commit
and update from a Subversion repository. The user accesses the system by two
means: firstly, a plug-in for MS-Word allows to download and upload directly
from within MS-Word, and secondly, a web interface allows to download and
upload other documents, gives an overview over the current development status,
and allows to start internal and external reviewing (Fig. 9). When the user
triggers a document analysis, impacts in Word documents are reflected back to

SmartTies – Management of Safety-Critical Developments 251

Fig. 10. Annotated Primary Safety Requirement Table (in German)

the user by annotations which show up in MS-Word as comments (see Fig. 10).
This allows a seamless workflow within MS-Word.

The workflow is further supported by a document status cycling through
phases from in progress during development to approved after a successful ex-
ternal review; SmartTies keeps track of the status, makes sure changes to it are
properly documented by review reports, and versions the documents appropri-
ately. The review process is supplemented by a simple ticketing system, which
allows reviewers (in particular external) to register a list of open question which
the system developers have to account for.

6 Conclusion

This paper presented an application of the generic DocTip-methodology for
maintaining heterogeneous document collections in the area of safety-critical
systems. While the DocTip engine is generic with respect to document types
and operates purely on documents written in XML, SmartTies provides the nec-
essary encodings of the application-depending document types in XML and the
graph rewriting rules to propagate local changes in one document to the en-
tire document collection. This allows for flexible development environments in
which a user can provide or assemble specifications and corresponding propaga-
tion rules for their individually used document types. As a use case we applied
SmartTies for a development of a small project with five MS word documents
(concept paper, test concept description, FTA, SRS, and a user manual), a test
plan with 40 test cases, ca. 650 loc CUnit test suites, and 430 loc implementation
in C. We were able to successfully model the consistency rules and uses cases
from Sect. 2 and Sect. 4 in our system. The text graph for the whole collection
consisted of about 15000 nodes and the model graph of about 900 objects and
1500 relations. The analysis of a change using the graph rewriting rules consists
of about 900-1000 graph rewriting rules and takes about 8.7s on an 2.8 GHz
Intel Core i7 with 4GB RAM.

Up to now, instantiating the DocTip framework for a specific setting such
as SmartTies has been laborious work, especially when formalising the impact
analysis in terms of graph rewriting rules. However, we are working on general
patterns for such analysis rules that will simplify this process significantly.

252 S. Autexier et al.

References

1. Autexier, S., David, C., Dietrich, D., Kohlhase, M., Zholudev, V.: Workflows for the
Management of Change in Science, Technologies, Engineering and Mathematics.
In: Conferences on Intelligent Computer Mathematics, CICM 2011 (2011)

2. Hutter, D., Autexier, S.: Formal Software Development in MAYA. In: Hutter,
D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI),
vol. 2605, pp. 407–432. Springer, Heidelberg (2005)

3. Autexier, S., Lüth, C.: Adding Change Impact Analysis to the Formal Verification
of C Programs. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 59–73.
Springer, Heidelberg (2010)

4. Autexier, S., Müller, N.: Semantics-based change impact analysis for heterogeneous
collections of documents. In: Gormish, M., Ingold, R. (eds.) Proc. 10th ACM Sym-
posium on Document Engineering, DocEng 2010 (2010)

5. Beck, K.: Embracing change with extreme programming. IEEE Computer 32(10)
(1999)

6. Briand, L.C., Labiche, Y., O’Sullivan, L., Sówka, M.M.: Automated impact analysis
of UML models. Journal of Systems and Software 79(3), 339–352 (2006)

7. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.M.: GrGen: A Fast SPO-
Based GraphRewritingTool. In: Corradini, A., Ehrig, H.,Montanari, U., Ribeiro, L.,
Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer, Heidelberg
(2006)

8. Hutter, D.: Semantic Management of Heterogeneous Documents. In: Aguirre, A.H.,
Borja, R.M., Garciá, C.A.R. (eds.) MICAI 2009. LNCS (LNAI), vol. 5845, pp. 1–14.
Springer, Heidelberg (2009)

9. IBM. Rational DOORS, http://www-01.ibm.com/software/awdtools/doors/
10. IEC: IEC 61508 – Functional safety of electrical/electronic/programmable elec-

tronic safety-related systems. IEC, Geneva, Switzerland (2000)
11. Mossakowski, T., Autexier, S., Hutter, D.: Development graphs – proof man-

agement for structured specifications. Journal of Logic and Algebraic Program-
ming 67(1-2), 114–145 (2006)

12. Reichmann, C.: PREEVision - bridging the gap between electrical/electronic and
mechanical areas. Automobile Konstruktion 1, 1–4 (2011)

13. Royce, W.W.: Managing the development of large software systems: Concepts and
techniques. In: ICSE, pp. 328–339 (1987)

14. RTCA/DO-178B: Software Considerations in Airborne Systems and Equipment
Certification. RTCA, Inc., Washington, D.C. 20036 (1992)

15. Täubig, H., Frese, U., Hertzberg, C., Lüth, C., Mohr, S., Vorobev, E., Walter, D.:
Guaranteeing functional safety: design for provability and computer-aided verifi-
cation. Autonomous Robots 32(3), 303–331 (2012)

http://www-01.ibm.com/software/awdtools/doors/

Tracking Behavioral Constraints
during Object-Oriented Software Evolution�

Johan Dovland, Einar Broch Johnsen, and Ingrid Chieh Yu

Department of Informatics, University of Oslo, Norway
{johand,einarj,ingridcy}@ifi.uio.no

Abstract. An intrinsic property of real world software is that it needs
to evolve. The software is continuously changed during the initial de-
velopment phase, and existing software may need modifications to meet
new requirements. To facilitate the development and maintenance of pro-
grams, it is an advantage to have programming environments which allow
the developer to alternate between programming and verification tasks
in a flexible manner and which ensures correctness of the final program
with respect to specified behavioral properties.

This paper proposes a formal framework for the flexible development
of object-oriented programs, which supports an interleaving of program-
ming and verification steps. The motivation for this framework is to
avoid imposing restrictions on the programming steps to facilitate the
verification steps, but rather to track unresolved proof obligations and
specified properties of a program which evolves. A proof environment
connects unresolved proof obligations and specified properties by means
of a soundness invariant which is maintained by both programming and
verification steps. Once the set of unresolved obligations is empty, the
invariant ensures the soundness of the overall program verification.

1 Introduction

An intrinsic property of software in the real world is that it needs to evolve.
This can be as part of the initial development phase, improvements to meet new
requirements, or as part of a software customization process such as, e.g., feature
selection in software product lines or delta-oriented programming [1,14]. Require-
ments to a piece of software also change over time. For this reason we cannot
always expect that the specifications are written before the code is developed,
and that the verification efforts happen afterwards. As the code is enhanced
and modified, it becomes increasingly complex and drifts away from its original
design [11]. For this reason, it may be desirable to redesign the code base to
improve its structure, thereby reducing software complexity. For example, the
process of refactoring in object-oriented software development describes changes
to the internal structure of software to make the software easier to understand
� Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-

worthy Software using Formal Models (http://www.hats-project.eu).

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 253–268, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

254 J. Dovland, E.B. Johnsen, and I.C. Yu

and cheaper to modify without changing its observable behavior [6]. In this pa-
per, the term adaptable class hierarchies captures class transformations which
occur during object-oriented software evolution, including the development, im-
provement, customization, and refactoring of class hierarchies.

This paper proposes a formal framework for tracking behavioral constraints
during such class transformations to allow incremental reasoning about adapt-
able class hierarchies, by extending the approach taken by lazy behavioral sub-
typing [4]. We consider a version of Featherweight Java [7] extended with behav-
ioral interfaces, in which methods are annotated with pre/postconditions, and a
number of basic adaptation operations for manipulating classes and interfaces,
reflecting the level of basic program modifications. We consider a series of “snap-
shots” of a program during software development and evolution, in which the
developer applies adaptation and analysis steps. A proof environment records
both unresolved proof obligations and verified properties, and is manipulated by
the different adaptation and analysis steps. Unresolved obligations reflect con-
straints that are imposed by the analysis, but it remains to ensure that they are
satisfied. The purpose of analysis steps is to ensure that unresolved obligations
are satisfied, whereas adaptation steps may spawn a number of unresolved obliga-
tions, reflecting that the program has changed. The spawned obligations depend
on the actual adaptation, and may be inferred from the proof environment.

Paper overview: Sect. 2 motivates our approach, Sect. 3 introduces proof out-
lines, and Sect. 4 a kernel object-oriented language. Sect. 5 defines a soundness
invariant for incremental reasoning, and Sect. 6 explains basic programming and
verification tasks in our framework. Sect. 7 presents an example, Sect. 8 discusses
related work, and Sect. 9 concludes the paper.

2 Motivation

There is a conflict of interest between the development and verification processes
for software: the easier it is to flexibly develop and maintain programs in a
language, the harder it is to verify programs in this language. Object-oriented
programming, the de facto industry standard for software development, is a case
in point: software verification projects have made significant progress in the last
decade to support the verification of object-oriented programs, but features such
as concurrency, class inheritance, and late binding still pose challenges.

Object orientation offers flexible ways of structuring and restructuring code
by means of class inheritance and late binding, but reasoning about the behavior
of object-oriented systems is in general non-trivial due to complications which
arise from these code structuring mechanisms. Object-oriented software devel-
opment is based on an open world assumption; i.e., class hierarchies are typically
extendable. To have reasoning control under such an open world assumption, it
is advantageous to have a framework which controls the properties required of
method redefinitions. With modular reasoning, a new class can be analysed in
the context of its superclasses, such that superclass’ properties are guaranteed
to be maintained. This has the significant advantage that each class can be fully

Tracking Behavioral Constraints during Object-Oriented Software Evolution 255

verified at once, independent of subclasses which may be designed later. The
best known modular framework for class hierarchies is behavioral subtyping [8],
but this framework has been criticized for being overly restrictive and is often vi-
olated in practice [15]. It is therefore of interest to investigate approaches which
are better aligned with the flexibility expected by the software developer, even
if these may have a higher price in terms of verification effort.

Incremental reasoning generalizes modular reasoning by possibly generating
new verification conditions for superclasses to guarantee new properties. Addi-
tional properties may be established in superclasses after the initial analysis,
but old properties remain valid. Incremental reasoning subsumes modularity: if
the initial properties of a classes are sufficiently strong (e.g., by adhering to a
behavioral contract), it never becomes necessary to add new properties. Lazy be-
havioral subtyping (LBS) is a formal framework for such incremental reasoning,
which allows more flexible code reuse than modular frameworks. LBS is based
on a separation of concerns between the behavioral specifications of method defi-
nitions and the behavioral requirements to method calls. Both specifications and
requirements are manipulated through a bookkeeping framework which controls
the analysis and the proof obligations in the context of a given class. Properties
are only inherited by need. Inherited requirements on method redefinition are
as weak as possible for ensuring soundness. LBS seems well-suited for the incre-
mental reasoning style desirable for object-oriented software development, and
can be adjusted to different mechanisms for code reuse. It was originally devel-
oped for single inheritance class hierarchies [4], but has later been extended to
multiple inheritance [5] and to trait-based code reuse [2].

Adaptable class hierarchies add a level of complexity to proof systems for
object-oriented programs, as classes in the middle of a hierarchy can change.
Unrestricted, such changes may easily violate previously verified properties in
both sub- and superclasses. The management of verification conditions becomes
more complicated than for a class hierarchy which is only extended at the bot-
tom. To facilitate program development and maintenance, it is an advantage that
programming and verification activities go hand in hand. For this purpose, we
need programming environments for flexible alternation between programming
and verification tasks. The proposed analysis does not assume that class hierar-
chies are build top-down; the internal class structures may be revealed during
implementation. The proposed analysis technique is developed with the intention
to better integrate formal verification with software engineering processes.

3 Proof Outlines and Soundness

The reasoning framework is presented in terms of proof outlines [12], which can
be explained in terms of Hoare triples. A Hoare triple {p} t {q} defines the effect
on a state described by the precondition p when a statement t executes, leading
to a state described by the postcondition q (where p and q are assertions). The
meaning |= {p} t {q} of a triple {p} t {q} is here given by a standard partial cor-
rectness interpretation: if t is executed in a state where p holds and the execution

256 J. Dovland, E.B. Johnsen, and I.C. Yu

terminates, then q holds in the state after t has terminated. The derivation of
triples can be done in any suitable program logic. Let PL be such a program
logic and let �PL {p} t {q} denote that {p} t {q} is derivable in PL.

A proof outline for t is obtained by decorating t with assertions at selected
program points such that the analysis between these program points can be done
mechanically. A classical example is to decorate loops in the program with loop
invariants. For the purposes of this paper, we are interested in decorating method
calls with pre- and postconditions, and we assume that all method calls in the
considered proof outlines are decorated. Let O �PL t : (p, q) denote that O is a
proof outline for t such that �PL {p} t {q} holds, assuming that the decorated
statements O are correct. The assertion pair (p, q) is called a guarantee for t, and
to the decorated call statements in O as requirements for the called methods, and
we say that these requirements are imposed by t. Thus, for a decorated method
call {r} n() {s} in O, we say that (r, s) is a requirement for n. This terminology
can be lifted to method definitions m(x){t} as follows: If the proof outline O
is such that O �PL t : (p, q), we say that m guarantees (p, q) by imposing the
requirements in O on the methods that are called by the method body t.

Given a set of methods, proof outlines allow a “divide and conquer” technique
in the overall program analysis. For each method we may establish a guarantee
by providing a proof outline for the method body. For the overall soundness of
the program analysis, we need to ensure that each requirement in a proof outline
follows from the guarantee of the called method. Let (p, q) be the guarantee for
m, and assume that the requirement (r, s) is imposed on m by some proof outline.
We essentially need to check the implications r ⇒ p and q ⇒ s which can be
captured by an entailment relation � over assertion pairs, defined as follows [5]:

(p, q) � (r, s) � (∀z0 . p ⇒ q′) ⇒ (∀z1 . r ⇒ s′)

Here, z0 and z1 denote the logical variables in (p, q) and (r, s), respectively, and
the primed assertions q′ and s′ replace all occurrences of the fields f in q and s
by some fresh name f ′. This entailment relation may be lifted to sets of assertion
pairs [5], e.g., to prove that (r, s) follows from a set of assertion pairs.

Given a closed set of methods (i.e., each method called from the set is defined
in the set) and a proof outline establishing a guarantee for each method, the set
of proof outlines is sound if each requirement follows from the method guarantee
in the set. For a proof outline O �PL t : (p, q) in the set, we have |= {p} t {q}.

4 Proof Outlines for Object-Oriented Programs

In this section the soundness notion for proof outlines is extended to an object-
oriented context where the methods are organized in classes in a class hierarchy.

4.1 An Object-Oriented Kernel Language

We consider a kernel object-oriented language with the syntax given in Fig. 1.
A program P defines interface and class. An interface I extends superinterfaces

Tracking Behavioral Constraints during Object-Oriented Software Evolution 257

P ::= K L K ::= interface I extends I {MA}
T ::= I | Bool | Int L ::= class C extends C implements I {F ; M}
F ::= T f MA ::= [T | Void] m (T x) : (p, q)
M ::= MA {T x; t; return e} t ::= t; t | v := rhs | v.m(e) | if b {t} | skip
v ::= f | x rhs ::= new C() | v.m(e) | m(e) | e

Fig. 1. The language syntax. C is a class name, and I an interface name. Variables v
are fields (f) or local variables (x), and e denotes side-effect free expressions over the
variables, b expressions of Boolean type, and p and q are assertions. Vector notation de-
notes lists, as in the expression list e, interface list I, and in the variable declaration list
T v, otherwise vectors denote sets, as in K, L,MA and M . To distinguish assignments
from equations in specifications and expressions, we use := and = respectively.

I and declares a set of method constraints MA, where a constraint is given
by a method signature with pre/post assertions. An interface may extend its
superinterfaces with declarations of new methods and with additional constraints
for methods already declared in the superinterfaces. We say that I provides the
methods declared in I or in a superinterface of I. For interfaces I and J , we say
that I is below J and J is above I if I equals J or if J is a superinterface of I.

A class C may inherit from at most one direct superclass B, implement a list
I of interfaces, and define fields F and methods M . The class may override su-
perclass methods, but we assume no method overloading and no field shadowing
(fields with the same name in different classes may be qualified by class names).
We say that a method m is available in C if m is defined in M or a definition
is inherited from the superclass B, i.e., the method is available in B. To imple-
ment an interface I, each method provided by I must be available in C and the
interface constraints must be satisfied. Class C may in addition define auxiliary
methods for internal purposes. For flexibility, interfaces are not inherited at the
class level: The class C may implement different interfaces than those of its su-
perclass B, which leads to a separation of class hierarchies and type hierarchies.
Remark that the situation where interfaces are inherited at class level may be
considered as the special case where C must implement at least the interfaces of
B, leading to behavioral subtyping constraints on class inheritance. Local calls
in C are late-bound in a standard bottom-up manner following the superclass
relation: when a local call m() is executed on an instance of C, the binding is
resolved by starting the bottom-up search in C. For classes C and D, we say
that C is above D and D is below C if C equals D or if C is a superclass of D.

Object references are typed by interfaces. Let v : I denote that v is a variable
of type I, so v may refer to an instance of any class D, implementing an interface
below I. For external calls v.m(), m must be provided by I, and can bind to any
object to which v may refer. Statements t and expressions e are standard.

4.2 Proof Outlines and Inheritance

The notion of proof outlines extends naturally to object-oriented programs; to
specify and reason about a program, proof outlines may be provided for the

258 J. Dovland, E.B. Johnsen, and I.C. Yu

methods implemented in the classes of the program. Each proof outline gives a
method guarantee and a set of method call requirements. However, in contrast
to the presentation in Sect. 3, there is not a one-to-one correspondence between
a call statement and the implementations to which the call may bind. For a
requirement {r} v.m() {s} with v typed by interface I, we need to ensure that
(r, s) follows from each implementation to which the call may bind, i.e, for each
class that implements some interface below I. However, proving this directly for
each class requires global knowledge about all classes, and contradicts the open
world assumption by which classes may be incrementally added.

To enhance the modularity of the reasoning system, we therefore assume
that interface constraints are sufficiently strong to analyze external calls. For
{r} v.m() {s}, this means that (r, s) must follow from the constraints for m in
I. If a class D implements I or a subinterface of I, the constraints for m in
I must be satisfied by the implementation. By transitivity, we then know that
the external call requirement is satisfied by all implementations to which the
external call can be bound. This reasoning approach is feasible in an open envi-
ronment where the programmer does not control all parts of the program: Calls
to external objects may be done without knowing the detailed implementation
of those objects. If the interfaces are fixed, this means that the classes of ex-
ternal objects may be implemented independently from the current class. Also,
the approach facilitates e.g., calls to library methods without consulting the li-
brary implementation. Remark that interface encapsulation generally leads to
incomplete reasoning systems, since an interface represents an abstraction of the
actual implementations. This is illustrated by the following example:

Example 1. Consider an interface I with a method m and a class C which imple-
ments I. The class D makes a call to m of a newly created instance of C.

interface I { Int m() : (true , return ≥0)}
class C implements I {Int m() {return 2} : (true , return = 2)}
class D implements J {Int n() {I x := new C; Int v := x.m(); return v}}

The guarantee for m in C satisfies the interface constraint. The question is
what we know about the value returned by method n in class D. By inspect-
ing the code, we see that the method will always return the value 2. A proof
outline for for n with guarantee (true, return = 2) results in a call requirement
{true}x.m(){return = 2} but the constraint given by I only promises return ≥ 0,
which means that the requirement cannot be verified. Remark that a proof out-
line for n with guarantee (true, return ≥ 0) can be verified.

For a language with interface encapsulation, a natural goal for the program anal-
ysis is to verify that classes satisfy the constraints of the implemented interfaces.
Let body(C, m) denote the implementation of a method m that is available in
C. If I gives the constraint (p, q) for m and C implements I, we must ensure
|=C {p} body(C, m){q}, where the subscript denotes that the triple must be true
when executed on an instance of C. We emphasize that the constraint originates
from the fact that C implements I. Especially, the constraint need not be satis-
fied if body(C, m) is executed on an instance of some subclass D of C, if D does

Tracking Behavioral Constraints during Object-Oriented Software Evolution 259

interface I { Int m() : (true , return=0)}
interface J { Int m() : (true , return>0)}
interface K { Int m() : (true , return<0)}

class C implements I {Int x;
Int m() {x:=n(); return x}
Int n() {return 0}}

class D extends C implements J {Int n() {return 1}}
class E extends C implements K {Int n() {return −1}}

Fig. 2. A small class hierarchy with method overriding

not implement I. Related to C, the binding of a local call to some method n
is uniquely determined by the available implementation in C. Given the above
constraint (p, q) and a proof outline O such that O �PL body(C, m) : (p, q) and
{r}n() {s} is a requirement in O, it is sufficient to analyze the requirement with
respect to the implementation available in C. If the analysis of all requirements
succeed, we may then conclude |=C {p} body(C, m) {q}.

Since locally called methods may be overridden differently in different sub-
classes, it is natural to allow more than one guarantee for each method. The
guarantees may possibly be in conflict as illustrated by Example 2.

Example 2. Consider the code in Fig. 2. For class C, we supply a proof outline for
m with the guarantee (true, return = 0) to ensure that C satisfies the constraints
of interface I. This proof outline imposes the requirement {true}n(){return = 0},
which can be verified for n as defined in C. For class D, the method m must satisfy
the interface constraint (true, return > 0). A proof outline with this guarantee
yields the requirement {true} n() {return > 0}, which can be verified for the
overriding version of n in D. The verification of class E follows the same pattern
as for D. Combined, this leads to three different proof outlines for m, according
to the different behavior of the called method. When analyzing each class, we
may select the proof outline that fits with the actual interface constraint.

Allowing many proof outlines provides flexibility when analyzing independent
properties. For instance, if C implements two interfaces I and J , I declares a
constraint (pI , qI) for m, and J declares a different constraint (pJ , qJ) for m.
The constraints may be verified independently by providing two proof outlines.

Assuming type safety, we formulate the following soundness conditions for a
class C implementing the interfaces I: A set of proof outlines (with guarantees
and requirements) for the methods available in C are given such that:

– For each method m provided by I, the guarantees for m ensure all interface
constraints.

– For external calls {r} v.m() {s} in some proof outline, the requirement (r, s)
follows from the constraints for m in I (where v : I).

– For each local call {r} m() {s} in some proof outline, the requirement (r, s)
follows from the guarantees for m.

260 J. Dovland, E.B. Johnsen, and I.C. Yu

If a proof outline for m in C with guarantee (p, q) is verified, the soundness
constraints ensure |=C {p} body(C, m) {q} (provided that PL is also sound).

5 A Soundness Invariant for the Open World

In this section we generalize the above soundness conditions for an open world
assumption for software evolution, by accommodating an interleaving of software
evolution and analysis tasks. The generalization is formulated as a soundness
invariant which is maintained by each individual task. Software evolution tasks
are represented as basic adaptations which are applied to the classes of an existing
program. These adaptations affect the class hierarchy of the program, and are
discussed in detail in Sect. 6. Analysis tasks are performed at user request, and
the user may select which program properties to analyze.

We assume given a set U(C) of unresolved obligations associated with each
class C. This set contains requirements and constraints imposed by the analy-
sis so far, but for which we have not checked that they are satisfied. The set
U(C) is in general extended by the different adaptation tasks, reflecting that
proof obligations are spawned if the program is changed. Program analysis re-
moves obligations from U(C) and perform the actions necessary to maintain the
soundness invariant. We identify three kinds of obligations that occur in U(C):

– I � m : (p, q). Here, m : (p, q) is a constraint imposed by I. When this
obligation appears in U(C), the class C is declared to implement I, but it
remains to ensure that the implementation actually satisfies the constraint.

– m � n : (r, s). Method m is here available in C and the obligation reflects
the requirement {r}n {s} of a local call statement in a verified proof outline
for m. When this obligation appears in U(C), it remains to ensure that the
requirement is satisfied by the called method.

– m � I : n : (r, s). This obligation reflects that the requirement {r} v.n {s},
with v : I, is imposed by an external call statement in a verified proof outline
for m. When this obligation appears in U(C), it remains to check that (r, s)
follows from the constraints of I.

Remark that the last two obligations include the name of the method which
imposes the requirement. As explained in more detail in Sect. 6 this allows us to
discard obligations if m changes before the requirements have been analyzed. The
soundness invariant is formulated by weakening the above soundness conditions:

Definition 1 (Soundness invariant). For each class C implementing inter-
faces I, the set of proof outlines for the methods available in C are such that:

– For each m provided by some I in I with constraint (p, q), either (p, q) follows
from the guarantees for m, or I � m : (p, q) is in U(C).

– For each external call {r} v.m() {s} in a proof outline for method n, where
v : I, either (r, s) follows from the constraints for m in I, or n � I : m : (r, s)
is in U(C).

Tracking Behavioral Constraints during Object-Oriented Software Evolution 261

Class adaptation ::= newCls(C) | remCls(C) | newFld(C, F)
| remFld(C, F) | newMtd(C, M) | remMtd(C, M)
| setSup(C, B) | newImpl(C, I) | remImpl(C, I)

Interface adaptation ::= newInt(I) | remInt(I) | newConstr(I, m : (p, q))
| remConstr(I,m : (p, q)) | newSup(I, J)
| remSup(I, J)

Fig. 3. Basic class and interface adaptations

– For each local call {r} m() {s} in a proof outline for method n, either (r, s)
follows from the guarantees for m, or n � m : (p, q) is in U(C).

If all unresolved requirements have been verified, i.e., the set U(C) is empty, the
soundness invariant reduces to the soundness conditions given in Sect. 4. The
soundness of a class C depends only on declared interfaces and classes above C:
i.e., the soundness of C is not affected by modifications of subclasses C.

6 Evolution through Adaptable Class Hierarchies

Object-oriented software evolution can be perceived as a sequence of adaptations
to a class hierarchy. The framework allows an interleaving of adaptation and
analysis tasks, initiated by the user. A program environment P keeps track of
the current definitions of classes and interfaces. In addition to the unresolved
obligations sets U , each class C and method m available in C will maintain a set
G(C, m) of verified specifications. Elements in G(C, m) are tuples consisting of an
assertion pair (the guarantee) and a proof outline (capturing the requirements).

6.1 Basic Program Adaptations

Consider a suite of basic program adaptations as given in Fig. 3, each of which
reflects evolution at the level of a single structuring artefact (i.e., a method, class,
or interface in the kernel language). We focus on behavioral analysis, so certain
behavioral preserving modifications are not considered, such as the consequent
renaming of fields or methods within a program. Such renaming is captured by
the basic adaptations, but would produce a number of trivial proof obligations.
We explain how each adaptation maintains the soundness invariant by recording
unresolved obligations, and discuss the verification complexity. Complex adap-
tations may be constructed by combining basic adaptations (see Sect. 6.2).

Class adaptations. We consider the following basic adaptations for classes:

– newCls(C) and remCls(C). The adaptation newCls(C) inserts a new class
with name C in P . The new class is initially empty (i.e., without inher-
itance and implements clauses and method definitions), so the soundness
invariant is maintained without modifying the sets U and G. The adaptation
remCls(C) removes the class C from P . The set U(C) is erased and all ver-
ified proof outlines for C in G are removed. For this adaptation to be safe,
we assume that C has no subclasses and that C does not appear in any new
statements, which requires global knowledge about the classes.

262 J. Dovland, E.B. Johnsen, and I.C. Yu

– newFld(C, F) and remFld(C, F). The adaptation newFld(C, F) includes
the field F in C, and remFld(C, F) removes field F from C. Since there are
no field shadowing, we may assume that a new field is not used in classes
above or below C. To preserve type safety, a removed field cannot be used
in classes below C.

– newMtd(C, M). The definition of C is here extended with a method M , or
M replaces the old version if a method with the same name was previously
defined in C. Let m be the name of M . The soundness invariant is maintained
as follows: If m is redefined, the verified specifications for the old version
no longer apply, thus the set G(C, m) is emptied. Consequently, unresolved
obligations in U(C) that are imposed by these specifications are removed.
Such obligations are of the forms m � I : n : (r, s) and m � n : (r, s) for
some I, n, and (r, s). We furthermore perform the following steps: a) If m
is public, the constraints for m, imposed by the implemented interfaces, are
added to U(C) as obligations of the form I � m : (p, q) for some I and (p, q);
b) Verified specifications for other methods in C may impose requirements
on m. These requirements are included in U(C) as obligations of the form
n � m : (r, s) for some n and (r, s); and c) For each subclass D of C which
inherits m from C, we perform the corresponding modifications of U(D) and
G(D, m) as explained for C above.

– remMtd(C, M). Removing a method with name m is similar to method
redefinition. We empty G(C, m) and remove unresolved obligations imposed
by m from U(C). However, there may still be calls to m in C if the method
is inherited from some superclass B of C. Therefore, U(C) is extended by
interface constraints if m is public, and with requirements imposed by the
verified specifications of C. All of these modifications are repeated for each
subclass D of C which inherits m from B.

– setSup(C, B). This adaptation sets B to be the immediate superclass of C.
After the operation, C extends B in P . To maintain the soundness invariant,
we consider each available method definition M in B that is not overridden by
C. The operations performed to U and G correspond to the operations needed
by a remMtd(C, M) adaptation, which means that unresolved obligations
may also be added to subclasses of C. Remark that the soundness invariant
is maintained for the old direct superclass of C, since the soundness of that
class does not depend on its subclass C.

– newImpl(C, I). This adaptation extends the implements clause of C with
interface I. The soundness invariant is maintained by extending U(C) with
all constraints of I. The adaptation has only local effects on C.

– remImpl(C, I). This adaptation removes I from the implements clause of
C. Locally, this means that we can remove unresolved obligations from U(C)
that are imposed by this interface. However, this is a complicated adaptation
to implement, since it requires global knowledge of the system. To be safe, no
references to C objects can be typed by an interface above I. Especially, for
each statement v := new C(), the declared type of v must be implemented
by C after reducing the implements clause.

Tracking Behavioral Constraints during Object-Oriented Software Evolution 263

Interface adaptations. We consider these basic adaptations for interfaces:

– newInt(I). This adaptation introduces a new empty interface in P , which
trivially maintains the soundness invariant.

– remInt(I). This adaptation removes the interface I from P . Global concerns
must be taken for the adaptation to be safe, ensuring that no other interface
is inheriting I and that no class implements I. Thus to perform this adapta-
tion, it may be necessary to first perform a sequence of remSup (explained
below) and remImpl adaptations, which is quite expensive. Remark that as
an effect of such a sequence, all references typed by I are removed from the
global system, which makes it safe to remove I.

– newConstr(I, m : (p, q)). The definition of I is here extended by the con-
straint m : (p, q). The adaptation may be used to add a new constraint to
an already provided method, or to extend I such that it provides m. To pre-
serve the soundness invariant, we must find each class C which implements
an interface below I, and add I � m : (p, q) to U(C).

– remConstr(I, m : (p, q)). By removing the constraint m : (p, q) from I, the
behavior that can be assumed for external calls made via I is reduced. Thus,
to maintain the soundness invariant, a global check must be performed on
all requirements imposed on m via I. For each class C with method n, we
consider G(C, n). For any call {r}v.m(){s} with v : I ′ in these proof outlines,
U(C) is extended by n � I ′ : m : (r, s), if I ′ is below I.

– newSup(I, J). This adaptation includes interface J in the extends clause
of interface I. As a result, we need to check that all constraints above J
are satisfied for classes which implement an interface below I. For each such
class C and constraint m : (p, q) of J , we extend U(C) with J � m : (p, q)

– remSup(I, J). This adaptation removes J from the extends clause if I. As
for the remConstr adaptation, this means that the behavior assumed by
external calls via I is reduced. For each constraint m : (p, q) of J , we need
to check all classes which make calls to m via I or a subinterface of I, in the
same manner as for a remConstr(I, m : (p, q)) adaptation.

6.2 Combining Adaptations

High-level operations can be defined from the basic adaptations. Adaptations
may be lifted to take more than one element as the second argument by flattening
the adaptation to a sequence of basic adaptations; e.g., newMtd(C, M ∪ M) �
newMtd(C, M) · newMtd(C, M) (where · is the sequence append constructor).
Extending the program with a new class definition may then be defined by:

class C extends B implements I {F ; M} �
newCls(C) · setSup(C, B) · newImpl(C, I) · newFld(C, F) · newMtd(C, M)

The following adaptation modifies an existing class definition, adding support
for new interfaces, defining new fields, and (re)defining methods:

modify C implements I {F ;M} � newImpl(C, I) ·newFld(C, F) ·newMtd(C, M)

264 J. Dovland, E.B. Johnsen, and I.C. Yu

The basic adaptations may be further combined to cover common refactoring
patterns [6]. For instance, moving a method M from class C to class B is cap-
tured by the sequence remMtd(C, M) · newMtd(B, M). By applying predefined
refactorings defined as sequences of basic adaptations, the user may ensure that
program analysis is postponed as appropriate. For instance, if remMtd(C, M) ·
newMtd(B, M) denotes a simple pull up method refactoring from C to a super-
class B, program analysis will probably fail between the two adaptations as the
proof obligations cannot in general be resolved at that stage.

6.3 Analysis Tasks

An analysis task removes an obligation from U(C) which is analyzed depend-
ing on its structure. This analysis may spawn new proof obligations which are
included in U(C); the size of U(C) does not necessarily shrink by each task. How-
ever, each analysis task maintains the soundness invariant, and the soundness
conditions are ensured if all unresolved obligations are successfully analyzed.

– Obligation I � m : (p, q) ∈ U(C). This obligation is resolved if (p, q) fol-
lows by entailment from the guarantees in G(C, m). To ensure entailment,
it may be necessary to first extend G(C, m). Let O be a proof outline such
that O �PL body(C, m) : (p′, q′) for some (p′, q′). Extending G(C, m) by
〈(p′, q′), O〉 means that U(C) must be extended to maintain the soundness
invariant: For each requirement of the form {r} n() {s} in O, the obligation
m � n : (r, s) is included in U(C), and for each requirement of the form
{r} v.n() {s} with v : I, the obligation m � I : n : (r, s) is included in U(C).
Remark that the supplied guarantee (p′, q′) may be identical to (p, q).

– Obligation m � n : (r, s) ∈ U(C). This obligation is resolved if (r, s) follows
by entailment from the guarantees in G(C, n). Similar to above, it may be
necessary to first extend G(C, n).

– Obligation m � I : n : (r, s) ∈ U(C). This obligation is resolved if (r, s) fol-
lows from the constraints for m in I. One may need to extend the constraints
of I before removal, e.g., by the adaptation newConstr(I, n : (r, s)).

7 Example

Figure 4 presents a snapshot of a small bank account system under develop-
ment. A class Account provides basic operations for depositing and withdrawing
amounts of money. The balance of the account is stored in a field bal. A class
Customer has references to two Account objects; a regular account reg and a sav-
ings account sav. The method save implements functionality for transferring an
amount from the regular account to the savings account. We consider different
adaptations of the code in Fig. 4 and explain the essential parts of the analysis.

Internal modifications of Account. Assume that the programmer extracts
the manipulation of bal in Account into one method, defined by the adaptation

newMtd(Account, Bool update(Int y) : (bal = b0, bal = b0 + y ∧ return) {
bal :=bal+y; return true}).

Tracking Behavioral Constraints during Object-Oriented Software Evolution 265

interface IAccount {
Bool deposit(Int x) : (bal = b0 ∧ x > 0, bal = b0 + x ∧ return)
Bool withdraw(Int x) : (bal = b0 ∧ x > 0 ∧ bal − x ≥ 0, bal = b0 − x ∧ return)

(bal = b0 ∧ x > 0 ∧ bal − x < 0, bal = b0 ∧ ¬return)
}
class Account implements IAccount { Int bal := 0;

Bool deposit(Int x) { Bool val := false ;
if (x>0) {bal := bal+x; val := true}; return val

}
Bool withdraw(Int x) {Bool val := false ;

if (x>0 ∧ bal−x≥0) {bal := bal−x; val := true}; return val}}
class Customer { IAccount reg, sav;

Bool save (Int amt) {
Bool res := reg .withdraw(amt); if (res) {sav. deposit (amt)}; return res}}

Fig. 4. The initial bank account system, with Account and Customer classes

The guarantee may be verified by a proof outline which imposes no requirements.
In the sequel, we assume that this specification is in G(Account, update).

Next we consider removing the assignments to bal from deposit and withdraw.
For deposit, we may apply the following adaptation:

newMtd(Account, Bool deposit(Int x) { Bool val:=false
if (x>0) { val := update(x)}; return val}).

Since the method definition has changed, we cannot rely on a previous verifica-
tion of this method; i.e., all elements must be removed from G(Account, deposit).
However, since deposit is public, the interface constraint for this method is cur-
rently unresolved. This means that the following element is added to U(Account):

IAccount � deposit : (bal = b0 ∧ x > 0, bal = b0 + x ∧ return).

We may consider this constraint as a guarantee for the new version of deposit,
and verify a proof outline O with {x = y∧bal = b0}update{bal = b0+x∧return}
as requirement. The set G(Account, deposit) is then extended by

〈(bal = b0 ∧ x > 0, bal = b0 + x ∧ return), O〉

and the obligation deposit � update : (y = x∧ bal = b0, bal = b0 + x∧ return) is
included in U(Account). Now, both elements of U(Account) follow directly from
the specifications of their respective methods. Removing the assignment to bal
in withdraw follows the same pattern by applying the adaptation

newMtd(Account, Bool withdraw(Int x) { Bool val:=false
if (x>0 ∧ bal-x ≥ 0) { val := update(-x)}; return val}).

The interface constraints listed in Fig. 4 are added to U(Account). These can be
analyzed by proof outlines which rely on the verified specification of update.

266 J. Dovland, E.B. Johnsen, and I.C. Yu

Adding new functionality. In Customer, the developer adds functionality
to save money if the balance of regular account has reached a given value:

newMtd(Customer, Bool saveLimit() { Bool res := false; Int rbal := reg.getBal();
if (rbal>limit) {res:=save(rbal-limit)}; return res}).

The new method calls a method getBal via IAccount, but getBal has not yet
been defined. However, the developer of Customer may assume that the method
is there by postponing the adaptation of IAccount. Especially, the new method
in Customer may be analyzed before adapting IAccount; new requirements will
then be available at the time the interface is extended. We illustrate how such a
requirement is tracked, ensuring that both IAccount and the class implementing
this interface satisfy the requirement. Assume that the analysis of saveLimit
imposes the following requirement on getBal, which is included in U(Customer):

saveLimit � IAccount:getBal : (bal = b0, bal = b0 ∧ return = b0).

To resolve this proof obligation, the interface IAccount must be extended, for
example by the following adaptation:

newConstr(IAccount, Int getBal : (bal = b0, bal = b0 ∧ return = b0)).

To preserve the soundness invariant, the framework adds the following obligation
to all classes that implement IAccount:

IAccount � getBal : (bal = b0, bal = b0 ∧ return = b0).

In this case the obligation is added to U(Account). This obligation is resolved by
a straightforward proof outline for the following method addition to Account:

newMtd(Account, Int getBal(){return bal}).

8 Related Work

Pierik and de Boer [13] present a sound and complete proof outline logic for
object-oriented programs. This work is based on a closed world assumption,
meaning that the class hierarchy is not open for incremental extensions. To sup-
port object-oriented design, proof systems should be constructed for incremen-
tal (or modular [3]) reasoning. Most prominent in that context are approaches
based on behavioral subtyping [8]. Relaxing this approach, lazy behavioral subtyp-
ing [4,5] facilitates incremental reasoning while allowing more flexible code reuse
than traditional behavioral subtyping. We refer to [4,5] for a more comprehensive
discussion on incremental reasoning about class extensions.

We have found few systems for the analysis of general class modifications.
Two widely discussed topics within model transformations in the context of
model-driven development are refactoring and refinement. Different approaches,

Tracking Behavioral Constraints during Object-Oriented Software Evolution 267

Fig. 5. Basic adaptations classified by modularity. Category 1 needs access to a single
class; category 2 to the hierarchy below the adapted class; category 3 needs global access
to all implements clauses; and category 4 needs global access to all implementations.

Modularity level Adaptations
1. Class local newCls newImpl
2. Below class newFld, remFld, newMtd, remMtd, setSup
3. Global – implements clause remInt, newConstr, newSup
4. Global – implementation remCls, remImpl, remConstr, remSup

e.g., [9, 10, 17], discuss how to preserve behavioral consistency between differ-
ent model versions when refinement or refactoring is applied. Program trans-
formations, such as verification refactoring [19], may be applied in to reduce
program complexity and facilitate verification, e.g., to reduce the size of verifica-
tion conditions. Contract-based software evolution of aspect-oriented programs
is considered in [16], formalizing standard refactoring steps.

Going beyond behavior preserving transformations, slicing techniques [18]
may be used to describe the effect of updates to determine which properties
are preserved and which are potentially invalidated in the new version.

9 Conclusion

As programs evolve, reasoning frameworks for behavioral analysis need to handle
shifting proof obligations for different program units. This paper has presented
the building blocks of such a framework for object-oriented software evolution.
The framework is able to handle program evolution by separating the guarantees
of a method from the requirements imposed by calls to the method. The paper
formulates a soundness invariant which enables a flexible interleaving of soft-
ware evolution and reasoning actions by tracking unresolved proof obligations
for each class. Software evolution is captured by basic adaptations on existing
programs. We describe how each adaptation maintains the soundness invari-
ant and unresolved obligations are tracked automatically. Fig. 5 summarizes the
level of modularity supported by the different basic adaptations, a high degree
of required global knowledge indicates that the operations may be complex to
support in practice. For instance, removing interface constraints may have severe
impact on software systems. Proof obligations are resolved by program analy-
sis, and the soundness invariant ensures the overall soundness of the performed
analysis when no unresolved proof obligations remain. Whereas many behavioral
restrictions to software evolution make sense for manual proof, it is interesting to
see to what extent advanced verification systems can be used to alleviate these
restrictions by tracking constraints in a more general way. A full formalization
of the framework, implementation, and soundness proofs are future work.

Acknowledgment. We thank Olaf Owe for valuable discussions of this work.

268 J. Dovland, E.B. Johnsen, and I.C. Yu

References

1. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J., Schlatte,
R., Wong, P.Y.H.: Modeling Spatial and Temporal Variability with the HATS Ab-
stract Behavioral Modeling Language. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011)

2. Damiani, F., Dovland, J., Johnsen, E.B., Schaefer, I.: Verifying traits: A proof
system for fine-grained reuse. In: Proc. 13th Workshop on Formal Techniques for
Java-like Programs (FTfJP 2011), 8:1–8:6. ACM (2011)

3. Dhara, K.K., Leavens, G.T.: Forcing behavioural subtyping through specification
inheritance. In: 18th Conf. on Software Engineering. IEEE Press (1996)

4. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Lazy behavioral subtyping. Jour-
nal of Logic and Algebraic Programming 79(7), 578–607 (2010)

5. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Incremental reasoning with
lazy behavioral subtyping for multiple inheritance. Science of Computer Program-
ming 76(10), 915–941 (2011)

6. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(August 1999)

7. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM TOPLAS 23(3), 396–450 (2001)

8. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM TOPLAS 16(6),
1811–1841 (1994)

9. Marković, S., Baar, T.: Refactoring ocl annotated uml class diagrams. Software
and Systems Modeling 7, 25–47 (2008)

10. Massoni, T., Gheyi, R., Borba, P.: Synchronizing Model and Program Refactoring.
In: Davies, J. (ed.) SBMF 2010. LNCS, vol. 6527, pp. 96–111. Springer, Heidelberg
(2011)

11. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Transactions on
Software Engineering 30(2), 126–139 (2004)

12. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Informatica 6(4), 319–340 (1976)

13. Pierik, C., de Boer, F.S.: A proof outline logic for object-oriented programming.
Theoretical Computer Science 343(3), 413–442 (2005)

14. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-Oriented
Programming of Software Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010.
LNCS, vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

15. Soundarajan, N., Fridella, S.: Inheritance: From code reuse to reasoning reuse. In:
5th Intl. Conf. on Software Reuse (ICSR5), pp. 206–215. IEEE Press (1998)

16. Ubayashi, N., Piao, J., Shinotsuka, S., Tamai, T.: Contract-based verification for
aspect-oriented refactoring. In: Proc. Intl. Conf. on Software Testing, Verification,
and Validation, pp. 180–189. IEEE Press (2008)

17. Van Der Straeten, R., Jonckers, V., Mens, T.: A formal approach to model refac-
toring and model refinement. Software and Sys. Modeling 6, 139–162 (2007)

18. Wehrheim, H.: Slicing techniques for verification re-use. Theoretical Computer Sci-
ence 343(3), 509–528 (2005)

19. Yin, X., Knight, J., Weimer, W.: Exploiting refactoring in formal verification. In:
Proc. Dependable Systems and Networks (DSN 2009). IEEE Press (2009)

Towards the Verification of Adaptable Processes�

Mario Bravetti1, Cinzia Di Giusto2, Jorge A. Pérez3, and Gianluigi Zavattaro1

1 Laboratory FOCUS (Università di Bologna / INRIA), Italy
2 CEA, LIST, France

3 CITI - Dept. of Computer Science, FCT New University of Lisbon, Portugal

Abstract. In prior work, with the aim of formally modeling and analyzing the
behavior of concurrent processes with forms of dynamic evolution, we have pro-
posed a process calculus of adaptable processes. Our proposal addressed the
(un)decidability of two safety properties related to error occurrence. In order to
allow for a more comprehensive verification framework for adaptable processes,
the ability to express general properties is most desirable. In this paper we address
this important issue: we explain how the proof techniques for (un)decidability re-
sults for adaptable processes generalize to a simple yet expressive temporal logic
over adaptable processes. We provide examples of the expressiveness of the logic
and its significance in relation with the calculus of adaptable processes.

1 Introduction

The notion of interaction has been intensively investigated in the last decades
of research in computer science. As a result, a number of formal models of interact-
ing computing entities have been proposed; notable examples include Petri nets and
process calculi such as CCS [8] and the π-calculus [9]. In process calculi, the notion
of interaction has been dominantly related to the idea of (point-to-point) communica-
tion: processes interact by producing complementary signals on a designated common
medium, possibly exchanging values. While successful, the process calculi approach
to concurrent interaction has devoted significantly less attention to forms of interac-
tion not strictly based on communication. Consequently, process calculi abstractions for
“non communicating” phenomena such as, e.g., dynamic evolution and reactive behav-
ior, are either unnatural or hard to express in calculi such as CCS. Hence, it is difficult
to reason about the fundamental properties of such abstractions. This is unfortunate,
as such phenomena are extremely natural and commonly found in actual concurrent
systems.

We are interested in dynamic evolution, a particularly pervasive phenomenon in con-
current systems nowadays. In fact, dynamic evolution at runtime is a central functional
requirement for an increasingly growing class of evolvable computing systems. In case
of exceptional circumstances (say, failures or low performance), evolvable systems are
able to modify their behavior (say, correcting errors or improving performance indica-
tors). This is often expected to occur semi-automatically, without requiring a system-
level shutdown. These distinctive features of evolvable systems arise in a number of
� Supported by the French projects ANR-2010-SEGI-013 - AEOLUS, ANR-11-INSE-0007 -

REVER, by the EU integrated project HATS, and by FCT / MCTES - Carnegie Mellon Portu-
gal Program, grant NGN-44-2009-12 - INTERFACES.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 269–283, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

270 M. Bravetti et al.

emerging applications and programming paradigms. For instance, in workflow appli-
cations, it is common for activities to be suspended, restarted, and relocated. More-
over, one might also want to replace a running activity without affecting the rest of
the workflow. Similarly, in component-based systems we would like to reconfigure a
whole component or even groups of components. This is the case of, e.g., distributed
systems implemented as collections of interacting web services. Another example are
cloud computing infrastructures, in which evolvability corresponds to the crucial abil-
ity of acquiring and releasing computing resources depending on the current demand,
while observing both performance and business goals.

More concretely, our interest is in effective reasoning/verification techniques for
evolvable systems, following the long, fruitful tradition of process calculi in the analysis
of concurrent systems. To this end, we have proposed a process calculus of adaptable
processes, denoted E [5,4]. The E calculus extends CCS with located processes and a
primitive that allows to update the part of the system inside a given location. The result
of such an update operation is a new process, dynamically constructed by considering
both the current state of the location and an update pattern described by the update
primitive. This way, evolution of E processes is the result of modifications enforced by
update actions on located communicating processes. The power of update actions is thus
directly related with the kinds of patterns admitted as part of update actions. For this
reason, in [5,4] we have identified three different variants of E , which consider different
update patterns: in E3, the current content of the location must be always preserved by
update actions, which insert it into a new context; in E2, this condition is relaxed: the
current content can be removed or duplicated, but it cannot be placed inside prefixes of
the language; finally, in E1, update patterns are completely unconstrained.

We have used E as a basis to reason about the correctness of dynamically evolv-
able concurrent processes. Our notion of correctness relies on representing errors as
barbs—the standard observability predicates in process calculi. Barbs denote the most
basic observation on the behavior of the system. Hence, in our approach a correct state is
a state in which error barbs are not observable. This a fairly flexible approach, as barbs
can represent errors as well as any kind of exceptional circumstances not necessarily
related to failures, such as, e.g., performance alerts. Based on this notion of correct-
ness, in [5,4] we have also studied how to apply formal analysis techniques to study
safety properties of E processes. In particular, we have considered a safety property for
evolvability. The property is parametric in the maximal number k of steps needed by
the system to manage the error state (via appropriate update actions). Namely, a sys-
tem satisfies k-bounded adaptation if there is no computation path including more than
k consecutive error states. In [5,4] we presented a detailed study of the boundaries of
decidability of k-bounded adaptation in the three variants of E .

While insightful for understanding the expressiveness of adaptable processes and the
challenging interplay of correctness and evolvability, the decidability results of [5,4]
are only an initial step towards a framework for the formal specification and analysis of
dynamically evolvable systems. A particularly pressing issue is the definition of tech-
niques for logic specification and verification, in such a way that correctness guarantees
for E processes can be stated in general terms. Such techniques would put us closer to
a practical framework of adaptable processes. This is the topic of the present paper.

Towards the Verification of Adaptable Processes 271

Following the approach put forward in [2], in this paper we extend and generalize the
(un)decidability results of [5,4] to a logic setting. More precisely, we introduce a tem-
poral logic that allows for the specification of behavioral properties, including the ones
presented in [5,4]. Besides the usual conjunction, disjunction, and negation connectives,
the logic includes a predicate that checks whether a system can perform a given action,
as well as temporal next and eventual modalities, noted ♦ and ♦∗, respectively. This
logic is simple and yet expressive enough to assert interesting properties of evolvable
processes. For instance, a variant of bounded adaptation with k non consecutive errors
and a property for monotone correctness—representing the fact that once corrected,
errors do not reappear—can be easily stated in the logic we propose here.

The main contribution of this paper is in showing the decidability of a fragment of the
logic in which negation can be used only at top level (i.e., not under the scope of other
operators) and conjunction is applied only between one basic predicate and a formula.
The need to restrict to such a fragment is justified by a complementary contribution of
the paper, namely the undecidability of formulae like ♦∗(¬w) that test the possibility
of reaching a state in which action w cannot be executed.

The rest of this paper is structured as follows. In Section 2 we present the calculus
of adaptable processes, following [5,4]. The temporal logic over adaptable processes
is defined in Section 3. Compelling examples for the framework given by the calculus
of adaptable processes and the logic are described in Section 4. The (un)decidability
results for the logic and its fragment are detailed in Section 5. Some concluding remarks
and directions for further developments are given in Section 6.

2 The E Calculus

We present the E calculus, its different variants, and its operational semantics. We refer
to [5,4] for further details and discussions.

The E calculus is a variant of CCS [8] without restriction and relabeling, and ex-
tended with constructs for evolvability. As in CCS, in E , processes can perform actions
or synchronize on them. We presuppose a countable set N of names, ranged over by
a, b, . . ., possibly decorated as a, b and ã, b̃. As customary, we use a and a to denote
atomic input and output actions, respectively. The syntax of E processes extends that of
CCS with primitive notions of adaptable processes a[P] and update prefixes ã{U}:

Definition 1 (E). The classes of E processes, prefixes, and update patterns are de-
scribed by the following grammars:

P ::= a[P] | P ‖ P | !π.P |
∑
i∈I

πi.P π ::= a | a | ã{U}

U ::= a[U] | U ‖ U | !π.U |
∑
i∈I

πi.U | •

Intuitively, update patterns above represent a context, i.e., a process with zero or more
holes. The intention is that when an update prefix ã{U} is able to interact, the current
state of an adaptable process named a is used to fill the holes in the update pattern U .
Given a process P , process a[P] denotes the adaptable process P located at a. Notice

272 M. Bravetti et al.

that a acts as a transparent locality: process P can evolve on its own, and interact freely
with external processes. Localities can be nested, so as to form suitable hierarchies
of adaptable processes. The rest of the syntax follows standard lines. A process π.P
performs prefix π and then behaves as P . Parallel composition P ‖ Q decrees the
concurrent execution of P and Q. We abbreviate P1 ‖ · · · ‖ Pn as

∏n
i=1 Pi, and

use
∏k P to denote the parallel composition of k instances of process P . Given an

index set I = {1, .., n}, the guarded sum
∑

i∈I πi.Pi represents an exclusive choice
over π1.P1, . . . , πn.Pn. As usual, we write π1.P1 + π2.P2 if |I| = 2, and 0 if I is
empty. Process !π.P defines guarded replication, i.e., infinitely many occurrences of P
in parallel, which are triggered by prefix π.

Given an update patternU and a processQ, we write U〈〈Q〉〉 for the process obtained
by filling in with Q those holes in U not occurring inside update prefixes (a formal
definition can be found in [4]). Hence, {·} can be seen as a scope delimiter for holes •
in ã{U}.

We now move on to consider three concrete instances of update patterns U .

Definition 2 (Update Patterns). We shall consider the following three instances of
update patterns for E :

1. Full E (E1). The first update pattern admits all kinds of contexts for update prefixes.
This variant, corresponding to the above E is denoted also with E1.

2. Unguarded E (E2). In the second update pattern, holes cannot occur in the scope
of prefixes in U :

U ::= P | a[U] | U ‖ U | •

The variant of E that adopts this update pattern is denoted E2.
3. Preserving E (E3). In the third update pattern, the current state of the adaptable

process is always preserved (i.e. “•” must occur exactly once in U). Hence, it is
only possible to add new adaptable processes and/or behaviors in parallel or to
relocate it:

U ::= a[U] | U ‖ P | •

The variant of E that adopts this update pattern is denoted E3.

The process semantics is given in terms of a Labeled Transition System (LTS). It is
generated by the set of rules in Figure 1. In addition to the standard CCS actions (input,
output, τ), we consider two complementary actions for process update: ã{U} and a[P].
The former represents the possibility to enact an update pattern U for the adaptable
process at a; the latter says that an adaptable process at a, with current state P , can be
updated. We define −→ as

τ−−→, and write P
α−→ if P

α−→ P ′, for some P ′.

Definition 3 (LTS for E). The LTS for E , denoted
α−−→, is defined by the rules in Fig-

ure 1, with transition labels defined as:

α ::= a | a | a[P] | ã{U} | τ

In Figure 1, rules (SUM), (REPL), (ACT1), and (TAU1) are standard. Rule (COMP)
represents the contribution of a process at a in an update operation; we use � to denote

Towards the Verification of Adaptable Processes 273

(SUM)∑
i∈I

πi.Pi

πj−−→ Pj (j ∈ I)
(REPL)
!π.P

π−−→ P ‖!π.P
(COMP)

a[P]
a[P]−−−→ �

(LOC)
P

α−−→ P ′

a[P]
α−−→ a[P ′]

(ACT1)
P1

α−−→ P ′
1

P1 ‖ P2
α−−→ P ′

1 ‖ P2

(TAU1)

P1
a−−→ P ′

1 P2
a−−→ P ′

2

P1 ‖ P2
τ−−→ P ′

1 ‖ P ′
2

(TAU3)

P1
a[Q]−−−→ P ′

1 P2
ã{U}−−−−→ P ′

2

P1 ‖ P2
τ−−→ P ′

1{U〈〈Q〉〉/�} ‖ P ′
2

Fig. 1. LTS for E . Rules (ACT2), (TAU2), and (TAU4)—the symmetric counterparts of (ACT1),
(TAU1), and (TAU3)—have been omitted.

a unique placeholder. Rule (LOC) formalizes transparency of localities. Rule (TAU3)
formalizes process evolvability. To realize the evolution of an adaptable process at a,
it requires: (i) a process Q—which represents its current state; (ii) an update action
offering an update pattern U for updating the process at a—which is represented in P ′

1

by � (cf. rule (COMP)) As a result, � in P ′
1 is replaced with process U〈〈Q〉〉. Notice that

this means that the locality being updated is discarded unless it is re-created by U〈〈Q〉〉.
We introduce some definitions that will be useful in the following. We denote with

→∗ the reflexive and transitive closure of the relation →. We define Pred(s) as the set
{s′ ∈ S | s′ → s} of immediate predecessors of s, while Pred∗(s) denotes the set
{s ∈ S | s′ →∗ s} of predecessors of s. We will also assume point-wise extensions of
such definitions to sets, i.e. Pred(S) =

⋃
s∈S Pred(s) and similarly for Pred∗(S).

3 A Logic for Adaptable Processes

We now introduce the logic L and its fragment Lr, and illustrate their expressiveness.

Definition 4. The set At of atomic predicates p is given by the following syntax:

p ::= a
∣∣ a ∣∣ T .

Predicates a and a hold true for states/terms that may perform transitions a and a,
respectively. The intention is that the interpretation of atomic predicates should coincide
with the notion of barb in the process model. T is the true predicate that holds true for
every state/term. In the following, we use α to range over labels a, a, for some name a.

Definition 5. The set L of logic formulae φ, ψ, . . . is given by the following syntax,
where p ∈ At:

φ ::= p
∣∣ φ ∨ φ ∣∣ φ ∧ φ ∣∣ ¬φ ∣∣ ♦φ ∣∣ ♦∗φ

The set of logical operators includes atomic predicates p ∈ At, the usual boolean con-
nectives (∨, ∧, and ¬), as well as dynamic connectives (the next and eventuality modal-
ities, ♦ and ♦∗). The interpretation of L over LTSs is given below, where each formula
is mapped into the set of states/terms satisfying it.

274 M. Bravetti et al.

[[α]] =
{
s ∈ E | s α−−→

}
[[T]] = E [[♦φ]] = Pred([[φ]]) [[♦∗φ]] = Pred∗([[φ]])

[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]] [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]] [[¬φ]] = E \ [[φ]]

Connectives are interpreted as usual. We usually write s |= φ if s ∈ [[φ]].

Definition 6. A formula φ is called monotone if it does not contain occurrences of ¬.

Restricted monotone formulae are those monotone formulae in which conjunctions are
always of the form p ∧ φ, for some p ∈ At and a monotone formula φ ∈ L.

Definition 7. A formula φ is restricted monotone if it is monotone and, for any occur-
rence of φ1 ∧ φ2 inside φ, there exists i ∈ {1, 2} such that φi is a predicate p ∈ At.

We now introduce restricted logic as the logic composed by, possibly negated, restricted
monotone formulae.

Definition 8. The restricted logic is composed by the set Lr of formulae of the form φ
or ¬φ, where φ is a restricted monotone formula.

We give some examples of formulas in L and Lr. Below, we take ♦+φ
def
= ♦♦∗φ.

1. Possibly the most natural safety property one would like to ensure is the absence of
k consecutive barbs (representing, e.g., errors):

CBk(e)
def
= ¬♦∗(e ∧ ♦(e ∧ ♦(e ∧ . . . ∧ ♦e))︸ ︷︷ ︸

e appears k times

)

Observe how CBk(e) ∈ Lr. This basic scheme is easily extendable; below we
present a possible variant in which rather than using a single barb e we consider a
sequence ẽ = e1 . . . ek of k error barbs that we do not want to observe in sequence:

CDBk(ẽ)
def
= ¬♦∗(e1 ∧ ♦(e2 ∧ ♦(e3 ∧ . . . ∧ ♦ek))

)
2. A more insightful specialization of CBk(e) is the formula below, in which error

barbs are non consecutive:

NCBk(e)
def
= ¬♦∗(e ∧ ♦+(e ∧ ♦+(e ∧ . . . ∧ ♦+e))︸ ︷︷ ︸

e appears k times

)

As CBk(e), it is easy to see that NCBk(e) ∈ Lr. Specializations of NCBk(e) with
different error barbs, as in the previous example, are easy to obtain.

3. Another sensible property to ensure is monotone correctness: once solved, errors
do not reappear. In L this can be expressed as:

MC(e)
def
= ¬♦∗(e ∧ ♦+(¬e ∧♦+e)

)
Assuming a designated barb ok, signaling a correct (error-less) state, the above can
be captured in Lr as follows:

MCr(ok, e)
def
= ¬♦∗(e ∧ ♦+(ok ∧ ♦∗e)

)

Towards the Verification of Adaptable Processes 275

The extension of MCr(ok, e) to consider k different error phases (it cannot happen
that an error re-appears up to k times) is straightforward:

MCr
k(ok, e)

def
= ¬♦∗(e ∧♦+(ok ∧ ♦∗(e ∧ ♦+(ok ∧ . . . (ok ∧ ♦∗e))))︸ ︷︷ ︸

ok appears k times

)

4 Two Compelling Examples

We give two examples of adaptable processes. They rely on E2 processes and properties
in Lr. Hence, as we will see, model checking for them is decidable.

Booking a Flight. We model a simple interaction between a travel agency and a client
wishing to book a flight. Given a signal from the client, the agency contacts a pool of
different airlines. This pool is handled by an external booking service, which controls
the airlines the travel agency may choose from. Given a request, each airline may an-
swer positively, or it may emit an error signal, meaning there is no flight as desired by
the client, or simply that the airline services are down. If the airline does not provide
a positive answer then the booking service removes it from the pool of the airlines to

contact. We define the E process Sys
def
= Client ‖ Agency ‖ Booking, where:

Agency
def
= t[f.(r ‖ P [ñ])] with P [ñ] =

n∑
i=1

r.ai.A(i) Client
def
= c[f ‖ okf .pay]

Booking
def
=

n∏
i=1

ai.
(
ei.ri + ci.okf

)
‖

n∏
i=1

ri.t̃
{
t[r ‖ P [ñ/i]]

}
For simplicity, we have represented only interaction signals. Both the client and the
agency are represented as adaptable processes; this allows for eventual refinements of
their specifications (for instance, an update action on t may add new services). The
client contacts the agency via a synchronization on f ; in turn, this enables a synchro-
nization on r which selects an airline A(k) from the pool of options P [ñ]. As soon as
it is selected, before starting its executionA(k), the airline emits a signal ak, announc-
ing the selection to the booking service. We associate a signal ei with an error answer
from airline A(i), while ci stands for a positive confirmation. Observe how unrespon-
sive airlines are discarded by the booking service, by virtue of update actions affecting
the pool of airlines activated by the signal ri; P [ñ/i] denotes the pool P [ñ] in which
A(i) is not included. The booking service above is not very “patient”, as it does not give
another chance to the selected airline to respond; in case of an error signal, the airline
is discarded. With this in mind, it is easy to see that the following holds, for every i:

Sys |= MCr(ri, ei)

That is, after an error, an unresponsive airline will never produce new error signals. We
could have stated as well Sys |= MC(ei), for every i. However, while MCr(ri, ei) is a
formula in Lr, MC(ei) is a formula in L. As we will see, for E2 processes the former is
a decidable logic, whereas the latter is not.

276 M. Bravetti et al.

Scaling in Cloud Computing. In the cloud computing paradigm, applications are de-
ployed in infrastructures offered by external providers. Developers act as clients who
pay for the resources they consume (e.g., processor time in remote instances) and for
associated services (e.g., performance metrics, automated load balancing). A central
concern is therefore resource optimization, for clients and providers. To that end, cloud
providers such as Amazon’s Elastic Cloud Computing (EC2) [3] offer (auto)scaling
services, which allow cloud applications to add or release resources depending on the
current demand. Scaling has a direct influence in the amount of resources supporting the
application; correct, reliable scaling policies are thus central to resource optimization.

Below we give a simple model of a cloud computing scenario in E ; we focus on scal-
ing, drawing inspiration from autoscaling in EC2 [3]. Each cloud application is com-
posed of a number of instances and of active processes implementing the scaling poli-

cies. This scenario can be abstracted as process C
def
= P ‖ App1 ‖ · · · ‖ Appr, which

represents the cloud as a provider P interacting with applications App1, . . . ,Appr. In

turn, each such applications is defined as Appi
def
= api

[
Ii ‖ · · · ‖ Ii ‖ Sdwi ‖ Supi

]
.

That is, each Appi contains a fixed number of running instances, each represented by
Ii = midi[Si], a process that abstracts an instance as an adaptable process with an
identification mid and state Si. Also, Sdwi and Supi stand for the processes implement-
ing scaling down and scaling up policies, respectively. In practice, this control relies
on external services (e.g., services that monitor cloud usage and produce appropriate
alerts) present in the provider’s infrastructure. Therefore, we will assume P to include
a subprocessM which communicates the appropriate alerts. M performs adaptations
due to high performance (action hii) or low performance (action loi) of Appi and uses
a signal e to denote a temporary erroneous situation that remains until the adaptation is
performed. Formally, we take M to be exec ‖ M ′, where exec triggers the execution
of an alerting round in theM ′ process andM ′is:

M ′ def
=!exec.(

∑
1≤i≤r

loi.alertdi .(e + ok.exec) +
∑

1≤i≤r

hii.alertui .(e + ok.exec))

The scaling policies are then defined accordingly (letting Ui = midi[•] ‖ midi[•]):

Sdwi = sdi
[
! alertdi .(m̃idi{0}. · · · .m̃idi{0}︸ ︷︷ ︸

fixed number of updates on midi

.ok)
]

Supi = sui
[
! alertui .(m̃idi{Ui}. · · · .m̃idi{Ui}︸ ︷︷ ︸

fixed number of updates on midi

.ok)
]

We assume the provider P to generate errors due to low/high performance by executing
an loi/hii action triggering the adaptation on application i in M . Given an alert from
M , the processes Sdwi and Supi modify the number of running application instances.
Given an output at alertdi , process Sdwi destroys a fixed number of instances of the
application i: this is achieved by updating localities midi with 0. Afterwards, an ok
action is emitted returning the control toM ′ and consuming the pending e signal. The
observability of ok thus represents the fact that the scaling down alert has been properly
enforced, and that the involved resources have been released. Process Sup implements a

Towards the Verification of Adaptable Processes 277

scaling up policy in a very similar way: rather than destroying an instance at midi, each
of the update actions creates a new one. Based on the above, we have that by checking

C |= MCr
k(ok, e)

we are able to assess whether k adaptations (due to low or high performance) are enough
for the adaptation needs of the applications: if this is the case then it will not be possible
for the cloud system C to produce an additional error signal e after observing k adap-
tations (each via an e signal followed by an ok signal). As in the previous example, we
prefer MCr

k(ok, e) over the extension of MC(e) to k error phases: such an extension is
a formula of L , which will be shown to be undecidable for E2 processes.

5 (Un)decidability Results for L and Lr

Here we present the (un)decidability results for L and Lr. We first introduce some basic
notions on well-structured transition systems and Minsky machines.

5.1 Preliminaries

Well Structured Transition Systems. The decidability of the restricted logic for E2

and E3 processes will be shown by appealing to the theory of well-structured transition
systems [7,1]. The following notions are from [7], unless differently specified.

Recall that a quasi-order (or preorder) is a reflexive and transitive relation.

Definition 9 (Well-quasi-order). A well-quasi-order (wqo) is a quasi-order ≤ over a
set X such that, for any infinite sequence x0, x1, x2 . . . ∈ X , there exist indexes i < j
such that xi ≤ xj .

Thus well-quasi-orders exclude the possibility of having infinite strictly decreasing se-
quences. Note that if ≤ is a wqo then any infinite sequence x0, x1, x2, . . . contains an
infinite increasing subsequence xi0 , xi1 , xi2 , . . . (with i0 < i1 < i2 < . . .).

The key tool to the decidability of several properties of computations is the notion
of well-structured transition system [7,1]. This is a transition system equipped with a
well-quasi-order on states which is (upward) compatible with the transition relation.
Here we will use so-called strong compatibility; hence the following definition.

Definition 10 (Well-structured transition system). A well-structured transition sys-
tem with strong compatibility is a transition system TS = (S,→), equipped with a
quasi-order ≤ on S, such that the two following conditions hold:

1. ≤ is a well-quasi-order;
2. ≤ is strongly (upward) compatible with →, that is, for all s1 ≤ t1 and all transi-

tions s1 → s2 , there exists a state t2 such that t1 → t2 and s2 ≤ t2 holds.

In the following, we will just use the term well-structured transition system to stand for
a well-structured transition system with strong compatibility.

Given a quasi-order ≤ overX , an upward-closed set is a subset I ⊆ X such that the
following holds: ∀x, y ∈ X : (x ∈ I ∧ x ≤ y) ⇒ y ∈ I . Given x ∈ X , we define
its upward closure as ↑ x = {y ∈ X | x ≤ y}. This notion can be extended to sets as
expected: given a set Y ⊆ X we define its upward closure as ↑ Y =

⋃
y∈Y ↑ y.

278 M. Bravetti et al.

Table 1. Reduction of Minsky machines

(M-INC)
i : INC(rj) m′

j = mj + 1 m′
1−j = m1−j

(i,m0,m1) −→M (i+ 1,m′
0,m

′
1)

(M-JMP)
i : DECJ(rj , s) mj = 0

(i,m0,m1) −→M (s,m0, m1)

(M-DEC)
i : DECJ(rj , s) mj �= 0 m′

j = mj − 1 m′
1−j = m1−j

(i,m0,m1) −→M (i+ 1, m′
0,m

′
1)

Definition 11 (Finite basis). A finite basis of an upward-closed set I is a finite set B
such that I =

⋃
x∈B ↑ x.

We are interested in effective pred-bases, as defined below.

Definition 12 (Effective pred-basis). A well-structured transition system has effective
pred-basis if there exists an algorithm such that, for any state s ∈ S, it returns the set
pb(s) which is a finite basis of Pred(↑ s).

The following proposition is a special case of Proposition 3.5 in [7].

Proposition 1. Let TS = (S,→,≤) be a finitely branching, well-structured transition
system, decidable ≤, and effective pred-basis. It is possible to compute a finite basis
pb∗(I) of Pred∗(I) for any upward-closed set I given via a finite basis.

Minsky machines. A Minsky machine (MM) is a Turing complete model composed of
a set of sequential, labeled instructions, and two registers. Registers rj (j ∈ {0, 1}) can
hold arbitrarily large natural numbers. Instructions (1 : I1), . . . , (n : In) can be of three
kinds: INC(rj) adds 1 to register rj and proceeds to the next instruction; DECJ(rj , s)
jumps to instruction s if rj is zero, otherwise it decreases register rj by 1 and pro-
ceeds to the next instruction; HALT terminates the execution. A MM includes a program
counter p indicating the label of the instruction being executed. In its initial state, the
MM has both registers set to 0 and the program counter p set to the first instruction. The
MM terminates whenever the halting intruction is reached. A configuration of a MM
is a tuple (i,m0,m1); it consists of the current program counter and the values of the
registers. Reduction over configurations of a MM, denoted −→M, is defined in Table 1.

5.2 Results for L
Here we show that the satisfiability of a formula in the logic L is undecidable for E
processes. We obtain this result by encoding MMs into E3 under the non restrictive
hypothesis that the MMs end with both registers set to 0. The encoding simulates the
behavior of MMs in an unfaithful manner: decrement instructions are simulated by se-
lecting nondeterministically whether to jump or actually execute the decrement. When
a jump is executed, a new empty copy of the register is created. The encoding produces

Towards the Verification of Adaptable Processes 279

Table 2. Encoding of Minsky machines into E3

REGISTER rj
�rj = 0�3 = rj [Regj ‖ cj [0]] with Regj =!incj .c̃j{cj [•]}.ack.uj .c̃j{cj [•]}.ack
INSTRUCTIONS (i : Ii)
�(i : INC(rj))�3 = !pi.incj .ack.(w ‖ pi+1)
�(i : DECJ(rj , s))�3 = !pi.(uj .ack.w.pi+1 + c̃j{•}.r̃j{rj [Regj ‖ cj [•]]}.ps)
�(i : HALT)�3 = pi.w

an outputw when an increment is executed, and produces an input w after a decrement.
Hence, if the machine executes correctly then there will be an equal number of outputs
and inputs at w. Moreover, the execution of the encoding takes place with an additional
output w in parallel (cf. Definition 13); this signal is meant to be consumed by an input
action which is available when the MM reaches a halt instruction. The undecidability
result (Theorem 1) thus exploits the ability L has for checking the absence of a barb: if
the MM has a terminating computation then no output w is observable.

Definition 13. Let N be a MM, with registers r0 = 0, r1 = 0 and instructions (1 :
I1), . . . , (n : In). Given the encodings in Table 2, the encoding of N in E3 (denoted
with �N�3) is defined as

�r0 = 0�3 ‖ �r1 = 0�3 ‖
n∏

i=1

�(i : Ii)�3 ‖ p1 ‖ w

A register rj that stores a numberm is encoded as an adaptable process rj that contains
m copies of the unit process uj.c̃j{cj [•]}.ack. Such an adaptable process also contains
process Regj which allows us to create further copies of the unit process when an in-
crement instruction is invoked. Furthermore, we use the collector cj to store processes
which are meant to be isolated. The instructions are defined taking into account this
role of cj . An increment adds an occurrence of uj.c̃j{cj [•]}.ack and outputs a message
on w. Notice that it could occur that an output on inc could synchronize with the cor-
responding input inside a collected process. This immediately leads to deadlock as the
containment induced by cj prevents further interactions. The encoding of a decrement
is implemented as an internal choice. The process tests if the content of the register
is equal or greater than zero. Notice that in E3 it is not possible to deterministically
determine whether the register contains value zero or not. Thus if the process guesses
that the register is zero, before jumping to the given instruction, it proceeds at disabling
its current content: this is done by putting the collector at top level in the register, the
register is then recreated by placing all its previous content in the collector. A decre-
ment instead removes one occurrence of uj .c̃j{cj[•]}.ack and one occurrence of w.
As before, it could occur that the output on uj could synchronize with the correspond-
ing input inside a collected process. Again, this immediately leads to deadlock and
no occurrence of w is consumed. Observe that in case of deadlock or a wrong guess
some copies of w will never be consumed, thus signaling a wrong computation. In case
of a correct computation, instead, when the program reaches the halt instruction the

280 M. Bravetti et al.

Table 3. Encoding of MMs into E1

REGISTER rj �rj = n�1 = rj [(|n|)j] where (|n|)j =

{
zj if n = 0
uj .(|n − 1|)j if n > 0.

INSTRUCTIONS (i : Ii)
�(i : INC(rj))�1 =!pi.r̃j{rj [uj .•]}.pi+1

�(i : DECJ(rj , s))�1=!pi.(uj .pi+1 + zj .r̃j{rj [zj]}.ps)
�(i : HALT)�1 = pi.h

occurrence of w present in the initial configuration (cf. Definition 13) is removed. Thus
we have that a MM N terminates iff its encoding has no barb on w.

Theorem 1. L is undecidable in E3.

Proof (Sketch). Consider a MM N and its encoding �N�3. It is easy to see that N ter-
minates iff �N�3 |= ♦∗(¬w) . Thus the undecidability of the satisfiability of formulae
in L follows from undecidability of the termination problem in MMs. �

As E3 is a subcalculus of E1 and E2 we can immediately conclude the following.

Corollary 1. L is undecidable in E1 and E2.

5.3 Results for Lr

Undecidability over E1. Similarly as above, to prove the undecidability of satisfiabil-
ity of formulae in Lr, we reduce to the termination problem. We resort to a MM similar
to the one presented in [5]. The encoding, denoted �·�1, is given in Table 3.

Definition 14. Let N be a MM, with registers r0 = 0, r1 = 0 and instructions (1 :
I1) . . . (n : In). Given the encodings in Table 3, the encoding of N in E1 (written
�N�1) is defined as �r0 = 0�1 ‖ �r1 = 0�1 ‖

∏n
i=1�(i : Ii)�1 ‖ p1 .

A register rj with value m is represented by an adaptable process at rj that contains a
sequence of m output prefixes on name uj , ending with an output action on zj , which
represents zero. To encode the increment of register rj , we enlarge the sequence of
output prefixes it contains. The adaptable process at rj is updated with the encoding
of the incremented value (which results from putting the value of the register behind
some prefixes) and then the next instruction is invoked. The encoding of a decrement of
register j consists of an exclusive choice: the left side implements the decrement of the
value of a register, while the right one implements the jump to some given instruction.
When the MM reaches a halt instruction the encoding exhibits a barb on h. Thus a MM
N terminates iff its encoding has a barb on the distinguished action h.

Theorem 2. Lr is undecidable in E1.

Proof (Sketch). Consider a MM N and its encoding �N�1. It is easy to see that N
terminates iff �N�1 |= ♦∗h . Thus the undecidability of Lr follows from undecidability
of the termination problem in MMs. �

Towards the Verification of Adaptable Processes 281

Decidability over E2. The decidability of the satisfiability of formulae in the Lr

logic is obtained by resorting to the theory of well-structured transition systems and the
pred-basis construction. In [4], we showed a decidable preorder ! on processes. Such
a preorder is a well-quasi-order, strongly compatible with respect to the reduction in
E2, and with an effective pred-basis pb. It is defined over a tree-like representation of
processes; below we give intuitions on its definition, see [4] for details.

Given an E2 process P , we say it is in normal form if P =
∏m

i=1 Pi ‖
∏n

j=1 aj [P
′
j].

The tree denotation of P , denoted Tr(P), is a tree built as follows. The root is labeled
ε, and hasm+n children: the formerm are leaves labeled P1, . . . , Pm, while the latter
n are subtrees recursively built from processes P ′

1, . . . , P
′
n, where the only difference

is that their roots are labeled a1[], . . . , an[], respectively. Given two processes P and
Q, P ! Q holds iff there exists an injection f from the nodes of Tr(P) to the ones of
Tr(Q) such that, let m,n, p be nodes in Tr(P): (i) If m is an ancestor of n then f(m)
is an ancestor of f(n). (ii) If p is the minimal common ancestor of m and n then f(p)
is the minimal common ancestor of f(m) and f(n). (iii) The label of n is equal to the
label of f(n).

Having defined a suitable preorder on processes, it remains to show how each inter-
pretation [[φ]] can be described via an effectively computable finite basis.

We begin with the definition of sequential subprocesses.

Definition 15 (Sequential Subprocesses). Let P be an E2 process. The set of sequen-
tial subprocesses of P , denoted ss(P), is defined inductively as follows:

ss(π.P) = {π.P} ∪ ss(P) if π = a or π = a
ss(ã{U}.Q) = {ã{U}.Q} ∪ ss(U) ∪ ss(Q) ss(a[P]) = ss(P)
ss(

∑
i∈I πi.Pi) =

{∑
i∈I πi.Pi

}
∪
⋃

i∈I ss(πi.Pi) ss(•) = ∅
ss(!π.P) = {!π.P} ∪ ss(P) ss(P ‖ Q) = ss(P) ∪ ss(Q)

Note that ss(0) = ss(
∑

i∈∅ πi.Pi) = {0}. The definition extends to sets of processes
as expected.

The finite basis for a formula φ with respect to a process P is defined inductively on
the structure of φ; see Table 4. The base cases are trivial: the interpretation of a pred-
icate α is given by all sequential subprocesses that can immediately exhibit α, and the
interpretation of T is given by all sequential subprocesses (i.e., all processes satisfy T).
The finite basis of ♦φ is the pred basis pb of the processes that satisfy formula φ; the
interpretation of ♦∗φ is the basis given by Proposition 1 of the finite basis of φ. The
computability of pb∗() derives from Proposition 1. The interpretation of the ∨ opera-
tor is the union of the interpretation of the two formulae, as expected. In contrast, the
calculation of the finite basis for the ∧ operator is more involved, as we cannot simply
consider the intersection between the two interpretations. Given a formula α ∧ φ, our
aim is to take all the minimal processes which, at the same time, satisfy φ and exhibit α.
For this reason, we first select from FBP (φ) all processes that can immediately perform
α. Then, we modify all the other processes so that they can exhibit α. This is achieved
using a function AddP (Q,α), which adds a sequential subprocess that can exhibit α
in parallel at top level and inside every adaptable process. The latter is performed by
making use of contextsC, which are simply processes with a hole, such that the process
obtained by applying them to a process P is denoted by C[P].

282 M. Bravetti et al.

Table 4. Finite basis of a process P for φ

FBP (α) = {R ∈ ss(P) | R α−→}
FBP (T) = ss(P)
FBP (♦φ) = pb(FBP (φ))
FBP (♦∗φ) = pb∗(FBP (φ))
FBP (φ1 ∨ φ2) = FBP (φ1) ∪ FBP (φ2)
FBP (α ∧ φ) = FBP (φ ∧ α) = IbP (FBP (φ), α)

where:
IbP (A,α) = {Q ∈ A | Q α−→} ∪ {AddP (Q,α) | Q ∈ A and Q � α−→}
AddP (Q,α) = {Q ‖ R | R ∈ ss(P) and R

α−→}∪
{C

[
a[R ‖ Q′]

]
| Q = C

[
a[Q′]

]
, R ∈ ss(P) and R

α−→}

Theorem 3. Lr is decidable in E2.

Proof (Sketch). Given a formula φ ∈ Lr and a process P ∈ E2. It is easy to see that
↑ FBP (φ) = [[φ]]. Then as FBP (φ) is computable, in order to decide if P satisfies φ it is
enough to check if there exists a process S in FBP (φ) such that S ! P .

As E3 is a subcalculus of E2 we can immediately conclude the following.

Corollary 2. Lr is decidable in E3.

6 Concluding Remarks

This paper has reported initial steps towards the specification and verification of adapt-
able processes, as introduced in [5]. We have presented L, a simple temporal logic that
describes the evolution of adaptable processes. The logic L is shown to be undecidable
in the three different variants of E studied in [5,4]. On the bright side, the satisfiability
problem for Lr—a fragment of L in which negation is allowed only at top level and
conjunction is limited—was shown to be decidable for all processes in E2 and E3.

The E calculus is related to higher-order process calculi such as, e.g., the higher-
order π-calculus [10], Kell [11], and Homer [6]. (Further comparisons between E and
other calculi and languages can be found in [4].) In such calculi, processes can be passed
around, and so communication involves term instantiation, as in the λ-calculus. Update
actions in E are a form of term instantiation: they can be seen as a streamlined version of
the passivation operator of Kell and Homer, which allows to suspend a running process.
It would be interesting to investigate if the results and techniques developed in this paper
can apply to Kell and Homer (or to some interesting fragments of them).

We comment on a number of extensions of the results here presented. We conjecture
that the decidability result can be extended to monotone formulae. This should imply
a more involved construction of the finite basis FBP (φ1 ∧ φ2) given in Table 4. Also,
all the results shown in this paper can be easily extended to the static variants of E , as
defined in [4]. Informally speaking, the static characterization of E processes is related
to the tree-like structures obtained by nesting of located processes. In dynamic adaptable
processes, the class here considered, update actions which modify the nesting structure

Towards the Verification of Adaptable Processes 283

are allowed; in contrast, in static adaptable processes such actions are disallowed: this
guarantees that no adaptable process is created nor destroyed along computation.

It would not be difficult to show that L is undecidable in the static version of E2,
by resorting to the termination problem, using an MM encoding similar to the one
presented here. Furthermore, the undecidability of Lr in E1 would hold also when
considering static processes, as the encoding reported here already satisfies the static
constraints. Finally, by appealing to the machinery based on well-structured transition
systems, we can show that L is decidable for E2 processes in the static variant.

Also interesting would be to extend L with recursion. This would allow to express
properties like eventual adaptation, as considered in [5]. The results in [4] already sug-
gest that Lr extended with recursion should be undecidable. Indeed, logic satisfiability
could be reduced to the termination problem, using encodings of MMs similar to those
given in [4]. Nevertheless, some decidability results could be obtained when consider-
ing a static version of E3, using an encoding of Petri nets as the one presented in [4].

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of programs with
well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000)

2. Acciai, L., Boreale, M., Zavattaro, G.: On the Relationship between Spatial Logics and Be-
havioral Simulations. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 146–160.
Springer, Heidelberg (2010)

3. Amazon Web Services. Autoscaling (2011),
http://aws.amazon.com/autoscaling/

4. Bravetti, M., Di Giusto, C., Pérez, J.A., Zavattaro, G.: Adaptable processes. Technical report,
University of Bologna (2011), http://www.cs.unibo.it/~perez/ap/

5. Bravetti, M., Di Giusto, C., Pérez, J.A., Zavattaro, G.: Adaptable Processes (Extended Ab-
stract). In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722,
pp. 90–105. Springer, Heidelberg (2011)

6. Bundgaard, M., Godskesen, J.C., Hildebrandt, T.: Bisimulation congruences for homer —
a calculus of higher order mobile embedded resources. Technical Report TR-2004-52, IT
University of Copenhagen (2004)

7. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput.
Sci. 256(1-2), 63–92 (2001)

8. Milner, R.: Comunication and Concurrency. Prentice Hall (1989)
9. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I. Inf. Comput. 100(1),

1–40 (1992)
10. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms. PhD thesis CST–99–93, University of Edinburgh, Dept. of Comp. Sci. (1992)
11. Schmitt, A., Stefani, J.-B.: The Kell Calculus: A Family of Higher-Order Distributed Process

Calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 146–178. Springer,
Heidelberg (2005)

http://aws.amazon.com/autoscaling/
http://www.cs.unibo.it/~perez/ap/

Runtime Verification: The Application Perspective�

Yliès Falcone1 and Lenore D. Zuck2

1 University of Grenoble I (UJF), Laboratoire d’Informatique de Grenoble
ylies.falcone@ujf-grenoble.fr

2 University of Illinois at Chicago
lenore@cs.uic.edu

Abstract. In the past decade, Runtime Verification (RV) has gained much fo-
cus, from both the research community and practitioners. Roughly speaking, RV
combines a set of theories, techniques and tools aiming towards efficient analysis
of systems’ executions and guaranteeing their correctness using monitoring tech-
niques. Major challenges in RV include characterizing and formally expressing
requirements that can be monitored, proposing intuitive and concise specification
formalisms, and monitoring specifications efficiently (time and memory-wise).

With the major strides made in recent years, much effort is still needed to make
RV an attractive and viable methodology for industrial use. In addition, further
studies are needed to apply RV to wider application domains such as security,
bio-health, power micro-grids.

The purpose of the “Runtime Verification: the application perspective” track
at ISoLA’12 was to bring together experts on runtime verification and potential
application domains to try and advance the state-of-the-art on how to make RV
more attractive to industry and usable in additional application domains. This in-
troductory paper proposes an overview of the contributions brought by the papers
selected at the track.

1 Introduction

In the past decade Runtime Verification (RV) has gained much focus from both research
community and practitioners [26,17,24,21]. Roughly speaking, RV combines a set of
theories, techniques and tools aiming towards efficient analysis of systems’ executions
and guaranteeing their correctness using monitoring techniques. While the techniques
used in RV are not novel and have been applied in several areas, mainly by the testing
community, the term runtime verification had been coined only in 2001 by a workshop
(now a conference) carrying that name initiated by Klaus Havelund (who authors a
paper in this track) and Grigore Rosu. Since then, RV had become a first-class citizen
in the formal method community, being combined with techniques such as learning,
model checking, theorem proving, and more.

Obviously, static methods can guarantee program correctness. They are, however, not
always applicable to a variety of systems and properties. Often the size of the system

� The work of the first author was funded in part by the French-government Single Inter-Ministry
Fund (FUI) through the IO32 project. The work of the second author was funded in part by
NSF award CCF-0916438.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 284–291, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Runtime Verification: The Application Perspective 285

renders static methods prohibitively expensive. Systems to which static techniques are
applied are those where correctness is to be proven under all circumstances, such as
safety critical systems. In contract, many “real-life” systems may be occasionally faulty,
especially when the fault is not catastrophic (or even very expensive) and the system can
recover from it. Similarly, static techniques are applicable to systems that are built top
down and are often applied at the design stages. In contrast, many “real-life” systems
are developed ad-hoc so that their properties are not always known à priori, yet, they
may be learnt during the system’ execution. For these and many other reasons, RV
offers an interesting alternative to static methods. Yet, in spite of the major strides made
in research of RV methods during recent years, much effort is still needed to make it an
attractive and viable methodology for industrial use. In addition, many domains, such
as security and bio-health monitoring, can gain from RV methodologies, yet, their use
is scarce.

The purpose of the “Runtime Verification: the application perspective” track at
ISoLA’12 is to bring together experts on runtime verification and potential applica-
tion domains to try and advance the state-of-the-art on how to make RV more usable
and attractive to industry and other disciplines.

This introductory paper briefly presents the research directions addressed by the arti-
cles in the “Runtime Verification: the application perspective” track at ISoLA’12. These
research directions aims at making runtime verification a more viable and effective
technique in the industrial context for more application domains. More specifically, the
topics addressed by the articles can be grouped in three following general directions:

– Reducing the overhead induced by monitoring systems (Section 2);
– Combining RV with other validation techniques (Section 3);
– Applying RV to new application domains (Section 4).

2 Towards More Efficient RV

Monitoring the execution induces a penalty in terms of execution time on the monitored
system. Parametric properties are especially expensive because observed events carry
data values and the monitor has to compute and evaluate possible combinations and
monitor the coherent ones. Many frameworks have been proposed to monitor parametric
properties (cf. [2,28,9,5,4,3]). There exists a spectrum of available solutions that differ
in the expressiveness of the specification formalisms and the efficiency of the monitors
at runtime [3]. As one could expect, the rule of thumb is that the more expressive the
formalism is, the more costly (resource-wise) it is to monitor the specifications.

The performance issue also arises when monitoring information-flow properties us-
ing taint analysis [27,29]. In information-flow analysis, the addressed question is whether
dangerous information can potentially flow from input variables (or API) to the vulner-
able points in the program. Contrarily to standard monitoring, it entails to monitor a
large number of execution points and several executions of the program. Moreover,
when performed at the assembly level, the monitoring overhead gets multiplied, and
becomes prohibitive.

286 Y. Falcone and L.D. Zuck

What Does AI Have to Do with RV? [16] (Havelund). Havelund proposes to use
Artificial Intelligence techniques to help monitoring parametric specifications. Sev-
eral runtime verification frameworks and tools are rule-based systems. Intuitively,
in such frameworks, a specification consists more or less of rules of the form
left-hand-side⇒ right-hand-side. A monitoring state is a set of facts that
is matched against the left-hand side of each rule which, in turn, possibly produces new
facts. Each new event that is received augments the current set of facts. A problem that
arises when monitoring parametric specifications is that complex and multiple matching
are required depending on the effective parameters carried out by events, and, against
the formal parameters in the left-hand side part of rules.

Havelund proposes an original solution inspired from Artificial Intelligence where
knowledge systems are similarly modeled using rule-based productions. In such a con-
text, the RETE algorithm provides efficient matching by intuitively maintaining a net-
work of connected facts. Havelund proposes (i) an RV version of this algorithm, (ii)
its Scala implementation, (iii) exploration of its use for runtime verification, and (iv)
empirical assessment of the algorithm it against state-of-the-art solutions.

A Case for “piggyback” Runtime Monitoring [14] (Hallé et al.). As already mentioned,
devising algorithms and implementations to monitor parametric properties is notori-
ously difficult because of the extremely large state-space created at runtime. Roughly
speaking, multiple possible associations between parameters need to be tracked by mul-
tiple instances of monitors. Such algorithms usually involve complex additional data
structures in the monitoring code to efficiently access and update the state associated
with a runtime monitor. When parametric properties rule the order of method calls on
objects, the authors point out that objects already maintain some form of internal state
machine that can keep track of the evaluation of the property. Using directly this in-
ternal data-structure in monitoring is referred to as “piggy-back monitoring.” To attain
piggy-back monitoring, the authors study the design a systematic method to determine
whether a property is monitorable using the embedded state-machine, propose a sys-
tematic translation between the field values and the state of the underlying machine,
and empirically asses the gain of using such state machine versus traditional techniques
using additional data-structures.

3 Combining RV with Other Techniques

In the past few years, research endeavors have been combining runtime verification
with other validation techniques so to obtain the benefits of several worlds. Classically,
runtime verification has been combined with the static techniques, and more particularly
with static analysis techniques [20,19,8], and more recently with model-checking [18].
Objectives of such combination include reducing overhead and improving coverage.

The track “Runtime Verification, the application perspective” contais three original
combinations of RV with other techniques. Ahrendt et al. propose to combine RV with
theorem proving. Bensalem et al. propose to introduce statistical model-checking tech-
niques on the BIP component framework. Statistical model-checking can be understood
as the combination of RV with statistics. Thus, following a previous paper on runtime

Runtime Verification: The Application Perspective 287

verification of BIP systems, the authors use statistical algorithms over the verdicts col-
lected during monitoring of systems. Havelund’s paper, described above, can also be
considered in this category since it employs AI techniques to improve the efficiency of
monitoring parametric properties.

A Unified Approach for Static and Runtime Verification: Framework and Applications [1]
(Ahrendt et al.). The paper addresses the main limitations of RV that hinders its use in
industrial applications: RV is a partial validation technique and the overhead induced by
monitoring is still too important to be acceptable. To overcome these difficulties, the au-
thors propose a unified specification and validation framework that combines static and
runtime verification methods. The targeted specification are ppDATE, i.e., communicat-
ing timed automata with functional unit specifications that allows to combine control
and data-centric specifications. In this framework, the static and verification part rely
on the Key theorem prover and the LARVA tool, respectively. The pre- and post- condi-
tions of methods referred in a specification are extracted and transmitted to the theorem
prover for a tentative proof. Parts of the specification that were statically proved are
removed to spare the runtime verifier from those checks. Partial proofs are leveraged
to specialize pre-conditions and monitors. The authors propose two applications of this
framework: (runtime) verification of the absence of conflicts in contracts and validation
of systems handling transactions.

Statistical Model Checking QoS Properties of Real Time Systems in BIP [6] (Bensalem
et al.). Statistical model checking extends runtime verification capabilities by exploit-
ing statistical algorithms in order to get some evidence on property satisfaction or vi-
olation. Concretely, the outcome of monitoring several runs is used in a mathematical
algorithm to compute the probability that the system will satisfy a property with a given
confidence level.

In a series of recent works, the authors introduced BIP (Behavior Interaction and
Priorities), a component-based framework supporting rigorous design of embedded sys-
tems. BIP proposes several monitoring and simulation facilities. However, its verifica-
tion capabilities are limited. This paper presents SBIP, an extension of BIP that relies on
a new stochastic semantics that enables verification of large-size systems by combining
existing features of BIP with Statistical Model Checking. The approach is illustrated on
several industrial case studies.

4 (New) Application Domains for RV

In the last few years, much progress has been made on the theoretical parts of RV.
Applying RV to new domains is now possible and was the topic of some papers of the
track. Four application domains are addressed by the papers: security and information
flow [11,23], home-automation [7], system biology [10], OSGi services [7], and power-
micro grids.

4.1 Information-Flow Properties and Concurrent Programs

Monitoring Temporal Information Flow [11] (Dimitrova et al.). RV methods have been
applied to security protocols for several decades. This paper focuses on one of the

288 Y. Falcone and L.D. Zuck

important yet elusive challenges of security – information-flow. One of the challenges
of applying dynamic techniques for enforcement of information-flow policies is that
such techniques must not only account for the executions that occur, but also for others
that do not occur. The authors have recently developed a temporal logic, SecLTL, that
extends liner-time temporal logic an new modal operator, “Hide,” which captures the
property of a certain part of the input remaining secret within some time frame. Here,
Dimitrova et al. show how to use SecLTL for the specification of runtime monitors of
information-flow control properties.

Dynamic Information-Flow Analysis for Multi-threaded Applications [23] (Mounier
and Sifakis). A particularly demanding domain for validation is multi-threaded appli-
cations. In this context, analyzing information-flow properties is challenging and costly
because of communicating channels between running processes. Dynamic validation
of security properties is particularly appealing because static techniques are limited ei-
ther in scalability or expressiveness of the analyzed properties. Mounier and Sifakis
overview existing dynamic approaches to this problem and propose a window-based
information flow analysis. It assumes that interleaving of processes is limited to a series
of local and restricted time periods, namely epochs. Compared to existing approaches,
the window-based analysis is hardware-independent, and enjoys a lower overhead.

Bounded-Interference Sequentialization for Testing Concurrent Programs [25] (Razavi
et al.). Similar to Mounier et al, this work studied the problem of multi-threaded pro-
grams, here with a shared memory model where threads communicate by means of
shared variables. These programs are challenging because they incorporate two types
of non-determinism, that imposed by the scheduler and that imposed by the input. In-
deed, testing methodologies for such programs focus primarily on the former (with
context switching, e.g.) usually ignoring the nondeterminism imposed by the input. In
this work, Razavi et al propose a methodology that addresses both types of nondeter-
minism: A multithreaded program is transformed into a sequential one with bounded-
interference, that, roughly speaking, bounds the interference of other threads in terms
of number of critical accesses to the shared variables. Once a sequential program is
obtained, the more traditional testing tools can be applied to it to guarantee good cov-
erage. The methodology was implemented and successfully applied to concurrent C#
programs.

4.2 System Biology

Runtime Verification of Biological Systems [10] (David et al.). The paper explores a
combination of two statistical model checkers, UPPAAL-SMC and PLASMA to demon-
strate the advantages of runtime verification of complex systems whose description may
not be available to the verifier. The studied system is a model of biological oscillation
whose description is a system of ordinary differential equations. Using UPPAAL-SMC,
the system could be modeled as a stochastic one, and several (bounded time) linear tem-
poral logics properties were proven using PLASMA. The paper thus demonstrates the
power of runtime verification for system whose state space in not explicitly described,
and shows a nice interaction of two powerful model checkers.

Runtime Verification: The Application Perspective 289

4.3 OSGi Services

Behavioral Specification Based Runtime Monitors for OSGi Services [7] (Blech et al.).
The paper proposes a vision of a tool framework and process for component-based
systems and presents directions for related research topics and applications. Abstract
specifications are used as a basis for runtime monitors and additional checks which
can be performed during runtime. RV frameworks dedicated to component-based sys-
tems already exist (cf. [12,13]), however, the tool framework suggested here focuses
on systems where components can be exchanged, added or removed during runtime.
Special emphasis is put on the OSGi framework as an application component system
and an Eclipse based realization of an integrated tool framework supporting multiple
development phases.

4.4 Power-Micro Grids

Modelling and Decentralised Runtime Control of Self-stabilising Power Micro Grids
[15] (Hartmanns and Hermanns). In the past decade or so there has been much effort
to develop a “Smart Grid” where networks of automated systems are used to improve
efficiency of distribution and use of powers. In 2009, President Obama announced a
$10B plan to invest on the smart grid. This paper focuses on the German efforts towards
a smart grid. It gives an overview of the modeling aspects of a decentralized power grid,
and the challenges towards modeling and allaying such systems so to guarantee their
correct operation. The paper then offers several approaches to improve on the unstable
system that is currently used. It offers a set of properties that a properly designed system
should have, and proposes some models for systems that satisfy those requirements.

5 Concluding Remarks

The “Runtime Verification: the Application Perspective” track at ISoLA 2012 focused
on making RV more efficient, combining it with other techniques as to obtain better val-
idation, and applying RV to new application domains. It includes ten papers on state-of-
the-art research topics that cover a wide range of topics that are being actively pursued
by the RV community and lay the ground for much future work.

We thank all the authors who contributed to the track.

References

1. Ahrendt, W., Pace, G., Schneider, G.: A unified approach for static and runtime verification:
framework and applications. In: Margaria, Steffen [22]

2. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L.J., Kuzins, S., Lhoták, O., de Moor,
O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with free variables to
AspectJ. In: Johnson, R.E., Gabriel, R.P. (eds.) OOPSLA, pp. 345–364. ACM (2005)

3. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified Event
Automata: Towards Expressive and Efficient Runtime Monitors. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer, Heidelberg (2012)

290 Y. Falcone and L.D. Zuck

4. Barringer, H., Havelund, K.: TRACECONTRACT:A Scala DSL for Trace Analysis. In: Butler,
M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer, Heidelberg (2011)

5. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitoring: from
Eagle to RuleR. J. Log. Comput. 20(3), 675–706 (2010)

6. Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., Legay, A., Nouri, A.: Sbip: A statistical
model checking extension for BIP. In: Margaria, Steffen [22]

7. Blech, J.O., Falcone, Y., Rueß, H., Schäetz, B.: Behavioral Specification based Runtime
Monitors for OSGi Services. In: Margaria, Steffen [22]

8. Bodden, E., Hendren, L.J.: The Clara framework for hybrid typestate analysis. STTT 14(3),
307–326 (2012)

9. Chen, F., Roşu, G.: Parametric Trace Slicing and Monitoring. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Heidelberg (2009)

10. David, A., Larsen, K.G., Legay, A., Seadwards, S., Poulsen, D.: Systems biology, runtime
verification and more. In: Margaria, Steffen [22]

11. Dimitrova, R., Finkbeiner, B., Rabe, M.: Monitoring temporal information flow. In: Margaria,
Steffen [22]

12. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using Temporal Logic for Dynamic Reconfigu-
rations of Components. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010. LNCS, vol. 6921,
pp. 200–217. Springer, Heidelberg (2010)

13. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime Verification of
Component-Based Systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011.
LNCS, vol. 7041, pp. 204–220. Springer, Heidelberg (2011)

14. Hallé, S., Tremblay-Lessard, R.: A case for “piggyback” runtime monitoring. In: Margaria,
Steffen [22]

15. Hartmanns, A., Hermanns, H.: Modelling and decentralised runtime control of self-
stabilising power micro grids. In: Margaria, Steffen [22]

16. Havelund, K.: What does AI have to do with RV. In: Margaria, Steffen [22]
17. Havelund, K., Goldberg, A.: Verify Your Runs. In: Meyer, B., Woodcock, J. (eds.)

VSTTE 2005. LNCS, vol. 4171, pp. 374–383. Springer, Heidelberg (2008)
18. Hinrichs, T., Sistla, P.A., Zuck, L.D.: Model checking meets run-time verification. In:

Voronkov, A., Korovina, M. (eds.) HOWARD-60: Proceedings of the Higher-Order Work-
shop on Automated Runtime verification and Debugging (to appear, 2012)

19. Huang, X., Seyster, J., Callanan, S., Dixit, K., Grosu, R., Smolka, S.A., Stoller, S.D., Zadok,
E.: Software monitoring with controllable overhead. STTT 14(3), 327–347 (2012)

20. Kim, C.H.P., Bodden, E., Batory, D., Khurshid, S.: Reducing Configurations to Monitor
in a Software Product Line. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K.,
Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418,
pp. 285–299. Springer, Heidelberg (2010)

21. Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of Logic and
Algebraic Programming 78(5), 293–303 (2008)

22. Margaria, T., Steffen, B.: ISoLA 2012, Part I. LNCS, vol. 7609. Springer, Heidelberg (2012)
23. Mounier, L., Sifakis, E.: Dynamic information-flow analysis for multi-threaded applications.

In: Margaria, Steffen [22]
24. Pnueli, A., Zaks, A.: PSL Model Checking and Run-Time Verification Via Testers. In: Misra,

J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586. Springer,
Heidelberg (2006)

25. Razavi, N., Holzer, A., Farzan, A.: Bounded-interference sequentialization for testing con-
current programs. In: Margaria, Steffen [22]

Runtime Verification: The Application Perspective 291

26. Runtime Verification (2001-2012), http://www.runtime-verification.org
27. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal on Se-

lected Areas in Communications 21(1), 5–19 (2003)
28. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electr. Notes Theor. Comput.

Sci. 144(4), 109–124 (2006)
29. Terauchi, T., Aiken, A.: Secure Information Flow as a Safety Problem. In: Hankin, C.,

Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg (2005)

http://www.runtime-verification.org

What Does AI Have to Do with RV?

(Extended Abstract)

Klaus Havelund�

Jet Propulsion Laboratory
California Institute of Technology

California, USA

Runtime Verification (RV) consists of monitoring the behavior of a system, either
on-the-fly as it executes, or post-mortem after its execution for example by
analyzing log files. Within the last decade several systems have been developed
to address this issue. These systems usually implement specification languages
which are based on formalisms such as state machines [11,14,8,12,5], regular
expressions [1,8], temporal logic [16,10,15,3,19,9,18,8,5], or grammars [8].

Some systems are based on some form of rewriting. In the Java PathExplorer
(Jpax) system [15] a property is represented as an LTL [17] term. The semantics
of LTL is in turn specified by a set of rewrite rules of the form lhs ⇒ rhs, for
example, it contains a rewrite rule reflecting the semantics of the until operator
(p until q): p U q = q ∨ (p ∧ ©(p U q)). Each new event causes the current
LTL term to be rewritten into a new term representing the formula that holds
in the next step. For example, a formula on the form “always, an a implies
eventually b”: �(a → ♦b), on an event a is rewritten into ♦b ∧ �(a → ♦b).
Properties in Jpax are propositional in the sense that formulas cannot refer to
events that carry data. The TraceContract Scala API lifts this principle to
the Scala programming language, while also handling data parameterization
as well as state machines. Other systems based on this form of LTL-rewriting
include [10,3,19,18].

The Ruler system [6,7], and its state machine oriented derivative LogScope
[4], implement rule-based systems. The state of such a system at any point in
time is a set of facts, for example {open(file1), closed(file2)}. An incoming event
is a new fact that is added to this set. A Ruler specification is in principle a
set of rules of the form: lhs ⇒ rhs, where the left hand side (lhs) is a set of
conditions on the current monitoring state (set of facts), and the right hand
side rhs is a set of actions to be taken in case the conditions are satisfied, for
example adding or deleting facts. Ruler’s inspiration comes from imperative
(executable) temporal logics, as for example found in MetateM [2]. The key
problem in evaluating a set of rules given a set of facts is to perform efficient
matching of facts against conditions in rules. It is not difficult to imagine, that

� Part of the work described in this publication was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 292–294, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

What Does AI Have to Do with RV? 293

in the case where many facts are stored this matching process can be costly if
not performed in a smart manner.

The field of Artificial Intelligence (AI) has itself studied a problem very similar
to the runtime verification problem, namely rule-based production systems, used
for example to represent knowledge systems. In such systems a specification is
likewise a set of rules lhs⇒ rhs, with a similar interpretation as in Ruler. The
classic AI approach to efficient matching is the Rete algorithm [13]. This algo-
rithm maintains a network of facts, avoiding to re-evaluate all conditions in each
rule’s left hand side each time the fact database changes. We have implemented
the rather sophisticated Rete algorithm in the Scala programming language
and are exploring its utility for the RV problem. We address its functionality (is
it a solution for implementing runtime monitors) and its efficiency (how does it
compare with state-of-the-art RV systems). Dynamic program visualization is
used to demonstrate the algorithm and the modifications needed for it to apply
to the RV problem.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittamplan, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. In: OOPSLA 2005. ACM Press (2005)

2. Barringer, H., Fisher, M., Gabbay, D.M., Gough, G., Owens, R.: MetateM: An
introduction. Formal Asp. Comput. 7(5), 533–549 (1995)

3. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-Based Runtime Verifi-
cation. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

4. Barringer, H., Groce, A., Havelund, K., Smith, M.: Formal analysis of log
files. Journal of Aerospace Computing, Information, and Communication 7(11),
365–390 (2010)

5. Barringer, H., Havelund, K.: TraceContract: A Scala DSL for Trace Analysis.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011)

6. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule Systems for Run-Time Moni-
toring: From Eagle to RuleR. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS,
vol. 4839, pp. 111–125. Springer, Heidelberg (2007)

7. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitor-
ing: from Eagle to RuleR. J. Log. Comput. 20(3), 675–706 (2010)

8. Chen, F., Roşu, G.: Parametric Trace Slicing and Monitoring. In: Kowalewski,
S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer,
Heidelberg (2009)

9. D’Amorim, M., Havelund, K.: Event-based runtime verification of Java programs.
In: Workshop on Dynamic Program Analysis (WODA’05). ACM Sigsoft Software
Engineering Notes, vol. 30(4), pp. 1–7 (2005)

10. Drusinsky, D.: The temporal rover and the ATG rover. In: Havelund, K., Penix, J.,
Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg
(2000)

11. Drusinsky, D.: Modeling and Verification using UML Statecharts, 400 pages.
Elsevier (2006) ISBN-13: 978-0-7506-7949-7

294 K. Havelund

12. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime Verification of Safety-Progress
Properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 40–59.
Springer, Heidelberg (2009)

13. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19, 17–37 (1982)

14. Havelund, K.: Runtime verification of C programs. In: Suzuki, K., Higashino, T.,
Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 7–22.
Springer, Heidelberg (2008)

15. Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: 16th ASE Con-
ference, San Diego, CA, USA, pp. 135–143 (2001)

16. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance
based on formal specifications. In: PDPTA, pp. 279–287. CSREA Press (1999)

17. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE Computer Society (1977)

18. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: Proc. of the 5th Int.
Workshop on Runtime Verification (RV 2005). ENTCS, vol. 144(4), pp. 109–124.
Elsevier (2006)

19. Stolz, V., Huch, F.: Runtime verification of concurrent Haskell programs. In: Proc.
of the 4th Int. Workshop on Runtime Verification (RV 2004). ENTCS, vol. 113,
pp. 201–216. Elsevier, Amsterdam (2005)

A Case for “Piggyback” Runtime Monitoring

Sylvain Hallé and Raphaël Tremblay-Lessard

Department of Computer Science and Mathematics
Université du Québec à Chicoutimi, Canada

Abstract. A runtime monitor enforcing a constraint on sequences of
method calls on an object must keep track of the state of the sequence
by updating an appropriate state machine. The present paper stems from
the observation that an object’s member fields must already contain an
encoding of that state machine, and that a monitor essentially duplicates
operations that the object performs internally. Rather than maintain a
state machine in parallel, the paper puts forward the concept of “piggy-
back” runtime monitoring, where the monitor relies as much as possible
on the object’s own state variables to perform its task. Experiments on
real-world benchmarks show that this approach greatly simplifies the
monitoring process and drastically reduces the incurred runtime over-
head compared to classical solutions.

1 Introduction

Most non-trivial classes in an object-oriented language expect their methods to
be called following a specific pattern. Despite the fact that these methods always
have public visibility, the internal state of the object may mandate a program to
use only a well-defined subset of all these methods at any given time. As we shall
see in Section 2, the allowed sequences of method calls on an object form a kind
of “interface” that can often be formalized as a finite-state machine. In the past
decade, monitoring tools have been developed and applied to the enforcement
of such interfaces at runtime. By intercepting method calls during the execution
of a program, these tools can make sure that objects are used according to
their finite-state machine specification, and block any non-compliant attempt at
accessing an object’s methods.

In all monitoring frameworks for Java known to date, such as MOP [20],
LARVA [10], BeepBeep [14] and Tracematches [6], the monitor is responsible
for keeping a copy of the finite-state machine specification, and for updating
its current state based on the method calls it intercepts. Since the storage and
updating of such a state machine requires supplemental resources, a central point
in current research is to minimize the overhead incurred by using an independent
runtime monitor. The basic process can be optimized in various ways —for
example, by keeping a single state machine with multiple pointers for each object
instance. However, it is common practice to monitor sequences of method calls
with a separate data structure.

The present paper challenges this state of things. In Section 5, it shall show
through simple examples how in some situations, an object’s own member fields

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 295–311, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

296 S. Hallé and R. Tremblay-Lessard

contain all the information necessary to determine that a method call is invalid.
In other words, if a class imposes a sequence of method calls represented by a
finite-state machine, it may already contain a monitor for that machine, encoded
somewhere in its member fields. It follows that in those situations, current moni-
tor implementations, which maintain and update their own finite-state machine,
essentially duplicate operations that the object itself already performs internally.

The paper then draws the natural conclusions from this observation. In Section
5 it puts forward the idea that, rather than updating its own state, a monitor
should rely as much as possible on the monitored object’s member fields. Such a
monitor effectively “piggybacks” on the object’s own state information to make
its decisions —hence the term piggyback runtime monitoring.

This idea, albeit simple, raises a number of important questions that must be
addressed for piggyback runtime monitoring to become useful in practice.

1) How hard is it to find the appropriate mapping between member fields’ val-
ues and monitor states? We first provide a theoretical answer, by showing in
Section 4 that this problem reduces to the directed graph homomorphism prob-
lem, known to be NP-complete. Although the desired finite-state machine can
theoretically be encoded through a complex combination of multiple member
fields, in our empirical study of the OpenJDK we found that the state machine
involved at most two primitive member fields in the most complex case.

2) How often is a property already “embedded” in an object’s member fields? In
Section 5, we provide a first empirical answer to this question through a manual
inspection of the relevant classes inside the actual source code of the OpenJDK
6, looking for member fields encoding 13 properties used in past literature and
benchmarks [5–7, 9, 15, 19]. We found that 10 out of the 13 properties can be
equivalently monitored by piggybacking on some of their member fields. This
entails that properties that needed to save and track state information across
method calls have been reduced to a simple, stateless property that requires no
additional data apart from the object’s own.

Upon further study, we discovered that the remaining three properties that
were not monitorable using the piggyback approach present an interesting di-
chotomy in the types of constraints one may want to monitor, depending on
what happens upon an invalid method call. We call syntactical properties the
ones that, when violated, create an error in the program: exception thrown, null
pointer dereferencing, division by zero, etc. By contrast, semantic properties re-
late to the meaning and integrity of the object’s functionality, and do not cause
immediate runtime errors. We shall see, through examples taken from the Open-
JDK, how these two classes exactly determine if a property is verifiable with
piggyback runtime monitoring.

3) How much overhead savings can piggyback monitoring bring? We performed
an empirical testing of piggyback monitoring on the DaCapo Benchmark [4]
(release 9.12), which consists of a set of open source, real world applications
with non-trivial memory loads. This is the benchmark used in all past papers

A Case for “Piggyback” Runtime Monitoring 297

in the field [5–7,9,15,19]. Hence the computed measurements can be deemed as
a fair basis for comparison to related works. Our results, described in Section
6, reveal that this approach yields a very low runtime overhead (up to 20 times
lower than the current best results) and a virtually inexistent memory overhead.

For a majority of the properties we studied, the piggybacked member fields
do not have public visibility. We argue in Section 7 that the most important
hurdle to piggyback runtime monitoring is not technical, but rather stems from
a design issue that can be observed in a number of basic Java classes. The paper
ends by suggesting the principle of design for monitoring, according to which
objects should purposefully provide methods for querying their state, when that
information conditions the methods one can call at a given time.

2 State-of-the-Art in Java Runtime Monitoring

Runtime monitoring is the process of observing an actual run of a program and
dynamically checking and enforcing constraints while it is executing. A body of
literature has focused on the runtime monitoring of so-called behavioural prop-
erties, i.e. constraints that characterize appropriate use of objects, particularly
for the Java language. Behavioural properties can be seen as a generalization of
the notion of type; not only does an object have a set of allowed methods, but
what methods can be called also depends on the context (i.e. the object’s state).
A runtime monitor may intercept method calls on each instance of an object
and prevent invalid sequences from happening by blocking method calls that do
not fit the current state of the the object.

2.1 Stateful Properties of Java Objects

We made an exhaustive compilation of properties studied in Java runtime mon-
itoring in related papers published over the past five years, concentrating on
those expressing constraints over objects taken from the Java API (mostly the
java.io and java.util packages) [5–7, 9, 15, 19]. This set of papers relies on
a total of 13 properties, sometimes referred to by different names in different
papers. A few of them are worthy of mention. For example, property HasNext

requires tat any call to next() must always be immediately preceded by a call
to hasNext() that returned true; property HashMap forbids one to change an
object’s hashCode() while it is in a HashMap.

Monitoring these properties presents three challenges. First, each of them
expresses a stateful constraint on objects: the set of method calls that can be
invoked on an object depends on the history of previous method calls; hence
property Remove forbids the user of an Iterator to call method remove() if it
follows a previous call to the same method without a call to next() in between.

Second, these properties specify constraints on a per-instance basis (also called
“parametric” in [15]). It does not suffice to record all calls to remove() and
next(): each must be tied to the proper instance of Iterator to keep track of
their respective history.

298 S. Hallé and R. Tremblay-Lessard

Finally, some of the properties correlate method calls on multiple objects;
this is the case of e.g. SafeEnum, which forbids any call on an Iterator if
its parent Vector has been modified using methods like put() or remove().
For these properties one cannot simply keep track of each instance’s history
separately.

2.2 Current Monitoring Methods

In virtually all known monitor implementations, such as JavaMOP [20], LARVA
[10], BeepBeep [14], Tracematches [6], J-Lo [23], PQL [18], PTQL [13], SpoX [11],
PoET [12], Eagle and RuleR [3], the monitor is responsible for keeping a copy
of the finite-state machine specification in memory across each method call to
the same object. Method calls are intercepted during execution using purpose-
built instrumentation techniques, or by writing pointcuts in an aspect-oriented
framework such as AspectJ [17].

In between these calls, the machine is stored into a cell of an “array” con-
taining the state machines of all the current instances of the object. Upon each
method call, the appropriate monitor must be located and retrieved. Special
data structures to optimize this process have been described (e.g. [2]). Yet this
task reportedly amounts to a very large portion of the total overhead incurred
by the classical approach.

Moreover, the monitor must also keep track of instances of objects that have
been garbage-collected, in order to delete their corresponding automata. Oth-
erwise, unnecessary monitor instances can be kept for the entire length of a
program. This issue is a research topic in itself, and ultimately amounts to pro-
gramming a mini-garbage collector inside the monitor [15].

This inherent inefficiency can be mitigated by inserting the monitor instance
directly into the objects whenever possible. The Tracematches tool [6] has had
for several years now such an optimization feature, which takes advantage of
so-called inter-type declarations. However, inter-type declarations are difficult to
implement when the property to monitor correlates method calls across multiple
objects, as is the case for SafeEnum described above.

Despite these challenges, runtime monitoring techniques have been steadily
improving in the past decade. One of the latest studies on the topic [15] reports
that the “most efficient monitoring system to date” incurs a time overhead below
5% for a large number of properties; yet, for some others, execution time almost
triples when the monitor is added to the program.

3 A Monitor in the Program

Barring their varying performance, a common point of all existing monitoring
approaches is their reliance on a monitor that is independent from the objects
to observe. To the best of our knowledge, this design choice has never been
questioned, and alternatives to this approach have never been sought. In this
section, we challenge this fact and observe that an object’s existing member

A Case for “Piggyback” Runtime Monitoring 299

fields, in many cases, may already contain an encoding of the monitor’s finite-
state machine that can be put to good use.

3.1 A Simple Example

Consider the Java class Stateless object shown in Figure 1. This class defines
three methods a(), b(), and c(), and is designed in such a way that a() and b()

can be called at any time, but c() always throws an error.1 It is straightforward
to devise a constraint on the invocation of methods on a Stateless object:

class Stateless {
void a() { }
void b() { }
void c() { throwError(); }

}

class Stateful {
private int s = 1;

void a() { s = s + 1; }
void b() { s = 0; }
int c() { return 1 / s; }
boolean getS() { return s; }

}

Fig. 1. Two simple Java classes: Stateless and Stateful

C1. You should never call c().

a,b0

(a) C1

b

a
a,c

0 1

(b) C2

Fig. 2. Two finite-state automata representing constraints C1–C2

This constraint on sequences of method calls can be represented by a state
machine shown in Figure 2(a), where edge labels represent method calls, and
where output values are ignored. We say that a Stateless object O imposes
this state machine M , meaning that it throws an error if a sequence of method
calls is not in L(M), the language accepted byM . This state machine is minimal,
in the sense that no machine with a smaller set of states can be made to accept
the same language.

The situation is different if we consider the Stateless object class and the
following constraint, depicted in Figure 2(b):

1 We use method throwError() as a placeholder for any undesirable event or behaviour
that should be prevented from happening.

300 S. Hallé and R. Tremblay-Lessard

C2. You should never call c() right after b().

This time, the property is not correlated with possible errors resulting from the
object’s usage. A Stateless object has no way to detect how one calls c()

with respect to previous calls to a() and b(), for the simple reason that it has
no memory —that is, no state variable or member object that can differentiate
between any sequence of method calls. In contrast, the Stateful object shown
in Figure 1 has a member variable s. Calls to methods a(), b() and c() update
that variable in such a way that, according to constraint C2, c() can be called
exactly when s is greater than 0 —in this case, C2 prevents a division by zero.

It turns out that there is a straightforward relationship that can be established
between an object’s state space and the properties of its valid sequences of
method calls. By state space, we mean the subset of the Cartesian product of all
values of the object’s member variables, reachable from the object’s initial state
through any sequence of method calls. If the object contains member objects,
its possible values are the set of its own states, and so on recursively.

Theorem 1. Let SO be the set of states of an object O having a set of method
names L. Let M = (SA, δ, s0,A, L) be a minimal state machine with states SA,
initial state s0,A, and a labelled transition function δ : SA × L → SA. If O
imposes a set of valid sequences of method calls encoded by M , then there exists
a mapping H : SO → SA such that calling method � ∈ L in state s leads to state
s′ in O entails H(s′) = δ(H(s), �).

Proof. Define the mapping H as follows: for a sequence m, let sO ∈ SO be
the state in which O is after calling each method of m in sequence, and let
sM ∈ SM be the state of the state machine after reading the same sequence. Let
H(sO) � sM .

We must now show that H is well-defined, i.e. that any sequence of methods
m where O ends in sO hasM ending in the same state sM . Suppose the contrary;
then there exists some sO ∈ SO such that H(sO) can be defined for two different
values sM and s′M . This is only possible if there exist two method sequences, m
and m′, such that both end in sO in O, but reach different states sM and s′M in
M .

Consider a sequence of method calls m′′ resuming from sO. Since δO is a
function, then δO(mm

′′) = δO(m
′m′′). Hence if mm′′ ends in an error, then so is

m′m′′; in reverse if if mm′′ does not end in an error, then so is m′m′′. But since
by hypothesis O imposes M , this entails that then mm′′ ∈ L(M) if and only if
m′m′′ ∈ L(M). Since m′′ is arbitrary, then either sM = s′M (contradicting our
hypothesis), or sM �= s′M , yet the same method calls are accepted from each
(contradicting the fact that M is minimal).

In the case of constraint C2 on the Stateful class, the desired homomorphism
maps all states of the object where s �= 0 to state 0 of the FSM, and the single
state where s = 0 to state 1.

A Case for “Piggyback” Runtime Monitoring 301

3.2 Consequences for Traditional Monitoring

Despite recalling well-known facts about a program’s state and execution traces,
the previous observations have an important and sometimes overlooked conse-
quence on the actual purpose of performing runtime monitoring on an object’s
sequences of method calls.

Corollary 1. Performing runtime monitoring of a property encoded by a finite-
state machine M either: 1) duplicates the work of an identical state machine
contained within (and updated by) the object itself, or 2) enforces a property on
sequences that the object itself cannot correctly discriminate.

The proof of this assertion follows directly from Theorem 1. If an object imposes
a sequence of method calls, it must have all the information within its own
state variables to distinguish between valid and invalid sequences —therefore,
the combination of its state variables contain an encoding of the same state
machine M that the runtime monitor uses to track method calls.

This duplication is obvious in the case of an external monitor. However, even
in frameworks that use inter-type declarations, which insert the monitor as an
object’s member field, the monitor itself is still an autonomous structure that
has no interaction with its host object: it maintains its own state, using internal
variables that are separate from that of the object to monitor, and which must
be externally updated upon each method call.

Of course, this corollary rules out the eventuality where one might want to
enforce a constraint on the use of an object, despite the fact that the object
itself cannot observe it. For example, one might still want to monitor constraint
C2 on a Stateless object, perhaps for semantic reasons (the object can be used
without causing errors, but provides meaningless results outside of the specifi-
cation). However, it should be clear that this enforcement cannot be justified by
the prevention of errors that the Stateless object itself could throw. We shall
see in Section 5.2 that some of the aforementioned properties are of that kind.

4 Finding a Suitable Mapping

Based on Corollary 1, it appears that most of the work incurred when performing
runtime monitoring using current frameworks actually amounts to an indepen-
dent recomputation of a state machine that already exists inside the monitored
program. Furthermore this state machine, when identified, can be trusted, since
by point 2 above the object itself relies on that state information to reject or
accept sequences of method calls. 2

Surprisingly, the consequences of this seemingly simple observation have never
been rigorously examined. It is indeed possible to design a runtime monitoring
framework that does not require persisting a state machine during a run of the
program and updating its state upon each method call —this should be (and

2 The information, however, may not be made visible by the object; this case will be
discussed in Section 7.

302 S. Hallé and R. Tremblay-Lessard

actually is) done by the program itself. Rather, it suffices to query the state
machine available inside the program’s own state, and merely apply simpler,
“stateless” conditions on that machine to decide on the validity of the intended
method call. In a way, such a runtime monitoring system “piggybacks” on the
program’s already available variables to perform its task, rather than maintaining
its separate data.

The motivating example in Section 3.1, and the ensuing workflow derived
from it, rests on some important assumptions: we knew what member fields in
the object encoded to the state machine of the corresponding monitor; there was
only one member field necessary, and it was of a primitive data type; finally, we
knew how to express the condition to monitor as a function of this member field,
and that condition was simple. As a matter of fact, we can devise a workflow to
be applied in a systematic way to a monitoring problem. If we let SO be the set
of states of an object O, and SM be the set of states of the state machine M ,
we shall follow these steps:

1. Find the mapping H between SO and SA, as defined in Theorem 1.
2. If no such mapping exists, the process is over. Indeed, by Corollary 1, then we

are trying to monitor a constraint that the object itself does not recognize.
3. Otherwise, we still do not have a guarantee that the constraint is followed

by the program; only that the object’s state can be used to monitor it. One
must then devise a condition on the object’s member fields that is equivalent
to the transition function of M .

Steps 2 and 3 are trivial; the bulk of the monitoring problem is now transferred
to the search for an appropriate mapping of the object’s states to the state
machine M , satisfying the conditions of Theorem 1. However, the complexity of
this problem can be determined.

Theorem 2. Identifying the monitor within the object’s member fields is NP-
complete.

Proof. Given the notation from Theorem 1, we know that SO and SA are labelled
(by method names) multigraphs (their edges are directed). The problem in Step
1 above consists of finding a mapping H : SO → SA such that if calling method
� ∈ L in state s leads to state s′ in O, then H(s′) = δ(H(s), �). This is nothing
but finding a homomorphism between two labelled multigraphs, a problem shown
to be NP-complete [8, Definition 5.6].

5 Piggyback Monitoring on Java Objects

Designing a full-fledged automatic method of digging the proper monitor inside a
class’ state space is currently an open problem. In general, however, we hypothe-
size that the appropriate mapping H should not appear out of the blue from un-
suspected member fields, and that one should hence have a relatively clear idea,
in advance, of what this mapping should be by a simple inspection of the source

A Case for “Piggyback” Runtime Monitoring 303

code. To assess the interest in developing such techniques, as a preliminary step,
we tested this conjecture empirically by trying to create, by hand, the piggyback
constraints equivalent to each of the properties described in Section 2; the result-
ing monitors will be then experimentally evaluated in Section 6.

5.1 Stateful Properties Revisited

To this end, we obtained and manually inspected the source code of the Open-
JDK 6 [1], the latest open source implementation of the complete Java environ-
ment. Apart from primitive data types and the Object top-level class, all the
standard API classes bundled in a Java Runtime Environment are themselves
written in Java. The first step was to determine the member fields inside the
objects that could harbour the internal state machine required to monitor these
properties.

We give an example of the methodology we followed by showing how to
devise the piggyback constraint for property SafeFileReader. An Input-

StreamReader is instantiated by passing as an argument to its constructor
an InputStream. Property SafeFileReader stipulates that an InputStream-

Reader’s methods should not be used after the InputStream passed at its con-
struction has been closed.

Monitoring this property using classical approaches is not a trivial task. The
process is described in e.g. [7]. One is required to capture calls to InputStream-

Reader’s constructor, and instantiate a new monitor M(r, i), where r is the
instantiated Reader and i the InputStream given to its constructor. Calls to
r.read() and i.close() must then be trapped, and an error occurs whenever
the former is invoked after an occurrence of the latter.

As our inspection of the source code files revealed, an InputStreamReader

contains as a member object a StreamDecoder called sd.3 This decoder is created
from the InputStream passed at construction; it contains a boolean member field
isOpen4 which gets updated in the obvious way. Hence, when calling read() on
an InputStreamReader r, one must simply ensure that r.sd.isOpen is true to
obtain the equivalent monitoring of the property.

One may suspect that for some properties, especially those that correlate the
state of two different objects, it may not be possible to simply query an object’s
state and deduce from it the relevant methods that may be called. In particu-
lar, reviewers of an earlier draft of this paper conjectured that the SafeEnum

property could not be verified using the piggyback approach, and concluded
that independent monitors where hence unavoidable under these circumstances.
We give in the following an example of the methodology we followed by show-
ing how to devise the piggyback constraint for property SafeEnum, thereby
showing that this claim is false.

Vector’s parent class, AbstractList, contains a protected integer member
variable called modCount, which “counts the number of times this list has been

3 The reader is referred to the OpenJDK 6 source file InputStreamReader.java,
line 64.

4 StreamDecoder.java, line 42.

304 S. Hallé and R. Tremblay-Lessard

structurally modified. Structural modifications are those that change the size of
the list, or otherwise perturb it in such a fashion that iterations in progress may
yield incorrect results”.5

Iterators returned by an AbstractList’s iterator()method are instances of
an inner class called Itr.6 Upon creating a new Itr, the list populates its internal
member field expectedModCount to the current value of its own modCount field.
Whenever a method is called on this Itr, its internal value of expectedModCount
is compared to the parent AbstractList’s modCount. If the two differ, which oc-
curs when the list has been modified without passing through the iterator’s meth-
ods, a ConcurrentModificationException is thrown, and property SafeEnum

is violated.
Therefore, to monitor the SafeEnum property, it suffices, whenever a me-

thod is called on some Itr i, to check that i.expectedModCount is equal to
i$0.modCount. (When i is an instance of an inner class, the Java expression i$0
designates the instance of the outer class object that created i.) Note how the
object contains a very explicit encoding of the required monitor using dedicated
member fields labelled as such.

It turned out that 10 of the 13 properties mentioned in Section 2 have a
piggyback equivalent. We emphasize the fact that all these properties, in their
piggyback form, are stateless : one is not required to persist any information
between method calls. In each case, a simple condition on the current state of
the object is sufficient, dismissing the need for an external monitor. One can
see the potential for large gains in terms of performance and simplicity of the
procedure resulting from this fact —this will be studied in Section 6.

5.2 Syntactical vs. Semantic Properties

There are only three properties for which a piggyback equivalent does not ex-
ist. Two of them are actually the same property reformulated for two different
classes, which leaves only two unique properties for which the proposed approach
cannot be applied.

Property HashMap requires the comparison of an object’s hashCode at two
moments in time: when it is added to the HashSet, and when it is removed from
that set or when the set is otherwise queried for the presence of that object. Using
the classical approach, a monitor instance must be created for every object added
to every HashSet, and upon every call to contains() or remove(), the relevant
monitor must check that the involved object returns the same hashCode value
as when it was added to the set.

It turns out that this information is not directly being kept track of inside
the HashMap itself. HashMap, contains an array of elements, called table, from
an inner class Entry.7 When an Entry e = 〈K,V 〉 is added to the HashMap, it
is stored in table’s row index computed from K.hashCode().

5 Quote taken from the OpenJDK’s source code documentation for the AbstractList
class.

6 AbstractList.java, line 330.
7 HashMap.java, line 149.

A Case for “Piggyback” Runtime Monitoring 305

Querying the presence of an object or removing an object both amount to
calling method getEntry(K). This method computes the table row to look for
based on K.hashCode(), and iterates over the linked list of entries until the
one corresponding to K is found. If K’s hash code has been changed since its
addition to the map, the method will likely look in the wrong row and not find
the item asked for. Discovering that an object’s hash is inconsistent with the
row it sits in would require scanning each row upon every call, which defeats the
purpose of using a HashMap in the first place.

Property HashSet is the same property rephrased on instances of HashSet.
In Java, a HashSet is just a wrapper around an internal instance of HashMap

called map, whose key-value pairs are made of the set’s objects paired with a
simple dummy Object; hence we are facing the same situation with class names
merely changed. A similar situation occurs with UnsafeSyncColl, which we
leave out of the discussion due to lack of space.

These findings may seem to contradict Theorem 1, yet they do not. We remind
the reader of the two alternatives of Corollary 1: either an independent moni-
tor duplicates an equivalent one inside the object, or it enforces a property on
executions that this object cannot discriminate. That second alternative applies
to the case of HashSet, HashMap and UnsafeSyncColl. Indeed, nothing
prevents a user from changing an object’s hash code after putting it into a set;
no execution error will ever be created by HashSet for that reason. Simply put,
at no time modifications to hash codes have an impact on what valid (i.e. error-
free) methods can be called on a HashSet. Similarly, nothing prevents a user
from modifying a Collection after a synchronized wrapper has been created,
i.e. these modifications do not have any impact on what methods can or cannot
be called on the synchronized collection.

Of course, these modifications do have an impact on the validity of the results
returned by the classes. In a worst-case scenario, a HashSet may reply that an
object does not exist even though it does, but is located in the wrong row ac-
cording to its current hash code. Therefore, HashSet is a property we shall call
semantic, as it relates to the meaning and integrity of the object’s functionality.
This is opposed to all the previous, syntactical properties, which deal with the
prevention of sequences of method calls that cause an execution error.

The SafeEnum property is also essentially a semantic constraint: adding or
removing elements to a Vector may cause existing Iterators not to enumerate
all the elements as they should. However, in that case, concurrent modifications
are actively tracked using internal integers modCount and expectedModCount;
an exception is deliberately thrown by the object in case they do not match.
This is an example of a semantic constraint that has been integrated into the
object at the syntactical level, and explains why, contrarily to HashSet, it can
be piggyback-monitored.

6 Experiments

For the 10 properties where a piggyback version was found, we performed an
experimental evaluation of the resulting monitor. The goal was to measure time

306 S. Hallé and R. Tremblay-Lessard

and memory overhead to provide a basis of comparison of similar tests conducted
in related work using “classical” runtime monitors. The selected measurements
are: 1) runtime overhead; 2) memory usage; 3) number of events handled by the
monitor. These evaluation points are identical to e.g. [19]. Memory usage and
event count are by definition system-independent; the same applies for relative
runtime overhead, since it compares running times of the same program, both
with and without the monitor, on the same machine.

The monitors for each of the properties were executed against the DaCapo
Benchmark [4] (release 9.12), which consists of a set of open source, real world
applications with non-trivial memory loads. This is the benchmark used in all
past papers in the field [5–7, 9, 15, 19]. Hence the computed measurements can
be deemed as a fair basis for comparison to related works.

6.1 Experiment Setup

It turns out that a number of the member fields required for piggyback monitor-
ing have protected or package access. To allow our monitor to query them, we
added public accessor methods to the classes under study, so that the relevant
part of their state can be queried externally.

This design was preferred over the simpler use of privileged aspects that would
have bypassed visibility qualifiers so that the monitor could access any member
fields of any object. This was made to emphasize the fact that piggyback mon-
itoring does not require an object to jeopardize its functionality or its integrity
by granting arbitrary access to its internal state. Rather, it shows that proper-
ties on an object can be piggyback-monitored by providing appropriate access
to its state in a clean way. It may even be argued that an object should pro-
vide accessor methods to query its state when that state information determines
which method calls are appropriate, by virtue of good design, and irrelevant of
whether monitoring is considered. In that sense, adding accessor methods to the
Java objects makes our experiment more representative of what is envisioned as
a typical piggyback monitoring scenario.

Since all the member fields required in the properties are of primitive data
types (boolean or integer), the values returned by the accessor methods are, by
the semantics of the Java language, copies (not references) of the object’s actual
member fields. Hence, despite the fact that some classes are modified to reveal
some of their internals, we emphasize the fact that the piggyback monitor, like
any classical monitor, only needs strict, read-only access to the object and free
of side effects.

We modified the source code of the OpenJDK 6 and recompiled the whole
Java suite to integrate these changes to the Java environment. We shall stress
that these modifications simply amount, for each class, to adding a single public
accessor method to a single member field. No computation or functionality of
any kind is added to the classes. Similar changes have been made to classes per-
taining to the remaining properties. The monitor for each property is a simple
AspectJ file that intercepts relevant method calls and evaluates the correspond-
ing condition stated in Section 5.1.

A Case for “Piggyback” Runtime Monitoring 307

Table 1. Experimental results: a) relative runtime overhead (in %); b) relative memory
overhead (in %); c) additional number of Java objects created; d) number of events
processed

HasNext HasNextElem SafeEnum UnsafeIter

Benchmark (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)
avrora -3.5 -0 -7.5k 1.7M 0.6 -0 -7.5k 180 -1.4 -1 -7.7k 0 -1.2 1 -6.5k 1.7M
eclipse -1.7 0 34k 119k 1.2 0 34k 1.5k -3.7 -0 -355k 452 1.3 0 -96k 6.1k
fop 2.7 0 758 2.3M -1.9 0 758 196 -0.2 0 740 580 0.8 1 2.1k 2.1M
h2 0.8 -0 -13k 13M 1.4 -0 -13k 180 -2.3 3 2.2M 0 -2.4 3 2.2M 1.0M

jython 3.1 -1 -298k 1.5M -0.0 -1 -298k 3.6k 0.9 -1 -362k 0 -0.6 -1 -376k 86k
luindex -6.2 0 603 1.2k 4.4 0 603 180 -1.9 1 2.2k 0 -8.7 3 2.4k 688
lusearch -3.7 0 35k 2.1k 3.8 0 35k 180 -3.4 0 36k 0 -0.9 0 36k 299
pmd 0.5 0 2.3k 14M -1.0 0 2.3k 180 0.2 0 3.1k 616 -0.6 1 11k 5.2M

sunflow 4.2 -0 -7.4k 6.4M -0.3 -0 -7.4k 180 -3.5 -0 -7.5k 0 1.2 0 -6.7k 237
tomcat -2.7 0 4.9k 688k 4.6 0 4.9k 186 -2.2 0 11k 0 -3.7 0 1.7k 686k

tradebeans 0.4 -1 -533k 263 -2.7 -1 -533k 180 1.9 -3 -1.2M 0 0.7 -1 -472k 250
tradesoap 0.2 1 854k 329 -0.6 1 854k 180 -0.2 1 997k 0 1.5 0 92k 281

xalan 0.7 0 1.0k 443 -18.4 0 1.0k 442k 20.6 0 2.4k 0 -4.4 0 745 423

6.2 Runtime Overhead

The impact of runtime overhead is shown in Table 1, column a, for each of
the benchmarks.8 We show results for a selection of four properties due to lack
of space; however, experiments for the remaining properties produced similar
results. The number of events processed remains in the same order of magnitude
as for the values reported in related works (Table 1, column d).

Each benchmark was run five times for each property, both with and without
the piggyback monitor, and the first two runs were discarded in each case as they
were significantly slower.9 Runtime overhead is the difference between the average
running time of the remaining “piggyback” runs vs. the remaining “plain” runs.

One can see that overhead remains close to negligible for most properties
and most benchmarks. Only two runs of the benchmark have an overhead over
10%, and only one over 20%. These figures should be contrasted with numbers
reported in, e.g. [15]. For example, property UnsafeIter on benchmark “pmd”
exhibits a 20-fold improvement over the best relative overhead recorded in that
paper; the same property on benchmark “avrora” reported an overhead of 118%;
using piggyback monitoring, it decreases to less than 1%. Similarly, benchmark
“fop” shows a 10-fold decrease in relative overhead for property HasNext.

In general, runtime overhead can be deemed negligible, as in most instances it
lies within the error margin due to the inherent variability in benchmark running
times (at least ±3%).

6.3 Memory Usage

Since our monitor relies on objects’ existing member fields, by definition the
benchmark is expected to require very few additional memory to run when the

8 Benchmark “batik” could not be run, as it it is not compatible with the OpenJDK
(it relies on classes that are only available in the Oracle implementation of the JDK).

9 Discarding the first runs of the benchmark is a standard practice that was also done
in related papers.

308 S. Hallé and R. Tremblay-Lessard

monitor is enabled. We computed memory usage by reading the total memory
consumed by allocated objects, and number of objects created by each bench-
mark, using the Java hprof profiler [21], both with and without the piggyback
monitor. The difference between the piggyback and plain benchmarks, for each
property, is shown in columns b and c of Table 1.

The piggyback approach incurred, in the worst case, an increase of 1% on the
number of Java objects created and an increase of 6% on memory consumed com-
pared to the plain benchmark. All but one of the benchmarks added less than 42
megabytes to the overhead. As a rule, there is as much variability (±2%) between
runs with the same parameters than between monitored and non-monitored pro-
grams: this explains why many of the benchmarks show a negative difference in
memory allocated, indicating that the piggybacked program used less memory
than the plain program. Again, these values should be contrasted with memory
consumption reported in other works [15]: for example, property HasNext on
benchmark “h2” required between 267 and 565 megabytes, depending on the
monitor used.

7 Monitoring as a Design Rule

The piggyback approach assumes that all the state variables necessary to cor-
rectly enforce a property can be queried, and at a reasonable cost. The next step
is to take these considerations at design time and to build classes amenable to
piggyback monitoring by construction.

7.1 A Formal Definition

We shall say that a class providing proper means of querying its state, when
such information matters to the methods that can be called, follows a principle
that could be dubbed “design for monitoring”. In the same way that automatic
test pattern generation is much easier if appropriate design for test rules and
suggestions have been implemented, runtime enforcement of interface properties
is facilitated if the object is designed for monitoring. Formally:

Definition 1 (Design for monitoring). Let O be an object with a set of
methods M = {m1, . . . ,mn} subject to a sequencing constraint C. The object O
is designed for the monitoring of C if, for any method mi ∈ M , there exists a
set of methods Gi ⊆M for which there exists a Boolean condition on g’s return
value that decides whether mi can be called at any moment.

Such a design philosophy should stand to reason: if calling methods on an object
alter that object’s state, and if the set of valid methods one can call depends on
the state, then the object should provide means of querying its state to allow its
consumers to use it properly.

Should the opposite occur, consumers of the object must resort to external
means of deducing the object’s state (such as keeping track of it in parallel),
which is counterproductive (cf. Theorem 1). The situation can be compared to

A Case for “Piggyback” Runtime Monitoring 309

an automobile maker that would ask drivers not to exceed a maximum speed
while driving the car, yet does not provide a speedometer so that people can
check for themselves. In this case, one would have to resort to external means of
determining one’s speed, just to comply with the car’s requirements —and de-
spite the fact that this “information” is known to the car, yet not made publicly
available.

7.2 Design for Monitoring in the Java API

Some stateful objects provided by the Java language exactly follow this phi-
losophy. One example is the Mixer interface. Some Mixer methods, such as
getSourceLineInfo(), can only be called if the Mixer is open, i.e. after a
call to open(), but before a call to its close() method. To correctly use the
Mixer (and monitor this constraint), the classical approach would involve track-
ing calls to open() and close() and make sure that getSourceLineInfo()

is only called at appropriate moments. Thankfully, the Mixer interface imple-
ments a method isOpen() that returns the state of the mixer; upon every call
to getSourceLineInfo(), it therefore suffices to check whether isOpen() re-
turns true. This allows us to “piggyback” on the Mixer’s own state to enforce
constraint C2 at runtime.

Yet, surprisingly, our study of piggyback runtime monitoring revealed that
some Java classes do not follow this design principle. One notable example is
InputStream. This class provides a number of methods to read and query in-
formation about the stream, such as the number of bytes remaining to be read.
From its part, method close() closes this input stream and releases any system
resources associated with the stream. From that point on, none of the other
methods methods can be called on an InputStream, at the risk of provoking an
IOException. However, InputStream does not provide any method to deter-
mine whether a given stream is open or closed. That design decision appears
to us as curious, as this information exists inside the object, and moreover the
consumer of the InputStream needs to know about it to avoid creating errors.
Other classes, such as Iterator, present the same characteristics.

7.3 A Threat to Information Hiding?

A possible explanation for these observations was suggested by early readers
of this paper, who feared that providing accessor methods to an object’s state
would completely defeat the purpose of information hiding and would thus be
very questionable from a software maintenance perspective.

The concept of information hiding has first been defined by Parnas [22]: “one
begins [to decompose a system] with a list of difficult design decisions or design
decisions that are likely to change. Each module is then designed to hide such a
decision from the others.” Hence information hiding attempts to prevent external
users of an object from relying on implementation decisions that may change.

However, the open or closed state of a File object has nothing to do with
an implementation choice; it is part of the nature of a file to be in either such

310 S. Hallé and R. Tremblay-Lessard

state. Information hiding must not be debased to imply that class developers
have arbitrary freedom over whatever state information they wish to conceal. If
a file cannot be read after it is closed, then a public method must allow people
to know if a file is closed. More generally, an object expecting its consumers to
use it in some ways that depend on its state should provide a way for consumers
to query that state.

8 Conclusion

While it is generally accepted that member fields inside an object may duplicate
the state machine used in a runtime monitor, the leveraging of existing inter-
nal object data to perform monitoring has never been considered as a line of
research in its own right. Yet, piggyback runtime monitoring appears to be a
fertile concept that sheds a different light on the task of runtime enforcement of
constraints on method calls.

The successful experimental results we present on a body of well-studied prop-
erties of the Java API call for the development of piggyback runtime monitoring
techniques and tools as a complementary approach to existing approaches. Some
open problems that should be addressed are the development of a tool to search
for an homomorphism to a state machine inside an object’s source code, the
study of the impact of arguments inside method calls, and the establishment
of programming practices favoring design for monitoring. In conclusion, it is
hoped that the paper opens the way to novel ways of investigation in runtime
monitoring.

References

1. Java OpenJDK version 6, http://openjdk.java.net/projects/jdk6/

2. Avgustinov, P., Tibble, J., de Moor, O.: Making trace monitors feasible. In: Gabriel,
R.P., Bacon, D.F., Lopes, C.V., Steele Jr., G.L. (eds.) OOPSLA, pp. 589–608. ACM
Press, New York (2007)

3. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitor-
ing: from Eagle to RuleR. J. Log. Comput. 20(3), 675–706 (2010)

4. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: OOPSLA 2006: Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and
Applications, pp. 169–190. ACM Press, New York (2006)

5. Bodden, E., Chen, F., Roşu, G.: Dependent advice: a general approach to opti-
mizing history-based aspects. In: Sullivan, K.J., Moreira, A., Schwanninger, C.,
Gray, J. (eds.) AOSD, pp. 3–14. ACM (2009)

6. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative run-
time verification with Tracematches. J. Log. Comput. 20(3), 707–723 (2010)

http://openjdk.java.net/projects/jdk6/

A Case for “Piggyback” Runtime Monitoring 311

7. Bodden, E., Hendren, L.J., Lhoták, O.: A Staged Static Program Analysis to Im-
prove the Performance of Runtime Monitoring. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 525–549. Springer, Heidelberg (2007)

8. Chein, M., Mugnier, M.-L.: Graph-based Knowledge Representation. Computa-
tional Foundations of Conceptual Graphs. Springer (2009)

9. Chen, F., Meredith, P.O., Jin, D., Roşu, G.: Efficient formalism-independent mon-
itoring of parametric properties. In: ASE, pp. 383–394. IEEE Computer Society
(2009)

10. Colombo, C., Pace, G.J., Schneider, G.: LARVA — safer monitoring of real-time
java programs (tool paper). In: Seventh IEEE International Conference on Software
Engineering and Formal Methods (SEFM), pp. 33–37. IEEE Computer Society
(November 2009)

11. Erlingsson, Ú., Pistoia, M. (eds.): Proceedings of the 2008 Workshop on Program-
ming Languages and Analysis for Security, PLAS 2008, Tucson, AZ, USA, June 8.
ACM (2008)

12. Erlingsson, Ú., Schneider, F.B.: IRM enforcement of Java stack inspection. In:
IEEE Symposium on Security and Privacy, pp. 246–255 (2000)

13. Goldsmith, S., O’Callahan, R., Aiken, A.: Relational queries over program traces.
In: Johnson, Gabriel [16], pp. 385–402

14. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Trans. on Services Computing 5(2), 192–206 (2011)

15. Jin, D., Meredith, P.O., Griffith, D., Roşu, G.: Garbage collection for monitoring
parametric properties. In: Hall, M.W., Padua, D.A. (eds.) PLDI, pp. 415–424.
ACM (2011)

16. Johnson, R.E., Gabriel, R.P. (eds.): Proceedings of the 20th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, October 16-20. ACM, San Diego (2005)

17. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
Getting started with AspectJ. Commun. ACM 44(10), 59–65 (2001)

18. Martin, M.C., Livshits, V.B., Lam, M.S.: Finding application errors and security
flaws using PQL: a program query language. In: Johnson, Gabriel [16], pp. 365–383

19. Meredith, P.O., Jin, D., Chen, F., Roşu, G.: Efficient monitoring of parametric
context-free patterns. Autom. Softw. Eng. 17(2), 149–180 (2010)

20. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. International Journal on Software Techniques for
Technology Transfer (to appear, 2011)

21. O’Hair, K.: HPROF: A heap/CPU profiling tool in J2SE 5.0 (2004),
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html

22. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15(12), 1053–1058 (1972)

23. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electr. Notes Theor.
Comput. Sci. 144(4), 109–124 (2006)

http://java.sun.com/developer/technicalArticles/Programming/HPROF.html

A Unified Approach for Static and Runtime

Verification: Framework and Applications

Wolfgang Ahrendt1, Gordon J. Pace2, and Gerardo Schneider1,�

1 Dept. of Computer Science and Engineering,
Chalmers, Univ. of Gothenburg, Sweden

2 Dept. of Computer Science, University of Malta, Malta
{ahrendt,gersch}@chalmers.se, gordon.pace@um.edu.mt

Abstract. Static verification of software is becoming ever more effec-
tive and efficient. Still, static techniques either have high precision, in
which case powerful judgements are hard to achieve automatically, or
they use abstractions supporting increased automation, but possibly los-
ing important aspects of the concrete system in the process. Runtime
verification has complementary strengths and weaknesses. It combines
full precision of the model (including the real deployment environment)
with full automation, but cannot judge future and alternative runs. An-
other drawback of runtime verification can be the computational over-
head of monitoring the running system which, although typically not
very high, can still be prohibitive in certain settings. In this paper we
propose a framework to combine static analysis techniques and runtime
verification with the aim of getting the best of both techniques. In par-
ticular, we discuss an instantiation of our framework for the deductive
theorem prover KeY, and the runtime verification tool Larva. Apart
from combining static and dynamic verification, this approach also com-
bines the data centric analysis of KeY with the control centric analysis
of Larva. An advantage of the approach is that, through the use of a
single specification which can be used by both analysis techniques, ex-
pensive parts of the analysis could be moved to the static phase, allowing
the runtime monitor to make significant assumptions, dropping parts of
expensive checks at runtime. We also discuss specific applications of our
approach.

1 Introduction

There is a significant quest from the software industry for lightweight formal
methods — methods which achieve a high degree of confidence in desired (sub-)
system properties, while satisfying high demands on usability and automation.
There are various reasons for this increasing need in software development, in-
cluding the following recent parallel trends:

� Corresponding author.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 312–326, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Unified Approach for Static and Runtime Verification 313

– Model driven development. There is an ever more dominant role of models
in the software development process.

– Automated software engineering. There is a trend to (partly) automate even
more steps in the development cycle.

– Exploding complexity of embedded software. The demands on the safety of
the increasingly complex embedded units is typically extremely high.

– Concurrency and distribution. Distributed architectures led to an increase
in the possible causes of failure. On a more fine-grained level, concurrency
is also becoming more important due to the rise of multi-core processors.

– Software standards and certification. In certain domains (e.g., avionics, au-
tomotive, medical), standards for architecture, interfaces, and processes are
becoming very important.

– Application focus of program verification. Fundamental concepts of program
verification have been around for decades, but only lately have arisen many
techniques that are tailored to widely used languages and platforms.

– Increased efficiency of program verification. Verification technology has be-
come a lot more efficient, and automation has increased significantly.

Even if static verification of software has become more relevant, effective and
efficient, overcoming certain inherent limitations has proved to be hard. Certain
static verification techniques have high precision, in which case powerful judge-
ments are still too hard to achieve automatically, while others use abstractions to
enable increased automation, in which case important, or even critical, aspects
of the real, concrete system are easily missed, not to speak of the fundamental
difficulty of crafting the right abstraction. In reaction to this, there is a recent
trend towards more lightweight formal methods, which are easier to exploit but
give limited guarantees. One such lightweight method is runtime verification
which, compared to static verification, has complementary strengths and weak-
nesses. Runtime verification combines the full precision of the execution model
(even including the real deployment environment) with full automation. On the
other hand, it only ever judges observed runs, and cannot judge alternative and
future runs. Another drawback is the computational overhead of monitoring the
running system which, although typically not very high, can still be prohibitive
in certain settings.

In this paper, we propose a unified static and runtime verification framework
for object-oriented software. The aim is to provide a unified, lightweight to use
but powerful in result, method for specifying and verifying, with a variety of
confidence levels, properties of parallel object-oriented software systems.

The paper is organised as follows. We first give some background on static and
dynamic verification techniques/tools. In Section 3 we present our framework,
and in Section 4 we provide an example to illustrate how our framework could
be applied in practice. We briefly describe some application domains of our
framework in Section 5. We discuss related work in Section 6 and we conclude
in the last section.

314 W. Ahrendt, G.J. Pace, and G. Schneider

2 Background

2.1 Static Verification of Software

Principles
Static software verification reasons about properties of all possible runs of a
program. There are basically two families of approaches, deductive verification
and model checking. Deductive program verification has been around for nearly
40 years [41], however, a number of developments during the last decade brought
dramatic changes to how deductive verification is being perceived and used.

– The era of verification of individual algorithms written in academic languages
is over: contemporary verification tools support commercial programming
languages such as Java [20,52,29,11] or C# [8] and they are ready to deal
with industrial applications [39,47,51,38].

– Earlier, deductive verification tools used to be stand-alone applications that
were usable effectively only after years of academic training. Nowadays, one
can see a new tool generation that can be used after limited investment in
training [1], and that is integrated into modern IDEs [8,11]. On the other
hand, full automation is still rarely achieved when verifying functional prop-
erties of programs with loops, for instance.

– Perhaps the most striking trend is that deductive verification is emerging
as a base technology. It is not only employed for correctness proofs, but in
automatic test generation [19,34,30,10], and bug finding [50,36].

Among the state of the art efforts is the KeY tool [2], which it is close to complete
coverage of the Java programming language [9]. In contrast to verifiers based on
higher order logics, the prover of the KeY system provides a state-of-the-art user
interface, high automation, and an easy mechanism for extending its rule base.
We describe KeY in more details below.

Apart from deductive verification, model checking has been applied exten-
sively and successfully for the static verification of both hardware and software
systems. The adaptation of this technique to object-oriented software is pro-
gressing but still in an early stage.

KeY: A System for Static Verification of Java Programs
KeY is a deductive verification system for data centric functional correctness
properties of Java source code. From Java code augmented with specifications
given in JML (Java Modelling Language [43]), KeY generates proof obligations
in a program logic, called dynamic logic (DL) for Java [11]. DL extends first-
order logic with two additional operators, 〈p〉φ and [p]φ, where p is a program
and φ is another DL formula. A formula 〈p〉φ is true in a state s if there exists
a terminating run of p, started in s, which results in a state where φ is true. As
for the other operator, a formula [p]φ is true in a state s if all terminating runs
of p, started in s, result in a state where φ is true. For deterministic programs
p, the difference between 〈p〉φ and [p]φ is only termination. Hoare logic [37], can
be seen as a special case, as the Hoare triple {φ}p{ψ} is equivalent to the DL
formula φ→ [p]ψ.

A Unified Approach for Static and Runtime Verification 315

The core of KeY is a theorem prover for validity of Java DL formulas, us-
ing a sequent calculus. We cannot introduce the calculus here, but we mention
a typical pattern of sequents. If Γ is a list of formulas, the sequent Γ # 〈p〉φ
means that p, if started in a state fulfilling all Γ , terminates in a state fulfill-
ing φ. For instance, x < y # 〈tmp:=x;x:=y;y:=tmp;〉 y < x is a valid sequent.
The calculus uses the symbolic execution paradigm. For that, DL is extended by
‘explicit substitutions’. During symbolic execution of p, the effects of p are grad-
ually, from the front, turned into explicit substitutions. Meaning that after some
proof steps, a certain prefix of p has turned into a substitution σ, representing
the effects so far, while a ‘remaining’ program p′ is yet to be executed. While
verifying p, an intermediate proof node may look like Γ # σ〈p′〉φ, telling that,
if Γ was true before p, and σ is the accumulated effect up to now, then φ will
be true after executing the remaining program p′. Note that most proofs branch
over case distinctions, largely triggered by Boolean decisions in the source code.
The branching happens by applying rules like the following, simplified1 if rule:

if
Γ, σ(b) # σ〈s1 ω〉φ Γ, σ(¬b) # σ〈s2 ω〉φ

Γ # σ〈if b s1 else s2 ω〉φ
Unlike the explicit substitutions preceding the diamond modalities “〈. . .〉”, the
notation σ(b) indicates that σ is applied to b, and thereby resolved. Similar for
σ(¬b). Through rules like the above, the left side of any sequent, on any branch
of the symbolic execution proof, lists conditions for the current execution path
to be taken (in addition to the original precondition, in case there is any).

2.2 Runtime Verification of Software

Principles
Runtime verification is a technique for monitoring the execution of a software sys-
tem, detecting violations as they appear at runtime. In recent years researchers
have implemented monitoring tools which usually compile high-level (temporal)
properties into monitor implementation (e.g., [21,40,27,28,5,26]). There are two
main concerns when using runtime verification:

1. In order to minimise the possibility of erring it is desirable that monitors are
automatically synthesised from formally specified properties.

2. Though a minimal runtime overhead is acceptable, it is of course desirable
to reduce them as much as possible.

The above concerns are obviously interdependent: properties should be writ-
ten in a formal language that is expressive enough as to represent meaningful
properties, but not too much as to avoid efficient monitoring.

There are two main flavours of runtime verification — synchronous monitor-
ing, in which, after each performed action, the system does not proceed further
until the monitor confirms that the action did not violate the specification, and
asynchronous monitoring, in which the system logs all relevant events, which are

1 The simplified rule ignores side effects or exceptions possibly caused by b.

316 W. Ahrendt, G.J. Pace, and G. Schneider

processed independently by the monitor, possibly on a separate address-space.
While the latter is attractive in that it induces minimal overheads on the sys-
tem, the a posteriori nature of the analysis makes it useless if one wants to
discover and address problems in real-time. Although in-between solutions have
been proposed (e.g., see [24]), they are far from being universally applicable, and
thus, if one wants to have a guarantee that the system does not proceed beyond
a violation, one has no choice but to pay the cost in terms of overheads induced
by synchronous monitoring.

Different solutions based on optimisations have been presented to alleviate
the overhead problem, e.g. [13,14]. Further approaches aim at obtaining small
monitors by construction [45], or use some kind of overhead guarantee, as pro-
posed in [23]. Despite the advance of the state-or-the-art with such approaches
there is still need to improve runtime monitoring techniques as motivated by the
development of specific techniques to improve monitor efficiency [18].

In the following, we give a brief overview over state-of-the-art runtime moni-
toring tools developed in recent years, without claiming completeness. ConSpec
[3] inlines a runtime monitor into applications on mobile devices based on ob-
served contract violations. JavaMOP [21] is a monitoring-oriented development
environment where parts of the system’s functionality are designed as monitor-
triggered code. Java-MaC [40] enables automatic instrumentation to have access
to system events. Higher-level activities are processed by the runtime checker
to raise an alarm if any of the specified properties are violated. Eagle [33] is a
runtime verification tool supporting future and past time logics, interval logics,
extended regular expressions, state machines, real-time and data constraints and
statistics. Lola [28] guarantees bounded memory to perform online monitoring,
and differs from most other synchronous languages in that it is able to refer to
future values in a stream. Tracematches [5] is an extension to AspectJ allowing
the specification of trace patterns, also supporting parametrisation of events.
This work has been extended in [15] to improve efficiency by making a temporal
and spatial partitioning among collaborative users.

Larva: A Runtime Verification tool for Java
Larva (Logical Automata for Runtime Verification and Analysis) [26], is a tool
tailored to verify untimed and real-time properties of Java programs. Properties
can be expressed in a number of notations, including timed-automata enriched
with stopwatches (DATEs —Dynamic Automata with Timers and Events), Lus-
tre, and a subset of the duration calculus.

As an example of the kind of properties one can express in DATEs and verify
with Larva let us consider a system where one needs to monitor the number
of successive bad logins and the activity of a logged in user. By having access
to badlogin, goodlogin and interact events, one can keep a successive bad-login
counter and a clock to measure the time a user is inactive. Fig. 1 shows the
property that allows for no more than two successive bad logins and 30 minutes
of inactivity when logged in, expressed as a DATE. Upon the third bad login or 30
minutes of inactivity, the system reverts to a bad state. In the figure, transitions

A Unified Approach for Static and Runtime Verification 317

interact\\t.reset();

goodlogin

\\t.reset();

t@30*60

logged out

bad logins

badlogin\\c++;

badlogin

\c>=2

logged in

inactive

logout\\c=0;

Fig. 1. The DATE of the bad logins scenario

are labelled with events, conditions and actions, separated by a backslash. It is
assumed that the bad login counter is initialised to zero.

The tool has been successfully used on a number of case-studies, including an
industrial system handling financial transactions. Larva also performs analysis
of real-time properties, and whenever possible to calculate an upper-bound on
the memory and temporal overheads induced by monitoring.

3 A Proposed Framework for Integrated Static and
Runtime Verification

In this section we present our framework. We start by discussing a unified lan-
guage for specifying both static and runtime properties, we then describe our
framework in general terms, and we finally discuss some interesting features that
could be added to enhance our framework.

Though the conceptual model underlying our framework is general and tool-
independent, we use Larva and KeY as a basis to the proposed unified language,
and as instances of some of the modules to be used in the framework.

3.1 A Unified Specification Language for Static and Dynamic
Verificaion

In order to explore the proposed framework,we are investigating a concrete instan-
tiation — combining the deductive verification tool KeY with the runtime verifi-
cation tool Larva. One of the first main challenges is that of identifying a unified
specification language.While KeY uses pre- and postconditions for specifications,
Larva uses DATEs — essentially symbolic automata, with timers (allowed to be
used also as stopwatches) and the means for dynamic replication of properties (for
instance, a property which will be replicated for each user in the system).

As briefly described in the previous section, while KeY addresses the be-
haviour of a method as a relation, DATEs are less structured and are triggered
with events happening in the system, which may refer to method entry and

318 W. Ahrendt, G.J. Pace, and G. Schneider

ppDATE

Prog. P

Totally
verified P

ppDATE’

Partially
verified P

Monitor

Aspects

llylly

Prog. P’
(weaved)

Aspects AspectAsp

Static

(partial)
Proofs
(
P

. P P

ppD

tial)
f

ATE

Fig. 2. High-level description of the framework

exit points (although with no native notion of identifying the entry and related
exit of a single call), but also to exceptions raised by the system. To combine
the approach, we propose ppDATEs, an extension of DATEs with the notion
of pre- and postconditions, enabling transitions from a state to another when-
ever a method call satisfying the precondition terminates with the postcondition
holding. Notationally, pre-/postconditions are additional elements of transition

labels, put in the front/end of the other label elements: s
pre\...\post−−−−−−−→ s′

ppDATEs enable the co-specification of data centric, control centric, and real
time aspects of a system in a unified way. Concretely, ppDATE describes com-
municating automata with event-triggered transitions, timers, and functional
unit specifications. Events are actions on objects (foremost method calls), timer
events, primitives for synchronising with different automata, or a combination
thereof. In addition, events are potentially augmented with conditions, actions,
plus logic based, data centric specifications of the pre-post behaviour of the
called method.

3.2 Description of the Framework

An abstract view of the proposed framework, taking as input an object-oriented
program P and a specification of the desired properties, can be found in Fig. 2.
We describe our framework in what follows based on the figure.

Deductive verification tools typically rely on user input to difficult proof steps,
like finding loop invariants. However, the proposed framework is designed for
fully automated use of the verifier, represented in the figure by the Deductive
Verifier module. Therefore, not all proof attempts will lead to complete proofs.
The workflow makes use of both, complete and partial, proofs, when specialising
the ppDATE specification.

The purpose of the Partial Specification Evaluator is to spare the runtime ver-
ification (at the end of the workflow) from checking properties that were proved

A Unified Approach for Static and Runtime Verification 319

statically. For instance, postconditions that were completely proved (relatively
to a certain method and precondition) do not need to be checked at runtime at
all. The more interesting question is how to still make use of the information
contained in partial proofs for the run-time verification phase. Here, the basic
idea is to construct, from the open proof goals, specialisations of the precon-
dition to the cases where the postcondition could, respectively could not, be
proved. For instance, suppose the original ppDATE automaton features a tran-

sition s
pre\m()\post−−−−−−−−→ s′ (where pre and post are the pre- and postcondition of

calling method m). Suppose further the deductive verifier produces a partial,
i.e., unfinished proof for pre # 〈m()〉post (ignoring s for simplicity.) Then, it is
possible, by analysis of the open proof goals, to construct two specialisations
pre1 and pre2 of pre, with pre1 ∧ pre2 ↔ pre, such that pre1 corresponds to the
open and pre2 to the closed proof branches, respectively, and pre2 # 〈m()〉post is
a consequence of the partial proof. This can be used by the partial specification
evaluator to replace s′ with two clones s′1 and s′2, and instead of the above tran-

sition have s
pre1\m()\post−−−−−−−−−→ s′1 and s

pre2\m()\true−−−−−−−−−→ s′2. Thereby, during runtime
verification, only the transition to s′1 will trigger a checking of the postcondition
post, but not the other transition, as post is ensured there statically.

The Monitor Generator takes as main input the specialised specification,
ppDATE′. From such a specification, it uses aspect-oriented programming tech-
niques to capture relevant system events, and implements runtime checks to
ensure no violation takes place. The current approach to automata based mon-
itor generation used in Larva [25], cannot deal in a satisfactory manner with
the data-centric parts of the specification that could not be (fully) ensured stat-
ically. This is particularly true for postconditions as in most cases they involve
some kind of procedural checking (e.g., to check that an array is indeed sorted).
Here we will pursue alternative approaches, like dedicated nested automata (for
checking postconditions), and logic based runtime assertion checking of the kind
done for JML specifications [22].

Before weaving the generated aspects into the code to be monitored, further
static optimisations will be applied in the Static Monitoring Optimizer module,
using, and expanding on, recent results in the area of combining static analysis
(other than verification) with runtime verification. In particular, CLARA [18] is a
good candidate to base our static monitor optimizer. Note that the optimisations
can also affect the monitor itself giving the possibility to reduce its size and thus
enhancing performance (this part is not shown in Fig. 2).

The final step in the workflow is the actual runtime verification, which ex-
ecutes the weaved program P ′ in parallel with the resulting monitor. Suitable
forms of reporting and analysing the results of runtime verification, in certain
cases including error recovery mechanisms, are natural extensions of the frame-
work. They will be addressed in future work, without aiming at full generality,
however. Rather, these issues are specific for the demands of a deployment sce-
nario and application area, and will be tailored for specific deployments and case
studies.

320 W. Ahrendt, G.J. Pace, and G. Schneider

3.3 Additional Features

In addition to what is discussed above, a crosscutting concerns is the treatment
of real-time properties. On the runtime side, Larva already supports timers. On
the static verification side, there is recent research on loop bound analysis using
a combination of KeY and COSTA [4]. Yet, these two are very different aspects
of real-time.

The framework has further potentials outside the main workflow as sketched
above. One is the possibility of a feedback loop from the runtime verification to
the (static) deductive verifier. For instance, there is work on discovering likely in-
variants by dynamic analysis [31] or testing [35], and the proposed framework could
well be ideal for dynamic-to-static feedbacks of similar kind. Another issue is the
broadening of our current deductive test case generation approach [30] to control
related aspects, like call-graph related test coverage criteria.

4 An Illustrative Example

Let us reconsider the login-scenario, extending on Fig. 1, introduced in section
2.2 when describing the tool Larva. We assume now that whenever a user logs in,
she is added to a set of current users. A specification of this scenario will consist
of a number of parallel ppDATEs specifying different properties. Such ppDATEs
could be activated by mutual synchronisation or by events. For instance the
high level property about the login will consist of a modified version of the
DATE shown in Fig. 1, where the good-/bad-login events are augmented with
the user’s identity as a parameter. Additionally we will have, in parallel, another
ppDATE which includes pre/post-conditions of data sensitive operations, like the
method call users.add(u)which is activated whenever the event goodlogin(u)

happens. An according transition will look like s
pre\add()\post−−−−−−−−−→ s′.

Before giving details about pre and post , let us discuss the Java implementa-
tion of the set of users. We assume the set is implemented with help of an array
arr, using hashing for fast look-up. Hash conflicts are resolved by open address-
ing, meaning the method add first tries to put the object into arr at the position
of the computed hash code. If that index is occupied, however, add searches for
the nearest following index which is free. The set has a capacity limited by the
length of arr. To enable easy checking whether or not the capacity is reached,
a field size keeps track of the number of stored objects.

The ppDATE specifying the behaviour of the user set will therefore contain a

transition s
size<arr.length\add()\∃ i. arr[i]=o−−−−−−−−−−−−−−−−−−−−−−−→ s′, among others. To deal with the

postcondition, the runtime verifier may use a technique known as ‘runtime asser-
tion checking’, where logical formulas are operationalised [22]. For our example,
∃ i. arr[i] = o would be turned into a loop walking through the array.

Checking the postcondition needs to be done each time the transition fires. How-
ever, we can optimise away this runtime check for certain cases, using static verifi-
cation with KeY. If one tries to statically prove, with KeY, that add’s implementa-
tion is correctwith respect to some JML specification, KeYfirst will generate proof
obligations in form of DL sequents. One of them could look like the following:

A Unified Approach for Static and Runtime Verification 321

size < arr.length # 〈add(o)〉 ∃ i. arr[i] = o

When constructing a proof of this sequent, KeY will branch over case distinctions
in the code of add, such as whether the initial hash index is free or occupied.
The two sequents resulting from that branching look like:

size < arr.length, arr[o.hashCode()%arr.length]= null # . . .
and

size < arr.length, ¬ arr[o.hashCode()%arr.length]= null # . . .

The first branch will be easier to automatically close by KeY than the second,
which requires handling a loop searching for the next free index. Therefore, if
KeY runs in auto-mode, excluding using interaction, it might only close the first
branch.

As we have managed to prove one of the branches, there will be no need to
monitor the case when the initial hash index is free, and only the branch when
this is not the case will be monitored. Therefore, we can replace the transition
given above by two transitions:

s
size<arr.length, arr[o.hashCode()%arr.length]=null\add()\true−−−→ s′1

and

s
size<arr.length, ¬ arr[o.hashCode()%arr.length]=null\add()\∃ i. arr[i]=o−−→ s′2

Thereby, during runtime verification, only the transition to s′2 will trigger a
checking of the postcondition, but not the other transition, as true is ensured
trivially. Given a hashtable that is well dimensioned, the cheaper case will be
more frequent at runtime.

5 Applications

5.1 Electronic and Legal Contracts

The term ‘contract’ has mostly been used in software systems as a metaphor
and not according to the common meaning of the word. The first use of the
term in connection with software programming and design was done by Meyer
in the context of the language Eiffel (programming-by-contracts, or design-by-
contract) [46]. Software contracts can appear as integrated part of a programming
language, like in Eifel, or phrased in a special contract language, like JML [42]
(supported by KeY) and Code Contracts [44]. Similarly, as a metaphor, the term
has been used to describe interfaces of component-based systems or service-
oriented architectures.

In the following, however, the word contract will be used as a general term to
describe any kind of normative document, including contracts in the legal sense
and other agreements where the different parties involved engage on certain
obligations. Here, we are primarily interested in electronic agreements, which
form an electronic version of legal contracts, and the role of static and dynamic
verification plays in their analysis.

As a simple example consider agreements in the context of installing applica-
tion on a mobile phone. In such cases the contract is shown in natural language

322 W. Ahrendt, G.J. Pace, and G. Schneider

(e.g., English) and the user must accept the terms and conditions stipulated
there; otherwise the application is not installed. Ideally, each user would read
and understand the agreement, and foresee the consequences in case of violation
of certain clauses. Reality is different, though. So how else could one validate a
contract between two parties before accepting it? This requires that the contract
is fully formalised, which is not an easy task as witnessed by a number of current
research papers on the topic (see for instance [48,49] and references therein).

One solution is to monitor the system using a contract as the specification,
possibly giving a notification before allowing actions which may lead to a vio-
lation to go through. Our proposal is that a third party would statically verify
the application software against the agreement, leaving as little as possible to
be verified at runtime in the form of a monitor provided with the application.
This ensures contract adherence, whilst keeping overheads low.

5.2 Transaction-Handling Systems

Systems which handle transactions (such as financial payments) are becoming in-
creasinglyprevalent. Although various design patterns are used to control the com-
plexity of their development, they still pose various challenges to their verification:

– Concurrency. Typically, a transaction-handling system handles many trans-
actions concurrently, and unless appropriate design principles are adhered to,
this can lead to an overload in complexity. The main principle is to structure
transactions to act in a manner which externally is perceived to be atomic
— the operation takes place without the possibility of interference. While
being a sound design principle, ensuring that the transactions are internally
built to satisfy this is rarely easy.

– Long-lived transactions. Whenever transactions have to communicate with
real-life systems, they may end up with a substantial increase of their lifes-
pan. This means that the complete locking of all necessary resources for the
duration of the transaction is not an option. This requires the use of more
complex design patterns to engage and use resources in a rational way.

– Handling failure. Various transactions interact with external systems (e.g., a
payment transaction may have to communicate with a bank) over which the
system has no control. One of the side-effects of these interactions is that the
external systems may fail. Handling such failure is not trivial, and although
approaches such as compensations have been proposed and used, entwining
the logic of normal and exceptional (failing) behaviour induces an overhead
in complexity.

– Varying system loads. Although typically transactions are not individually
computationally expensive, the concurrent nature of the handling of trans-
actions introduces a varying load on the machine processing them. In many
domains, this load frequently features regular surges in activity, during which
performance becomes an important issue. For example, in an online betting
system, the number of incoming bets per minute may peak in the last min-
utes before an important football match.

A Unified Approach for Static and Runtime Verification 323

The first three issues indicate that such systems are ideally verified, even if
runtime verification may introduce unacceptable overheads. We thus believe that
transaction-handling systems can be an ideal domain on which to apply our
proposed framework.

6 Related Work

The combination of different verification techniques in order to get the best
from each, is not new. In particular there have been some successful stories
combining different static analysis techniques. This is the case for instance of
the SLAM project [7], where symbolic model checking, program analysis and
theorem proving are combined on a novel fashion to verify drivers written in C.
Another example is InVeSt [12] integrating algorithmic and deductive verification
techniques, using abstraction, to verify invariance properties.

More recently, some research has been conducted aiming at a combination
of static analysis (other than verification) and runtime verification in different
ways. Arhto and Biere describes an architecture based on JNuke where Java
programs can be statically and dynamically analysed [6]. In this framework, a
static analyser tries to detect faults which are manually checked by a user who
writes test cases for each fault found. The program is then run many times
against those test cases confirming, or not confirming, the failure. In the latter
case, a log is kept for future runs of the static analyser.

In [16] static analysis is used to improve the performance of runtime mon-
itoring based on tracematches. The paper presents a static analysis to speed
up trace matching by reducing the runtime instrumentation needed. The static
analysis part is based on 3 stages in order to: rule out some tracematches, elim-
inate inconsistent instrumentation points, and finally further refine the analysis
taking into account certain execution order.

In [17] Bodden et al present ahead-of-time techniques to statically prove the
absence of all program errors, or mark specific parts of the programs where such
errors are likely to occur at runtime. The approach is based on tracematches.

CLARA is a framework to statically optimise runtime monitoring [18], which
uses static analysis techniques to operate on the monitors themselves with the
aim of improving performance, as opposed to the combination of static analysis
and verification with runtime verification techniques to verify software.

As opposed to [6], we are not concerned with testing faults found by a static
analyser but to prove as much as we can with a static verifier, and only the
non-provable parts are verified during the real execution of a program. Besides
we do not extract test cases to test the system but perform runtime verification.
Like [16] our proposed approach also aim at improving the efficiency of runtime
verification but our techniques are completely different. While Bodden et al. use
static analysis we use deductive verification. This distinction is crucial as the
kind of properties we can prove is not the same.

A related structure to ppDATEs has already been explored in [32], a work
supervised by one of the authors of this paper.

324 W. Ahrendt, G.J. Pace, and G. Schneider

7 Conclusion

We have presented the conceptual model of a framework for the verification of
object-oriented systems. The proposed framework is based on a suitable combi-
nation of static and dynamic verification techniques, in particular based on the un-
derlying approaches of KeY and Larva. We have proposed ppDATEs as a unified
specification language for describing both static and dynamic properties, and we
have shown an example to illustrate how our approach could be used.We have also
described twoapplicationdomains thatwebelieve couldbenefit fromour approach.

This is a position paper and as such much work is still to be done, starting
with a formal definition of ppDATEs and ending with a full implementation of
the framework, including proving interesting properties about the approach and
applying it to real case studies.

References

1. Ahrendt, W.: Using KeY. In: Beckert et al. [11], pp. 409–451
2. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,

Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Software and
System Modeling 4, 32–54 (2005)

3. Aktug, I., Naliuka, K.: Conspec: A formal language for policy specification. In:
FLACOS 2007, Oslo, Norway, pp. 107–109 (October 2007)

4. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design
and Implementation of a Cost and Termination Analyzer for Java Bytecode. In:
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007.
LNCS, vol. 5382, pp. 113–132. Springer, Heidelberg (2008)

5. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to aspectj. SIGPLAN Not. 40, 345–364 (2005)

6. Artho, C., Biere, A.: Combined static and dynamic analysis. In: AIOOL 2005.
Electr. Notes Theor. Comput. Sci., vol. 131, pp. 3–14 (2005)

7. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
slam. Commun. ACM 54(7), 68–76 (2011)

8. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

9. Beckert, B.: A Dynamic Logic for the Formal Verification of Java Card Programs.
In: Attali, I., Jensen, T. (eds.) JavaCard 2000. LNCS, vol. 2041, pp. 6–24. Springer,
Heidelberg (2001)

10. Beckert, B., Gladisch, C.: White-Box Testing by Combining Deduction-Based Spec-
ification Extraction and Black-Box Testing. In: Gurevich, Y., Meyer, B. (eds.) TAP
2007. LNCS, vol. 4454, pp. 207–216. Springer, Heidelberg (2007)

11. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

12. Bensalem, S., Lakhnech, Y., Owre, S.: InVeST: A tool for the verification of in-
variants. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 505–510. Springer,
Heidelberg (1998)

13. Bhargavan, K., Gunter, C.A., Kim, M., Lee, I., Obradovic, D., Sokolsky, O.,
Viswanathan, M.: Verisim: Formal analysis of network simulations. IEEE Trans.
Software Eng. 28(2), 129–145 (2002)

A Unified Approach for Static and Runtime Verification 325

14. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative Run-
time Verification with Tracematches. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007.
LNCS, vol. 4839, pp. 22–37. Springer, Heidelberg (2007)

15. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative run-
time verification with tracematches. J. Log. Comput. 20(3), 707–723 (2010)

16. Bodden, E., Hendren, L., Lhoták, O.: A Staged Static Program Analysis to Improve
the Performance of Runtime Monitoring. In: Bateni, M. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 525–549. Springer, Heidelberg (2007)

17. Bodden, E., Lam, P., Hendren, L.J.: Finding programming errors earlier by evalu-
ating runtime monitors ahead-of-time. In: SIGSOFT FSE 2008, pp. 36–47. ACM
(2008)

18. Bodden, E., Lam, P., Hendren, L.J.: Clara: A Framework for Partially Evaluating
Finite-State Runtime Monitors Ahead of Time. In: Barringer, H., Falcone, Y.,
Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann,
N. (eds.) RV 2010. LNCS, vol. 6418, pp. 183–197. Springer, Heidelberg (2010)

19. Brucker, A.D., Wolff, B.: Interactive Testing with HOL-TestGen. In: Grieskamp,
W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 87–102. Springer, Heidel-
berg (2006)

20. Burdy, L., Requet, A., Lanet, J.-L.: Java Applet Correctness: A Developer-Oriented
Approach. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS,
vol. 2805, pp. 422–439. Springer, Heidelberg (2003)

21. Chen, F., Roşu, G.: Java-MOP: A Monitoring Oriented Programming Environment
for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005)

22. Cheon, Y., Leavens, G.T.: A runtime assertion checker for the Java Modeling Lan-
guage (JML). In: SERP 2002, pp. 322–328. CSREA Press (2002)

23. Colombo, C.: Practical runtime monitoring with impact guarantees of Java pro-
grams with real-time constraints. Master’s thesis, University of Malta (2008)

24. Colombo, C., Pace, G.J., Abela, P.: Safer asynchronous runtime monitoring using
compensations. Formal Methods in System Design 40, 1–26 (2012)

25. Colombo, C., Pace, G.J., Schneider, G.: Dynamic Event-Based RuntimeMonitoring
of Real-Time and Contextual Properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009)

26. Colombo, C., Pace, G.J., Schneider, G.: Larva - a tool for runtime monitoring of
java programs. In: SEFM 2009, pp. 33–37. IEEE Computer Society (2009)

27. d’Amorim, M., Havelund, K.: Event-based runtime verification of Java programs.
SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005)

28. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: Lola: Runtime monitoring of synchronous
systems. In: TIME 2005, pp. 166–174. IEEE Computer Society Press (June 2005)

29. Deng, X., Lee, J., Robby: Bogor/Kiasan: a k-bounded symbolic execution for check-
ing strong heap properties of open systems. In: ASE 2006, pp. 157–166. IEEE
Computer Society (2006)

30. Engel, C., Hähnle, R.: Generating Unit Tests from Formal Proofs. In: Gurevich,
Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg
(2007)

31. Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically discovering likely
program invariants to support program evolution. IEEE Transactions on Software
Engineering 27(2), 99–123 (2001)

32. Falzon, K.: Combining runtime verification and testing techniques. Master’s thesis,
University of Malta (2010)

326 W. Ahrendt, G.J. Pace, and G. Schneider

33. Goldberg, A., Havelund, K.: Automated runtime verification with eagle. In:
MSVVEIS (2005)

34. Grieskamp, W., Tillmann, N., Schulte, W.: XRT — exploring runtime for.NET
architecture and applications. In: Proc. Workshop on Software Model Checking
(SoftMC 2005), Edinburgh, UK. Electr. Notes Theor. Comput. Sci, vol. 144(3),
pp. 3–26 (2006)

35. Gupta, A., Majumdar, R., Rybalchenko, A.: From Tests to Proofs. In: Kowalewski,
S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 262–276. Springer,
Heidelberg (2009)

36. Hähnle, R., Baum, M., Bubel, R., Rothe, M.: A visual interactive debugger based
on symbolic execution. In: ASE 2010, pp. 143–146. ACM, New York (2010)

37. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580, 583 (1969)

38. Hunt, J.J., Jenn, E., Leriche, S., Schmitt, P., Tonin, I., Wonnemann, C.: A case
study of specification and verification using JML in an avionics application. In:
JTRES 2006, pp. 107–116. ACM Press (2006)

39. Jacobs, B., Marché, C., Rauch, N.: Formal Verification of a Commercial Smart
Card Applet with Multiple Tools. In: Rattray, C., Maharaj, S., Shankland, C.
(eds.) AMAST 2004. LNCS, vol. 3116, pp. 241–257. Springer, Heidelberg (2004)

40. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-mac: A run-time
assurance approach for java programs. Formal Methods in System Design 24(2),
129–155 (2004)

41. King, J.C.: A program verifier. PhD thesis, Carnegie-Mellon University (1969)
42. Leavens, G.T., Baker, A.L., Ruby, C.: JML: a java modeling language. In: Formal

Underpinnings of Java Workshop, at OOPSLA 1998 (1998)
43. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,

Kiniry, J., Chalin, P.: JML Reference Manual. Draft Revision 1. 200 (2007)
44. Logozzo, F.: Our Experience with the CodeContracts Static Checker. In: Joshi,

R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 241–242.
Springer, Heidelberg (2012)

45. Meredith, P.O., Jin, D., Chen, F., Rosu, G.: Efficient monitoring of parametric
context-free patterns. Autom. Softw. Eng. 17(2), 149–180 (2010)

46. Meyer, B.: Design by Contract. Technical Report TR-EI-12/CO, Interactive Soft-
ware Engineering Inc. (1986)

47. Mostowski, W.: Formalisation and Verification of Java Card Security Properties
in Dynamic Logic. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 357–371.
Springer, Heidelberg (2005)

48. Pace, G.J., Schneider, G.: Challenges in the Specification of Full Contracts. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 292–306.
Springer, Heidelberg (2009)

49. Prisacariu, C., Schneider, G.: A dynamic deontic logic for complex contracts. J.
Log. Algebr. Program 81(4), 458–490 (2012)

50. Rümmer, P.: Generating counterexamples for Java Dynamic logic. In: Prel. Proc.
of Workshop on Disproving at CADE 2005, pp. 32–44 (2005)

51. Schmitt, P.H., Tonin, I.: Verifying the Mondex case study. In: SEFM 2007, pp.
47–56. IEEE Press (2007)

52. Stenzel, K.: Verification of Java Card Programs. PhD thesis, Fakultät für ange-
wandte Informatik, University of Augsburg (2005)

Statistical Model Checking QoS Properties

of Systems with SBIP�

Saddek Bensalem1, Marius Bozga1, Benoit Delahaye2,
Cyrille Jegourel3, Axel Legay3, and Ayoub Nouri1

1 UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, Grenoble, F-38041, France
2 Aalborg University, Denmark
3 INRIA/IRISA, Rennes, France

Abstract. BIP is a component-based framework supporting rigorous
design of embedded systems. This paper presents SBIP, an extension of
BIP that relies on a new stochastic semantics that enables verification
of large-size systems by using Statistical Model Checking. The approach
is illustrated on several industrial case studies.

1 Introduction

Expressive modeling formalism with sound semantical basis and efficient analysis
techniques are essential for successful model-based development of embedded sys-
tems. While expressivity is needed for mastering heterogeneity and complexity,
sound and rigorous models are mandatory to establish and reason meaningfully
about system correctness and performance at design time.

The BIP (Behaviour-Interaction-Priority) [3] formalism is an example of a
highly expressive, component-based framework with rigorous semantical basis.
BIP allows the construction of complex, hierarchically structured models from
atomic components characterized by their behavior and their interfaces. Such
components are transition systems enriched with variables. Transitions are used
to move from a source to a destination location. Each time a transition is taken,
component variables may be assigned new values, possibly computed by C func-
tions. Atomic components are composed by layered application of interactions
and priorities. Interactions express synchronization constraints between actions
of the composed components while priorities are used both to select amongst
possible interactions and to steer system evolution so as to meet performance re-
quirements e.g. to express scheduling policies. BIP is supported by an extensible
toolset which includes tools for checking correctness, for model transformations
and for code generation. Correctness can be either formally proven using invari-
ants and abstractions, or tested using simulation. For the latter case, simulation
is driven by a specific middleware, the BIP engine, which allows to generate and

� Research supported by the European Community’s Seventh Framework Programme
[FP7] under grant agreements no 248776 (PRO3D), no 288917 (DALI), no 287716
(DANSE), no 257414 (ASCENS), the ARTEMIS JU grant agreement 2009-1-100208
(ACROSS), and Regional CREATIVE project ESTASE.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 327–341, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

328 S. Bensalem et al.

explore execution traces corresponding to BIP models. Model transformations
allow to realize static optimizations as well as special transformations towards
distributed implementation of models. Finally, code generation targets both sim-
ulation and implementation models, for different platforms and operating sys-
tems support (e.g., distributed, multi-threaded, real-time, etc.). The tool has
been applied to a wide range of academic case studies as well as to more serious
industrial applications [5].

BIP is currently equiped with a series of runtime verification [8] and simu-
lation engines. While those facilities allow us to reason on a given execution,
they cannot be used to assess the overall correctness of the entire system. This
paper presents SBIP, a stochastic extension of the BIP formalism and toolset.
Adding stochastic aspects permits to model uncertainty in the design e.g., by
including faults or execution platform assumptions. Moreover, it allows to com-
bine the simulation engine of BIP with statistical inference algorithms in order
to reason on properties in a quantitative manner. Stochastic BIP relies on two
key features. The first is a stochastic extension of the syntax and the seman-
tics of the BIP formalism. This extension allows us to specify stochastic aspects
of individual components and to produce execution traces of the designed sys-
tem in a random manner. The second feature is a Statistical Model Checking
(SMC) [25,28,16,23,4,30,29,17] engine (SBIP) that, given a randomly sampled fi-
nite set of executions/simulations of the stochastic system, can decide with some
confidence whether the system satisfies a given property. The decision is taken
through either a Monte Carlo (that estimates the probability) [9], or an hypoth-
esis testing algorithm [28,25] (that compares the probability to a threshold). Due
to SMC restrictions, these properties must be evaluated on bounded executions.
Here, we restrict ourselves to Bounded Linear Temporal Logic (BLTL). As it re-
lies on sampling executions of a unique distribution, SMC can only be applied to
pure stochastic systems i.e., systems without non-determinism. The problem is
that most of component-based design approaches exhibit non-determinism due to
interleaving semantics, usually adopted for parallel execution of components and
their interactions. SBIP allows to specify systems with both non-deterministic
and stochastic aspects. However, the semantics of such systems will be purely
stochastic, as explained hereafter. Syntactically, we add stochastic behaviour to
atomic components in BIP by randomizing individual transitions. Indeed, it suf-
fices to randomize the assignments of variables, which can be practically done in
the C functions used on transition. Hence, from the user point of view, dealing
with SBIP is as easy as dealing with BIP.

Our approach is illustrated on several case studies that cannot be handled with
existing model checkers for stochastic systems [20,15]. The presentation restricts
to the analysis of a clock synchronization protocol [1] and an MPEG decoder.
Other examples can be found in [2].

Structure of the paper. Section 2 presents the BIP framework. The stochas-
tic extension for BIP and its associated semantics are introduced in Section 3.
Section 4 describe the Probabilistic Bounded Linear Time Logic, the statistical

Statistical Model Checking QoS Properties of Systems with SBIP 329

model checking procedure as well as the implementation of our extension in BIP.
Finally, Sections 5 and 6 present experiments and conclusion, respectively.

2 Background on BIP

The BIP framework, presented in [3], supports a methodology for building sys-
tems from atomic components. It uses connectors, to specify possible interactions
between components, and priorities, to select amongst possible interactions.

Atomic components are finite-state automata that are extended with vari-
ables and ports. Variables are used to store local data. Ports are action names,
and may be associated with variables. They are used for interaction with other
components. States denote control locations at which the components await for
interaction. A transition is a step, labeled by a port, from a control location to
another. It has associated a guard and an action that are, respectively, a Boolean
condition and a computation defined on local variables. In BIP, data and their
related computation are written in C. Formally:

Definition 1 (Atomic Component in BIP). An atomic component is a tran-
sition system extended with data B = (L, P, T,X, {gτ}τ∈T , {fτ}τ∈T), where:

– (L, P, T) is a transition system, with L = {l1, l2, . . . , lk} a set of control
locations, P a set of ports, and T ⊆ L× P × L a set of transitions,

– X = {x1, . . . , xn} is a set of variables over domains {x1,x2, ...,xn} and for
each τ ∈ T respectively, gτ (X) is a guard, a predicate on X, and X ′ = fτ (X)
is a deterministic update relation, a predicate defining X ′ (next) from X
(current) state variables.

For a given valuation of variables, a transition can be executed if the guard eval-
uates to true and some interaction involving the port is enabled. The execution
is an atomic sequence of two microsteps: 1) execution of the interaction involving
the port, which is a synchronization between several components, with possible
exchange of data, followed by 2) execution of internal computation associated
with the transition. Formally:

Definition 2 (Semantics of atomic component). The semantics of B =
(L, P, T,X, {gτ}τ∈T , {fτ}τ∈T) is a transition system (Q,P, T0) such that

– Q = L×X where X denotes the set of valuations vX of variables in X.
– T0 is the set including transitions of the form ((l, vX), p, (l′, v′X)) such that
gτ (vX) ∧ v′X = fτ (vX) for some τ = (l, p, l′) ∈ T . As usual, if ((l, vX), p,

(l′, v′X)) ∈ T0, we write (l, vX)
p−→ (l′, v′X).

Composite components are defined by assembling sub-components (atomic or com-
posite) using connectors. Connectors relate ports from different sub-components.
They represent sets of interactions, that are, non-empty sets of ports that have to
be jointly executed. For every such interaction, the connector provides the guard

330 S. Bensalem et al.

and the data transfer, that are, respectively, an enabling condition and an ex-
change of data across the ports involved in the interaction. Formally:

For a model built from a set of component B1, B2, . . . , Bn, where Bi =
(Li, Pi, Ti, Xi, {gτ}τ∈Ti, {fτ}τ∈Ti) we assume that their respective sets of ports
and variables are pairwise disjoint, i.e. for any two i �= j in {1 . . . n}, we require
that Pi ∩ Pj = ∅ and Xi ∩ Xj = ∅. Thus, we define the set P =

⋃n
i=1 Pi of all

ports in the model as well as the set X =
⋃n

i=1Xi of all variables.

Definition 3 (Interaction). An interaction a is a triple (Pa, Ga, Fa) where
Pa ⊆ P is a set of ports, Ga is a guard, and Fa is a data transfer function. We
restrict Pa so that it contains at most one port of each component, therefore we
denote Pa = {pi}i∈I with pi ∈ Pi and I ⊆ {1 . . . n}. Ga and Fa are defined on
the variables available on the interacting ports

⋃
p∈aXp.

Given a set of interactions γ, the composition of the components following γ
is the component B = γ(B1, . . . , Bn) = (L, γ, T , X, {gτ}τ∈T , {fτ}τ∈T), where
(L, γ, T) is the transition system such that L = L1 × . . .×Ln and T ⊆ L× γ ×
L contains transitions of the form τ = ((l1, . . . , ln), a, (l

′
1, . . . , l

′
n)) obtained by

synchronization of sets of transitions {τi = (li, pi, l
′
i) ∈ Ti}i∈I such that {pi}i∈I =

a ∈ γ and l′j = lj if j /∈ I. The resulting set of variables isX = ∪1≤i≤nXi, and for
a transition τ resulting from the synchronization of a set of transitions {τi}i∈I ,
the associated guard (resp. update relation) is the conjunction of the individual
guards (resp. update relations) involved in the transition.

Finally, priorities provide a means to coordinate the execution of interactions
within a BIP system. They are used to specify scheduling or similar arbitration
policies between simultaneously enabled interactions. More concretely, priorities
are rules, each consisting of an ordered pair of interactions associated with a con-
dition. When the condition holds and both interactions of the corresponding pair
are enabled, only maximal one can be executed. Non-determinism appears when
several interactions are enabled. In the following, when we introduce probabilis-
tic variables, we will thus have to make sure that non-determinism is resolved in
order to produce a purely stochastic semantics.

3 SBIP: A Stochastic Extension for BIP

The stochastic extension of BIP allows (1) to specify stochastic aspects of in-
dividual components and (2) to provide a purely stochastic semantics for the
parallel composition of components through interactions and priorities.

Stochastic Variables. Syntactically, we add stochastic behaviour to atomic com-
ponents in BIP by allowing the definition of probabilistic variables. Probabilistic
variables xP are attached to given distributions μxP implemented as C func-
tions. These variables can then be updated on transition using the attached
distribution. The semantics on transitions is thus fully stochastic. We first de-
fine atomic components and interaction between them in SBIP, and then define
the corresponding stochastic semantics.

Statistical Model Checking QoS Properties of Systems with SBIP 331

l

l′

xP = vxP

p
xP ′

:= µxP ();

(a) Component B in SBIP

(l, vxP)

µxP

(l′, v′xP)

p p

(b) Semantics of B according to SBIP

Fig. 1. Example of an abstract component B and its semantics in SBIP

Definition 4 (Atomic Component in SBIP). An atomic component in SBIP
is a transition system extended with data B = (L, P, T,X, {gτ}τ∈T , {fτ}τ∈T),
where L, P, T, {gτ}τ∈T are defined as in Definition 1, and

– X = XD ∪ XP , with XD = {x1, . . . , xn} the set of deterministic variables
and XP = {xP1 , . . . , xPm} the set of probabilistic variables.

– For each τ ∈ T , the update function X ′ = fτ (X) is a pair (X ′
D = fDτ (X), Rτ)

where X ′
D = fDτ (X) is an update relation for deterministic variables and

Rτ ⊆ XP is the set of probabilistic variables that will be updated using their
attached distributions. Remark that the current value of the probabilistic vari-
ables can be used in the update of deterministic variables.

In the following, given a valuation vX of all the variables in X , we will denote
by vY the projection of vX on a subset of variables Y ⊆ X . When clear from
the context, we will denote by vy the valuation of variable y ∈ X in vX .

Some transitions in the associated semantics are thus probabilistic. As an
example, consider an atomic component B with a transition τ that goes from
a location l to a location l′ using port p and updates a probabilistic variable
xP with the distribution μxP over the domain xP. In the associated semantics,
assuming the initial value of xP is vxP , there will be several transitions from
state (l, vxP) to states (l′, v′xP) for all v′xP ∈ xP. According to the definition of

probabilistic variables, the probability of taking transition (l, vxP)
p−→ (l′, v′xP)

will then be μxP (v′xP). This example is illustrated in Figure 1. When several
probabilistic variables are updated, the resulting distribution on transitions will
be the product of the distributions associated to each variables. Since these dis-
tributions are fixed from the declaration of the variables, they can be considered
independent, ensuring the correctness of our construction. The syntactic defini-
tions of interactions and composition are adapted from BIP in the same manner.
For the sake of simplicity, we restrict data transfer functions on interactions to
be deterministic.

Purely Stochastic Semantics. Adapting the semantics of an atomic component
in BIP as presented in Definition 2 to atomic components with probabilistic
variables leads to transition systems that combine both stochastic and non-
deterministic aspects. Indeed, even if atomic transitions are either purely

332 S. Bensalem et al.

deterministic or purely stochastic, several interactions can be enabled in a given
system state. In this case, the choice between these potential transitions is non-
deterministic. In order to produce a purely stochastic semantics for components
defined in SBIP, we thus propose to resolve any non-deterministic choice left af-
ter applying the priorities by applying uniform distributions. Remark that other
distributions could be used to resolve this non-determinism and that using uni-
form distributions is the default choice we made. In the future, we will allow
users to specify a different way of resolving non-determinism.

Consider a component B = (L, P, T,X, {gτ}τ∈T , {fτ}τ∈T) in SBIP. Given a
state (l, vX) in L × X, we denote by Enabled(l, vX) the set of transitions in T
that are enabled in state (l, vX), i.e. transitions τ = (l, p, l′) ∈ T such that
gτ (vX) is satisfied. Since priorities only intervene at the level of interactions,
the semantics of a single component does not take them into account. Remark
that the set Enabled(l, vX) may have a cardinal greater than 1. This is the only
source of non-determinism in the component. In the semantics of B, instead
of non-deterministically choosing between transitions in Enabled(l, vX), we will
choose probabilistically using a uniform distribution. Formally:

Definition 5 (Semantics of a single component in SBIP). The semantics
of B = (L, P, T,X, {gτ}τ∈T , {fτ}τ∈T) in SBIP is a probabilistic transition sys-
tem (Q,P, T0) such that Q = L×X and T0 is the set of probabilistic transitions
of the form ((l, vX), p, (l′, v′X)) for some τ = (l, p, l′) ∈ Enabled(l, vX) such that
v′XD

= fDτ (vX), and for all y ∈ XP \Rτ , v
′
y = vy.

In a state (l, vX), the probability of taking a transition (l, vX)
p−→ (l′, v′X) is

the following:

1

|Enabled(l, vX)|

⎡
⎢⎢⎢⎣

∑
{τ∈Enabled(l,vX)

s.t. τ=(l,p,l′)}

⎛
⎝ ∏

y∈Rτ

μy(v
′
y))

⎞
⎠
⎤
⎥⎥⎥⎦ .

The probability of taking transition (l, vX)
p−→ (l′, v′X) is computed as follows.

For each transition τ = (l, p, l′) ∈ Enabled(l, vX) such that v′XD
= fDτ (vX) and

for each y ∈ XP \ Rτ , v
′
y = vy, the probability of reaching state (l′, v′X) is∏

y∈Rτ
μy(v

′
y). Since there may be several such transitions, we take the sum of

their probabilities and normalize by multiplying with 1
|Enabled(l,vX)| .

Stochastic Semantics for Composing Components. When considering a system
with n components in SBIP Bi = (Li, Pi, Ti, Xi, {gτ}τ∈Ti , {fτ}τ∈Ti) and a set of
interactions γ, the construction of the product component B = γ(B1, . . . , Bn)
is defined as in BIP. The resulting semantics is given by Definition 5 above,
where Enabled(l, vX) now represents the set of interactions enabled in global state
(l, vX) that are maximal with respect to priorities. By construction, it follows
that the semantics of any (composite) system in SBIP is purely stochastic.

Example 1. Consider SBIP components B1 and B2 given in Figures 2a and 2b.
B1 has a single probabilistic variable xP1 , to which is attached distribution μ1

Statistical Model Checking QoS Properties of Systems with SBIP 333

l11

l12

xP
1 = v1

p1
xP
1
′
:= µ1();

(a) Component
B1 in SBIP.

l21

l23l22

p2 p3

xP
2 = v2

xP
3 = v3

xP
3
′
:= µ3();xP

2
′
:= µ2();

(b) Component B2 in
SBIP.

((l12, l
2
2), (v

′
1, v

′
2, v3))

((l11, l
2
1), (v1, v2, v3))

µ1µ2 µ1µ3

((l12, l
2
3), (v

′
1, v2, v

′
3))

a b
1
2

1
2

(c) Semantics of γ(B1, B2) ac-
cording to SBIP, with γ = {a =
{p1, p2}, b = {p1, p3}}.

Fig. 2. Illustration of the purely stochastic semantics of composition in SBIP

and a single transition from location l11 to location l12 using port p1, where x1
is updated. In location l11, the variable xP1 is assumed to have value v1. B2 has
two probabilistic variables xP2 and xP3 , to which are attached distributions μ2
and μ3 respectively. B2 admits two transitions: a transition from location l21
to location l22 using port p2, where x2 is updated, and a transition from loca-
tion l21 to location l23 using port p3, where x3 is updated. In location l21, the
variables xP2 and xP3 are assumed to have values v2 and v3 respectively. Let
γ = {a = {p1, p2}, b = {p1, p3}} be a set of interactions such that interactions
a and b have the same priority. The semantics of the composition γ(B1, B2) is
given in Figure 2c. In state ((l11, l

2
1), (v1, v2, v3)) of the composition, the non-

determinism is resolved between interactions a and b, choosing one of them with
probability 1/2. After choosing the interaction, the corresponding transition is
taken, updating the corresponding probabilistic variables with the associated dis-
tributions. Remark that this gives rise to a single purely stochastic transition. As
an example, the probability of going to state ((l12 , l

2
2), (v

′
1, v

′
2, v3)) with interaction

a is 1/2·μ1(v′1)·μ2(v′2), while the probability of going to state ((l12, l
2
3), (v

′
1, v2, v

′
3))

with interaction b is 1/2 · μ1(v′1) · μ3(v′3).

An execution π of a BIP model is a sequence of states that can be generated
from an initial state by following a sequence of (probabilistic) transitions. From
the above, one easily sees that the semantics of any SBIP (composite) system
has the structure of a discrete Markov chain. Consequently, one can define a
probability measure μ on its set of executions in the usual way [22].

4 SMC Approach and Implementation

In this section, we present Probabilistic Bounded Linear Temporal Logic
(PBLTL), a formalism for describing stochastic temporal properties. We then
introduce a model checking procedure for this logic and discuss its implementa-
tion in SBIP. We first recap Bounded Linear Temporal Logic and then define its
probabilistic extension. The Bounded LTL formulas that can be defined from a
set of atomic propositions B are the following.

334 S. Bensalem et al.

– T, F, p, ¬p, for all p ∈ B;
– φ1 ∨ φ2, φ1 ∧ φ2, where φ1 and φ2 are BLTL formulas;
– ©φ1, φ1U tφ2, where φ1 and φ2 are BLTL formulas, and t is a positive integer.

As usual, ♦tφ = TU tφ and �tφ = ¬(TU t(¬φ)). A Probabilistic BLTL formula
is a BLTL formula preceded by a probabilistic operator P .

The semantics of a BLTL formula is defined with respect to an execution
π = s0s1 . . . in the usual way [7]. Roughly speaking, an execution π = s0s1 . . .
satisfies ©φ1, which we denote π |= ©φ1, if state s1 satisfies φ1. The execution
π satisfies φ1U tφ2 iff there exists a state si with i≤t that satisfies φ2 and all the
states in the prefix from s0 to si−1 satisfy φ1.

Definition 6. A SBIP system B satisfies the PBLTL formula ψ = P≥θφ iff
μ{π | π |= φ}≥θ, where π are executions of B and μ is its underlying probability
measure.

4.1 Statistical Model Checking

Runtime verification (RV) [10,8,24] refers to a series of techniques whose main
objective is to instrument the specification of a system (code, ...) in order to
dissprove potentially complex properties at the execution level. The main prob-
lem of the runtime verification approach is that it does not permit to assess the
overall correctness of the entire system.

Statistical model checking (SMC) [4,28,25] extends runtime verification capa-
bilities by exploiting statistical algorithms in order to get some evidence that a
given system satisfies some property.

We now present a model checking procedure to decide whether a given SBIP
system B satisfies a property ψ. Consider an SBIP system B and a BLTL prop-
erty φ. Statistical model checking refers to a series of simulation-based techniques
that can be used to answer two questions: (1) Qualitative: is the probability for
B to satisfy φ greater or equal to a certain threshold θ? and (2) Quantitative:
what is the probability for B to satisfy φ? Both those questions can serve to
decide a PBLTL property.

The main approaches [28,25] proposed to answer the qualitative question are
based on hypothesis testing. Let p be the probability of B |= φ, to determine
whether p ≥ θ, we can test H : p ≥ θ against K : p < θ. A test-based solution
does not guarantee a correct result but it is possible to bound the probability of
making an error. The strength (α, β) of a test is determined by two parameters,
α and β, such that the probability of accepting K (respectively, H) when H
(respectively, K) holds is less or equal to α (respectively, β). Since it impossible
to ensure a low probability for both types of errors simultaneously (see [28] for
details), a solution is to use an indifference region [p1, p0] (with θ in [p1, p0]) and
to test H0 : p≥ p0 against H1 : p≤ p1. Several hypothesis testing algorithms
exist in the literature. Younes[28] proposed a logarithmic based algorithm that
given p0, p1, α and β implements the Sequential Ratio Testing Procedure (SPRT)
(see [26] for details). When one has to test θ≥1 or θ≥0, it is however better

Statistical Model Checking QoS Properties of Systems with SBIP 335

to use Single Sampling Plan (SSP) (see [28,4,25] for details) that is another
algorithm whose number of simulations is pre-computed in advance. In general,
this number is higher than the one needed by SPRT, but is known to be optimal
for the above mentioned values. More details about hypothesis testing algorithms
and a comparison between SSP and SPRT can be found in [4].

In [11,21] Peyronnet et al. propose an estimation procedure (PESTIMATION)
to compute the probability p for B to satisfy φ. Given a precision δ, Peyronnet’s
procedure computes a value for p′ such that |p′ − p|≤δ with confidence 1 − α.
The procedure is based on the Chernoff-Hoeffding bound [12].

The efficiency of the above algorithms is characterized by the number of sim-
ulations needed to obtain an answer. This number may change from system to
system and can only be estimated (see [28] for an explanation). However, some
generalities are known. For the qualitative case, it is known that, except for some
situations, SPRT is always faster than SSP. PESTIMATION can also be used
to solve the qualitative problem, but it is always slower than SSP [28]. If θ is
unknown, then a good strategy is to estimate it using PESTIMATION with a
low confidence and then validate the result with SPRT and a strong confidence.

4.2 The SBIP Tool

The SBIP tool implements the statistical algorithms described above, namely,
SSP, SPRT, and PESTIMATION for SBIP systems. Figure 3 shows the tool
structure and execution flow. SBIP takes as inputs a system written in SBIP, a
PBLTL property to check, and a series of confidence parameters needed by the
statistical test. Then, the tool creates an executable model and a monitor for the
property under verification. From there, it will trigger the stochastic BIP engine
to generate execution traces (Sampling) which are iteratively monitored. This
procedure is repeated until a decision can be taken by the SMC core. As our
approach relies on SMC, we are guaranteed that the procedure will eventually
terminate.

Due to SMC restrictions, the properties must be evaluated on bounded exe-
cutions. Here, we restrict to BLTL. We note that the monitoring procedure is
an implementation of the work proposed in[10].

5 Case Studies

While still at prototype level, SBIP has been already applied to several case
studies coming from serious industrial applications.

5.1 Accuracy of Clock Synchronization Protocol IEEE.1588

Model Description. The case study concerns a clock synchronization protocol
running within a distributed heterogeneous communication system (HCS) [1].
This protocol allows to synchronize the clocks of various devices with the one of
a designated server. It is important that this synchronization occurs properly,

336 S. Bensalem et al.

S Simulator
- executable -

BIP Compilation

 Monitor
- executable -

SMC Core
SSP / SPRT / PESTIMATION

- executable -

System S
-Stochastic BIP -

OK / KO
trace verdict

OK / KO
Verdict

execution
trace

Property
- PBLTL -

PBLTL Compilation

Parameters
 , (,)

triggers

produces

collects

K / K

trace
length n

trace

S Simulator
- executable -

BIP Compilation

triggers

Fig. 3. SBIP tool architecture and work flow

!followUp(t1)

?request

[x = P]x := 0

!sync

t1 := θm

t4 := θm

!reply(t4)

?followUp(t1)

t2 := θs

?sync

!request

t2 := θs

?reply(t4)

θs := θs − o

ρ1

ρ2

sync, followUp, reply

request

o := f(t1, t2, t3, t4)

Master Slave

Fig. 4. PTP Stochastic Model

i.e., that the difference between the clock of the server and the one of any device
is bounded by a small constant.

To verify such property, we build the stochastic model depicted in Figure 4.
This model is composed by two deterministic components namely Master, Slave
and two communication channels. In the PTP model, the time of the master
process is represented by the clock variable θm. This is considered the reference
time and is used to synchronize the time of the slave clock, represented by the
clock variable θs. The synchronization works by messages exchange between
the server and a device where each saves the message reception time (ti)i=1,4

w.r.t. its local clock. In termination, the slave computes the offset between its
time and the master time and updates its clock accordingly. Communication
channels have been modeled using stochastic components. These components

Statistical Model Checking QoS Properties of Systems with SBIP 337

model communication delays over network w.r.t empirical distributions obtained
by simulating a detailed HCS model.

The accuracy of the synchronization is defined by the absolute value of the
difference between the master and slave clocks |θm−θs|, during the lifetime of the
system we consider (in this case, 1000 steps). Our aim is to verify the satisfaction
of the formula φ = �1000(|θm − θs| ≤ Δ) for arbitrary fixed non-negative Δ.

Experiments and Results. Two types of experiments are conducted. The
first one is concerned with the bounded accuracy property φ. In the second one,
we study average failure per execution for a given bound.

Property 1: Synchronization. To estimate the best accuracy bound, we have
computed, for each device, the probability for synchronization to occur properly
for values of Δ between 10μs and 120μs. Figure 5a gives the results of the prob-
ability of satisfying the bounded accuracy property φ as a function of the bound
Δ. The figure shows that the smallest bound which ensures synchronization for
any device is 105μs (for Device (3, 0)). However, devices (0, 3) and (3, 3) already
satisfy the property φ with probability 1 for Δ = 60μs. For this experiments,
we have used SPRT and SSP jointly with PESTIMATION for a higher degree
of confidence. The results, which are presented in Table 1 for Device (0, 0), show
that SPRT is faster than SSP and PESTIMATION.

Table 1. Number of simulations / Amount of time required for PESTIMATION, SSP
and SPRT

Precision 10−1 10−2 10−3

Confidence 10−5 10−10 10−5 10−10 10−5 10−10

PESTIMATION
4883 9488 488243 948760 48824291 94875993
17s 34s 29m 56m > 3h > 3h

SSP
1604 3579 161986 368633 16949867 32792577
10s 22s 13m 36m > 3h > 3h

SPRT
316 1176 12211 22870 148264 311368
2s 7s 53s 1m38s 11m 31m

Property 2: Average failure. In the second experiment, we try to quantify
the average and worst number of failures in synchronization that occur per simu-
lation when working with smaller bounds. Our goal is to study the possibility of
using such bounds. For a given simulation, the proportion of failures is obtained
by dividing the number of failures by the number of rounds of PTP. We will now
estimate, for a simulation of 1000 steps (66 rounds of the PTP), the average
value for this proportion. To this purpose, we have measured for each device
this proportion on 1199 simulations with a different synchronization bounds Δ
between 10μs and 120μs. Figures 5b gives the average proportion of failure as a
function of the bound.

338 S. Bensalem et al.

 0

0.2

0.4

0.6

0.8

 1

 0 20 40 60 80 100 120

Bound

Probability of bounded accuracy

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(a) Probability of satisfying bounded accu-
racy.

 0

0.05

 0.1

0.15

 0.2

0.25

 0 20 40 60 80 100 120

Bound

Proportion of failures

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(b) Average proportion of failures.

Fig. 5. Probability of satisfying the bounded accuracy property and average proportion
of failures as functions of the bound Δ

5.2 Playout Buffer Underflow in MPEG2 Player

In multimedia literature [27], it has been shown that some quality degradation is
tolerable when playing MPEG2-coded video. In fact, a loss under two consecutive
frames within a second can be accepted. In this example, we want to check that
an MPEG2 player implementation guarantees this QoS property.

Model Description. We illustrate the multimedia player set-up that has been
modeled using the stochastic BIP framework. The designed model captures the
stochastic system aspects that are, the macro-blocks arrival time to the input
buffer and the their processing time.

The stochastic system model is shown in Figure 6. It consists of three func-
tional components namely Generator, Processor, and Player. In addition to
these, the buffers between the above functional components are modeled by ex-
plicit buffer components, namely Input buffer and Playout buffer. The transfer
of the macro-blocks between the functional blocks and the buffers are described
using interactions.

Input Buffer Playout Buffer
Generator (BitRate) Player (Rate,Delay)Processor (Frequency)

Fig. 6. MPEG2 stochastic Model

Statistical Model Checking QoS Properties of Systems with SBIP 339

The Generator is a stochastic component which models macro-blocks produc-
tion based on a probabilistic distribution. It generates an MPEG2-coded stream
with respect to a fixed Group-of-Pictures (GOP) pattern [18,19] and simulates
the arrival time of macro-blocks to the input buffer. The Processor reads them
sequentially, decodes them and write them to the Playout buffer. The Player
starts to read macro-blocks from the Playout buffer after a defined initial de-
lay namely Playout Delay. Once this delay ends, the consumption is performed
periodically with respect to a fixed consumption rate. Each period, the Player
sends a request of N macro-blocks to the Playout buffer, where N = 1 the first
time. Then it gets a response of M macro-blocks, where 0 ≤ M ≤ N . We say
that we have an underflow if M < N . In this case, the next request N will be
(N −M) + 1. That is, the player will try to read all the missed macro-blocks.

Experiments and Results. To check the described model with respect to the
desired QoS property, we used the SBIP tool. The BLTL specification of the
QoS property to check is φ = �1500000(¬fail), where fail denotes a failure state
condition corresponding to the underflow of two consecutive frames within a
second.

0 20 40 60 80 100 120 140 160

0

0.2

0.4

0.6

0.8

1

Playout Delay (milli second)

P
ro

ba
bi

lit
y

(a) Probability of satisfying the QoS
property.

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

Playout Delay (milli second)

N
um

be
r

of
 tr

ac
es

(b) Number of used traces.

Fig. 7. Illustration of results

The obtained results are shown in Figure 7a where we can see that until 60ms,
the probability of satisfying φ is 0, that is, for small Playout delays, the number
of underflow exceeds 2 frames. For delays between 70 and 100, the probability
of satisfying the QoS property increases to attain 1 for high Playout delays
(≥ 110ms). Figure 7b shows the amount of needed traces for each Playout delay
where the average simulation time is about 8 seconds.

6 Conclusion and Future Work

Stochastic systems can also be analyzed with a pure stochastic model checking
approach. While there is no clear winner, SMC is often more efficient in terms of
memory and time consumption [13]. The above experiments are out of scope of
stochastic model checking. Also, there are properties such as clock drift in Clock

340 S. Bensalem et al.

Synchronization Protocols (see [1]) that could not have been analyzed with a
pure formal approach. The PRISM toolset [20] also incorporates a stochastic
model checking engine. However, it can only be applied to those systems whose
individual components are purely stochastic. Moreover, probability distributions
are described in a very simple and restrictive language, while we can use the
full fledged C to describe complex distributions. Nevertheless, we have observed
that PRISM can be faster than our tool on various case studies such as those
where the same process is repeated a certain number of times. Solutions to
considerably enhance the efficiency of SMC in particular cases have recently
been developed [14], but have not yet been implemented in SBIP. In a recent
work [6], it has been proposed to use partial order to solve non-determinism when
applying SMC (which rarely works). In SBIP, the order is directly given in the
design through priorities specified by the user.

We shall continue the development by implementing new heuristics to speed
up simulation and to reduce their number. We shall also implement an extension
of the stochastic abstraction principle from [1] that allows to compute automat-
ically a small stochastic abstraction from a huge concrete system.

References

1. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical
Abstraction and Model-Checking of Large Heterogeneous Systems. In: Hatcliff, J.,
Zucca, E. (eds.) FMOODS 2010, Part II. LNCS, vol. 6117, pp. 32–46. Springer,
Heidelberg (2010)

2. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A., Sifakis, E.: Verification of
an AFDX Infrastructure Using Simulations and Probabilities. In: Barringer, H., Fal-
cone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Till-
mann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 330–344. Springer, Heidelberg (2010)

3. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Systems in
BIP. In: SEFM 2006, pp. 3–12 (September 2006)

4. Bensalem, S., Delahaye, B., Legay, A.: Statistical model checking: Present and
future. In: RV. Springer (2010)

5. Bensalem, S., de Silva, L., Griesmayer, A., Ingrand, F., Legay, A., Yan, R.: A For-
mal Approach for Incremental Construction with an Application to Autonomous
Robotic Systems. In: Apel, S., Jackson, E. (eds.) SC 2011. LNCS, vol. 6708,
pp. 116–132. Springer, Heidelberg (2011)

6. Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial Order
Methods for Statistical Model Checking and Simulation. In: Bruni, R., Dingel,
J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 59–74. Springer,
Heidelberg (2011)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
8. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime Verifica-

tion of Component-Based Systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.)
SEFM 2011. LNCS, vol. 7041, pp. 204–220. Springer, Heidelberg (2011)

9. Grosu, R., Smolka, S.A.:Monte CarloModel Checking. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005)

10. Havelund, K., Roşu, G.: Synthesizing Monitors for Safety Properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002)

Statistical Model Checking QoS Properties of Systems with SBIP 341

11. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate Probabilistic
Model Checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 73–84. Springer, Heidelberg (2004)

12. Hoeffding, W.: Probability inequalities. Journal of the American Statistical Asso-
ciation 58, 13–30 (1963)

13. Jansen, D.N., Katoen, J.-P., Oldenkamp, M., Stoelinga, M., Zapreev, I.: How Fast
and Fat Is Your Probabilistic Model Checker? An Experimental Performance Com-
parison. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 69–85. Springer,
Heidelberg (2008)

14. Jegourel, C., Legay, A., Sedwards, S.: Cross-Entropy Optimisation of Importance
Sampling Parameters for Statistical Model Checking. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer, Heidelberg (2012)

15. Jegourel, C., Legay, A., Sedwards, S.: A Platform for High Performance Statistical
Model Checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012)

16. Katoen, J.-P., Zapreev, I.S.: Simulation-based ctmc model checking: An empirical
evaluation. In: QEST, pp. 31–40. IEEE Computer Society (2009)

17. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker mrmc. In: QEST, pp. 167–176. IEEE
Computer Society (2009)

18. Krunz, M., Sass, R., Hughes, H.: Statistical characteristics and multiplexing of
MPEG streams. In: INFOCOM, pp. 455–462 (April 1995)

19. Krunz, M., Tripathi, S.K.: On the characterization of VBR MPEG streams. In:
SIGMETRICS, pp. 192–202 (June 1997)

20. Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: A tool for probabilistic
model checking. In: QEST, pp. 322–323. IEEE (2004)

21. Laplante, S., Lassaigne, R., Magniez, F., Peyronnet, S., de Rougemont, M.: Prob-
abilistic abstraction for model checking: An approach based on property testing.
ACM TCS 8(4) (2007)

22. Parzen, E.: Stochastic Processes. Holden Day (1962)
23. El Rabih, D., Pekergin, N.: Statistical Model Checking Using Perfect Simulation.

In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 120–134. Springer,
Heidelberg (2009)

24. Roşu, G., Bensalem, S.: Allen Linear (Interval) Temporal Logic – Translation to
LTL and Monitor Synthesis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 263–277. Springer, Heidelberg (2006)

25. Sen, K., Viswanathan, M., Agha, G.: Statistical Model Checking of Black-Box
Probabilistic Systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 202–215. Springer, Heidelberg (2004)

26. Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathematical Statis-
tics 16(2), 117–186 (1945)

27. Wijesekera, D., Srivastava, J.: Quality of Service (QoS) Metrics for Continuous
Media. Multimedia Tools and Applications 3(2), 127–166 (1996)

28. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asyn-
chronous Events. PhD thesis, Carnegie Mellon (2005)

29. Zuliani, P., Baier, C., Clarke, E.M.: Rare-event verification for stochastic hybrid
systems. In: HSCC, pp. 217–226. ACM (2012)

30. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to simulink/stateflow verification. In: HSCC, pp. 243–252. ACM (2010)

Monitoring Temporal Information Flow

Rayna Dimitrova, Bernd Finkbeiner, and Markus N. Rabe

Universität des Saarlandes, Germany

Abstract. We present a framework for monitoring information flow
in security-critical reactive systems, such as communication protocols,
cell phone apps, document servers and web browsers. The secrecy re-
quirements in such systems typically vary over time in response to
the interaction with the environment. Standard notions of secrecy, like
noninterference, must therefore be extended by specifying precisely when
and under what conditions a particular event needs to remain secret.
Our framework is based on the temporal logic SecLTL, which combines
the standard temporal operators of linear-time temporal logic with the
modal Hide operator for the specification of information flow proper-
ties. We present a first monitoring algorithm for SecLTL specifications,
based on a translation of SecLTL formulas to alternating automata, and
identify open research questions and directions for future work.

1 Introduction

Runtime monitoring and enforcement of security properties has been an active
area of research in the last four decades [1], and its importance continues to
grow as security-critical systems such as communication protocols, cell phone
apps, document servers and web browsers become more and more ubiquitous.
The canonical property of interest in such systems is noninterference [2], which
requires that the public output of the system does not depend on secret input.
In this paper we address the problem of monitoring information flow in reactive
systems. We argue that in the realm of reactive systems, considering classical
noninterference is of limited interest: the secrecy requirements of a reactive sys-
tem typically vary over time in response to the interaction with the environment.

Consider, for example, the flow of information in a system for managing clini-
cal data. Ethical guidelines, such as those by the Caldicott Committee [3], state
that patient information is confidential and should not be disclosed without the
patient’s consent unless justified for a lawful purpose. For example, a release of
information without the patient’s consent may be allowed (and even required) in
certain cases of food poisoning and other notifiable diseases. On the other hand,
many secondary uses of the information, for example for research purposes, are
only allowed while the patient has given and not (yet) revoked explicit consent.

Due to the nature of information flow, monitoring mechanisms for noninterfer-
ence and related properties must not only consider the monitored trace, but also
additional traces that were not observed. For example, if the result of a medical
test is to be kept secret, and the test result turns out to be positive in the moni-
tored trace, then we must not only track the computation path corresponding to

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 342–357, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Monitoring Temporal Information Flow 343

the positive result, but also the computation path corresponding to the negative
result in order to check that both traces are observably equivalent. To reduce the
runtime overhead resulting from having to analyze parts of the actual system,
hybrid approaches that combine dynamic and static analysis techniques have
been developed [4,5]. There exist, however, no means of imposing restrictions
on which parts the system should be considered while still performing a seman-
tically justified security analysis. This can be achieved by specifying precisely
when and under what conditions noninterference has to hold.

In runtime verification, the usual specification language to describe such tem-
poral contexts is temporal logic. In this paper, we therefore propose an approach
for runtime monitoring of information flow in reactive systems that integrates
the dynamic analysis of information flow into the monitoring of temporal prop-
erties. Our approach is based on the temporal logic SecLTL, which we recently
introduced as a specification language for model checking [6]. SecLTL extends
linear-time temporal logic (LTL) with the Hide operator H for the specification
of information flow properties. The SecLTL formula HH,I,O ϕ specifies that a
certain secret, expressed as the current valuation of the variables in H , will not
become observable before the endcondition ϕ evaluates to true. The observer
from whom we wish to hide the secret is characterized by the subsets I and O
of the input and output variables that are visible to the observer. Applications
of the Hide operator can be embedded into a temporal context, for example in
the formula � (¬c → H{t},I,O false), which specifies that whenever the patent
does not give consent c to release the information, then the test result t must be
kept confidential forever with respect to the variables in I and O, representing
the interface to potential secondary users of the information.

The challenge in using SecLTL as a specification language for runtime moni-
tors is to integrate the monitoring of noninterference into the runtime verification
of the temporal formula. In the paper, we show that a seamless integration is in-
deed possible by using alternating automata as an intermediate data structure.
Alternating automata combine the disjunctive branching of nondeterministic
automata with the conjunctive branching of universal automata. As a result,
alternating automata are exponentially more succinct than nondeterministic or
universal automata. LTL specifications can be translated in linear time into
equivalent alternating automata that closely match the structure of the formula:
the states of the automaton correspond to subformulas of the specification [7].
In monitoring, this conciseness can be exploited by an efficient on-the-fly con-
struction, which delays the unfolding of the alternating automaton until new
positions of the trace become available [8].

The universal branching available in alternating automata can also be used
to concisely express the noninterference requirements in SecLTL specifications.
Overall, the automaton for a SecLTL formula has the same structure as the
automaton for an LTL formula. If the Hide operator occurs as a subformula, we
need to check that all alternative traces (corresponding to different values of the
secrets) in the system result in the same observation. To verify this condition, the
automaton branches universally into a separate check for each alternative trace,

344 R. Dimitrova, B. Finkbeiner, and M.N. Rabe

where the subautomaton for each alternative trace keeps track of both the state
of the system for the main trace and the state of the system for the alternative
trace, and ensures that the observations are the same until the endcondition
becomes true on the main trace.

The embedding of the noninterference check into the alternating automaton
leads to an efficient monitoring algorithm. Using the standard on-the-fly unfold-
ing technique [8], we only consider that part of the automaton that corresponds
to the monitored trace. In particular, the decision which alternative traces to
track is delayed until the moment when the temporal context has already been
evaluated with respect to the currently available prefix of the monitored trace.

In the following sections, we present the ingredients of our monitoring ap-
proach in more detail. In Section 2, we formalize our system model and review
the syntax and semantics of SecLTL. In Section 3 we describe the translation
of SecLTL specifications to alternating automata. Based on this foundation, we
then present our monitoring algorithm for SecLTL specifications. We conclude
with a discussion of open research questions and future directions in Section 4.

2 The Specification Language SecLTL

2.1 System Model

Definition 1. A transition system S = (S, s0,VI ,VO, Σ, δ) consists of:

– a finite set of states S with an initial state s0,
– finite sets VI and VO of boolean input and output variables respectively, with

VI ∩ VO = ∅, and alphabet Σ defined as Σ = 2(VI∪VO),
– a transition function δ : S ×Σ → S, which is a partial function.

We consider input-enabled systems, that is, we require for every s ∈ S and
a ∈ 2VI that there exists an o ∈ 2VO such that δ(s, a ∪ o) is defined. We define
the size of the transition system S as |S| = |S|+ |Σ|.

For a set A, A∗ is the set of all finite sequences of elements of A and Aω is the
set of all infinite sequences of elements of A. For a finite or infinite sequence π
of elements of A and i ∈ N, π[i] is the (i+1)-th element of π, π[0, i) is the prefix
of π of up to (excluding) position i, π[0, i] is the prefix of π up to (including)
position i and, if π is infinite, π[i,∞) is its infinite suffix starting at position i.
We denote the length of a sequence π with |π| (where |π| = ∞ for π ∈ Aω).

Definition 2 (Trace). A trace in a transition system S = (S, s0,VI ,VO, Σ, δ)
is a finite or infinite sequence π of elements of Σ: π ∈ Σ∗ ∪Σω.

Definition 3 (Execution). Given a state s ∈ S and a finite or infinite trace
π, there exists at most one (finite or infinite, respectively) sequence of states
s0, s1, . . . such that s0 = s and si = δ(si−1, π[i− 1]) for all 0 < i < |π|.

We call this sequence of states (whenever it exists) an execution of S from
s on π and denote it with ExecS(s, π). Given a state s, we denote the set of
infinite (finite) traces in S for which an execution of S from s exists (i.e., for
which ExecS is defined for the state s) by TracesS,s (respectively TracesFinS.s).

Monitoring Temporal Information Flow 345

Example 1. We use a simple application for managing clinical data as our run-
ning example. The application processes medical test results for a patient and
reports the results in accumulated form, here simply stating whether or not
some test has been positive, to an external agency. The application takes into
account whether the patient agrees to the release of information. Figures 1(a)
and 1(b) show two transition systems modeling variations of such an application.
In both SA and SB , the set of input variables is VI = {c, t} and the set of output
variables is VO = {p, d}. Thus, the alphabet of edge labels is Σ = 2{t,c,p,d}.

The variable t indicates the positive or negative outcome of the current test,
the variable p indicates whether the system reports that some test was positive,
the variable c indicates the patient’s current consent status, and the variable d
indicates whether the patient is included in an ongoing drug study. For clarity, we
use the valuations of the boolean variables in VI ∪VO to represent the elements
of Σ, for example the edge label ctpd stands for {c, p, d}.

If the patient consents to the release of information, p is truthfully set to true
if some test result has been positive. If there is no consent, p is always set to
false. The behaviors of the two systems differ with respect to test results that
occurred while the patient did not consent to the release of information. In SA,
once an execution reaches state s2 or state s4 (when some test result is positive),
it stays in the set of states {s2, s4} forever. The test results are therefore recorded
accurately, even if there is no consent to release the information. System SB , on
the other hand, goes to state s3 whenever the patient changes the consent status
from false to true (i.e., c becomes true) and the current test result is negative,
thus discarding the information about any positive test results up to that point.

s1

s2

s3

s4

ctpd,ctpd

ctpd,ctpd

ctpd

ctpd, ctpd

ctpd

ctpd

ctpd

ctpd

ctpd, ctpd

ctpd, ctpd

ctp
d

ctpd

(a) Transition system SA

s1

s2

s3

s4

ctpd, ctpd

ctpd,ctpd

ctpd

ctpd, ctpd

ctpd

ctpd

ctpd

ctpd

ctpd

ctpd, ctpd

ctp
d ct

pd

ctpd

(b) Transition system SB

Fig. 1. Transition systems with input variables c, t and output variables p, d. They
model two simple systems for managing clinical data, which report on the accumu-
lated result of a series of medical tests administered to a patient. The input variable t
indicates the positive or negative outcome of the current test, the output variable p
indicates whether the system reports that some test in the past has been positive, the
output variable d indicates whether the patient is included in a drug study, the input
variable c indicates whether the patient currently consents to the release of information.

346 R. Dimitrova, B. Finkbeiner, and M.N. Rabe

In addition to that, in this case, the patient’s participation in the drug study is
suspended until possibly a positive test result comes in the future.

The patient can be included in the drug study (i.e, the variable d can be set
to true) only if some test result was positive. As long as the patient does not
consent to the release of information he may or may not be included in the drug
study. In the latter case, positive test results are not recorded.

A possible finite trace of SA is π = ctpd, ctpd, ctpd, ctpd. The corresponding
execution of SA from the initial state s1 is ExecSA(s1, π) = s1, s3, s1, s2, s4.
This trace is not possible in the system SB (i.e., there exists no corresponding
execution), because there is no transition for ctpd from state s2 in SB.

2.2 SecLTL: Syntax and Semantics

The logic SecLTL, introduced in [6], extends LTL with the Hide operator H .
Formally, the SecLTL formulas over a set of input variables VI and a set of

output variables VO are defined according to the grammar below. Here, p ∈
VI ∪ VO, ϕ and ψ are SecLTL formulas, H ⊆ VI and I ⊆ VI are sets of input
variables with H ⊆ I, and O ⊆ VO is a set of output variables:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | © ϕ | ϕ U ψ | ϕRψ |
HH,I,Oϕ | LH,I,Oϕ.

The Leak operator L is the dual of H. Additionally, we introduce the common
abbreviations true = v ∨ ¬v, false = ¬true, ♦ϕ = true Uϕ and �ϕ = ¬♦¬ϕ.

Intuitively, HH,I,Oϕ requires that the observable behavior of the system does
not depend on the initial values of the secret variables H in the desired time-
frame, that is, before the formula ϕ is satisfied. The operator specifies the power
of the observer associated with it, by providing two sets of variables that are
visible to this observer : a set I of input variables and a set O of output variables.

The Hide operator thus specifies what is to be considered the secret, what we
consider to be observable, and when the secret may be released.

Example 2. We illustrate the use of SecLTL by providing examples of formal
requirements for the clinical data management system from our running example.

The Hide operator allows us to specify precisely at which points some input
variable is considered to be secret. If, for example, we are only interested in
the first test result, then we can use the SecLTL formula H{t},{t,c},{p}false to
express the requirement that the first test result has to remain secret forever.
The observer in this scenario is specified to see the patient’s consent status and
the output variable p, which represents whether the system reports that some
test in the past has been positive. He cannot observe the output variable d.

We can also restrict the traces on which a variable has to be kept secret, i.e,
the traces on which a H formula needs to hold. The formula (1) below specifies
the property that only if the user never gives consent during the execution of
the system, the first test result must never be revealed.

(�¬c) → H{t},{t,c},{p}false. (1)

Monitoring Temporal Information Flow 347

By nesting LTL operators and H , we can place H in an appropriate temporal
context and thus also refer to secrets introduced in multiple points of interest
during the execution of the system. The following formula represents the prop-
erty that every test result produced at a moment when the patient currently
does not consent to the release of information must remain secret forever.

�
(
¬c→ H{t},{t,c},{p}false

)
. (2)

A different policy for dealing with patient data might require that a test result
is treated as confidential until (at some future point) the patient gives consent
and that, at that future point in time, information about all test results from
the past may be revealed in the system’s public output p:

�
(
H{t},{t,c},{p}c

)
. (3)

The formulas (1), (2) and (3) above show that SecLTL allows formalizing differ-
ent security policies, in particular ones that involve temporal requirements. In
formula (2), the values of the input variable t that are considered confidential
depend on the temporal context. The temporal aspect of (3) is in the condition
c, which determines from what point on declassification of the secret is allowed.

Since SecLTL is an extension of LTL, secrecy requirements can be combined
with classical requirements on the system’s behavior. For example, in addition
to the first requirement above one can require that if the current test result is
positive and the patient eventually consents in the future, then the existence of
a positive test result is eventually reflected in the system’s output. Formally:

�
(
t ∧ ♦c→ ♦p

)
∧�

(
¬c→ H{t},{t,c},{p}false

)
. (4)

�
Although SecLTL specifications are linear-time properties, their semantics, more
precisely the semantics of the Hide operator, is defined using a set of alternative
traces and involves comparison of each of these traces to the main trace, i.e., the
trace over which the SecLTL formula is interpreted.

Definition 4 (Equivalences). Given a set of variables V ⊆ VI∪VO, we define
two elements a and a′ of Σ, to be observationally equivalent w.r.t. V , noted
a ∼V a

′, iff a ∩ V = a′ ∩ V . Observational equivalence w.r.t. V is extended to
traces by pointwise comparison.

Definition 5 (Alternative traces). The set of alternative traces for an infi-
nite trace π ∈ Σω in S and a state s ∈ S with respect to a set of secret variables
H ⊆ VI and a set of input variables I ⊆ VI with H ⊆ I, is the set of traces
starting with a possibly different valuation of the variables H in the first position,
but otherwise adhering to the same values for the observable input variables I.

AltS(s, π,H, I) = { π′ ∈ TracesS,s | π[0] ∼I\H π
′[0] and π[1,∞) ∼I π

′[1,∞) }.

348 R. Dimitrova, B. Finkbeiner, and M.N. Rabe

Definition 6 (Semantics of SecLTL). Let S = (S, s0,VI ,VO, Σ, δ) be a
transition system and s ∈ S be a state in S. We say that the infinite trace
π ∈ TracesS,s and the state s satisfy a given SecLTL formula ϕ, denoted
S, s, π |= ϕ when the following conditions are satisfied:

– For an atomic proposition, i.e, a variable p ∈ VI ∪ VO:

S, s, π |= p iff p ∈ π[0].

– For the boolean connectives:

S, s, π |= ¬ψ iff S, s, π �|= ψ,
S, s, π |= ϕ1 ∨ ϕ2 iff S, s, π |= ϕ1 or S, s, π |= ϕ2,
S, s, π |= ϕ1 ∧ ϕ2 iff S, s, π |= ϕ1 and S, s, π |= ϕ2.

– For classical temporal operators, where σ = ExecS(s, π):

S, s, π |= ©ψ iff S, σ[1], π[1,∞) |= ψ,
S, s, π |= ϕ1Uϕ2 iff for some i ≥ 0, we have S, σ[i], π[i,∞) |= ϕ2

and for all 0 ≤ j < i we have S, σ[j], π[j,∞) |= ϕ1,
S, s, π |= ϕ1Rϕ2 iff for all i ≥ 0, we have S, σ[i], π[i,∞) |= ϕ2, or

for some i ≥ 0, S, σ[i], π[i,∞) |= ϕ1 and
for all 0 ≤ j ≤ i we have S, σ[j], π[j,∞) |= ϕ2.

– For the modal operators H and L , where σ = ExecS(s, π):

S, s, π |= HH,I,Oψ iff for every π′ ∈ AltS(s, π,H, I) we have π ∼O π
′,

or for some i ≥ 0 we have S, σ[i], π[i,∞) |= ψ
and π[0, i) ∼O π

′[0, i) for every π′ ∈ AltS(s, π,H, I),
S, s, π |= LH,I,Oψ iff for some π′ ∈ AltS(s, π,H, I) and i ≥ 0,π[i] �∼O π

′[i]
and for all 0 ≤ j ≤ i, S, σ[j], π[j,∞) |= ψ.

Remark 1. Note that the secret specified by each (semantic) occurrence of the
Hide operator in a SecLTL formula consists of the individual valuation of the
variables in the set H at the current point of the trace. Thus, for example, the
formula H{h},{h},{o}false ∧©H{h},{h},{o}false specifies that the first value of h
must be secret forever and the second value of h must be secret forever. Thus, on
a trace that satisfies this formula each of the inputs is kept secret individually,
but some correlation between them might never the less be revealed.

Example 3. Let us consider again the SecLTL formulas (1), (2), (3) and (4) and
the transition systems from Figures 1(a) and 1(b). The formula (1) is satisfied
on every trace allowed by SA, because on all traces where the variable c never
becomes true, the value of p is also always false. Since the alternative traces
defined by H{t},{t,c},{p} agree with the main trace on the values of c, the same
holds for them, and, hence, they agree with the main trace on the value of p.

To see that formula (2) does not hold for some trace allowed by SA, consider
the infinite trace π1 = ctpd, ctpd, ctpd, ctpd, (ctpd)ω, whose corresponding execu-
tion from the initial state s1 in SA is ExecSA(s1, π1) = s1, s3, s1, s2, s4, s

ω
4 . The

formula (¬c → H{t},{t,c},{p}) is violated at position 2, since π1[2,∞) |= ¬c

Monitoring Temporal Information Flow 349

and π1[2,∞) �|= H{t},{t,c},{p}, since there exists an alternative trace, π′1 ∈
AltS(s1, π1[2,∞), {t}, {t, c}) on which the system’s output is different. Such a
trace is π′1 = ctpd, ctpd, with corresponding execution ExecSA(s1, π

′
1) = s1, s1, s3.

The formula (3) is clearly satisfied on each possible trace allowed by SA,
because for each position where p is satisfied, the variable c is true as well.

Since the formula (2) is one of the conjuncts in formula (4), formula (4)
is also not satisfied by the trace π1. Note, however that the other conjunct,
i.e., �

(
t ∧ ♦c → ♦p

)
is satisfied by every trace in TracesSA,s1 , because for all

executions on which the left hand side of the implication is true visit state s4
(and hence p is eventually true on the corresponding trace).

Using the same arguments as above, one can see that the formulas (1) and
(3) are satisfied by each trace in TracesSB ,s1 as well.

In the system SB , the trace π1 is not possible, i.e., π1 �∈ TracesSB ,s1 , as we
saw earlier (looking at a finite prefix of π1). While formula (2) is satisfied by
each trace in TracesSB,s1 , for (4) there exists a counterexample trace, because
all information about the existence of a positive test in the past is lost when the
edge from state s2 to state s3 is taken.

2.3 Finite-Trace Semantics

For runtime monitoring we must interpret temporal formulas on finite traces.
In the case of SecLTL, we first have to adapt the definition of alternative

traces. For a finite trace π ∈ Σ∗, state s ∈ S, and sets of variables H, I ⊆ VI
with H ⊆ I, we define the set of finite alternative traces as follows:

AltFinS(s, π,H, I) = { π′ ∈ TracesFinS,s | |π′| = |π|, π[0] ∼I\H π
′[0] and

π[1, |π|) ∼I π
′[1, |π′|) }.

We can again define inductively S, s, π |= ϕ for a finite trace π, state s and
a SecLTL formula ϕ. The interpretation of propositional variables and boolean
operators remains unchanged. The interpretation of the classical LTL operators
coincides with the standard finite-trace interpretation1. For the H operator, the
finite-trace semantics is similar to that of the LTL weak until (W) operator.

– For classical temporal operators, where |π| = n and σ = ExecS(s, π):

S, s, π |= ©ψ iff n > 1 and S, σ[1], π[1, n) |= ψ,
S, s, π |= ϕ1Uϕ2 iff for some 0 ≤ i < n, we have S, σ[i], π[i, n) |= ϕ2

and for all 0 ≤ j < i we have S, σ[j], π[j, n) |= ϕ1,
S, s, π |= ϕ1Rϕ2 iff for all 0 ≤ i < n, we have S, σ[i], π[i, n) |= ϕ2, or

for some 0 ≤ i < n, S, σ[i], π[i, n) |= ϕ1 and
for all 0 ≤ j ≤ i we have S, σ[j], π[j, n) |= ϕ2.

1 We use a simple two-valued finite-trace semantics, as described for example in [8].
For an overview on other finite-trace semantics used in runtime verification, we refer
the reader to [9].

350 R. Dimitrova, B. Finkbeiner, and M.N. Rabe

– For the modal operators H and L , where |π| = n and σ = ExecS(s, π):

S, s, π |= HH,I,Oψ iff π ∼O π
′ for every π′ ∈ AltFinS(s, π,H, I), or

for some 0 ≤ i < n, S, σ[i], π[i, n) |= ψ and for all
π′ ∈ AltFinS(s, π,H, I), π[0, i) ∼O π

′[0, i),
S, s, π |= LH,I,Oψ iff for some π′ ∈ AltFinS(s, π,H, I) and 0 ≤ i < n,

π[i] �∼O π
′[i] and for all 0 ≤ j ≤ i, S, σ[j], π[j, n) |= ψ.

Example 4. According to the finite trace semantics, formulas (1) and (3) are
satisfied by all traces in TracesFinSA,s1 and TracesFinSB ,s1 . The argument for (3)
from before directly applies, because the only temporal operators that occur in
it are � and H . For (1), the argument is that the formula H{t},{t,c},{p}false is
satisfied on every finite trace on which the formula ♦c does not hold (according
to our finite trace semantics, if we have not seen a c yet, ♦c is not satisfied).

For formula (2), a trace in TracesFinSA,s1 for which the formula does not hold
is obtained by taking the finite prefix π1[0, 3] of the infinite counterexample trace
π1 considered earlier. Again, (2) is satisfied by each trace in TracesFinSB ,s1 .

3 Monitoring SecLTL

Our monitoring algorithm is based on a translation of the SecLTL specifica-
tion and the transition system into an alternating automaton, which we call the
monitoring automaton. The monitoring automaton keeps track of the temporal
specification and ensures the observational equivalence of the alternative traces.
In the following two subsections, we first describe the construction of the automa-
ton and then define the monitoring algorithm, which constructs the possible run
trees of the monitoring automaton on-the-fly while reading the trace.

3.1 From SecLTL Formulas to Automata

We now describe a translation from SecLTL formulas and transition systems to
alternating automata, applying the finite-trace semantics defined in Section 2.3.
A similar construction for the infinite-trace semantics is given in [6].

Definition 7 (Alternating automaton). An alternating automaton is a tu-
ple A = (Q, q0, Σ, ρ, F), where

– Q is a finite set of states and q0 ∈ Q is the initial state,
– Σ is the finite alphabet of the automaton,
– ρ : Q × Σ → B+(Q) is a transition function that maps a state in Q and a

letter from Σ to a positive boolean combination of states, i.e., formulas built
from the formulas true, false and the elements of Q using ∧ and ∨,

– F ⊆ Q is the set of accepting states.

Monitoring Temporal Information Flow 351

The run of an alternating automaton A is in general a tree. A finite Q-labeled
tree (T, r) for a finite set Q consists of a finite tree T and a labelling function
r : T → Q which labels every node of T with an element of Q. The tree T can be
represented as a finite subset of N∗

>0, where each node τ in the tree is a sequence
of positive integers and for every τ ∈ N∗

>0 and n ∈ N>0, if τ · n ∈ T then:

– τ ∈ T (i.e., T is prefix-closed) and there is an edge from τ to τ · n, and
– for every m ∈ N∗

>0 with m < n it holds that τ ·m ∈ T .

The root of T is the empty sequence ε and for a node τ ∈ T , |τ | is the distance
of the node τ from the root of the tree.

Definition 8 (Run). A run of an alternating automaton A = (Q, q0, Σ, ρ, F)
on a finite word π ∈ Σ∗ is a finite Q-labeled tree (T, r) such that:

– r(ε) = q0, that is, the root of the tree is labeled with the initial state, and
– for every node τ in T with children τ1, . . . , τk it holds that k ≤ |Q| and if
q = r(τ) is the label of τ and i = |τ | is its distance from the root, then the
set of labels of its children {r(τ1), . . . , r(τk)} satisfies the formula ρ(q, π[i]).

Definition 9 (Language). A run of A on a finite word π is accepting if every
path through the tree ends in an accepting state. A finite word π is accepted by
A if there exists an accepting run of π in A. We denote the language of A, that
is, the set of finite sequences accepted by A, by L∗(A).

Let S = (S, s0,VI ,VO, Σ, δ) be a transition system and ϕ be a SecLTL formula
over the set of input variables VI and the set of output variables VO. We can
assume that all negations in the formula have been pushed to the level of the
atomic propositions. For propositional and classical LTL operators this can be
achieved using standard rewrite rules and for the H operator using L [6].

The alternating automaton AS(ϕ) = (Q, q0, Σ, ρ, F) for the transition system
S and the SecLTL formula ϕ is defined as follows.

The set of states Q consists of states corresponding to the subformulas of ϕ
together with special states corresponding to the H and L subformulas of ϕ:

Q = { (ψ, s) | ψ is a subformula of ϕ and s ∈ S } ∪ { accept }
∪ { ((s̃, I, O,H, ψ), s) | s̃, s ∈ S and ∃H. HH,I,Oψ is subformula of ϕ }
∪ { ((s̃, I, O,L, ψ), s) | s̃, s ∈ S and ∃H. LH,I,Oψ is subformula of ϕ }.

The initial state of AS(ϕ) is q0 = (ϕ, s0), where s0 is the initial state of S.
The set F of accepting states, that contains the state accept , is defined as

F = { accept } ∪ { (ϕ1Rϕ2, s) ∈ Q } ∪
{ (HH,I,Oψ, s) ∈ Q} ∪ { ((s̃, I, O,H, ψ), s) ∈ Q }.

The transition function ρ of the automaton is defined recursively as follows.
For s ∈ S and a ∈ Σ such that δ(s, a) is undefined, we define ρ((ψ, s), a) =

false, ρ(((s̃, I, O,H, ψ), s), a) = false, ρ(((s̃, I, O,L, ψ), s), a) = false.
Below we consider only the cases when δ(s, a) is defined.

352 R. Dimitrova, B. Finkbeiner, and M.N. Rabe

For an atomic proposition p ∈ VI ∪ VO:

ρ((p, s), a) = accept if p ∈ a and ρ((p, s), a) = false otherwise,
ρ((¬p, s), a) = accept if p �∈ a and ρ((¬p, s), a) = false otherwise.

For SecLTL formulas ϕ1, ϕ2 and ψ:

ρ((ϕ1 ∧ ϕ2, s), a) = ρ((ϕ1, s), a) ∧ ρ((ϕ2, s), a),
ρ((ϕ1 ∨ ϕ2, s), a) = ρ((ϕ1, s), a) ∨ ρ((ϕ2, s), a),
ρ((©ψ, s), a) = (ψ, δ(s, a)),
ρ((ϕ1Uϕ2, s), a) = ρ((ϕ2, s), a) ∨

(
ρ((ϕ1, s), a) ∧ (ϕ1Uϕ2, δ(s, a))

)
,

ρ((ϕ1Rϕ2, s), a) = ρ((ϕ2, s), a) ∧
(
ρ((ϕ1, s), a) ∨ (ϕ1Rϕ2, δ(s, a))

)
.

For SecLTL formula ψ and sets H, I ⊆ VI and O ⊆ VO:

ρ((HH,I,Oψ, s), a) = ρ((ψ, s), a) ∨
(
check(O, a,AltΣ(s, a,H, I))∧∧

ã∈AltΣ(s,a,H,I)((δ(s, ã), I, O,H , ψ), δ(s, a))
)
,

ρ((LH,I,Oψ, s), a) = ρ((ψ, s), a) ∧
(
¬check(O, a,AltΣ(s, a,H, I))∨∨

ã∈AltΣ(s,a,H,I)((δ(s, ã), I, O,L , ψ), δ(s, a))
)
,

where for s ∈ S, a ∈ Σ, and H, I ⊆ VI and O ⊆ VO we define:

AltΣ(s, a,H, I) = {ã ∈ Σ | ã ∼I\H a and ∃s′ ∈ S.s′ = δ(s, ã)},

check(O, a,A) = (∀ã ∈ A : ã ∼O a).

For ((s̃, I, O,H, ψ), s) ∈ Q and ((s̃, I, O,L , ψ), s) ∈ Q we define:

ρ(((s̃, I, O,H, ψ), s), a) = ρ((ψ, s), a) ∨
(
check(O, a,AltΣ(s̃, a, ∅, I))∧∧

ã∈AltΣ(s̃,a,∅,I)((δ(s̃, ã), I, O,H , ψ), δ(s, a))
)
,

ρ(((s̃, I, O,L, ψ), s), a) = ρ((ψ, s), a) ∧
(
¬check(O, a,AltΣ(s̃, a, ∅, I))∨∨

ã∈AltΣ(s̃,a,∅,I)((δ(s̃, ã), I, O,L , ψ), δ(s, a))
)
.

Finally, we define ρ(accept , a) = accept .

Definition 10 (Monitor automaton). Given a transition system S =
(S, s0,VI ,VO, Σ, δ) and a SecLTL formula ϕ, the monitor automaton for ϕ is
the automaton AS(ϕ) defined above.

The monitor automaton AS(ϕ) has the property that for every finite trace π ∈
Σ∗, it holds that π ∈ L∗(AS(ϕ)) iff π ∈ TracesFinS,s0 and S, s0, π |= ϕ.

Example 5. We now give the alternating automaton ASA(ϕ) for the SecLTL
property ϕ = (�¬c) → H{t},{t,c},{p}false and the transition system SA. The set
of states and the transition relation of ASA(ϕ) are given in Figure 2.

In the initial state the automaton can either decide to refute the left side of
the implication (by waiting for a c in state t1 or state t2) or it has to validate
the hide operator in which case it has to check whether the corresponding pairs
of main and alternative traces in SA are observationally equivalent w.r.t. the
output variable p. The equivalence check is integrated in the transition relation.

Monitoring Temporal Information Flow 353

label state label state

q0 ((�¬c) → H{t},{t,c},{p}false, s1) accept accept

q1 (♦c, s1) q2 (♦c, s2)
q3 ((s1, {t, c}, {p},H , false), s1) q4 ((s2, {t, c}, {p},H , false), s1)

q5 ((s1, {t, c}, {p},H , false), s2) q6 ((s2, {t, c}, {p},H , false), s2)
q7 ((s3, {t, c}, {p},H , false), s3) q8 ((s4, {t, c}, {p},H , false), s4)

q0

acceptq1 q2

q3 q4 q5 q6

q7 q8

cpd
c

ctp
d

cpd ctpd

c
c

c
c

true

ctpd

ctpd

ctpd

ctpd

ctpd

ctpd

cpd

ctpd

ctp
d

ctpd

ctpd

cp
d

cpd

ctpd
ctpd

ctpd

ctpd

cpd

cp
d

Fig. 2. The alternating automaton ASA(ϕ) for the transition system SA from Fig-
ure 1(a) and the SecLTL formula ϕ = (�¬c) → H{t},{t,c},{p}false. Branchings with
arcs represent conjunctions, branchings without arcs are to be interpreted disjunc-
tively. The states drawn with double line are the accepting states of ASA (ϕ).

3.2 The Monitoring Algorithm

Trace checking algorithms for alternating automata attempt to construct an ac-
cepting run tree. Different traversal strategies, such as depth-first, breadth-first,
or bottom-up, result in trace checking algorithms with different performance
characteristics [8]. For monitoring, where the trace becomes available incremen-
tally, a good strategy is to construct the run tree in a breadth-first manner.
Conceptually, the monitoring algorithm maintains a set of candidate trees and
adds a new layer at the leaves whenever a new position in the trace becomes
available. However, since neither the construction of the next layer nor the ver-
ification of acceptance condition refer to any non-leaf nodes of the tree, it in
fact suffices to keep track of the states on the leaves. The state of the monitor is
therefore represented by a set D of sets C of states, where each set C corresponds
to the states on the leaves of some partially constructed run tree. For a more
detailed explanation of the breadth-first strategy, we refer the reader to [8].

The monitoring algorithm shown in Figure 3 applies the breadth-first strat-
egy to the monitoring automaton defined in the previous section. Initially, there
is only one candidate tree, consisting of a single node labeled with the initial

354 R. Dimitrova, B. Finkbeiner, and M.N. Rabe

Monitor-SecLTL(S , ϕ, π)

(Q, q0, Σ, ρ, F) ← AS(ϕ)
D ← {{q0}}
for n = 0 to |π| − 1 do

D′ ← ∅
for each C ∈ D do

D′ ← D′ ∪
successors(C, π[n])

end for
D ← D′

end for
return Accept(D, F)

Accept(D,F)

D′ ← ∅
for each C ∈ D do

if accepting(C,F) then
D′ ← D′ ∪ {C}

end if
end for
return (D′ �= ∅)

Fig. 3. Monitoring algorithm for a transition system S , a SecLTL formula ϕ, and a
finite trace π ∈ TracesFinS,s0 . The algorithm returns true iff S , s0, π |= ϕ.

state q0 of AS(ϕ). Variable D is therefore initialized with a singleton set con-
taining the singleton set which consists of q0. For each position of the trace,
the successor sets of the elements C ∈ D are computed by the successors func-
tion, where successors(C, a) =

⊗
q∈C next(ρ(q, a)), ⊗ denotes the crossproduct

{C1, . . . , Cn} ⊗ {C′
1, . . . , C

′
m} = {Ci ∪ C′

j | i = 1 . . . n, j = 1 . . .m}, and func-
tion next computes the set of sets of successors defined by the positive Boolean
combination in the transition function as follows:

next(q) = {{q}} for q ∈ Q,
next(θ1 ∧ θ2) = next(θ1) ⊗ next(θ2),
next(θ1 ∨ θ2) = next(θ1) ∪ next(θ2).

At any point, we can check if there exists a run tree for the trace seen so far,
by searching for an element C of D that consists entirely of accepting states. In
the algorithm shown in Figure 3, it is assumed that we are only interested in
the result at the end of the trace, after |π| steps. Function accepting checks if
all states are accepting, and the algorithm keeps only those elements of D that
satisfy this check. If the resulting set D′ is non-empty, we know that there exists
a run tree, and the algorithm returns true.

Example 6. We monitor the SecLTL formula (�¬c) → H{t},{t,c},{p}false and the
transition system SA from Figure 1(a) on prefixes of the trace π shown below
using the monitoring automaton depicted in Figure 2. The row marked “result”
indicates in the ith column the monitoring result obtained after monitoring the
prefix π[0, i) of π consisting of the first i positions.

step 1 2 3 4
π : ctpd ctpd ctpd ctpd
D {{q1}, {q3, q4}, {{q1}, {{accept}, {{accept},

{q2}, {q5, q6}} {q2}, {q5, q6}} {accept}} {accept}}
result true true true true

Monitoring Temporal Information Flow 355

3.3 Towards Stronger Security Guarantees

Previous approaches to monitoring information flow [1,4,5] only consider sequen-
tial programs that read all their inputs at the beginning of the execution, and
thus the secrets are only introduced at the initial state. For this case, monitoring
the SecLTL property HH,I,Ofalse using the algorithm from Section 3.2 provides
the same security guarantees as these approaches.

However, SecLTL allows for specifying more complex information flow prop-
erties for reactive programs - in particular ones that refer to multiple secrets,
which may be introduced at different points of time. A prominent example is
noninterference [2] for reactive systems. A reactive system is noninterferent, if for
any two executions that have indistinguishable sequences of inputs the observer
cannot distinguish the sequences of outputs. We can characterize noninterference
by the SecLTL formula ϕni = �HH,I,Ofalse , where H is the input that must be
hidden from the observer and I and O are the input and output revealed to him.
A system satisfies noninterference if and only if ϕni holds on all traces of the
system. Thus, when monitoring noninterference we must verify ϕni along more
than a single trace in order to be sure to detect every violation.

The SecLTL semantics guarantees that after successfully monitoring a single
trace, none of the secrets specified in the formula is revealed. However, this does
not exclude disclosure of correlations between different secrets.

Consider the program shown in Figure 4(a), which reads, in each iteration
of the loop, a binary input and it outputs whether the sum over the input bits
seen so far exceeds 1. The transition system generated by the program, which
is shown in Figure 4(b), does not satisfy noninterference, because an observer
cannot draw a distinction between the two streams of inputs corresponding to,
for example, the left-most and the right-most trace, but the same observer can
certainly draw a distinction between the streams of outputs. However, if we
monitor ϕni only on the left-most trace with constant input 0 (shown with black
nodes in Figure 4(b)), we will not detect this violation, because the alternative

int x=0;
while true do

x = x + input();
output(x> 1);

end while

(a) (b)

Fig. 4. (a) Program that reads, in each iteration of its loop, a binary input and outputs
whether the sum over the input bits seen so far exceeds 1. (b) The corresponding
transition system branches to the left on input 0 and to the right on input 1. The
dashed arrows indicate output 0, the solid arrows output 1. The black nodes identify
the execution corresponding to the monitored trace, with constant input 0. The gray
nodes identify the paths corresponding to the alternative traces.

356 R. Dimitrova, B. Finkbeiner, and M.N. Rabe

traces (depicted with gray nodes) produce the same sequence of outputs. In order
to detect the violation, we must monitor at least one additional trace.

A possible solution would be to monitor, in addition to the given trace, the set
of traces that have the same history of observable inputs. Clearly, the efficiency
of such an algorithm depends on the representation of the resulting monitor
state, and there is room for optimizations and heuristics. We discuss some ideas
for future work in this direction in the following section.

4 Outlook and Conclusions

SecLTL is an attractive specification language for security-critical reactive sys-
tems, because it allows us to state precisely when and under what conditions an
event must remain secret. For large systems, where SecLTL model checking [6]
might be too expensive, the monitoring approach presented in this paper pro-
vides a much more practical alternative. Monitoring is dramatically cheaper than
model checking, because the on-the-fly construction only explores that part of
the system that corresponds to the observed trace and its alternatives as defined
by the SecLTL specification. In general, however, the monitor may also need to
traverse a substantial part of the system’s state space. In this case, the explicit
state representation of our monitoring algorithm is a limitation, and an impor-
tant direction for future work is to integrate symbolic state representations and
abstraction techniques from software model checking and abstract interpretation
into the monitoring algorithm.

Another research direction concerns the extension of the monitoring algorithm
towards more general security guarantees as discussed in Section 3.3. Monitoring
sets of traces, as suggested there, may turn out to be too expensive if variations in
the secrets force the monitor to explore a significant portion of the system state
space in parallel. In practice, it may be possible to trade some loss of precision for
a substantial gain in efficiency. In a probabilistic setting, for example, it might
be possible to select a small set of traces that guarantee a reasonable limit on
the loss of entropy from the observer’s point of view.

Acknowledgements. This work was partially supported by the German Re-
search Foundation (DFG) under the project SpAGAT (grant no. FI 936/2-1) in
the priority program “Reliably Secure Software Systems – RS3”.

References

1. Sabelfeld, A., Russo, A.: From Dynamic to Static and Back: Riding the Roller
Coaster of Information-Flow Control Research. In: Pnueli, A., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2009. LNCS, vol. 5947, pp. 352–365. Springer, Heidelberg
(2010)

2. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
of S&P, pp. 11–20 (1982)

Monitoring Temporal Information Flow 357

3. Caldicott, F.: Department of Health, The Caldicott Committee, Report on the re-
view of patient-identifiable information. Department of Health, London (1997)

4. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In: Proc.
CSF 2010, pp. 186–199. IEEE Computer Society (2010)

5. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-Based Confi-
dentiality Monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435,
pp. 75–89. Springer, Heidelberg (2008)

6. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M.N., Seidl, H.: Model Check-
ing Information Flow in Reactive Systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 169–185. Springer, Heidelberg (2012)

7. Vardi,M.Y.: AnAutomata-Theoretic Approach to Linear Temporal Logic. In:Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

8. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Form.
Methods Syst. Des. 24(2), 101–127 (2004)

9. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime veri-
fication. Journal of Logic and Computation 20, 651–674 (2010)

Dynamic Information-Flow Analysis

for Multi-threaded Applications

Laurent Mounier and Emmanuel Sifakis

VERIMAG Laboratory, University of Grenoble
2 Av. Vignate, 38610 Gieres, France

{mounier,esifakis}@imag.fr

Abstract. Information-flow analysis is one of the promising techniques
to leverage the detection of software vulnerabilities and confidentiality
breaches. However, in the context of multi-threaded applications running
on multicore platforms, this analysis becomes highly challenging due to
data races and inter-processor dependences. In this paper we first review
some of the existing information-flow analysis techniques and we discuss
their limits in this particular context. Then, we propose a dedicated
runtime predictive approach. It consists in extending information-flow
properties computed from a single parallel execution trace to a set of
valid serialisations with respect to the execution platform. This approach
can be applied for instance in runtime monitoring or security testing of
multi-threaded applications.

1 Introduction

On-going advances in processor technology and computer design allow to drasti-
cally reduce the cost of computing power and make it available to a large audi-
ence. As an example, multi-core architectures are now commonly used in many
end user domains, ranging from small embedded devices like smart-phones to
powerful personal computers. To correctly exploit the huge computing capabili-
ties of these machines, applications are conceived as a set of asynchronous tasks
(or threads), able to execute on distinct processors, and cooperating each others
to provide the desired functionalities. An example of such a parallel programming
model is based on shared memory to implement inter-thread communications and
synchronisations.

However, exploiting efficiently and correctly this hardware-supplied paral-
lelism is notoriously difficult. In fact, the primitives offered by many classical
programming languages to control asynchronous parallel executions are still ba-
sic and error prone. As a consequence, it is necessary to develop suitable tech-
niques and tools allowing to analyse this kind of applications.

An important class of analysis is based on the notion of information flow.
Their purpose is to track how data processed by a program can transit inside the
memory at execution time. Such analysis are useful for many validation purposes,
and it is a central issue in computer security. In particular it allows to detect
information leakage (from a confidentiality point of view), or to compute taint

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 358–371, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Dynamic Information-Flow Analysis for Multi-threaded Applications 359

propagation (to check how user inputs may influence vulnerable statements).
Information inside applications can flow in various ways, some of which being
obvious and some others being more tedious to identify. Explicit flows, corre-
sponding to assignments between variables, are the most commonly analysed.
On the other hand, implicit flows using covert channels such as control flow and
timing delays are much harder to detect.

As many program analysis techniques, information-flow analysis is much more
challenging when considering parallel executions. This difficulty comes from sev-
eral sources, including for instance:

– the extra flows introduced by inter-thread communication channels;
– the conflicting accesses to shared resources or memory locations between

concurrent threads (e.g., race conditions);
– the non-determinism introduced by the execution platform (hardware and

operating system), which makes some program executions hard to reproduce;
– etc.

Various software analysis techniques have been proposed so far to address these
problems. These techniques are either static (they do not require any program
execution), like data-flow analysis or model-checking, or dynamic, like runtime
monitoring or test execution. The main difficulty here is to extend the analysis
techniques used for sequential programs while avoiding the so-called “interleav-
ing problems”. These problems are related to the exponential blow-up occurring
when considering all possible serialisations of a parallel execution.

More recent proposals, like predictive runtime-analysis, are based on ad hoc
combinations of static and dynamic approaches. These techniques consist in
extending the results obtained at runtime when observing a given parallel exe-
cution to a set of valid serialisations, corresponding to execution sequences that
have not been observed, but that could have occurred. Thus, this set can be
seen as a slice of the target program, computed from a single execution. How-
ever, most of the existing predictive runtime-analysis techniques focus on the
effects of coarse-grain parallelism, introduced by inter-thread scheduling. This
scheduling influences the execution order of concurrent eligible threads. Its deci-
sions depend on non-controllable events (e.g., I/O latency), and therefore other
interleavings could occur and they are taken into account by the analysis.

Another source of conflict is produced by the “simultaneous” execution of
multiple instructions by several processors. Here, the conflicting accesses are
(implicitly) solved by the execution platform, and this behaviour escapes from
the program level. A possible way to handle this fine-grain parallelism is to rely
on dedicated hardware elements, allowing to monitor the current execution at a
very low level. Thus, specific architectures for dynamic information-flow tracking
have been proposed.

In this paper we review some representative works (section 2) illustrating the
information-flow analysis techniques stated above and we identify their benefits
and limitations. The focus is essentially put on dynamic analysis techniques, and
therefore we present some of the monitoring techniques available (section 3) and
their use in the context of multi-core executions. Then, we propose a predictive

360 L. Mounier and E. Sifakis

approach (section 4) to address fine-grain parallelism effects, without requir-
ing a specific architecture. Finally, we give some conclusions and perspectives
(section 5).

2 Information-Flow Analysis of Multi-threaded Programs

The importance of information flow has captured the interest of researchers
working in various domains of computer systems. Starting from hardware, where
special architectures have been conceived ([1,2,3]) to operating systems ([4]) and
up to the application layer which is dominated by static and dynamic approaches
detailed hereafter.

2.1 Static Analysis Techniques

Static approaches usually reason on source code level. For instance, a possi-
ble approach to secure a program execution against information leakage is to
promote type-safe languages, as proposed by [5,6], to guarantee by construction
secure information flows. In some cases these languages include primitives for
multi-threaded development ([7,8]).

Regarding general static analysis techniques, a work direction was to extend
the data-flow analysis techniques used for sequential code while avoiding the
“interleaving explosion problem” mentioned in the introduction. A first way to
address this problem was to take into account restricted forms of parallelism,
like in [9] (no parallel loops) or in [10] (cobegin/coend primitives). However, an
important step was made in [11]. In this work the authors proposed to consider a
sub-class of data-flow analysis problems, the so-called bit-vector problems. They
define an efficient generalisation of (unidirectional) bit-vector analysis to static
parallel programs which faithfully captures the effect of inter-thread dependen-
cies without requiring to enumerate each possible interleavings. The key assump-
tion is to consider bit-vector properties that are generated on an execution trace
by a single transition of the control-flow graph (and not by a combination of
transitions). This allows to reduce the effects of inter-thread dependencies at
the instruction level, without taking into account whole execution paths occur-
ring in other threads. Note that this category of bit-vector problems is large
enough to encompass many interesting properties, including information-flow
analysis. More recently, this solution has been extended to deal with dynamic
synchronisation primitives [12].

Other existing solutions for information-flow analysis rely on the computation
of so-called “Program Dependency Graphs” (PDGs) to express data dependen-
cies. PDGs for concurrent programs were first proposed in [13], based on the
computation of may-happen-in-parallel (MHP) relations to approximate the ef-
fects of concurrent access to shared variables. Precise computations of MHP
relations are known to be expensive. However, this static approach has been
used in several works dedicated to information flow analysis ([14,15]).

Dynamic Information-Flow Analysis for Multi-threaded Applications 361

2.2 Dynamic Analysis Techniques

Dynamic approaches may look more appealing for analysing multi-threaded ap-
plications. However, they require some instrumentation facilities to track infor-
mation flows at execution time. There are several frameworks available (such
as [16,17,18]) that facilitate the implementation of dynamic monitoring tools.
More details about these frameworks are presented in section 3.

An interesting class of dynamic analysis techniques is the so-called predictive
runtime-analysis category. They consist in observing/monitoring a single paral-
lel execution sequence σ (as for sequential programs), and then to generalise the
results obtained to other execution sequences corresponding to possible interleav-
ings of σ (i.e., that could have been observed if another valid schedule occurred).
This gives a kind of program slice of reasonable size, that can be handled by var-
ious techniques like static analysis [19], or even test generation [20]. Depending
on the approach chosen to generalise the observed trace (and to represent the
resulting set of serialisations), the program slice obtained may over-approximate
or under-approximate the concrete program behaviour. A short survey on such
runtime prediction techniques is provided in [21], together with a precise trace
generalisation model.

Dynamic analysis techniques are widely used in the context of multi-threaded
applications for runtime error detection like deadlocks ([22,23]) and data races
([24,25]. Although detecting data races could be useful for information-flow anal-
ysis, it is not sufficient as such. Hence, more focused analyses are developed
to deal with malware detection ([26,27]) and enforcement of security policies
([28,29]).

3 Building Tools for Dynamic Analysis

Building dynamic analysis tools necessitates integrating some monitoring facili-
ties to the analysed application. Monitoring features are added either at source
code level or binary level, either statically or dynamically. Waddington et al. [30]
present a survey on these techniques.

Instrumentation code is often added statically in applications as implicit log-
ging instructions. It necessitates access to the source code and can be added
accordingly by the developers (which is a tedious and error-prone procedure) or
automatically. To automate this process source-to-source transformations can be
applied, for instance using aspect-oriented programming. Apart from the source
level, static instrumentation can also be applied directly at the binary level, e.g.,
using frameworks like Dyninst [17]. Hereafter we take a closer look to dynamic
binary instrumentation (DBI) techniques.

3.1 Dynamic Binary Instrumentation

In general, DBI frameworks consist of a front-end and a back-end. The front-end
is an API allowing to specify instrumentation code and the points at which it

362 L. Mounier and E. Sifakis

should be introduced at runtime. The back-end introduces instrumentation at
the specified positions and provides all necessary information to the front-end.

There are two main approaches for controlling the monitored application: em-
ulation and just-in-time (JIT) instrumentation. The emulation approach consists
in executing the application on a virtual machine while the JIT approach con-
sists in linking the instrumentation framework dynamically with the monitored
application and inject instrumentation code at runtime.

Valgrind [18] is a representative framework applying the emulation approach.
The analysed program is first translated into an intermediate representation
(IR). This IR is architecture independent, which makes it more comfortable to
write generic tools. The modified IR is then translated into binary code for the
execution platform. Translating code to and from the IR is time consuming. The
penalty in execution time is approximately four to five times (with respect to an
un-instrumented execution).

Pin [16] is a widely used framework which gains momentum in analysing multi-
threaded programs running on multi-core platforms. Pin and the analysed ap-
plication are loaded together. Pin is responsible of intercepting the applications
instructions and analysing or modifying them as described by the instrumenta-
tion code written in so-called pintools. Integration of Pin is almost transparent
to the executed application.

The pintools use the frameworks front-end to control the application. Instru-
mentation can be easily added at various granularity levels from function call
level down to processor instructions. An interface exists for accessing abstract
instructions common to all architectures. If needed more architecture specific
analyses can be implemented using specific APIs. In this case the analysis writ-
ten is limited to executables of that specific architecture.

Adapting a DBI framework to parallel architectures is not straight forward.
Hazelwood et al. [31] point out the difficulties in implementing a framework that
scales well in a parallel environment and present how they overcame them in the
implementation of Pin. As mentioned in their article, extra care is taken to allow
frequently accessed code or data to be updated by one thread without blocking
the others. Despite all this effort in some cases the instrumenter will inevitably
serialise the threads execution or preempt them.

Another challenging issue is writing parallel analysis. The monitored data
must also be updated in parallel, and data races on the monitored data should
be eliminated.

3.2 Hardware-Based Monitoring Techniques

The software instrumentation techniques described in the previous section suffer
from practical limitations in a multi-thread context. In particular:

– they may introduce a rather huge time overhead (making the execution be-
tween 10 and 100 times slower [32,18,33]);

– they do not take into account the specific features of a multi-core execution;
– they do not exploit as much as possible all the computational resources of

the execution platform.

Dynamic Information-Flow Analysis for Multi-threaded Applications 363

To overcome these limitations, especially in the context of instruction-grain mon-
itoring, several proposals have been made to introduce some dedicated hardware
mechanisms. We discuss here some of these proposals.

First of all, let us recall that instruction grain monitoring is based on several
steps:

– capturing the relevant events after each executed instruction;
– propagating these events to the monitor process (event streaming);
– updating the meta-data (or shadow memory);
– executing the appropriate checks.

Each of these steps is a potential source of overhead, and techniques have been
proposed to optimise them at the hardware level.

Some of these acceleration techniques are not specific to multi-core executions.
For instance Venkataramani et al. [34] proposes to add some extra pipeline stage
to perform metadata updates and checks, [35,36] improves the management of
metadata through micro-architectural changes. Another option is to reduce the
binary instrumentation cost by means of special registers [37], or using cache
line tags to trigger event handlers [38].

Regarding multi-core platforms, one of the main proposals is to take advantage
of the processors availability to dedicate one (or several) cores to the monitoring
task. This idea has been implemented for two typical instruction-level monitoring
problems.

Shetty et al. [39] propose in their work a monitoring technique dedicated to
memory bugs (e.g., memory leaks, unallocated memory errors, etc.). Its principle
is to associate a monitoring thread to each application thread. On a multi-core
platform, both threads can run in parallel on distinct cores. To improve the 2-way
communication between these threads, dedicated FIFO buffers are used (instead
of using shared memory): one buffer for check requests, and one buffer for check
reports. When one of these buffers is full/empty the application/monitoring
thread is stalled. Moreover, since the duty cycle of the monitoring thread may
be low1, it can be suspended at any time. Other optimisations include the use of a
separate L2 cache for the monitoring thread in order to reduce cache contention.
Evaluation results show a monitoring overhead less than 50%, depending on the
considered architecture.

The work of Nagarajan et al. [40] aims to enforce taint-based security policies.
The idea is to use a dedicated thread as a “shadow execution” to keep the taint
value of each register and memory locations of the application thread. This
monitoring thread interrupts the application thread when the taint policy is
violated. Here again, the main difficulties are to keep synchronised both threads
and to ensure communication between them. As in [39], a FIFO buffer is used.
A specific problem is to correctly react in case of policy violation to ensure fail-
safety (i.e., to stop the execution as soon as possible). The solution proposed uses
a 2-way communication between the two threads before each critical operation
(with respect to the policy considered).

1 It may not be the case when monitoring other properties.

364 L. Mounier and E. Sifakis

Finally, a more recent work [41] advocates the use of so-called log-based archi-
tecture as a suitable trade-off between efficiency (how reduced is the monitoring
overhead) and genericity (how general is the monitoring support). In this pro-
posal, each core is considered as a log producer/consumer during the execution.
When an instruction is executed on producer core, a (compressed) record is com-
puted to store relevant information (program counter, instruction type, operand
identifiers and/or addresses). Each record may correspond to one or more events
on the consumer side. Record transmission is achieved using a large (up to 1MB)
log buffer. As a consequence, an implicit synchronisation occurs between pro-
ducer and consumer threads when the buffer is full or empty (in the former case
the application is stalled). This may introduce a (bounded) lag between the time
a bug occurs, and the time it is detected. To improve metadata (e.g., taint val-
ues) tracking, another feature is to associate a (small) shadow register to each
data register in order to store the addresses from which it inherits (rather than
the data itself). This choice makes the tracking more general (suitable for more
applications) while keeping it efficient. In addition, to reduce the numbers of
checks, a dedicated event cache is used (when an event hits the cache it is con-
sidered as redundant and discarded). Finally, a rather sophisticated metadata
memory layout is provided, with a new instruction allowing to directly translate
a data address to its metadata counterpart.

Experiments performed in [42] with this architecture on several monitoring
applications (taint analysis, data race detection, memory checking) show an
overhead smaller than 50% can be obtained for CPU-intensive applications.

4 Extended Information-Flow Analysis

We present in this section an alternative approach to perform dynamic anal-
ysis on a multi-core execution. This approach fits in the category of (over-
approximative) predictive runtime-analysis. Its purpose is to extend the results
obtained from the observation of a (parallel) execution sequence σ∥ to the set of
all serialised execution sequences corresponding to valid interleavings of σ∥. The
interleaving we consider here are essentially the ones produced by “side effects”
introduced by the execution platform. The goal is to extend an observed execu-
tion σ∥ such that the effects of the hardware it was executed on are captured.

In fact, when executing an application in parallel on several cores, platform-
related effects may “obfuscate” the observed execution trace σ∥. This may hap-
pen for instance due to a cache miss which could delay the effect of an observed
instruction to a shared memory location. Similarly, small local overheads intro-
duced by the monitoring probes or by I/O operations may slightly perturb the
execution schedule (i.e., the sets of concurrently executed instructions), chang-
ing the sequence of (shared) memory updates. As a result, one can legitimately
consider that the observation of σ∥ does not fully nor accurately represent a real
(non monitored) parallel execution.

Dynamic Information-Flow Analysis for Multi-threaded Applications 365

A possible way to take into account this uncertainty in the observed execution
sequence, is to assume the existence of a bounded time interval δ, during which
the effects of instructions executed by concurrent threads may interleave. This
value δ depends on the execution platform we consider. We present hereafter the
method we propose for taking into account all these possible serialisations of σ∥
during a dynamic information-flow analysis.

4.1 The “butterfly” Approach

The method we propose is partially inspired by the work proposed in [42]. We
summarise here what are the main similarities and differences between these two
approaches.

The main objective of [42] is to provide a lifeguard mechanism for (multi-
threaded) applications running on multi-core architectures. It is a runtime en-
forcement technique, which consists in monitoring a running application to raise
an alarm (or interrupt the execution) when an error occurs (e.g., writing to an
unallocated memory). The main difficulty is to make the lifeguard reasoning
about the set of parallel executions. To solve this issue, the authors considered
(monitored) executions produced on specific machine architectures [41] on which
heartbeats can be sent regularly as synchronisation barriers, to each core. This
execution model can be captured by a notion of uncertainty epochs, correspond-
ing to code fragments such that a strict happens-before execution relation holds
between non-adjacent epochs. These assumptions allow to define a conserva-
tive data-flow analysis, based on sliding window principle, taking into account
a superset of the interleaving that could occur in three consecutive epochs. The
result of this analysis is then used to feed the lifeguard monitor. This approach
can be used to check various properties like use-after-free errors or unexpected
tainted variable propagation.

Our objectives are not the same. Our intention is to provide some verdict
to be used in a property oriented test-based validation technique for multi-core
architectures. As such, our solution does not need to be necessarily conservative:
false negatives are not a critical issue. A consequence is that we do not require any
specific architecture (nor heartbeat mechanism) at execution time. Another main
distinction is that we may proceed in a post-mortem approach: we first produce
log files which record information produced at runtime, then this information
is analysed to provide various test verdicts (depending on the property under
test). This makes the analysis more flexible by decoupling the execution part
and the property checking part. From a more technical point of view, we also
introduced some differences in the data-flow analysis itself. In particular we
considered a sliding window of two epochs (instead of three). From our point
view, this makes the algorithms simpler, without sacrificing efficiency. Finally,
a further contribution is that we take into account the information provided by
mutex locks to reduce the number of false positives.

366 L. Mounier and E. Sifakis

4.2 A Window-Based Information Flow Analysis

We present here the basis of our window-based dynamic information-flow anal-
ysis. More details can be found in [43]. Its goal is to extend the analysis verdict
of σ0 (the observed serialisation) to a set of valid serialisations σδ, where δ is a
platform-dependent time interval representing the (maximal) overlap between in-
struction sequences executed in parallel. The main concern is to avoid the whole
enumeration of this set. To that end, we use a sliding window-based approach.
Each window contains a set of concurrent instruction sequences belonging to
the active threads (the ones currently executing on a given core). The analy-
sis technique consists in summarising the parallel execution up to the current
window W , and to update this summary by taking into account the effects of
possible serialisations of the execution sequences belonging to W . This update
is performed by means of iterative fix-point algorithms, as explained below.

To properly define each window, we time slice σ0 using arbitrary time intervals
greater than δ. We call these time slices epochs. However, instructions at the
boundaries of adjacent epochs (hence within a time distance smaller than δ)
may interleave, according to our hypothesis. To take this into account we define
windows of size two epochs, and we extend the interleaving assumption such
that all instructions of a window may interleave. This extension ensures that
our analysis results will actually capture the serialisations of a set σs, where
σs ⊇ σδ.

Fig 1 illustrates the parallel execution of two threads (A and B). The dots
represent instructions. Each instruction can be identified by a triplet (l, t, j)
where l is the epoch it was executed in, t is the thread that executed it and j is
an identifier of the instruction inside t. Instructions executed by the same thread
in an epoch are surrounded by a box which is a basic block identified as (l, t).
The arrows originating from the (highlighted) instruction (lb,B, i) illustrates our
interleaving assumptions. We can note at the boundary between epochs lh and lb
the definition of the time interval δ. The solid arrows capture the serialisations of
(lb,B, i) for all σδ and the dashed arrows the extended serialisations of (lb,B, i)
in σs.

δ

i

lh

lb

lt

A B

Fig. 1. Interleaving assumptions

Dynamic Information-Flow Analysis for Multi-threaded Applications 367

4.3 Iterative Information Flow Computation

As explained above, processing a window of two epochs means computing the
effects produced by all possible serialisations of the parallel instruction sequences
it contains (since all these serialisations are considered as valid). To do so, we
use an iterative fix-point computation algorithm. This algorithm proceeds as
follows:

– First, we define a sequential data-flow analysis of the property under check.
This property could be for instance a taint-analysis, a memory consistency
checking, a null-pointer analysis, etc. An important requirement is that this
data-flow analysis should be expressed as a bit-vector problem (which is
in fact the case for most of the analysis used in practice). Running this
sequential data-flow analysis on a single thread t allows to update a given
initial summary S0 (expressed as a state vector) into a a new summary St1.

– Since threads are not independent (they may share memory locations), the
sequential analysis ran on each thread should be combined with the others.
In other words, results produced by executing instruction (l, t, i) should be
made available to all instructions (l, t′, j) of the window for t ≠ t′ (according
to our assumptions). This could be achieved by running again each sequential
analysis on each thread t, starting now from an initial state S1 = ∪t≠t′S

t
1.

– This step is repeated as long as the summary is changed. Since we consider
bit-vector problems, this process will eventually reach a fix-point.

This algorithm can be implemented using two generic procedures: a first one
(vertical step) iterates the sequential analysis over each thread, the second one
(horizontal step) runs the vertical step along the two epochs of the window. Since
adjacent epochs may also interleave, the vertical step should be repeated until
a (window-level) fix-point is reached. Depending on the analysis under consid-
eration, further processing may be required to “clean up” the results produced
(removing the effects of some non valid execution sequences).

It has been showed in [43] that for a taint-analysis:

– this algorithm detects all tainted variables;
– the set of variables detected can be split into strongly tainted variables (cor-

responding to variables really tainted), and weakly tainted variables (po-
tential false positives). These false positives are due to our sliding window
techniques which may over-approximate the set of valid serialisations across
several windows.

4.4 Experimental Results

The window-based methodology we presented can be applied both at runtime
or off-line as a post-mortem analysis. We have implemented a tool chain for
taint analysis using a post-mortem approach. The tool necessitates the source
code of the multi-threaded application (written in C using pthreads library).
Instrumentation code is added as logging instructions via a source to source

368 L. Mounier and E. Sifakis

transformation. At execution time log files are generated containing address
information on assignments.

For taint analysis the summary actually contains variables that can be tainted
through a valid serialisation up to the preceding window. The window analysis
must hence infer local serialisations (of instructions in window) which either
taint new variables or untaint some existing. The serialisations are discovered
through the iterative algorithm. Some special care must be taken though on
how gen/kill information is propagated and how the summary of a window is
computed.

Experimental results on small handcrafted benchmarks using five threads rac-
ing for access to a shared data structure show an overhead of 50% for producing
the log files. The taint-analysis then takes less than 1 second to analyse about
5000 log lines on a Intel i3 CPU @2.4GHz with 3GB of RAM.

5 Conclusion

In this work we have discussed some issues regarding dynamic information-flow
monitoring of multi-thread applications running on multi-core architectures. We
gave a brief overview of the main existing techniques and underlying tools consid-
ered so far to address this issue. The general concerns are to limit the monitoring
overhead at runtime, to avoid the explicit exploration of all possible execution se-
quence interleavings, and to propose general enough frameworks (able to handle
various kinds of analysis). In our opinion, two directions are rather promising:

– runtime-prediction techniques, which allow to extend the results produced
by a single (parallel) execution to a whole program slice consisting of valid
“neighbour” executions;

– hardware-level optimisations of the monitoring techniques.

The former solution can be used in a general context, for instance in a test-based
approach where the goal is to evaluate the “robustness” of the application on
various execution conditions. The later solution is better suited for specific ap-
plications (e.g., with strong security or reliability requirements), and it provides
an integrated hardware/software monitoring and enforcement framework.

We also proposed a prospective runtime-prediction technique. Its purpose is to
deal explicitly with fine-grain interleavings produced by the multi-core execution
platform. Experimental results obtained so far for taint-analysis are encouraging
in terms of performance. Further work is now required to extend the prototype
and consider other kinds of analysis.

References

1. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understanding
data lifetime via whole system simulation. In: Proceedings of the 13th Confer-
ence on USENIX Security Symposium, SSYM 2004, vol. 13, pp. 22–22. USENIX
Association, Berkeley (2004)

Dynamic Information-Flow Analysis for Multi-threaded Applications 369

2. Crandall, J.R., Wu, S.F., Chong, F.T.: Minos: Architectural support for protecting
control data. ACM Trans. Archit. Code Optim. 3(4), 359–389 (2006)

3. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via dy-
namic information flow tracking. SIGARCH Comput. Archit. News 32(5), 85–96
(2004)

4. Clemente, P., Rouzaud-Cornabas, J., Toinard, C.: Transactions on computational
science xi, pp. 131–161. Springer, Heidelberg (2010)

5. Volpano, D., Smith, G.: A type-based approach to pro-gram security. In: Pro-
ceedings of the 7th International Joint Conference on the Theory and Practice of
Software Development, pp. 607–621. Springer (1997)

6. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21 (2003)

7. Barthe, G., Rezk, T., Russo, A., Sabelfeld, A.: Security of multithreaded programs
by compilation. ACM Trans. Inf. Syst. Secur. 13(3), 21:1–21:32 (2010)

8. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 1998, pp. 355–364. ACM, New York
(1998)

9. Grunwald, D., Srinivasan, H.: Data flow equations for explicitly parallel programs.
In: PPOPP. ACM (1993)

10. Krinke, J.: Static slicing of threaded programs. SIGPLAN (1998)
11. Knoop, J., Bernhard, S., Vollmer, J.: Parallelism for free: efficient and optimal

bitvector analyses for parallel programs. ACM Trans. Program. Lang. Syst. (1996)
12. Farzan, A., Kincaid, Z.: Compositional Bitvector Analysis for Concurrent Programs

with Nested Locks. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337,
pp. 253–270. Springer, Heidelberg (2010)

13. Krinke, J.: Context-sensitive slicing of concurrent programs. SIGSOFT (2003)
14. Hammer, C.: Information flow control for java based on path conditions in depen-

dence graphs. In: Secure Software Engineering. IEEE Computer Society (2006)
15. Liu, Y., Milanova, A.: Static information flow analysis with handling of implicit

flows and a study on effects of implicit flows vs explicit flows. In: Software Main-
tenance and Reengineering. IEEE Computer Society (2010)

16. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2005, pp. 190–200.
ACM, New York (2005)

17. Buck, B., Hollingsworth, J.K.: An api for runtime code patching. The International
Journal of High Performance Computing Applications 14, 317–329 (2000)

18. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. In: Proceedings of ACM SIGPLAN 2007 Conference on Program-
ming Language Design and Implementation (PLDI 2007), San Diego, California,
USA, pp. 89–100 (June 2007)

19. Ganai, M.K., Wang, C.: Interval Analysis for Concurrent Trace Programs Us-
ing Transaction Sequence Graphs. In: Barringer, H., Falcone, Y., Finkbeiner,
B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.)
RV 2010. LNCS, vol. 6418, pp. 253–269. Springer, Heidelberg (2010)

20. Kundu, S., Ganai, M.K., Wang, C.: Contessa: Concurrency Testing Augmented
with Symbolic Analysis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 127–131. Springer, Heidelberg (2010)

370 L. Mounier and E. Sifakis

21. Wang, C., Ganai, M.: Predicting Concurrency Failures in the Generalized Execu-
tion Traces of x86 Executables. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS,
vol. 7186, pp. 4–18. Springer, Heidelberg (2012)

22. Li, T., Ellis, C.S., Lebeck, A.R., Sorin, D.J.: Pulse: a dynamic deadlock detection
mechanism using speculative execution. In: Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC 2005, p. 3. USENIX Association,
Berkeley (2005)

23. Castillo, M., Farina, F., Cordoba, A.: A dynamic deadlock detection/resolution
algorithm with linear message complexity. In: Proceedings of the 2012 20th Eu-
romicro International Conference on Parallel, Distributed and Network-based Pro-
cessing, PDP 2012, pp. 175–179. IEEE Computer Society, Washington, DC (2012)

24. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

25. Serebryany, K., Iskhodzhanov, T.: Threadsanitizer: data race detection in practice.
In: Proceedings of the Workshop on Binary Instrumentation and Applications,
WBIA 2009, pp. 62–71. ACM, New York (2009)

26. Bayer, U., Kirda, E., Kruegel, C.: Improving the efficiency of dynamic malware
analysis. In: Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC 2010, pp. 1871–1878. ACM, New York (2010)

27. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2), 6:1–6:42 (2008)

28. Zhu, D.Y., Jung, J., Song, D., Kohno, T., Wetherall, D.: Tainteraser: protecting
sensitive data leaks using application-level taint tracking. SIGOPS Oper. Syst.
Rev. 45(1), 142–154 (2011)

29. Cristia, M., Mata, P.: Runtime enforcement of noninterference by duplicating pro-
cesses and their memories. In: WSEGI (2009)

30. Waddington, Roy, Schmidt: Dynamic analysis and profiling of multi-threaded sys-
tems

31. Hazelwood, K., Lueck, G., Cohn, R.: Scalable support for multithreaded appli-
cations on dynamic binary instrumentation systems. In: Proceedings of the 2009
International Symposium on Memory Management, ISMM 2009, pp. 20–29. ACM,
New York (2009)

32. Nethercote, N.: Dynamic Binary Analysis and Instrumentation. PhD thesis, Com-
puter Laboratory, University of Cambridge, United Kingdom (November 2004)

33. Uh, G.R., Cohn, R., Yadavalli, B., Peri, R., Ayyagari, R.: Analyzing dynamic
binary instrumentation overhead. In: Workshop on Binary Instrumentation and
Application, San Jose, CA (October 2007)

34. Venkataramani, G., Roemer, B., Solihin, Y., Prvulovic, M.: Memtracker: Efficient
and programmable support for memory access monitoring and debugging. In: Pro-
ceedings of the 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, HPCA 2007, pp. 273–284. IEEE Computer Society, Wash-
ington, DC (2007)

35. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via dy-
namic information flow tracking. SIGPLAN Not. 39(11), 85–96 (2004)

36. Venkataramani, G., Doudalis, I., Solihin, Y., Prvulovic, M.: Flexitaint: A pro-
grammable accelerator for dynamic taint propagation. In: 14th International Sym-
posium on High Performance Computer Architecture (2008)

37. Corliss, M.L., Lewis, E.C., Roth, A.: Dise: a programmable macro engine for cus-
tomizing applications. SIGARCH Comput. Archit. News 31(2), 362–373 (2003)

Dynamic Information-Flow Analysis for Multi-threaded Applications 371

38. Zhou, Y., Zhou, P., Qin, F., Liu, W., Torrellas, J.: Efficient and flexible archi-
tectural support for dynamic monitoring. ACM Trans. Archit. Code Optim. 2(1),
3–33 (2005)

39. Shetty, R., Kharbutli, M., Solihin, Y., Prvulovic, M.: Heapmon: a helper-thread
approach to programmable, automatic, and low-overhead memory bug detection.
IBM J. Res. Dev. 50(2/3), 261–275 (2006)

40. Nagarajan, V., Kim, H.-S., Wu, Y.: Gupta, R.: Dynamic information flow track-
ing on multicores. In: Workshop on Interaction between Compilers and Computer
Architectures, Salt Lake City (February 2008)

41. Chen, S., Kozuch, M., Strigkos, T., Falsafi, B., Gibbons, P.B., Mowry, T.C., Ra-
machandran, V., Ruwase, O., Ryan, M., Vlachos, E.: Flexible hardware acceleration
for instruction-grain program monitoring. In: Proceedings of the 35th Annual In-
ternational Symposium on Computer Architecture, ISCA 2008, pp. 377–388. IEEE
Computer Society, Washington, DC (2008)

42. Goodstein, M.L., Vlachos, E., Chen, S., Gibbons, P.B., Kozuch, M.A., Mowry, T.C.:
Butterfly analysis: adapting dataflow analysis to dynamic parallel monitoring. In:
Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2010, pp. 257–270.
ACM, New York (2010)

43. Sifakis, E., Mounier, L.: Extended dynamic taint analysis of multi-threaded applica-
tions. TechnicalReport TR-2012-08, VERIMAG,University of Grenoble (June 2012)

Bounded-Interference Sequentialization
for Testing Concurrent Programs�

Niloofar Razavi1, Azadeh Farzan1, and Andreas Holzer2

1 University of Toronto
2 Vienna University of Technology

Abstract. Testing concurrent programs is a challenging problem: (1) the tester
has to come up with a set of input values that may trigger a bug, and (2) even
with a bug-triggering input value, there may be a large number of interleavings
that need to be explored. This paper proposes an approach for testing concurrent
programs that explores both input and interleaving spaces in a systematic way. It
is based on a program transformation technique that takes a concurrent program
P as an input and generates a sequential program that simulates a subset of be-
haviours of P . It is then possible to use an available sequential testing tool to test
the resulting sequential program. We introduce a new interleaving selection tech-
nique, called bounded-interference, which is based on the idea of limiting the de-
gree of interference from other threads. The transformation is sound in the sense
that any bug discovered by a sequential testing tool in the sequential program is a
bug in the original concurrent program. We have implemented our approach into
a prototype tool that tests concurrent C# programs. Our experiments show that
our approach is effective in finding both previously known and new bugs.

1 Introduction

Testing concurrent programs is notoriously difficult. There is often a large number of in-
terleavings that need to be tested and an exhaustive search is mostly infeasible. Several
recent heuristics have been proposed to limit the search in the set of concurrent inter-
leavings, to a manageable subset. Focusing on interleavings that contain races [17,15,7]
or violate atomicity [14,22,19,23,13] are examples of these heuristics. These techniques
have been successful in finding bugs in concurrent programs. However, there are cur-
rently two main limitations in concurrent testing techniques: (1) they do not include
any input generation mechanisms, and have to rely on a given set of inputs as a starting
point, and (2) they usually do not provide meaningful coverage guarantees to the tester
in the same sense that sequential testing tools provide various standardized coverage
guarantees.

Recent successful sequential testing tools, such as DART [8] and PEX [20], have
mostly overcome both limitations mentioned above. They employ symbolic execution
techniques to explore the space of possible inputs in a systematic way [11]. This enables
these tools to explore the program code (or code parts such as branches, statements, and

� Supported in part by the Austrian National Research Network S11403-N23 (RiSE) of the Aus-
trian Science Fund (FWF), and by the Vienna Science and Technology Fund (WWTF) grant
PROSEED.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 372–387, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Bounded-Interference Sequentialization for Testing Concurrent Programs 373

sometimes even paths) in a systematic way by generating custom input values, which
in turn makes it possible for them to provide guarantees for standard code coverage
criteria such as branch coverage or statement coverage.

Most concurrency testing tools expect a set of inputs to be available as a starting point
for the testing process, and do not contain a mechanism to generate new inputs to use.
This has two important ramifications: (i) These techniques have to rely on the provided
input (or set of inputs) to have the potential to lead to existing program errors; otherwise,
errors will be overlooked. (ii) Since the input set is not generated in a systematic way,
the testing tool can hardly quantify the extent of coverage that the testing provides.
In fact, the latter problem goes beyond the input space for most concurrency testing
techniques, that scarcely perform a systematic exploration of the interleaving space of
concurrent programs, even if we overlook the input problem. By relying on a given set
of inputs, the best guarantee that they can provide is of the form: ”no errors exist in the
program if executions are limited to the selected set of interleavings (by the heuristic of
choice) and inputs are limited to the set which was used for testing”.

The goal of our work is to provide a systematic way of testing concurrent programs.
We introduce a new interleaving selection heuristic called bounded-interference, that
incrementally explores the space of concurrent program interleavings by increasing the
degree of interference from other threads. When a thread reads from a shared variable a
value written by another thread, we consider that an interference from the writer thread.
A remarkable property of bounded-interference is that, since it is defined from the point
of view of flow of data between threads (in contrast to the control-based notions such as
bounded context-switching), it can be very naturally incorporated into a setting in which
the search for the right input and the suitable interleaving can be conducted side by side.
This will allow our testing approach to provide a greater assurance of correctness and
reliability of the tested program, in the form of (clearly defined) coverage measures for
our testing approach. Moreover, we take advantage of the great progress that has been
made in sequential testing, by formulating the solution as sequentializaiton technique.
We transform the concurrent program (under test) into a sequential program that can be
tested using standard sequential testing tools. Our program transformation effectively
defers both the input generation and interleaving selection tasks to the sequential testing
tool, by effectively encoding both as inputs to the newly generated sequential program.
All interleavings with a certain degree of interference are encoded into the generated
sequential program, but the choice of which interleaving to follow is left as a choice
determined by values of newly introduced input variables. This way, we employ the
systematic testing algorithm of a sequential tester to achieve a more systematic testing
technique for concurrent programs.

The idea behind the program transformation is as follow. Consider a concurrent pro-
gram P consisting of two threads T and T ′. Let us assume that testing T sequentially
leads to no error, but composed with T ′, an error state can be reached in T . How can
T ′ help direct the execution of T into an error state? A natural scenario is that T ′

can write certain values to shared variables that let T pass conditional statements (that
would have been blocked otherwise) and execute down a path to an error state. One
can imagine that these values are injected into the sequential execution of T when the
shared variable reads are performed by T . This simple idea is the inspiration behind our

374 N. Razavi, A. Farzan, and A. Holzer

program transformation. We choose a number k, and then select k shared variable reads
in T to be the only ones among all reads of shared variable in T that are allowed to ob-
serve a value written by a write in T ′ (we call these reads non-local reads). This number
k, in a sense, indicates a measure of diversion from a fully sequential execution of T to-
wards a more concurrent execution and can be gradually incremented to find concurrent
bugs involving more interference from T ′, i.e. higher number of non-local reads. More-
over, we do not choose these k non-local reads a priori; the specific selection becomes
part of the resulting sequential program input and therefore, the sequential testing tool
has the freedom to choose different non-local reads (through input selection) that will
help find the error. Since the original program inputs (to P) are also preserved as inputs
to the sequential program, the sequential testing tool has the potential to find the bug
triggering values for these inputs as well.

We have implemented our program transformation technique into a prototype tool
and tested a benchmark suite of concurrent C# programs. We found all previously
known errors in these benchmarks, and found some new errors all within a very rea-
sonable time and for k ≤ 3.

In summary, the contributions of this paper are:

– A novel sequentialization approach tailored specifically towards testing concurrent
programs, which does not assume a fixed input for concurrent programs and pro-
vides coverage guarantees after the testing process is finished.

– A novel interleaving selection technique, called bounded-interference, based on
iteratively allowing more non-local reads, and the appropriate incorporation of this
idea so that a backend sequential testing tool can explore all possibilities for the
non-local reads and their corresponding writes, through the input generation.

– An effective way of encoding all feasible interleavings for a set of non-local reads
and their corresponding writes as a set of constraints, and the use of SMT solvers
to ensure the soundness of the approach (every error found is a real error) and to
accommodate the reproducibility of the errors found.

– A prototype implementation that confirms the effectiveness of the approach and
reports no false positives.

2 Motivating Examples

We use the Bluetooth driver (from [16]) as an example to illustrate the high level
idea behind the bounded-interference approach. Figure 1 shows a simplified model of
the Bluetooth driver. There are two dispatch functions called Add and Stop. Add
is called by the operating system to perform I/O in the driver and Stop is called
to stop the device. There are four shared variables: pendingIO, stoppingFlag,
stoppingEvent, and stopped. The integer variable pendingIO is initialized to
1 and keeps track of the number of concurrently executing threads in the driver. It is
incremented atomically whenever a thread enters the driver and is decremented atom-
ically whenever it exits the driver. The boolean variable stoppingFlag is initial-
ized to false and will be set to true to signal the closing of the device. New threads
are not supposed to enter the driver once stoppingFlag is set to true. Variable
stoppingEvent is initialized to false, and will be set to true after pendingIO

Bounded-Interference Sequentialization for Testing Concurrent Programs 375

becomes zero. Finally, stopped is initialized to false and will be set to true once the
device is fully stopped; the thread stopping the driver sets it to true after it is established
that there are no other threads running in the driver. Threads executing Add expect
stopped to be false (assertion at line l7) after they enter the driver.

Add Stop
vars: int status, pIO; vars: int pIO;
l1 : if (stoppingFlag) l′1 : stoppingFlag = true;
l2 : status = -1; l′2 : atomic {
l3 : else { l′3 : pendingIO--;
l4 : atomic{ pendingIO++; } l′4 : pIO = pendingIO; }
l5 : status = 0; } l′5 : if (pIO == 0)
l6 : if (status == 0) { l′6 : stoppingEvent = true;
l7 : assert(stopped==false); l′7 : assume(stoppingEvent==true);
l8 : //do work here } l′8 : stopped = true;
l9 : atomic {
l10 : pendingIO--;
l11 : pIO = pendingIO; }
l12 : if (pIO == 0)
l13 : stoppingEvent = true;

Fig. 1. The simplified model of Bluetooth driver [16]

Consider a concurrent program with two threads. Thread T executes Add and thread
T ′ executesStop. The assertion at l7 inAdd ensures that the driver is not stopped before
T starts working inside the driver. It is easy to see that this assertion always passes if T is
executed sequentially, i.e. without any interference from T ′. Therefore, if the assertion
at l7 is to be violated, it will have to be with some help from T ′, where a shared variable
read in T reads a value written by a write in T ′; we call these reads non-local reads.

We start by digressing slightly from the fully sequential execution of T , by letting
one read of a shared variable in T to be non-local. If the read from stoppingFlag in
T reads the value written by T ′ at l′1 then the assert statement at l7 is not reachable.
Selecting the read from pendingIO at l4 as the non-local read, forces the read from
stop in the assertion statement to read the initial value (i.e. false) and hence the assertion
will be successful. If we select the read from stopped in the assertion statement as a
non-local read (reading the value written by T ′ at l′8), then the read frompendingIO in
one of the threads has to be non-local as well. Therefore, the assertion cannot be violated
by making only one read non-local, and we decide to digress more by allowing two reads
of shared variables in T to be non-local.

With two non-local reads, the assertion can be falsified if the reads frompendingIO
at l4 andstopped at l7 read the values written byT ′ at l′3 and l′8, respectively. Moreover,
there exists a feasible interleaving (a real concurrent execution of the program) in which
all other reads (in both T and T ′) are local; the execution is l1, l′1, l′2, l′3, l′4, l3, l4, l5, l′5,
l′6, l′7, l′8, l6, l7.

We propose a sequentialization technique that for any k, transforms the concurrent
program P , consisting of two threads T and T ′, into a sequential program P̂k such that
every execution of P̂k corresponds to an execution of P in which exactly k reads of T
are non-local, while all other reads are local. We then use a sequential testing tool to
test P̂k for errors such as violations of assertions. In the above example, no errors can
be found in P̂1, but the assertion is violated in P̂2. We will make these notions precise
in the remainder of this paper.

376 N. Razavi, A. Farzan, and A. Holzer

3 Preliminaries

Sequential and Concurrent Programs. Figure 2 (a) presents the syntax of simple bounded
sequential programs for the purpose of the presentation of ideas in this paper. We con-
sider bounded programs while loops are unrolled for a bounded number of times. We
handle dynamically allocated objects in our implementation, but for simplicity here we
will limit the domains to integer and boolean types.

< seq pgm > ::= < input decl >< var list >< method >+

< input decl > ::= inputs: < var decl >∗

< var list > ::= vars: < var decl >∗

< var decl > ::= int x; | bool x; | int[c] x; | bool[c] x;
(a) < method > ::= f(x) { < var list >< stmt >; }

< stmt > ::= < stmt >;< stmt > | < simple stmt > | < comp stmt >
< simple stmt > ::= skip | x =< expr > | x = f(x) | return x | assume(b expr) | assert(b expr)
< complex stmt > ::= if(< b expr >) {< stmt >;} else{< stmt >;}
< conc pgm > ::= < input decl >< var list >< init >< seq pgm >+

(b) < init > ::= < method >
< complex stmt > ::= if (< b expr >) { < stmt >; } else { < stmt >;} | lock (x) {< stmt >;}

Fig. 2. (a) Sequential (b) Concurrent Program Syntax

A sequential program has a list of inputs, a list of variables, and a list of methods that
access the inputs and variables. We assume that every sequential program has a method,
named main, from which it starts the execution. Each method has a list of input param-
eters, a list of local variables, and a sequence of statements. Statements are either simple
(i.e. skip, assignment, call-by-value function call, return, assume, and assert) or complex
(i.e. conditional statement).

We define a concurrent program (Figure 2 (b)) to be a finite collection of sequen-
tial programs (called threads) running in parallel. The sequential programs share some
variables, and their inputs are included in the inputs of the concurrent program. Here,
definition of the complex statement is augmented by lock statements as a synchroniza-
tion mechanism for accessing shared variables. A lock statement consists of a sequence
of statements which are executed after acquiring a lock on a shared variable x.

Each concurrent program has a method, init for initializing shared variables, and
also for linking the inputs of the concurrent program to the inputs of the individual se-
quential programs (threads). The semantics of locking mechanism is standard; whenever
a thread obtains a lock on a variable, other threads cannot acquire a lock on the same vari-
able unless the thread releases the lock.

Program Traces. A concurrent program has a fixed number of threadsT ={T1, T2, .., Tn}
and a set of variables shared between the threads, represented bySV . We also fix a subset
of shared variables to be lock variables L ⊂ SV . The actions that a thread Ti can per-
form on the set of shared variables SV is defined as: ΣTi = {Ti:rd(x), Ti:wt(x)| x ∈
SV − L} ∪ {Ti:acq(l), Ti:rel(l)| l ∈ L}.

Actions Ti : rd(x) and Ti : wt(x) are read and write actions to shared variable x,
respectively. Action Ti:acq(l) represents acquiring a lock on l and action Ti:rel(l) rep-
resents releasing a lock on l by thread Ti. We define Σ =

⋃
Ti∈T ΣTi as the set of all

actions. A word inΣ∗, which is an action sequence, represents an abstract execution of
the program. The occurrence of actions are referred to as events in this paper. An event,

Bounded-Interference Sequentialization for Testing Concurrent Programs 377

ei, is a pair 〈i, a〉 where i is a natural number and a is the action performed. A program
trace is a word 〈1, a1〉 . . . 〈m, am〉 where a1 . . . am is an action sequence of the program.
A feasible trace of a concurrent program is a trace that corresponds to a real execution
of the program. Any feasible trace respects the semantics of locking (is lock-valid), and
implies a partial order on the set of events in the trace, known as program order. These
are captured by the following two definitions (σ|A denotes the corresponding action se-
quence of σ projected to the letters in A).

Definition 1 (Lock-validity). A trace σ ∈ Σ∗ is lock-valid if it respects the semantics
of the locking mechanism. Formally, let Σl = {Ti: acquire(l), Ti: release(l) | Ti ∈ T }
denote the set of locking actions on lock l. Then σ is lock-valid if for every l ∈ L, σ|Σl

is a prefix of
[⋃

Ti∈T (Ti:acquire(l) Ti:release(l))
]∗

Definition 2 (Program Order). We define a total order on the set of events of each
thread Ti, represented by �i. For any ej , ek ∈ E, if ej = 〈j, a〉 and ek = 〈k, a〉 belong
to thread T and j ≤ k, then ej �i ek. The union of the total orders in the threads form
the program order �= ∪Ti∈T �i.

4 From Concurrent to Sequential Programs

Let P be a bounded concurrent program consisting of two threads T and T ′, with an
input set I . The goal is to check if the shared memory values produced by T ′ can be
used to direct the execution of T to an error state. Given k, the number of non-local
reads of shared variables in T , we transform P into a sequential program P̂k, with an
input set Îk where I ⊂ Îk. Every execution of P̂k corresponds to at least one execution
of P with exactly k non-local reads in T that observe values written by T ′ while all
other reads are local. As we explain in Section 4.1, once k is fixed, there is a choice of
which k reads to choose in T and which k writes to choose as their corresponding writes
in T ′. Program P̂k takes all of these choices as inputs. This means that any sequential
testing tool that explores the input space to expose bugs will naturally try all possible
combinations (within computation limits) to find the one leading to a bug.

T

feasibility
check

feasibility
check

feasibility
check

T ′

store

first
non-local

read

last
paired
write

store
x′

load
x′

store
y′

z′

load
z′

load
y′

(1)

(2)

(3)

(4)(5)

write x′

write y′

write z′

read x

read y

read z

The Figure on the right demonstrates
the high level idea behind our transfor-
mation. The sequential program P̂k has
two copies of shared variables; each thread
reads/writes on its own copy. The dashed
path in the figure illustrates how P̂k sim-
ulates the executions of P with k non-
local reads in T . First, P̂k simulates the
execution of T up to the first non-local
read specified by the inputs (part (1) in
the Figure). It then stops simulating T ,
and starts simulating the execution ofT ′

from the beginning until the first lock-free point where all writes that are supposed to
produce values for non-local reads have occurred (parts (2) and (3)). Since T ′ is being
executed using its own copy of shared variables, we need to remember the values written
by such paired writes in some auxiliary variables and later load these values while the

378 N. Razavi, A. Farzan, and A. Holzer

corresponding non-local reads are being performed. Then, P̂k goes back to simulating
T , retrieving the value stored in the corresponding auxiliary variable as each non-local
read is being performed (parts (4) and (5)).

Note that for some pairs of non-local reads and writes specified by the inputs of P̂k
there may not exist any corresponding feasible trace of P . Therefore, we have to ensure
that there exists a feasible trace of P which (1) consists of the same events as in the
execution of P̂k, (2) observes for each non-local read in T the value written by the cor-
responding write in T ′, and (3) where all reads other than the non-local reads are indeed
local. To achieve this, all global events (accesses to shared variables, and synchroniza-
tion events) are logged during the execution of P̂k, and a set of constraints is generated
that corresponds to the existence of a feasible trace. Every time that T performs a read
from a shared variable, we use a call to an SMT solver to check for the satisfiability of
these constraints (these points are marked as feasibility checks in Figure 4). If the feasi-
bility check passes, it means that there exists a trace, with the same set of global events,
in which the previous non-local reads are paired with the corresponding writes, and all
other reads are paired with local writes. In this case, the execution of P̂k continues. Oth-
erwise, the execution is abandoned to prevent exploring unreachable states. Note that
the feasible trace may be different from the illustrated trace in Fig. 4 but since the inter-
ferences are limited to the non-local reads, the state of the program after passing each
feasibility check in the illustrated trace would be the same as the state of the program in
the corresponding feasible trace at that point. Therefore, it is just enough to ensure the
existence of a feasible trace to be able to proceed the execution soundly.

In the remainder of this section, we precisely define the transformation that was in-
formally described here.

4.1 Transformation Scheme

The Figure below illustrates the sequential program P̂k constructed based on P con-
sisting of two threads T and T ′. We assume that both T and T ′ are bounded sequential
programs, and therefore, all reads from shared variables in T and all writes to shared
variables in T ′ can be enumerated and identified. The input set of P̂k consists of I (in-
puts of P), and two arrays, rds and wrts, of size k where rds[i] stores the id of the ith

non-local read in T and wrts[i] stores the id of the write in T ′ which is supposed to
provide a value for rds[i]. These two arrays determine what reads in T will be non-local
and what writes in T ′ will provide the values for them.

inputs: I; int[k] rds, wrts; main() { init() {
vars: G; G′; init(); //read-write assumptions
int[k] vals; bool allWsDone ; τ [T]; ...
bool[k] rDone, wDone; } initialize G and G′;

}

The sequential program
P̂k has two copies of shared
variables, G and G′, so
that T and T ′ operate on
their own copy. Variable vals is an array of size k, where vals[i] stores the value writ-
ten bywrts[i]. There are also two arrays of size k, named rDone andwDone such that
rDone[i] andwDone[i] indicate whether the ithnon-local read and its pairing write have
occurred, respectively. The elements of these arrays are initialized to false.wDone[i] and
rDone[i] become true when the writewrts[i] and the read rds[i] are performed, respec-
tively. Later, we will explain how these arrays are used to ensure that the corresponding
reads and writes show up in the execution of P̂k.

Bounded-Interference Sequentialization for Testing Concurrent Programs 379

As mentioned earlier, not all values provided by inputs for rds and wrts arrays are
acceptable. Therefore, the validity of the values of rds and wrts is ensured through a
set of assumption statements in the init method, first. The assumptions ensure: (1) the
non-local reads are ordered, i.e. rds[i]< rds[i+1] for 1 ≤ i < k, and (2) for each non-
local read (rds[i]) from shared variable x, the pairing write candidate (wrts[i]) should
write to the same variable x. Note that in our transformation scheme, one always has the
option of limiting the search space by allowing only a subset of reads in T to be non-
local, and also by selecting only a subset of writes to the corresponding variable in T ′

as candidates for each non-local read.
The sequential program P̂k first calls the init method which ensures that rds and

wrts satisfy the above assumptions and initializes bothG and G′ according to the init
method of P . Then, P̂k executes the transformed version of T (represented by τ [T]).
The transformed versions of T and T ′ use functions append and isFeasible that are
required to check the existence of a feasible trace. Function append adds to a log file the
information about a global event, i.e. the identifier of the thread performing it, its type
(read, write, lock acquiring and releasing), and the corresponding variable. At any point
during the execution of P̂k, this log provides the exact sequence of global events that
occurred up to that point. Function isFeasible checks whether the log can correspond to
a feasible trace of programP (explained in Section 4.2). Figure 3 gives the transformation
function τ for the statements of T .

Transformation Scheme for T . The goal of the transformation is to let each read of a
shared variable in T be a candidate for a non-local read, observing a value provided by
a write in T ′. When handling a (boolean) expression, we perform for each read r from
a shared variable x a case distinction:

– r is selected as one of the non-local reads by inputs; in this case we distinguish the
first such read (rds[1]) from all the other non-local reads, since T ′ has to be called
before the first of the non-local reads is performed (see the dashed schedule presented
in Figure 4). If r is the first non-local read, i.e., r == rds[1] is true, the transformed
version of T ′ is called first (represented by τ ′[T ′]). Then, by assume(allWsDone)
we ensure that all writes in wrts occurred during the execution of τ ′[T ′]. If r is the
jth non-local read (1 ≤ j ≤ k), thenxwill read the value vals[j]written bywrts[j].
Then, rDone[j] is set to true (which is required when read rds[j+1] is performed)
and we log a write to x and a read from x to simulate a local write to x just before it
is read. The read rds[j] and the writewrts[j] are now paired, and we need to ensure
that a feasible concurrent trace exists. Therefore, we call isFeasible(log) and stop
the execution if no such feasible concurrent trace can be found.

– r is treated as a local read, since r doesn’t belong to the input set rds; nothing needs
to be done in this case other than calling isFeasible(log), to make sure that a con-
current trace in which this read is paired with the most recent local write (while all
previous non-local reads are paired with the corresponding writes) exists.

For each assignment statement we first transform the right-hand side expression, execute
the assignment, and in case we write to a shared variable, we log a write event afterward.
For a lock statement on variable x, a lock acquire and lock release event are logged just
before and after the transformation of the lock body, respectively. Assume and assert

380 N. Razavi, A. Farzan, and A. Holzer

Statement/expr S Transformation τ [S] Statement/expr S Transformation τ ′[S]
(b)expr //for each read r = read(x) in x = (b)expr τ ′[(b)expr];

//(b)expr and x is a shared var (x is a local variable) x = (b)expr′

x = (b)expr τ ′[(b)expr];
if (r == rds[1]) { (x is a shared var x′ = (b)expr′;
τ ′[T ′]; where w is the id if (w == wrts[1]) {
assume(allWsDone); of this write) vals[1] = x′;
x = vals[1]; wDone[1] = true;
rDone[1] = true; append(log, (T ′,WT, x, 1));
append(log, (T,WT, x, 1)); if (returnCondition()) return;
append(log, (T, RD, x, 1)); } else if (w == wrts[2]) {
assume(isFeasible(log)); vals[2] = x′;

} else if (r == rds[2]) { wDone[2] = true;
x = vals[2]; append(log, (T ′,WT, x, 2));
assume(rDone[1]); if (returnCondition()) return;
rDone[2] = true; }

append(log, (T,WT, x, 2));
.
.
.

append(log, (T, RD, x, 2)); else if (w == wrts[k]) {
assume(isFeasible(log)); vals[k] = x′;

} wDone[k] = true;

.

.

. append(log, (T ′,WT, x, k));
else if (r == rds[k]) { if (returnCondition()) return;
x = vals[k]; }
assume(rDone[k − 1]); (b)expr // for each read r = read(x) in
append(log, (T,WT, x, k)); // (b)expr where x is a shared var
append(log, (T, RD, x, k)); append(log, (T ′, RD, x));
assume(isFeasible(log)); lock(x){ S } append(log, (T ′, AQ, x));

} else { τ ′[S];
append(log, (T, RD, x)); append(log, (T ′, RL, x));
assume(isFeasible(log)); if (returnCondition()) return;

}
x = (b)expr τ [(b)expr]; assume(b expr) τ ′[b expr];
(x is a local var) x = (b)expr assume(b expr′)
x = (b)expr τ [(b)expr]; assert(b expr) τ ′[b expr];
(x is a shared var) x = (b)expr; assert(b expr′)

append(log, (T,WT, x)) if(b expr){S1} τ ′[b expr];
lock(x){S} append(log, (T,AQ, x)); else{S2} if(b expr′){τ ′[S1]}

τ [S]; else{τ ′[S2]}
append(log, (T,RL, x)) S1;S2 τ ′[S1]; τ ′[S2]

assume(b expr) τ [b expr]; skip skip
assume(b expr)

assert(b expr) τ [b expr];
assert(b expr)

if(b expr){S1} τ [b expr];
else{S2} if(b expr){τ [S1]}

else{τ [S2]}
S1;S2 τ [S1]; τ [S2]
skip skip

Fig. 3. Transformation scheme for T and T ′

statements remain the same unless we transform the corresponding boolean expressions
before these statements. Analogously, we transform conditional statements as well as
sequences of statements. Skip statements stay unchanged.

Transformation Scheme for Statements in T ′. The transformed program τ ′[T ′], which
is called from τ [T] before the first non-local read is performed, is executed until the first
lock-free point in which all writes specified inwrts have occurred. Note, log contains all
information necessary to determine which locks are held at any point in the execution. We
continue the execution ofT ′ up to a lock-free point after the last write inwrts to increase
the possibility of finding a feasible trace, by having the option to release some locks
before context-switching to T . The function returnCondition , used in τ ′[T ′], returns

Bounded-Interference Sequentialization for Testing Concurrent Programs 381

true if T ′ is at a lock-free point and all writes inwrtswere performed (returnCondition
sets the flag allWsDone accordingly). As mentioned before,T ′ operates on its own copy
of shared variables,G′. For each shared variable x, let x′ denote the corresponding copy
for thread T ′ and let (b)expr′ be a (boolean) expression in which each shared variable
x is replaced by x′.

If an assignment statement writes to a shared variable, we first check whether the write
is in wrts or not. In case the write is supposed to provide a value for the jth non-local
read, i.e.w == wrts[j] holds, the value of the shared variable is stored in vals[j] and the
flag wDone[j] is set to true. Then, a write event to the corresponding shared variable is
logged and function returnCondition is called to return when T ′ gets to an appropriate
point. The transformation of lock statements inT ′ is the same as inT unless after logging
a lock release event we call function returnCondition to check whether we should stop
executing T ′. For assert, assume, assignment, and conditional statements, we log a read
event for each read from a shared variable in the corresponding expressions just before
these statements.

4.2 Checking Feasibility of Corresponding Concurrent Runs

The log ρ is used to check for the existence of a feasible trace of the concurrent program,
in which all reads other than the non-local reads are reading values written by local writes
while each non-local read rds[i] in ρ is paired with the write wrts[i] for 1 ≤ i ≤ k′,
where k′ is the number of non-local reads appearing in ρ and k′ ≤ k. We generate a
constraint, PO ∧ LV ∧ RW, encoding all such feasible traces, consisting of the events
that appear in ρ, and use SMT solvers to find an answer. For each logged event e, an
integer variable te is considered to encode the timestamp of the event. The constraints
required for such feasible traces are captured using timestamps.

Program Order (PO): A feasible concurrent trace has to respect the order of events
according to each thread. Let ρ|T = e1, e2, ..., em and ρ|T ′ = e′1, e′2, ..., e′n be the se-
quence of events in ρ projected to threads T and T ′, respectively. The constraint PO =∧i=m−1

i=1 (tei < tei+1)
∧i=n−1

i=1 (te′i < te′i+1
), ensures that the order of events in T and

T ′ is preserved.

Lock-Validity (LV): In a feasible concurrent trace, threads cannot hold the same lock
simultaneously. The set of events between a lock acquire event eaq and its correspond-
ing lock release event erl in the same thread is defined as a lock block, represented by
[eaq, erl]. We denote the set of lock blocks of a lock l in threads T and T ′ by Ll and L′l,
respectively. The following constrains ensure that two threads cannot simultaneously
be inside a pair of lock blocks protected by the same lock, by forcing the lock release
event of one of the lock blocks to happen before the lock acquire event of the other:

LV =
∧

lock l

∧
[eaq ,erl]∈Ll

∧
[e′aq,e

′
rl]∈L′

l

(
terl < te′aq

∨ te′rl < teaq

)
Read-Write (RW): These constraints ensure that reads and writes are paired as re-
quired. Note that in the transformation, whenever the non-local read rds[i] is performed,
we inject a new write event by T in the program and log it before logging a read event

382 N. Razavi, A. Farzan, and A. Holzer

from the corresponding variable. This is to simulate the writewrts[i] as to be a local write
in T and hence the consequent reads of the same variable in T will be paired locally with
this new local write. Therefore, it is sufficient to ensure that each read is paired with a
local write (RW1 expresses these constraints). However, to guarantee that an injected
write eventw simulates the corresponding writew′ in T ′, we need to ensure thatw′ hap-
pens before w and no other write to the corresponding variable should occur between
these two writes (RW2 encodes this constraint).

We define an x-live block, [ew, er], to be a sequence of events in one thread starting
from a write event ew (to variable x) until the last read event (from x) er, before the next
write to x by the same thread. An x-live block should execute without interference from
any write to x by the other thread so that all the reads (of x) in it are paired with the write
event ew. For each x-live block [ew, er] and every write e′w to x by the other thread, e′w
should happen either before the write event ew or after the read event er. Let Lvx and
Lv ′

x represent the set of all x-live blocks in T and T ′, andWx andW ′
x represent the set

of all write events to x in T and T ′, respectively. Then RW1 =

∧
var x

[
∧

[ew,er]∈Lvx

∧
e′w∈W ′

x

(
te′w <tew ∨ ter <te′w

)
∧

∧
[e′w ,e′r]∈Lv′x

∧
ew∈Wx

(
tew <te′w ∨ te′r <tew

)
]

are true if none of the x-live blocks are interrupted. We also need constraints to ensure
rds[i] observes the value written bywrts[i]. Letwrts[i] = e′w,i, and assume that ew,i is
the new local write event injected during the transformation of rds[i]. Suppose er is a read
in T after ew,i such that [ew,i, er] forms an x-live block. Let e′′w,i be the next write event
to x after e′w,i in T ′. Then, e′w,i should happen before the x-live block, [ew,i, er], while

forcing e′′w,i to happen after the block:RW2 =
∧

[ew,i,er]

(
te′w,i
<tew,i ∧ ter <te′′w,i

)
.

Finally, RW = RW1 ∧RW2.

4.3 Soundness and Reproducibility

Here, we discuss the soundness of our sequentialization, i.e. every error state in the re-
sulting sequential program corresponds to an error in the concurrent program. Let P be
a concurrent program with threads T and T ′, and P̂k be the corresponding sequential
program which allows k reads in T to read values written by T ′. The soundness of our
technique is stated in the following theorem:

Theorem 1. Every error in the sequential program P̂k corresponds to an error in the
concurrent program P , i.e. there exists a feasible trace in P which leads to the error.

In case an error is found in P̂k, the SMT solution from the latest feasibility check can
be used to extract the bug-triggering concurrent trace in P , and hence effectively repro-
ducing the error.

5 Concurrency Bug Coverage

The ultimate goal of our sequentialization technique is using standard sequential testing
tools to test P̂k to find errors inP . Here, we discuss what coverage guarantees our testing

Bounded-Interference Sequentialization for Testing Concurrent Programs 383

approach can provide, based on the assumptions that can be made about the coverage
guarantees that the backend sequential testing tool provides. We characterize a class of
bugs that our tool can fully discover, if the underlying sequential tool manages to provide
certain coverage guarantees.

k-coupled Bugs. We define a function λ that given a trace σ and a read event e (from a
shared variable x) in σ, returns the identifier of the thread that has performed the most
recent write to the same shared variable before e. When there is no such write, value init
is returned by λ.

A trace σ is T -sequential if all reads in thread T are local (i.e. either read the initial
values or values written by writes in T). Formally, for all event e = 〈i, T : rd(x)〉 (see
Section 3 for the formal definition of events), we have λ(σ, e) ∈ {T , init}. A trace σ is
T -k-coupled if there are exactly k non-local reads in T , and all the other reads are local.
Formally, we have |{e = 〈i, T :rd(x)〉 : λ(σ, e) �∈ {T , init}}| = k.

Consider a concurrent program that consists of threads T and T ′. LetΔ be the set of
feasible traces which are T -k-coupled and T ′-sequential. We define the set of bugs that
can be discovered by testing all traces inΔ to be the k-coupled bugs in T .

Coverage Criteria. Let us consider some commonly used (by the state-of-the-art se-
quential testing tools) coverage criteria and discuss how these coverage criteria in the
underlying sequential testing tools can result in the coverage of all k-coupled bugs of
the concurrent programs by our technique.

First, we first discuss path coverage which gives us the strongest theoretical results.
Since path coverage is expensive to achieve, we also discuss control flow coverage which
is often used as the more practical alternative by testing tools.

The goal of path coverage is to explore all possible program paths. Several testing
tools such as DART [8], EXE [6], and CUTE [18] aim to provide full path coverage. The
following theorem formalizes the bug coverage guarantees provided by our technique:

Theorem 2. Let P be a concurrent program and P̂k be the corresponding sequential
program allowing k non-local reads in thread T . Suppose that a sequential testing tool,
SEQTOOL, provides full path coverage for P̂k. Then, SEQTOOL can discover allk-coupled
bugs in T .

Achieving a full path coverage can be expensive in practice. Therefore, some testing
tools focus on control-flow coverage, and its variations such as basic block coverage
and explicit branch coverage. Control-flow coverage is in general weaker than full path
coverage in the sense that it can miss some of the bugs that can be caught by targeting
full path coverage. Targeting control-flow coverage for the resulting sequential programs
may lead to overlooking some feasible pairings of read-writes since not all feasible paths
are guaranteed to be explored. We used PEX [20], which is based on control-flow cov-
erage, as the sequential testing tool in our experiments and managed to find all known
bugs and some new bugs.

6 Experiments

We have implemented our approach into a prototype tool for concurrentC# programs.
The source-to-source transformation is performed by augmenting a C# parser,

384 N. Razavi, A. Farzan, and A. Holzer

CSPARSER [1], to generate the corresponding sequential programs using the proposed
sequentialization method in Section 4. We used Microsoft PEX [20] as our backend se-
quential testing tool and Z3 [3] as the underlying SMT solver while searching for feasible
traces.

We performed experiments on a benchmark suite of 15 programs. Table 1 contains
information about the programs, their sizes (number of lines of code), and the results
of tests. Bluetooth is simplified model of the bluetooth driver presented in Figure 1.
Account is a program that creates and manages bank accounts. Meeting is a sequen-
tial program for scheduling meetings and here, like in [10], we assumed that there are
two copies of the program running concurrently. Vector, Stack, StringBuffer,
and Hashset are all classes in Java libraries. To test these library classes, we wrote
programs with two threads, where each thread executes exactly one method of the cor-
responding class. Series, SOR, and Ray are Java Grande multi-threaded benchmarks
[5]. We used a Java toC# converter to transform the corresponding Java classes toC#.
FTPNET [4] is an open source FTP server in C# and Mutual is a buggy program in
which threads can be in a critical section simultaneously due to improper synchroniza-
tion.

Table 1. Experimental Results. (*: new bugs
found)

Program #Lines 1-coupled 2-coupled 3-coupled Total
Bugs Bugs Bugs Time[s]

Bluetooth 55 0 1 0 26
Account 103 1 0 0 28
Meeting 101 1 0 0 16
Vector1 345 0 1 0 104
Vector2 336 0 1 0 80
Vector3 365 0 1 0 102
Stack1 340 0 1 0 100
Stack2 331 0 1 0 74
Stack3 361 0 1 0 98

HashSet 334 1 0 0 22
StringBuffer 198 1 0 0 12

Series 230 1 0 0 10
SOR 214 0 1 0 490
Ray 1002 1 0 0 18

FTPNET 2158 2∗ 0 0 56
Mutual 104 1 0 0 10

In Table 1, we present the number of
k-coupled bugs (i.e. bugs caught by al-
lowing k non-local reads) found for 1 ≤
k ≤ 3 in each program. The bug in
Account resides in the transfer method
which acquires a lock on the account trans-
ferring money without acquiring the corre-
sponding lock on the target account. The
bug in Meeting corresponds to the fact
that there are two versions of a sequen-
tial program running concurrently without
using any synchronization mechanism to
prevent the threads from interfering each
other. The bugs/exceptions in Java library
classes and Mutual are due to improper
synchronization of accesses to shared ob-
jects. Series and SOR seems to be bug-
free for two threads. Therefore, we injected bugs in them by fiddling with the synchro-
nization and our approach was able to catch them. The bug in Ray, corresponds to a data
race on the shared variablechecksum1. InFTPNETwe found two previously unknown
bugs that are due to ignoring the situations in which a connection can be closed before
a file transformation is completed.

It is important to note that all bugs were found by allowing only one or two reads to
be non-local. In all cases, no new error was found when k was increased to 3. Since these
benchmarks have been used by other tools before, we know of no (previously found) bugs
that were missed by our tool. Moreover, we found new bugs (that were not previously
reported) in FTPNET. The last column in Table 1 represents the total time, for all 1 ≤
k ≤ 3, spent by our tool. We can see that in many cases the bugs were found in less than

Bounded-Interference Sequentialization for Testing Concurrent Programs 385

one minute. On most benchmarks (exceptSOR) our tool spent less than two minutes. For
SOR, the majority of time (about 7 minutes) was spent testing for 3-coupled bugs. Note
that since this type of testing can be done in batch mode, as long as the full search is
successfully performed, the speed of the process is not a great concern. The reason that
it takes longer to test SOR is that there are many shared variables reads (more than 100)
and many options for the coupling of writes for each read.
Mutual is a good example of the distinction between the idea of bounded context-

switch and bounded interference. Here, 3 context switches are required to discover a
bug while our approach can find the bug by considering only one non-local read. In
fact, CHESS [12] and Poirot [2] (tools based on bounded context-switching) failed to
catch the bug with 4GB of memory within 15 minutes while our approach found the
bug in a few seconds. However, one can find examples in which bounded context-switch
approaches perform better. We believe that these two approaches are not comparable and
are complementary as interleaving selection heuristics.

7 Related Work

Sequentialization: There are several proposed approaches on sequentializing concur-
rent programs with the aim of reducing verification of concurrent programs to verifica-
tion of sequential programs. Lal and Reps [10] showed that given a boolean concurrent
program with finitely many threads and a bound k, a boolean sequential program can be
obtained that encodes all executions of the concurrent program involving only k context-
rounds. Lahiri et al [9] adapted the sequentialization of Lal and Reps for C. They used
a verification condition generator and SMT solvers instead of a boolean model checker.
A lazy sequentialization for bounded context switches was proposed by La Torre et al
[21] that requires multiple execution of each context. None of these techniques can be
used to sequentialize and then test a concurrent program using a sequential tester. In
fact, these sequentialization techniques are aimed to be used in static analysis (as op-
posed to testing). However, if one still chooses to use them for testing, there are various
complications; some [10,21] require fixed inputs (to guarantee the correctness of their
transformation) and will not function properly if the input changes, some [10] may pro-
duce unreachable states in their search and could generate false-positives, and some only
work for a small number of context switches [16].

Interleaving Selection: To tackle the interleaving explosion problem, recent research
has focused on testing a small subset of interleavings that are more probable in exposing
bugs. The CHESS tool [12] from Microsoft, for instance, tests all interleavings that use
a bounded number preemptions. RaceFuzzer [17] and CTrigger [14] use race/atomicity-
violation detection results to guide their interleaving testing. We use a different inter-
leaving selection scheme that incrementally increases the number of non-local reads to
explore more interleavings. More generally, these detectors are based on a single exe-
cution of the program provided a fixed input, while we have the option of finding the
right input. Also, they suffer from false-positives while our approach generates no false-
positives.

The ConSeq tool [24] detects concurrency bugs through sequential errors. Although
the idea of forcing critical reads to read different values in ConSeq looks similar to our

386 N. Razavi, A. Farzan, and A. Holzer

approach, there are major differences between them: ConSeq works on programs with
fixed inputs, ConSeq only considers a single execution while we work at program level,
and, ConSeq is not precise (ignoring data) and the executions may diverge from the plan,
while we provide guarantees (modulo the back-end sequential testing tool) to simulate
all feasible concurrent executions in a certain category.

References

1. http://csparser.codeplex.com/
2. http://research.microsoft.com/en-us/projects/poirot/
3. http://research.microsoft.com/en-us/um/redmond/projects/z3/
4. http://sourceforge.net/projects/ftpnet/
5. http://www.epcc.ed.ac.uk/research/java-grande/
6. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: Automatically gener-

ating inputs of death. ACM Trans. Inf. Syst. Secur. 12, 10:1–10:38 (2008)
7. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection. Commun.

ACM 53, 93–101 (2010)
8. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In: PDLI,

pp. 213–223. ACM (2005)
9. Lahiri, S.K., Qadeer, S., Rakamarić, Z.: Static and Precise Detection of Concurrency Errors

in Systems Code Using SMT Solvers. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 509–524. Springer, Heidelberg (2009)

10. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential analysis.
Form. Methods Syst. Des. 35, 73–97 (2009)

11. Miller, J.C., Maloney, C.J.: Systematic mistake analysis of digital computer programs. Com-
mun. ACM 6, 58–63 (1963)

12. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding and repro-
ducing heisenbugs in concurrent programs. In: OSDI, pp. 267–280 (2008)

13. Park, C.-S., Sen, K.: Randomized active atomicity violation detection in concurrent programs.
In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, SIGSOFT 2008/FSE-16, pp. 135–145. ACM, New York (2008)

14. Park, S., Lu, S., Zhou, Y.: Ctrigger: exposing atomicity violation bugs from their hiding
places. In: ASPLOS, pp. 25–36 (2009)

15. Pozniansky, E., Schuster, A.: Multirace: efficient on-the-fly data race detection in multi-
threaded c++ programs: Research articles. Concurr. Comput.: Pract. Exper. 19, 327–340
(2007)

16. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. SIGPLAN Not. 39, 14–24 (2004)
17. Sen, K.: Race directed random testing of concurrent programs. In: PLDI, pp. 11–21 (2008)
18. Sen, K., Agha, G.: CUTE and jCUTE: Concolic Unit Testing and Explicit Path Model-

Checking Tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 419–423.
Springer, Heidelberg (2006)

19. Sorrentino, F., Farzan, A., Madhusudan, P.: Penelope: weaving threads to expose atomicity
violations. In: FSE 2010, pp. 37–46. ACM (2010)

20. Tillmann, N., de Halleux, J.: Pex–White Box Test Generation for.NET. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008)

21. La Torre, S., Madhusudan, P., Parlato, G.: Reducing Context-Bounded Concurrent Reachabil-
ity to Sequential Reachability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 477–492. Springer, Heidelberg (2009)

http://csparser.codeplex.com/
http://research.microsoft.com/en-us/projects/poirot/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://sourceforge.net/projects/ftpnet/
http://www.epcc.ed.ac.uk/research/java-grande/

Bounded-Interference Sequentialization for Testing Concurrent Programs 387

22. Wang, C., Limaye, R., Ganai, M., Gupta, A.: Trace-Based Symbolic Analysis for Atomicity
Violations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 328–342.
Springer, Heidelberg (2010)

23. Yi, J., Sadowski, C., Flanagan, C.: Sidetrack: generalizing dynamic atomicity analysis. In:
PADTAD 2009, pp. 8:1–8:10. ACM, New York (2009)

24. Zhang, W., Lim, J., Olichandran, R., Scherpelz, J., Jin, G., Lu, S., Reps, T.: Conseq: detecting
concurrency bugs through sequential errors. In: ASPLOS, pp. 251–264 (2011)

Runtime Verification of Biological Systems�

Alexandre David1, Kim Guldstrand Larsen1, Axel Legay2, Marius Mikučionis1,
Danny Bøgsted Poulsen1, and Sean Sedwards2

1 Computer Science, Aalborg University, Denmark
2 INRIA Rennes – Bretagne Atlantique, France

Abstract. Complex computational systems are ubiquitous and their
study increasingly important. Given the ease with which it is possible to
construct large systems with heterogeneous technology, there is strong
motivation to provide automated means to verify their safety, efficiency
and reliability. In another context, biological systems are supreme exam-
ples of complex systems for which there are no design specifications. In
both cases it is usually difficult to reason at the level of the description of
the systems and much more convenient to investigate properties of their
executions.

To demonstrate runtime verification of complex systems we apply sta-
tistical model checking techniques to a model of robust biological oscil-
lations taken from the literature. The model demonstrates some of the
mechanisms used by biological systems to maintain reliable performance
in the face of inherent stochasticity and is therefore instructive. To per-
form our investigation we use two recently developed SMC platforms:
that incorporated in Uppaal and Plasma. Uppaal-smc offers a generic
modeling language based on stochastic hybrid automata, while Plasma

aims at domain specific support with the facility to accept biological
models represented in chemical syntax.

Keywords: runtime verification, synthetic biology, statistical model
checking, genetic oscillator, MITL, frequency domain analysis, Uppaal-

smc, Plasma.

1 Introduction

It is conceivable to design systems in such a way that makes their analysis easier,
but it is most usually the case that they are optimised for other constraints
(efficiency, size, cost, etc.) and that they evolve over time, developing highly
complex and unforeseen interactions and redundancies. These phenomena are
epitomised by biological systems, which have absolutely no inherent need to be
understandable or analysable. The discovery that the genetic recipe of life is
written with just four characters (nucleotides Adenine, Cytosine, Guanine and
Thymine) that are algorithmically transcribed and translated into the machinery

� Work partially supported by VKR Centre of Excellence – MT-LAB and by the
CREATIVE project ESTASE.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 388–404, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Runtime Verification of Biological Systems 389

of the cell (RNA and proteins) has led scientists to believe that biology also works
in a computational way. The further realisation that biological molecules and
interactions are discrete and stochastic then suggests the idea that biological
systems may be analysed using the same tools used to verify, say, a complex
aircraft control system.

Using formal methods to investigate natural systems can thus be seen as a way
to challenge and refine the process of investigating man-made systems. It is very
difficult to reason about systems of this type at the level of their descriptions,
however. It is much more convenient to directly analyse their observed behaviour.
In the context of computational systems we refer to this approach as runtime
verification, while in the case of biological systems this generally takes the form
of monitoring the simulation traces of executable computational models.

To demonstrate runtime verification of biological systems we apply advanced
statistical model checking (SMC) techniques to a model of robust biological oscil-
lations taken from the literature. SMC works by verifying multiple independent
simulation traces of a probabilistic model against a property specified in linear
temporal logic. The results are then used in an hypothesis test or to estimate the
probability of the property. In adopting this approach, SMC avoids constructing
the generally intractable explicit representation of the state space of the system.
The price paid is that results are only known within confidence intervals, how-
ever these may be made arbitrarily tight by increasing the number of simulation
runs. SMC can thus be seen as a specific instance of runtime verification.

The model we have chosen to investigate demonstrates some of the mecha-
nisms used by biological systems to maintain reliable performance in the face of
inherent stochasticity. These mechanisms are literally vital and have relevance
beyond biology (e.g. amorphous computing). To perform our investigation we
use two recently developed SMC platforms: that incorporated in Uppaal and
Plasma. Uppaal-smc offers a generic modelling language based on stochas-
tic hybrid automata, while Plasma aims at domain specific support and here
accepts biological models represented in chemical syntax. Although our chosen
model was conceived to be stochastic, its original description and analysis were
in the continuous (ODE) domain. We therefore compare the behaviour of de-
terministic and stochastic models by performing a frequency domain analysis,
taking advantage of Uppaal’s recently implemented ability to work with ODE
representations. We verify various interesting temporal properties of the model
and compare Plasma’s direct implementation of bounded LTL with Uppaal’s
monitor- and rewrite-based implementations of weighted MITL.

2 Beyond Runtime Verification with SMC

Runtime verification (RV) [10,21] refers to a series of techniques whose main
objective is to instrument the specification of a system (code, ...) in order to
disprove potentially complex properties at the execution level. The main problem
of the runtime verification approach is that it does not permit to assess the overall
correctness of the entire system.

390 A. David et al.

Statistical model checking (SMC) [4,26,23] extends runtime verification capa-
bilities by exploiting statistical algorithms in order to get some evidence that
a given system satisfies some property. Given a program B and a trace-based
property1 φ , Statistical model checking refers to a series of simulation-based
techniques that can be used to answer two questions: (1) Qualitative: is the
probability for B to satisfy φ greater or equal to a certain threshold θ (or greater
or equal to the probability to satisfy another property φ′)? and (2) Quantita-
tive: what is the probability for B to satisfy φ?

We briefly review SMC approaches, referring the reader to [4,26] for more
details. The main approaches [26,23] proposed to answer the qualitative question
are based on hypothesis testing. Let p be the probability of B |= φ, to determine
whether p ≥ θ, we can test H : p ≥ θ against K : p < θ. A test-based solution
does not guarantee a correct result but it is possible to bound the probability of
making an error. The strength (α, β) of a test is determined by two parameters,
α and β, such that the probability of accepting K (respectively, H) when H
(respectively, K) holds is less or equal to α (respectively, β). Since it impossible
to ensure a low probability for both types of errors simultaneously (see [26] for
details), a solution is to use an indifference region [p1, p0] (with θ in [p1, p0]) and
to test H0 : p≥ p0 against H1 : p≤ p1. Several hypothesis testing algorithms
exist in the literature. Younes[26] proposed a logarithmic based algorithm that
given p0, p1, α and β implements the Sequential Ratio Testing Procedure (SPRT)
(see [25] for details). When one has to test θ≥1 or θ≥0, it is however better
to use Single Sampling Plan (SSP) (see [26,4,23] for details) that is another
algorithm whose number of simulations is pre-computed in advance. In general,
this number is higher than the one needed by SPRT, but is known to be optimal
for the above mentioned values. More details about hypothesis testing algorithms
and a comparison between SSP and SPRT can be found in [4].

In [11,17] Peyronnet et al. propose an estimation procedure (PESTIMATION)
to compute the probability p for B to satisfy φ. Given a precision δ, Peyronnet’s
procedure computes a value for p′ such that |p′ − p|≤δ with confidence 1 − α.
The procedure is based on the Chernoff-Hoeffding bound [13].

3 Model and Properties

3.1 A Genetic Oscillator

It is well accepted that molecules are discrete entities and that molecular in-
teractions are discrete. It is further accepted that molecules move randomly as
a result of collisions with other molecules (thermal noise). From this it can be
inferred that chemical reactions are the result of random interactions and can be
modelled as stochastic processes. Biological organisms based on chemical reac-
tions are thus supreme examples of complex stochastic systems. The means by
which they overcome low level non-determinism and achieve apparent high level

1 i.e., a property whose semantics is trace-based.

Runtime Verification of Biological Systems 391

determinism is the subject of much ongoing research and informs such fields as
amorphous computing [1].

Oscillation, arising from the execution loops in computer programs, is of great
relevance to runtime verification of automated systems. Oscillation also plays
a crucial role in biology - life being an essentially cyclic process. One of the
key oscillatory behaviours in biology is the circadian rhythm that allows an
organism to take advantage of periods of day and night to optimise when to
maximise activity and recovery. In light of this, we have chosen the genetic
circadian oscillator of [3,24] as the focus of our analysis. This synthetic model
distils the essence of several real circadian oscillators and demonstrates how
a reliable system can be constructed in the face of inherent stochasticity. In
particular, the model has been shown in [12] to exhibit a kind of regularity
referred to as stochastic coherence.

Though the authors of the model were interested in its stochastic properties,
they nevertheless chose to represent it in the form of a system of ordinary differ-
ential equations (ODEs, reproduced in Figure 1). Each of the equations describes
the infinitesimal rate of change of a particular molecular species; the functions
being the sums of the rates of all reactions involving the species, weighted by
the direction (positive or negative, corresponding to creation and consumption)
and size of the corresponding change. ODEs are commonly used to represent the
dynamics of chemically reacting systems and it is traditional to consider con-
centrations (numbers of molecules per unit volume). Trajectories of ODEs can
closely approximate stochastic dynamics when the system operates near to the
thermodynamic limit (infinite population sizes). This is rarely the case with bio-
logical models of cellular processes, which frequently consider molecular species
in very low copy numbers. An obvious example is that within a cell there is often
just a single copy of a particular gene (as in the case of the genetic oscillator we
describe here). The ODE trajectory is often considered (informally) to be the
‘average’ of the stochastic traces, implying that the noise is somehow superim-
posed on top of a deterministic trajectory. In fact, the noise is an inherent part
of the stochastic trajectory and the ODE describes the behaviour of the limit of
the stochastic process as populations are taken to infinity while maintaining the
same concentrations [7,9]. We demonstrate this using frequency domain analysis
in Section 3.4.

Using a standard translation between deterministic and stochastic semantics
of chemically reacting systems (see, e.g., [8]), it is possible to transform the ODEs
given in Figure 1 into the chemical reaction syntax of Equations (1-16). These
can then be visualised as a stochastic Petri net (Figure 2). The model comprises
two genes (DA and DR) that are transcribed (Equations (5-8)) to produce two
micro-RNA molecules (MA and MR, respectively) that are translated (Equations
(9,10)) to produce two proteins (A and R, respectively). A acts as a promoter
for its own gene (Equation (1)) and for that of R (Equation (3)) by reacting
with DA and DR to produce their more efficient active forms D′

A and D′
R. A and

R dimerise (Equation (11)) to form complex protein C that eventually degrades
back to D. Oscillation arises from the fact that A is part of a positive feedback

392 A. David et al.

dDA/dt = θAD
′
A − γADAA

dDR/dt = θRD
′
R − γRDRA

dD′
A/dt = γADAA− θAD

′
A

dD′
R/dt = γRDRA− θRD

′
R

dMA/dt = α′
AD

′
A + αADA − δMAMA

dMR/dt = α′
RD

′
R + αRDR − δMRMR

dA/dt = βAMA + θAD
′
A + θRD

′
R

− A(γADA + γRDR + γCR + δA)

dR/dt = βRMR − γCAR+ δAC − δRR

dC/dt = γCAR− δAC

Fig. 1. System of ordinary differential
equations describing the genetic oscillator
example

Fig. 2. Petri net representation of the
initial state of the genetic oscillator ex-
ample

loop involved in its own production and promotes the production of R that, in
turn, sequesters A (i.e., removes it) via the production of C (Equation (11)).
This mechanism and other mechanisms of biological oscillation are discussed in
more detail in a recent review of synthetic oscillators [19].

A+DA

γ
A−→ D′

A (1)

D′
A

θ
A−→ DA +A (2)

A + DR

α
R−→ D′

R (3)

D′
R

θ
R−→ DR +A (4)

D′
A

α′
A−→ MA +D′

A (5)

DA

α
A−→ MA +DA (6)

D′
R

α′
R−→ MR +D′

R (7)

DR

α
R−→ MR +DR (8)

MA

β
A−→ MA +A (9)

MR

β
R−→ MR +R (10)

A + R
γ
C−→ C (11)

C
δ
A−→ R (12)

A
δ
A−→ ∅ (13)

R
δ
R−→ ∅ (14)

MA

δ
MA−→ ∅ (15)

MR

δ
MR−→ ∅ (16)

Each equation describes a possible productive interaction between types of

molecules (molecular species). Monomolecular reactions of the form A
k→ · · ·

have the semantics that a molecule of type A will spontaneously decay to some
product(s) following a time delay drawn from an exponential distribution with

mean k. Bimolecular reactions of the form A + B
k→ · · · have the semantics

that if a molecule of type A encounters a molecule of type B they will react to
become some product(s) following a time delay drawn from an exponential distri-
bution with mean k. It is usually assumed that the system is ‘well stirred’ [8,7,9],
such that the probability of a molecule occupying a particular position is uni-
form over the physical space of the system. This rarely represents reality in the
case of biological cells, however it is a widely used mathematical expedient that
is common to both deterministic and stochastic treatments. The consequence is

Runtime Verification of Biological Systems 393

that molecules lose their individuality (populations are treated as multisets) and
the rate of molecular interactions is simply the product of a rate constant (k in
the examples) and a combinatorial factor arising from population sizes [8,7,9].
This is known as mass action kinetics [8,7,9]. Referring to molecular species A
and B in the example reactions given above, for populations of instantaneous
size A and B the overall rates of monomolecular and bimolecular reactions are
given by kA and kAB, respectively.

3.2 Properties

The language we use to describe properties is based on the dense timed logic
MITL, having the form

φ = φ ∨ φ | φ ∧ φ | ¬φ | � | ⊥ | φU[a;b]φ | φR[a;b]φ | Xφ | α

where a, b ∈ IN, a < b and alpha is a proposition of the model. In the case of
the genetic oscillator we consider in this paper, the propositions are numeric
comparisons of the variables in question.

An expression as φ1U[a; b]φ2 means that φ1 should be true until φ2 is true and
this should occur between a and b time units. The expression φ1R[a; b]φ2 means
φ2 should be true until either b time units has passed or both φ1 and φ2 is true
and that occurs between a and b time units. Xφ means that φ should be true in
the next state of the system. The remaining operators have their standard inter-
pretation from propositional calculus. The derived eventuality operator ♦[a;b]φ
is introduced as short for �U[a;b]φ and the always operator �[a;b]φ as short for
⊥R[a;b]φ.

3.3 Properties of the Oscillator

The model exhibit an oscillatoric behaviour in which a peak of one protein is
followed by the increase of another protein. The increase of one protein also
appears to be governed by highly regularity in the sense that one peak level is
followed by another peak level in a specific amount of time.

In order to detect peaks we first define the shape of a peak. We say there is
a peak if the protein level is above a threshold thresL and within l time units
drops below another threshold thresR.

Using MITL≤ we can express that we at the given time is in a peak of the
N variable as

φpeakN ≡ N > thresL ∧ ♦[0;l]N < thresR.

Expressing that there is a periodicity in the peaks of a single variable N within
the first 1000 time units can be done using the formula:

�≤1000(φpeakN =⇒ ♦≤pφpeakN),

where p is the maximum time between peaks. The same form of expression can of
course also be used to express that a peak on the N variable should be followed
by a peak on the M variable.

394 A. David et al.

3.4 Frequency Domain Analysis

Frequency domain analysis provides a rigorous yet intuitive means to quantify
the behaviour of stochastic systems from observations of their executions. This
methodology is particularly relevant for oscillatory biological systems [14], but is
not limited to these and is able to characterise the distance in behaviour between
different models, different systems and different parts within the same system.
It can also measure the difference between different simulation algorithms or
semantics applied to the same system.

Our technique is to generate N simulation traces sampled at constant time
intervals, δt, resulting in K sampled points per simulation. From each set of
sampled points and for each state variable of interest we calculate a complex fre-
quency spectrum using a ‘fast Fourier transform’ (FFT) algorithm. From these
we generate N corresponding magnitude spectra and then calculate the point-
wise average magnitude spectrum. The average magnitude spectrum often gives
a visually compact notion of the complex stochastic behaviour of the system
and can also be used to quantify a distance between behaviours using standard
statistical metrics.
K and δt are chosen according to the temporal characteristics of the phe-

nomenon of interest: Kδt is the maximum observed simulated time; (Kδt)−1

is the low frequency resolution (the spacing between spectral components) and
(2δt)−1 is the maximum observable frequency. It is generally desirable to increase
K and reduce δt, but note that an optimal value of δt is usually significantly
greater than the minimum time between successive update events, since these
often do not apply to the same variable and the highest part of the spectrum is
often uninformative. N is chosen according to the stochasticity of the system in
relation to the desired discrimination of the metric; large N being desirable.

4 UPPAAL-SMC

The verification tool Uppaal [18] provide support for modeling and efficient
analysis of real-time systems modeled as networks of timed automata [2]. To
ease modeling, the tool comes equiped with a user-friendly GUI for defining and
simulating models. Also, the modelling formalism extends basic timed automata
with discrete variable over basic, structured and user-defined types that may be
modified by user-defined functions written in a Uppaal specific C-like imper-
ative language. The specification language of Uppaal is a fragment of TCTL
supporting a range of safety, liveness and bounded liveness properties.

Uppaal-smc is a recent branch of Uppaal which support statistical model
checking of stochastic hybrid systems, based on a natural stochastic semantics.
Uppaal-smc extends the basic timed automata formalism of Uppaal by al-
lowing rates of clocks to be defined by general expressions possibly including
clocks, thus effectively defining ODEs. An overview of the architecture is given
in Figure 3. The GUI of the tool allows the user to draw automata templates in
the editor, instantiate and compose these into a system, simulate the system for
easy validation, verify queries, and visualize quantitative answers in the form of

Runtime Verification of Biological Systems 395

plots in the plot composer. The execution engine ofUppaal-smc implements the
stochast semantics of interacting hybrid automata, and includes a proprietary
virtual machine for the execution of imperative code of the model.

The specification formalism of Uppaal-smc is that of (weighted) MITL, with
respect to which four different statistical model checking components are offered:
hypothesis testing, probability estimation, probability comparison and simula-
tion. Here the user may control the accuracy of the analysis by a number of sta-
tistical parameters (size of confidence interval, significance level, etc.). Uppaal-

smc also provides distributed implementations of the hypothesis testing and
probability estimation demonstrating linear speed-up [5].

The results generated by the analyses can be processed for visualization in
various ways: Gannt charts for individual runs monitoring desired variables,
plots of density functions and accumulated distribution functions with respect
to given (W)MITL properties. Typically the simulation results in gigabytes of
data which are filtered on-the-fly to plot only the relevant points.

Graphical Interface

Editor

Simulator

Verifier

Plot composer

Stochastic Engine
Hypothesis

Testing
Probability
Evaluation

Probability
Comparison

Simulation
Engine

Data
processing

engine
Compiler

Virtual
Machine

Execution
Engine

Server

Fig. 3. Architecture of Uppaal-smc

4.1 Modeling and Checking in UPPAAL-SMC

A Bouncing Ball Example. To illustrate the expressive power of the stochastic
hybrid automata language supported by Uppaal-smc, we consider a simple,
yet interesting variant of a bouncing ball. Figure 4(a) gives the principle of a
ball bouncing on a floor and being hit by a piston. The hybrid model of the
ball is given in Fig. 4(b) where three cases are visible: (i) it can be hit while
going up (v<=0), (ii) hit while going down (v<0), or (iii) it bounces on the
floor. The invariant on the location describes the trajectory of the ball in the
form of two differential equations (v’ and p’). The piston in Fig. 4(c) can hit
the ball only if its position is high enough (p>=6). The ball will rebound with
a random dampening coefficient both on the floor and the piston (given by the
random function). The delays between hits of the piston are chosen stochastically
according to an exponential distribution of rate 5/2. Semantically, the effect of
ODE expressions is achieved by an implicit auxiliary process integrating the
values based on a given fixed time step and thus directly competing with the
rest of processes when the rest of invariant and guard expressions are evaluated.

396 A. David et al.

hit?

bounce!

hit?

p==0 && v < 0

p=10 v = −(0.85+random(0.1))*v − 4

v=−(0.8+random(0.12))*v

v=−4.0

v’==−9.81 &&
p’==1*v

p >= 6 && v < 0 && v >= −4

p >= 6 && v >= 0

(a) (b)

hit!
5:2

time

va
lu

e

0

1.6

3.2

4.8

6.4

8.0

9.6

0 3.3 6.6 9.9 13.2 16.5 19.8

(c) (d)

Fig. 4. The bouncing ball and the hitting piston (a), the automata for (b) the ball and
(c) the piston, and (d) 5 trajectories of the ball in function of time

Five different trajectories of the ball are obtained by the query simulate

5 [<=20]{p} and shown in Fig. 4(d). We may also ask the model-checker to
estimate the probability that the ball is still bouncing above the height of 4
after 12 time units with the query:

Pr[<=20](<>(time >= 12 && p >= 4))

Here <>(time>=12 && p>=4) is the Uppaal-smc syntax for the MITL property
ψ = ♦(time ≤ 12 ∧ p ≥ 4) and Pr[<=20]ψ denote the probability π that ψ
will hold within 20 time-units for a random run. Given this query, the inter-
val [0.152, 0.163] is returned as an estimate for π with confidence 99.9% after
generating 152020 runs. We can also test the hypothesis:

Pr[<=20](<> time >= 12 && p >= 4) >= 0.15

with a region of indifference of ±0.005 and level of significance of 0.1% after
generating 18543 runs.

For the analysis of more general MITL properties properties, Uppaal-smc

generates monitoring automata to be put in parallel with the system. Statistical
model checking requires that these monitors are determinstistic timed automata.
Unfortunately, not all MITL properties may be monitored by determinstic timed
automata. Thus Uppaal-smc offers a safe confidence interval based on two
monitors corresponding to under- and over-approximations of the set of runs
satisfying the particular formula [5]. Experimental results have shown that we
obtain an exact monitor, and most recently this method has been replace by an
exact rewrite technique.

Runtime Verification of Biological Systems 397

gammaR=0, betaA=0, deltaA=0, ... ,
A=0, C=0, R=0, DR=1, ...

gammaR'==0 && betaA'==0 && deltaA'==0 && ... &&

A’== betaA*MA+thetaA*D_A+thetaR*D_R
−A*(gammaA*DA+gammaR*DR+gammaC*R+deltaA) &&
R’== betaR*MR−gammaC*A*R+deltaA*C−deltaR*R &&
C’== gammaC*A*R−deltaA*C && ...

(a) ODE model.

A>0 && DA>0

A*DA*gammaA

A−−, DA−−,
D_A++

MA>0

MA*betaA

A++
C>0

C*deltaA

C−−, R++

(b) Stochastic model.

Fig. 5. Snippets of the Uppaal models of the genetic oscilator

Figure 5a shows a snippet fromanODEmodel of the genetic oscilator,where the
coefficients (gammaR, betaA, deltaA) and variables (A, C, R, DR) are initialized
with the first urgent transition and then the trajectories are computed based on
the ODEs (the last three equations fromFig. 1). A snippet from stochastic genetic
oscilator model is shown in Fig. 5b, where each reaction (from Eq. 1, 9 and 12) is
modeled by a separate automaton. For example, the first automaton can be read
as follows: reaction requires positive quantities of A and DA (guard conditions),
one of each is consumed (A-- and DA--), and one D A is produced (D A++) with
an exponential rate gammaA times the available quantities of A and DA.

5 PLASMA

Plasma is designed to be a high performance and flexible platform for statis-
tical model checking, able to work with multiple modelling and property spec-
ification languages. Its basic architecture is shown in Figure 6 and comprises a
user interface, a simulation management module, a virtual machine and modules
that compile the model and property specifications. Models and properties are
compiled into proprietary bytecode and executed on Plasma’s inbuilt virtual
machine. Overall control of the verification process is maintained by the simu-
lation management module according to the options specified by the user. The
simulation management module contains various statistical model checking al-
gorithms that implement confidence bounds, such as the Chernoff bound of [11]

Property
Specification

Language
LogicVM SimVM

Bytecode

Bytecode

Hypothesis
Testing

Importance Sampling

Confidence
Bounds

Modelling
Language

Model Compiler

Virtual Machine

Simulation Management

User
Interface

Property
Compiler

Modelling
Language
Module

Specification
Language Module

Fig. 6. The architecture of Plasma

398 A. David et al.

and the sequential hypothesis test of [27], plus an importance sampling engine
[16] that improves the performance when simulating rare properties. For simu-
lating discrete and continuous time Markov models the virtual machine uses the
‘method of arbitrary partial propensities’ (MAPP [22,15]) that is an optimised
version of the ‘direct method’ of [8]. The simulation management module ex-
ecutes the property bytecode that, in turn, executes the model bytecode until
sufficient simulation steps are generated. In this way simulation traces contain
the minimum number of states necessary to decide a property and the simu-
lation management ensures that the minimum number of simulation traces are
requested of the simulator.

5.1 Modeling and Checking in Plasma

Modelling languages are built on an underlying semantics of guarded commands
[6] extended with stochastic rates to resolve non-determinism. These have the
form (guard, rate, action), where guard is a logical predicate over the state of
the system which enables the command, action updates the state of the system
and rate is a function over the state of the system that returns the stochastic rate
at which an enabled command is executed. This semantics is equally applicable
when the rate is actually a probability and time plays no part.

Plasma is designed to be language neutral, so for the present investigation
Plasma adopts a simple chemical syntax modelling language that closely mirrors
the style of Equations (1-16). The structure of the model file follows the form:
constant initialisations, species initialisations, list of reactions. In the present
context there is an implicit assumption of mass action kinetics [8,7,9] and rate
specifies the mean of an exponential random variable that models the time be-
tween successive reaction events; non-determinism being resolved by races be-
tween realisations of the random variables of competing reactions. Reactions of

the abstract form A+B
k→ C+D have the concrete form A + B k-> C + D with

guarded command semantics (A > 0 ∧B > 0, kAB,A = A− 1;B = B − 1;C =
C + 1;D = D + 1).

Plasma verifies properties specified in bounded linear temporal logic of the
kind described in Section 3.2. The logic accepts arbitrarily nested temporal for-
mulae and Plasma achieves this using a buffer to store sequences of values of
the variables of interest. When formulae are not nested, no buffer is required.
Algorithms 1 and 2 illustrate the basic notions of checking non-nested temporal
formulae, employing discrete time for clarity. Algorithm 3 is a naive implemen-
tation of a nested formula to illustrate the purpose of the buffer and how we
improve efficiency.

Algorithms 1 and 2 generate and consider states in turn, returning a result as
soon as φ is satisfied or not satisfied, respectively. These algorithms store nothing
and generate the minimum number of states necessary. Algorithm 3 also only
generates new states as required, but since the inner loop requires states further
into the future than the outer loop, states are stored by the inner loop for
subsequent use by the outer loop. As written, Algorithm 3 is naive because the

Runtime Verification of Biological Systems 399

inner loop re-checks states that it has checked on previous iterations of the outer
loop. Plasma therefore records where the decision on the previous iteration was
made and then needs only check the states after that. The case with continuous
time is more complex because the length of the buffer is not known a priori (there
may be an arbitrary number of steps to achieve a given time bound). Plasma
overcomes this by creating an initial buffer and then extends it as required.

Algorithm 1: ♦≤tφ

for i = 0 to i = t do
generate statei;
if statei |= φ then return �

return ⊥

Algorithm 2: �≤tφ

for i = 0 to i = t do
generate statei;
if statei �|= φ then return ⊥

return �

Algorithm 3: ♦≤t1�≤t2φ

create buffer of length t2;
for i = 0 to i = t1 do

inner = �;
for j = i to j = i+ t2 do

if statej /∈ buffer then
generate statej;
bufferj mod t2 = statej;

if statej |= ¬φ then
inner = ⊥;
break

if inner then return �
return ⊥

5.2 Rare Events

Rare events pose a challenge to simulation-based approaches, so Plasma in-
cludes an importance sampling engine that makes it possible to estimate the
probability of a rare property by simulating under a distribution that makes the
property less rare. Given a property φ, with true probability γ under distribution
P , the standard Monte Carlo estimator of γ is given by γ̃ = 1

N

∑N
i=1 z(ωi), where

ωi is the trace of a simulation made underP and z(ω) ∈ {0, 1} indicates whether
ω |= φ. In general, N must be chosen significantly greater than 1

γ to accurately
estimate γ, hence this is computationally expensive when γ is small. By contrast,

the importance sampling estimator is given by γ̃ = 1
N

∑N
i=1 z(ωi)

P (ωi)
Q(ωi)

, where

Q is ideally a distribution under which traces that satisfy φ are uniformly more
likely and ωi is now the trace of a simulation performed under Q. P

Q is called
the likelihood ratio and in a discrete event simulation can usually be calculated
on the fly in constant time. Since Q is chosen to reproduce φ more frequently, N
may be significantly less than 1

γ . The effectiveness of importance sampling relies
on finding a suitable Q.

An optimal importance sampling distribution is one under which traces that
satisfy the rare property are uniformly more likely, to the exclusion of all traces
that do not satisfy the property. It is possible to find such distributions by in-
dividually modifying all the transition probabilities in the system [20], however
this is often intractable. Plasma thus parametrises the distribution with a low
dimensional vector of parameters applied to the rates of its guarded commands
[16]. In the case of biological systems of the type considered here, this parametri-
sation corresponds to the rate constants of reactions.

400 A. David et al.

To demonstrate the application of importance sampling to biological systems

we consider a simple chemical system comprising A + B
k1=1−→ C, C

k2=1−→ D,

D
k3=1−→ E. With initial conditions A = 1000, B = 1000, C = D = E = 0, we then

consider the property Pr[♦D ≥ 470] that has a probability of approximately
2 × 10−10. By multiplying the rate constants k1, k2, k3 by importance sampling
parameters λ1 = 1.16, λ2 = 1.15, λ3 = 0.69, respectively, Plasma is able to
estimate this probability using only 1000 simulation runs (of these approximately
600 satisfy the property). The parameters were generated using the cross-entropy
algorithm described in [16].

6 Experiments

Our first level of validation is to inspect the simulation traces to verify that
they are sensible. The result from Uppaal-smc is displayed in Figure 7 where
the ODE model yields the same (deterministic) trajectories of a pattern which
repeats every 26.2 hours. The stochastic model yields an apparently similar but
“noisy” pattern where the amplitude and periodicity are also varying. This in-
tuitive similarity is made more formal by the frequency analysis in Section 6.1.
Notice that the signal C starts at zero which allows A to reach higher amplitude

R
C
A

time

va
lu

e

0

700

1400

2100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

(a) ODE model simulation plot

R
C
A

time

va
lu

e

0

700

1400

2100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

(b) Stochastic model simulation plot.

Fig. 7. Uppaal-smc simulations: simulate 1 [<=75] { A, C, R }

than it normally would, thus we ignore the first period in our measurements.
The amplitude can be measured from the plot directly for the ODE model: A –
1375, C – 2183 and R – 1717.

The amplitude is not fixed for stochastic model, and thus the distribution of
probable amplitude values is estimated instead. The start of the monitoring is
constrained with a variable v gaining value 1 only after 15 time units, effectively
ignoring the first peaks. The results of 2000 simulations of 75 time units are
shown in Fig. 8. The average amplitudes are a bit larger than in ODE model.

Runtime Verification of Biological Systems 401

max: A * v

pr
ob

. d
en

si
ty

0

0.0014

0.0028

0.0042

1140 1530 1920

(a) A, mean 1522.

max: C * v

pr
ob

. d
en

si
ty

0

0.0016

0.0032

0.0048

1960 2280 2600

(b) C, mean 2243.

max: R * v

pr
ob

. d
en

si
ty

0

0.0016

0.0032

0.0048

1500 1800 2100

(c) R, mean 1807.

Fig. 8. Estimated amplitude: E[<=75; 2000](max: A*v,C*v,R*v)

We can also estimate periods of various signals by measuring the time dis-
tance between peaks. For this purpose we add signal peak monitor-process gener-
ated by a MITL formula: true U[<=1000] (A>1100 & true U[<=5] A<=1000),
which is false unless the signal A rises above 1100 and then falls below 1000
within 5 time units. By coordinating two instances of such monitors and letting
a stopwatch x run only between the two peaks we estimate the distribution of
x as a period estimate. For signal C (R) we register a peak when the signal
falls from 2000 to 1900 (1500 to 1400 resp.). The query then is a simple prob-
ability estimate whether the second peak is reached. Figure 9 shows estimated
period with corresponding values at probability peaks. The most instances are
situated around the peak value, but there are other tiny bumps on sides. The
bump near zero corresponds to false positive recognition of a peak when the sig-
nal includes a saw tooth (common in stochastic simulations). The bump around
48 hours corresponds to a missed peak at 24, due to the local amplitude being
too low. Interestingly there is another tiny bump at around 73 in Fig. 9b which
correspond to two missed peaks in a row.

A periodlo
g

pr
ob

. d
en

si
ty

−4.0

−3.0

−2.0

−1.0

0 13 26 39 52

(a) A, peak at 24.22.

C periodlo
g

pr
ob

. d
en

si
ty

−4.2

−3.1

−2.0

−0.9

15 35 55 75 95

(b) C, peak at 24.21.

R periodlo
g

pr
ob

. d
en

si
ty

−4.1

−3.1

−2.1

−1.1

1 19 37 55 73

(c) R, peak at 24.23.

Fig. 9. Estimated periods: Pr[x<=100](<> secondPeak.ACCEPT)

A−R distance

lo
g

pr
ob

. d
en

si
ty

−3.8

−2.9

−2.0

−1.1

−0.2

2 8 14 20 26 32 38

Fig. 10. Phase diff., peak at 6.21

Similarly we can estimate the phase dif-
ference between the signals as a distance
between peaks of different signals. Fig-
ure 10 shows a probability density dis-
tribution of a phase difference between A
and R signals, which implies that a peak
in A typically leads to a peak in R within
6.21, but there might be one missed peak.

402 A. David et al.

6.1 Frequency Domain Analysis

Figures 11 and 12 compare the average frequency spectra of two variables from
our deterministic and stochastic simulations. We observe that the deterministic
spectra (black) tend to have sharp, well defined, peaks with discernible harmon-
ics at high frequencies. In contrast, the spectra of stochastic simulations (red)
tend to have softened peaks, few discernible high harmonics and contain an ap-
parent continuum of frequencies. This is reflected in the reduced amplitude of
these spectra relative to their deterministic counterparts: the amplitude of the
original trace is effectively divided amongst many more frequencies. We note that
the first three harmonics of the deterministic and stochastic spectra appear to
coincide, confirming our expectation and intuition that the the two behaviours
are ‘similar’.

The apparent thickness of the red lines reflects the fact that the lines describe
average spectra generated from stochastic data. Increasing N would make the
lines less thick but would not change their overall form, that is derived from the
frequency characteristics of the stochasticity.

Fig. 11. Average frequency spectra of
protein R. δt = 2h,K = 12500. N =
100 (N = 1) for the stochastic (deter-
ministic) model.

Fig. 12. Average frequency spectra of
protein C. δt = 2h,K = 12500. N =
100 (N = 1) for the stochastic (deter-
ministic) model.

7 Conclusion

We have introduced and applied various advanced statistical model checking
techniques to an osillatory biological system and have demonstrated their rele-
vance to runtime verification. We have used two state of the art tools: Uppaal-

smc and Plasma. Uppaal is a mature general-purpose platform based on timed
automata, while Plasma is a relatively new tool that allows domain-specific lan-
guages to describe Markov chain models.

Runtime Verification of Biological Systems 403

Table 1. Tool comparison summary

Aspect Plasma Uppaal

Models Domain specific Stochastic hybrid automata
Semantics DTMC/CTMC Stochastic hybrid transition systems
Properties MITL, rare events (Weighted) MITL
Results Exported data Generic visualizations

Table 1 summarizes the aspects of both tools and shows that Plasma is
targeted for domain specific languages and the final result analysis (such as fre-
quency analysis) is done using external tools, whereas Uppaal provides generic
features with integrated visualization of predetermined concepts. Although there
are fundamental differences in the underlying semantics of the two tools, we have
shown that they are united by the properties and problems of verification. In
particular, frequency domain analysis and rare events are subjects of ongoing
joint research.

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nag-
pal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Commun.
ACM 43(5), 74–82 (2000)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Barkai, N., Leibler, S.: Biological rhythms: Circadian clocks limited by noise. Na-
ture 403, 267–268 (2000)

4. Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An Overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G.,
Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010)

5. Bulychev, P.E., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B., Stainer,
A.: Monitor-Based Statistical Model Checking for Weighted Metric Temporal
Logic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180,
pp. 168–182. Springer, Heidelberg (2012)

6. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

7. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annual Review of Phys-
ical Chemistry 58, 35–55 (2007)

8. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81, 2340–2361 (1977)

9. Gillespie, D.T.: Deterministic limit of stochastic chemical kinetics. The Journal of
Physical Chemistry. B 113, 1640–1644 (2009)

10. Havelund, K., Roşu, G.: Synthesizing Monitors for Safety Properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002)

404 A. David et al.

11. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate Probabilistic
Model Checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 307–329. Springer, Heidelberg (2004)

12. Hilborn, R.C., Erwin, J.D.: Stochastic coherence in an oscillatory gene circuit
model. Journal of Theoretical Biology 253(2), 349–354 (2008)

13. Hoeffding, W.: Probability inequalities. Journal of the American Statistical Asso-
ciation 58, 13–30 (1963)

14. Ihekwaba, A., Sedwards, S.: Communicating oscillatory networks: frequency do-
main analysis. BMC Systems Biology 5(1), 203 (2011)

15. Jegourel, C., Legay, A., Sedwards, S.: A Platform for High Performance Statistical
Model Checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012)

16. Jegourel, C., Legay, A., Sedwards, S.: Cross-Entropy Optimisation of Importance
Sampling Parameters for Statistical Model Checking. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer, Heidelberg (2012)

17. Laplante, S., Lassaigne, R., Magniez, F., Peyronnet, S., de Rougemont, M.: Prob-
abilistic abstraction for model checking: An approach based on property testing.
ACM TCS 8(4) (2007)

18. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2), 134–152
(1997)

19. Purcell, O., Savery, N.J., Grierson, C.S., di Bernardo, M.: A comparative analysis
of synthetic genetic oscillators. Journal of The Royal Society Interface 7(52), 1503–
1524 (2010)

20. Ridder, A.: Importance sampling simulations of markovian reliability systems using
cross-entropy. Annals of Operations Research 134, 119–136 (2005)

21. Roşu, G., Bensalem, S.: Allen Linear (Interval) Temporal Logic – Translation to
LTL and Monitor Synthesis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 263–277. Springer, Heidelberg (2006)

22. Sedwards, S.: A Natural Computation Approach To Biology: Modelling Cellular
Processes and Populations of Cells With Stochastic Models of P Systems. PhD
thesis, University of Trento (2009)

23. Sen, K., Viswanathan, M., Agha, G.: Statistical Model Checking of Black-Box
Probabilistic Systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 202–215. Springer, Heidelberg (2004)

24. Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance
in genetic oscillators. Proceedings of the National Academy of Sciences 99(9), 5988–
5992 (2002)

25. Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathematical Statis-
tics 16(2), 117–186 (1945)

26. Younes, H.L.S.: Ymer: A Statistical Model Checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

27. Younes, H.L.S., Simmons, R.G.: Probabilistic Verification of Discrete Event Sys-
tems Using Acceptance Sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002.
LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002)

Behavioral Specification Based Runtime Monitors
for OSGi Services

Jan Olaf Blech1, Yliès Falcone2, Harald Rueß1, and Bernhard Schätz1

1 fortiss GmbH, Munich, Germany
{blech,ruess,schaetz}@fortiss.org

2 Laboratoire d’Informatique de Grenoble, Université Grenoble I, Grenoble, France
ylies.falcone@imag.fr

Abstract. Abstract constraint specifications – such as interoperability contracts
– of the behavior of a system are frequently stated as requirements during early
design phases. During the development process, these abstract specifications get
refined until one reaches a deployable implementation. Especially in systems with
components being dynamically added or replaced, it is critical that the constraints
stated are met by the running system. The size of abstract constraint specifications
is typically very small compared to the final implementation.

In this paper, we sketch a process, where abstract constraint specifications
are used as a basis for runtime monitors and checks. These monitors and checks
ensure that in cases of deviations from the original specification, the system takes
compensating actions such as turning the system into a safe state. We particularly
focus on systems where components can be exchanged, added or removed during
runtime. We discuss a concrete application scenario: The usage of specification-
based monitors for OSGi-based services in the domain of home automation.

1 Introduction

Systems with a high required level of dependability – with respect to both either safety
or security – have been an important application domain for the application of formal
analysis techniques. So far, this kind of systems – generally embedded systems from
application domains like automotive, aerospace, or health – have traditionally been
systems with a static architecture and a traditional design-build-commission-operate-
decommission life cycle: Once the system architecture has been defined in the design
phase and the properties of these components have been correctly specified, they remain
unchanged through the later phases of the system life cycle. Formal analysis techniques
here is mainly used to front-load and improve the quality assurance of the development,
and thus for the validation and verification of the design. In such a context, runtime
verification – i.e., observing a running system and detecting and possibly reacting to
observed behaviors satisfying or violating certain properties – supports the monitor-
ing of an implemented system or component. Monitoring is done with respect to the
properties defined for this system or component during the design stage. Typical appli-
cations include debugging, verification of user-provided specifications, fault detection
and recovery, security (e.g., intrusion detection).

However, with the change from classical embedded systems to cyber-physical sys-
tems – large-scale, networked systems controlling organizational as well as physical

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 405–419, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

406 J.O. Blech et al.

processes – the life-cycles of those systems – for example, a production system rang-
ing from manufacturing automation to logistics control – have substantially changed:
Components have to be removed, added, or updated at runtime. Consequently, there
is a shift to systems with a dynamic architecture, accommodating the adaption of the
component structure of such systems during operation. To ensure essential properties of
those systems, of course some architectural properties have to remain invariant. These
properties are often defined in terms of interaction contracts between a component and
the system it is embedded in, defined during design time. For those kinds of systems,
a different form of runtime verification is needed, ensuring that changes made to ar-
chitecture do not violate the design. This specifically includes the verification that the
modified/exchanged or added component respects the original contract. Thus, in this
context runtime verification is used to monitor the change of the architecture of a sys-
tem, ensuring that only suitable modifications take place.

1.1 Main Research Questions

As a consequence, several research questions arise:

– Which formalisms are suitable for the requirement of specifications, behavioral
types, or interaction contracts, that, at the same time, are expressive enough to
describe the properties of individual components of a system needed to establish
global and emergent properties of a system with a dynamically changing archi-
tecture? Choosing a specification formalisms with a level of expressiveness that
exactly fits the needs of the targeted specification is paramount. There exists a spec-
trum of possible specification formalisms [1] that differ in terms of expressiveness.
More expressive formalisms are often associated to less efficient monitoring algo-
rithms. Optimal algorithms have to be chosen.

– What is a suitable analysis technique that allows to verify the conformance of a
modified or added component to the interaction contracts imposed by the system?

– How can those formalisms and techniques be integrated into the design, imple-
mentation, and operation for monitoring properties, e.g., adaptions in systems with
dynamically changing architectures?

In the following, we refine these challenges and suggest solutions.

1.2 Contribution

We present a vision for component-based software systems and a connected develop-
ment process that aims at using behavioral specifications at runtime. Behavioral spec-
ifications are derived from requirements of the software system and its architectural
and functional specification. These specifications are used as a basis for runtime moni-
tors for software systems and additional informative checks and search operations. The
monitors ensure that in cases of deviations from the original specification, the system
takes compensating actions such as turning the system into a safe state. Compensating
actions may themselves be derived from specifications.

We specifically discuss the proposed ideas in the context of OSGi frameworks [2] and
its bundles particularly for an Eclipse based development environment. More concretely

Behavioral Specification Based Runtime Monitors for OSGi Services 407

we exemplify some of our ideas in the domain of an OSGi based home automation
framework.

1.3 Overview

Related approaches are discussed in Section 2. Our ideas for a workflow from require-
ments to monitors and behavioral checks at runtime of a software system are presented
in Section 3. Concrete ideas and an architecture for OSGi and an integration into an
Eclipse based tool-chain are described in Section 4. Section 5 presents an example
from the home automation domain. Section 6 draws some conclusions.

2 Related Approaches

Specification of the behavior of OSGi-based services has also been studied in [3]. Spec-
ifications of services is mostly regarded with respect to substituting one service by an-
other and is based on process algebra.

Behavioral types as means for behavioral checks at runtime for component based
systems have been investigated in [4]. In this work, the focus is rather put on the defini-
tion of a suitable formal representation to express types and investigate their methodical
application in the context of a model-based development process.

A language for behavioral specification of component-based systems aiming at ob-
ject oriented systems is introduced in [5]. Compared to the requirement-based descrip-
tions proposed in our paper, the specifications used in this work are still relatively close
to an implementation.

Our behavioral specifications resemble to behavioral types for component based sys-
tems. This is studied in the context of real-time embedded systems [6] and as inter-
face automata. Interface automata ensure the compatibility of component interfaces [7]
by specifying protocols using automata. JML [8] provides assertion, pre- and post-
condition based specifications for Java which can be used to describe behavior. A sim-
ilar description mechanism has also been used for systems specified in synchronous
dataflow languages like Lustre [9].

Runtime monitors for interface specifications of web-service in the context of a
concrete e-commerce service have been studied in [10]. Behavioral conformance of
web-services and corresponding runtime verification has also been investigated in [11].
Runtime monitoring for web-services where runtime monitors are derived from UML
diagrams is studied in [12].

A formal approach to runtime verify the behavior of component-based systems is
proposed in [13]. It is expressed in the BIP framework [14].

Runtime enforcement is also a candidate technique in our framework. So far, mainly
theoretical studies have been carried out [15–17], see [18] for an overview. Runtime en-
forcement of safety properties was initiated with security automata [15] that are able to
halt the underlying program upon a deviation from the expected behaviors. Later, edit-
automata were proposed to enforce more than safety properties: by memorizing some of
the events produced by the underlying system, edit-automata are able to provide some
form of recovery after an error has occurred in the system. Later, previous approaches

408 J.O. Blech et al.

were generalized with generic enforcement monitors [19]. In these approaches, several
definitions of enforcement monitoring are proposed according to how incorrect exe-
cutions are modified by the monitors [18]. We shall identify the suitable definition of
enforcement monitoring in the context of home automation.

3 From Behavioral Specifications to Monitors in System
Development

During the development of component-based software systems requirements are typi-
cally collected at an early stage. These requirements are aggregated into a textual form
or more formal descriptions.

Once an architecture has been designed, requirements can be associated with dis-
tinct components using, e.g., UML. UML diagrams can be formal enough to extract
behavioral specifications of components (cf. [20]). These specifications can be used to
generate monitoring code.

In a next phase, the specified system is implemented. The generated monitoring code
can already be used during the implementation phase for testing purposes. It can be
inserted using some instrumentation technique. Depending on the required level of ob-
servation of the underlying system, several solutions can be considered from in-house
techniques to aspect-oriented techniques. In the context of OSGi services, based on Java
technology, AspectJ1 is a tried and tested technique ensuring that the interference with
the implementation work is kept to a minimum, and, it provides observation means to
express a wide range of properties over system executions.

For the deployed system, the monitors shall be active and observe the system’s run-
time behavior and take compensating actions. These compensating actions may already
be stated during the requirements phase and may be generated from their formalization
out of, e.g., UML state-machines, too.

3.1 Formalizing Requirements

Some work has to be done to come from informal requirements and specifications to
formalized requirements for distinct components and specifications of their interactions.
Semi-formal requirements may be represented by a UML diagram. Further work may
have to be conducted to come to a formalism that is suitable for generating monitors or
comparing formal behavior and checking for compatibility.

For our purposes, formalisms that can be used for specifying a protocol of possible
system interactions are most relevant. The following formalisms are candidates:

– Regular expressions are equivalent to finite automata. Thus, it is possible to gen-
erate them from some forms of UML state-charts and sequence diagrams. Some
abstraction steps can be necessary to transform a state-machine or a sequence dia-
gram to a regular expression.

– Temporal logics formulas can be generated from sequence diagrams and other form
of diagrams that specify interactions between different components.

1 http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/

Behavioral Specification Based Runtime Monitors for OSGi Services 409

– Parameterized formalisms based on the above mentioned techniques. Monitoring
such formalisms is receiving a growing interest from the runtime verification com-
munity. There exist a spectrum of available formalisms associated to different mon-
itoring algorithms and tools [1]. Generally, expressiveness comes at the price of a
reduced efficiency. The input formalisms has thus to be chosen wisely to keep over-
head to a minimum.

Furthermore, languages that combine regular expressions and temporal logics formulas
like PSL [21] can be used. In this regard, SALT [22] is a candidate.

File-Writer Example Consider the following example for exemplifying different levels
of specification:

– An informal requirement may state that a component has to open a file before it can
write to it and afterwards has to close it.

– In a UML diagram this can be stated as a sequence diagram or state-machine and
may involve concrete names of primitives for opening open, writing write and
closing close.

– A regular expression as a formal representation may describe this as:

open.write∗.close.

Pre- and Post-condition Example In some cases, components may come with behav-
ioral pre-conditions that must be met before their deployment and post-conditions that
are fulfilled after their deployment provided that the pre-conditions hold. These can be
specified using the languages mentioned above. For instance, consider three compo-
nents A, B, and C connected to a bus. There is an order of communication that these
protocols fulfill on the bus given by a regular expression:

(send A.send B.send C)∗

Several groups of sends can be done where A sends first, then B, then C before having
another group of sends. This may serve as a pre-condition. A post-condition may ensure
thatD adds its messages after C and before A sends again.

(send A.send B.send C.send D)∗

Of course it would be advantageous if requirement and specification documents would
already contain formalizations made in one of the languages stated above. This would
make the step of transforming requirements into more formal specifications unneces-
sary. At this point, however, we do believe that this is only feasible for a minority of
projects.

3.2 Inferring Monitors from Requirements and Specifications

At least two reasons for monitoring behaviors can be distinguished:

– Give error messages or discover incompatibilities in order to prevent malfunctions.
Behavioral incompatibility shall be detected automatically during runtime of a sys-
tem and reported to the system and its users.

410 J.O. Blech et al.

– Taking compensating actions. In case of a detected deviation from a specification,
compensating actions shall be taken automatically to minimize the effect of the
deviation.

A formalism for specifications and requirements that is suitable for generating exe-
cutable monitor code has to be chosen. The formalisms mentioned above are good can-
didates for automatically generating monitors where a state transition function updates
a monitor state. In addition to this, for the described purposes, the following challenges
have to be solved:

– In the case of ensuring a protocol, we are sometimes monitoring properties, where
a monitor state can be distributed between different components. An appropriate
implementation might require extra communication between components.

– Finding appropriate places where to inject the monitoring code (in-line monitoring)
or the code used to interacts with the monitor (out-line monitoring).

– Another important aspect is to link the elements used in the specification with ar-
tifacts that will occur in the implementation. For example, a requirement that a
component has to register itself to another component has to be broken down to
concrete method calls. This, can already be contained in the UML diagrams.

In the case of the first two items an implementation decision between in-line and out-
line monitoring has to be taken.

3.3 Integration of Monitors into the Implementation

A typical RV implementation using monitors in the regarded scenarios requires different
pieces of code to be written or generated. In particular we need the following:

– Code that is used for representing and managing a monitor state. In case of out-line
monitoring this code can comprise a component that realizes the actual monitor.
In case-of in-line monitoring it comprises the data type definitions for the monitor
state and auxiliary operations on it.

– Code that is integrated into the non-RV code for updating the monitor state. It
comprises actions that trigger the updating of the monitor state. In case of out-line
monitoring it comprises code for communicating with the monitor component.

– Code that is used for taking compensating actions.

Different implementation techniques have been successfully applied for monitor inte-
gration (see, e.g., [23] for .NET or AspectJ for Java).

3.4 Comparing Behavioral Specifications

While runtime monitoring checks and potentially enforces behavioral constraints in an
environment where components can be dynamically composed, it is advantageous if
components can inform themselves about the behavior of other components and the
behavior they expect for interacting with them. Such protocols can be made available
within the OSGi framework. Expected protocols may be represented using the same
formalisms as for monitor generation.

Behavioral Specification Based Runtime Monitors for OSGi Services 411

The same motivation as for monitors applies here. In addition to the reasons stated
in Section 3.2 components can use the formal protocol descriptions for the following
purposes at runtime:

– Search for appropriate components. Component-based systems typically come with
some kind of brokerage service that lets component search for appropriate compo-
nents / services they need for performing some task. Automatic checks of com-
patibility is done by comparing interfaces based on primitive datatypes and their
aggregation into classes, structures and arrays. Apart from this, additional descrip-
tions may exist – for example textual – that indicates the behavior of components
so that with some human interaction components can be composed in a meaningful
way. Here, we are interested in extending these specifications so that components
can search for required components that are compatible from a behavioral point of
view – at least for some aspects – without human interaction.

– Adapt itself to a protocol. A component may now dynamically adapt itself to the
requirements of another component. It may comprise different protocol modes that
are chosen for the interaction with different implementation of another component.

The stated needs require checking compatibility of behavioral specifications. Checking
compatibility can comprise:

– Equivalence or equality checks. Regular expressions for instance have to be trans-
formed into a normal form. This comprises the minimization and reordering of
sub-expressions in accordance with an order defined over atomic elements of the
regular expression.

– Refinement checks. Specifications may be given at different levels of details. A re-
finement check performs a form of abstraction, e.g., omitting certain sub-constructs
before performing an equivalence or equality check. This way one can compare be-
havior specified on more detailed to more abstract behavior.

Technically, the described checks can be carried out by a separate (realized as another
component) or in-lined checker. A main goal for the realization of these checks is to
keep them decidable and efficient. Additional tools may be involved in such as model-
checkers (like SMT solvers) or theorem provers. In this case a transformation into the
language of a system representation into the language of the tool is necessary (see, e.g.,
[24, 20] for our work on Eclipse-based implementations). Another important aspect is
the scalability of the checks. A component-based system can consist of hundreds of
components interacting with each other. Efficient checks of possible interactions are
required.

4 An Architecture for OSGi Bundles, Behavioral Descriptions and
Monitors

Here, we describe the OSGi framework and discuss the integration of the ideas
described in Section 3. Furthermore, we sketch an integration into the Eclipse
environment.

412 J.O. Blech et al.

service

bundle bundle

service

OSGi framework implementation

Operating System

service

Fig. 1. OSGi framework

4.1 An Overview on OSGi

The OSGi framework is a component and service platform for Java. It allows the ag-
gregation of services into bundles (cf. Figure 1) and provides means for dynamically
configuring services, their dependencies and usages. It is used as the basis for Eclipse
plug-ins but also for embedded applications including solutions for the automotive do-
main, home automation and industrial automation. Bundles can be installed and unin-
stalled during the runtime. For example, they can be exchanged by newer versions.
Hence, possible interactions between bundles can in general not be determined stat-
ically. Important aspects that need to be investigated for applications in this context
comprise composability – i.e., the ability to exchange a component with one or several
others without changing the behavior of the system as a whole – and compositionality –
i.e., when can we guarantee properties of a system that are inferred from its components
(cf. [14]).

Bundles are deployed as .jar files containing extra OSGi information. Bundles gener-
ally contain a class implementing an OSGi interface that contains code for managing the
bundle, e.g., code that is executed upon activation and stopping of the bundle. Upon ac-
tivation, a bundle can register its services to the OSGi framework and make it available
for use by other bundles. Services are technically implemented in Java. The bundle may
itself start to use existing services. Services can be found using dictionary-like mecha-
nisms provided by the OSGi framework. Typically one can search for a component with
a specified Java interface.

The OSGi standard only specifies the framework including the syntactical format
specifying what bundles should contain. Different implementations exist for different
application domains like Equinox2 for Eclipse, Apache Felix3 or Knopflerfish4. If bun-
dles do not depend on implementation specific features OSGi bundles can run on dif-
ferent implementations of the OSGi framework.

2 http://www.eclipse.org/equinox/
3 http://felix.apache.org/site/index.html
4 http://www.knopflerfish.org/

http://www.eclipse.org/equinox/
http://felix.apache.org/site/index.html
http://www.knopflerfish.org/

Behavioral Specification Based Runtime Monitors for OSGi Services 413

Fig. 2. Usage of XML and model based behavioral descriptions

4.2 Extending OSGi with Behavioral Descriptions

Different levels of behavioral descriptions for OSGi can be distinguished. They can
all serve the purpose to ensure interoperability at an inter-bundle level, but may be
described with respect to a distinct level:

– Inter-Bundle level. For example, some protocols may have to be fulfilled when
different bundles communicate with each other. A typical Eclipse installation can
start (and stop) several hundred bundles during a development session. A bundle
often requires other bundles to communicates with. Hence, specifying and ensuring
correctness of inter-bundle communication is important for eliminating potential
incompatibilities.

– Bundle level. Protocols may be specified with respect to a single bundle. For ex-
ample a protocol that has to be fulfilled when another bundle communicates with
the specified one. Contrarily to the inter-bundle level, the specification does only
describe the expected behavior of the specified bundle.

– Service level. More fine grained than the bundle level, the service level describes
the possible behavior of an object that is registered as a service. It can describe the
interplay of the different methods offered by the service or additional objects that
are created and used.

– Object level. Compared to the service level, the object level is more implementation
centric and describes the behavior of a particular object which can be a service or
used by a service.

– Method level. The method level can describe the behavior of a particular method.
For example, possible events that may be triggered. We may also provide invariants
about results that are returned.

414 J.O. Blech et al.

Figure 2 shows the integration of XML and model-based behavioral descriptions into
OSGi. Two possibilities exist which can be realized together in one implementation:
Behavioral descriptions can be registered as bundle properties upon the activation of
an OSGi bundle. This is preferred for protocols that involve an entire bundle or several
bundles. Another possibility is that a registered service object implements a behavioral
Java interface definition. Other services can call a special method returning, e.g., a
model describing the behavior of the service.

In addition, checkers for behavioral compatibility must be implemented, hence al-
lowing to search for bundles which preserve a distinct registered protocol. Such check-
ers can be integrated into the bundle code or realized as OSGi services themselves.

4.3 Integration of Runtime Monitors

The code pieces described in Section 3.3 should be generated automatically using the
specifications. They have to be integrated into the OSGi bundle development: Java code
that is written by humans. For OSGi we can use code weaving as in aspect-oriented
techniques like AspectJ in Eclipse for this integration.

4.4 Eclipse Integration of Behavioral Descriptions

Figure 3 sketches the workflow from requirements to models in Eclipse.
As a first step, informal requirements are put into a more formal format. Meta-models

for describing the behavioral aspects of our services is central to handling behavioral

Fig. 3. From requirements to monitors in Eclipse

Behavioral Specification Based Runtime Monitors for OSGi Services 415

descriptions in Eclipse. Different meta-models can co-exist provided that some trans-
formations between them exist. We propose the usage of an .ecore-based format for
these meta-models. It allows the specification of the meta-model and the generation of
a corresponding XML schema, a class structure for representing instances of behavioral
specifications in Java and a variety of code support.

In the case of UML as a specification mechanism, on the implementation side, the
UML2 meta-model [25] can be used. This format comes with tool support like the Pa-
pyrus tools [26] which allows the graphical editing of UML diagrams. Figure 4 shows a
very simple example specification of a speed control assistant from the automotive do-
main using Papyrus and UML2. It serves as a basis for further refinement and automatic
formal treatment and is used in [20, 27].

Simple Speed Control

Init

inactive active

initialize

activate
deactivate

brake

accelerate

Fig. 4. A simple example specification using Papyrus

A meta-model serving as the basis for generating the monitor code has to be defined.
This does not have to be the same as the one initially chosen for formalizing require-
ments. In the case of the UML meta-model, another meta-model that serves as the direct
basis for code generation and is closer to the implementation of the monitors may be
desirable. This is similar to modern compilers where a source language gets compiled
to an intermediate language before it is compiled to target code. As a basis for code-
generation for monitors, we suggest a format that directly reflects the property that we
generate monitors for, like a format for regular expressions when regular expressions
shall be monitored. Transformations between the different meta-models are required
and may perform abstractions of parts that are not relevant for the generation of moni-
toring code. Additional information about relevant artifacts and links between specified
elements and their implementation may be provided by human users and collected by
another Eclipse plug-in.

416 J.O. Blech et al.

Monitor code-generation and required model transformations are done using exist-
ing Java / Eclipse tools based on EMF models (e.g., ATL5) or a hand-written code-
generation mechanism.

5 OSGi-Based Home Automation Services

We briefly describe a simple application scenario of our ideas. Figure 5 shows an ex-
ample from the home automation domain similar to the one described in [28].

Our home automation OSGi-Based infrastructure comprises a central server (see
Figure 5). Different bundles are running on this OSGi implementation. Physically, dif-
ferent components like lights, switches and sensors can be added and removed to a
home network which connects them to this central server. All OSGi-Based software
runs on this server and physical devices are represented by OSGi bundles and services.
Each device, and in some cases each class of devices, comes with their own OSGi bun-
dle. OSGi bundles are added, removed and exchanged during the runtime of the system.
The communication between the bundles running on the server is shown in Figure 6.

Important features of this example are:

– Physical devices and their software counterparts can be added, removed and ex-
changed during the runtime of the system.

– The system is supposed to run for a long time (several years or more).
– Newly added devices shall not disturb the old ones.

To achieve the last one, it has to be ensured that all OSGi software components fulfill
a protocol for registering their services and interacting with each other. Regarding be-
havioral specifications, it is desirable that components are enabled to inform each other
about desired protocols. On the other hand, runtime monitors can ensure that certain
requirements are indeed met: Since OSGi services correspond to real physical devices
components deviating from this protocol shall be handled appropriately – e.g., shut
down – as a compensating action. This is ensured by a monitor.

network

device device

switch temp

sensor

AC

device

light ...

server

Fig. 5. A home automation infrastructure

5 http://www.eclipse.org/atl/

http://www.eclipse.org/atl/

Behavioral Specification Based Runtime Monitors for OSGi Services 417

...

service bus

rules

device

managing

component

device

switch

...

temp

sensor

AC

device

light

Fig. 6. Possible bundle interaction

Example Requirement Provided that the bus components offers methods registerService
and the light components provides on and off methods as services, interaction sequences
can be specified as regular expressions. Possible interaction sequences between a light
component and a bus can be described using the following expression:

Σid:int(id := Bus.registerService(light).(Light[id].on() | Light[id].off())∗)

whereΣid:int is a quantifier over parameterized expressions. In this case, the expression
ensures that a light is first registered and an id is returned. Only after registration the id
may be used to switch a light on and off. Different service bus implementations can be
available on the market. A component connected to a home automation system may not
know it advance which protocol it has to fulfill. Another service bus implementation
might expect the following interaction sequence with the a light component:

Σid:int(id := Manager.getid().Bus.registerService(id).(Light[id].on() | Light[id].off())∗)

In the case that the light from the first implementation is an integer constant, the inter-
face of the two implementation of the service bus may be indistinguishable. Hence it is
valuable if a newly plugged-in component is able to learn about the expected protocol
and a runtime monitor is there to take compensating actions in case of deviation from
the expected protocol.

Compensating actions for home automation More complex compensating actions trig-
gered by monitors can play a role in the domain of home automation. They should be
derived from specifications: for instance, given three devices: a home cinema, a light
and a sensor observing a door. The movie service turns the light off when a movie is
played. However, the door sensor turns the light on. Potential undesired actions can
be triggered. One can imagine using an enforcer to dynamically disable actions, ac-
cording to the context and some priority. We propose to enforce a correct behavior by
monitoring the actions taken and taking compensating actions triggered by the monitor.
In principle, the decisions taken by the components could be based on more complex
behaviors, but this might result in more complex implementations.

More complex sequences of compensating actions can be triggered by the monitor
and generated using, e.g., game-based techniques that allow finding ways to leave or
avoid an unsafe part of a state space as described in [29].

418 J.O. Blech et al.

6 Conclusion

In this paper, we presented a vision for a deriving monitors that check requirements
stated at an early phase in a software development process. Checks and monitors are used
to ensure some system behaviors at runtime and report deviations triggering compensat-
ing actions. Based on this, we presented an architecture for an Eclipse-based implemen-
tation for ensuring and monitoring runtime behavior of bundles in an OSGi framework.
Furthermore, we have exemplified the usage of our work for home automation.

The presented work is mostly of a conceptual and visionary nature. An implemen-
tation of the framework is subject to future work. As a first step, the choice of appro-
priate specification formalisms has to be fixed. It seems to be highly depending on the
application domain. Here, application projects have to be undertaken to get a better un-
derstanding of the application domain. Mechanisms for deriving checks and monitors
for common specification mechanisms can be developed in parallel. Complete imple-
mentations within Eclipse will contain some domain-specific parts, due to different
specification mechanisms.

As a long term goal an implementation of the described framework for other compo-
nent frameworks that take resource constraints – especially time: for real-time systems
– into account is a goal. In that case, safety relevant aspects, for example timing prop-
erties, and the possibility for certification by authorities are more crucial and serve as
motivation for this effort.

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified Event Au-
tomata: Towards Expressive and Efficient Runtime Monitors. In: Giannakopoulou, D., Méry,
D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer, Heidelberg (2012)

2. Alliance, O.: Osgi service platform core specification, Version 4.3 (2011)
3. Tchinda, H.A.M., Stouls, N., Ponge, J.: Spécification et substitution de services osgi. Tech-

nical report, Inria (2011), http://hal.inria.fr/inria-00619233
4. Arbab, F.: Abstract behavior types: a foundation model for components and their composi-

tion. Sci. Comput. Program 55, 3–52 (2005)
5. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core Language

for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

6. Lee, E.A., Xiong, Y.: A behavioral type system and its application in ptolemy ii. Formal Asp.
Comput. 16, 210–237 (2004)

7. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC / SIGSOFT FSE, pp. 109–120
(2001)

8. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond Assertions: Advanced Specification
and Verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363. Springer, Heidelberg
(2006)

9. Colaço, J.L., Pouzet, M.: Clocks as First Class Abstract Types. In: Alur, R., Lee, I. (eds.)
EMSOFT 2003. LNCS, vol. 2855, pp. 134–155. Springer, Heidelberg (2003)

10. Hallé, S., Bultan, T., Hughes, G., Alkhalaf, M., Villemaire, R.: Runtime verification of web
service interface contracts. IEEE Computer 43, 59–66 (2010)

http://hal.inria.fr/inria-00619233

Behavioral Specification Based Runtime Monitors for OSGi Services 419

11. Cao, T.D., Phan-Quang, T.T., Félix, P., Castanet, R.: Automated runtime verification for web
services. In: ICWS, pp. 76–82. IEEE Computer Society (2010)

12. Gan, Y., Chechik, M., Nejati, S., Bennett, J., O’Farrell, B., Waterhouse, J.: Runtime monitor-
ing of web service conversations. In: Proceedings of the 2007 Conference of the Center for
Advanced Studies on Collaborative Research. CASCON 2007, pp. 42–57. ACM, New York
(2007)

13. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime Verification of
Component-Based Systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011.
LNCS, vol. 7041, pp. 204–220. Springer, Heidelberg (2011)

14. Sifakis, J.: A framework for component-based construction – Extended Abstract. In: Aich-
ernig, B.K., Beckert, B. (eds.) SEFM, pp. 293–300. IEEE Computer Society (2005)

15. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3, 30–50 (2000)
16. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM Trans.

Inf. Syst. Secur. 12 (2009)
17. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at runtime?

STTT 14, 349–382 (2012)
18. Falcone, Y.: You Should Better Enforce Than Verify. In: Barringer, H., Falcone, Y.,

Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.)
RV 2010. LNCS, vol. 6418, pp. 89–105. Springer, Heidelberg (2010)

19. Falcone, Y., Mounier, L., Fernandez, J.C., Richier, J.L.: Runtime enforcement monitors:
composition, synthesis, and enforcement abilities. Formal Methods in System Design 38,
223–262 (2011)

20. Blech, J.O., Schätz, B.: Towards a formal foundation of behavioral types for UML state-
machines. In: Proceedings of the 5th International Workshop UML and Formal Methods
(accepted for publication, to appear, 2012)

21. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer (2006)
22. Bauer, A., Leucker, M.: The Theory and Practice of SALT. In: Bobaru, M., Havelund, K.,

Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 13–40. Springer, Heidel-
berg (2011)

23. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Certified in-lined reference monitoring on
.NET. In: Sreedhar, V.C., Zdancewic, S. (eds.) PLAS, pp. 7–16. ACM (2006)

24. Blech, J.O., Périn, M.: Generating invariant-based certificates for embedded systems. ACM
Transactions on Embedded Computing Systems (accepted for publication, 2012)

25. Object Management Group: Unified modeling language (uml), Version 2.0 (August 2005)
26. CEA LIST: Papyrus uml (2012), http://www.papyrusuml.org
27. Blech, J.O., Mou, D., Ratiu, D.: Reusing test-cases on different levels of abstraction in a

model based development tool. In: Petrenko, A.K., Schlingloff, H. (eds.) MBT. EPTCS,
vol. 80, pp. 13–27 (2012)

28. Koss, D., Sellmayr, F., Bauereiss, S., Bytschkow, D., Gupta, P., Schätz, B.: Establishing a
smart grid node architecture and demonstrator in an office environment using the soa ap-
proach. In: Proceedings of the First International ICSE Workshop on Software Engineering
Challenges for the Smart Grid. IEEE (2012)

29. Cheng, C.-H., Rueß, H., Knoll, A., Buckl, C.: Synthesis of Fault-Tolerant Embedded Systems
Using Games: From Theory to Practice. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011.
LNCS, vol. 6538, pp. 118–133. Springer, Heidelberg (2011)

http://www.papyrusuml.org

Modelling and Decentralised Runtime Control
of Self-stabilising Power Micro Grids�

Arnd Hartmanns and Holger Hermanns

Saarland University – Computer Science, Saarbrücken, Germany

Abstract. Electric power production infrastructures around the globe
are shifting from centralised, controllable production to decentralised
structures based on distributed microgeneration. As the share of renew-
able energy sources such as wind and solar power increases, electric power
production becomes subject to unpredictable and significant fluctuations.
This paper reports on formal behavioural models of future power grids
with a substantial share of renewable, especially photovoltaic, micro-
generation. We give a broad overview of the various system aspects of
interest and the corresponding challenges in finding suitable abstractions
and developing formal models. We focus on current developments within
the German power grid, where enormous growth rates of microgeneration
start to induce stability problems of a new kind. We build formal models
to investigate runtime control algorithms for photovoltaic microgenera-
tors in terms of grid stability, dependability and fairness. We compare
the currently implemented and proposed runtime control strategies to
a set of approaches that take up and combine ideas from randomised
distributed algorithms widely used in communication protocols today.
Our models are specified in Modest, an expressive modelling language
for stochastic timed systems with a well-defined semantics. Current tool
support for Modest allows the evaluation of the models using simulation
as well as model-checking techniques.

1 Introduction

Political and climatical circumstances are causing a shift in electric power pro-
duction around the world. While large conventional power plants dominated
electric power generation up to now, the future will see a drastic increase in
the number of distributed microgenerators based on renewable energy sources
such as solar and wind power. Electric power grids thus move from a setting in
which production was assumed fully controllable so as to always match the un-
controllable, but well-predictable consumption to a setting where the production
side becomes uncontrollable, too. External influences such as changing weather
conditions can imply drastically higher fluctuations in available electric power.

� This work has been supported by the DFG as part of SFB/TR 14 AVACS, by the
DFG/NWO Bilateral Research Program ROCKS, and by the European Union FP7-
ICT project MEALS, contract no. 295261.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 420–439, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modelling and Decentralised Runtime Control of Power Micro Grids 421

This problem is amplified by the difficulty of centrally controlling the vast num-
ber of geographically distributed microgenerators. New solutions to the problem
of matching electricity production and consumption need to be found that are
suitable to overcome these new challenges.

The German power grid is a prime example where many of these future chal-
lenges are already encountered today. As a consequence of the legal framework
enforced by Federal legislation over the last decades, microgenerators of pho-
tovoltaic (PV) electric power have been rolled out massively on the rooftops
of end user homes all over the country. In spite of a national target growth of
1.5 gigawatt (GW) per year, the total PV generation capacity has increased from
10 GW in 2009 to 25 GW by the end of 2011. The currently estimated actual
growth rate is about 1.6 GW per year [9] (despite a target growth of less than
1.1 GW). This growth creates problems, especially in areas with additional mi-
crogeneration based on wind or biogas: The Northern German energy provider
EWE AG recently reported that the number of emergency situations that re-
quired manual intervention to ensure grid stability has grown from less than 1
per week in 2009 to about 1 per day in 2011 [22].

To avoid these situations in the future, improved and better coordinated diag-
nostic and prediction techniques as well as orchestrated demand-side mechanisms
to counter critical grid and/or generation situations are needed. To develop ro-
bust and correct mechanisms that do not create unexpected instability, e.g. by
introducing oscillatory behaviour, mathematically well-founded models of elec-
tric power grids and their components are needed. However, the modelling space
is huge, and a precise model reflecting all components in a detailed, physically
exact manner will be very complex (if at all possible), and virtually impossible
to analyse. Instead, suitable abstractions need to be developed, tailored to the
fragments of the system under consideration and the aspects of interest. This
will be the topic of the first part of this paper, where we give an overview of the
various system aspects of electric power grids, in particular of last-mile micro
grids with a significant fraction of microgeneration, and the future challenges
faced in such grids (Section 2). We also take a look at the modelling challenges
encountered in the study of such systems, surveying different modelling and
abstraction approaches suitable for different system aspects and measures (Sec-
tion 3). One expressive modelling formalism that fits this scenario particularly
well is Modest, a modelling language for stochastic timed systems with a formal
semantics and good tool support [6,14], which we will use in the remainder of
the paper.

A central issue to ensure the stability of future power grids is proper runtime
control for the increasing number of microgenerators. Due to their distributed
deployment, decentralised runtime control offers several advantages over cen-
tralised management approaches. The ideal is that of a network of independent
generators whose control algorithms lead to a self-stabilising system. In the sec-
ond part of this paper, we thus focus on the study of runtime control algorithms
for photovoltaic microgenerators as an example for the modelling and analysis of
future power grids. We first introduce the concepts of the currently implemented

422 A. Hartmanns and H. Hermanns

electricitynetwork productionconsumption CHP

Fig. 1. Power micro grids

and proposed approaches (the former being known to introduce unwanted oscil-
latory effects) as well as of a potpourri of alternative approaches that take up
and combine ideas from communication protocol design (Section 4). We model
these approaches in Modest and report on the results of a recent simulation
study using these models [3] (Section 5).

Related work. The area of power grid modelling with formal behavioural models
is gaining momentum. The most closely related work is likely the recent paper by
Chen et al. [10], who analyse a multi-player game based on a recently proposed
distributed demand-side micro grid management approach [18]. Other tangible
work includes the application of probabilistic hybrid automata with distributed
control to the power grid domain [21], and work on network calculus in battery
buffered households [8].

2 Last Mile Power Micro Grids

The electric power grid is hierarchically structured, with a grid of long distance
high voltage lines forming the top layer. At the leaves of the electric power grid
hierarchy, we find the low voltage last mile which traditionally connects end con-
sumers to the upper layers. Typically, these last miles have a tree-like structure
through which electric power is distributed towards the leaves from a root. This
root is a transformer, which constitutes the connection to the upper layer. Since
these grids are relatively small (comprising at most a few hundred residential
homes or business customers) and have a clear point of separation from the re-
maining grid, yet may themselves contain multiple independent microgenerators,
we call these last miles power micro grids. Figure 1 gives a schematic overview
of an exemplary power micro grid consisting of seven residential homes and a
small industrial customer.

Modelling and Decentralised Runtime Control of Power Micro Grids 423

2.1 Elements of Power Micro Grids

A model of a power micro grid needs to take five central aspects into account:
(1) the influence of the wide-area power grid it is connected to, (2) the local
consumption of electric power, (3, 4) the grid local electric power generation—
which can be further divided into (3) potential and (4) actual generation, i.e. the
amount of electric power that can be produced in ideal external circumstances
(such as weather and time of day), and the amount that is actually produced
after control algorithms inside the generators have been applied—and finally
(5) the geographic topology and capacities of the cabling inside the micro grid.

Wide-Area Connection. A power micro grid usually has a single connection
point to the wide-area electric power grid. This is a transformer station that
converts the network’s high voltage to the grid’s 400 Volt three-phase current
(or 230 V per phase). Traditionally, electric power flows from large conventional
‘thermal’ power plants through the wide area grid into the micro grids. This
infeed is controlled by grid coordinators based on predictions of the local con-
sumption of all the micro grids [17], corrected by runtime observations. Runtime
deviations must be corrected in order not to destabilise any grid. Due to the
physical limitations related to the power plants in use, only a small fraction of
the total generation potential can be employed for runtime adaptation. This is
mainly realized with the help of pump-storage plants, where subtracting power
is achieved by pumping up water, while adding power is achieved by the reverse,
turning water downfall into electric power.

As part of the interconnection to the wide-area grid there is also a safety “fuse”,
a device that may disconnect the micro grid, intended as a preventative measure
for both local events, e.g. to prevent fatal accidents when a cable is damaged
during excavation works, as well as interference from the wide area grid, e.g. to
prevent excessive infeed that would exceed the electric power flow capacity in
the micro grid. With increasing microgeneration inside micro grids, this safety
device may actually turn into a problem, for example by disconnecting the micro
grid in case local overproduction exceeds the fuse specifications.

Local Consumption. At the leaves of the cabling inside the micro grid are
residential homes and business customers. In the past they acted only as electric
power consumers. The consumption of an individual leaf ultimately depends on
a number of factors and decisions by its “inhabitants”, yet it roughly follows pat-
terns over the course of a day. Variations may be due to external influences such
as temperature, influencing the electric power needed for heating or cooling. As
such, consumption is uncontrollable, but predictable within certain error bounds.
There is a recent trend to make consumption more controllable via so-called
demand-side mechanisms [17], which intend to control the energy consumption
of schedulable devices such as off-peak storage heaters and air conditioners. The
decisions are to be based on electric power costs or on grid stability conditions.

424 A. Hartmanns and H. Hermanns

Generation Potential. More and more traditional consumers at the leaves
of the micro grid are turning into producer-consumers (a.k.a. “prosumers”). At
certain times, they may produce more electric power than they consume. The po-
tential output of the microgenerators installed at these leaves depends first and
foremost on the type of generator: Combined heat and power plants (CHP) can
essentially operate on demand, independent of external circumstances, while mi-
crogenerators based on renewable energy sources such as wind and solar power
are inherently dependent on natural phenomena. These vary over time in an
uncontrollable manner. Wind turbines show relatively moderate fluctuations
since wind intensity usually changes only gradually; the amount of available
solar power, however, can change rapidly and significantly when cloud coverage
changes quickly.

Actual Generation. To avoid grid instability, consumption and production of
electric power needs to be matched continuously in real time. The actual electric
power emitted into the grid by a locally installed microgenerator may affect this
stability. With the further increase of these sources, effective control mechanisms
are needed in order to avoid over- or underprovisioning of power. Technically, it is
no problem to reduce the output of all relevant types of generators—the problem
is to decide when to do so, by which amount, when to switch the generators
back on, and by how much. Control algorithms are thus an important aspect of
future microgenerators. They are expected to have significant influence on the
behaviour of future power micro grids.

Local Grid Topology. The topology and spatial layout of the micro grid in
terms of cable lengths and diameters clearly impacts its behaviour. The grids
have been rolled out in the past with the sole perspective of distributing power
downstream, i.e. towards the leaves of the last miles. Now there might be up-
stream power flow in some parts of the grid. It is easy to come up with scenarios
where this may result in stability violations (such as excessive voltage) inside the
grid that remain unnoticed at the leaves and at the root. The proper reflection of
these influences in a way that generalises to arbitrary last miles is very difficult,
because it crucially depends on a specific layout.

2.2 Modelling and Abstraction Choices

Since a full model of all individual components of a power micro grid and their
precise behaviour is extremely difficult to build and most probably entirely im-
possible to analyse, the various components have to be represented at appropriate
levels of abstraction in a model. These abstractions have to be chosen carefully
to make modelling and analysis feasible, yet provide sufficient information to
extract reliable answers to the questions of interest from the model.

A first candidate for abstraction is the contribution of the wide-area grid. A
detailed modelling of the wide-area grid is clearly out of the scope of a model
focussed on just a single power micro grid, while the reverse, the impact of a

Modelling and Decentralised Runtime Control of Power Micro Grids 425

single micro grid on the behaviour of the entire (e.g. European) electric power
grid can be considered negligible. It is thus reasonable to represent the influence
of the wide-area grid in the form of a profile, i.e. a deterministic or stochastic
function mapping time to the amount of electric power provided. This is an
instance of what is called a “load profile”, and is itself assumed independent of
what happens inside the particular micro grid. In addition, the safety fuse at the
root we mentioned does not need to be explicitly modelled; instead it is present
in the analysis as part of the characterisation of what “unsafe” or “unstable”
states need to be avoided.

When it comes to modelling consumer behaviour, the abstraction level de-
pends on the intended modelling purpose. If the focus is on the effects of con-
sumer behaviour, as in a study of demand-side management mechanisms, a de-
tailed consumer model and the explicit representation of individual consumers
are obvious necessities. If this is not the focus, two choices are to be made: Should
consumers be represented individually or in aggregated form (i.e. as a load pro-
file), and how detailed does the individual or aggregated consumer model need
to be? Modelling consumers individually allows the differentiation of consumer
types (e.g. into households and businesses) to be represented directly. These
distinctions would only lead to variations of the chosen load profile otherwise.
Another fundamental question is whether to use a deterministic, stochastic or
nondeterministic model of consumption. While deterministic models are often
easier to analyse, they embody the risk of exhibiting or causing spurious oscil-
lations or correlations mainly because they may ignore differences between the
participants. A stochastic model typically is a good way to avoid these phenom-
ena by assigning probabilities to different behaviours that are all considered part
of the model. When it is not possible to assign probabilities to behaviours, non-
deterministic models may capture all possible alternatives, but may often turn
out to be hard or impossible to analyse.

The modelling spectrum on the power generation side is similar to that on the
consumer side. Given a fixed set of generators of different types, a (deterministic
or stochastic) load profile is a good representation of the potential generation. It
can represent how the external influences on generation potential vary over time,
and since a grid covers only a very restricted geographic area (of maybe 1 km2),
it can be considered constant throughout the geographic dimension, since local
differences in wind or cloud cover are negligible at this resolution. With respect
to actual generation, a load profile may be a good first step, but hide interesting
behaviour that can result from inappropriate control algorithms. For example,
the currently deployed control algorithm for PV generators in Germany can lead
to oscillating behaviour in times of high potential generation once an unsafe grid
state is reached (see Section 4.2). In order to study, for example, whether certain
demand-side mechanisms can avoid or buffer these oscillations, one would need
at least a simple behavioural model of the actual generation.

Finally, the role played by the grid topology is closely tied to the way the
physical aspects of electric power are represented in the model. Intertwined dif-
ferential equations or calculations with complex numbers are the norm, needed

426 A. Hartmanns and H. Hermanns

to provide nontrivial answers about frequency and voltage. They are achievable
for specific layouts. A common abstraction that helps to provide valid answers
on a more abstract level assumes the local grid to behave like a perfect “copper
plate”, thus eliminating any spacial considerations.

2.3 Properties and Challenges

As the installed microgeneration capacity increases, the effect of power micro
grids on the whole network gets more significant. At the same time, as most mi-
crogenerators are based on renewable energy sources, the volatility in the micro
grids’ behaviour becomes an important concern. There are two core objectives
of micro grid and microgenerator management: economy and stability, which are
deeply intertwined, yet often conflicting interests.

Challenges. In European legislation, an electric power grid has two distinct
modes of operation: emergency operation, where direct intervention of the grid
coordinator is needed to drive the grid to a safe state, possibly impacting service
levels on the consumer side, and normal operation, where market incentives
drive the decisions of the participants. The stability of the grid is a priority
concern because reliable distribution is a prerequisite for economic use of energy.
However, the most economically beneficial decisions for individual participants
may sometimes run counter to the goal of a stable grid. Grid instability is caused
by over- or underproduction, respectively under- or overconsumption, i.e. the
electric power production does not match the current consumption. It can be
stabilised by suitably adjusting production, consumption, or both.

On the production side, the main issue is to avoid overproduction: While
some generation technologies such as CHP are perfectly controllable, the upper
limit on potential generation of renewable electric power is dependent on natural
phenomena; control strategies for these microgenerators can thus only reduce
production compared to their genuine potential. On the other hand, the economic
interest of microgenerator owners is to feed as much energy into the grid as
possible. In this sense, grid stability and production economy are conflicting
interests. Control strategies on the production side, whose overriding goal is to
ensure grid stability, thus have to be evaluated for efficiency and fairness in the
economic sense as well.

In contrast to this, economic interests can be used as a way to guide the
consumption side to a behaviour that is beneficial to stability: Over- and under-
production ideally have a direct effect on the price of electricity, which can drive
demand in the desired direction. Nevertheless, the study of effective demand-side
mechanisms that lead to compensation of production volatility, with or without
economic aspects, is an area as widely open for research as the production side.

Properties. We propose the following set of measures to evaluate produc-
tion control algorithms and demand-side mechanisms, which we collectively call
strategies, for electric power micro grids:

Modelling and Decentralised Runtime Control of Power Micro Grids 427

– Stability is the ability of a strategy to keep the grid in a safe state with a
minimum of oscillation between safe and unsafe states.

– Availability is the overall fraction of time that the grid spends in a safe state.
– Output measures the (total or individual, cumulative or averaged) electricity

output of the relevant microgenerators, which is usually proportional to the
financial rewards of the respective operators.

– Goodput relates output to availability: the amount of electric power a gen-
erator can add to the grid while the grid is in a safe state.

– Quality of Service measures negative impacts on the consumer side. While
closely tied to availability, quality of service can also vary while the grid is
in a safe state, for example if service reductions are used to achieve safety.

– Fairness is the degree to which a strategy manages to distribute adverse
consequences equally among the participants. When the grid state does not
allow all generators to operate at full power, for example, will each of them
be allowed to provide an equal share of the allowed power generation?

3 Formal Modelling Challenges

Power micro grids are complex systems that require expressive modelling for-
malisms to capture the entirety of their behaviour. Even if only abstracted sub-
sets of a micro grid shall be represented, features such as real-time behaviour and
stochastics are necessary, e.g. to model delayed reactions by the grid controller
and stochastic load profiles or randomised algorithms. In order to faithfully rep-
resent the precise physical behaviour of the electric components together with a
discrete control strategy, a versatile modelling formalism is a necessity. A more
exhaustive discussion on what kind of modelling features are needed for this
problem domain can be found in [16]. However, there is an inherent tradeoff
between expressivity and the analysis effort needed to compute results. Every
modelling study thus needs to precisely identify the aspects to be included in the
model as well as the kinds of properties to be analysed so as to make it possible
to select the best matching formalism that is still sufficiently expressive.

3.1 Modest

Modest [6] is a high-level modelling and description language for stochastic
timed systems that combines expressive and powerful syntax-level features with
a formal semantics in terms of stochastic timed automata (STA). Stochastic
timed automata add continuous probability distributions, allowing in particular
arbitrarily (e.g. uniformly or exponentially) distributed delays, to probabilistic
timed automata (PTA) [19], which themselves can be seen as the orthogonal com-
bination of timed [1] and probabilistic automata [24] (or, equivalently, Markov
decision processes [23]). Other special cases of STA are generalised semi-Markov
processes (GSMP) [12], which essentially constitute STA without nondetermin-
ism, and both discrete- as well as continuous-time Markov chains (DTMCs and
CTMCs). Modest has recently been extended to support the specification of
stochastic hybrid automata (SHA) models as well [13].

428 A. Hartmanns and H. Hermanns

The key feature of Modest that makes it attractive for electric power micro
grids is that it is built around a single-formalism, multiple-solution approach:
While expressive enough to specify SHA, most of the various well-known and
extensively studied submodels can be easily identified on the syntactic level,
and tool support dedicated to these submodels is available [4,5,15]. This allows
a single language to be used for a wide range of models while benefiting from
using restricted formalisms to achieve efficient analysis.

Syntactically, Modest supports a process algebra-inspired compositional
modelling approach. It allows smaller models to be combined into larger, more
complex ones, including a parallel composition operator to specify processes or
automata that perform their actions independently, subject to the classical in-
terleaving semantics. Actions that are part of the shared alphabet of two or
more processes have to be performed by all processes involved in a CSP-style
synchronisation. We refer the interested reader to [6] and the Modest Toolset
website at www.modestchecker.net
for details concerning the language’s design and the semantics of its constructs.
The website also contains further documentation, a list of Modest-related pub-
lications as well as examples and case studies. We will use Modest to build
formal models of runtime control strategies for photovoltaic microgenerators in
Section 5.

4 Decentralised Runtime Control

A major portion of the photovoltaic (PV) microgeneration capacity is mounted
on the rooftops of private households, and is as such connected to the last mile.
The often excessive volatility of solar production asks for a highly flexible grid
management on this level. For the remainder of this paper, we therefore focus on
control strategies for PV microgenerators. As outlined in the previous section, the
goal of such a strategy is to reduce actual power output compared to the potential
generation whenever this is necessary to maintain grid stability. Otherwise it
should allow the output of as much electric power as can be generated.

Let us first take a deeper look at what constitutes a “safe state” for power
(micro) grids. There are three fundamental dimensions to stability:

– In Europe, the target frequency is 50 Hz. If the frequency leaves the band
of 49.8 to 50.2 Hz, this is a serious Europe wide phenomenon.

– In the end customer grid, the downstream customers may witness consid-
erable voltage fluctuations because of upstream fluctuations in production
and consumption. Deviations of more than 10 % are not tolerable.

– There are individual limits on the capacity of grid strands with respect to
energy, i.e. the product of voltage and amperage.

The capacity limits are due to the local grid layout and the “fuse” at the con-
nection point to the upper layers. Voltage has a direct linear dependency to
production/consumption and is thus a good measure of the grid state. How-
ever, voltage changes are local phenomena, entangled with phase drifts in the

www.modestchecker.net

Modelling and Decentralised Runtime Control of Power Micro Grids 429

last mile and intimately tied to the grid topology and the distances and cabling
between producers and consumers. Therefore, the frequency is often used in-
stead of voltage as a measure of the grid state, although frequency drifts usually
affect the entire European grid and not only a specific last mile and are sub-
ject to dampening effects. An approximately linear dependency between pro-
duction/consumption and frequency is known, albeit being an indirect effect of
physical realities. However, it is still considered an appropriate abstraction by
domain experts [20,25]. Roughly, a change in production/consumption of 15 GW
approximately corresponds to a 1 Hz change in frequency in the European grid.
The currently installed PV generation capacity in all of Germany (see Section 1)
thus corresponds to a frequency spread of about 1.7 Hz.

4.1 Centralised vs. Decentralised Control

Photovoltaic microgenerators are difficult to manage. First, this is due to their
sheer number, which leads to problems of scalability for any centralised approach.
A second problem is their distributed nature: There is currently no measure-
ment, logging and reporting infrastructure in place that enables the collection
of accurate and up-to-date information about the state of the grid participants,
and there is no communication infrastructure that allows safe remote control.
These are two good reasons to consider highly local, decentralised and auto-
matic grid management approaches. Additionally, decentralised approaches that
do not need any transmission of information to central coordinators are inher-
ently preferable from a privacy perspective.

The design of a highly local, highly automatic, highly decentralized, and highly
flexible grid management is a challenging and pressing problem. It resembles the
field of self-stabilising system (SSS) design [11]. SSS are built from a number
of homogeneous systems that follow the same algorithmic pattern, with the in-
tention that their joint execution emerges in a stable global behaviour, and can
recover from transient disturbances. Compared to the setting usually considered
in SSS, there are however some important differences: In a power grid, destabil-
isation threats must be countered within hard real time bounds. This is usually
not guaranteed for SSS. On the other hand, in SSS usually no participant is
considered to have knowledge about the global system state, while in a power
grid, the participants do in principle have access to a joint source of localized
information by measuring amperage, voltage and frequency.

4.2 Current Approaches

About 75% of the PV microgenerators rolled out so far in Germany are non-
measured and cannot be remotely controlled. Since 2007, a regulation is in place
that enforces a frequency-based distributed control strategy (EN 50438:2007). It
stipulates that a microgenerator must shut off once the frequency is observed to
overshoot 50.2 Hz. While this was initially meant as a way to stabilise the grid
by cutting overproduction, it later surfaced that due to the high amount of PV
generation, an almost synchronous distributed decision to take out this portion

430 A. Hartmanns and H. Hermanns

may induce a sudden frequency drop, followed by the PV generators joining back
in, and so on. It hence may lead to critical Europe-wide frequency oscillations.

Due to the obvious problems that widespread use of the current rules may
lead to, new requirements are being developed as part of VDE-AR-N 4105 [7].
PV generators will be required to implement the following control scheme:

– As long as the observed frequency is below 50.2 Hz, the generator may in-
crease its output by up to 10 % of the maximum output that it is capable of
per minute.

– When the observed frequency crosses the 50.2 Hz mark, the current output
of the generator is saved as pm. When the frequency f is between 50.2 and
51.5 Hz, the generator must reduce its output linearly by 40 % per Hertz
relative to pm, i.e. its output is given by the function

output(f) = pm − 0.4 · pm · (f − 50.2).

– In case the observed frequency exceeds 51.5 Hz, the generator has to be
switched off immediately and may only resume production once the fre-
quency has been observed to be below 50.05 Hz for at least one minute.

As we will see (Section 5.3), this relatively complex algorithm is designed to
dampen the effect of PV generation spikes and to avoid introducing oscillatory
behaviour, but not to actively steer the system towards a safe state where the
frequency is below 50.2 Hz.

4.3 Probabilistic Alternatives

If we look at the PV control problem in a more abstract way, it turns out to be
remarkably similar to problems solved by communication protocols in computer
networks such as the Internet: Limited bandwidth (in our case, capacity of the
power grid to accept produced electric power) needs to be shared between a
number of hosts (in our case, generators) in a fair way. We thus consider sev-
eral new control algorithms inspired by concepts from communication protocols,
most of which use randomisation to break synchrony and avoid deterministic
oscillations:

Additive Increase, Multiplicative Decrease: The first new control algo-
rithm that we study is inspired by the way the Internet’s Transmission Control
Protocol (TCP) achieves fair usage of limited bandwidth between a number of
connections: Bandwidth usage is increased in constant steps (additively), and
when a message is lost (taken as an indication of buffer overflows due to conges-
tion), it is reduced by a constant factor (multiplicatively). This additive-increase,
multiplicative-decrease (AIMD) policy ensures that several users of the same
connection eventually converge to using an equal share of the bandwidth. We
directly transfer this approach to PV generators: Power output is increased in
small constant steps until the frequency is measured to be above 50.2 Hz, at
which point the output is multiplied by a constant factor < 1.

Modelling and Decentralised Runtime Control of Power Micro Grids 431

Frequency-dependent Probabilistic Switching: Our hypothesis is that
probabilistic strategies may improve stability without requiring fine-grained
modifications of the generators’ power output as in AIMD. Our next controller
thus always switches between full and no power output, but it does so with a
certain probability that depends on the current frequency measurement with
higher frequencies leading to a higher probability of switching off.

Exponential Backoff: Instead of determining the switching probability based
on the current system state, we can also unconditionally switch off when the
frequency exceeds the allowed value of 50.2 Hz and then wait a probabilistically
chosen amount of time before again measuring and potentially switching on.

The precise scheme that we use is exponential backoff with collision detection.
In the computer networks domain, this is commonly employed in CSMA/CD-
based (carrier sense multiple access with collision detection) medium access pro-
tocols such as Ethernet: When one device connected to the shared medium (e.g.
the cable) has data to send, it first senses the carrier to determine whether another
device is currently sending. If not, it sends its data immediately. However, if the
channel is occupied or if the sending is interrupted by another device starting to
send as well (a collision), it waits a number of time slots before the next try. This
number is sampled from a uniform distribution over a range such as {1, . . . , 2bc},
where bc, the backoff counter, keeps track of the number of collisions and of the
number of times that the channel was sensed as occupied when this message should
have been sent. The range of possible delays increases exponentially, thus the pol-
icy’s name; its goal is to use randomisation to prevent two devices from perpetu-
ally choosing the same delay and thus always colliding, and to use an exponential
increase in the maximum waiting time in order to adapt to the number of devices
currently having data to send (again, in order to avoid continuous collisions).

The goals of exponential backoff in network protocols closely match our goals
in designing a power generation control scheme: We want all generators to be
able to feed power into the grid when it is not “occupied”, i.e. when the frequency
is below the threshold of 50.2 Hz, and we want to avoid “collisions”, i.e. several
generators switching on at about the same time and thus creating frequency
spikes above that threshold.

Frequency-dependent Switching with Exponential Backoff: An obvi-
ous final step is to combine the frequency-dependent probabilities and the ran-
domised delays of the previous two controllers to create one that features ran-
domisation of both switching decisions and waiting times.

We have also considered additional algorithms and variants of those presented
above; a full list with detailed explanations can be found in the accompanying
technical report [2].

5 Modelling Decentralised Controllers

In order to evaluate the behaviour of the different PV generator control strategies
introduced in the previous section, we build Modest models for power micro

432 A. Hartmanns and H. Hermanns

grids that use these controllers. As our focus is on the generator control aspect,
we represent the other elements of the micro grid listed in Section 2.1 as follows:

– Wide-area connection and local consumption: The influence from the upper
layer power grid on our last mile as well as the local consumption within the
last mile is modelled as a combined deterministic load profile.

– Generation potential: We model the “worst case” of a maximally sunny day.
Each PV generator is assumed to be able to contribute the full amount of
power it is capable of (given by a constant MAX) into the grid at any time.

– Local grid topology: We abstract from the physical characteristics of the grid
by treating the local connections as a “copper plate” and looking only at the
frequency observed. We chose this drastic abstraction due to the reasons
outlined in the introduction to Section 4. By treating frequency as a local
phenomenon—which it is not—we exaggerate the influence of the individual
PV generators. We could easily use voltage as a reference quantity instead
since the models are sufficiently abstract.

Since our focus is on effects of overproduction, we only consider the frequency
range above 50 Hz, thus representing 50 Hz as frequency value 0 in our model.
This value is assumed when all solar generators are switched off and there is
no (= zero) influence from the wide-area connection and local consumption. We
assume that adding power to the grid has a linear effect on the frequency, so
we can describe the grid frequency as the sum of the generator outputs plus the
in-feed from the upper layer minus the consumption.

5.1 A Model Template for Power Micro Grids

The detailed models of the control strategies all fit into the same model template
shown in Figure 2. The control strategies become part of a Generator process,
while a LoadProfile process represents the wide-area influence and local con-
sumption; the entire system is finally specified as the parallel composition of
G instances of Generator plus a single LoadProfile instance. This template
shows a few more noteworthy modelling choices and abstractions:

Each generator repeatedly measures the grid’s current frequency, uses this value
to decide whether and in which way to modify its own power output, and finally
update its output according to this decision. Each of these measure-update cycles
takes M time units, with D ≤ M time units passing between the measurement and
the change of power output. This delay allows us to model decision and reaction
times as well as the time it actually takes for the changes made by one generator
to be observed by the others. Higher values of D will thus lead to decisions being
made on “older” data, while D = 0 implies that every change is immediately visible
throughout the last mile. We have thus chosen a discrete measure-update-wait ap-
proach; an alternative is to make the generators reactive, i.e. observe the evolution
of the frequency and react when relevant thresholds are crossed.

By use of the GeneratorInit process, each generator begins operation after
a random, uniformly distributed delay in the range between 0 and M time units;

Modelling and Decentralised Runtime Control of Power Micro Grids 433

action init;

const int TIME_BOUND; // analysis time bound
const int G; // number of generators

// Times
const int M; // measure every M time units
const int D; // changes take D time units to take effect (D <= M)

// Frequencies (in Hz above 50.0 Hz)
const real B = 0.3; // frequency when all generators are on full power
const real MAX = B / G; // max output of a generator (contribution to frequency)
const real L = 0.1; // max sum of wide-area influence and local consumption

real input; // background generation (coming from the network), in [0, L]
real[G] output; // generator output, each in [0, MAX]

function real frequency() = input + /* sum of values in output array */;

reward r_availability; der(availability) = frequency() > 0.2 ? 0 : 1;
reward r_output; der(sumoutput) = frequency() - input;
reward r_goodput; der(goodput) = frequency() > 0.2 ? 0 : frequency() - input;

property Availability = Xmax(r_availability / TIME_BOUND | time == TIME_BOUND);
property Output = Xmax(r_output / TIME_BOUND | time == TIME_BOUND);
property Goodput = Xmax(r_goodput / TIME_BOUND | time == TIME_BOUND);

process GeneratorInit(int(0..G) id)
{

// Generators are initially in a random state
urgent init {= output[id] = Uniform(0, MAX) =};
// Each generator "starts" after a random delay in [0, M]
delay(Uniform(0, M)) Generator(id)

}

process Generator(int(0..G) id)
{

action measure, update;
real fm; // frequency measurement
clock c = 0; // local clock variable

process Measure()
{

measure {= fm = frequency(), c = 0 =}
}

/* control algorithm is modelled here */
}

process LoadProfile()
{

/* load profile is modelled here */
}

par {
:: GeneratorInit(0)

/* ... */
:: GeneratorInit(G - 1)
:: LoadProfile()

}

Fig. 2. A model template for power micro grids

434 A. Hartmanns and H. Hermanns

measurements will thus be performed asynchronously. Less realistic, but easier
to analyse alternatives would be to have the generators perform their decisions in
a fully synchronous manner, or at the same point of time, but in a certain order.
However, we have observed that in particular the second alternative generates
extreme results (e.g. for fairness) that are clearly artifacts of that abstraction.

5.2 Control Strategy Models

We now explain how to model the control strategies described in sections 4.2
and 4.3 in Modest to fit into the template introduced above:

Current Approaches: We omit the trivial Modest code for the simple control
strategy that turns the generator off when a frequency of at least 50.2 Hz is
observed and turns it to full power in all other cases. A direct implementation
of the new control scheme according to VDE-AR-N 4105 is shown in Figure 3.
The switch between normal and emergency mode is obvious in the model.

Probabilistic Alternatives: Figure 4 shows the model of the AIMD controller.
In this case, we chose 10 % of the maximum generator output as the constant
value when increasing, and 2

3 as the decrease factor. The latter has shown to
provide a good tradeoff between availability and goodput when we compared our
analysis results (see next section) for different reduction factors. The Modest
code for the frequency-dependent probabilistic switching controller is shown in
Figure 5. We have chosen a linear function over the range of [50.0 Hz, 50.4 Hz] for
the mapping from measured frequency to switch-off probability. At the critical
threshold of 50.2 Hz, the probability of switching off will thus be 1

2 . Finally, the
controller based on the exponential backoff approach can be seen in Figure 6;
the combination with frequency-dependent switching is not shown because it is
just a simple replacement of the when conditions in exponential backoff with a
probabilistic alternative (palt) that uses the chosen probability function.

5.3 A Simulation Study

We have evaluated the different control strategies in a dedicated simulation
study [3]. The properties we considered are (as outlined in Section 2.3) stability,
availability versus goodput, and fairness. To evaluate stability, we evaluated the
frequency traces of exemplary simulation runs with a fixed background load.
Figures 7 and 8 show these traces for three of the controllers we studied, namely
the on-off controller (Figure 8, left) and the controller according to VDE-AR-
N 4105 (right) as well as the combination of the frequency-dependent switching
controller with exponential backoff (Figure 8, left). The upper (blue) curves plot
the system frequency, while the lower (red) curves show the deterministic back-
ground load we used for these runs.

The oscillatory behaviour caused by the current 50.2 Hz on-off controller is
clearly visible, as are the different behavioural phases of the new strategy ac-
cording to VDE-AR-N 4105. The latter clearly avoids oscillations, but does not

Modelling and Decentralised Runtime Control of Power Micro Grids 435

process Generator(int(0..G) id)
{

real p_m = output[id];
/* ...template code... */

process NormalOperation()
{

alt
{

:: when(fm < 0.2)
// Increase by 10% of MAX per minute
update {= output[id] += (0.1 * MAX) / MINUTE,

p_m += (0.1 * MAX) / MINUTE =};
when urgent(c >= M) Measure()

:: when(0.2 <= fm && fm < 1.5)
// 40% gradient
update {= output[id] = -0.4 * p_m * (fm - 0.2) + p_m =};
when urgent(c >= M) Measure()

:: when(1.5 <= fm)
// Switch off
EmergencySwitchOff()

};
when urgent(c >= D) NormalOperation()

}

process EmergencySwitchOff()
{

bool waiting;
clock minute;

// Switch off
update {= output[id] = 0, p_m = 0 =};

// Wait for frequency to be below 50.05 Hz for one minute
do {

:: when urgent(c >= M && !(waiting && minute >= MINUTE)) Measure();
urgent alt {

:: when(fm <= 0.05 && !waiting)
{= waiting = true, minute = 0, c = 0 =}

:: when(fm <= 0.05 && waiting)
{= c = 0 =}

:: when(fm > 0.05)
{= waiting = false, c = 0 =}

}
:: when urgent(waiting && minute >= MINUTE) break

}
}

Measure();
when urgent(c >= D) NormalOperation()

}

Fig. 3. Model of the controller according to VDE-AR-N 4105

436 A. Hartmanns and H. Hermanns

process Generator(int(0..G) id)
{

/* ...template code... */

Measure();
when urgent(c >= D) alt {

:: when(fm < 0.2) {= output[id] = min(MAX, output[id] + 0.1 * MAX) =}
:: when(fm >= 0.2) {= output[id] *= 2/3 =}

};
when urgent(c >= M) Generator(id)

}

Fig. 4. Model of additive increase, multiplicative decrease of frequency

process Generator(int(0..G) id)
{

/* ...template code... */

Measure();
when urgent(c >= D) update palt {

:max(0, 0.4 - fm): {= output[id] = MAX =}
: fm : {= output[id] = 0 =}

};
when urgent(c >= M) Generator(id)

}

Fig. 5. Model of the frequency-dependent probabilistic switching controller

process Generator(int(0..G) id)
{

int bc; // backoff counter
int backoff; // number of slots to wait till next try
/* ...template code... */

process Gen()
{

Measure();
when urgent(c >= D) alt {

:: when(backoff > 0) update {= backoff– =}
:: when(backoff == 0) alt {

:: when(fm < 0.2) {= output[id] = MAX, bc = 0 =}
:: when(fm >= 0.2) {= output[id] = 0, bc++,

backoff = DiscreteUniform(0, (int)pow(2, bc)) =}
}

};
when urgent(c >= M) Gen()

}

Gen()
}

Fig. 6. Model of the controller with exponential backoff

Modelling and Decentralised Runtime Control of Power Micro Grids 437

Fig. 7. Behaviour of the 50.2 Hz on-off (left) and VDE-AR-N 4105 controllers [3]

Fig. 8. Frequency-dependent control with backoff (left) and availability vs. goodput [3]

actively stabilise the grid into a safe state. As expected, the frequency-dependent
controller shows a very different behaviour, which appears very erratic, but actu-
ally manages to keep the system safe for most of the simulation run. Results for
the other newly proposed controllers were mixed: AIMD also works rather well
and is at least fairer than its additive-decrease counterpart (as hoped), but ex-
ponential backoff alone does not manage to avoid oscillations. The graph on the
right-hand side of Figure 8 compares the availability and goodput of the entire
set of controllers considered in our simulation study, confirming that the com-
bination of frequency-dependent randomisation with exponential backoff works
rather well [3]. It also illustrates that taking inspiration from network protocols
for distributed grid operation is indeed a promising direction.

6 Conclusion

This paper has discussed elementary mechanisms for distributed runtime control
of power grids facing considerable infeed of renewable energy. We have focussed
on the properties and modelling formalisms needed to describe, analyse and man-
age these systems in a highly flexible, highly automated, and highly decentralized
manner. Another system which is highly decentralized, highly flexible and man-
aged in a highly automated way is the Internet. As we have discussed, certain
solutions that have been coined as part of Internet protocols can be adapted
to serve beneficially in future distributed runtime control of power grids. This
benefit might not be restricted to Internet solutions, but might more generally
also materialise for some of the genuine Internet design principles, such as:

438 A. Hartmanns and H. Hermanns

– Network neutrality and fairness: There is no discrimination in the way the
network shares its capacity among its users. Ideally, the net is fair in the
sense that if n users are sharing a connection, then on average each user can
use about 1/n-th of the capacity.

– Intelligent edges, dumb core: Putting intelligence into the net itself is much
more cost ineffective than placing it at the edges of the networks, i.e. into
the end user appliances.

– Distributed design and decentralised control: Distributed, decentralised con-
trol is not only a means to assure scalability. It also is a prime principle
to protect end user privacy that would be at stake if centralised authorities
would collect information for decision making.

There are a number of similarities between the Internet and the power grid,
including its excessive size, its hierarchical structure, its organic growth, and its
ultimately high dependability. Indeed, it seems to us that this implies a number of
very good reasons why the future management of power grids should take strong
inspirations from the way the Internet is managed. Our research indicates some
first concrete examples of this kind.

Acknowledgments. The authors thank Pascal Berrang (Saarland University)
for his assistance in carrying out the empirical studies. Mats Larrson (ABB Schweiz
AG), Sebastian Lehnhoff (University of Oldenburg and OFFIS Energie), Martin
Ney (Luxea GmbH), Alexandre Oudalov (ABB Schweiz AG), and Holger Wiech-
mann (EnBW Energie Baden-Württemberg AG) have provided insightful feed-
back on our findings.

References
1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),

183–235 (1994)
2. Berrang, P., Bogdoll, J., Hahn, E.M., Hartmanns, A., Hermanns, H.: Dependabil-

ity results for power grids with decentralized stabilization strategies. Reports of
SFB/TR 14 AVACS 83 (2012) ISSN: 1860-9821, http://www.avacs.org

3. Berrang, P., Hartmanns, A., Hermanns, H.: A comparative analysis of decentral-
ized power grid stabilization strategies. In:Winter Simulation Conference (to appear,
2012)

4. Bogdoll, J., David, A., Hartmanns, A., Hermanns, H.: mctau: Bridging the Gap
between Modest and UPPAAL. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 227–233. Springer, Heidelberg (2012)

5. Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and Statistical Model
Checking for Modestly Nondeterministic Models. In: Schmitt, J.B. (ed.) MMB
& DFT 2012. LNCS, vol. 7201, pp. 249–252. Springer, Heidelberg (2012)

6. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A
compositional modeling formalism for hard and softly timed systems. IEEE Trans-
actions on Software Engineering 32(10), 812–830 (2006)

7. Bömer, J., Burges, K., Zolotarev, P., Lehner, J.: Auswirkungen eines hohen Anteils
dezentraler Erzeugungsanlagen auf die Netzstabilität bei Überfrequenz & Entwick-
lung von Lösungsvorschlägen zu deren Überwindung (2011); study commissioned
by EnBW Transportnetze AG, Bundesverband Solarwirtschaft e.V. and Forum
Netztechnik/Netzbetrieb im VDE e.V

http://www.avacs.org

Modelling and Decentralised Runtime Control of Power Micro Grids 439

8. Le Boudec, J.-Y., Tomozei, D.-C.: A Demand-Response Calculus with Perfect Bat-
teries. In: Schmitt, J.B. (ed.) MMB & DFT 2012. LNCS, vol. 7201, pp. 273–287.
Springer, Heidelberg (2012)

9. Bundesnetzagentur: EEG-Vergütungssätze für Photovoltaikanlagen,
http://www.bundesnetzagentur.de/cln_1931/DE/Sachgebiete/
ElektrizitaetGas/ErneuerbareEnergienGesetz/VerguetungssaetzePVAnlagen/
VerguetungssaetzePVAnlagen/VerguetungssaetzePhotovoltaik_Basepage.html
(March 21, 2012)

10. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic Ver-
ification of Competitive Stochastic Systems. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 315–330. Springer, Heidelberg (2012)

11. Dolev, S.: Self-Stabilization. MIT Press (2000)
12. Haas, P.J., Shedler, G.S.: Regenerative generalized semi-Markov processes. Com-

munications in Statistics. Stochastic Models 3(3), 409–438 (1987)
13. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-

elling and analysis framework for stochastic hybrid systems. Formal Methods in
System Design (2012), doi: 10.1007/s10703-012-0167-z

14. Hartmanns, A.: Model-Checking and Simulation for Stochastic Timed Systems.
In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS,
vol. 6957, pp. 372–391. Springer, Heidelberg (2011)

15. Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed
automata. In: QEST, pp. 187–196. IEEE Computer Society (2009)

16. Hermanns, H., Wiechmann, H.: Future design challenges for electric energy supply.
In: ETFA. pp. 1–8. IEEE (2009)

17. Hermanns, H., Wiechmann, H.: Demand-Response Managment for Dependable
Power Grids. In: Embedded Systems for Smart Appliances and Energy Managment,
Embedded Systems, vol. 3, Springer Science+Business Media, New York (2012)

18. Hildmann, H., Saffre, F.: Influence of variable supply and load flexibility on
demand-side management. In: EEM 2011, pp. 63–68. IEEE Conference Publica-
tions (2011)

19. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verifica-
tion of real-time systems with discrete probability distributions. Theor. Comput.
Sci. 282(1), 101–150 (2002)

20. Lehnhoff, S.: Private communication (2012)
21. Martins, J., Platzer, A., Leite, J.: Statistical Model Checking for Distributed

Probabilistic-Control Hybrid Automata with Smart Grid Applications. In: Qin,
S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 131–146. Springer, Heidel-
berg (2011)

22. Nordwest-Zeitung: EWE spürt Wende deutlich (March 12, 2012),
http://www.nwzonline.de/Aktuelles/Politik/Hintergrund/NWZ/Artikel/
2822057/EWE-sp%FCrt-Wende-deutlich.html

23. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Mathematical Statistics: Applied Prob-
ability and Statistics. John Wiley & Sons Inc., New York (1994)

24. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. Ph.D. thesis, MIT, Cambridge, MA, USA (1995)

25. Wiechmann, H.: Private communication (2012)

http://www.bundesnetzagentur.de/cln_1931/DE/Sachgebiete/ElektrizitaetGas/ErneuerbareEnergienGesetz/VerguetungssaetzePVAnlagen/VerguetungssaetzePhotovoltaik_Basepage.html
http://www.bundesnetzagentur.de/cln_1931/DE/Sachgebiete/ElektrizitaetGas/ErneuerbareEnergienGesetz/VerguetungssaetzePVAnlagen/VerguetungssaetzePhotovoltaik_Basepage.html
http://www.bundesnetzagentur.de/cln_1931/DE/Sachgebiete/ElektrizitaetGas/ErneuerbareEnergienGesetz/VerguetungssaetzePVAnlagen/VerguetungssaetzePhotovoltaik_Basepage.html
http://www.nwzonline.de/Aktuelles/Politik/Hintergrund/NWZ/Artikel/2822057/EWE-sp%FCrt-Wende-deutlich.html
http://www.nwzonline.de/Aktuelles/Politik/Hintergrund/NWZ/Artikel/2822057/EWE-sp%FCrt-Wende-deutlich.html

Model-Based Testing and Model Inference

Karl Meinke1 and Neil Walkinshaw2

1 School of Computer Science and Communication,
Royal Institute of Technology, 100-44 Stockholm, Sweden

karlm@nada.kth.se
2 Department of Computer Science,

The University of Leicester, Leicester LE1 7RH, UK
nw91@le.ac.uk

1 Introduction

Model-based software testing is well established, and can be traced back to
Moore’s "Gedanken experiments" on finite state machines from 1956 [10]. The
best known approaches involve the use of models (such as UML interaction
diagrams or state machines) as the basis for selecting test inputs that seek to
explore the core functionality of the system. Outputs from the test executions
can subsequently be checked against the model.

The field of model-based testing complements the various model-based rea-
soning techniques that have arisen out of the formal methods community. The
advent of efficient model-checking techniques has enabled the efficient analysis of
models of software systems with respect to specific behavioral requirements. This
analysis can identify counterexamples to a behavioral requirement, i.e. concrete
witnesses to the failure of the requirement for a specific model. Counterexam-
ple construction gives an important and powerful new approach to test case
synthesis.

Model-based testing and model checking are vulnerable to the criticism (which
applies to model-based development in general) that it is generally unrealistic
to expect developers to be able to design and maintain detailed systems mod-
els. This is exacerbated by agile development contexts, where requirements and
implementation are constantly in flux.

To address this problem, new academic research has focussed on techniques to
automatically infer models directly from systems, with only a minimal amount
of human involvement. The idea of combining the two areas (model inference
and testing) was first enunciated by Weyuker in 1983 [16]. Early attempts to
combine testing with model inference include [2], [18] and [17].

It is only recently that the topic has become particularly popular. Notable
success has been achieved in the area of testing embedded and reactive systems
(including client/server systems). Here active learning algorithms for determin-
istic finite automata (DFA), such as Angluin’s L* algorithm of [1] have been
applied. Active learning is itself an important source of structural test cases,
as has been shown in [15]. Moreover, active DFA learning algorithms can be
combined with efficient BDD and SAT based model checkers to systematically
generate test cases that explore user requirements expressed in temporal logic.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 440–443, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Model-Based Testing and Model Inference 441

It should be noted here that new progress in DFA learning has also been
made in recent years. An extensive survey of the state of the art in active DFA
learning can be found in [4]. Optimisations to the original L* learning algorithm
have yielded significant improvements, in terms of the speed of model inference
and the size of learned automata. Based on such progress, it is now possible to
infer state space sizes of 100,000 states or more, which is sufficient to test many
kinds of industrial applications.

In a field as large as software testing, much important research remains to
be done. One important question is how the simple DFA models inferred from
systems can be extended, say by adding control structures or data types. Such
extensions are important if we are not to abstract away too much information
from the system under test, thereby losing the opportunity to discover errors.
However, this increase in expressiveness must be weighed against the increased
computational complexity of both model inference and model checking. For many
expressive models and requirements languages, model checking is known to be an
undecidable problem. Besides extending expressiveness, there is a more general
need to consider other types of inferred computational models besides automata.

Another important question concerns benchmarking against alternative meth-
ods of testing. There is also a great need for more practical experience with
testing of real world systems and requirements. Finally, the perennial problem
of coverage measurement needs further research, particularly in the context of
black box testing. Here it seems that computational learning theory may be able
to contribute in terms of estimating the residual probability of errors (see e.g.
[6], [14],). Some of the above questions have been addressed by the contributing
authors for this session, as we will discuss below.

The session on Model-based Testing and Model Inference was organised by
the ISoLA 2012 program committee in order to explore the potential for inter-
play between these two fields. The subject matter of this session overlaps with
the session on Learning Techniques for Software Verification and Validation also
contained in this volume. The interested reader may also consult the Proceedings
of ISoLA 2011, especially the session on Machine Learning for System Construc-
tion.

2 Overview of the Session Papers

The session consisted of four contributed papers. The paper [3] by Groz et al.
considers various optimisations to Angluin’s well-known L* algorithm of [1] for
inferring deterministic finite automata (DFA). This learning algorithm, and its
variants, have been used by several researchers to investigate automated black
box testing of software systems (see e.g. [13], [9], [12], [15]). The paper considers
several improvements, such as the processing of counterexamples by the learner,
and more complex data type interfaces to the system under test. The specific
needs of security testing are also addressed.

A contemporary topic of research in software engineering is software product
lines (SPL) and product families. Meta-models for entire families must provide

442 K. Meinke and N. Walkinshaw

dimensions of variability for the specific family instances of products. This poses
new challenges both for model driven development and model-based testing. The
paper [5] by Kitamura et al. shows how model checking techniques can be applied
to model-based testing of SPLs by using feature tree models.

The paper [11] by Lu and Mukhopadhyay considers how model checking us-
ing satisfiability modulo theories (SMT) techniques can be used for model based
verification and testing of MATLAB models. The models used here are clas-
sical data flow graphs derived by abstraction and static analysis rather than
computational learning.

Finally, the paper [7] by Meinke and Niu considers learning-based testing. This
is an emerging paradigm for black-box requirements testing that combines incre-
mental model inference with model checking. For further details, see the tutorial
[8]. The contribution [7] presents a new incremental learning algorithm for ex-
tended Mealy automata computing over abstract data types (ADTs). Extended
Mealy automata can be more effective than DFA for modeling and testing high-
level software systems. The approach is based on symbolic congruence learning
methods, which are dual to the tabular methods of automata inference used in
Angluin’s L* and similar algorithms.

We would like to thank the organisors of ISoLA 2012 for making this session
possible, and of course the session authors for their valuable contributions.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(1), 87–106 (1987)

2. Bergadano, F., Gunetti, D.: Testing by means of inductive program learning. ACM
Trans. Software Engineering and Methodology 5(2), 119–145 (1996)

3. Groz, R., Irfan, M.-N., Oriat, C.: Algorithmic Improvements on Regular Inference of
Software Models and Perspectives for Security Testing. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 444–457. Springer, Heidelberg (2012)

4. Howar, F.M.: Active Learning of Interface Programs. PhD thesis, Faculty of Infor-
matics, Technical University of Dortmund (2012)

5. Kitamura, T., Do, N.T.B., Ohsaki, H., Fang, L., Yatabe, S.: Test-Case Design
by Feature Trees. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS,
vol. 7609, pp. 458–473. Springer, Heidelberg (2012)

6. Meinke, K.: A Stochastic Theory of Black-Box Software Testing. In: Futatsugi, K.,
Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS,
vol. 4060, pp. 578–595. Springer, Heidelberg (2006)

7. Meinke, K., Niu, F.: An Incremental Learning Algorithm for Extended Mealy Au-
tomata. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609,
pp. 488–504. Springer, Heidelberg (2012)

8. Meinke, K., Niu, F., Sindhu, M.: Learning-based software testing: a tutorial. In:
Proc. Fourth Int. ISoLA Workshop on Machine Learning for Software Construction.
CCIS. Springer (2011)

9. Meinke, K., Sindhu, M.A.: Incremental Learning-Based Testing for Reactive Sys-
tems. In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151.
Springer, Heidelberg (2011)

Model-Based Testing and Model Inference 443

10. Moore, E.F.: Gedanken experiments on sequential machines. In: Automata Studies,
Princeton, pp. 129–153 (1956)

11. Lu, Z., Mukhopadhyay, S.: Model-Based Static Code Analysis For MATLAB Mod-
els. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp.
474–487. Springer, Heidelberg (2012)

12. Peled, D., Vardi, M.Y., Yannakakis, M.: Black-box checking. In: Formal Methods
for Protocol Engineering and Distributed Systems FORTE/PSTV, pp. 225–240.
Kluwer (1999)

13. Raffelt, H., Steffen, B., Margaria, T.: Dynamic Testing Via Automata Learning.
In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 136–152. Springer, Heidelberg
(2008)

14. Walkinshaw, N.: Assessing Test Adequacy for Black-Box Systems without Specifi-
cations. In: Wolff, B., Zaïdi, F. (eds.) ICTSS 2011. LNCS, vol. 7019, pp. 209–224.
Springer, Heidelberg (2011)

15. Walkinshaw, N., Bogdanov, K., Derrick, J., Paris, J.: Increasing Functional Cover-
age by Inductive Testing: A Case Study. In: Petrenko, A., Simão, A., Maldonado,
J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 126–141. Springer, Heidelberg (2010)

16. Weyuker, E.: Assessing test data adequacy through program inference. ACM Trans.
Program. Lang. Syst. 5(4), 641–655 (1983)

17. Zhu, H.: A formal interpretation of software testing as inductive inference. Journal
of Software testing, Verification and Reliability 6(1), 3–31 (1996)

18. Zhu, H., Hall, P., May, J.: Inductive inference and software testing. Journal of
Software testing, Verification and Reliability 2(2), 3–31 (1992)

Algorithmic Improvements on Regular Inference

of Software Models and Perspectives
for Security Testing

Roland Groz, Muhammad-Naeem Irfan, and Catherine Oriat

LIG, Computer Science Lab
Grenoble Institute of Technology, France

Firstname.Lastname@imag.fr

Abstract. Among the various techniques for mining models from soft-
ware systems, regular inference of black-box systems has been a central
technique in the last decade. In this paper, we present various directions
we have investigated for improving the efficiency of algorithms based on
L∗ in a software testing context where interactions with systems entail
large and complex input domains. In particular we consider algorithmic
optimizations for large input sets, for parameterized inputs, for process-
ing counterexamples. We also present our current directions motivated by
application to security testing: focusing on specific sequences, identifying
randomly generated values, combining with other adaptive techniques.

1 Introduction

Regular inference, that is the derivation of an automaton model from sequences
of events corresponding to a regular language, has been used for over a decade
in software engineering. In particular, it has been applied to software develop-
ment process ([9]), requirements engineering ([26]), model checking ([10], [33]),
model based testing ([16], [29]), integration testing ([23]) and to other tasks such
as component or service discovery and identification as in the Connect project
([1]). It is related to the field known as specification mining ([4]). Its development
is rooted in the evolution of software development which is now well supported
by tools based on models, to automate such complex tasks as software vali-
dation. But quite often, models are not available or not maintained along the
development. Therefore, models have to be retrieved from software artefacts.

In this paper, we are interested in inference algorithms to support black-box
testing of software systems. Testing is usually the most time consuming task of
software development, and can now be supported by model based testing tools
(MBT: [39]). By testing a system, we naturally get sequences of events that can
be used by inference to retrieve a model. We consider that the testing process
can be guided by inference needs, which means that we can use active learning
techniques, as opposed to passive learning techniques where the inference is based
on a predefined set of collected testing events. The advantage of active learning
is that it can be much more efficient and has a lower complexity than passive
learning: more accurate models can be derived with less tests.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 444–457, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Algorithmic Improvements on Regular Inference of Software Models 445

Therefore, most of the work on inference for black-box testing has used active
learning aka learning with queries ([11]) in particular under the MAT (Minimally
Adequate Teacher) paradigm and the algorithm L∗ introduced by Dana Angluin
([5]). Applying L∗ in the context of software testing raises several issues. Let us
call SUI the System Under Inference, just as in testing a SUT refers to a System
Under Test.

Output queries: Whereas L∗ infers DFA as language acceptors of input words,
testing is better modelled by distinguishing inputs (to the SUI from the
tester) from outputs (from the SUI to the tester). Typical models used in
testing are either IOTS (Input Output Transition Systems) or Mealy ma-
chines (I/O automata). Therefore we distinguish for an SUI two event sets:
I as the set of input events and O as the set of output events. Although ini-
tial applications directly used L∗ by defining the input alphabet A as either
A = I × O ([26]) or A = I ∪ O ([19]), it is better to adapt the algorithm
to infer directly Mealy machines as done by L∗i/o[32] and LM

+[37]. Conse-
quently, instead of membership queries as in the original L∗, the system is
asked output queries ([38]).

Equivalence queries: TheMAT paradigm assumes an oracle can answer equiv-
alence queries; the conjectured model is provided to the oracle and it replies
either the conjecture is equivalent to the SUI or provides a counterexam-
ple, viz. a sequence of inputs for which the SUI and the conjecture provide
differing answers. Since the SUI is a black-box, such an oracle is usually im-
possible to implement in a normal testing context. Proposed solutions either
have a very high complexity, typically an exponential growth in the number
of states of the SUI when using Vasilievski W-set as in [10], or yield non
optimal counterexamples that impact the complexity of the inference. We
address this issue in section 3.

Input structure, mapping: The most significant difference between theoret-
ical regular inference of regular languages and software testing is that most
often, exchanges with a black-box, either through the PDUs of a protocol
over a network or though an API for local software testing do not have a
small finite alphabet of input symbols. Interactions take the form of more
complex data structures, that usually involve a main event type from a small
finite set (PDU types, or API entries) complemented by parameters that may
have quite complex data structures (think of an e-mail, a SOAP event, or an
XML structure) and take values from very large or unbounded domains (se-
quences, of integers, strings...). To apply regular inference algorithms, some
abstraction is required to map concrete interactions to a finite alphabet. But
for converting abstract queries to concrete testing events, this mapping must
work both ways. In section 2 we address the adaptation of algorithms to deal
with the implications of such mappings.

Number of queries: In some contexts, inference can be done on local data ei-
ther in memory or in files. This is often the case for data mining algorithms,
and can be the case for white-box inference on source or binary code. How-
ever, in black-box testing, querying a system can be costly. Interfacing to a

446 R. Groz, M.-N. Irfan, and C. Oriat

system may imply going through several layers of interface software, it can
also be even slower when interacting over a network, and when the SUI is
a system that may include hardware with slow reactions, as was the case
for the domotics appliances used in [35] where reaction delays were to be
measured in several seconds or minutes. In any case, reducing the number
of queries, with typical values in thousands, is a key element to consider to
design algorithms that can be used when actually testing external black-box
systems.

Resetting: Active learning implies that different words from the language are
submitted to the SUI. This implies that the SUI must be reset at the begin-
ning of each test. As usual, this requires a reliable reset on the SUI. But in
the case of inference, it also adds to the cost of each membership or output
query; in many cases, resetting may take much more time than running the
rest of the query.

Since learning from a black-box SUI is itself a testing process, how does it fit into
a global testing approach? A usual objection would be that inferring a model
from a flawed implementation would simply reflect the flaws in the model, so
that any tests derived from the inferred model would not detect failures as the
SUT would always conform to the model derived from it. In fact, it simply means
that the inferred model cannot be the only oracle in the testing process. In most
approaches, the inferred model is not the ultimate reference model for the SUI.
Actually, the inferred model is usually an approximate conjecture of what should
be a model of the system. Learning comes as one of the steps in a more global
validation process.

A typical approach is incremental: testing is used to learn preliminary models
which can be refined with more interactions between the models and the SUI. [29]
adequately coined the phrase Learning Based Testing (LBT) to define such an
iterative approach. We have actually investigated two directions for combining
learning and testing into the context of integration testing for systems assembling
several communicating asynchronous components that could each be modelled
with automata.

– In [23], we use learning to infer models of each component in a preliminary
unit testing approach. Then we use the combined models to derive integra-
tion tests to check for interactions between components.

– In [15], we infer a global model of the system, then project to local compo-
nents to analyze through reachability analysis and further testing the po-
tential integration issues, to detect in particular races that could lead to
sporadic errors in specific scheduling or communication contexts.

In both cases, further testing enriches the observations which are used to refine
the initial models. In fact, we use different algorithms for learning in both con-
texts: in the first case, we use a variant of L∗, whereas in the second case we use
an algorithm based on state merging.

Algorithmic Improvements on Regular Inference of Software Models 447

In this paper, we present various improvements that we have investigated to
address some issues raised above. Variations on the basic inference algorithms
have been proposed for more efficient inference in the software testing context.
In section 2 we propose adaptations for parameterized or large input sets. In
section 3, we deal with non optimal counterexamples. In section 4, we present
perspectives and problems raised by the application in the context of security
testing.

2 Dealing with Software Inputs

2.1 I/O Behaviour

Testing is an asymmetric process, where the tester usually has control over the
queries sent to the SUI and observes the outputs from the SUI. This is why the
classical regular inference algorithms that learn acceptor automata in the form of
DFA have been adapted to directly infer I/O models typically Mealy machines,
either with a single output for each input [37], or with multiple outputs for a
single input as in [32] and [15]. Adapting the structure of observation tables
to record sequences of output symbols (from the set O of outputs) rather than
simply boolean membership as in L∗ has been shown to greatly reduce the
number of queries by an order of magnitude ([32], [37]). Two further adaptations
may be useful in that context:

Filters: Initially, [19] used filters to avoid redundant queries in using L∗ to
learn DFA models over an alphabet made of I ∪ O, but filters can still be
meaningful to reduce the number of queries for independent events ([32]),
with partial-order and symmetry filters. Another common cause for filtering
is for non-complete SUI. In contexts such as asynchronous protocol testing,
the SUI is assumed to be complete because it cannot prevent the tester from
sending any input. However, in other contexts, only a subset of inputs may
be enabled at a given state. Typically, on a Web interface with forms, only
certain events might be offered.

Dictionaries: Each cell in an observation table (of L∗ and other algorithms
based on tables) corresponds to a query made by concatenating the label of
the row with the label of the column. But since different cells could lead to the
same queries, and more importantly many queries would be prefixes of longer
queries, dictionaries are used to record past queries and the corresponding
answers from the SUI. The learning process will also be organized to run
longer queries first so that the answers to all prefixes can be filled without
querying the SUI. The idea can be expanded further as in the GoodSplit
algorithm ([13]).

2.2 L1: Dealing with Large Input Sets

A first approach to deal with parameterized inputs is to consider an abstraction
based on an equivalence relation that maps infinite domain values to a finite

448 R. Groz, M.-N. Irfan, and C. Oriat

number of classes ([3]). There are some issues when the values of parameters
may trigger different transitions. We will address this in the next section where
we deal with parameterized (aka symbolic) machines that include guards on
transitions. Here, we just consider the case where the infinite state system can
actually be folded to a finite automaton by clustering inputs that trigger the
same transitions into an equivalence class. There can still be many different input
classes: typically, an API that would have 6 primitives, each with 4 parameters
having two significant values would still lead to an input set of size 96.

The worst case complexity for the direct Mealy adaptation L∗i/o from [32], in

terms of output queries is O(|I|2mn+ |I|mn2), where |I| is the size of inputs set,
m is the length of the longest counterexample provided by the oracle and n is
the number of states in the learned model. The worst case complexity of LM

+

from [37] is O(|I|2n + |I|mn2). Even with LM
+, the size |I| of the input set is

a key element of the complexity of those algorithms. In cases where the state
structure of the machine is relatively simple and n is low, |I| is the dominant
factor. This is why we worked on a reduction of this complexity and proposed
the L1 algorithm that reduces the worst case complexity to O(|I|mn2).

The basic intuition for L1 is that the |I|2 factor in the complexity of Mealy
adaptations of L∗ is due to the initialization of the columns with all possible in-
puts. Combining these columns with the S ·I rows that are necessary to compare
the tail states of transitions from each state in S yields the |I|2n factor. This
initialization is intended to provide the output for each transition starting from
a state s ∈ S on input i ∈ I by looking at the table cell T (s, i) which records this
output. Actually the problem is that the structure of observation tables used by
L∗i/o and LM

+ only records outputs in cells.
The main idea in L1 is to avoid such an initialization by recording separately

the outputs of each transition. More precisely, an observation table in L1 is
a quadruple (S,E, L, T) where S ⊆ I∗ is a prefix-closed non empty finite set
of access strings, which labels the rows of the observation table, E ⊆ I+ is a
suffix-closed finite set, which labels the columns of the observation table, for
S′ = S ∪ S · I, the finite function T maps S′ × E to outputs O+, and the finite
function L maps S′\{ε} to outputs O. The observation table rows S′ are non
empty and initially S = {ε} and S · I = I. The output for the last input element
for all the members of S′\{ε} is recorded in L and graphically represented along
the access strings S′. The columns E are initially ∅ and E augments only after
processing the counterexamples.
L1 is presented in [20]. Apart from reducing the worst case complexity, it has

other advantages in practice for average complexity.

– It adds sequences to the set E used to index columns only when they con-
tribute to distinguish states. If the input set I has a large number of elements
and we initialize the columns of the observation table with I then there is
strong possibility that all of the input sequences are not distinguishing strings
and we have initialized the columns with too many sequences.

– Mealy adaptations of L∗ use the collection of all possible inputs I for each
state. While inferring models when an access string of a distinct state is

Algorithmic Improvements on Regular Inference of Software Models 449

identified then its one letter extensions are added to the observation table.
But for software applications valid inputs for every state are smaller than
I. For L1 the output recorded along access strings helps to identify that an
access string is valid or invalid, and only valid access strings are kept in the
observation table. In effect, this is a kind of prefix filter.

– L1 adds the suffixes of the counterexample by increasing length to the
columns of the observation table until the table is not closed ([21]). Since
this algorithm does not initialize the columns with I and adds only those
elements from I which are really required, the gain with the L1 algorithm
increases with the number of inputs for the target black-box models.

Since L1 starts with E being an empty set, initially states are equivalent and
its first conjecture will be a “daisy” machine (single state with looping transi-
tions). This means that L1 will only progress in state identification with equiva-
lence queries. The use of the efficient Suffix1by1 algorithm from [21] helps to keep
only shortest separating sequences and their suffixes (see section 3) in E.

Experiments have been conducted with randomly generated Mealy machines
to compare L1 with L+M . The results for output queries clearly show that L1
outperforms LM

+ in all cases, even for relatively small input sets. With input
size |I| = 10, on the average L1 asks 1604 output queries and LM

+ asks 4010
output queries. There is a gain of 60% for output queries.

Fig. 1. |I |∈{2, 3 . . . 10},|O|=5 and n=40 Fig. 2. |I |=5,|O|=7 and n∈{3, 4 . . . 40}

The second set of experiments is generated by fixing the size of the inputs
and outputs sets, but varying the number of states. The machines are generated
with inputs set size |I| = 5, the outputs set size |O| = 7 and number of states
n ∈ {3, 4 . . .40}. The size of outputs set is changed to get slightly different
machines as compared to the first set of experiments. Figure 2 presents the
number of output queries asked by both of the algorithms. Again for this set of
experiments L1 outperforms LM

+ even though the number of inputs is very low.

2.3 Parameterized Inputs

A second approach consists in changing the basic automaton model to infer di-
rectly extended state models where inputs and outputs can bear parameters. [24]

450 R. Groz, M.-N. Irfan, and C. Oriat

was a first step we made in that direction and at the same time [6] proposed an-
other approach. Both introduced extended models with parameters and guards
on transitions, but both had serious limitations: our approach was consider-
ing output parameters that could only depend on the input parameters for the
same transition (the so-called PFSM model); and [6] approach was restricted to
boolean domains and no propagation to output parameters.

One direction for improvement consisted in moving to better defined symbolic
automata models. [30][31] connected LBT to term rewriting technologies, and
the model is based on equational abstract data types. [3] defined formally the
abstraction and uses symbolic Mealy Machines (SMM), extending the inference
method of [7].

We followed a different track by considering that connections between param-
eter values could better be handled by connecting to data inference techniques
that come from machine learning and data mining. Based on the restricted PFSM
model, where we just have to infer output values from input values based on se-
ries of i/o couples, we first experimented with the Daikon tool [14] in [36] as had
already been done for passive inference by [25].

But a drawback of those restricted models consisted in the inability to compare
values in one transition with values in past transitions. For many applications,
and in particular for web applications and security protocols, this is far too
restrictive. A major improvement has been proposed by [17] that uses as models
register automata that can store past values of parameters. In order to be able
to infer accurate guards, guards are restricted to conjunctions of equalities and
inequalities. Actually, this model is an acceptor for data languages, so outputs
would be modelled as actions that are accepted or rejected. So in effect outputs
parameter values can only be restricted to equality with previous input values.

In the framework of the SPaCIoS project (see section 4.1), we developed with
Keqin Li from SAP an extension of the initial algorithm for PFSM [23]. This
new algorithm uses a more general extended finite state model EFSM which
extends Mealy models with parameters on inputs and outputs and variables
that can store past values provided by the environment as input parameters. As
for register automata, the assignments to variables are limited to past values.
However, outputs are less limited. Actually, in order to be able to deal with
the security protocols required by the SPaCIoS project, outputs can either be
deterministic values linked to the input parameters, or non-deterministic values
that can be generated by the machine (this is useful to create nonces, new session
IDs etc, see section 4). The new algorithm [22] separates observations into two
tables: a control table that corresponds to the usual observation table of regular
inference, and a data table that has the same rows and columns but records data
associations for I/O transitions.

In the same spirit as [36], we consider that we can rely on existing data mining
algorithms to infer guards and I/O relations. In the incremental LBT approach,
a model is always an approximation that can be refined by the next confrontation
with the SUI. Data mining algorithms infer approximate relations that can also
be refined by extending the corpus of observations. In the case of the experiments

Algorithmic Improvements on Regular Inference of Software Models 451

done for the SPaCIoS project, we used the Weka tool with various clustering
algorithms depending on the type (domain) of the parameters [22]. Typically,
for integer parameters we used M5P, whereas for strings we used J48 [40].

3 Processing Counterexamples

For software black-box model inference, the existence of an oracle that can an-
swer equivalence queries is a strong assumption, which is not met in most cases.
Conformance testing methods have been used ([10,28]); but such methods, es-
pecially when using the Vasilievski-Chow method comes at a high exponential
cost. Random sampling as suggested by Angluin [5] and its variants [8,21,18]
are heuristics to find counterexamples; these methods involve a compromise on
the precision but they are easy to implement. One of the drawbacks is that
they will often produce much longer counterexample than the shortest one, typ-
ically because a random walk can cycle through existing states before reaching
a discriminating sequence of inputs that will separate an existing state.

The length of the counterexample is a key element of the worst-case complex-
ity of the algorithm. Even for the mean case, it may be crippling in practice
when the set E of sequences labelling columns of observation tables is suffix-
closed. And the counterexample processing method plays a crucial role in this
complexity.

The initial L∗ algorithm [5] adds all prefixes of the counterexample to S.
Rivest and Schapire [34] identified that incompatibilities in the observation table
could be avoided by keeping the rows in S non equivalent. The counterexample
processing method by Rivest and Schapire adds only a single distinguishing
string from a counterexample CE to E. However, it may take up to log(m)
output queries to find such a string, where m = |CE |. Once CE is processed
and after making the table closed a conjecture is constructed, CE may still be
a counterexample for the new conjecture. Since this method does not keep the
table suffix-closed, in worst case it may infer a conjecture that is not consistent
with the observations. The worst case complexity of this in terms of output
queries is O(|I|2n+ |I|n2 + nlog(m)).

Maler and Pnueli [27] also add sequences to the indices of the columns E,
but keep the table suffix-closed. Shahbaz and Groz [37] improved it by trimming
from CE the longest prefix already present in the rows of the table.

Motivated by the testing context where counterexamples can be quite long
when found by randomized heuristics, we found that we could keep the suffix-
closure property that ensures consistency between the conjecture and the
observations, while still keeping only the essential “distinguishing” part of a
counterexample. The intuition is that if a counterexample string CE has useless
(non distinguishing) cycles, a suffix of it will be a distinguishing sequence in
reality for the state of the conjecture that has to be split and that would lay at
the end of the last cycle or after it. This led us to the counterexample processing
method described in figure 3.

452 R. Groz, M.-N. Irfan, and C. Oriat

Input: Pre-refined observation table (S,E, T), CE
Output: Refined observation table (S,E, T)

1 begin
2 while CE is a counterexample do
3 for j = 2 to |CE | do
4 if suffixj(CE) /∈ E then
5 add suffixj(CE) to E
6 construct the output queries for the new columns
7 complete (S,E, T) by executing output queries
8 if (S,E, T) is not closed then
9 break for loop

10 end

11 end

12 end
13 make (S,E,T) closed
14 construct the conjecture M

15 end
16 return refined observation table (S,E, T)

17 end

Fig. 3. Counterexample Processing Suffix1by1

This method, presented in [21], has several advantages.

– Like the improvements by Rivest, Maler, Shahbaz, it keeps the rows in S
inequivalent, so suppresses the consistency check of the original L∗ algorithm,
and reduces the size of S.

– It keeps the table suffix-closed, avoiding the inconsistencies between a con-
jectured model and the observation table that can result by using the method
from Rivest and Schapire.

– It does not add any unnecessary element in E, since it only adds discrimi-
nating sequences (and their suffixes to keep E suffix-closed).

– Once a counterexample CE has been processed and a new conjecture has
been built, CE can still be confronted to the conjecture to see if a longer
suffix of it would also be a discriminating sequence for another state. This
does not cost any extra testing since the outputs from the SUI for the input
string CE have already been recorded.

– The worst case complexity of the algorithm is O(|I|2n+ |I|mn2). The length
of the longest suffix of a counterexample m added by Suffix1by1 to the
columns E in general is smaller as compared to LM

+. However, if the oracle
provides a “smart” counterexample, such that if we drop its longest prefix
which matches a row label and the remaining part of the counterexample
is the smallest possible distinguishing suffix, then the m parameter is the
same for Rivest and Schapire method, LM

+ and Suffix1by1. The Suffix1by1
method is much more efficient when counterexamples are non optimal, which
is the standard case in our context. And it becomes more efficient as the pro-
vided counterexamples go longer, which would be the case when conjectures

Algorithmic Improvements on Regular Inference of Software Models 453

grow more accurate wrt the SUI, after a number of iterations have led to
refined conjectures.

Figure 4 shows the gain of this method over the other ones for a number of
inputs (|I|) varying from 2 to 8, with |O| = 7 and random machines with 40
states. The counterexamples are generated by a random walk with a uniform
distribution over inputs. The number of queries is computed with the simple
Mealy adaptation of L∗. Of course, this method is also integrated into L1 with
greater gains for large input sets.

Fig. 4. |I | ∈ {2, 3 . . . 8}, |O| = 2 and |Q| = 40

4 Perspectives Raised by Security Testing

4.1 SPaCIoS Project

Some of our work on inference is driven by the context of the SPaCIoS European
FP7-ICT-2009 project no. 257876 [2]. SPaCIoS stands for “Secure Provision and
Consumption in the Internet of Services”. It uses model-checking and model-
based testing to detect security flaws in (deployed) services. To that end, it uses
models written in a high-level state based representation of security protocols.
Model checking can detect potential violations of security goals, and testing
checks whether the the potential attacks detected on models can actually be
carried out on the implementations. Since models may not be available for all
services or might be inaccurate, two types of model inference are considered:
white-box from source code, and black-box. Figure 5 shows the overall architec-
ture of the SPaCIoS tool and the role played by inference.

The implications for black-box inference is that it should deliver models that
correspond to the typical implementations of security in services. Handwritten
models exhibit only a limited number of states and few variables. Exchanges
between services entities entail usually complex data, with complex coding that
typically uses XML, very long strings, encrypted data, non-deterministic values,
key session ids that are needed along a sequence of interactions, cookies etc.

454 R. Groz, M.-N. Irfan, and C. Oriat

Fig. 5. SPaCIoS tool

There is also quite a distance between the abstraction of relevant data used in
the model and the actual coding. But this mapping is not a specific problem for
inference, and for that we can rely on the instrumentation and test execution
engine that is required anyway by the MBT part to concretize tests derived from
attacks on the models.

In such a context, inference of a parameterized system, including variables
(registers) to record values received from a partner entity (such as session IDs,
cookies etc) is essential. But there are also further needs which we discuss in the
next section.

4.2 Research Directions

Dealing with Nondeterministic Values. An entity can provide fresh values
(such as nonces) each time a transition is triggered. It is important to recognize
that all such outputs from the black-box actually represent the same transition.
So we propose a specific treatment to recognize such values, and infer models that
may include this kind of data nondeterminism. This has been presented in [22].

Adjustment of Existing Specifications. As can be seen on figure 5, model
inference should be used not only for getting a model “from scratch”, but also
to adjust preliminary models. This is similar to dealing with counterexamples or
new observations to refine a model, but the initial model may have been provided

Algorithmic Improvements on Regular Inference of Software Models 455

tentatively by a security analyst. New observations may come from trying out
attacks. The difference with counterexample processing is that the model has
not been derived from an observation table. An easy workaround consists in first
deriving an observation table from the model used as black-box (most inference
tools anyway can work with “internal” automata). But the difference here is that
some of the observations might not be consistent with the black-box. Although
each observation could be cross-checked with the real black-box, it is interesting
to consider optimizations to avoid redundant testing. Those optimizations should
go beyond the simple ordering of queries (to avoid querying a prefix before a
longer query). It can be part of an incremental refinement where observations
are not systematically tested, but only when a discrepancy between the model
and the SUI raises an issue in observations that came from querying the model
initially.

This problem is not specific to security, but domain specific optimizations can
be considered here.

Combining with Fuzzing. A test data selection strategy has to be defined
for choosing parameter values to be tried out in concretizing abstract inputs.
In the case of inference for security testing, it makes sense to combine with the
foremost test data generation test method used to identify faulty transitions in
systems, that is fuzzing. Since fuzzing implies a large number of tests, it would be
inconvenient to use all the data as independent queries. The clustering approach
presented in section 2.3 can be used, but it is also important to do some filtering
and recognize fuzzed values that lead to new states or elicit output parameters
with characteristics of interest for security testing. Typically, in [12] we consider
how a combination of inference of the sort used for SPaCIoS as in [22] can be
combined with fuzzing (and genetic algorithms) to identify reflected cross-site
scripting attacks.

5 Conclusion

In this paper, we have presented some algorithmic improvements on Angluin-
style regular inference. These improvements provide more efficient algorithms
when inference is used in a software testing context: working with I/O ma-
chines rather than language acceptors, dealing with non-optimal counterexam-
ples from randomized testing, and most importantly addressing parameterized
input and output symbols and finite state models extended with parameters
from unbounded domains and variables.

Our line of approach has consisted in working with adaptations of existing
algorithms to make them more efficient in such a context. Testing is always an
approximate and time consuming task, so improving the efficiency of the process
is needed if inference is to be used more widely. Some of the research directions
that we are considering in the case of security testing have been presented in
section 4.2.

456 R. Groz, M.-N. Irfan, and C. Oriat

References
1. Connect FP7 project, https://www.connect-forever.eu/
2. SPaCIoS FP7 project, http://www.spacios.eu/
3. Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communica-

tion Protocols Using Regular Inference with Abstraction. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer,
Heidelberg (2010)

4. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: POPL, pp. 4–16
(2002)

5. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 2, 87–106 (1987)

6. Berg, T., Jonsson, B., Raffelt, H.: Regular Inference for State Machines with Pa-
rameters. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121.
Springer, Heidelberg (2006)

7. Berg, T., Jonsson, B., Raffelt, H.: Regular Inference for State Machines Using
Domains with Equality Tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008.
LNCS, vol. 4961, pp. 317–331. Springer, Heidelberg (2008)

8. Cho, C.Y., Babic, D., Shin, E.C.R., Song, D.: Inference and analysis of formal mod-
els of botnet command and control protocols. In: ACM Conference on Computer
and Communications Security, pp. 426–439 (2010)

9. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998)

10. Yannakakis, M., Peled, D., Vardi, M.Y.: Black box checking. In: Proceedings of
FORTE 1999, Beijing, China (1999)

11. de la Higuera, C.: Grammatical Inference - Learning Automata and Grammars.
Cambridge University Press (2010)

12. Duchène, F., Groz, R., Rawat, S., Richier, J.-L.: XSS vulnerability detection using
model inference assisted evolutionary fuzzing. In: SECTEST. IEEE (2012)

13. Eisenstat, S., Angluin, D.: Learning random DFAs with membership queries: the
GoodSplit algorithm. In: ZULU Workshop Organised During ICGI (2010)

14. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming (2006)

15. Groz, R., Li, K., Petrenko, A., Shahbaz, M.: Modular System Verification by In-
ference, Testing and Reachability Analysis. In: Suzuki, K., Higashino, T., Ulrich,
A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 216–233.
Springer, Heidelberg (2008)

16. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model Generation by Moderated
Regular Extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, pp. 80–95. Springer, Heidelberg (2002)

17. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring Canonical Register Au-
tomata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 251–266. Springer, Heidelberg (2012)

18. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS - Lessons Learned in the
ZULU Challenge. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS,
vol. 6415, pp. 687–704. Springer, Heidelberg (2010)

19. Hungar, H., Niese, O., Steffen, B.: Domain-Specific Optimization in Automata
Learning. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
315–327. Springer, Heidelberg (2003)

20. Irfan, M.N., Groz, R., Oriat, C.: Improving model inference of black box compo-
nents having large input test set (submitted 2012)

https://www.connect-forever.eu/
http://www.spacios.eu/

Algorithmic Improvements on Regular Inference of Software Models 457

21. Irfan, M.N., Oriat, C., Groz, R.: Angluin style finite state machine inference with
non-optimal counterexamples. In: MIIT, pp. 11–19. ACM, New York (2010)

22. Li, K., Groz, R., Hossen, K., Oriat, C.: Inferring automata with variables and
nondeterministic values for testing security software (submitted 2012)

23. Li, K., Groz, R., Shahbaz, M.: Integration testing of components guided by in-
cremental state machine learning. In: TAIC PART, pp. 59–70. IEEE Computer
Society (2006)

24. Li, K., Groz, R., Shahbaz, M.: Integration Testing of Distributed Components
Based on Learning Parameterized I/O Models. In: Najm, E., Pradat-Peyre, J.-F.,
Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 436–450. Springer,
Heidelberg (2006)

25. Lorenzoli, D., Mariani, L., Pezzè, M.: Inferring state-based behavior models. In:
WODA 2006: Proceedings of the 2006 International Workshop on Dynamic Systems
Analysis, pp. 25–32. ACM Press (2006)

26. Mäkinen, E., Systä, T.: Mas - an interactive synthesizer to support behavioral mod-
elling in uml. In: ICSE 2001: Proceedings of the 23rd International Conference on
Software Engineering, pp. 15–24. IEEE Computer Society, Washington, DC (2001)

27. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Com-
put. 118(2), 316–326 (1995)

28. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model gener-
ation for legacy reactive systems. In: IEEE International High-Level Design, Vali-
dation, and Test Workshop, pp. 95–100 (2004)

29. Meinke, K.: Automated black-box testing of functional correctness using function
approximation. In: ISSTA, pp. 143–153 (2004)

30. Meinke, K.: CGE: A Sequential Learning Algorithm for Mealy Automata. In: Sem-
pere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 148–162. Springer,
Heidelberg (2010)

31. Meinke, K., Niu, F.: Learning-Based Testing for Reactive Systems Using Term
Rewriting Technology. In: Wolff, B., Zäıdi, F. (eds.) ICTSS 2011. LNCS, vol. 7019,
pp. 97–114. Springer, Heidelberg (2011)

32. Niese, O.: An Integrated Approach to Testing Complex Systems. PhD thesis, Uni-
versity of Dortmund (2003)

33. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L∗ algorithm to automate assume-
guarantee reasoning. Formal Methods in System Design 32(3), 175–205 (2008)

34. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
In: Machine Learning: From Theory to Applications, pp. 51–73 (1993)

35. Shahbaz, M.: Reverse Engineering Enhanced State Models of Black Box Software
Components to Support Integration Testing. Phd thesis, Institut Polytechnique de
Grenoble (2008)

36. Shahbaz, M., Groz, R.: Using invariant detection mechanism in black box inference.
In: ISoLA Workshop on Leveraging Applications of Formal Methods (2007)

37. Shahbaz, M., Groz, R.: Inferring Mealy Machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)

38. Shu, G., Lee, D.: Testing security properties of protocol implementations - a ma-
chine learning based approach. In: ICDCS, Toronto, Ontario, Canada (2007)

39. Utting, M., Legeard, B.: Practical Model-Based Testing - A Tools Approach. Mor-
gan Kaufmann (2007)

40. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning
Tools and Techniques, 3rd edn. Morgan Kaufmann (2011)

Test-Case Design by Feature Trees

Takashi Kitamura, Ngoc Thi Bich Do, Hitoshi Ohsaki,
Ling Fang, and Shunsuke Yatabe

National Institute of Advanced Industrial Science and Technology (AIST)
{t.kitamura,do.ngoc,hitoshi.ohsaki,fang-ling,shunsuke.yatabe}@aist.go.jp

Abstract. This paper proposes a test-case design method for black-box
testing, called “Feature Oriented Testing (FOT)”. The method is real-
ized by applying Feature Models (FMs) developed in software product
line engineering to test-case designs. We develop a graphical language
for test-case design called “Feature Trees for Testing (FTT)” based on
FMs. To firmly underpin the method, we provide a formal semantics
of FTT, by means of test-cases derived from test-case designs modelled
with FTT. Based on the semantics we develop an automated test-suite
generation and correctness checking of test-case designs using SAT, as
computer-aided analysis techniques of the method. Feasibility of the
method is demonstrated from several viewpoints including its implemen-
tation, complexity analysis, experiments, a case study, and an assistant
tool.

Keywords: black-box testing, combination testing, SAT-based analysis.

1 Introduction

In black-box testing (BBT) test cases are designed by analysing the input domain
of the system under test (SUT) often according to the system’s specification. The
Classification Tree Method (CTM) [5, 9–11] is one of the-state-of-the-art test-case
design methods for BBT. It is a model-based and combination testing method; i.e.,
test cases are designed as a visual model with a given diagram-based language,
and test cases are generated automatically from such a model using combination
techniques. Due to its nice characteristics as a testing method, CTM is often used
in industry including automotive industries [19]. However, for a better testing
method improvements can be considered from several perspectives such as its
theory, higher computer-aided analysis, efficiency of automated technologies, and
modelling paradigms.

Feature-Oriented Domain Analysis/Feature Models (FODA/FMs) is an analysis
method for software product lines (SPLs), first proposed by Kang et al. [14]. This
method takes a model-based approach; i.e., an SPL is modelled with extended
and-or logical trees called “Feature Models (FMs)”, which enable systematic anal-
ysis in a top-down manner, together with their graphical representations of “Fea-
ture Diagrams”. In addition, useful information about the SPL can be derived
by applying analysis techniques to the models. A main characteristic of FMs is
its compact and visual representations by diagrams to capture SPLs as well as a

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 458–473, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Test-Case Design by Feature Trees 459

variety of analysis techniques. So far fruitful research results of FMs have been
made in research and industry, including various model designs [20], semantics
[3, 17, 20, 21], various analysis operations such as consistency checking, diag-
nosis, validations, refactoring, and so on (as summarized in [2, 17]). Also such
analysis operations are carried out on various logic paradigms such as proposi-
tional logic [1, 13, 16, 22], description logic [8] or constraint programming [3] as
well as algorithmic approaches [4, 23].

In this work, we propose a test-case design method by applying FMs, called
“Feature Oriented Testing (FOT)”, identified as a model-based and combination
testing method for BBT. The aims of the work are three-fold: (1) to develop a test-
case design language based on the model designs of FMs, which are characterized
with the compact and visual representations by diagrams of extended and-or
logical trees, (2) to apply rich theories of FMs to the test-case design method
focusing on semantics, and (3) to apply computer-aided analysis techniques of
FMs to the test-case design method, to retrieve useful information for test-case
designs.

The main contributions of this paper are two-fold: (A) to realize these aims as
a test-case design method, and (B) to demonstrate the method’s feasibility from
several viewpoints. For (A), first we analyze the requirements for developing
a test-case design language, and design such a language as “Feature Tree for
Testing (FTT)” that suits the test-case design purpose based on various designs
of FMs proposed in the literature [20]. Then we build a theoretical foundation
of FTT by providing its formal syntax and semantics; which makes a basis of
reliability and computer-aided analysis. Further, we develop two kinds of logic-
based automated analysis techniques for FTT using a SAT solver: a test-suite
generation and correctness checking of test-case designs by FTT.

For (B), first feasibility is shown from the viewpoint of reliability, which is an
important property as a testing method, by building formal semantics and prov-
ing the correctness of the test-case generation algorithm w.r.t. the semantics.
Feasibility is demonstrated from the viewpoint of computational cost on the au-
tomated analysis, by analyzing the computational complexity and by providing
experimental results. A case study is presented, where we apply FOT to test-case
design for OSEK/VDX-OS (OSEK-OS), a standard real-time OS for automotives [18].
We also explain our GUI-based assistant tool for FOT. This show not only how
the method can be assisted by a tool, but also some essential techniques for
test-case designs of FOT using this tool.

2 A Motivating Example

Borrowing an example in [5], we design test cases for BBT for a computer vision
system. As seen in Fig. 1, this system determines the size of various blocks
passing the camera of the system on a belt-conveyor. Fig. 2 shows a test-case
design for BBT for the system by FOT. In FOT, an FM is used to design test
cases; i.e, analysis for test-case design proceeds using FTT by splitting up the
input/(output) domain of the SUT with various test-relevant aspects, which we
also refer to as features.

460 T. Kitamura et al.

large

Fig. 1. Computer vision system for determining the size of building blocks

size color shape

large small blue red circle triangle square

equilateral scalene

<<mutex>><<requires>>

green

isosceles

Blocks

Fig. 2. A simple and small test-case design using an FTT

The analysis of the input domain, i.e., the test-case design for the SUT, pro-
ceeds in a top-down manner with its root as the input domain of SUT, which
is “Blocks” here. First, “Blocks” are decomposed into features of their “size”,
“color” and “shape”. In decompositions (decomp.), we distinguish them with
two kinds of orthogonal and alternative decomp. The “block” is decomposed
with an orthogonal decomp., as we regard its three sub-features are orthogonal
notions. We may also call such decomp. and-decomp., following the convention
of and-or trees and FMs. We clarify such decomp. explicitly in the diagram by
the dot on top of each feature.

Next these three decomposed sub-features are further decomposed into smaller
sub-features. For example, the “size” feature is decomposed into two sub-features:
“small” and “large”. In this case, it is done with an alternative decomp., which
may be also called xor-decomp., by regarding the sub-features as alternatives to
one another. Compositions of this kind are clarified in the diagram in the way
that the edges of a decomp., are tied up with a string. Similarly, the “color”
features are decomposed into “blue”, “green” and “red”, and “shape” into “cir-
cle”, “triangle” and “square” with alternative-decomp. The “triangle” feature is
further decomposed into “equilateral”, “isosceles” and “scalene” alternatively, to
design test cases in a detailed way and hence inspect the system in more details.

Besides such decomp. relations between features, which form the parent-child
relations of trees, “mutex” and “requires” relations drawn globally in the tree
(i.e., crossing the tree) are found in the model in Fig 2. These represent con-
straints between features in the tree globally, which we call cross-tree constraints
(CTCs), to exclude nonsense or undesired test cases according to given specifica-
tions. For example, assume in the above example, the following specifications are
given: (1) “There are no blocks whose color is red and whose shape is a triangle.”
(2) “If the size of blocks is small, then the color of the blocks is green.”. Due
to these specifications, it is nonsense and undesirable to prepare test cases for

Test-Case Design by Feature Trees 461

Table 1. The test suite obtained from test-case design of Fig. 2

1. small, red, circle 7. small, green, square 13. small, green, isosceles
2. small, blue, circle 8. large, green, square 14. small, blue, isosceles
3. large, green, circle 9. large, green, equilateral 15. small, blue, scalene
4. small, green, circle 10. small, blue, equilateral 16. large, green, scalene
5. small, blue, square 11. small, green, equilateral 17. small, green, scalene
6. small, red, square 12. large, green, isosceles

such cases. The CTCs clarify such nonsense test cases. The mutex (an abbr. for
“mutually exclusive with”) constraint between the “red” and “triangle” features
in Fig. 2 is drawn to cover specification (1), and requires between the “small”
to “circle” feature to cover specification (2). Note that each CTC affects all the
features in the sub-tree of the features it involves. E.g., the mutex constraint
stipulates that “red” is mutex not only with “triangle” but also with all the
sub-features of the sub-tree: “equilateral”, “isosceles” and “scalene”.

The test-case design, shown as a diagram in Fig. 2, captures a set of test
cases; i.e., we can obtain a set of test cases (i.e., test suite) from the diagram.
Here, a test case is defined as a set of features in the tree. Table 1 shows the test
suite obtained from the test-case design of Fig. 2. That is, the test suite derived
from the test-case design consists of fifteen test cases; for example, test-case 1
indicates blocks whose size is “small”, color is “red”, is shape “circle”. Roughly,
test cases are derived from such test-case designs by recursively applying the
following standard interpretation of and-or logical tree; i.e., all the sub-features
of and -decomp. or its descendants have to be in any test case, and exactly one
of the sub-features of xor -decomp. or its descendants have to be in any test case.
Besides, the test cases the CTCs are applied to are excluded. The rules to derive
test cases from the diagrams should be more detailed in an exact way, and we
formally explain these rules in Section 4.

3 Feature Trees for Testing

This section develops a test-case design language based on FMs, called Feature
Tree for Testing (FTT), which we regard as the modelling language for test-case
design in FOT. First we analyze requirements for such a language as a model-
based and combination testing method for BBT. According to them we design
such a language as FTT based on FMs, showing its design choices. Then based on
the design of FTT, the syntax and semantics of FTT are provided formally.

3.1 Requirements and Design Choices

Requirements. Though the basic idea of FTT was seen in the previous section,
here we briefly summarize the requirements analysis for developing a test-case
design language for our test-case design purpose of model-based and combination
testing method for BBT, as follows:

462 T. Kitamura et al.

1. The basic structure of FTT is designed as a tree; i.e., the tree structure is
formed by an input-domain analysis of SUT by repeatedly decomposing it
with features from the root, which facilitates systematic test-case design in
a top-down manner.

2. Each decomp. of a feature (i.e., the input domain of SUT) should be dis-
tinguished by two kinds: orthogonal decomp., i.e., all the sub-features are
orthogonal notions to one another, and alternative decomp., i.e., all the sub-
features are alternative notions to one another.

3. Some kinds of constraint operators, imposed on globally (between any fea-
tures crossing a tree), are equipped to exclude non-sense and undesired test
cases according to given specifications.

Design Choices. We design a language for test-case design as FTT to meet the
requirements based on various variants of FMs proposed in the literature [20]. By
following [20] for a scheme of design choices of FMs, FTT is characterized as:

1. FTT are trees (, but not DAGs: Directed Acyclic Graphs).
2. FTT have the following two-kinds of decomp. operators:

(a) and -decomp., to express orthogonal -decomp.
(b) xor -decomp., to express alternative-decomp.

3. FTT have the following constraint representations drawn globally in a tree:

(a) requires ; if a feature f requires a feature g, the inclusion of f in a test
case implies the inclusion of g in such a test case.

(b) mutex ; the two features related by the relation cannot be present simul-
taneously in a test-case.

Some other relations, often common in FMs such as “optional”, “or -decomp.”
and “cardinality”, are not included in FTT, since straightforward interpretations
can not be given on the operators in our test-case design setting. The same is true
for other relations such as “generalization”, “specialization” and “implemented-
by” found in [15]. The language design of FTT is not same as any of the FMs listed
in [20], but similar to the original FM developed by Kang et al. [14]

3.2 Syntax of Feature Trees for Testing

We give a formal syntax of FTT as a basis for the formal developments:

Definition 1. A feature tree is a tuple (F, r, L,⇀,@,
req→, mex←→) such that

– (F, r,⇀) is a tree, where F is a set of features (as the nodes of a tree), r is
the root, and ⇀ is the parent-child relation on F ,
• we say “feature f is the parent of g” and “g is a child of f” if f ⇀ g,

– L(⊂ F) is a set of leaf features,
– @ is a function from F \ L to {and, xor},
–

mex←→ is a symmetric and irreflexive binary relation over F ,

–
req−→ is an asymmetric and irreflexive binary relation over F . �

Test-Case Design by Feature Trees 463

FTT are trees (F, r,⇀) extended with several notions. First FTT are a variant of
and-or logical trees. We realize this with “node-based design”, where each feature
(i.e., node) of the tree except for leaf features is labeled with “and” or “xor”.
The function @ : F \L→ {and, xor}, which labels each (non-leaf) features with
and or xor, is equipped for this. We call features “and-feature“ or “xor-feature”
if it is associated with “and” and “xor” by @ respectively. Note that, due to the
design, “and ” and “xor”-edges shall not be mixed among the edges out-going
from a feature. The two kinds of CTCs of mutex and requires, which are another

extension of FTT, are expressed by the binary relations “
mex↔ ” and “

req→” on F .

3.3 Semantics

An FTT captures a set of test cases. In other words, the semantics of an FTT is
defined by way of a set of test cases derived from it; i.e., given an FTT, we
formally understand what it means by way of a set of test cases.

Definition 2 (Pre-model). A pre-model M ′(∈ M′) of an FTT t is a subset of
its features: M ′ ∈ PF , where PX denotes the power set of X. �

Definition 3 (Model). A model M(∈ M) of an FTT t is a pre-model that
satisfies the following conditions, and is noted as M |=′ t:

1. The root feature is in the model: r ∈M ,
2. If a feature is in a model, its parent is in the model too: f ∈M⇒parent(f)∈M ,
3. If an and-feature is in a model, all its children are in the model too: f ∈
M ∧@(f) = and ⇒ (∀g.f ⇀ g → g ∈M),

4. If an xor-feature is in a model, exactly one of its children is in the model
too; f ∈M ∧@(f) = xor ⇒ (∃!g.f ⇀ g ∧ g ∈M),

5. The model must satisfy all formulas from the CTCs set Φ(=
mex↔ ∪ req→): ∀φ ∈

Φ.M |=′ φ, where “M |=′ f
mex←→ g” if f and g are not both in M , and

“M |=′ f
req−→ g” if f is in M , g is in M too. �

The definition of test case and test suite are given by way of the model.

Definition 4 (Test case and test suite). 1. A test case c is a subset of leaves:
c ∈ PL. 2. A test case of the model M , noted M◦, is M ∩ L. 3. A test suite s
is a set of test cases: s = Pc ∈ PPL. 4. The test suite derived from an FTT t is
the set of test cases of models M satisfying t: �t� = {M◦ |M |=′ t} �

4 SAT-Based Automated Analysis of FTT

This section explains several SAT-based automated analysis techniques of FTT, as
computer-aided analysis techniques of FOT. An epoch in the research of FMs is the
provision of encoding FMs to a propositional (prop.) formula, which brings many
interesting logic-based analysis on FMs, often using technologies of SAT-solvers.
Applying these techniques to our setting, we develop SAT-based automated test-
suite generation and correctness checking of test-case designs by FTT.

464 T. Kitamura et al.

Table 2. The encoding rules trans of an FTT into prop. formulas

Feature model relation Corresponding formula

(a) r is the root feature r

(b) p ⇀ c1 c1 → p

(c) @(p) = and and p → c p → c

(d) @(p) = xor and p ⇀ c1, · · · , p ⇀ cn p →
∨

⎛
⎝

(c1 ∧ ¬c2 ∧ · · · ∧ ¬cn)
· · ·

(¬c1 ∧ ¬c2 ∧ · · · ∧ cn)

⎞
⎠

(e) p
mex←→ q ¬(p ∧ q)

(f) p
req−→ q p → q

An FTT
Prop.

formula
A set of
models Test-suites

Prop.
formula
in CNF

1.encord 2.translate 3.ALLSAT 4. process

miniSat

Fig. 3. The system for test-case generation

4.1 Propositional Formulas Encoding

Table 2 shows the encoding rules (trans) of an FTT to a prop. formula. Lemma 1
shows the rules are correct w.r.t. the semantics in Definition 4. The proof of this
lemma is obvious, but it plays a critical role for guaranteeing the correctness of
our automated analysis techniques.

Lemma 1. For any FTT t, M |=′ t iff M |= trans(t) �

4.2 A SAT-Based Automated Test-Suite Generation

An Algorithm Design and Early Implementation. First we derive the
following theorem from Lemma 1:

Theorem 1. For any FTT t, �t� = {M◦ |M |= trans(t)}. �

This theorem indicates that in order to obtain the test suite of a given FTT t
according to Definition 4, it suffices to follow the procedures of: (1) to derive
all the models that satisfy the prop. formula encoded from the FTT t i.t.o the
classical logic, and (2) to process each of the models by taking one that intersects
with the leaf nodes of the FTT and (3) to take the union of the processed models.
And the algorithm design follows this scheme.

The test-suite generation algorithm is displayed in Fig. 3. The input is an
FTT and the output is a set of corresponding test cases (i.e., a test suite). The
algorithm mainly consists of the following four components.

1. The first component encodes an FTT to a prop. formula according to the
encoding rules in Table 2.

Test-Case Design by Feature Trees 465

2. The second is a conjunctive normal form (CNF) translator, which translates
a prop. formula into it in a CNF.

3. The third is an all-solutions SAT-solver (ALLSAT), inputting the encoded for-
mula of FTT in CNF, finds all models for it. We have implemented an ALL-

SAT using the blocking algorithm (which finds all models by iteratively calling
a SAT solver while at each call blocking clauses which block finding a model
already found is added) by extending MiniSAT[6].

4. The fourth processes a set of models obtained from the ALLSAT, by taking
one that intersects with the leaf nodes of the FTT, and produces the test
suite by collecting the processed models (i.e., test cases).

Computational Complexity. To analyze the complexity of the test-case gen-
eration algorithm, we analyze the complexity of each component 1-4. Given an
FTT t, we denote the number of features as n.

1. The length of a formula derived by trans is the sum of sub-formulas by
applying each rule of (a)–(f). Thus it suffices to analyze rule (d), which
makes the longest sub-formula among of (a)–(f) in Table 2. The length of a
sub-formula by (d) for an xor-decomp. with k-children is bound by O(k×k).
Both the number of children of any feature and that of xor-decomp. in t are
bound by n− 1. Hence the length of a formula by trans is bound by O(n2).

2. We have implemented an algorithm to transform a prop. formula using the
standard laws of logical equivalences, and have produced a clause set that is
exponential w.r.t. the size of the original formula in the worst case.

3. The SAT-problem is NP-complete, and the worst time complexity of the
algorithm we use (i.e., MiniSAT[6, 12]) is O(2n) where n indicates the number
of the prop. variables. Also the number of models for a given formula is bound
by 2n. Hence, the complexity of ALLSAT is bound by 2n ×O(2n) ∈ O(4n).

4. The complexity of the set intersection of two sets with size k is O(k2). The
number of nodes and the leaf nodes of an FTT are bound by n. There are at
most 2n models. Hence, the complexity is bound by 2n×O(n2) ∈ O(2n×n2).

Hence the bottleneck of the algorithm is the component of CNF-transformation
and ALLSAT, whose complexity are exponential to the input FTT t.

Experimental Results. Besides the complexity analysis, we provide experi-
mental results to show feasibility of the implementation from the viewpoint of
computational cost of FOT. According to the above analysis of computational
cost of the test-suite generation algorithm, we know that its bottleneck lies on
computing all the models using ALLSAT, which takes exponential time w.r.t. the
size of FTT. But in practice the computational cost is cheaper than the theoret-
ical analysis. One reason is that the off-the-shelf SAT-solver we use, i.e., MiniSAT,
runs faster than the above analysis. Second, the number of the models for the
formula encoded from an FTT is much less than 2n in real settings. Also, the
number of test cases varies depending on the structures of FTT. The ratio of
and/xor -decomp. and the ratio of CTCs in an FTT mainly affect the number of
test cases; i.e., the more and -decomp. and CTCs there are in an FTT, the less test

466 T. Kitamura et al.

Table 3. Experimental results

Size of an FTT (n)
ctcr(%) 20 30 40 50 60

0
time (s) 0.09 0.67 2.04 9.65 20.43

test cases 120 960 6912 19008 43200

10
time (s) 0.04 0.35 0.82 3.65 4.71

test cases 92 432 2464 8580 9160

20
time (s) 0.03 0.09 0.53 1.52 2.01

test cases 75 238 916 2710 4244

30
time (s) 0.01 0.07 0.17 0.51 0.93

test cases 26 120 288 880 1666

40
time (s) 0.01 0.06 0.06 0.12 0.14

test cases 13 45 96 122 168

cases are derived. Table 3 shows an experimental result, presenting the time and
the number of test cases, where ctcr stands for the CTCs ratio (i.e., the ratio of
CTCs w.r.t the size of FTT). The experiments were conducted on a machine with
an Intel Core2 Duo CPU P8700 @2.53 GHz, 2.96 GB of RAM and Windows 7.

4.3 SAT-Based Correctness Checking of Test-Case Designs

An important class of various computer-aided analysis techniques on FMs is cor-
rectness checking. Generally, correctness checking includes consistency checking
and detecting dead/common features. These notions are interpreted in the set-
ting of test-case design as follows: an FTT, i.e., a test-case design, is inconsistent
if no test case can be derived from it; a feature is dead in an FTT if it does not
appear in any of the test cases of the model derived from it; and a feature is
common in an FTT if it appears in all the test cases derived from it.

Interestingly, these analysis operations on correctness checking can be reduced
to a simple satisfiability checking problem of a prop. formula. The consistency
of a test-case design by a FTT can be examined by checking the satisfiability of
the formula φ encoded from the FTT (t), i.e., φ = trans(t). Existence of a dead
feature f in an FTT can be examined by checking the satisfiability of the formula
φ ∧ f ; i.e., f is a dead feature if φ ∧ f is unsatisfiable. Similarly, existence of a
common feature f in a model can be examined by checking the satisfiability of
φ ∧ ¬f ; i.e., f is a common feature if the formula is unsatisfiable.

We have introduced these analysis operations on correctness checking of test-
case designs in FOT, which help validation of test-case designs by FTT. As shown
in the next section, the consistency checking, especially detecting dead features,
are quite useful for finding defects in test-case designs since they often enter
test-case designs and their existences are undesirable.

Test-Case Design by Feature Trees 467

prioritytypestatus

Task ID

TaskExecution
level

No
constraintsPriemptive

activateTask

Task
ISR2

ISR3

valid

invalid

suspend

run

ready

wait

basic extended high

lowYes NoYes No

max
activation

not
reached

reachedequiv

<<mutex>>

<<mutex>>

<<mutex>>

<<mutex>>
<<mutex>>

<<mutex>>

Fig. 4. A test-case design by FTT for API “activateTask” in OSEK-OS

5 A Case Study: A Test-Case Design for OSEK-OS

To demonstrate feasibility of FOT in real practice, we show a case study where
we applied FOT to test case design for the OSEK-OS[18, 19], a real-time OS for
automotives. Specifically, using FTT we make a test-case design for an API func-
tion “activateTask”, which transfers a task specified with parameter “TaskID”
from the “suspended” state into the “ready” state. We analyzed the specification
[18], and made its test-case design as in Fig. 4. The figure shows the test-case
design with an FTT that consists of 30 features and 6 CTCs, and 192 test cases
are obtained from it.

Several observations obtained from the case-study are as follows:

1. Test-case designs with a variant of and-or tree are easily accepted by de-
velopers in practice because and-or trees are a common analysis technique
and close to human thinking. Also this analysis technique using and-or trees
can allow them to focus on designing test cases released from direct edits on
logical formulas, which are often error-prone.

2. Efficiency of the automated analysis techniques of FOT, i.e, automated test-
suite generation and correctness checking, whose experimental results are
shown in Tab. 3, is practical enough in our case studies.

3. Unfortunately, FTT is not expressive enough to express any desired test suite
in any settings, because test-case designs in real development are sometimes
extremely detailed and beyond the expressiveness of FTT. As a result, manual
arrangements of test cases such as to add, delete and modify test cases are
required to cover some detailed cases. But this should not be taken as a
critical defect of FOT, since CTM, which is the state-of-the-art method of
test-case design for BBT often used in real developments, also inherently has
this aspect of expressiveness. (See related discussions in Section 8.)

4. Detecting dead features for correctness checking of test-case designs by FTT is
quite useful in practice. Test-case designs are often complex, and hence prone
to contain deficiencies. In the test-case design in Fig. 4, the “invalid” and
“No” (under “Preemptive”) features are the dead features. Existence of dead

468 T. Kitamura et al.

Test-case design by an FTT
An automatically
generated test-suite

CTCs are expressed as attachments to a
feature; e.g, the 5 CTCs related to the
“invalid” feature are listed under the feature

Test-case 3 consists of the “ISR2”, “Valid”, “ready”,
“basic”, “high” and “not_reached” feature

Fig. 5. The GUI tool for FOT

features indicates that some errors may be contained in the test-case design,
or these dead features may have to be taken care of by manual arrangements.

5. Test-case designs by FTT can be used for test documentations such as a
system specification for testing. These designs can also be used as communi-
cation media among developers, and as evidence for certification. The high
readability of FTT, achieved by the compact and visual representation by
diagrams, and by the formal semantics to unify interpretation of FTT con-
tributes to the aspect of documentations.

6. The readability of the diagram representations of FTT can be preserved, even
with many CTCs drawn all over the tree, together with the GUI-based assistant
tool. We explain the tool’s support for readability in the next section.

6 Tool Development

We have developed a GUI tool to assist FOT. This section will briefly explain this
tool. The tool development shows not only our current status of the development
of FOT, but is also essential in the test-case design method of FOT.

Describing FTT via the GUI. Fig. 5 shows the main GUI of the tool. It is separated
into two panels: the left-hand-side panel where users describe and input an FTT,
and the right-hand-side panel which displays the automatically generated test
cases in a matrix form.

In designing test cases by describing an FTT via the GUI, several advantages as-
cribed to the properties of FTT become possible. First, the GUI prevents inputting
illegitimate FTT w.r.t. the defined syntax in Definition 1. That is, the GUI lets
users input only a legitimate FTT, which then allows them to concentrate on
the logic of test-case designs. The second advantage centers on scalability w.r.t.

Test-Case Design by Feature Trees 469

Folding/Unfolding of sub-trees by double-clicking

Fig. 6. The number of test-cases can be controlled by folding/unfolding sub-trees

the readability of the diagram representations of FTT. As shown in Fig. 5 in
the FTT description of in the GUI, each CTC is expressed as an attachment to
features involved in the description. Due to the GUI design, even with a number
of CTCs, the diagram representation keeps readability.

Controlling the Number of Test Cases Flexibly. In general, the system quality
guaranteed by testing and its cost is a trade-off. That is, the more the cost for
detailed testing is allowed, the higher the quality of the system is guaranteed.
On the other hand, the resources for testing are limited in real developments.
Therefore, it is desirable for a testing method to be able to flexibly control system
quality guaranteed by testing by depending on its affordable resources.

FOT is equipped with such a mechanism; i.e., it is equipped with a device
to flexibly control the number of test cases. The device is realized by using a
notion of abstraction on tree structures in the FTT such as folding and unfolding
sub-trees. Fig. 6 demonstrates this device in the tool, using the example of the
computer vision system. The left side in Fig. 6 shows the test-case design for
the computer vision system in Section 2 using the tool, where 17 test cases
are obtained. The number can be flexibly reduced, for instance, by abstracting
the “triangle” feature by folding its sub-tree; i.e., the number of the test cases
obtained from the tree whose “triangle” sub-tree is folded, can be reduced to 11.

7 Discussions and Related Work

CTM (Classification Tree Method) [5, 9–11] is a model-based and combination-
based test-case design method for BBT; i.e., a test case is designed as a model
of a tree diagram, and test cases are obtained automatically from it using a
combination technique. In CTM, the model to represent a test-case design consists
of the three separate description components: (1) a “classification-tree diagram”,
which is a tree-based diagram to represent the basic structure of test-case design,

470 T. Kitamura et al.

Combination rule

Dependency rule

Classification diagram

Fig. 7. Test-case design for the computer vision system in CTM

(2) “combination rules” to define combination rules based on the classification-
tree diagram, and (3) “dependency rules”, written in prop. logic, to exclude
nonsense test cases. Fig. 7 shows a descriptive example of a test-case design for
the computer vision system using CTM to produce the same test suite in Tab.
1. FOT can be seen as a comparable test-case design method to CTM, but its
advantages over CTM are the following:

The first advantage is on the modelling paradigm for test-case designs. In
FOT, a test-case design is represented as an FTT in a single diagram based on
and-or logical trees. We inherit the single and compact design of FMs, often rec-
ognized as a characteristic of FMs, in FTT, which brings higher readability. The
model design of FTT requires less complex descriptions than CTM, bringing higher
productivity; i.e., complex descriptions together with direct edits of the logical
formula is often a main barrier preventing wider adoption of such methods in
real developments. Also, the single representations of FTT achieve higher main-
tainability; the separate descriptions in CTM often require efforts because such
changes in a description component may affect the others. Also, the model design
based on and-or trees achieves higher availability as a common and traditional
analysis technique. In fact, the model design is highly inspired by Fault Tree
Analysis (FTA) [7], which is an established analysis technique based on and-or
trees in reliability engineering. Also, the logic-based model of FTT facilitates the
logic-based analysis in FOT.

On the other hand, theoretically CTM is more expressive than FTT. The differ-
ence lies on the expressiveness of a description device to exclude nonsense test
cases: i..e, CTCs in FTT, which consists of the two operators mutex and requires,
and the dependency rules in CTM, which deals with a full prop. formula. But
from our case studies, the advantage of the expressiveness of CTM is mostly in
theory. From the case studies, we learned only simple rules are needed to real-
ize such devices, and CTCs are expressive enough for this purpose. In place of
expressiveness, FTT realizes the above-mentioned nice properties such as read-
ability, productivity, and maintainability, etc. We have mentioned in Section 6
that FTT may not be expressive enough for some settings. But this is due to the

Test-Case Design by Feature Trees 471

tree structure of FTT rather than due to the expressiveness of CTCs, and hence
CTM also has this aspect.

Second, FOT has a formal semantics, which is missing in CTM. The semantics
makes a basis for reliability by preventing the “ambiguity problem” which causes
faulty developments. In addition, FOT has the advantage that due to its compact
model design it can be formalized with a small set of constructs. Conciseness is
not only important in a scientific sense, but also in an engineering sense since it
requires less cost to learn the method and makes the method easy to extend.

Third, a SAT-based algorithm is designed and implemented for automated test-
suite generation. An obvious advantage of the design is efficiency. The design can
benefit from recent advances in theory and in the techniques of SAT-solvers [6].
For instance, FOT takes only about 20 seconds to generate 64200 test cases, while
CTM tool[10, 11] takes 73 minutes in a similar setting. Another advantage is that
the correctness of the algorithm is easy to prove as we did, making FOT more
reliable; i.e., it is guaranteed the test suite generated by the algorithm is always
correct (i.e., the test suite generated by the algorithm is sound and complete
w.r.t a test-case design and the semantics in Definition 3.).

Fourth, FOT is equipped with several automated analysis operations for cor-
rectness checking for test-case designs such as consistency checking and detecting
dead/common features, which are absent in CTM. These analysis operations are
quite useful, and we find them in several case-studies for finding deficiencies in
test-case designs by FTT, and validating test-case designs.

8 Conclusion and Future Research

Conclusion. In this paper, we have developed a test-case design method for
BBT called “FOT (Feature Oriented Testing)”, by applying analysis and design
methods of FMs originally developed for SPLs. We designed a test-case design
language as a model-based and combination testing method for BBT based on
FMs. A formal semantics of FTT is developed by means of test-cases; this makes
a firm underpinning of the method. Also we have develop and implemented an
automated test-suite generation and correctness checking of test-case designs us-
ing SAT, as computer-aided analysis techniques of the method. Furthermore, we
have demonstrated feasibility of FOT with several dimensions of implementation,
analysis of computational cost, experiments, a case study, and an assistant-
tool development. We have also clarified the technical and practical advances of
FOT to CTM, which is the-state-of-the-art testing method for BBT.

Future Research. There are many directions for further research on the method.
The first is to introduce to FOT other theories and computer-aided techniques of
FMs, including refactoring, diagnosis and efficiency analysis. Another direction
is to extend FOT with useful notions for test-case design such as the notion of
priority. In addition, incorporating other testing methods for BBT such as com-
bination testing methods (e.g., n-wise testing, etc) and input-domain analysis
techniques (e.g., equivalent partitioning, boundary value analysis, etc) to FOT are
important directions for our future research.

472 T. Kitamura et al.

References

1. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

2. Benavides, D., Cortes, A.R., Trinidad, P., Segura, S.: A survey on the automated
analyses of feature models. In: XV Jornadas de Ingenieria del Software y Bases de
Datos (2006)

3. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature
Models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

4. Cao, F., Bryant, B.R., Burt, C.C., Huang, Z., Raje, R.R., Olson, A.M., Augus-
ton, M.: Automating feature-oriented domain analysis. In: Software Engineering
Research and Practice, pp. 944–949 (2003)

5. Chen, T.Y., Poon, P.L., Tse, T.H.: An integrated classification-tree methodology
for test case generation. International Journal of Software Engineering and Knowl-
edge Engineering, 647–679 (2000)

6. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Ericson, C.: Fault tree analysis - a history. In: The 17th International Systems
Safety Conference (1999)

8. Fan, S., Zhang, N.: Feature Model Based on Description Logics. In: Gabrys, B.,
Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4252, pp. 1144–1151.
Springer, Heidelberg (2006)

9. Grochtmann, M.: Test case design using classification trees. In: The International
Conference on Software Testing Analysis (1994)

10. Grochtmann, M., Grimm, K., Wegener, J., Grochtmann, M.: Tool-supported test
case design for black-box testing by means of the classification-tree editor. In: The
1st European International Conference on Software Testing Analysis, pp. 169–176
(1993)

11. Grochtmann, M., Wegener, J.: Test case design using classification trees and the
classification-tree editor cte. In: QW (1995)

12. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Comput. Syst. Sci. 62(2),
367–375 (2001)

13. Janota, M.: Do SAT solvers make good configurators? In: ASPL, pp. 191–195
(2008)

14. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon Uni-
versity Software Engineering Institute (November 1990)

15. Kang, K.C., Kim, S., Lee, J., Kim, K.: FORM: a feature-oriented reuse method,
annals of software engineering. Annals of Software Engineering 5, 143–168 (1998)

16. Mannion, M.: Using First-Order Logic for Product Line Model Validation. In:
Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg
(2002)

17. Mendonca, M., Wsowski, A., Czarnecki, K.: SAT-based analysis of feature models
is easy. In: SPLC, pp. 231–240 (2009)

18. OSEK/VDX operating system specification 2.2.3 (2005),
http://www.osek-vdx.org/

19. OSEK/VDX operating system test plan, version 2.0 (1999)

http://www.osek-vdx.org/

Test-Case Design by Feature Trees 473

20. Schobbens, P., Heymans, P., Trigaux, J., Bontemps, Y.: Generic semantics of fea-
ture diagrams. Computer Networks 51(2), 456–479 (2007)

21. Schobbens, P., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a
formal semantics. In: RE, pp. 139–148 (2006)

22. Sun, J., Zhang, H., Li, Y.F., Wang, H.H.: Formal semantics and verification for
feature modeling. In: ICECCS, pp. 303–312 (2005)

23. Zhang, W., Zhao, H., Mei, H.: Binary-Search Based Verification of Feature Models.
In: Schmid, K. (ed.) ICSR 2011. LNCS, vol. 6727, pp. 4–19. Springer, Heidelberg
(2011)

Model-Based Static Code Analysis

for MATLAB Models

Zheng Lu and Supratik Mukhopadhyay

Department of Computer Science
Louisiana State University

Abstract. MATLAB is widely used in scientific, engineering, and
numerical computations. Complex systems such as digital signal pro-
cessors, process control systems, etc. are modeled in MATLAB and an-
alyzed; C implementation of the system can be automatically generated
from the validated MATLAB model. We combine static analysis tech-
niques with model-based deductive verification using SMT solvers to pro-
vide a framework to analyze MATLAB code. The analyzer is generated
by translating the collecting semantics of a MATLAB script to a formula
in first order logic over multiple underlying theories. Function calls in a
script can be handled by importing SMT assertions obtained by analyz-
ing MATLAB files containing function definitions. Logical specification
of the desired program behavior (rather its negation) is incorporated as
a first order logic formula. An SMT-LIB formula solver treats the com-
bined formula as a “constraint” and “solves” it. The “solved form” can
be used to identify logical errors in the MATLAB model.

1 Introduction

Over the past few years, model-driven engineering [1] is being widely used for
building complex systems. In a model-driven approach, one first develops a high-
level model of the system. The model not only serves as a documentation of the
system (just as a plan serves as a blueprint of a building construction) but also
enables exploration of the design space, promotes understanding of the system by
separating concerns, and allows validation. It can be refined in successive steps to
generate code implementing the system. Several domain-specific languages have
been developed to express models in different areas of systems engineering such
as UML [2], Labview [3], MATLAB [4], etc. Most of these languages have only
semi-formal semantics. Hence it is extremely difficult to understand complex
designs and reason about their correctness.

Of late, MATLAB has become very popular among engineers and scientists
performing scientific, engineering, and numerical computations. Complex sys-
tems such as digital signal processors, control systems, etc. are modeled at a
high-level in MATLAB and analyzed; C implementation of the system can be
automatically generated from the validated MATLAB model. Many of these sys-
tems are deployed in mission-critical environments where any malfunction can
result in loss of life and/or property. Hence, it is essential that automated tools

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 474–487, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Model-Based Static Code Analysis for MATLAB Models 475

be developed for formally verifying MATLAB models ensuring that a system
performs in accordance with its requirements.

MATLAB is not a statically typed language. The standard MATLAB
Workspace does not provide any tools for validating models other than manual
debugging by setting breakpoints. Given the complexity of the models developed
using MATLAB, manual debugging certainly can not be recommended especially
if the resulting system is deployed in a mission-critical environment. One can
purchase tools such as PolySpace [5] and VectorCast [6]. PolySpace performs
static analysis of MATLAB code based on Abstract Interpretation techniques
[7]. However, PolySpace is known to be inefficient; it has been observed that it
takes several days to analyze practical models involving 100,000 lines of code [8].
Besides, PolySpace does not provide any formal language for describing proper-
ties expressing absence of deep logical errors. VectorCast provides a framework
for testing models and code for embedded systems.

We combine static analysis techniques with model-based deductive verification
using SMT solvers [9] to provide a framework to analyze MATLAB code. The
analyzer is generated by translating the collecting semantics of a MATLAB script
to a formula in first order logic over multiple underlying theories. Function calls
in a script can be handled by importing SMT assertions obtained by analyzing
MATLAB files containing function definitions. Logical specification of the desired
program/model behavior (rather its negation) is incorporated as a first order
logic formula. An SMT-LIB formula solver treats the combined formula as a
“constraint” and “solves” it. The “solved form” can be used to identify logical
errors in the MATLAB model. We have implemented our framework in Java
with Yices [10] as the SMT solver and used it to detect logic errors in several
MATLAB models obtained from [11].

2 Related Work

Techniques for system verification and validation fall into three main categories.
The first category involves informal methods such as testing and monitoring
[12] [13]. Such techniques scale well; they are extensively used in practice to
validate systems. Traditional testing methods [14], however, are too ad hoc and
do not allow for formal specification and verification of high-level logical prop-
erties that a system needs to satisfy. In the realm of mission-critical systems
where exponential blow up in the number of possible situations to be dealt with
is inevitable, traditional testing techniques can hardly be used to provide any
amount of confidence. The second category of techniques for verification and
validation involves formal methods. Traditional formal methods such as model
checking [15] and theorem proving [16] are usually too heavyweight and rarely
can be used in practice without considerable manual effort.

Model checking is an automatic approach to verification, mainly successful
when dealing with finite state systems. It not only suffers from the infamous state
explosion problem but also requires construction of a model of the system. Such a
construction effort not only requires skill and ingenuity in model building but also

476 Z. Lu and S. Mukhopadhyay

a deep understanding of the operational semantics of the target system. Theorem
proving approaches are not only labor intensive but also requires considerable
skill in formal logic.

The third category of techniques for software verification and validation are
static analysis [17] and abstract interpretation [7]. Static analysis refers to the
technique(s) for automatically inferring a program’s behavior at compile time.
While static analysis tools have met with tremendous practical success and have
been routinely integrated with state of the art compilers, such tools can only de-
tect shallow and simple errors due to their lack of deductive power. For example,
traditional static analysis tools cannot detect the presence of deadlocks or the
violation of mutual exclusion in concurrent programs. Abstract interpretation is
a technique for collecting, analyzing, and comparing the semantics of programs.
It has been successful in analyzing properties of complex programs [7]. The next
few paragraphs review the most successful approaches to program analysis.

2.1 Static Analysis Techniques

In recent years, much work has been done on static analysis of software. Some
static analysis tools, such as Uno [18], Splint [19], Polyspace [5], Codesurfer [20],
PREfix and PREfast [21], ESP [22], and PAG [23] perform lightweight data flow
analysis. Coverity [24] performs data flow analysis as directed by checkers writ-
ten in MetaL, a language designed to encode checking automata. Astree is a
static program analyzer that is aimed at proving absence of runtime errors in
embedded programs. Astree can handle only a “safe” subset of C, rather than
the full C language. Also, it applies only to particular runtime errors rather than
general properties of programs. Halbwachs et al [25] use linear relation analy-
sis for discovering invariants in terms of linear inequalities among the numerical
variables of a program. Their techniques have been used to validate (e.g., analyze
delays) synchronous programs written in the language Lustre. Several abstrac-
tions have been considered to provide an approximate (conservative) answer to
the validation problem such as widenings, convex approximations and Carte-
sian factoring [26]. These approximations are implemented using the polka [25]
polyhedral library. Alur et al [27] have used predicate abstraction for analyzing
hybrid systems. In this technique, a finite abstraction of a hybrid automaton is
created a priori using the initial predicates provided by the user. Set based tech-
niques for detecting races in relay ladder programmable logic controllers have
been described in [28]. Context-sensitive analysis using deductive database tech-
niques [29] are similar to ours. However, this technique alone is insufficient to
achieve the goals we aim for due to the limited expressiveness of Datalog. Typed
assembly languages [30] help detect security flaws in code. However, it is difficult
to provide any insight to the developer in the event of such detection.

Verification tools for UML [31] transform UML diagrams into SMV [32] input.
Specifications can be written in the branching time temporal logic CTL [15].
Doherty et. al. [33] perform kind analysis for MATLAB programs to distinguish
between identifiers that denote functions and those that denote variables (e.g.,
array variables). Such a tool can be used as a preprocessor for an analyzer that

Model-Based Static Code Analysis for MATLAB Models 477

checks for deep logical properties. Joisha and Banerjee [34] use a lattice-theoretic
approach to infer types in a MATLAB program. However, their approach does
not provide a framework for specifying and verifying deep logical properties.
Kaufmann et. al. [35] use the first order logic theorem prover ACL2 [36] to
verify Labview programs.

Tools like SofCheck Inspector [37] inspect every method of Java programs
and compute their pre and post conditions. Findbugs [38] analyzes Java byte
code and detects bugs due to common programming mistakes based on bug pat-
terns. However, it is difficult to provide any meaningful insight to the developer
from bugs found at the byte code level. Besides, it is difficult to provide bug
patterns for deep logical errors. Fortify’s [39] source code analysis engine based
on verification condition generation. Boon [40] uses range analysis techniques to
check for array bounds violations in C programs. However, it is not able to verify
deep logical properties in MATLAB models. Klocwork provides a static analysis
framework [41]. However, unlike the presented framework, their framework is not
model based. In contrast our framework statically analyzes source code and tries
to infer “deep” bugs. Jif [42] is a tool for guaranteeing noninterference properties
in Java programs. In contrast our framework uses model-based deductive static
verification to uncover bugs.

3 Preliminaries

3.1 MATLAB Features

MATLAB is a dynamically typed language. A variable in MATLAB is considered
as an array by default; so every value has some number of dimensions. Variables
need not be declared, they can accept any values that are assigned to them. The
type of a numerical value in MATLAB is by default double. The built-in types
of MATLAB can be summarized as follows:

– double, sin: floating point values;
– int8, int16,int32,int64: integer values;
– logical: boolean values;
– char: character values;

MATLAB functions are defined in .m files which have the same names as the
functions. A function named comp() needs to be defined in a file with name
comp.m. This file needs to be placed in the “current” directory or included in the
MATLAB path. MATLAB functions can accept input arguments and output
results in contrast with MATLAB scripts that can not accept any input nor
generate outputs (other than printing on the workspace). MATLAB scripts are
sequences of commands for simple computations and can invoke functions.

3.2 SMT-LIB Formulas and Yices

Satisfiability Modulo Theories (SMT) libraries [9] provide a framework for check-
ing the satisfiability of first-order formulas with some background logical the-
ories. SMT-LIB is an SMT library that provides a standard description of the

478 Z. Lu and S. Mukhopadhyay

background theories used in SMT systems; it gives a common input and output
language for SMT solvers.

An SMT-LIB formula instance is a first-order logic formula in SMT-LIB
syntax; some function and relation symbols occurring in the formula have se-
mantic interpretations involving different types of first order structures, and
SMT formula satisfiability is the problem of determining whether such a for-
mula is satisfiable. We can consider SMT satisfiability as an instance of the
Boolean satisfiability problem (SAT) in which some of the binary variables are
replaced by predicates over a suitable set of variables that range over differ-
ent domains. The relation/predicate symbols include linear inequalities, such as
3x+2y−z � 0 or equalities involving uninterpreted function symbols; for exam-
ple, f(f(u, v), v) = f(u, v) where f is an unspecified function of two unspecified
arguments.

The predicates are classified according to the theory they belong to. For in-
stance, linear inequalities over real variables are evaluated using the rules of the
theory of linear real arithmetic; some predicates involving uninterpreted terms
and function symbols are evaluated using the rules of the theory of uninter-
preted functions with equality. Other theories include the theories of arrays and
list structures, and the theory of bit vectors.

Yices [10] is an efficient SMT-LIB formula solver that decides the satisfiabil-
ity of arbitrary formulas containing uninterpreted function symbols with equal-
ity, linear real and integer arithmetic, scalar types, recursive datatypes, tuples,
records, extensional arrays, fixed-size bit-vectors, quantifiers, and lambda ex-
pressions. An example of constraints in the SMT-LIB formula syntax is given
below

(set-logic QF_LIA)

(declare-fun x () Int)

(declare-fun y () Int)

(assert (= (+ x (* 2 y)) 20))

(assert (= (- x y) 2))

(check-sat)

In this example, we use the theory QF_LIA, quantifier-free linear integer arith-
metic, to declare two functions which return integer values. We then assert two
constraints in quantifier-free linear integer arithmetic. The satisfiability problem
is to check if there exists an assignment of the functions x and y that satisfies
these assertions.

4 Verification Approach

Fig 1 describes the architecture of our verification approach. The abstract col-
lecting semantics of a MATLAB script (or a function) is a represented as a first
order logic constraint in the SMT-LIB syntax. This constraint will have “holes”
or “markings” corresponding to invocation of functions in the script/function
which need to get interpreted. Models of functions are created from collecting

Model-Based Static Code Analysis for MATLAB Models 479

Fig. 1. Architecture of Our Verification Approach

semantics of functions described in function files (represented as first order logic
constraints in the SMT-LIB syntax). These models are used to unmark the ab-
stract collecting semantics by filling in the “holes”. The negation of the property
specification expressed as a formula in the SMT-LIB syntax is added to the com-
bined constraints. The result is an “unmarked” first order logic formula that is
presented to the decision procedure for satisfiability checking. We explain the
steps in detail below. Let’s consider the following example:

1 f u n c t i o n s=comp (d)
2 advance = 0 ;
3 f o r x=1:50
4 d = d+1;
5 i f d<50
6 advance = 1/d ;
7 end
8 end
9 f u n c t i o n bug ()

10 x = 10 ;
11 comp(x) ;
12 x = −4;
13 comp(x) ;

In the example above, d is (the integer) is the formal parameter to the function
comp() (call-by-value). It is incremented by 1 every time the loop executes. It
is then used to determine the value of the variable advance. Checking whether
the division operation at line 6 will cause a division-by-zero requires an inter-
procedural analysis to determine which values will be passed to the function
comp().

480 Z. Lu and S. Mukhopadhyay

In the code example, two values are passed to the function comp(). When
called with x=10, d increases from 11 to 49. Line 6 will not result in a division
by zero. However, when comp() is called with argument x=-4, d increases from
-3 to 49. At some point, d will be equal to 0, causing a division by zero at line
6. A simple syntax check will not detect this run-time error.

We, first, generate a set of abstract constraints to describe the collecting se-
mantics of the program (function or script), which overapproximates all the pos-
sible values for each variable. The constraints serve as an abstract intermediate
representation of the code. Based on these constraints, we generate a dataflow
graph of the program. The dataflow graph is used to generate SMT-LIB formulas
describing the abstract collecting semantics. The abstract constraints represent-
ing the collecting semantics of the comp function are described in Figure 2; the
dataflow graph of the function comp is described in Fig 3. In this figure, the
integer number in each node is used to indicate the line number in the program.

Fig. 2. Constraints Fig. 3. Dataflow

From the dataflow graph, we create an assertion for each label. For example,
the first node in the graph is advance=0, we can create (assert (= advance(0) 0))
. This indicates that advance is initialized to 0. The SMT-LIB formulas resulting
from the dataflow graph in Figure 3 is shown below.

1 (se t− l o g i c AUFLIA)
2 (d e c l a r e−fun advance (I n t) I n t)
3 (d e c l a r e−fun d (I n t) I n t)
4 (a s s e r t (= advance (0) 0))
5 (a s s e r t (f o r a l l x I n t) (=> (and (< x 50) (> x 2))
6 (and (and (= d (1) (+ d (0) 1))
7 (= d (x) (+ d (x−1) 1))))

Model-Based Static Code Analysis for MATLAB Models 481

8 (and (=> (< d (1) 50) (= advance (1) (d i v 1 d (1))))
9 (=> (< d (x) 50)(= advance (x) (d i v 1 d (x)))))))

10 (check−s a t)

For the for-loop ranging from 1 through 50, we first describe the update of d and
advance in the first iteration of the loop; here d(0) represents the initial value of
d, i.e., the value with which the function comp is invoked. A universal quantifier
over x with domain [2, 50] is used to define the updates of d and advance during
the second through the fiftieth iteration of the loop.

To detect if the program has a divide-by-zero error, we need to check if d can
become zero within the for loop; this is the analysis aspect for this program. This
analysis aspect is incorporated into the SMT-LIB formula characterizing the col-
lecting semantics of the program by adding the conjunct (assert (exists x Int
) (and (and (<= x 50)(>= x 1)) (= d(x) 0))). The combined SMT-LIB formula
was found to be satisfiable by the Yices solver indicating the program can have
a division by zero error. While Yices is incomplete for quantified formulas, in
most practical cases it was able to come up with a proof.

Let’s consider another example in MATLAB:

1 i f edges top==1
2 k=K;
3 a=1;
4 e l s e i f edges top==2
5 k=K∗ (2ˆ0 . 5) ;
6 a=1/(2∗ exp (−0.5)) ;
7 e l s e i f edges top==’ tky ’
8 k=K∗ 5 ˆ 0 . 5 ;
9 a=25/32;

10 end
11 Gn=[I (1 , : , :) ; I (1 : row− 1 , : , :)]− I ;
12 Gs=[I (2 : row , : , :) ; I (row , : , :)]− I ;
13 Ge=[I (: , 2 : co l , :) I (: , co l , :)]− I ;
14 i f edges top==1
15 Cn=1./(1+(Gn/k) . ˆ 2) .∗ a ;
16 Cs=1./(1+(Gs/k) . ˆ 2) .∗ a ;
17 Ce=1./(1+(Ge/k) . ˆ 2) .∗ a ;
18 Cw=1./(1+(Gw/k) . ˆ 2) .∗ a ;
19 e l s e i f edges top==2
20 Cn=exp (−(Gn/K) . ˆ 2) .∗ a ;
21 Cs=exp (−(Gs/k) . ˆ 2) .∗ a ;
22 Ce=exp (−(Ge/k) . ˆ 2) .∗ a ;
23 end

In this example, there is a typical mistake that almost all the developers make.
In line 22, the statement should be Cn=exp(−(Gn/k).ˆ2).∗a;; but in the program,
the developer typed in the wrong variable name K. This error cannot be detected
by the compiler; no error is reported at runtime either; but the program will

482 Z. Lu and S. Mukhopadhyay

simply spit out wrong results. Our approach can detect this problem, since we
need to generate constraints to overapproximate all the possible values of each
variable. In this example, if the variable edgestop is 1, the value of k is K∗(2ˆ0.5),
and the value of variable Cn is exp(−(Gn/k).ˆ2).∗a. We can build the constraints
as (edgestop=1) ⇒ (k=K∗(2ˆ0.5))

∧
(Cn=exp(−(Gn/k).ˆ2).∗a). To verify the

correctness of this MATLAB code, we need to set the post condition. Since
the value K∗(2ˆ0.5) > K, we can set the condition Cn>exp(−(Gn/15).ˆ2).∗a; as
the post condition to detect this variable misuse error. The SMT formulas are
followings:

1 (se t− l o g i c AUFLIA)
2 (d e c l a r e−fun edges top () I n t)
3 (d e c l a r e−fun k () I n t)
4 (d e c l a r e−fun K () I n t)
5 (d e c l a r e−fun Cn () I n t)
6 (d e c l a r e−fun Gn () I n t)
7 (d e c l a r e−fun a () I n t)
8 (d e c l a r e−fun s q r t (I n t))
9 (d e c l a r e−fun pow(Rea l I n t) Rea l)

10 (d e c l a r e−fun exp (Rea l) I n t)
11 (d e f i n e−fun d i v ((x Rea l) (y Rea l)) Rea l
12 (i f (not (= y 0 . 0))
13 (/ x y)
14 0 . 0))
15 (a s s e r t (= K 15))
16 (a s s e r t (= edges top 1))
17 (a s s e r t (=> (= edges top 2) (= k (∗ K (s q r t (2))))))
18 (a s s e r t (=> (= edges top 2) (= Cn exp (∗ (pow (d i v Gn k)

2) a))))
19 (a s s e r t (=> (= edges top 2) (> Cn exp (∗ (pow (d i v Gn K)

2) a))))
20 (check−s a t)

If the solver returns sat for the formula above, the program has a variable misuse
error.

We now describe an algorithm for converting an dataflow graph of a program
to SMT-LIB formulas that capture its collecting semantics. Let G = 〈N , E〉
be the dataflow graph of the program. In this graph, each node represents a
statement in the program. We represent the if and loop conditions as edge labels
in the graph. We can generate SMT-LIB formulas capturing collecting semantics
of the program using algorithm 1 that formalizes the intuition described above.

In this algorithm, we first visit each label in the dataflow graph to declare
functions in SMT for all variables that are used in the code. Then, we visit each
node to detect if there are any nodes that have children which have smaller
line number than itself; such a node indicates a loop in the code. Assume that
the conditions on this loop are given by expr1 : expr2. For each assignment
statement inside this loop, we translate the statement as follows. Let d be the

Model-Based Static Code Analysis for MATLAB Models 483

Algorithm 1. Converting program to SMT Algorithm

for e ∈ E do
if e is a simple assignment statement V AR = EXP then

Create a definition (define-fun VAR (EXP)) in SMT;
end if
if e is a function call statement FUN() then

Create an assertion (assert (= FUN FUN SUMMARY));
end if
for n ∈ N do

if n has two children then
Create a conjunction of implication formula e → the children labels;

end if
if n has child whose line number is less than n then

Evaluate the expression of the label from n to it’s child;
Let exp1 be the initial condition, exp2 be the end condition;
for all the labels from the child of n to n do

Let d be the variable in the left side of the assignment statement with
assexpr on the right side;
Create an assertion (assert (= d(exp1) assexpr(0))) where assexpr(0) is
obtained from assexpr by replacing each variable x occurring in it by x(0);
Create an assertion (assert forall (i Int) (=> (and (>= i exp1) (<= i exp2)

for all the labels from the child of n to n do
(= d(i) assexpr(i)/(i-1)) where assexpr(i)/(i-1) represents replacing each
variable x by x(i) if x has been updated in a predecessor node in the
loop else by x(i-1) (obtained from use-define links)

end for
end for

end if
end for
Provide the function summary as the function return value after the function
analyzed (assert (= FUN SUMMARY FUN return value)).

end for

variable in the left side of the assignment statement with assexpr on the right
side. We create an assertion (assert (= d(exp1) assexpr(0))) as the base condition
to indicate the update of d the first time the loop is executed where assexpr(0)
is obtained from assexpr by replacing each variable x occurring in it by x(0),
and create an assertion (assert forall (i Int) (=> (and (>= i exp1) (<= i exp2)
(= d(i) assexpr(i)/(i-1)) where assepr(i)/(i-1) represents replacing each variable
x by x(i) if x has been updated in a predecessor node in the loop else by x(i-
1) (obtained from use-define links) for each statement inside the loop body to
express the updates in the remaining executions of the loop. If there is no loop,
we can simply create assertion (assert (= VAR EXP)). To convert the if/else

block in the code, we create a conjunction of implication formula.

484 Z. Lu and S. Mukhopadhyay

Table 1. Experimental Results

GPC timu.m
Line 113: The “if ite1 < N” block is never reached.
Line 151: the statement may have division by zero error;
since “k-tao-i2” can be zero.

GAconstrain.m
Line 63: The statement “if nmutationR>0” is not valid,
since nmutationR is always larger than 0.

GA.m

Line 186: The if statement “if maxvalueRAND(m-
m0)<maxvalueRAND(m-(m0+1))” is not valid, since
m-m0 is greater than m-(m0+1). The random return
value may make this condition always false.

PSK carrier timing est.m

Line 178: the matrix index may be out of bound.
Line 187: the statement “nco l(k)=exp(-
j*(2*pi*f0*Ts(start diff+n+round(Kc2*err tao(k))-8)
+Kc*Uc(k)));” is not valid. It should use “fe” not ”f0”.

Felics.m Line 63: the matrix index may be out of bound.

Kalman filtering.m
Line 63: The parameters in function “lmodeini-
tial(T,r,zx,zy,vxks,vyks,perr2)” are invalid.

TV denoise.m

Line 37: The loop “while(i<niter)” may never terminate,
since the value of variable “iflamda” is not assigned, the
statement “i=i+1” may never be reached.
Line 53: the statement may have division by zero error.

smooth diffusion.m

Line 79: The statement uses a wrong parameter “K”.
Line 105: the function “imshow” has an invalid param-
eter “uint8()”, since the function “uint8()” needs input.

5 Experimental Results

We implemented our analysis framework in Java (using ANTLR) with Yices as
SMT solver. We analyzed the MATLAB examples including matrix computation
and signal processing obtained from [11]. All the source code we verified can be
found in https://tigerbytes2.lsu.edu/users/zlu5/web/MatlabExample/.Many of
the examples were found to meet their specifications. However in several exam-
ples, our analysis framework found logical errors. These results are summarized
in Table 1 and Table 2. All experiments were run on desktop with a Pentium
dual-core CPU 2.6 GHz running Windows XP. The time needed for verification
was never more than a minute.

Model-Based Static Code Analysis for MATLAB Models 485

Table 2. Experimental Results (continued)

directional diffusion.m

Line 79: line 58: the variable “Ixy=(ESWN-ENWS)/4”
maybe negative, which will lead to the program never
terminate.
Line 71: The variable ”index” may be out bound of the
matrix size.
Line 72: the statement is not valid, since variable
“Du(index)” has no value.

order4 diffusion.m

Line 54: the statement uses a wrong parameter; it needs
to use “k” instead.
Line 68: the statement “uint8(I)” uses a wrong parame-
ter; it needs to use “It” instead.

CarLocal.m

Line 31: the statement may have division by zero error.
Line 54: the statement may have division by zero error.
Line 82: the “if(rec ratio(i))>=T & rec ratio(i)¡15)”
branch may never be reached.
Line 131: The parameter “I(index(1)-2” in function
“imwrite” is invalid, since the parameter cannot be neg-
ative value.

FunctionChaosPredict.m

Line 38: the statement may have division by zero error.
Line 73: the parameter in “roll(M+step+(j-1)*tao)” is
invalid.
Line 71: the “if (M-tao+step+(d-1)*tao < N+1)” block
is never reached; since “M-tao+step+(d-1)*tao” is al-
ways less than N.

6 Conclusions

We have provided a deductive framework for model-based verification of complex
systems. The constraint system includes all the possible values of variables; this
may lead to false positives. More accurate abstract interpretation techniques are
required to provide a precise analysis. In future, we need to develop patterns
and good graphic user interfaces to help developers specify properties.

Acknowledgement. This research is partially supported by NSF under the
grant 0965024. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

486 Z. Lu and S. Mukhopadhyay

References

1. http://www.omg.org/mda/

2. http://www.omg.org/spec/UML/2.0/

3. http://www.ni.com/labview/

4. http://www.mathworks.com/products/matlab/

5. Polyspace, http://www.mathworks.com/products/polyspace/
6. http://www.vectorcast.com

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceed-
ings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 1977, pp. 238–252. ACM, New York (1977)

8. Gomes, I., Morgado, P., Gomes, T., Moreira, R.: An overview on the static code
analysis approach in software development. Tech. rep., Faculdade de Engenharia
da Universidade do Porto (2009)

9. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library,
SMT-LIB (2010), http://www.SMT-LIB.org

10. Dutertre, B., Moura, L.D.: The yices smt solver. Tech. rep. (2006)
11. http://www.ilovematlab.cn/forum.php

12. Beizer, B.: Software testing techniques, 2nd edn. Van Nostrand Reinhold Co.,
New York (1990)

13. Woldman, K.I.: A dual programming approach to software testing. Master’s thesis,
Santa Clara University (1992)

14. Collard, J.-F., Burnstein, I.: Practical Software Testing. Springer-Verlag New
York, Inc., Secaucus (2002)

15. Clarke, E., Grumberg, O., Long, D.: Model checking. In: Proceedings of the NATO
Advanced Study Institute on Deductive Program Design, pp. 305–349. Springer-
Verlag New York, Inc., Secaucus (1996)

16. Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving,
1st edn. Academic Press, Inc., Orlando (1997)

17. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus (1999)

18. Holzmann, G.J.: Software Analysis and Model Checking. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 1–16. Springer, Heidelberg (2002)

19. Evans, D., Guttag, J., Horning, J., Tan, Y.: Lclint: A tool for using specifications
to check code. In: ACM SIGSOFT Software Engineering Notes, vol. 19, pp. 87–96.
ACM (1994)

20. Anderson, P., Reps, T.W., Teitelbaum, T., Zarins, M.: Tool support for fine-
grained software inspection. IEEE Software 20(4), 42–50 (2003)

21. Evans, D., Guttag, J., Horning, J., Tan, Y.M.: Lclint: A tool for using specifica-
tions to check code. In: ACM SIGSOFT Software Engineering Notes, vol. 19, pp.
87–96. ACM (1994)

22. Das, M., Lerner, S., Seigle, M.: Esp: Path-sensitive program verification in poly-
nomial time. In: PLDI, pp. 57–68 (2002)

23. Martin, F.: PAG – an efficient program analyzer generator. International Journal
on Software Tools for Technology Transfer 2(1), 46–67 (1998)

24. Hallem, S., Chelf, B., Xie, Y., Engler, D.: A system and language for building
system-specific, static analyses. In: Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming Language Design and Implementation, pp. 69–82. ACM
Press (2002)

http://www.omg.org/mda/
http://www.omg.org/spec/UML/2.0/
http://www.ni.com/labview/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/polyspace/
http://www.vectorcast.com
http://www.SMT-LIB.org
http://www.ilovematlab.cn/forum.php

Model-Based Static Code Analysis for MATLAB Models 487

25. Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Formal Methods in System Design, 157–185 (1997)

26. Halbwachs, N., Merchat, D., Parent-vigouroux, C.: Cartesian Factoring of Polyhe-
dra in Linear Relation Analysis. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694,
pp. 355–365. Springer, Heidelberg (2003)

27. Alur, R., Dang, T., Ivancic, F.: Counterexample-guided predicate abstraction of
hybrid systems. Theor. Comput. Sci. 354(2), 250–271 (2006)

28. Aiken, A., Fähndrich, M., Su, Z.: Detecting Races in Relay Ladder Logic Pro-
grams. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 184–200. Springer,
Heidelberg (1998)

29. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M.,
Unkel, C.: Context-sensitive program analysis as database queries. In: PODS, pp.
1–12 (2005)

30. http://www.cs.cornell.edu/talc/

31. Beato, M.E., Barrio-Solórzano, M., Cuesta, C.E., de la Fuente, P.: Uml auto-
matic verification tool with formal methods. Electron. Notes Theor. Comput.
Sci. 127(4), 3–16 (2005)

32. http://www.cs.cmu.edu/~modelcheck/smv.html

33. Doherty, J., Hendren, L., Radpour, S.: Kind analysis for matlab. In: Proceedings
of the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA 2011, pp. 99–118. ACM, New
York (2011)

34. Joisha, P.G., Banerjee, P.: Correctly detecting intrinsic type errors in typeless
languages such as matlab. SIGAPL APL Quote Quad 31(2), 7–21 (2000)

35. Kaufmann, M., Kornerup, J., Reitblatt, M.: Formal verification of labview pro-
grams using the acl2 theorem prover. In: Proceedings of the Eighth International
Workshop on the ACL2 Theorem Prover and its Applications, ACL2 2009, pp.
82–89. ACM, New York (2009)

36. http://www.cs.utexas.edu/~moore/acl2/

37. Softcheck, http://www.sofcheck.com/products/inspector.html
38. Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, J., Pugh, W.: Using static

analysis to find bugs. IEEE Software 25(5), 22–29 (2008)
39. Fortify, http://www.fortify.com/
40. Wagner, D.: Static Analysis and Software Assurance. In: Cousot, P. (ed.) SAS

2001. LNCS, vol. 2126, p. 431. Springer, Heidelberg (2001)
41. Klock source code analysis for android platform,

http://www.klocwork.com/news/press-releases/releases/2008/

PR-2008 11 11-Source-code-analysis-for-Android.php

42. Jif: java information flow, http://www.cs.cornell.edu/jif/

http://www.cs.cornell.edu/talc/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.cs.utexas.edu/~moore/acl2/
http://www.sofcheck.com/products/inspector.html
http://www.fortify.com/
http://www.klocwork.com/news/press-releases/releases/2008/PR-2008_11_11-Source-code-analysis-for-Android.php
http://www.klocwork.com/news/press-releases/releases/2008/PR-2008_11_11-Source-code-analysis-for-Android.php
http://www.cs.cornell.edu/jif/

An Incremental Learning Algorithm

for Extended Mealy Automata

Karl Meinke and Fei Niu

School of Computer Science and Communication,
KTH Royal Institute of Technology, 100-44 Stockholm, Sweden

Abstract. We present a new algorithm ICGE for incremental learn-
ing of extended Mealy automata computing over abstract data types.
Our approach extends and refines our previous research on congruence
generator extension (CGE) as an algebraic approach to automaton learn-
ing. In the congruence generator approach, confluent terminating string
rewriting systems (SRS) are used to represent hypothesis automata. We
show how an approximating sequence R0, R1, . . . of confluent terminat-
ing SRS can be directly and incrementally generated from observations
about the loop structure of an unknown automaton A. Such an approx-
imating sequence converges finitely if A is finite state, and converges in
the limit if A is an infinite state automaton.

Keywords: algebraic automata theory, computational learning theory,
finite state machine, initial algebra, Mealy automaton, string rewriting.

1 Introduction

Classical algorithms for learning a finite automatonA over a finite input alphabet
(such as the L* algorithm of [2]) approach the problem of learning the state space
structure of A as a partition refinement problem. In this case, the objects to be
partitioned are a set of input strings for the system under learning (SUL) A.
These act as synonyms for the unknown states. The problem is to determine
which input strings denote the same states in A, from which the state transition
structure of A can be inferred. Initially, one starts from the coarsest partition, in
which all input strings are identified. To separate two strings i and j into distinct
partition classes, it is necessary to find a suffix k such that the strings i k and j k
generate different behaviours from A. Different learning algorithms have different
methods for splitting partition classes using membership queries and equivalence
queries. However, all such methods involve identifying inequalities i �= j between
input strings.

Taking an algebraic viewpoint of this problem, one can consider the dual
approach. Starting from the finest partition, which is equality, one can try to
identify a finite set E of equations i = j between input strings, which completely
characterise the structure of A up to behavioral equivalence. This corresponds
to directly learning loops and merges in the graph structure of A. The closure
of E under equational inference is a finitely generated congruence ≡E on the

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 488–504, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Incremental Learning Algorithm for Extended Mealy Automata 489

initial algebra I in the appropriate category of automata. The resulting quotient
automata H = I/ ≡E , is a hypothesis automaton that is behaviorally equivalent
to A. By the initiality property of I (see Section 2) every finite state automaton
can be constructed in this way. This construction can also be generalised to
learning an infinite state automaton which has a finitely generated congruence
≡E . The initial automaton I is related to the well known prefix tree automaton
(see e.g. [4]).

1.1 Motivating the Congruence Generator Approach

In the congruence generator approach to automata learning, we focus on learning
a finite congruence generator set. This algebraic approach has certain theoretical
advantages. It clarifies the algebraic nature of the inference problem, for example
by providing a framework for comparing different learning heuristics using the
congruence lattice on I. It also opens up learning for more general data models,
including infinite data types that give rise to infinite state automata.

The congruence generator approach also has important practical advantages
for applications of automata learning such as learning-based testing (LBT) (see
e.g. the survey [15]). LBT is an emerging paradigm for black-box requirements
testing in which test cases are automatically generated as learning queries. Thus
LBT is a methodology for automated test case generation (ATCG). In an LBT
system, a model checker is used to automatically generate queries (test cases) by
model checking each learned hypothesis automatonH against a user requirement
req (such as a temporal logic formula). So LBT is also a model-based testing
method where the models are automatically inferred hypothesis automata.

Model checker generated queries are very efficient for finding system errors.
Therefore, for efficient LBT, model checker queries should be prioritised above all
other types of learning queries such as membership queries, equivalence queries
and random queries. This objective cannot be achieved with tabular learning
algorithms such as Angluin’s L* algorithm or its variants. This is because some
form of behavioral data table must be completely filled in (typically by executing
large numbers of membership queries) before a hypothesis automaton can even
be constructed. In contrast, congruence generator based learning algorithms have
no need for completed data tables, and are therefore well adapted for efficient
testing. We will present experimental results that apply our new ICGE learning
algorithm to LBT in Section 4.1. These results clearly illustrate the advantages
of congruence generator learning methods for efficient learning-based testing.

1.2 Towards Incremental Congruence Generator Extension

In [13] we presented the CGE algorithm for learning Mealy machines based on
constructing finite generator sets for congruences. The CGE algorithm uses a
monotonically increasing sequence of sets Λi, i = 0, 1 . . ., of observations about
an SUL A to iteratively compute a sequence Ri of congruence generator sets.
Construction of each generator set Ri is by extending the empty set of generators

490 K. Meinke and F. Niu

in a consistent but greedy way to a maximal set that is consistent with Λi. Each
generator pair (l, r) ∈ Ri is represented as a string rewriting rule l → r over
the input and output alphabets of A. Rule consistency is evaluated by rewriting
(normalising) the observation set Λi. Unfortunately, the sequenceRi, i = 0, 1 . . .,
is generally not monotonically increasing, since the validity of a generator pair
(i.e. state equation) l → r may be falsified by some new observation O ∈ Λi+j .
Furthermore, the process of normalising Λi requires that Ri is a confluent and
terminating string rewriting system (SRS). To achieve confluence, an efficient
linear time completion algorithm for SRS was introduced in [13]. However, again
because of non-monotonicity, it is not possible to perform completion in an
incremental way. The CGE algorithm is therefore not incremental, and turns
out to be rather inefficient for learning large automata.

In this paper we show how the problem of non-monotonicity for the validity of
state equations can be overcome. We present an incremental congruence gener-
ator extension algorithm (ICGE), that significantly exceeds the performance of
CGE. One new important observation is that we can directly generate confluent
terminating SRS, and avoid completion altogether, by learning just the valid loop
rules of A. These loop rule sets still increase non-monotonically. However, our
second important observation is that they implicitly contain valid loop rule in-
equalities and these do increase monotonically. Therefore, there is never any need
to reconsider discarded loop rules, and the learning process becomes completely
incremental. By focussing on loop rules alone, we infer non-minimal hypothesis
automata. However, in the limit these are always behaviorally equivalent to the
SUL.

The structure of this paper is as follows. In Section 1.1, we review some incre-
mental automata learning algorithms from the literature. In Section 2, we define
basic mathematical notation including the general concept of an extended Mealy
automaton (EMA) computing over an abstract data type (ADT). In Section 3
we review the concept of string rewriting systems (SRS) as a representation of
congruence generator sets. In Section 4 we present the ICGE learning algorithm
and sketch its correctness proof. In Section 5 we present some initial performance
results for ICGE.

1.3 Incremental Learning Algorithms for Automata

The literature on learning algorithms for automata is extensive. Recent sur-
veys can be found in [3], [19] and [4]. One important type of learning is incre-
mental learning. Here the goal is to construct a sequence H0, H1, . . . of hy-
pothesis automata which are ”approximations” to the SUL A using a sequence
of observations O0, O1, . . . of the behaviour of A. Each hypothesis Hi should
represent a ”good” hypothesis about A using all the currently available data
Λi = { O0, O1, . . . , Ok(i) }. The number of observations k(i+1)−k(i) needed
between successive hypothesis constructions Hi+1 and Hi, varies in the liter-
ature. However, the construction of Hi+1 should build on the construction of
Hi. For correctness, an incremental learning algorithm must be guaranteed to

An Incremental Learning Algorithm for Extended Mealy Automata 491

eventually produce a behaviourally equivalent hypothesis automaton given suf-
ficient data. In this case it is said to learn in the limit (c.f. [7]).

For applications in software engineering such as learning-based testing ([14]
and [16]), incremental learning is necessary for two reasons.

1. Real software systems are too large to be completely learned in practise.
This is obvious for infinite state systems, and even true in practice for many
finite state systems.

2. Incremental learning increases the opportunity to replace equivalence queries
and membership queries by model checker generated queries related to a
formal requirements specification. (C.f. the discussion in Section 1.1.) This
opportunity is maximised when k(i+ 1)− k(i) = 1.

We can compare ICGE with three other incremental learning algorithms known
in the literature. In [6], an incremental version RPNI2 of the RPNI learning
algorithm of [18] and [11] is presented. The RPNI2 algorithm has only a few
features in common with ICGE. Most notably, both RPNI2 and CGE perform a
depth first search of a lexicographically ordered state set. However, while RPNI
searches the entire state space, ICGE searches only subpaths of the most re-
cently added input sequence, sufficient to update a localised subset of loop rules.
Furthermore, RPNI2 is hard-wired for DFA learning and not adaptable to learn-
ing infinite data types. Both RPNI2 and CGE can produce a new hypothesis
automaton after every query, i.e. k(i+ 1)− k(i) = 1 always.

In [20] and [16], two different incremental modifications of the ID learning al-
gorithm of [1] have been given. Again, these are explicitly coded for DFA learning
and not adaptable to infinite data types. Furthermore, both algorithms require
a substantial number of new queries to produce a new hypothesis automaton,
i.e. k(i + 1) − k(i) is very large, typically ranging in the order of thousands to
hundreds of thousands of queries.

2 Mathematical Preliminaries and Notation

We use the usual notation and terminology for strings. If Σ is an alphabet then
Σn denotes the set of all strings of length n over Σ. The unique string of length
zero is denoted by ε. We let Σ∗ = ∪n≥0Σ

n and Σ+ = Σ∗ − { ε }, denote the
sets of all finite strings and finite positive length strings respectively. If σ ∈ Σ
is a finite string then |σ| denotes the length of σ.

It will be helpful to have some familiarity with the theories of universal alge-
bra, abstract data types (ADTs) and term rewriting. We use the notation and
terminology of many-sorted algebra (see [17]). Let S be a finite set of sorts or
types. An S-sorted (ADT) signatureΣ consists of an S∗×S-indexed family of sets
Σ = 〈Σw,s | w ∈ S∗, s ∈ S〉. For each s ∈ S, every c ∈ Σε,s is a constant symbol
of sort s. For any w = s1, . . . , sn ∈ S+, each f ∈ Σw,s is a function symbol
of arity n, domain type w and codomain type s. An S-sorted Σ-algebra A con-
sists of particular sets, constants and functions that interpret Σ set-theoretically.
Thus A has an S-indexed family of sets A = 〈As | s ∈ S〉, where As is termed a

492 K. Meinke and F. Niu

carrier set. For each s ∈ S and constant symbol c ∈ Σε,s, cA ∈ As is a constant,
and for each w = s1, . . . , sn ∈ S+ and each f ∈ Σw,s, fA : As1 × . . . ×
Asn → As is a function. We let Alg(Σ) denote the class of all Σ-algebras. The
concepts of subalgebra,minimal algebra, quotient algebra, congruence, congruence
generator set, homomorphism, kernel congruence and isomorphism all generalise
from single-sorted to many-sorted algebras in a straightforward way by point-
wise extension over S. Details can be found in [17].

Let X = 〈Xs | s ∈ S〉 be an S-indexed family of disjoint sets Xs of variables
of sort s. We assume Xs ∩Σε,s = ∅. The set T (Σ, X)s of all terms of sort s ∈ S
is defined inductively by: (i) c ∈ T (Σ, X)s for c ∈ Σε,s, (ii) x ∈ T (Σ, X)s for
x ∈ Xs, and (iii) f(t1, . . . , tn) ∈ T (Σ, X)s for f ∈ Σw,s w = s1, . . . , sn and
ti ∈ T (Σ, X)si for 1 ≤ i ≤ n. We let Vars(t) denote the set of all variables from
X occurring in term t. Let T (Σ) denote the S-indexed family of all variable free
or ground terms. A substitution σ is an S-indexed family of mappings σ : X →
T (Σ, X). The result of applying a substitution σ to a term t ∈ T (Σ, X)s is
defined inductively in the usual way and denoted by σ(t).

We can generalise the usual Mealy automaton model of computation from
finite input and output alphabets to elements chosen from an arbitrary many-
sorted algebra A, which may be finite or infinite. This gives a model of extended
Mealy automata (EMA) over an abstract data type (ADT). These can also be
defined as many-sorted algebras that simply extend the underlying ADT with
one new sort state for states, one new constant q0 for the initial state, and
two new operations: δ for the state transition function and λ for the output
function. Inputs and outputs for an EMA will typically be chosen from well
known ADTs such as int , string, array , list etc. that provide a high level of data
abstraction.

Definition 1. An extended Mealy automaton signature (EMA signature)
over an S-sorted ADT signature Σ is a four-tuple,

ΣM = (SM , ΣM , input , output),

where SM = S ∪ { state } is a sort set, ΣM is an SM -sorted signature with
ΣM

w,s = Σw,s for any w ∈ S∗, s ∈ S and

q0 ∈ ΣM
ε,state , δ ∈ ΣM

state input ,state , λ ∈ ΣM
state input ,output

where input , output ∈ S are distinguished input and output sorts.

Definition 2. Let ΣM = (SM , ΣM , input , output) be an EMA signature over
an S-sorted ADT signature Σ. An extended Mealy automaton A over Σ
is an SM -sorted ΣM algebra A. If Astate is finite then A is termed a finite
state EMA , otherwise A is termed an infinite state EMA. We let MA(Σ)
denote the class of all extended Mealy automata over Σ, i.e. the class of all ΣM

algebras. Together with all ΣM -homomorphisms, this class forms the category
of all EMA over Σ denoted by EMA(Σ).

An Incremental Learning Algorithm for Extended Mealy Automata 493

For a given EMA A as usual q0A ∈ Astate is the initial state, δA is the state tran-
sition function, and λA is the output function. We extend δA and λA inductively
in the usual way to

δ∗A : Astate ×A∗
input → Astate , λ∗A : Astate ×A+

input → Aoutput .

Example 1. Figure 1 gives a simple example of an infinite state EMA A which
computes over the integer data type. This EMA always returns the sum of the
last two integers entered. Formally, the underlying data type signature is the
S-sorted signature ΣPA for Peano Arithmetic on the integers, where S = {int}
and ΣPA includes the usual binary addition operation + ∈ ΣPA

int int , int . For the
automaton A we define input = output = int , Aint = Z, Astate = { qi | i ∈ Z }
and q0A = q0. Also δA : Astate × Ainput → Astate is given by δA(qx, y) = qy
and λA : Astate × Ainput → Aoutput is given by λA(qx, y) = x +A y, where
+A : Aint ×Aint → Aint is the usual addition operation on Z. This infinite state
automaton is represented by a finite state transition diagram using a Statechart
style of notation for δA and λA in Figure 1.

X / X
Y / X+Y

X / X+Y

q0
A

Fig. 1. A simple EMA for sequential addition

Example 2. Let ΣM = (SM , ΣM , input , output) be an EMA signature over an
S-sorted ADT signature Σ. Define the initial Mealy automaton I(ΣM) by:

I(ΣM)state = T (Σ)∗input , I(ΣM)output = T (Σ)
+
input ∪ T (Σ)output

and for all s ∈ S such that s �= state and s �= output , I(ΣM)s = T (Σ)s. For any
(t1, . . . tn) ∈ T (Σ)∗input and t ∈ T (Σ)input define

δI(ΣM)((t1, . . . tn), t) = λI(ΣM)((t1, . . . tn), t) = (t1, . . . tn, t).

Also q0I(ΣM) = ε. The definition of I(ΣM) generalises the concept of a prefix tree

automaton, since I(ΣM)state is an infinite tree.

Proposition 1. I(ΣM) is initial in the category EMA(ΣM), i.e. there exists a
unique homomorphism φ : I(ΣM) → A to every A ∈ MA(ΣM).

494 K. Meinke and F. Niu

Corollary 1. Let A ∈ MA(Σ) be any minimal Mealy automaton. There exists
a unique epimorphism φ : I(ΣM) → A and hence I(ΣM)/ ≡φ ∼= A.

By initiality, every minimal EMA has a unique construction (up to isomor-
phism) as a quotient of I(ΣM). The initial algebra approach to semantic con-
structions has been widely used elsewhere in computer science, (e.g. data type
theory [8], logic programming [12]). It is also the basis of CGE automaton
learning [13].

For practical learning applications, it suffices to learn an SUL A up to be-
havioural equivalence. This allows learning of both minimal and non-minimal
representations of A.

Definition 3. Let A, B ∈ MA(Σ) be any minimal Mealy automata. Let ≡φ and
≡ψ be the kernels of the unique epimorphisms φ : I(ΣM) → A and ψ : I(ΣM) →
B respectively. We say that A and B are behaviourally equivalent and write
A * B if, and only if, ≡φ

output = ≡ψ
output .

Intuitively, if A and B are behaviourally equivalent then they always produce
the same output sequence given the same input sequence.

Finally, observe that while congruences generally involve infinite sets of equiv-
alence classes, their generator sets can nevertheless be finite. This can make
congruence learning tractable, even for infinite state EMA.

Example 3. Let A ∈ MA(Σ) be any finite state minimal EMA and let φ :
I(ΣM) → A be the unique epimorphism. The kernel ≡φ of φ is finitely gen-
erated.

3 String Rewriting Systems

In this section we introduce the concept of a string rewriting system (SRS) as a
compact representation of a congruence generator set. We rely on the notion of
a confluent terminating SRS, which gives normal forms for state names, and a
natural model of automaton simulation by string rewriting. String rewriting is
a special case of the more general theory of term rewriting ([5], [9]), from which
we borrow some important ideas and results.

Definition 4. Let Σ be an S-sorted signature and let X be an S-indexed family
of sets of variables.
(i) A string rewriting rule ρ over Σ and X (of sort s ∈ S) is a pair of strings

ρ = ((l1, . . . , lm), (r1, . . . , rn)) ∈ T (Σ, X)∗s × T (Σ, X)∗s

where Vars(ri) ⊆ Vars(l1) ∪ . . . ∪ Vars(lm) for 1 ≤ i ≤ n. We use the more
intuitive notation l1, . . . , lm → r1, . . . , rn to denote ρ. We say ρ is ground if
all lhs and rhs terms are ground. A string rewriting system (SRS) over Σ is
a set of string rewriting rules.

An Incremental Learning Algorithm for Extended Mealy Automata 495

(ii) Let ρ = l1, . . . , lm → r1, . . . , rn be a string rewriting rule and let t, t′ ∈
T (Σ, X)∗s be any strings. We say that t rewrites to t′ using ρ and write t

ρ−→ t′
if, and only if for some substitution σ : X → T (Σ, X) and suffix t′′ ∈ T (Σ, X)∗s:

(a) t = σ(l1), . . . , σ(lm) . t′′, and

(b) t′ = σ(r1), . . . , σ(rm) . t′′.

(iii) If R is an SRS we say that t rewrites to t′ using R in one step and write

t
R−→ t′ if, and only if, for some ρ ∈ R, t ρ−→ t′.

(iv) We let
R∗
−→ denote the reflexive transitive closure of

R−→ . Then t
R∗
−→ t′

if, and only if, t rewrites to t′ using R in finitely many steps.

(v) Define the bi-rewriting relation
R∗
←→ for any t, t′ ∈ T (Σ, X)∗s, by:

t
R∗
←→ t′ ⇔ ∃t0 ∈ T (Σ, X)∗s such that t

R∗
−→ t0 and t′

R∗
−→ t0.

Notice that we only allow matching and replacement of the lhs of a rule on
prefixes of a string. This is more restrictive than string rewriting using semi-
Thue systems, (c.f. [5]). However, this definition suffices for simulating automata
(see Definition 8 below) because of the existence of an initial state.

String rewriting means repeated application of the rules of an SRS R to a
string t. Since this process need not terminate, we need to find a sufficient con-
dition for termination.

Definition 5. (i) Let ≤ = 〈≤s | s ∈ S〉 be an S-indexed family of well order-
ings ≤s on T (Σ)s. Define the lexicographic ordering ≤s on T (Σ)ns for each
s ∈ S and n ≥ 1 inductively by:
t1, . . . , tn ≤s t

′
1, . . . , t

′
n ⇔ t1 ≤s t

′
1 or t1 = t′1 and t2, . . . , tn ≤s t

′
2, . . . , t

′
n.

(ii) Define the short-lex ordering ≤s on T (Σ)∗s by
t1, . . . , tm ≤s t

′
1, . . . , t

′
n ⇔ m < n or m = n and t1, . . . , tm ≤s t

′
1, . . . , t

′
n.

(iii) Let l→ r ∈ T (Σ)∗s × T (Σ)∗s be a ground rewrite rule. We say that l → r is
reducing (wrt. ≤s) if, and only if, r <s l.

(iv) An SRS R is reducing if, and only if, every rule ρ ∈ R is reducing.

Theorem 1. Let R be a ground and reducing SRS w.r.t. a well ordering ≤, then

R is terminating, i.e. there is no infinite rewrite sequence t0
R−→ t1 R−→ t2 . . .

Proof. Follows since ≤ is a well ordering.

The order in which rules from an SRS are applied to rewrite a string can influence
the final outcome. If the outcome never depends on this order then the SRS is
termed confluent.

496 K. Meinke and F. Niu

Definition 6. Let R be an SRS.

(i) R is confluent if, and only if, for any t0, t1, t2 ∈ T (Σ)∗s, if t0
R∗
−→ t1 and

t0
R∗
−→ t2 then there exists t3 ∈ T (Σ)∗s such that t1

R∗
−→ t3 and t2

R∗
−→ t3.

(ii) R is locally confluent if, and only if, for any t0, t1, t2 ∈ T (Σ)∗s, if

t0
R−→ t1 and t0

R−→ t2 then there exists t3 ∈ T (Σ)∗s such that t1
R∗
−→ t3 and

t2
R∗
−→ t3.

Clearly confluence implies local confluence. The converse comes from a celebrated
general result in term rewriting theory.

Lemma 1. (Newman) Let R be a reducing SRS. Then R is locally confluent if,
and only if, R is confluent.

The problem of non-confluence is typically solved by applying a completion al-
gorithm such as Knuth-Bendix completion [10] or linear time completion [13].
However, in the context of automaton learning, non-confluence can be avoided by
a careful construction of SRS as we will show. For The main effect of confluence
is that we obtain a unique normal form for every string under rewriting.

Definition 7. Let R be a confluent reducing SRS. For any string t ∈ T (Σ)∗s
the normal form normR(t) of t (modulo R) is the unique string obtained by
rewriting t with R until termination.

Now suppose we are given an S-sorted ADT signature Σ and a congruence ≡
on the term algebra T (Σ), so that I = T (Σ)/ ≡ represents the initial algebra
semantics of some ADT specification. Consider the problem of learning an EMA
A that computes over the data type I. Suppose a learning algorithm can produce
a confluent SRS R representing the state equations of A inferred from a set Λ
of observations about A . How can we define a canonical congruence ≡R,Λ on
the initial automaton I(ΣM) so that the quotient automaton I(ΣM)/ ≡R,Λ

represent a valid hypothesis about the unknown structure of A?

Definition 8. Let ΣM = (SM , ΣM , input , output) be an EMA signature over
an S-sorted ADT signature Σ. Let ≡ be a congruence on the term algebra T (Σ)
associated with an ADT specification. Let Λ ⊆ T (Σ)+input × T (Σ)output be a set
of observations. Let R be any confluent SRS over Σ.

Define the canonical equivalence relation ≡R,Λ on I(ΣM) by

≡R,Λ
state =

R∗
←→

≡R,Λ
output =

RST (≡output ∪Λ ∪ { (t . t0, t′ . t0) | (t, t′) ∈ ≡R,Λ
state and t0 ∈ T (Σ)input }),

where RST (.) is the reflexive symmetric transitive closure. For all s ∈ S if

s �= output then ≡R,Λ
s = ≡s. Then R is consistent if ≡R,Λ

output = ≡output .

An Incremental Learning Algorithm for Extended Mealy Automata 497

By Definition 8, we can compute with the equivalence classes of ≡R,Λ
state by string

rewriting, since t ≡R,Λ
state t

′ if, and only if normR(t) = normR(t′). Thus we can
simulate the quotient hypothesis automaton I(ΣM)/ ≡R,Λ by string rewriting.
The congruence ≡R,Λ is canonical in the sense of making the fewest identifica-
tions of states and outputs necessary.

Proposition 2. If R is consistent and reducing then ≡R,Λ is the smallest con-
gruence on I(ΣM) such that R ⊆ ≡R,Λ

state and Λ ⊆ ≡R,Λ
output .

Proof. Omitted

The problem of EMA learning is now reduced to construction of R from Λ.

4 Incremental CGE Learning

In this section we introduce the ICGE algorithm for incremental learning of
extended Mealy automata and establish its correctness. The basic problem is to
infer a sequence of hypothesis automata Hi : i = 1, 2, . . . using a sequence of
observations Oi : i = 1, 2, . . . of the behavior of an unknown EMA A. Each
hypothesis Hi is then constructed as a quotient automaton:

Hi = I(Σ
M)/ ≡i .

Each congruence ≡i will be represented by finite generating set Ri that is a
consistent confluent terminating SRS constructed from the observation set Λi =
{ O1, O2, . . . , Oi }. If A is finite state then the sequence Hi finitely converges
in the sense that Hn is behaviorally equivalent to A for some n ≥ 1. Since we
can identify sufficient conditions on the query set Λi which guarantee behavioral
equivalence, then it is possible to show that the membership queries generated
by ICGE satisfy this condition.

Recall that the main problem to be solved is incremental learning of the
identities t = t′ between state names t and t′ as string rewriting rules t→ t′. Now
although inequations t �= t′ between states are preserved by new observations,
equations t = t′ are not preserved. So for incremental learning we must also
remember which inequations have previously been established, i.e. which rewrite
rules have previously been rejected as inconsistent with the observation set.

To generate confluent terminating SRS incrementally, we give up attempts
to learn a minimal representation of A (i.e. a maximal congruence) and focus
on learning just the loop structure of A. In general this expands the rule set
size. Nevertheless, the net effect of avoiding both completion and state space
minimisation (both used in the original CGE algorithm) is to achieve a significant
speed-up in performance.

A loop in an SUL A can be expressed as a string rewriting rule

t1, t2, . . . , tm+n → t1, t2, . . . , tm

for n > 0 and m ≥ 0 and ti ∈ T (Σ)input . So the rhs of a loop rule is always a
prefix of the lhs. In this context t1, t2, . . . , tm is termed the handle (of length m)

498 K. Meinke and F. Niu

and tm+1, . . . , tm+n is termed the loop (of length n). Notice that a loop rule is
reducing (C.f. Definition 5) since m + n > m. Furthermore, no two valid loop
rules can share the same lhs, which means that every loop rule set must be locally
confluent and hence confluent by Lemma 2. So by restricting attention to loop
rules, we obtain a confluent terminating SRS without the need for completion as
in [13]. For loop rule synthesis, we consider the observation set Λ as a tree. To
derive a complete set of rules, we must loop back every path in this tree (starting
from the root) to a proper prefix using some loop rule.

How can we synthesize a loop rule l → r in an incremental way? We need to
integrate previous negative information about invalid loop rules together with
new positive information (observations). Since inequations t �= t′ are always
preserved by new observations, we can exploit a particular enumeration order of
loop rules along a tree path l = t1, t2, . . . , tk. This order enumerates each possible
rhs string r, starting from the empty prefix ε in order of increasing length. Thus
for fixed k we consider loop rules in the order

t1, t2, . . . , tk → ε, t1, t2, . . . , tk → t1, t1, t2, . . . , tk → t1, t2,

We increment k when the loop length n has decreased to 1. Once a prefix r
has been rejected as inconsistent with an observation set Λ it can never become
consistent with any future observation set that subsumes Λ. So this enumeration
of loop rules naturally preserves negative information.

Algorithm 1 gives the procedure for revising the current SRS in the light
of one new observation O = (i1, i2, . . . , ik, ok) about the SUL A. Without
loss of generality, we can assume that this observation extends the set Λ of
current observation by just one extra element, i.e. i1, i2, . . . , ik−1 ∈ ι(Λ), where
ι(Λ) = { i | (i, o) ∈ Λ }. Also without loss of generality, we can assume that
each input datum ij and output datum o are in normal form with respect to a
congruence ≡ on the underlying data type Σ. In Algorithm 1 we first compile
a set B of all loop rules inconsistent with the new observation. Then for each
broken rule r ∈ B, we compute a set of new loop rules that can replace r
and restore consistency by calling Algorithm 2. Finally, we add self loops on
all tree paths for which no loop rule applies yet. (This is necessary, since the
new observation can introduce new input values t ∈ T (Σ)input not previously
observed.)

Algorithm 2 computes a new consistent loop rule set that can replace one
inconsistent loop rule t1, t2, . . . , tm+n → t1, t2, . . . , tm. As already observed, we
can inductively assume that if t1, t2, . . . , tm+n → t1, t2, . . . , tm is inconsistent
then all of the previous loop rules

t1, t2, . . . , tm+n → ε, . . . , t1, t2, . . . , tm+n → t1, t2, . . . , tm−1

in the enumeration order are also inconsistent. If the search for a new loop
rule reduces the loop length to one, without finding a consistent rhs, then the
handle length is incremented by one and the search continues. Note that a new
consistent rule set must always exist, i.e. Algorithm 2 always terminates. Finally,
observe that inferring consistency of a loop rule is a simple matter of checking the

An Incremental Learning Algorithm for Extended Mealy Automata 499

Algorithm 1. ICGE(R, Λ, O)

Input:
1) R, the current learned loop rule set;
2) Λ, the current observation set;
3) O = (i1, i2, . . . , ik, ok), one new SUL observation such that
i1, i2, . . . , ik−1 ∈ ι(Λ).
Output: A confluent terminating SRS R ∪R′ consistent with ≡.

B := ∅1

// Find all rules in R inconsistent with new observation O
foreach (t1, t2, . . . , tm+n → t1, t2, . . . , tm) ∈ R do2

// Rule in contraction mode for O.

if t1, t2, . . . , tm+n = i1, i2, . . . , im+n & (t1, t2, . . . , tm, im+n+1, . . . , ik, o) ∈3

Λ & o �= ok then
B := B ∪ {(t1, t2, . . . , tm+n → t1, t2, . . . , tm)}4

R := R − {(t1, t2, . . . , tm+n → t1, t2, . . . , tm)}5

continue6

// Rule in expansion mode for O.

if t1, t2, . . . , tm = i1, i2 . . . , im & (t1, t2, . . . , tm+n, im+1, . . . , ik, o) ∈ Λ & o �=7

ok then
B := B ∪ {(t1, t2, . . . , tm+n → t1, t2, . . . , tm)}8

R := R − {(t1, t2, . . . , tm+n → t1, t2, . . . , tm)}9

// Repair the broken rules in B
foreach r ∈ B do10

R := R ∪ NextConsistentLoops(r, Λ)11

// Add any missing transitions as self-loops

R′ := { (t̄ . t → t̄) | t̄, t ∈ ι(Λ), t̄ . t �∈ ι(Λ), |t| = 1, normR(t̄) = t̄ }12

return R, R′
13

Algorithm 2. NextConsistentLoops(r, Λ)

Input: r = (t1, t2, . . . , tm+n → t1, t2, . . . , tm), a loop inconsistent with Λ.
Output: A consistent rule set C replacing r in the loop enumeration order.

k := m+ 11

while k < m+ n do2

if Consistent((t1, t2, . . . , tm+n → t1, t2, . . . , tk), Λ) then3

return { (t1, t2, . . . , tm+n → t1, t2, . . . , tk) }4

else5

k := k+16

C := ∅7

foreach (t1, t2, . . . , tm+n+1) ∈ ι(Λ) do8

if Consistent((t1, t2, . . . , tm+n+1 → ε), Λ) then9

C := C ∪ { (t1, t2, . . . , tm+n+1 → ε) }10

else11

C := C ∪ NextConsistentLoops((t1, t2, . . . , tm+n+1 → ε), Λ)12

return C13

500 K. Meinke and F. Niu

observation set Λ. This is defined in the function Consistent((t1, t2, . . . , tm+n →
t1, t2, . . . , tm), Λ).

Consistent((t1, t2, . . . , tm+n → t1, t2, . . . , tm), Λ) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩
false if there exists p ≥ 1, t′1, t

′
2, . . . , t

′
p

(t1, t2, . . . , tm, t
′
1, t

′
2, . . . , t

′
p, o) ∈ Λ,

(t1, t2, . . . , tm+n, t
′
1, t

′
2, . . . , t

′
p, o

′) ∈ Λ, such that o �= o′

true otherwise.

Algorithm 3. ICGELearn(A)

Input: The system under learning A, an EMA.
Output: A consistent SRS R ∪ R′ and observation set Λ.

R := ∅; Λ := ∅1

while True do2

// Query generation. There are two sources of query generation:

// 1. random queries

// 2. membership queries

if Λ := ∅ then3

O := (t̄, outputA(t̄)) where t̄ = t1, t2, . . . , tn is a random query of A4

else5

let (l → r) ∈ R be such that Belief(l → r, Λ) achieves its minimum6

over R in let t̄ be the shortest suffix such that l · t̄ ∈ Λ and r · t̄ �∈ Λ or
l · t̄ �∈ Λ and r · t̄ ∈ Λ in

if l · t̄ �∈ Λ and r · t̄ ∈ Λ then7

O := (l · t̄, outputA(l · t̄))8

else9

O := (r · t̄, outputA(r · t̄))10

R,R′ := ICGE(R, Λ, O)11

Λ := Λ ∪ {O}12

if I(ΣM)/ ≡R∪R′,Λ � A then13

return R ∪R′, Λ14

Algorithm 3 iterates Algorithm 1 starting from the empty set of observations,
Λ = ∅. On each iteration one new observation is added. Initially a random query
is used to start the learning process. On each subsequent iteration, a membership
query is generated which tests the degree of belief in the current loop rule set.
This belief measure is defined below. The loop rule l → r with the least struc-
tural evidence to support it is used as the basis for the new membership query.
This query appends the shortest suffix to l or r that will increase the belief value
of l → r by one. Algorithm 3 terminates if, and only if, the current hypothesis
automaton I(Σ)/ ≡R∪R′,Λ is behaviorally equivalent to the SUL A. In Algorithm
3 we have not shown how queries generated externally by a model checker can be

An Incremental Learning Algorithm for Extended Mealy Automata 501

integrated into the learning process to replace equivalence queries. However, the
basic idea is to prioritise such model checker queries above membership queries.
So membership queries are only used when no model checker generated queries
are available.

Belief(l→ r, Λ) =

⎧⎪⎨
⎪⎩
|{ t0 | l · t0 ∈ Λ and r · t0 ∈ Λ }| if l ∈ Λ,

−1 otherwise.

This systematic belief optimising strategy for generating membership queries en-
sures that learning finite EMA will always terminate. This is because Algorithm
2 enumerates all possible loop rules, and systematic membership querying in
Algorithm 3 will eventually reject any invalid loop rule. When the termination
condition of Algorithm 3 becomes true then the current hypothesis automaton
must be correct.

Theorem 2. Let A ∈ MA(Σ) be any finite state EMA over an ADT signature
Σ. Then ICGELearn terminates on A.

Proof. Omitted.

4.1 Performance Results

Below we give three types of performance results for ICGE. These are based
on: (i) measuring the absolute performance of ICGE on randomly generated
automata, (ii) measuring the relative performance of ICGE compared with CGE
learning on random automata, and (iii) measuring the performance of ICGE
applied to learning-based testing. We consider the last measure (iii) to be the
most significant, since ICGE has been designed for optimal test case generation.
However all three measures give some insight into algorithm performance.

Table 1. ICGE performance

State space size Alphabet size ICGE Queries ICGE Time (sec)

5 2 96 0.02

15 2 2902 0.27

25 2 72001 13.2

35 2 590001 330.1

5 4 2236 0.14

5 8 60934 4.77

5 12 512501 64.4

5 16 1421501 293.9

502 K. Meinke and F. Niu

Table 2. ICGE versus CGE : relative performance

State size CGE/ICGE Queries CGE/ICGE Time

5 21.8 5.7

10 237.2 11.8

20 535.8 80.7

Table 1 shows the performance of the ICGE algorithm for the task of com-
pletely learning an automaton. Although this is not the intended purpose of
the algorithm, nevertheless, the results are positive. Randomly generated au-
tomata were learned with different state space and input alphabet sizes. We
measured both the number of queries, and the computation time needed for
convergence.

Table 2 compares the performance of ICGE with the original CGE learning
algorithm on sets of randomly generated automata of different state space sizes
and binary alphabets. Here we see that relative to CGE, complete learning for
ICGE is improved, both in terms of the number of queries and the computation
time. This improvement increases with larger state space sizes.

Table 3. Learning-based testing of the TCP/IP protocol

Requirement Random Testing CGE LBT ICGE LBT
Queries Time (sec) Queries Time (sec) Queries Time (sec)

Req 1 101.4 0.11 19.11 0.07 4.53 0.04

Req 2 1013.2 1.16 22.41 0.19 6.6 0.06

Req 3 11334.7 36.7 29.13 0.34 7.7 0.17

Req 4 582.82 1.54 88.14 2.45 51.1 2.31

Finally, in Table 3 we give the results of applying the ICGE algorithm to
learning-based testing (LBT) of a model of the TCP/IP protocol against four
linear temporal logic (LTL) requirements. This protocol model, and the defi-
nition of these requirements as temporal logic formulas, can be found in [14].
As an EMA, the TCP/IP model involves 11 states, 12 input symbols, 6 output
symbols and 132 transitions. Table 3 gives the number of queries (test cases) and
times needed to find an injected error, when testing the four LTL requirements
which express different use cases. We compared random testing, learning-based
testing using the original CGE algorithm and learning-based testing using the
ICGE algorithm. Our results show that the number of queries needed to find an
injected error is greatly reduced by using ICGE learning. On the other hand, the
computation times are less reduced since the overhead of generating queries by
model checking is high. It can even dominate the overall learning time, as can
be seen with Requirement 4.

An Incremental Learning Algorithm for Extended Mealy Automata 503

5 Conclusions

We have introduced a new algorithm ICGE for incrementally learning of ex-
tended Mealy automata over abstract data types. Our approach is based on
using initial algebras and finite congruence generator sets. We use string rewrit-
ing systems to concretely represent and manipulate congruence generator sets.
We have shown how this approach can be made compatible with incremental
learning and hence efficient.

We acknowledge financial support for this research from the Swedish Research
Council (VR), the China Scholarship Council (CSC), and the European Union
under projects HATS FP7-231620 and MBAT ARTEMIS JU-269335. We also
acknowledge the help of the referees in improving the presentation of this paper.

References

1. Angluin, D.: A note on the number of queries needed to identify regular languages.
Information and Control 51(1), 76–87 (1981)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(1), 87–106 (1987)

3. Balcazar, J.L., Diaz, J., Gavalda, R.: Algorithms for learning finite automata from
queries. In: Advances in Algorithms, Languages and Complexity, pp. 53–72. Kluwer
(1997)

4. de la Higuera, C.: Grammatical Inference. Cambridge University Press (2010)
5. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theoretical

Computer Science. North-Holland (1990)
6. Dupont, P.: Incremental Regular Inference. In: Miclet, L., de la Higuera, C. (eds.)

ICGI 1996. LNCS (LNAI), vol. 1147, pp. 222–237. Springer, Heidelberg (1996)
7. Gold, E.M.: Language identification in the limit. Information and Control 10(5),

447–474 (1967)
8. Goguen, J.A., Meseguer, J.: Initiality, induction and computability. In: Algebraic

Methods in Semantics, pp. 460–541. Cambridge University Press (1985)
9. Klop, J.W.: Term rewriting systems. In: Handbook of Logic in Computer Science,

vol. 2, pp. 2–117. Oxford University Press (1992)
10. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Compu-

tational Problems in Abstract Algebra, pp. 263–269. Pergamon Press (1970)
11. Lang, K.J.: Random dfa’s can be approximately learned from sparse uniform ex-

amples. In: Fifth ACM Workshop on Computational Learning Theory, pp. 45–52.
ACM Press (1992)

12. Lloyd, J.W.: Foundations of Logic Programming. Springer (1993)
13. Meinke, K.: CGE: A Sequential Learning Algorithm for Mealy Automata. In: Sem-

pere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 148–162.
Springer, Heidelberg (2010)

14. Meinke, K., Niu, F.: Learning-Based Testing for Reactive Systems Using Term
Rewriting Technology. In: Wolff, B., Zäıdi, F. (eds.) ICTSS 2011. LNCS, vol. 7019,
pp. 97–114. Springer, Heidelberg (2011)

15. Meinke, K., Niu, F., Sindhu, M.: Learning-based software testing: a tutorial. In:
Proc. Int. ISoLA Workshop on Machine Learning for Software Construction. CCIS.
Springer (2012)

504 K. Meinke and F. Niu

16. Meinke, K., Sindhu, M.A.: Incremental Learning-Based Testing for Reactive Sys-
tems. In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151.
Springer, Heidelberg (2011)

17. Meinke, K., Tucker, J.V.: Universal algebra. In: Handbook of Logic in Computer
Science, vol. 1, pp. 189–411. Oxford University Press (1993)

18. Oncina, J., Garcia, P.: Inferring regular languages in polynomial update time.
In: Pattern Recognition and Image Analysis. Series in Machine Perception and
Artificial Intelligence. World Scientific (1992)

19. Parekh, R., Honavar, V.: Grammar inference, automata induction and language
acquisition. In: Handbook of Natural Language Processing, Marcel Dekker (2000)

20. Parekh, R.G., Nichitiu, C., Honavar, V.G.: A Polynomial Time Incremental Algo-
rithm for Learning DFA. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS
(LNAI), vol. 1433, pp. 37–49. Springer, Heidelberg (1998)

Learning Techniques

for Software Verification and Validation

Corina S. Păsăreanu1,2 and Mihaela Bobaru1,2

1 Carnegie Mellon Silicon Valley, NASA Ames, Moffett Field, CA, USA
2 NASA Jet Propulsion Laboratory, Pasadena, CA, USA

Learning techniques are being used increasingly to improve software verification
and validation activities. For example, automata learning techniques have been
used for extracting behavioral models of software systems, e.g. [8]. These mod-
els can serve as formal documentation of the software and they can be verified
using automated tools or used for model-based testing. Automata learning tech-
niques have also been used for automating compositional verification, e.g. [3],
for building abstractions of software behavior in the context of symbolic or pa-
rameterized model checking, e.g. [9] or for the automatic inference and security
analysis of botnet protocols, e.g. [1]. This Special Track aims at bringing together
researchers and practitioners working on the integration of learning techniques
in verification and validation activities for software systems. The Special Track is
part of the 2012 International Symposium on Leveraging Applications of Formal
Methods, Verification, and Validation (ISoLA).

The track includes five presentations. The first four papers address automata
learning and present various techniques for learning different kinds of automata.
The last paper has a different focus, as it studies the relationship between ma-
chine learning and automated testing. All the presentations have been reviewed
by the track chairs.

The first presentation, “Learning Stochastic Timed Automata from Sample
Executions” [7], addresses learning techniques for generalized semi-Markov pro-
cesses, an important class of stochastic systems which are generated by stochas-
tic timed automata. A novel methodology for learning this type of stochastic
timed automata is presented from sample executions of a stochastic discrete
event system. Apart from its theoretical interest in the machine learning area,
the presented algorithm can be used for quantitative analysis and verification in
the context of model checking. This paper also presents a Matlab toolbox for the
learning algorithm and a case study of the analysis for a multi-processor system
scheduler with uncertainty in tasks duration.

The second presentation, “Learning Minimal Deterministic Automata from
Inexperienced Teachers” [6], addresses extensions of a prominent learning al-
gorithm, namely Angluin’s L*, which allows to learn a minimal deterministic
automaton using membership and equivalence Queries addressed to a Teacher.
In many applications, a teacher may be unable to answer some of the member-
ship queries because parts of the object to learn are not completely specified,
not observable, or it is too expensive to resolve these queries, etc. The exten-
sions allow such queries to be answered inconclusively. In this paper, the authors

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 505–507, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

506 C.S. Păsăreanu and M. Bobaru

survey different algorithms to learn minimal deterministic automata in this set-
ting in a coherent fashion. Moreover, new modifications and improvements for
these algorithms are presented, prompted by recent developments.

The third presentation, “Model Learning and Test Generation for Event-B
Decomposition” [2], addresses the Event-B formal method for reliable systems
specification and verification, which uses model refinement and decomposition
as techniques to scale the design of complex systems. The presentation improves
previous work by the authors, which proposed an iterative approach for test
generation and state model inference based on a variant of the same Angluin’s
learning algorithm, that integrates well with the notion of Event-B refinement.
The authors extend the method to work also with the mechanisms of Event-B
decomposition. Two types of decomposition, shared-events and shared-variables,
are considered and the generation of a global test suite from the local ones is
proposed. The implementation of the method is evaluated on publicly available
Event-B decomposed models.

The fourth presentation, “Inferring Semantic Interfaces of Data Structures” [5],
shows how to fully automatically infer semantic interfaces of data structures on
the basis of systematic testing. The semantic interfaces are a generalized form of
Register Automata (RA), comprising parameterized input and output, allowing
to model control- and data-flow in component interfaces concisely. Algorithmic
key to the automated synthesis of these semantic interfaces is the extension of
an active learning algorithm for Register Automata to explicitly deal with out-
put. The algorithm is evaluated on a complex data structure, a stack of stacks,
the largest of which is learned in 20 seconds with less than 4000 membership
queries, resulting in a model with roughly 800 nodes. In contrast, even when
restricting the data domain to just four values, the corresponding plain Mealy
machine would have more than 10 to the power of 9 states and presumably
require billions of membership queries.

The last presentation, “Learning-Based Test Programming for Programmers”
[4], studies a diverse array of approaches to applying machine learning for test-
ing. Most of these efforts tend to share three central challenges, two of which
had been often overlooked. First, learning-based testing relies on adapting the
tests generated to the program being tested, based on the results of observed
executions. This is the heart of a machine learning approach to test generation.
A less obvious challenge in many approaches is that the learning techniques
used may have been devised for problems that do not share all the assumptions
and goals of software testing. Finally, the usability of approaches by program-
mers is a challenge that has often been neglected. Programmers may wish to
maintain more control of test generation than a “push button” tool generally
provides, without becoming experts in software testing theory or machine learn-
ing algorithms. In this paper the authors consider these issues, in light of their
experience with adaptation-based programming as a method for automated test
generation.

Learning Techniques for Software Verification and Validation 507

References

1. Cho, C.Y., Babic, D., Shin, E.C.R., Song, D.: Inference and analysis of formal models
of botnet command and control protocols. In: ACM Conference on Computer and
Communications Security, pp. 426–439 (2010)

2. Dinca, I., Ipate, F., Stefanescu, A.: Model Learning and Test Generation for Event-
B Decomposition. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS,
vol. 7609, pp. 539–553. Springer, Heidelberg (2012)

3. Giannakopoulou, D., Pasareanu, C.S.: Special issue on learning techniques for com-
positional reasoning. Formal Methods in System Design 32(3), 173–174 (2008)

4. Groce, A., Fern, A., Erwig, M., Pinto, J., Bauer, T., Alipour, A.: Learning-Based Test
Programming for Programmers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part
I. LNCS, vol. 7609, pp. 572–586. Springer, Heidelberg (2012)

5. Howar, F., Isberner, M., Jonsson, B.: Inferring Semantic Interfaces of Data Struc-
tures. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609,
pp. 554–571. Springer, Heidelberg (2012)

6. Leucker, M., Neider, D.: Learning Minimal Deterministic Automata from Inexpe-
rienced Teachers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS,
vol. 7609, pp. 524–538. Springer, Heidelberg (2012)

7. de Matos Pedro, A., Crocker, P.A., de Sousa, S.M.: Learning Stochastic Timed Au-
tomata from Sample Executions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part
I. LNCS, vol. 7609, pp. 508–523. Springer, Heidelberg (2012)

8. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: Learnlib: a framework for extrapo-
lating behavioral models. STTT 11(5), 393–407 (2009)

9. Vardhan, A., Viswanathan, M.: LEVER: A Tool for Learning Based Verification.
In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 471–474. Springer,
Heidelberg (2006)

Learning Stochastic Timed Automata

from Sample Executions

André de Matos Pedro1, Paul Andrew Crocker2, and Simão Melo de Sousa3,�

1 University of Minho, Braga, Portugal
pg15753@alunos.uminho.pt

2 IT - Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal
crocker@ubi.pt

3 LIACC - Laboratório de Inteligência Artificial e Ciência de Computadores,
University of Beira Interior, Covilhã, Portugal

desousa@ubi.pt

Abstract. Generalized semi-Markov processes are an important class of
stochastic systems which are generated by stochastic timed automata. In
this paper we present a novel methodology to learn this type of stochastic
timed automata from sample executions of a stochastic discrete event
system. Apart from its theoretical interest for machine learning area, our
algorithm can be used for quantitative analysis and verification in the
context of model checking. We demonstrate that the proposed learning
algorithm, in the limit, correctly identifies the generalized semi-Markov
process given a structurally complete sample. This paper also presents a
Matlab toolbox for our algorithm and a case study of the analysis for a
multi-processor system scheduler with uncertainty in task duration.

1 Introduction

Stochastic processes are commonly used as an approach to describe and make
a quantitative evaluation of more abstract models which may be described by a
high-level specification. When a model is evaluated we can use it for the design
phase and subsequently make an implementation. However, even if a model is
validated this does not imply that the implementation is in conformity with the
model. This is normally due to bugs in the implementation, wrong interpreta-
tion of the model, or possibly, wrong approximations in the construction of the
stochastic model. Unfortunately techniques for discovering these errors such as
testing are unlikely to be sufficient due to the difficulty of achieving a complete
or total coverage.

This paper is concerned with how these models can be derived from sample
executions provided by an implementation in order to verify them. There are
several learning algorithms for learning probabilistic and stochastic languages
[3,13,20], including a learning algorithm for continuous-time Markov processes
(CTMP) [19], but there is no algorithm in the case of processes that do not hold

� This work was supported in part by the FCT CANTE project (RefaPTPC/EIA-
CCO/101904/2008).

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 508–523, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Learning Stochastic Timed Automata from Sample Executions 509

the Markov property such as generalized semi-Markov processes (GSMP) [10].
Thus, the learning of stochastic timed automata covered in this paper falls in
the category of language identification [2,17,1]. For most of the methods in this
category, the identified stochastic languages are inferred from a set of sample
executions, i.e., these samples are a particular multi-set of the original language
to identify, and the inference has as target the identification of the language in
the limit, i.e., if the number of samples tends towards infinity then the learned
language will converge to the original language that generated the sample [11].
Learning of stochastic languages essentially follows a common method, firstly
establishing an equivalent relation between the states, then constructing a pre-
fix tree from samples provided by the original stochastic language, and lastly
describing an algorithm for the merge of equivalent states which is called state
merge.

In this paper, we address the problem of learning generalized semi-Markov
processes that are the most known extensive stochastic processes when lifetimes
can be governed by any continuous probabilistic distributions [7]. From classi-
cal Markov processes, exponential probability distributions are not sufficient to
model the lifetime of a product such as an electronic component [16] or even
model a computer process [12]. The use of generalized semi-Markov processes
may cover a wider set of problems however they are more complex and analyti-
cally intractable.

1.1 Contribution of the Paper

The learning algorithm we shall present infers a GSMP model from a given set
of trajectories and therefore must be capable of inferring the model by running
the deployed system in a test phase and of learning trajectories according to the
observed distributions. The learned stochastic timed automaton that is generated
by a GSMP is a model that can be used by existing statistical model-checkers
[15,23,22,5] and by the existing performance evaluation tools for further analysis
and thereby ultimately helping to find bugs in the post-implementation phase.
Learning algorithm for GSMP may also potentially be used to perform automatic
verification for stochastic discrete event systems.

In addition we also establish the correctness of our algorithm. We ensure that,
in the limit, when the samples grow infinitely the learned model converges to
the original model. Thus, a set of conditions like the definition of inclusion of a
prefix tree in a GSMP have to be ensured as well as the definition of probability
measure of paths.

1.2 Structure of the Paper

In section 2 some preliminary definitions are given in order to establish the learn-
ing algorithm detailed in section 3. In section 4 we demonstrate the correctness
of our algorithm. In section 5, the tool and a practical application are presented.
In the final section 6 we give our conclusions and discuss directions for further
work.

510 A. de Matos Pedro, P.A. Crocker, and S.M. de Sousa

2 Preliminaries

In order to formulate the next notations we describe the concept of finite path
that is established by a prefix,

σ≤τ = {s0, 〈e1, t1〉 , s1, 〈e2, t2〉 , ..., sk, 〈ek+1, tk+1〉}
based on the infinite sequence σ = {s0, 〈e1, t1〉 , s1, 〈e2, t2〉 , · · · } of a GSMP,
where sk is a state, ek is an event, tk is the holding time of the event ek, and
τ =

∑k+1
i=1 ti is the path duration upon k. A set of paths with prefix p is denoted

by Path(p), where p shall be σ≤τ . Some notation will now be introduced to
describe the structure of the algorithm. The definitions are based on symbol
(’‖’) that symbolizes a path with respect to an element of a particular set (of
states X , of events E or of holding times G) and brackets (’[’;’]’) a sequential
identification, as follows: σ‖X [s, i] is the ith state of the state sequence that
begins in state s, σ‖E [s, i] is the ith event of the event sequence that begins in
state s, σ‖G [s, i] is the ith holding time of the event sequence (σ‖E [s, i]) that
begin in s state, η(σ‖E [s, i]) = σ‖X [s, i − 1] is a function that returns the state
associated to an event ei, ε(σ‖X [s, i]) = σ‖E [s, i + 1] is a function that given
a state of a path returns its associated event, and δ(σ‖E [s, i]) = σ‖G [s, i] is
a function that given an event σ‖E [s, i] returns its holding time σ‖G [s, i]. A
sequence of events 〈e1, e2, e3, . . . , ek〉 produced by the prefix tree that accepts
the prefix σ≤τ is denoted by σ≤τ‖E .

A prefix tree (denoted Pt) that has an acceptor Path(σ≤τ) (a set of paths
with prefix σ≤τ), is a tree

Pt(Path(σ≤τ)) = (F ,Q, ρ, #, δ)
where F is a set of leaf nodes of the prefix tree (i.e., F = Path(σ≤τ‖E)), Q
is the set of nodes of the prefix tree composed by the sequence of events from
Path(σ≤τ‖E) (i.e., Q represents all accepted sequences in the prefix tree), ρ :
Q → [0, 1] is the function that associate the expectation value for each node n ∈
Q, # : Q → R≥1×...×R≥1 is the function that associate each node with a n-tuple
of clock values, and δ : Q → Q ∪ ⊥ is the transition function which have the fol-
lowing definition, δ(s, λ) = s where λ is the empty string and s is the reference
point (where all samples are measured), δ(s, e) =⊥ if δ(s, e) is not defined, and
δ(s, xe) = δ(δ(s, x), e), where x ∈ Q and e ∈ E , δ(s, xe) =⊥ if δ(s, x) =⊥
or δ(δ(s, x), e) is undefined.

A generalized semi-Markov process is a stochastic process {X(t)} with state
space X , generated by a stochastic timed automaton (sta, for short),

sta = (X , E ,Γ , p, p0 ,G)

where X is a finite state space, E is a finite event set, Γ (x) is a set of feasible
or enabled events, defined for every x ∈ X , with Γ (x) ⊆ E , p(x′;x, e′) is a state
transition probability (x′ to x given event e′) defined for every x, x′ ∈ X and e′ ∈
E such that ∀e′ /∈ Γ (x)p(x ′; x , e ′) = 0 , p0(x) is the probability mass function
(pmf) Pr[X0 = x], x ∈ X of the initial state X0, and finally G = {Gi : i ∈ E} is
a stochastic clock structure where Gi is a cumulative distribution function (cdf)
for each event i ∈ E .

Learning Stochastic Timed Automata from Sample Executions 511

The probability measure μ for a cylinder set composed by a prefix σ≤τ ,
C (σ≤τ , 〈Ek, Y

∗
k 〉 , Xk, ..., Xn−1, 〈En, Y

∗
n 〉 , Xn) accordingly to [23], can be defined

recursively as

μ(C(σ≤τ , 〈Ek, Y
∗
k 〉 , Xk, ..., 〈En, Y

∗
n 〉 , Xn)) = Pe(s

′;σ≤τ) ·He(t; ·, σ≤τ) ·
μ(C(σ≤τ ⊕ (〈e, t〉 , s′) ,

〈
Ek+1, Y

∗
k+1

〉
, Xk+1, ..., Xn−1, 〈En, Y

∗
n 〉 , Xn))

where the recursive base case is μ(C(s0, 〈E1, Y
∗
1 〉 , X1, ..., 〈En, Y

∗
n 〉 , Xn)) = 1,

Pe(s
′;σ≤τ) is the next-state probability transition matrix given an event e, and

He(t; ·, σ≤τ) is the density function of triggering the event e upon t time units.
The enabled events in a state race to trigger first, the event that triggers first
causes a transition to a state s′ ∈ X according to the next-state probability ma-
trix for the triggering event. The GSMP is considered as analytically intractable
and the probability measure formulation is not at all intuitive.

3 Learning Stochastic Timed Automata

We shall now present a novel algorithm for learning GSMP from sample exe-
cutions (fully detailed in [6,7]), where the GSMP are processes generated by
stochastic timed automata. In order to ensure the correctness of our algorithm,
we define first an inclusion relation between the prefix tree and the sta. Next,
we define the similarity relation between the states, and lastly we describe the
algorithm for the merge of compatible states which is commonly called state
merge.

3.1 The Inclusion Relation and the State Relation

Before introducing the definitions (1) and (2), we need to define two auxiliary
functions to simplify the notation of the relation between paths and the prefix
tree, as follows:

– τ(s, x) gives the set of feasible events of a given event sequence x from a
prefix tree Pt(Path(σ≤τ)), {y ∈ E | δ(δ(s, x), y) �=⊥}, for instance, from a
set of sequences {xa, x b, ...} we get {a, b, ...}, and

– ν(σ‖X [s, i]) maps a state σ‖X [s, i] to u, where u ∈ Q is a sequence of events
accepted by the prefix tree Pt(Path(σ≤τ)).

One says that a prefix tree Pt(Path(σ≤τ)) is a particular case of a GSMP, or
in other words a sta. However, only the relation between the data structures is
ensured with this definition, we shall need to establish a correction of the state
merge algorithm as well (as we will see later).

Definition 1. The prefix tree Pt(Path(σ≤τ)) = (F ,Q, ρ, #, δ), denoted Ptsta,
for a set of multiple paths Path(σ≤τ) is a particular sta,

Ptsta(Path(σ≤τ)) = (X , E ,Γ , p, p0 ,G)

where X = Q; E is the set of single and unique events in the F set;
Γ (si) = τ(s, ν(si)); p(s

′; s, e∗) = 1 if δ(ν(s), e∗) �=⊥ and ν(s′) �=⊥, otherwise

512 A. de Matos Pedro, P.A. Crocker, and S.M. de Sousa

p(s′; s, e∗) = 0; p0(s) = 1; and G is a set of distributions estimated by sample
clocks associated on each event, given by the function #.

The Ptsta(Path(σ≤τ)) is a GSMP consistent with the sample in Path(σ≤τ). For
all paths with prefix σ≤τ there exists a corresponding execution in the GSMP
that produces the same path.

Now, we introduce the notion of a stable equivalence relation that establishes
the similarity between states. This relation, that is applied statistically, allows
the creation of a more abstract model from a set of paths Path(σ≤τ). The size
of the model at each equivalence between states is reduced.

Definition 2. Let M = (X , E ,Γ ,p, p0 ,G) be a sta, a relation R ⊆ X × X
is said to be a stable relation if and only if any s, s′ have the following three
properties,

|Γ (s)| = |Γ (s ′)| (1)

there is a one to one correspondence f between Γ (s) and Γ (s ′),

if ∃e ∈ E and ∃n ∈ X such that p(n; s, e) > 0, then (2)

∃n′ ∈ X such that p(n′; s′, f(e)) > 0, G(s, e) ∼ G(s′, f(e)), and (n, n′) ∈ R
and

if ∃e ∈ E and ∃n, n′ ∈ X such that n �= n′ , p(n; s, e) > 0 and (3)

p(n′; s, e) > 0 then p(n; s, e) ≈ p(n; s′, e) and p(n′; s, e) ≈ p(n′; s′, e)

where |Γ (s)| is the number of active events in the state s, p is a probabilistic
transition function, G is a probability distribution function, and the tilde (∼)
and double tilde (≈) notations denote ”with same distribution” and ”with same
probability” respectively. Two states s and s′ of M are said equivalent s ≡ s′ if
and only if there is a stable relation R such that (s, s′) ∈ R.
A concrete example is now described for the application of the definition (2). For
instance, suppose that we have |Γ (s)| = |Γ (s ′)| = 2, Γ (s) = {a, b}, and Γ (s ′) =
{c, d}. The equation (1) is trivially satisfied, i.e., the feasible event set have the
same size. However, the equation (2) and (3) are not trivially satisfied. To be
satisfied we need to conclude that G(s, a) ∼ G(s′, c) and G(s, b) ∼ G(s′, d), or
G(s, a) ∼ G(s′, d) and G(s, b) ∼ G(s′, c) is true, if G(s, a) ∼ G(s, b), G(s, a) ∼
G(s′, c) orG(s, a) ∼ G(s′, d) then p(n; s, a) ≈ p(n′; s′, b), p(n; s, a) ≈ p(n′; s′, c),
p(n′′′; s, a) ≈ p(n′′′; s′, d) respectively, otherwise a test for two Bernoulli distribu-
tions p is not necessary [3], and all states reachable by s and all states reachable
by s′ must also form a stable relation, i.e., the next states of (s, s′) also have to
satisfy these three properties.1

3.2 Testing Statistically the Similarity of States

The similarity test follows the same scheme of algorithms RPNI [17] and ALER-
GIA [3], except for: the compatible function which incorporates a different

1 In the definition (2) the real event identifiers are not necessary but we need to know
that the sets of feasible events have associated for each event the same distribution.

Learning Stochastic Timed Automata from Sample Executions 513

Algorithm 1: Testing statistically the similarity of states (T3S)

input : A set of paths with prefix σ≤τ , Path(σ≤τ), and a type I error α between [0; 1].
output: A sta M.

M = Ptsta (scheduler estimator(Path(σ≤τ), P t(Path(σ≤τ)))) ; // See definition (1)
attempt ← 1;
while attempt > 0 do

attempt ← 0;
C ← clusterize(M);
for n ← 1 to |C| do

for k ← 1 to |Cn| do
x ← k + 1;

while Cn,x �= Cn,|Cn| do
if is active(Cn,x) then

if similar(Cn,k, Cn,x, α) then
dmerge(M, Cn,k, Cn,x, ·, ·);
inactivate(Cn,x);
attempt ← attempt + 1;

x ← x + 1;

M = infer distributions(M);

statistical test structure, there is an estimator for unknown new clocks, and
there is an event distribution estimator.

The algorithm 1 together with the auxiliary functions , , and establish a
new methodology to learn GSMP, which are processes that hold a semi-Markov
property. We call the presented solution model identification in the limit.

The algorithm 1 has notations associated to the ordered set of clusters and
also between these cluster elements, as follows:

– the set of n ordered clusters C, classified by events, are denoted by Cn, and
– Cn,k is the kth element of cluster Cn, for each 1 ≤ n ≤ |C| and 1 ≤ k ≤ |Cn|.

The clustering function clusterize produces groups of elements C with a selec-
tion based on the feasible event set τ(s.) for each state s. of M, where M at first
attempt is equal to Ptsta (Pt(Path(σ≤τ))). The is active and inactivate

functions allow that only the prefix tree nodes that were not merged are used,
and the function similar tests the similarity between two feasible event sets
τ(Cn,k) and τ(Cn,x).

The testing statistically the similarity of states (T3S) algorithm is subdi-
vided in three blocks. The first block is composed by a clusterize function
that clusters the states with an equal active event set (the function τ). The
clusterize function establishes a plain static equivalence between states, nev-
ertheless we need to establish a while cycle with attempt > 0 to cover the other
cases such as when dmerge changes the clock samples of the similar states. With
this clusterize function we guarantee equation 1, which says that only states
with event sets of the same size can be merged.

In the second block we use the similar function to test when two states are
similar. This function is defined as and it uses the Kolmogorov-Smirnov test [8,
p. 552] to decide if two empirical probabilistic distributions are equal. It verifies
whether there exists a one to one correspondence of events between two active
event sets through a statistical equivalence. If there is a correspondence for all
events of an active event set, the equation 2 is satisfied. Lastly, the algorithm 1

514 A. de Matos Pedro, P.A. Crocker, and S.M. de Sousa

Function: scheduler estimator(Path(σ≤τ), Pt(Path(σ≤τ)))

input : A Path(σ≤τ) with initial state s, and a Pt(Path(σ≤τ)).
output: The Pt(Path(σ≤τ)) with replaced old clocks by original values of clocks.

for n ← 1 to |Path(σ≤τ)| do
for l ← 2 to |σn| do

for x ← 0 to l − 1 do // Decrement p
p ← l − x;
if σn‖E [s, l] �∈ τ(ν(σn‖X [s, p])) and |τ(ν(σn‖X [s, p]))| ≤ 1 and
σn‖E [s, p] = σn‖E [s, l] then break;

if p > 1 then p ← p + 1;
if σn‖X [s, p] �= σn‖X [s, l] then

Val ← 0;
for t ← p to l do // Estimating

Val ← Val + σn‖G [s, t];
if σn‖X [s, t] = σn‖X [s, l then break;

replace(Pt(Path(σ≤τ)), ν(σ
n‖X [s, l]),Val);

merges the equal states by the function composed by equation 7. It initializes
the construction of the sta. This function defined according to the equation 7
solves the problem of non-deterministic merge of states when two states have
the same set of events.

Inferring the State Age Structure. The considered stochastic process, the
GSMP, requires a state age memory [4,10]. This state age structure, normally
identified as a scheduler, allows the use of different continuous distributions
for each inter-event time, i.e., the inter-event times between events of a GSMP
are not equal. This is not true in CTMP where all inter-event times follow an
exponential distribution. The scheduling of events is a data structure that allows
the calculation of the next event to be triggered.

We introduce the notion of scheduler estimation in order to calculate the
history of clock values for each event. Thus, we reconstruct values sampled from
new clocks to estimate the events distribution of the model that produces those
executions. For instance, suppose that we have two events a and b that can be
triggered in a state s0, where s0 is the initial state of the model, and there are
two random variables Xa ∼ E(0.2) and Xb ∼W (1, 0.1) associated to each event.
The events a and b begin labeled as new clock and therefore two samples are
given by random variables, respectively, Xa and Xb. Given the samples xa = 1.2
and xb = 0.5 from their respective distributions, the event b wins. Next, the
clock value of event b is subtracted and is stored with value 1.2− 0.5 = 0.7 and
a new clock is sampled to b. Then, the event a wins with value 0.7 versus the
event b with new clock 1.4. Therefore we can calculate the original value of the
event a from the produced sample execution {s0, (b, 0.5), s1, (a, 0.7), ·} adding
inter-event times between a and b, 0.5+0.7 = 1.2. So, we can say that the value
sampled in state s0 to the event a has the value 1.2, which is true. Although
this scheme can be extended recursively to any finite sample execution, we need
to clearly identify the new and old clocks for any path. In order to check the
definition (2), only the new clock samples are suitable to predict the distributions
associated to each event i. The estimation process happens essentially due to the
existence of the map function ν (defined in 3.1).

Learning Stochastic Timed Automata from Sample Executions 515

The function has a particular notation of order in a set of paths Path(σ≤τ)
with prefix σ≤τ that is described, as follows: σn is the nth path Path(σ≤τ), where
0 < n ≤ |Path(σ≤τ)|, and σn,l is the lth piecewise of path n, where 0 < l ≤ |σn|,
where symbols (’|’) denotes the size of a variable that is between these symbols.
We explain in the following how function estimates original sample clock values.
First, the algorithm begins by traversing each path of sample executions set in
a bottom-up order to know if the current event can be triggered by a clock
with a label ”new clock” or an ”old clock”. In this step, we know that an old
clock is valid when the successor nodes have this event activated, otherwise it is
as ”inactive clock”. The algorithm goes to the predecessor node of the current
node recursively, always in one sample execution, until we have found a possible
inactive clock. When an inactive clock is found for the current event, in state
s., this implies that this event e cannot be in τ(s.), which is an active event
set for a state s.. Therefore, even in the worst case, the first state (s0) of the
sample execution can always be found. Given this element we can reconstruct
the original clock value by the sum of the values between the found state (s. or
s0) and the current state. Lastly, we replace the old clock value by the estimated
original clock value.

Establish the Similarity Test of States. The similarity between two ac-
tive event sets Γ1 and Γ2 within the type I error α is solved by the function .
Thus, the Kolmogorov-Smirnov test (K-S test) [8, p. 552] is applied to test if
two distributions are or are not the same (i.e., compare two empirical cumulative
distribution functions). Let {Xn}n≥1 and {Yn}n≥1 be two independent succes-
sions of independent real random variables with common distribution functions,
respectively F1 and F2. The K-S test allows testing two hypothesis,

H0 : F1(x) = F2(x), for all x ∈ R against (4)

H1 : F1(x) �= F2(x), for some x ∈ R

using the statistical test,

Tn1,n2 =

√
n1n2
n1 + n2

sup
x∈R

|Fn1(x) − Fn2(x)| (5)

where Fn1 and Fn2 denotes respectively the empirical distribution functions
associated to the samples (X1, ..., Xn1) and (Y1, ..., Yn2). The random variable
Tn1,n2 converges to the Kolmogorov distribution whose values are tabled in [8,

p. 555]. For a significance level α we reject H0 when the observed value T̂n1,n2 of
the test statistic for the particular samples (x1, ..., xn1) and (y1, ..., yn2) exceeds
the value Kα, with G(kα) = 1 − α. The two empirical cumulative distributions
Fn1 and Fn2 are estimated using the function T . This function estimates the
distribution from a set of sample clocks and is defined, as follows:

Tn (x) =
clock value of z1, z2, ..., zn that are ≤ x

N
(6)

where x is the threshold of the cumulative function, and zi for all events i ∈ D
and D ⊆ E are the sample clock values.

516 A. de Matos Pedro, P.A. Crocker, and S.M. de Sousa

Function: similar(s′,s′′,α)
input : Two states s1 and s2, and a type I error α.
output: Boolean, true if it is similar, or otherwise false.

Γ1 ← τ(s1); Γ2 ← τ(s2);
if |Γ1 | �= |Γ2 | then return false;
for each e1 in Γ1 do

while |Γ2 | > 0 do
e2 ← get(Γ2);
Fn1 = T (�(s1e1)); Fn2 = T (�(s2e2));

if

√
n1n2

n1+n2
sup
x

|Fn1(x)− Fn2(x)| > Kα then

if similar(δ(s1e1), δ(s2e2), α) �= true then
return false;

continue;

put(Γ2 , e2);

for each e1, e2 in Γ1 such that s1 e1 ∼ s1 e2 do

if |�(s1 e1) − �(s1 e2)| >
√

1
2 log

2
α

(
1√
n1

+ 1√
n2

)
then

return false;

if |Γ2 | < 1 then return true; else return false;

The function begins by comparing two feasible event sets Γ1 and Γ2 . The
comparison is made by establishing a one to one relation between events in
feasible sets. If the relationship between events is complete then the states are
similar and so it allows equation 2 to be checked. Another particularity in this
algorithm is when two events have the same ’id’ in the feasible event set, for
two states respectively. This indicates that the event is triggered as e but there
are different probabilities in the transition probability matrix. To solve this,
we construct a hypothesis test for two Bernoulli distributions using Hoeffding
bounds [3] in order to know if the occurrence probabilities are the same (i.e.,
satisfies equation 3). This method is similar to the one described in [13]. The
method checks if the means #(s1 e1) and #(s1 e2) of two Bernoulli distributions
are statistically different or not.

The Deterministic Merge Function. The existence of equal feasible event
sets (Γ (s) = Γ (s ′)) creates a non deterministic choice when merged. This prob-
lem can be solved applying a deterministic merge function, as follows:

While ∃s, x ∈ Q and ∃e ∈ E such as s′, s′′ ∈ σ(s, x e), merge(s′, s′′) (7)

The merge shall be made recursively until no more non-deterministic event tran-
sitions occur. In the T3S algorithm this is named as dmerge function. We describe
with a brief example the application of the equation 7. Let two non-deterministic
transitions from s1 and s2 labeled with same event e, τ(s, x ν(s0)) = {e} and
τ(s, x ν(s′0)) = {e} respectively. Supposing that we merge s0 in s′0 we get a new
non-deterministic choice between s1 and s′1 until to the end of the paths. There-
fore, we need to apply the merge recursively until there are only deterministic
choices.

Inferring Event Distributions Using Maximum Likelihood. And now, to
conclude the learning method, we need to introduce the concept of distribution
discriminant and its selection criteria. Given a prefix tree with all the similar

Learning Stochastic Timed Automata from Sample Executions 517

Function: infer distributions (M)

input : A deterministic sta M.
output: A deterministic sta M with associated random variables and those distributions.

for each n in Q such that removed[n] = 0 do
for each e in τ(s, n) do

Ge ←
∫ ∞
0

arg max
fd∈D

{ln [Ld(�[n e])]};

states merged, we need to estimate the parameters of each empirical distribution
of each event that best fits the sample data. For this, the maximum likelihood
estimator (MLE) and selection criteria, such as maximum log likelihood, are
needed [9]. In order to test the validity of the selection model, a goodness of fit
test could be applied (e.g., X 2).

We present the function that estimates the distribution parameters using
the maximum likelihood estimator (MLE) for continuous distributions such as:
Exponential, Weibull and Log-Normal. However, there are other continuous dis-
tributions, such as: Rayleigh, Normal (with non negative part), that we have not
described in detail in this paper, but that can be applied in this estimator. The
log likelihood Ld of a distribution fd is defined by

ln [Ld (θ | x1, ..., xn)] =
n∑

i=0

ln [fd (xi | θ)] (8)

where θ is the set of parameters for a distribution fd, and x1, ..., xn are samples to
be measured. MLE of fd is composed by the maximization of likelihood function
Ld with respect to the set of parameters θ which are parameters used in the
following criterion. The maximum log likelihood criterion selects the model that
best fits the data from the different estimations of distributions with maximum
likelihood [9]. This selection criteria is defined by the maximum value of the
calculated log likelihood, i.e.,

ln [Ldm] > max {∀d ∈ D s.t. d �= dm then ln [Ld]} (9)

where D is a set of distributions in analysis, and ln [Ld] the log likelihood of
distribution d. The distribution with maximum likelihood is denoted by dm ∈ D.
So, we need two or more distributions to make a decision. Note that distributions
of set D are distributions with a parameter or a set of parameters estimated by
using the MLE method. By this means we estimate the distribution that, in the
limit, is more similar to the distribution that produce these samples to learn.

4 Model Identification in the Limit

The correctness argument for the proposed learning algorithm can be defined
in terms of correct model identification. For such, we need to show that the
produced GSMP is similar to the model that was used to generate the samples.
There are therefore three conditions or clauses for correct model identification:

1. the prefix tree constructed by sample executions provided by a GSMP,
Pt(Path(σ≤τ)), is also a GSMP.

518 A. de Matos Pedro, P.A. Crocker, and S.M. de Sousa

2. the sample executions to learn have the minimal information necessary to
form the model.

3. the Pt(Path(σ≤τ)) with state merge, in the limit, converges to one similar
model that identifies Path(σ≤τ).

Since the definition 1 is correct by construction and assuming a structurally
complete sample, the correctness of the learning algorithm depends essentially
on the correctness of the state merge procedure. From definition 1 the first clause
is ensured and therefore only the other two clauses need to be guaranteed. For
the second clause, we need to ensure that the sample executions to learn form a
structurally complete sample (SCS). This is known as the problem of insufficient
data training and when this occurs it is obviously impossible to learn the model
that produces an incomplete set of sample executions. For the third clause,
we need to ensure that, in the limit, the error of merging two non equivalent
states tends to zero. Note that the error of merging two non equivalent states
is guaranteed by the K-S test. With these three clauses satisfied, we can prove
that the model that is learned by the algorithm, in the limit, and behaves as the
original.

Ensuring a Structurally Complete Sample. Commonly used methods to
achieve a structurally complete sample, like reachability analysis, are not enough
when the model is not known. In this case acquiring a SCS is a big challenge.
The selection of termination probability for a sample execution can be used
as a method to achieve a SCS in known and unknown models. However, the
probability measure of a path from an unknown model is not trivially assured.

A SCS is a sample composed by a set of paths that explores every possible
transition and every reachable state. This structure solves a common problem
known as insufficient data training to learn a model, i.e., only with paths of
infinite size can one guarantee that for any model, the learned model eventually
converges to an equivalent. With a SCS, we ensure that the minimum information
needed to learn a model from sample executions is achieved. In order to ensure
that a set of paths relying on SCS, we introduce a termination probability pt as a
solution. The simulation technique is described, as follows: 1) simulate the SDES
M , 2) terminate when probability measure of a path σ≤τ of execution is less than
pt, i.e., μ(C(σ≤τ , 〈Ek, Y

∗
k 〉 , Xk, ..., 〈En, Y

∗
n 〉 , Xn)) < pt, and 3) apply recursively

the steps 1 and 2 to generate more sample executions. We simply note that
the solution method based on termination probability has weaker correctness
guarantees than reachability analysis. It also places a greater responsibility on
the user, who has to choose a good value for pt. The automatic achievement of
pt is not trivial.

The State Merge Error, in the Limit, Converges to Zero. Assuming
that the first two correctness clauses are satisfied then the learning algorithm
can only make errors when testing the similarity between two states. In addition,
the errors α and β between two event distributions of the K-S test are defined,
as follows:

Learning Stochastic Timed Automata from Sample Executions 519

. α is the type I error of H0 be rejected, where in fact H0 should not be
rejected, and

. β is the type II error of H1 be accepted, where in fact H1 should be rejected.

Hence this means that the state merge errors αs and βs are defined by the
multiplication of the errors made in the comparison of each event distribution
αs =

∏k
i=1 αi and βs =

∏k
i=1 βi, where k is the number of similar events.

Moreover, the model errors α∗ and β∗ are equal to the multiplication of the error
αs and βs used for each state merged α∗ =

∏n
i=1 αs[i] and β

∗ =
∏n

i=1 βs[i], where
n is the number of merged states. We present, in the following, two propositions
about the bounds of type II error.

Proposition 1. Suppose the Kolmogorov-Smirnov test for two samples with size
n1 e n2 respectively, and a significance level α. For sufficiently large samples,
i.e., when n1 → ∞ and n2 → ∞, β tends to zero.

In the following we present a sketch of the proof. The proof of this proposition
is based on the following facts: by the theorem of Glivenko-Cantelli when H0 is
true and n1 and n2 tend to infinity, sup

x∈R

|Fn1(x) − Fn2(x)| converges certainly

to zero. So, from the uniqueness of the limit, when H0 is true and n1 → ∞,

n2 → ∞, we have that
√

n1n2

n1+n2
sup
x∈R

|Fn1(x) − Fn2(x)| tends certainly to +∞.

Therefore, in the validity of H1, the probability of rejecting H0 tends to 1, which
was to be demonstrated.

It is known that the convergence of k-S test is exponential [24]. Moreover,
the reader can find a detailed account to β error boundaries and correctness
arguments as presented here in [14].

Proposition 2. If the type II error β, in the limit, for the K-S test converges
to zero, a multiplication of the type II error

∏k
i=1 βi, in the limit, also tends to

zero.

This proposition is trivially satisfied. Given the limit law of multiplication, we
know that the limx→a f(x) · g(x) = limx→a f(x) · limx→a g(x). Then, because
f(x) = g(x), the limit is maintained.

5 Tool and Proof of Concept

The implementation of the learning algorithm is the basis of the SDES toolbox,
that allows the learning and analysis of a set of case studies, such as: task sched-
ulers, land mobile satellite communication systems, and network traffic model
estimation. In order to illustrate the learning process, we use as an example a
scheduler for a multi-processor system and show how the proposed method can
learn a model that can be used for further analysis.

520 A. de Matos Pedro, P.A. Crocker, and S.M. de Sousa

, , abcstart

, ab, c

, ac, b

, bc, a

A, bc,

C, ab,

AB, c,

BC, a,

AC, b, ABC, , B, ac,

init ; 1/3

init ; 1/3

init ; 1/3

a

ba

c

b

c
a

c
b

c b

a

c

a

b

102 103 104
0

2

4

6

Number of samples

T
im

e
(s
)

Performance analysis

0 200 400 600 800 1,000
0

5

10

Number of samples

N
u
m
b
er

o
f
st
a
te
s

Convergence analysis

Fig. 1. Learning GSMP of a multi-processor system scheduler with uncertainty

SDES Toolbox. We have developed a SDES toolbox2 in C and C++ language
that implements the presented learning approach. The toolbox was developed to
analyze and learn generalized semi-Markov processes. It also supports the model
description by an event-driven language that can be directly used as the input
model language to a GSMP model checker [21].

Stochastic Analysis of a Scheduler for a Multi-processor System. An
optimal scheduler design for a multi-processor system with uncertainty in task
duration is difficult to achieve and a significant challenge [18]. In figure 1, we
present the model from which it is possible to derive, statistically, answers about
the worst case sequence and the optimal case sequence of a two-processor sched-
uler system. In this system there are two processors that can run two tasks at
the same time. Supposing that there are three tasks {a, b, c}, only two tasks
can be run at the same time and the other one only when one of the tasks is
finished. The model of this system has eleven states which describe the state
of the two processors and tasks at any given time. The scheduler can initially
make three choices, (a, b), (a, c), or (b, c). The event init of the model, represent-
ing these choices is: p([, ab, c]; [, , abc], init) = 1

3 , p([, ac, b]; [, , abc], init) =
1
3 , and

p([, bc, a]; [, , abc], init) = 1
3 respectively. These choices bind the time (i.e., worst

and optimal) of the execution for these three tasks. If we have a scheduler that
is completely random (i.e., the probability of events {ab, ac, bc} are equiprob-
able) then we select the path with maximum probability which means that it

2 Available from http://sourceforge.net/projects/t3s-tool/

http://sourceforge.net/projects/t3s-tool/

Learning Stochastic Timed Automata from Sample Executions 521

is the better sequence. Thus, if we have a scheduler that begins with the opti-
mal tasks then we will have an optimal scheduler for these tasks. However, we
need to distinguish two situations, as follows: if only exponential distributions
are used then the choice is easy, the rate of distribution identifies the order (the
lower expected value is the more probable), but if on the other hand we have
different continuous distributions then the ordering selection is not so trivial.
This will be the case for this example that our method will solve. Namely us-
ing the distributions init : Tinit ∼ Exponential(1), a : Ta ∼ Weibull(0.1, 1),
b : Tb ∼ Exponential(0.4), and c : Tc ∼ Log-Normal(0, 0.25), respectively.

Given the sample executions that form a SCS, we have compared the perfor-
mance and convergence of our algorithm given an increasing number of sample
executions, see figure 1. We can see in the convergence graph that for one thou-
sand sample executions, the model converges into a model with same number of
states. According to the correctness of our learning algorithm, we have guaran-
teed that if the umber of samples grows infinitely then the model converges to
the original model. Notice that in fact in this example we verify that the model
learnt by our algorithm with approximately nine hundred sample executions has
the same event language of the original model. This experiment was made on a
machine with an Intel Core 2 Duo CPU T7500 @ 2.2Ghz processor with 4Gb of
memory. An interesting point in this model is that the path with the greatest
probability to occur is the optimal case execution and the path with the lowest
probability is the worst case execution, when we have a random scheduler.

6 Conclusion and Future Work

To the best of our knowledge, this is the first learning algorithm that is able
to cope with GSMP learning of deployed stochastic discrete event systems for
which we do not know the model before-hand. The learning algorithm can be
used to verify the deployed systems using existing probabilistic model-checking
tools. We also have developed a toolbox for Matlab that applies the techniques
described in this paper. We have shown with our experiment that this type of
model is really capable and scalable. We can use it not only for the analysis of a
computer system but also to verify or test it. However, one of the limitations of
our work is that it may not scale up for systems having large stochastic timed
automata. Development of techniques that allow the approximate verification
while the model is learned may be the solution.

Acknowledgments. We would like to thank to Ana Paula Martins for the
very constructive discussions about the statistical properties of the proposed
T3S algorithm.

522 A. de Matos Pedro, P.A. Crocker, and S.M. de Sousa

References

1. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of nfa. In:
Proceedings of the 21st International Joint Conference on Artifical Intelligence, IJ-
CAI 2009, San Francisco, CA, USA, pp. 1004–1009. Morgan Kaufmann Publishers
Inc. (2009)

2. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:
The Automata Learning Framework. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010)

3. Carrasco, R.C., Oncina, J.: Learning deterministic regular grammars from stochas-
tic samples in polynomial time. RAIRO (Theoretical Informatics and Applica-
tions) 33, 1–20 (1999)

4. Cassandras, C.G., Lafortune, S.: Cassandras and Stephane Lafortune. In: Introduc-
tion to Discrete Event Systems. Springer-Verlag New York, Inc., Secaucus (2006)

5. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for Statistical
Model Checking of Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

6. de Matos Pedro, A.: Learning and testing stochastic discrete event systems. Mas-
ter’s thesis, Universidade do Minho, Portugal (December 2011)

7. de Matos Pedro, A., de Sousa, S.M.: Learning generalized semi-markov processes:
From stochastic discrete event systems to testing and verification. Technical Report
DCC-2012-01, Department of Computer Science, University of Porto (2012)

8. DeGroot, M.H.: Probability and Statistics, 2nd edn. Addison Wesley (1989)
9. Dey, A.K., Kundu, D.: Discriminating among the log-normal, weibull, and gener-

alized exponential distributions. IEEE Transactions on Reliability 58(3), 416–424
(2009)

10. Glynn, P.W.: A gsmp formalism for discrete event systems. Proceedings of The
IEEE 77, 14–23 (1989)

11. Mark Gold, E.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

12. Harchol-Balter, M., Downey, A.B.: Exploiting process lifetime distributions for
dynamic load balancing. ACM Trans. Comput. Syst. 15, 253–285 (1997)

13. Kermorvant, C., Dupont, P.: Stochastic Grammatical Inference with Multinomial
Tests. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS
(LNAI), vol. 2484, pp. 149–160. Springer, Heidelberg (2002)

14. Klotz, J.: Asymptotic efficiency of the two sample Kolmogorov-Smirnov test. Jour-
nal of the American Statistical Association 62(319), 932–938 (1967)

15. Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An Overview.
In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.,
Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–
135. Springer, Heidelberg (2010)

16. Lu, M.-W., Wang, C.J.: Weibull data analysis with few or no failures. In: Pham, H.
(ed.) Recent Advances in Reliability and Quality in Design, pp. 201–210. Springer,
London (2008)

17. Parekh, R., Honavar, V.: Learning dfa from simple examples. Machine Learn-
ing 44(1/2), 9–35 (2001)

18. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer
Publishing Company, Incorporated (2008)

Learning Stochastic Timed Automata from Sample Executions 523

19. Sen, K., Viswanathan, M., Agha, G.: Learning continuous time markov chains
from sample executions. In: Proceedings of the The Quantitative Evaluation of
Systems, First International Conference, pp. 146–155. IEEE Computer Society
Press, Washington, DC (2004)

20. Wei, W., Wang, B., Towsley, D.: Continuous-time hidden Markov models for net-
work performance evaluation. Perform. Eval. 49, 129–146 (2002)

21. Younes, H.L.S.: Ymer: A Statistical Model Checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

22. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic
properties with unbounded until. In: SBMF, pp. 144–160 (2010)

23. Lorens, H., Younes, S.: Verification and planning for stochastic processes with
asynchronous events. PhD thesis, Pittsburgh, PA, USA (2004)

24. Yu, C.S.: Pitman efficiencies of Kolmogorov-Smirnov test. The Annals of Mathe-
matical Statistics 42(5), 1595–1605 (1971)

Learning Minimal Deterministic Automata

from Inexperienced Teachers

Martin Leucker1 and Daniel Neider2

1 Institute for Software Engineering and Programming Languages,
University of Lübeck, Germany

2 Lehrstuhl für Informatik 7, RWTH Aachen University, Germany

Abstract. A prominent learning algorithm is Angluin’s L∗ algorithm,
which allows to learn a minimal deterministic automaton using so-called
membership and equivalence queries addressed to a teacher. In many
applications, however, a teacher might be unable to answer some of
the membership queries because parts of the object to learn are not
completely specified, not observable, it is too expensive to resolve these
queries, etc. Then, these queries may be answered inconclusively. In this
paper, we survey different algorithms to learn minimal deterministic au-
tomata in this setting in a coherent fashion. Moreover, we provide mod-
ifications and improvements for these algorithms, which are enabled by
recent developments.

1 Introduction

In recent years, automata learning techniques have gained a lot of interest in
the field of verification. In this application domain, often some form of abstract
system or some invariant is needed within the verification process, which may
be learned using such techniques. Prominent applications are compositional ver-
ification, in which an abstraction of a component is essential, or verification of
infinite state systems by means of invariants. See [8] for further typical applica-
tions of learning techniques for verification tasks.

In simple words, the nature of automata learning techniques is to identify some
automaton based on samples. More specifically, the general goal of automata
learning algorithms is to identify an automaton, usually of minimum size, that
conforms to an a priori fixed but unknown automaton. In general, two types
of learning algorithms for automata can be distinguished, so-called passive and
active algorithms. Passive algorithms get a fixed set of examples and compute a
minimal conforming automaton. Active algorithms may use additional queries to
the underlying system to improve the learning process. In this paper, we mainly
focus on active learning algorithms.

A popular setup for actively learning automata is that of Angluin’s L∗ al-
gorithm [1] in which a so-called learner identifies a minimal deterministic finite
automaton for a regular language L with the help of a so-called teacher that may
be consulted with membership and equivalence queries. A membership query

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 524–538, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Learning Minimal Deterministic Automata from Inexperienced Teachers 525

clarifies whether a given word is in the language in question while an equiva-
lence query answers whether an automaton currently proposed by the learner is
correct or not. In the latter case, a counter-example showing the difference of
the two languages is returned.

In Angluin’s setting, a teacher answers membership queries either positively
or negatively. In many application scenarios, however, parts of the automaton
to learn are not completely specified or not observable so that the corresponding
information is not available, or it may be just too expensive to resolve these
queries, etc. Then, queries may be answered inconclusively, by don’t know (or
don’t care), denoted by ?. Moreover, in this context the goal is often more relaxed
in the sense that no longer a (not necessarily unique) automaton has to be
learned that coincides with some language L but one that accepts a superset
of a language L1 but has an empty intersection with a language L2. This setup
is faced, e.g., when verifying that some system with behavior given by L1 does
not violate a safety property given by behaviors L2. Then, any superset L of
L1 having an empty intersection with L2 proves the intended goal, regardless
whether the words that are neither in L1 nor in L2 are accepted or not.

In this paper, we survey different algorithms to learn minimal deterministic
automata that are designed to work with such an inexperienced teacher in a
coherent fashion. Moreover, we provide modifications and improvements for these
algorithms, which are enabled by recent developments.

More precisely, we review three different types of algorithms in the setting of
learning with an inexperienced teacher. All algorithms maintain a set of sample
words, which give partial information on the automaton in question. The general
idea of the algorithms shown in Section 3 and 4 is to perform a loop of deriving
a minimal automaton conforming to the sample and checking by means of an
equivalence query whether the desired automaton is already found. If not, a cor-
responding counter-example is added to the sample. Here, inconclusive answers
by the teacher are resolved to either + (accepting) or − (rejecting) to actually
obtain a minimal automaton.

In Section 3, we study a family of algorithms that make use of at most equiv-
alence queries but do not employ any membership queries. The main idea of
these algorithms is to formulate the problem of finding a minimal conforming
automaton as a constraint satisfaction problem, which in turn may be solved ei-
ther directly, or, as described here, using SAT encodings and corresponding SAT
solvers. In Section 4, we look in which way membership queries may be used to
improve the learning process. The idea here is to use membership queries to
round off a corresponding sample before performing an equivalence query.

The algorithm described in Section 5 uses a different approach. Roughly
speaking, it learns a Moore machine with three outputs (+,−, ?) using a straight-
forward adaption of Angluin’s L∗ algorithm. It classifies samples in L1 as +, in
L2 as −, or those neither in L1 nor L2 as ?. Thus, inconclusive answers are
treated as a special output rather than a placeholder. However, before perform-
ing an equivalence query, the information collected so far is used to derive an
automaton by treating the words classified as ? as unspecified.

526 M. Leucker and D. Neider

We summarize the main features of the algorithms, discuss their strengths
and weaknesses and their preferable application area in Section 6.

2 Learning from Inexperienced Teachers

Let us first introduce definitions and notations used throughout this paper and
the learning scenario we are going to study.

Words, Languages and Finite Automata. Let Σ be a finite alphabet. A
word is a finite sequence w = a1 . . . an of symbols ai ∈ Σ. The empty sequence
is called the empty word and denoted by ε. The length |w| of a word w is the
number of its symbols. For two words u = a1 . . . an and v = b1 . . . bm, let the
word uv = a1 . . . anb1 . . . bm be the concatenation of u and v.

The set Σ∗ is the set of all words over the alphabet Σ. A set L ⊆ Σ∗ is called
a language. For a language L ⊆ Σ∗, the set of all prefixes of words in L is the
set Pref(L) = {u ∈ Σ∗ | ∃v ∈ Σ∗ : uv ∈ L}. The concatenation of two languages
L,L′ ⊆ Σ∗ is the language L · L′ = LL′ = {uv | u ∈ L, v ∈ L′}.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, q0, δ, F) where
Q is a finite, nonempty set of states, Σ is the input alphabet, q0 ∈ Q is the initial
state, δ : Q×Σ → Q is the transition function and F ⊆ Q is the set of final states.
A run of A from state q ∈ Q on some word w = a1 . . . an ∈ Σ∗ is a sequence
q1, . . . , qn+1 such that q1 = q and qi+1 = δ(qi, ai) for i = 1, . . . , n; we also write

A : q
w−→ qn+1 for short. A word w is accepted by A if A : q0

w−→ q with q ∈ F .
The language accepted by A is the set L(A) = {w ∈ Σ∗ | A : q0

w−→ q, q ∈ F}. A
language L ⊆ Σ∗ is called regular if there exists a DFA A such that L = L(A).
The size |A| of a DFA A is the number of its states. Finally, it is well known
that for every regular language L there exists a unique minimal DFA AL such
that L = L(AL).

Learning from Inexperienced Teachers. In Angluin’s original setting [1], a
learner learns a regular target language L ⊆ Σ∗ over an a priori fixed alphabet
Σ from a teacher. Thereby, the learner can pose two different types of queries:
membership and equivalence queries. On membership queries, the learner pro-
poses a word w ∈ Σ∗ and the teacher checks whether w ∈ L and replies “yes”
or “no” accordingly. On equivalence queries, on the other hand, the learner con-
jectures a regular language, typically given as a DFA A. The teacher checks if
L = L(A) and replies either “yes” or a counter-example w ∈ L⇔ w �∈ L(A) as
a witness that L and L(A) are different.

In [1], Angluin presents an algorithm, called L∗, to learn the (unique) minimal
automaton for a target language L in the setting described above. The runtime
of the algorithm and the number of queries posed are polynomial in the size
of the minimal automaton AL and the length of the longest counter-example
returned by the teacher.

The setting we study in this paper is a generalization of Angluin’s setting.
We assume that the teacher is inexperienced and answers some of the queries
inconclusively. This is formalized in the definition below.

Learning Minimal Deterministic Automata from Inexperienced Teachers 527

Definition 1 (Inexperienced Teacher). An inexperienced teacher has access
to two disjoint (but not necessary regular) languages L1, L2 ⊆ Σ∗ and answers
membership and equivalence queries as follows.

– On a membership query on w ∈ Σ∗, the teacher answers “yes” if w ∈ L1,
“no” if w ∈ L2, and “don’t care” (or “don’t know”, “maybe”, etc.), denoted
by “?”, in any other case.

– On an equivalence query on a DFA A, the teacher checks whether L1 ⊆
L(A) and L(A) ∩ L2 = ∅. If A satisfies these properties, then the teacher
returns “yes”; in this case, we call A feasible. Otherwise, the teacher returns
a counter-example w ∈ L1 ∩ (Σ∗ \ L(A)) or w ∈ L2 ∩ L(A).

Note that this setting is in fact a generalization since we obtain Angluin’s original
setting if we consider regular languages L1 ⊆ Σ∗ and set L2 = Σ

∗ \ L1.
The task of the learner is the following.

Definition 2 (Learning from Inexperienced Teachers). Given an inexpe-
rienced teacher, the task of the learner is to find a minimal feasible DFA using
membership and equivalence queries as in Definition 1.

In other words, the task of the learner is to come up with a DFA that accepts
at least L1 and whose language has an empty intersection with L2. Analogous
to Angluin’s algorithm, the learner has to learn a feasible DFA of minimal size.
Note, however, that there is no longer a unique (minimal) feasible DFA to learn
since their behavior on “don’t cares” is unspecified. Intuitively, this is what
makes the learning task difficult.

To implement an inexperienced teacher, the languages L1, L2 have to belong
to language classes that allow the teacher to answer membership and equivalence
queries. However, even if a teacher can be implemented, a feasible DFA might
not exist. Consider, for instance, the class of context-free languages and let
L1 = {anbn | n ∈ N} and L2 = {a, b}∗ \ L1. Then, any feasible DFA would have
to accept exactly L1, which is not possible since L1 is not a regular language.

Even worse, decidability of the question whether there exists a feasible DFA
depends on the language classes L1 and L2 are taken from. A complete charac-
terization of language classes for which the question is decidable is still missing,
but we observe the following.

Observation. Let L1, L2 ⊆ Σ∗ be two disjoint languages.

– If L1 and L2 are both regular languages, then there always exists a feasible
DFA, e.g., any DFA accepting exactly L1 (cf. Section 5).

– If L1 and L2 are deterministic pushdown languages or visibly pushdown lan-
guages, then it is unknown whether the decision problem is decidable.

– Already if L1 and L2 are nondeterministic context-free languages, the deci-
sion problem is undecidable.

The latter point can be seen by a simple reduction from the problem to decide
whether a (nondeterministic) context-free language is regular. Hence, all algo-
rithms described in the remainder of this paper, except those in Section 5, are
necessarily semi algorithms: they learn a feasible DFA if one exists.

528 M. Leucker and D. Neider

3 Learning without Membership Queries

Let us begin by describing two approaches in which the learner only uses equiv-
alence queries. Although such a setting seems a bit artificial, there are situations
in which one might want to avoid membership queries, e.g., because they are
much more expensive to answer than equivalence queries.

3.1 Naive Enumeration

Given an inexperienced teacher, a feasible DFA can already be learned in the
following easy, yet inefficient way. Since the class of DFAs over a fixed alphabet
can be enumerated according to their size, it is enough to pose an equivalence
query on each DFA one after another. Once the teacher returns “yes”, the learner
halts and outputs this DFA. Since the DFAs are enumerated with respect to their
size, this procedure yields a smallest feasible DFA if one exists.

This approach shows that minimal feasible DFAs can already be learned using
only equivalence queries without the additional information of counter-examples.
This means that counter-examples and membership queries can only be used
(and should be used) to enhance the performance of the learning process. A first
improvement is described next.

3.2 Counter-Example Guided Learning

Clearly, discarding the counter-examples as done in the naive enumeration is
inefficient. A better way is to rule out DFAs that contradict knowledge already
obtained from previous counter-examples. To this end, a learner can use the
following idea, which is among others described in [8].

The learner maintains a sample S = (S+, S−) consisting of two finite sets
S+, S− ⊆ Σ∗ of words. In every iteration, the learner constructs a minimal DFA
that is consistent with the sample, i.e., a minimal DFA A such that S+ ⊆ L(A)
and S− ∩ L(A) = ∅. This DFA is then used on an equivalence query. If the
teacher answer “yes”, then the learner has found a feasible DFA and terminates.
If the teacher returns a counter-example w, the learner adds w either to S− or
S+ depending on whether w ∈ L(A). Then, it repeats this procedure.

It is not hard to verify that this learner will never construct the same DFA
twice and that it will never conjecture a DFA smaller than the DFA of the
previous iteration. Hence, because all feasible DFAs are consistent with any
sample obtained from the teacher this way, the learner eventually finds a smallest
feasible DFA if one exists.

Thus, it is left to provide a technique that allows to find a minimal DFA con-
sistent with a given sample. Note, however, that this task is not only performed
by the counter-example guided learner, but also by the learning algorithm in
Section 4. Hence, it is worth spending some time on such techniques.

Learning Minimal Deterministic Automata from Inexperienced Teachers 529

3.3 Computing Minimal Consistent DFAs

The task of computing a minimal DFA consistent with a given sample is hard:
Gold [5] showed that the corresponding decision problem “Given a sample S and
k ∈ N. Does a DFA with k states consistent with S exist?” is NP-complete. Nev-
ertheless, several methods have been proposed. We present the most significant
three next.

Bierman and Feldmann’s Approach. Bierman and Feldmann were among
the first to study the problem of finding a minimal DFA consistent with a given
sample [3]. Their approach is also the prototype of all techniques we describe
here and works as follows.

Let a sample S = (S+, S−) over Σ be given. Bierman and Feldmann’s idea is
to consider the runs of a (minimal) consistent DFA A on the words in S+ ∪ S−
(and their prefixes of course). To this end, let Su be the state that A reaches
after reading a word u ∈ Pref(S+∪S−). Since we do not know A, we think of Su
as a variable and define constraints that allow to derive a consistent DFA from
the values of the variables Su. This leads to the following constraint-satisfaction-
problem CSP(S) comprising the set of constraints

{Su = Su′ → Sua = Su′a | ua, u′a ∈ Pref(S+ ∪ S−)} (1)

{Su �= Su′ | u ∈ S+, u′ ∈ S−}. (2)

The first type of constraints states that whenever a DFA reaches the same state
after reading u and u′, then it also reaches the same state after reading the next
input symbol a, i.e., after reading ua and u′a. The second type states that two
words that are classified contrary can never lead to the same state.

Let D(CSP(S)) be the domain of CSP(S) consisting of all variables Su. A
model of CSP(S) is mapping Γ : D(CSP(S)) → N fulfilling the constraints over
N. Moreover, CSP(S) is solvable over [n] = {0, . . . , n− 1} if there exists a model
such that every variable ranges in [n]. From a model Γ of CSP(S) with range
[n] we can construct a DFA AΓ = ([n], Σ, q0, δ, F) with n states: q0 = Sε,
δ(i, a) = j if a ua ∈ Pref(S+ ∪ S−) exists such that Su = i and Sua = j, and
F = {i | ∃u ∈ S+ : Su = i}. Note that AΓ is well defined since δ is well defined
due to constraints (1). An induction over the length of the inputs of AΓ using
the constraints (1) and (2) shows that AΓ is indeed a DFA consistent with S.

Assigning a different value for every variable Su trivially solves CSP(S). Thus,
a solution with a minimal range exists and yields a minimal consistent DFA. This
is summarized in the following lemma.

Lemma 1 (Biermann and Feldman [3]). For a sample S, a model Γ of
CSP(S) with minimal range yields a minimal DFA AΓ consistent with S.

A model for CSP(S) with minimal range can be found in various ways: for
instance, Oliveira and Silva [9] develop an explicit search algorithm using back-
tracking techniques, one can use generic CSP solvers, and also SMT solvers are
able to solve CSPs.

530 M. Leucker and D. Neider

A SAT-Based Approach. Grinchtein, Leucker, and Piterman [6] propose to
translate the CSP from above into an equivalent satisfiability problem of propo-
sitional formulae over Boolean variables (SAT). As there exist highly-optimized
off-the-shelf solver for such problems, this approach can solve reasonable large
problems effectively.

Their key idea is to construct a Boolean formula ϕS,n for some natural number
n ≥ 1 that is satisfiable if and only if there exists a DFA with n states that is
consistent with S. Moreover, ϕS,n can be used to derive a minimal consistent
DFA. Although n is not known in advance, one can use a binary search to find
the minimal value for n.

The formula ϕS,n ranges over Boolean variables xu,i for u ∈ Pref(S+ ∪ S−)
and i ∈ [n]. The meaning is that if xu,i is set to true, then the unknown DFA
reaches the state i after reading the word u. Hence, each variable Su of the CSP
from above is encoded unary by the variables xu,0, . . . , xu,n−1. To make this
encoding work, one has to make sure that for every u ∈ Pref(S+ ∪ S−) exactly
one variable xu,i set to true. The following constraints ensure this.∧

u∈Pref(S+∪S−)

∨
i∈[n]

xu,i (i)

∧
u∈Pref(S+∪S−)

∧
i,j∈[n],i<j

¬xu,i ∨ ¬xu,j (ii)

It is left to translate constraints (1) and (2) of CSP(S). This is done by con-
straints (iii) and (iv) below. Note that constraints (i) to (iv) are written in
conjunctive normal form since this is the standard format for most SAT solvers.∧

ua,u′a∈Pref(S+∪S−)

∧
i,j∈[n]

(¬xu,i ∨ ¬xu′,i ∨ xua,j ∨ ¬xu′a,j)∧
(¬xu,i ∨ ¬xu′,i ∨ ¬xua,j ∨ xu′a,j)

(iii)

∧
u∈S+,u′∈S−

∧
i∈[n]

¬xu,i ∨ ¬xu′,i (iv)

Let ϕS,n be the conjunction of the constraints (i) to (iv). We observe that ϕS,n

consists of O(mn) variables and O(m2n2) clauses where m = |Pref(S+ ∪ S−)|.
As before, one can use a model Γ of ϕS,n, i.e., an evaluation of the variables
that satisfies ϕS,n, to derive a DFA AΓ . It is not hard to verify that AΓ is a
DFA with n states that is consistent with S. This leads to the following lemma.

Lemma 2 (Grinchtein, Leucker, and Piterman [6]). For a sample S and
n ∈ N, a model Γ of ϕS,n yields a DFA AΓ with n states that is consistent with
S. A binary search can be used to find the smallest n for which ϕS,n is satisfiable
and, thus, a minimal DFA consistent with S.
Grinchtein, Leucker, and Piterman also propose a slightly different encoding in
which each variable Su of the CSP is encoded binary using logn Boolean vari-
ables. Although this encoding has only O(m log n) variables and O(m2n logn)
clauses, they observe that the unary encoding performs better in their experi-
ments. Moreover, they list further, small optimizations that reduce the search
space of the resulting CSP and SAT encoding. We refer to [6] for further details.

Learning Minimal Deterministic Automata from Inexperienced Teachers 531

An Improved SAT-Based Approach. Heule and Verwer [7] suggest a modifi-
cation of Grinchtein, Leucker, and Piterman’s unary encoding, which introduces
additional auxiliary variables, but typically has less clauses. Heule and Verwer’s
approach is to encode the unknown DFA directly into the formula using the
auxiliary variables di,a,j and fi for i, j ∈ [n], a ∈ Σ. The meaning is that if
di,a,j is set to true, then the unknown DFA contains the transition δ(i, a) = j.
Moreover, if fi is set to true, then i is a final state.

The constraints on the variables di,a,j , fi, and xu,i now have to express two
things. First, the variables di,a,j have to encode a deterministic function. More
precisely, constraints (I) ensure that for each state i and input symbol a there
exists at least one outgoing transition whereas constraints (II) assure that there
is at most one. Second, the variables xu,i have to encode valid runs with respect
to the transition function defined by di,a,j . This means that some state is reached
after reading u (cf. constraints (III)). Moreover, xua,j has to be set to true if the
unknown DFA reaches state i after reading u, i.e., xu,i is set to true, and there
exists the transition δ(i, a) = j, i.e., di,a,j is set to true (cf. constraints (IV)).
Finally, words from S+ have to lead to accepting states while words from S−

have to lead to rejecting states (cf. constraints (V)).

∧
i∈[n]

∧
a∈Σ

∨
j∈[n]

di,a,j (I)

∧
i∈[n]

∧
a∈Σ

∧
j,j′∈[n],j<j′

(¬di,a,j ∨ ¬di,a,j′) (II)

∧
u∈Pref(S+∪S−)

∨
i∈[n]

xu,i (III)

∧
ua∈Pref(S+∪S−)

∧
i,j∈[n]

(¬xu,i ∨ ¬di,a,j ∨ xua,j) (IV)

⎛
⎝ ∧

u∈S+

∧
i∈[n]

(¬xu,i ∨ fi)

⎞
⎠ ∧

⎛
⎝ ∧

u∈S−

∧
i∈[n]

(¬xu,i ∨ ¬fi)

⎞
⎠ (V)

Let ψS,n be the conjunction of the constraints (I) to (V). From a model Γ of
ψS,n it is straight-forward how to derive a DFA AΓ = ([n], Σ, q0, δ, F): q0 = i
for the unique i ∈ [n] such that xε,i is set to true, δ(i, a) = j if di,a,j is set to
true, and F = {i ∈ [n] | fi is set to true}. Again, an induction over the length
of input words shows that AΓ is in fact consistent with the sample S, and we
obtain a result analogous to Lemma 2.

In total, ψS,n comprises O(mn+n2|Σ|) variables and O(n3|Σ|+mn2) clauses.
If n is much smaller than m, which is typically the case, then this encoding is in
fact smaller than Grinchtein, Leucker, and Piterman’s unary and binary encoding
and performs better in the experiments in [7]. However, if the number of words in
a sample is small but a minimal consistent DFA has many states, then Heule and
Verwer’s encoding degenerates. Therefore, the choice which encoding to prefer
should depend on the specific situation. We refer to [7] for details.

532 M. Leucker and D. Neider

4 Learning with Membership Queries

Whenever possible, membership queries should be used to improve the learning
process. To this end, Grinchtein, Leucker, and Piterman [6] proposed a combi-
nation of the approach described in the previous section and that of Angluin’s
L∗ algorithm. Let us first recall the basic details of L∗.

Angluin’s learning algorithm [1] is designed for learning a regular language,
L ⊆ Σ∗, by constructing a minimal DFA A such that L(A) = L. The learner
maintains a prefix-closed set U ⊆ Σ∗ of prefixes, which are candidates for iden-
tifying states, and a suffix-closed set V ⊆ Σ∗ of suffixes, which are used to
distinguish such states. The sets U and V are increased when needed during the
execution. The learner makes membership queries for all words in (U ∪ UΣ)V ,
and organizes the results into a table T : (U ∪ UΣ) → (V → {+,−}), which
maps each u ∈ (U ∪ UΣ) to a mapping T (u) : V → {+,−} where “+” repre-
sents accepted and “−” not accepted. In [1], each function T (u) is called a row.
In every iteration, the L∗ algorithm makes the table closed and consistent:

– A table T is closed if for all u ∈ U , a ∈ Σ there is a u′ ∈ U such that
T (ua) = T (u′). If this is not the case, the algorithm adds ua to U .

– A table T is consistent if T (u) = T (u′) implies T (ua) = T (u′a) for u, u′ ∈ U .
If a table is not consistent, then there is a v ∈ V such that T (uav) �= T (u′av),
and the algorithm adds av to V .

Once the table is both closed and consistent, the learner constructs a hypoth-
esized DFA A = (Q,Σ, q0, δ, F), where Q = {T (u) | u ∈ U} is the set of
distinct rows, q0 is the row T (ε), δ is defined by δ(T (u), a) = T (ua), and
F = {T (u) | u ∈ U, T (u)(ε) = +}. A is then submitted as an equivalence
query. If the answer is “yes”, the learning procedure is finished. Otherwise, the
returned counter-example and all of its prefixes are added to U . Then, subse-
quent membership queries are performed in order to make the new table closed
and consistent producing a new hypothesized DFA, etc.

In our setting, queries are no longer answered by either “yes” or “no”, but
also by “don’t care”, denoted by ?. Therefore, Grinchtein, Leucker, and Piterman
adapt Angluin’s algorithm. The idea of a table is kept but now, for every u ∈
(U ∪ UΣ), a row is a mapping T (u) : V → {+,−, ?}. For u, u′ ∈ (U ∪ UΣ), two
rows T (u) and T (u′) are said to look similar, denoted by T (u) ≡ T (u′), if for
all v ∈ V , T (u)(v) �=? and T (u′)(v) �=? implies T (u)(v) = T (u′)(v). Otherwise,
T (u) and T (u′) are called obviously different. A table T is

– weakly closed if for each u ∈ U , a ∈ Σ there is a u′ ∈ U such that T (ua) ≡
T (u′), and

– weakly consistent if T (u) ≡ T (u′) implies T (ua) ≡ T (u′a).

Grinchtein, Leucker, and Piterman’s algorithm is sketched in Figure 1. It works
like the L∗ algorithm, but uses the weak versions of closedness and consistency.
However, the problem is that extracting a DFA from a weakly closed and weakly
consistent table is no longer immediate. Their solution is to turn a weakly closed

Learning Minimal Deterministic Automata from Inexperienced Teachers 533

and weakly consistent table into a sample S = (S+, S−) where S+ = {uv | u ∈
U, v ∈ V, T (u)(v) = +} and S− = {uv | u ∈ U, v ∈ V, T (u)(v) = −}. Then, one
of the approaches presented in Section 3.3 can be applied to derive a minimal
DFA that is consistent with the data in the table.

Modified L∗ using
weakly closed and

weakly consistent tables

Computing a
minimal DFA

consistent with S

Equivalence
query

A is a minimal feasible DFA

S A

counter-example
no yes

Fig. 1. Grinchtein, Leucker, and Piterman’s learning algorithm [6]

Using similar arguments as in Section 3.2, it is not hard to verify that
Grinchtein, Leucker, and Piterman’s algorithm terminates if there exists a fea-
sible DFA: the learner will never construct the same conjecture twice and two
consecutive conjectures will never decrease in size. Moreover, since all feasible
DFAs are always consistent with the data in the table and the learner conjec-
tures only minimal DFAs, it will eventually find a smallest feasible DFA. Let us
summarize this with the following lemma.

Lemma 3 (Grinchtein, Leucker, and Piterman [6]). Let an inexperienced
teacher be given. If a feasible DFA exists, the learner in Figure 1 terminates
eventually and returns a minimal feasible DFA.

Finally, note that the approach presented in this section shares many similarities
with the one presented in [6]. However, there a more involved learning procedure
has been elaborated since the underlying problem is different from the problem
studied here.

5 An Improved Algorithm for Regular L1, L2

Chen et al. [4] consider an improved algorithm of learning from inexperienced
teachers for a special case. Their setting differs from Definition 1 in two aspects.

– Both languages L1 and L2 have to be regular.
– Rather than equivalence queries, the learner is allowed to ask containment

queries on a DFA A of the following types: L1 ⊆ L(A), L(A) ⊆ L1, L2 ⊆
L(A), L(A) ⊆ L2. The teacher returns either “yes” or a counter-example.

Note that equivalence queries can be “simulated” by containment queries, but
the latter provide more information about L1 and L2 than ordinary equivalence
queries. Moreover, note that here a feasible DFA always exists (e.g., a DFA
accepting exactly L1).

534 M. Leucker and D. Neider

Chen et al. introduce so-called 3-valued DFAs (3DFA) as succinct repre-
sentations of the information gathered during the learning process. A 3DFA
C = (Q,Σ, q0, δ,Acc,Rej,Dont) is basically a finite automaton (or a Moore ma-
chine) whose states are partitioned into accepting, rejecting and don’t care states.

In this context, a word u ∈ Σ∗ is accepted if A : q0
u−→ q with q ∈ Acc, rejected

if A : q0
u−→ q with q ∈ Rej, and a don’t care word if A : q0

u−→ q with q ∈ Dont.
Moreover, let C+ = (Q,Σ, q0, δ,Acc ∪ Dont) denote the DFA where accepting
and don’t care states become final states and let C− = (Q,Σ, q0, δ,Acc) be the
DFA where only accepting states are final. Finally, a DFA A is called consistent
with a 3DFA C if A accepts all words that C accepts and rejects all words that
C rejects, i.e., L(C−) ⊆ L(A) and L(A) ⊆ L(C+).

Chen et al.’s idea is to interweave the learning of a 3DFA with a minimization
procedure that takes a 3DFA and computes a minimal consistent DFA. The
learning part is carried out by a slight modification of Angluin’s L∗ algorithm
[1] adapted to the 3-valued setting (since the changes are only minor, we call it L∗

though). The minimization procedure can be any procedure that takes a 3DFA
and produces a minimal consistent DFA. Chen et al., e.g., use an algorithm
for minimizing incompletely specified sequential switching circuits [10]. Thus,
the minimization procedure is a black-box for which various algorithms can
be utilized. Note, however, that minimizing 3DFAs in this sense is hard (the
corresponding decision problem whether a consistent DFA with k ≥ 1 states
exists is NP-complete).

L∗
Completeness Check

L(C−
i) ⊆ L1

(Σ∗ \ L(C+
i)) ⊆ L2

Minimization
of 3DFAs

Feasibility Check
L1 ⊆ L(Ai)

L2 ⊆ (Σ∗\L(Ai))

Ai is a minimal feasible DFA

Ci

counter-
example

no yes

Ci Ai

counter-example
no yes

Fig. 2. Chen et al.’s learning algorithm (figure taken from [4])

Figure 2 sketches Chen et al.’s learning algorithm. During the learning pro-
cess, the L∗ algorithm generates conjecture 3DFAs Ci, which generalize the data
learned so far. Ci is given to the minimization routine, which returns a minimal
DFA Ai consistent with Ci. The learner then conducts containment queries to
check whether Ai is feasible. It terminates if the teacher returns “yes”. If the
teacher returns a counter-example w, then Ci classifies w incorrectly (since Ai is
consistent with Ci) and the learner passes w back to the L∗ algorithm. However,
before a 3DFA can be given to the minimization procedure, it has to be checked if
Ci is complete with respect to L1 and L2, i.e., L(C−

i) ⊆ L1 and (Σ∗\L(C+
i)) ⊆ L2.

This is necessary to assure that a conjecture 3DFA does not rule out any (and,
hence, also not a minimal) feasible DFA. Two containment queries are used to

Learning Minimal Deterministic Automata from Inexperienced Teachers 535

check whether a 3DFA is complete. Also here, a counter-example obtained from
the completeness check indicates that Ci is still incorrect.

Since the L∗ algorithm generates conjectures of increasing size, the hope is
that a feasible DFA is found early in the learning process. In the worst case,
however, the L∗ algorithm learns the unique minimal 3DFA CL1,L2 that charac-
terizes L1 and L2 exactly, i.e., L(C−

L1,L2
) = L1 and (Σ∗ \L(C+

L1,L2
)) = L2, which

is then minimized. Since any feasible DFA is consistent with CL1,L2 , the mini-
mization of CL1,L2 yields a minimal feasible DFA. The 3DFA CL1,L2 has the size
|B1×B2| where Bi is the minimal DFA accepting Li, i = 1, 2, and B1×B2 is the
product of B1 and B2 defined in the usual way. Thus, Chen et al.’s learner asks
O(|B1 × B2|2 + |B1 × B2|m) membership and O(|B1 × B2|) containment queries
where m is the length of the longest counter-example. Note, however, that this
also means that there are O(|B1×B2|) calls to the minimization procedure. This
is summarized in the following lemma.

Lemma 4 (Chen et al. [4]). Given an inexperienced teacher for regular lan-
guages L1, L2 that is able to answer containment queries, the learner in Figure 2
always terminates and returns a minimal feasible DFA. It asks O(|B1 × B2|2 +
|B1 × B2|m) membership queries, O(|B1 × B2|) containment queries, and calls
the minimization procedure O(|B1 × B2|) times.

One might be tempted to generalize Chen et al.’s algorithm to the setting of
Definition 1. This, however, seems difficult—if it is possible at all. If, on the one
hand, the teacher answers equivalence queries rather than containment queries,
then a completeness check is no longer possible and one might miss minimal
feasible DFAs. On the other hand, if L1, L2 are no more regular languages, then
the algorithm is not guaranteed to terminate since there might no longer exist
a 3DFA CL1,L2 that can be learned eventually.

Finally, let us sketch Chen et al.’s adaptation of Angluin’s L∗ algorithm. Their
adaptation is straight-forward and extends the observation table to a mapping
T : (U ∪UΣ) → (V → {+,−, ?}), which allows to store “don’t care” entries and
is filled at need using membership queries. Rather than in Section 4, ? entries
are treated as ordinary “output symbols”.

Everything else stays basically the same as in Angluin’s original algorithm.
A row u ∈ (U ∪ UΣ) is the mapping T (u), and two rows u, u′ ∈ (U ∪ UΣ)
are equal if T (u) = T (u′), i.e., T (u)(v) = T (u′)(v) for all v ∈ V . The table
is closed if for all u ∈ U , a ∈ Σ there is a v ∈ U such that T (ua) = T (v);
if this is not the case, then the learner adds ua to U . The table is consistent
if for all u, u′ ∈ U with T (u) = T (u′) and a ∈ Σ we have T (ua) = T (u′a);
if this is not the case, then there is a v ∈ S such that T (uav) �= T (u′av),
and the teacher adds av to V . Once T is closed and consistent, the learner
constructs a 3DFA C = (Q,Σ, q0, δ,Acc,Rej,Dont) with Q = {T (u) | u ∈ U},
q0 = T (ε), δ(T (u), a) = T (ua), and Acc = {T (u) | u ∈ U, T (u)(ε) = +},
Rej = {T (u) | u ∈ U, T (u)(ε) = −}, and Dont = {T (u) | u ∈ U, T (u)(ε) =?}.
Then, the learner asks containment queries on the DFAs C+ and C−. If the
teacher returns a counter-example w, then the learner adds Pref({w}) to U and
continues. Otherwise, the learner terminates. Using the same proofs as in [1]

536 M. Leucker and D. Neider

Table 1. An overview over learning algorithms that work with inexperienced teachers

Algorithm Section Setting and Properties

Naive enumeration 3.1 No membership queries, equivalence queries with-
out counter-examples

Counter-example guided
learning

3.2 No membership queries; calls a subprocedure to
compute minimal consistent DFAs

Grinchtein, Leucker, and
Piterman’s learner [6]

4 Most general setting; calls a subprocedure to
compute minimal consistent DFAs

Chen et al.’s learner [4] 5 L1, L2 have to be regular, containment instead
of equivalence queries; polynomial number of
queries; calls a subprocedure to minimize 3DFAs

adapted to the 3-valued setting (cf. [4]), one can show that this learner eventually
terminates and learns the (unique) minimal 3DFA CL1,L2 .

An Improvement for Large Feasible DFAs. If all feasible DFAs are large,
then Chen et al.’s learner has the drawback that many (expensive) minimizations
have to be performed during the learning process. In such a situation, we propose
the following much simpler and more direct approach.

1. Learn CL1,L2 using Chen et al.’s adapted L∗ learning algorithm.
2. Minimize CL1,L2 to obtain a minimal feasible DFA.

Although this algorithm also poses at least the same number of membership and
containment queries as Chen et al.’s, it makes only one call to the (expensive)
minimization procedure. However, there is a trade-off between one call to the
minimization procedure with a big 3DFA and many calls with potentially much
smaller 3DFAs. Finally, note that this approach also works if the teacher cannot
answer containment queries, but allows equivalence queries.

6 Conclusion

We considered the task of learning minimal DFAs from inexperienced teachers.
An inexperienced teacher has access to two disjoint languages L1, L2 ⊆ Σ∗ and
may answer queries inconclusively: it returns “yes”, “no”, or “don’t care” on
membership queries and checks whether a conjecture DFA A satisfies L1 ⊆ L(A)
and L2 ∩ L(A) = ∅ on equivalence queries. Although there can in general only
exist semi-algorithms for this task, we surveyed several techniques successfully
applied in practice. Table 1 gives a brief overview.

The simplest (and most inefficient) learner naively enumerates all DFAs with
respect to their size, successively asks the teacher for equivalence, and termi-
nates once a feasible DFA is found (cf. Section 3.1). This approach is useful
if membership queries are unwanted, unavailable, or it is simply too expensive

Learning Minimal Deterministic Automata from Inexperienced Teachers 537

to answer them. Moreover, the naive learner does not need counter-examples,
which allows to employ it even in situations where a teacher can only check a
conjecture for equivalence but cannot return counter-examples.

In situations where no membership queries are available but the teacher
returns counter-examples on equivalence queries, the counter-example guided
learner should be used (cf. Section 3.2). The idea of this learner is to main-
tain a sample consisting of two finite sets of positively and negatively classified
counter-examples and to produce only such conjectures that are minimal and
consistent with the sample. The counter-example guided learner calls an exter-
nal algorithm to compute minimal consistent DFAs in a black-box fashion, thus,
allowing to experiment with different techniques. Note, however, that finding a
minimal consistent DFA is a computationally hard task.

In Section 3.3, we surveyed three techniques to compute minimal DFAs that
are consistent with a given sample. The first, due to Bierman and Feldmann
[3], uses a CSP to encode accepting and rejecting runs of the unknown minimal
DFA on the sample. A model for this CSP can then be used to derive a minimal
consistent DFA. The second technique, due to Grinchtein, Leucker, and Piterman
[6], translates Bierman and Feldmann’s CSP into an equivalent SAT formula.
Finally, the third technique, due to Heule and Verwer [7], is a modification of
Grinchtein, Leucker, and Piterman’s encoding and yields good results in cases
where consistent DFAs are small. According to the experiments in [6], SAT-
based techniques seem to be more efficient than CSP-based. The choice between
both SAT-based techniques, however, heavily depends on the particular setting:
if it is a priori known that small consistent DFAs exist, then Heule and Verwer’s
technique should be used (according to Heule and Verwer’s experiments [7]). If,
on the other hand, all consistent DFAs are big, then Heule and Verwer’s encoding
blows up and Grinchtein, Leucker, and Piterman’s approach should be preferred.

Whenever possible, membership queries should be used to guide and improve
the learning process. In Section 4, we described Grinchtein, Leucker, and Piter-
man’s learning algorithm [6] that works in the most general learning scenario.
Their algorithm is similar to the counter-example guided learner, but addition-
ally uses membership queries to accelerate the learning process. Analogous to
Angluin’s L∗ algorithm, Grinchtein, Leucker, and Piterman’s algorithm main-
tains the learned data in a table, which has been adapted to handle “don’t care”
entries. Once enough data has been gathered, the learner extracts the data from
the table into a sample and uses one of the techniques described in Section 3.3
to compute minimal consistent DFA. Again, the technique to compute minimal
consistent DFAs might be exchanged for a better fit in particular situations.

If the languages L1 and L2 are both regular and the teacher is able to an-
swer containment queries, then the learning task becomes much easier and Chen
et al.’s learner [4] can be employed (cf. Section 5). The idea of this learning
algorithm is to learn 3DFAs rather than DFAs and to minimize these 3DFAs be-
fore the teacher is consulted. Chen et al.’s learner asks only polynomially many
queries, but calls a computationally expensive minimization procedure before
every feasibility check. Note that the learner uses the minimization procedure in

538 M. Leucker and D. Neider

a black-box fashion, which allows to try different techniques. In situations where
feasible DFAs are big, we developed a more direct algorithm that needs only
one call to the minimization procedure and also works if the teacher answers
equivalence rather than containment queries.

Finally, let us briefly comment on the fact that we estimated the number
of queries necessary to learn a feasible DFA only for the special case of Chen
et al.’s learning algorithm. The reason for this is that this question in its whole
generality is still a matter of ongoing research. Similar to [2], we would like to
prove (or disprove) that there exists an algorithm that learns a minimal feasible
DFA from inexperienced teachers using only a polynomial number of queries. So
far, the best bound we can give is the following. If we fix an alphabet Σ, two
languages L1, L2 ⊆ Σ∗ and assume that a feasible DFA A exists, say of size n,
then there are at most nO(n) DFAs of size n or less. Hence, the naive algorithm
terminates at least after constructing this number of conjectures. This bound is
also valid for both the counter-example guided learner and Grinchtein, Leucker,
and Piterman’s algorithm since the size of two consecutive conjectures does not
decrease in either cases. Although the techniques used in [2] look promising, it is
not clear if and how they can be applied to learning from inexperienced teachers.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

2. Angluin, D.: Negative results for equivalence queries. Machine Learning 5, 121–150
(1990)

3. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Transactions on Computers C 21(6), 592–597
(1972)

4. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning Minimal
Separating DFA’s for Compositional Verification. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

5. Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37(3), 302–320 (1978)

6. Grinchtein, O., Leucker, M., Piterman, N.: Inferring Network Invariants Automat-
ically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 483–497. Springer, Heidelberg (2006)

7. Heule, M., Verwer, S.: Exact DFA Identification Using SAT Solvers. In: Sempere,
J.M., Garćıa, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 66–79. Springer, Heidelberg
(2010)

8. Leucker, M.: Learning Meets Verification. In: de Boer, F.S., Bonsangue, M.M.,
Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 127–151.
Springer, Heidelberg (2007)

9. Oliveira, A.L., Silva, J.P.M.: Efficient algorithms for the inference of minimum size
dfas. Machine Learning 44(1/2), 93–119 (2001)

10. Paull, M., Unger, S.: Minimizing the number of states in incompletely specified
sequential switching functions. IRE Transactions on Electronic Computers (3),
356–367 (1959)

Model Learning and Test Generation

for Event-B Decomposition

Ionut Dinca, Florentin Ipate, and Alin Stefanescu

University of Pitesti, Department of Computer Science
Str. Targu din Vale 1, 110040 Pitesti, Romania

{ionut.dinca,alin.stefanescu}@upit.ro, florentin.ipate@ifsoft.ro

Abstract. Event-B is a formal method for reliable systems specifica-
tion and verification, which uses model refinement and decomposition as
techniques to scale the design of complex systems. In previous work, we
proposed an iterative approach for test generation and state model infer-
ence based on a variant of Angluin’s learning algorithm, which integrates
well with the notion of Event-B refinement. In this paper, we extend the
method to work also with the mechanisms of Event-B decomposition.
Two types of decomposition, i.e. shared-events and shared-variables, are
considered and the generation of a global test suite from the local ones
is proposed at the end. The implementation of the method is evaluated
on publicly available Event-B decomposed models.

1 Introduction

Event-B [1] is a formal method for reliable systems specification and verification,
which was introduced about ten years ago and was tuned up in several industrial-
academic projects. Event-B models are a type of abstract state machines in
which a set of global variables are changed by so called events. When the guard
of an event is satisfied, its action code can executed having an effect on the
global variables. The main modeling approach in Event-B relies on the notion of
refinement, i.e., the modeler starts with an abstract model which is iteratively
enriched and concretized by capturing more and more features of the system to
be specified. Each refinement step is accompanied by formal proofs for properties
of interest for the system. As the complexity of the model increases, so does the
difficulty the proof obligations and verification tasks. One powerful method to
address this situation is to decompose a larger model into smaller sub-models
which can be further refined and analyzed independently [2,3]. There are two
main types of decomposition: shared events style [4,5] and shared variables style
[6,7]. In the former, the communication and consistency between sub-models is
realized via shared events, while in the latter this is done via shared variables.

The current efforts of further developing Event-B are concerted in a large Eu-
ropean project, DEPLOY1, which also includes industrial partners from the em-
bedded and business applications domains (Bosch, Siemens, SAP, SSF).

1 European FP7 project (2008-2012): http://www.deploy-project.eu

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 539–553, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.deploy-project.eu

540 I. Dinca, F. Ipate, and A. Stefanescu

The main platform supporting Event-B, called Rodin [8], is an extensible Eclipse-
based tool offering different capabilities such as model refinement, model de-
composition, theorem-proving, and model-checking. Complementing the formal
verification, test generation from Event-B is a recent topic of interest backed by
concrete requirements from industry.

Essentially, in order to generate test suites for an Event-B model one has to
first construct an equivalent automaton and then apply one of the many finite
state based test generation techniques existing in the literature [9,10]. How-
ever, as the states of this equivalent automaton are given by the combinations
of the model global variables, this may lead to the well-known state explosion
problem. In order to address such issue, in our previous work, we have devel-
oped an automata learning and test generation approach [11], implemented in
a Rodin plug-in [12], that constructs a finite state approximation and an associ-
ated test suite for an Event-B model. The core of the method relies on a variant
of Angluin’s algorithm [13] adapted to finite cover automata [14]. A finite cover
automaton (CA)[15] represents an approximation of the system which only con-
siders sequences of length up to an established upper bound �. Crucially, the
size of the cover automaton, which normally depends on �, can be significantly
lower than the size of the exact automaton model. A powerful (conformance) test
suite, including appropriate test data, is obtained as a by-product of the learning
algorithm. Last but not least, the whole procedure can be applied incrementally,
allowing the reuse of the learned model and test cases from the abstract to the
more concrete levels of refinement.

The main contribution of this paper is an extension of the above method that
integrates not only the Event-B refinement mechanism, but also the different
Event-B decomposition styles. More precisely, for decomposition, we investigate
the generation of CAs for the sub-models by reusing information via projections
from the global model. Also vice-versa, for the recomposition operation we can
reuse the information from the CAs of the sub-models for the construction of a
CA for the global model. Conformance test suites are also generated alongside.
Finally, an integrated approach involving both refinements and (de)compositions
in an Event-B development chain is proposed.

The paper is structured as follows. The next section presents prerequisites
from formal languages and automata theory. Section 3 shortly recalls the pre-
vious work on automata learning for Event-B and Section 4 introduces the ex-
tension of this work to Event-B decomposition and recomposition operators.
Section 5 provides experiments on publicly available Event-B models, while Sec-
tion 6 concludes the paper.

2 Preliminaries

In this section we provide theoretical prerequisites on finite automata, cover
automata and product automata, together with their accepted languages.

Finite Automata - General Concepts. We start by introducing some classic
definitions from automata theory.

Model Learning and Test Generation for Event-B Decomposition 541

A deterministic finite automaton (DFA) M is a tuple (A,Q, q0, F, h), where:
A is the finite input alphabet; Q is the finite set of states; q0 ∈ Q is the initial
state; F ⊆ Q is the set of final states; h is the next-state, h : Q×A −→ Q. A DFA
is usually described by a state-transition diagram. The next-state function h can
be naturally extended to a function h : Q ×A∗ −→ Q, where A∗ :=

⋃
i≥0A

i. A
state q ∈ Q is called reachable if there exists s ∈ A∗ such that h(q0, s) = q. M is
called reachable if all states of M are reachable.

Given q ∈ Q, the set LM , called the language accepted by M , is defined by
LM = {s ∈ A∗ | h(q0, s) ∈ F}. A DFA M is called minimal if any DFA that
accepts LM has at least the same number of states as M . A classic results states
that there exists a unique (up to a renaming of the state space) minimal DFA
that accepts a given regular language [16].

Now let us also introduce the concept of deterministic finite cover automaton
(DFCA). Informally, a DFCA of a finite language U , as defined by Câmpeanu et
al. [15], is a DFA that accepts all sequences in U and possibly other sequences
that are longer than any sequence in U .

In this paper we use a slightly more general concept, as defined in [14]: given
a finite language U ⊆ A∗ and a positive integer � that is greater than or equal to
the length of the longest sequence(s) in U , a deterministic finite cover automaton
(DFCA) of U w.r.t. � is a DFA M that accepts all sequences in U and possibly
other sequences that are longer than �, i.e. LM ∩ A[�] = U , where A[�] :=⋃

0≤i≤�A
i. A DFCA M of U w.r.t. � is called minimal if any DFCA of U w.r.t

� has at least the same number of states as M . Note that, unlike the case in
which the acceptance of the exact language is required, the minimal DFCA is
not necessarily unique (up to a renaming of the state space) [14].

Naturally, a DFA that accepts a finite language U is also a DFCA of U w.r.t.
any � ≥ ‖U‖. Consequently, the number of states of a minimal DFCA of U w.r.t.
� will not exceed the number of states of the minimal DFA accepting U . Further-
more (and more importantly from the point of view of practical applications),
the size of a minimal DFCA of U w.r.t. � can be much smaller than the size of
the minimal DFA that accepts U [14].

Product Automata and Projections - General Concepts.We now provide
a couple of definitions and results for product automata and languages. This is a
prerequisite for the setting of decomposed Event-B models that we present later
on. To simplify the presentation, we only consider the case the two automata,
but the definitions and the results hold also for more than two automata.

We start by describing formally the product of two automata synchronizing on
their common input symbols. First of all, since the two automata have different
input alphabets A1 and A2, their transition function is extended to the whole
set of symbols A = A1 ∪ A2 using the following definition. Given DFA M =
(B,Q, q0, F, h) and B ⊂ A we define the DFA ExtA(M) = (A,Q, q0, F, h

′) by:
for every q ∈ Q and a ∈ A, h′(q, b) = h(q, b) if b ∈ B and h′(q, a) = q if a ∈ A\B.

When the two automata operate on the same input alphabet, their product
can be described in a traditional fashion, as follows:

542 I. Dinca, F. Ipate, and A. Stefanescu

Definition 1. Let M1 = (A,Q1, q01, F1, h1) and M2 = (A,Q2, q02, F2, h2) be
two DFAs. Then we define the DFA M1 ×M2 = (A,Q, q0, F, h) by: Q = Q1 ×
Q2, q0 = (q01, q02), F = F1 × F2 and for every q1 ∈ Q1, q2 ∈ Q2, a ∈ A,
h((q1, q2), a) = (h1(q1, a), h2(q2, a)).

Thus, for two DFAs M1 and M2 over alphabets A1 and A2, we denote by
M1 ‖ M2 := ExtA(M1) × ExtA(M2) the product automaton over alphabet A =
A1 ∪A2 capturing the synchronization on common symbols of M1 andM2. This
is similar to the standard synchronization of labeled transition systems used in
the literature (see e.g. [17]).

The languages accepted by product automata are characterized by the so-
called product languages. For their definition, we first need the notion of projec-
tion. Given a sequence s ∈ A∗ and A1 ⊂ A, the projection of s on A1, denoted
by projA1

(s), is the sequence obtained from s by removing all symbols not in A1.
For a language L ⊆ A∗, projA1

(L) = {projA1
(s) | s ∈ L}. Now, we can define

the notion of product language:

Definition 2. Let A1 and A2 be two alphabets, not necessarily disjoint, and
A := A1 ∪ A2. Then, a language L ⊆ A∗ is called a product language (over A1

and A2) if and only if there exist two languages L1 ⊆ A∗
1 and L2 ⊆ A∗

2 such that

L = {w ∈ A∗ | projA1
(w) ∈ L1 and projA2

(w) ∈ L2}.
Moreover, there exist also a useful result (see e.g. [18]) proving that a product
language is always the product of its projections, i.e. languages L1 and L2 in the
previous definition can be replaced by projA1

(L) and projA2
(L), respectively.

Finally, the expected result relating the languages of product automata with
product languages says that:

Proposition 1. [18] The class of regular product languages coincides with the
class of languages accepted by products of DFAs.

Corollary 1. For a finite alphabet A := A1 ∪ A2, let L ⊆ A∗ be a regular
product language, and M1 and M2 be two DFAs for projA1

(L) and projA2
(L),

respectively. Then, L = LM1‖M2
.

Since any finite language is also a regular language, Corollary 1 holds also when
L is a finite product language. Therefore, we can easily derive:

Corollary 2. For a finite alphabet A := A1 ∪A2, let U ⊆ A∗ be a finite product
language and � a positive bound (larger than the size of any word in U). If M1

and M2 are two DFCAs w.r.t. � for projA1
(U) and projA2

(U), then M1 ‖M2 is
a DFCA w.r.t. � for U .

3 Cover Automata Based Learning and Test Generation
for Event-B

In this section we present the main elements of the approach proposed in [11],
that can incrementally construct a series of finite state approximations and cor-
responding test suites for a series of Event-B refined models. Before that, we
need to provide the basic elements of Event-B.

Model Learning and Test Generation for Event-B Decomposition 543

A Short Introduction to Event-B. Event-B [1] is a formal methodology
having its mathematical foundations rooted in set theory and first order logic. A
Event-B specification consists of a static part called context and a dynamic part
calledmachine. A context defines a set of datatypes as carrier sets, constants and
axioms that relate the constants to the carrier sets. A machine will be specified
by a set of global variables and a set of events, which are the first-class citizens
of the formalism. Moreover, a set of invariants captures the properties of the
specified system. Proof obligations solved (automatically or manually) by the
supporting platform will ensure that the invariants are always true, i.e. both
before and after the execution of any event.

An event is an element consisting of a set of local parameters, a guard and an
action code. An event evt has the following general form:

evt =̂ any t where G(t, v) then S(v, t) end. (1)

Above, t is a set of local parameters, v is a set of global variables appearing in
the event, G is a predicate over t and v, called the guard, and S(v, t) represents
a substitution. If the guard of an event is false, the event cannot occur and is
called disabled. The substitution S modifies the values of the global variables
in the set v. It can use the old values from v and the parameters from t. For
example, an event that adds a number i smaller than 9 to a global variable n,
in case n is greater than 15, is modeled as:

increment =̂ any i where i ∈ N ∧ i < 9 ∧ n > 15 then n := n+ i end.

The semantics of an Event-B model is based on the execution of its events.
First of all, a special event called Initialisation, which does not have a guard, is
executed; usually, its action will set initial values to the global variables. Then, in
a loop, all the guards of the events are evaluated and the set of enabled events is
established. From them, one event is nondeterministically chosen and its action
is executed, some of the variables being updated. The process then iterates. Note
that the state space of the model is not explicit, but is implicitly given by the
evolving values of the variables.

Given an Event-B model, a test case can be defined as a sequence of events.
This can be either positive, if it corresponds to a feasible (i.e. executable) path
through the Event-B model, or negative, otherwise. The feasibility of a test
case implies the existence of appropriate test data for the events, i.e. an ap-
propriate initialization of the global variables and suitable values for the local
parameters,such that all the guards of the events in the sequence are satisfied.
Furthermore, a test suite is by definition a collection of test cases.

Given an Event-B model Z having its set of events denoted by E, we can
define the language of Z to be the set of feasible sequences over E, i.e.

L(Z) := {w ∈ E∗ | w is feasible in Z}.

Note that L(Z) is not regular in general, since one can easily simulate a two-
counter machine in Event-B, so the formalism is Turing-complete [16]. However,

544 I. Dinca, F. Ipate, and A. Stefanescu

we can naturally obtain a regular subset by considering only a finite subset of
L(Z), namely the sequences of length up to a bound �, i.e. L(Z, �) := L(Z)∩E[�].

Finally, the refinement in Event-B is a mechanism of constructing a series
of more abstract models before reaching a very detailed one. For instance, in a
refinement step, new variables and new events can be introduced and the existing
events can be made more concrete with the assumption (that must be formally
proved) that the concrete guard is not weaker than the abstract one (i.e. the
concrete guard logically implies the abstract one) [1].

Incremental Model Learning Based on Cover Automata. In [11] we
present an automata learning and test generation procedure for Event-B: given
an Event-B model Z and a positive bound �, we produce a DFCA M for U :=
L(Z, �) and an associated test suite. The procedure can be iteratively used for a
series of model refinements.

The core of the procedure is based on a modification of Angluin’s learning
algorithm [14] that is specialized to finite languages, and that is more efficient
than the original Angluin’s algorithm, called L∗, for regular languages [13].

In a similar but not trivial way, in [14] we extend Angluin’s work by proposing
an algorithm, called L�, for learning a DFCA. Given an unknown finite set
U ⊆ A∗ and a known integer � that is greater than or equal to the length of the
longest sequence(s) in U , the L� algorithm will construct a minimal DFCA of
U w.r.t. �. Analogously to L∗, the L� algorithm uses membership and language
equivalence queries to find the automaton in polynomial time.

The L� algorithm constructs two sets: S, a non-empty, prefix-closed set of
sequences and W , a non-empty, suffix-closed set of sequences. Additionally, S
will not contain sequences longer than � andW will not contain sequences longer
than �− 1, i.e. S ⊆ A[�] and W ⊆ A[�− 1]. The algorithm keeps an observation
table, which is a mapping T from a set of finite sequences to {0, 1,−1}. The
sequences in the table are formed by concatenating each sequence of length at
most � from the set S ∪SA with each sequence from the set W . Thus, the table
can be represented by a two-dimensional array with rows labeled by elements
of (S ∪ SA) ∩ A[�] and columns labeled by elements of W . The function T :
((S ∪ SA) ∩ A[�])W −→ {0, 1,−1} is defined by T (u) = 1 if u ∈ U , T (u) = 0 if
u ∈ A[�]\U and T (u) = −1 if u /∈ A[�]. The values 0 and 1, respectively, are used
to indicate whether a sequence is contained in U or not. However, only sequences
of length less than or equal to � are of interest. For the others, an extra value,
−1, is used. Similar to the L∗ algorithm, two properties of the observation table
are defined: consistency and closedness.

The algorithm starts with S =W = {ε}. It periodically checks the consistency
and closedness properties and extends the table accordingly using membership
queries. When both conditions are met, the DFA M(S,W, T) corresponding to
the table is constructed and it is checked whether the language L accepted by
M(S,W, T) satisfies L ∩ A[�] = U . If this language query fails, a counterexam-
ple t is produced, the table is expanded to include t and all its prefixes and
the consistency and closedness checks are performed once more. Eventually, the

Model Learning and Test Generation for Event-B Decomposition 545

language query will succeed and the algorithm will return a minimal DFCA of
U w.r.t. �.

The iterative procedure of the algorithm for Event-B is shortly presented
below. The technical details can be found in [11]. The main idea is that we
evolve the observation table based on previous versions of it, by reusing existing
information whenever possible. In particular, for the Event-B refinement, the
observation tables of the refined model is not generated from scratch, but from
the table of the abstract model that is refined, so unlike the original L� algorithm,
the procedure does not start with empty S,W and T , but with some initial values
S0, W0 and T0, which reflect the current knowledge about the DFCA model.
An important observation is that, for efficiency reasons, in the recalculation of
the observation table only a part of the previous information is sufficient, viz.
Smin ⊆ S and Wmin ⊆ W , which satisfy certain properties: they are a proper
state cover and strong characterization set, respectively (see [11] for definitions).

For the first execution of the procedure, the initial sets S0 and W0 are based
on an initial estimation of the states of the model. In the worst case (when no
initial estimation is available), we take S0 = {ε}, W0 = {ε} ∪ E, where E is
the set of events. Note that the alphabet A from L� above is now the set E.
When the procedure has been applied at least once, previous information can
be reused. If the model is not totally accurate and needs to be improved, we can
distinguish the different reasons for that:

– Case 1: the Event-B model has been modified or augmented due to changes
in the requirements.

– Case 2: the Event-B model has not been changed but the associated DFCA
is deemed to be insufficient for testing purposes. In this case, the upper bound
� is increased according to the existing testing needs and the procedure is
executed once more for the new value of �.

– Case 3: the existing Event-B model has been refined and extra detail has
been added (using the Event-B refinement). In this case, information from
the abstract model can be reused in the computation of the refined model.

A test suite TS can be derived from the observation table as follows:

TS := {t ∈ E∗ | t ∈ ((S ∪ SE) ∩ E[�])W such that T (t) = 1}. (2)

Note that we only take positive test cases into account in TS. However, we could
also use the existing information about infeasible sequences, i.e. T(t)=0, to gen-
erate negative tests, if such a testing requirement exists. Moreover, in (2) we
usually take S and W to be the sets Smin and Wmin mentioned above. Further-
more, the test cases from TS are provided with the test data that prove their
feasibility. The test data is obtained during the construction of the observation
table T , because the membership queries, i.e. feasibility checks, are implemented
using a dedicated set-based constraint solver for Event-B, which also returns the
values of variables and local parameters for a given feasible sequence. As dis-
cussed in [11], TS will constitute a conformance test suite for the Event-B model
modulo the bound � (the �-bounded behavior of the model). Such a test suite is

546 I. Dinca, F. Ipate, and A. Stefanescu

more powerful than test suite based on simple state or transition coverage crite-
ria since it covers all states and all transitions of the equivalent automaton and
also checks each state and the initial and destination states of each transition.
Conformance testing is especially relevant in the embedded systems domain.

4 Model Learning for Event-B Decomposition

4.1 Event-B Decomposition Styles

There are two main decomposition styles in Event-B: shared-events [4,5] and
shared-variables [6,7]. Other variants such as atomicity decomposition [4,19] or
modularization [20,3] also exist, but we do not address them in this paper for
the following reasons. Since the atomicity decomposition is in fact a special
case of refinement, our method in [11] works for it out-of-the-box. On the other
hand, modularization defines a different approach to decomposition that reuses
a sub-model in several other models using interface specifications, so we leave its
investigation to the future (moreover, there is some yet to be solved integration
issues between the modularization plug-in and the Event-B constraint solver that
we use).

Shared Events Decomposition. In the case of shared events decomposition,
an Event-B model is decomposed into several sub-models such that all its events
and variables are distributed over the local models. As the name suggests, the
local sets of events may have common events (shared events). However, the local
sets of variables are disjoint, i.e. the partition of the variables will determine the
structure of the decomposition. The left hand side of Fig. 1 presents a minimalis-
tic example of shared events decomposition. At the top, we have a global model
Z with three events {evA, evB, evC} and two global variables {var1, var2}. The
lines between the events and variables suggests the dependencies between them,
e.g evA − var1 means that var1 appears in the guard or/and action of evA. As-
sume that the modeler chose to distribute the variables over two sub-models:
the first one, denoted Z1, takes over var1, and the second, Z2, takes over var2.
Then, the events are distributed to Z1 and Z2 according to the distribution of
the variables, so Z1 has evA and evB as events (because they depend on var1)
and similarly, Z2 has evB and evC as events. In this case, evB is a shared event
for Z1 and Z2.

However, there is a technical issue to be solved for evB; the fact that evB
depends on both var1 and var2, while the local models contain only one of the
variables. This means that the local events corresponding to evB, denoted in
Fig. 1 by evB 1 and evB 2, will only be restricted versions of evB that only
depend on var1 and var2, respectively. So, for the decomposition to be possible,
evB should have such a form that ”separates” the use of var1 and var2 in its
guards and actions. This is a task for the modeler that should design the Event-
B specification in this way as a preparation step for decomposition (refinement
may be use in previous modeling steps to achieve this goal). Below, we present
evB, evB 1, and evB 2 using the general form of an event in (1):

Model Learning and Test Generation for Event-B Decomposition 547

evA evB evC

var1 var2

Z

(a) shared event decomposition

evA evB 1

var1

Z1

evB 2 evC

var2

Z2

evA evB evC

var1 var2

Z
′

(b) shared variable decomposition

evA evB evC e

var1 var2

Z
′
1

evB e evC

var2

Z
′
2

Fig. 1. The shared event vs. shared variable decomposition styles

evB =̂ any t, t1, t2 where G1(t, t1, var1) ∧G1(t, t2, var2)
then S1(var1, t, t1);S2(var2, t, t2) end.

evB 1 =̂ any t, t1 where G1(t, t1, var1) then S1(var1, t, t1) end.
evB 2 =̂ any t, t2 where G2(t, t2, var2) then S2(var2, t, t2) end.

Above, we see that evB has a set of local parameters t, t1, t2, a guard that is
the conjunction of two guards using var1 and var2 separately, and also an ac-
tion that can be split into two actions that do not mix the two global variables.
The local events will then only use the parts of the guards and actions that
refer to their corresponding global variable. Without going into details, it is
also important to observe the existence of the common local parameter t, which
can be used for passing data between evB 1 and evB 2. This makes the shared
event decomposition suitable for specifying distributed systems communicating
via message-passing [19]. Finally, we mention also the fact that the decompo-
sition mechanism is correct in the sense of Event-B refinement [1], by proving
specific proof obligations (e.g. deadlock freedom) and putting restrictions on the
subsequent refinements of the shared events in the local sub-models.

The decomposition operation induces the inverse operation of composition, for
which a dedicated Rodin plug-in exists [21]. It takes a input two models Z1 and
Z2 that may have events with the same name and constructs a composed model
Z (look at Fig. 1 bottom-up). Z is obtained by putting together the variables
and events Z1 and Z2, taking care that the local shared events are merged by
concatenating their guards and actions following the same scheme as for evB 1,
evB 2, and evB above.

Shared Variables Decomposition. Let us also touch upon the shared vari-
ables decomposition, using the exemplification on the right of Fig. 1. In this case,
we partition the set of events and then distribute the variables. If we partition
the events of Z ′ into {evA, evB} and {evC}, due to the variables dependences,
the sub-models Z ′

1 and Z ′
2 have the variables {var1, var2} and {var2}, so they

share variable var2. However, since sub-models have in fact two copies of the
shared variable, they need to learn the changes made to the shared variable
in the other sub-models. This is implemented adding so-called external events.
For instance, in addition to its ”native” event evC , Z

′
2 will also include an

548 I. Dinca, F. Ipate, and A. Stefanescu

external event evB e that is a restricted version of evB, that only simulates
its effect on var2. Note that the shared variables decomposition is suitable for
the specification and verification of parallel programs [7].

4.2 Learning and Test Generation for Shared Events Decomposition

In the rest of the paper, we will present our approach only for the shared events
decomposition. We can do this without loss of generality based on the observation
that, for our purposes, the shared variables decomposition can be reduced to the
shared event decomposition as follows. Suppose Z ′ is decomposed using shared
variables into Z ′

1 and Z
′
2 and the decomposition is based on the partition of set of

events E of Z ′ into E1 and E2 Assume that E11 ⊆ E1 is the set of external events
for Z1 and E21 ⊆ E2 the set of external events for Z2. Then, if we duplicate the
shared variables and consider each of the two Event-B components to work on
its own copy (the definition of the shared variables ensures that they process the
two copies identically), the shared variables decomposition can be transformed
into a shared events decomposition of Z ′ into sub-models with set of events
E′

1 = E1 ∪ E21 and E′
2 = E2 ∪ E12, respectively.

Before we proceed, we establish a formal relation between Event-B decom-
position and the theory of product languages from Section 2. The proofs of the
theoretical results can be found in the long version of our paper [22].

Lemma 1. Let Z be an Event-B model, which is decomposed into Z1 and Z2.
Then, for any w sequence of events in Z, w is feasible if and only if, proj1(w)
and proj2(w) are both feasible in Z1 and Z2, respectively.

Using Lemma 1 and Definition 2 for product languages, we can show that:

Proposition 2. Let Z be an Event-B model, which can be decomposed into Z1
and Z2. Then, the language of Z, L(Z), is a product language over E := E1∪E2,
where E1 are the events of Z1 and E2 are the events of Z2.

As an immediate corollary, the result holds also when we impose a bound �, i.e.
L(Z, �) is also a product language, so Corollary 2 can be applied.

Next we now show how our learning and test generation method can be applied
to the two operations of decomposition and composition.

Approach for Decomposition. Let Z be an Event-B model and E the set of
events of Z. We assume that Z is decomposed, using the shared events scheme,
into models Z1 and Z2 with event sets E1 and E2, respectively. Given a bound
�, our goal is to obtain DFCAs and associated test suites for Z, Z1, and Z2.
Although one can apply the method in Section 3 directly and separately on Z,
Z1, and Z2, we would like to improve the process by reusing information.

We assume that we have a DFCA M and a test suite TS for Z. Then, the
DFCA learning procedure for Z1 will not start with S1 = {ε}, as when no
previous model is available, but with the set S1 = {proj1(s) | s ∈ Smin}, where
Smin is the proper state cover derived from the DFCA model of Z. The set

Model Learning and Test Generation for Event-B Decomposition 549

W1 is initialized with E1 ∪ {ε}. Similarly for Z2. We could also to start with a
projection of the set W obtained for Z (i.e. W1 = {proj1(s) | s ∈ Wmin}), but,
this may not improve performance sinceW usually contains only singletons [11].

With this input, the learning procedure may not produce a correct DFCAM1

for Z1 from the beginning and more iterations may be needed. The reason is that,
even though Lemma 1 ensures that a feasible path in Z is projected to a feasible
path in Z1, the projection S1 may not be rich enough to cover all the states of
M1. This can be understood from the fact that, in general, there is no concrete
relation between the sizes of a minimal DFA of a regular language L ⊆ A∗ and
of the minimal DFA of its projection on a sub-alphabet A′ ⊂ A. Thus, the size
of a minimal DFA accepting the projection projA′(L) can be smaller, equal to,
or even exponentially larger than the size of the minimal DFA accepting L [23].
The same holds even when L is a finite language. Moreover, in the specific case
of Event-B decomposition, the DFCAs of the sub-models may be larger not only
because of the effects of the projections just mentioned, but also because there
might exist more feasible paths in the projections due to the weakened guards of
the shared events, with the effect that the DFCAs for the local sub-models have
more states. However, our experiments showed that our choice of S1 will speed
up the learning procedure, generating richer DFCAs in less time compared to
the procedure of learning an DFCA for Z1 from scratch.

Approach for Composition. The inverse operation to decomposition is that
of composition [21,5]. Given two models Z1 and Z2 with event sets E1 and E2,
one can construct an Event-B model Z that synchronizes on the shared events.

There are several ways in which we can construct a global DFCAmodel and/or
a test suite for Z from Z1 and Z2 or their DFCAs:

1. Construct Z and then apply the techniques of [11] to derive a DFCA and a
test suite associated to Z. In this case, there is no reuse of information from
Z1 and Z2.

2. Construct the two DFCAs M1 and M2 for Z1 and Z2 and then construct
the product M1 ‖ M2, minimize it and denote it Mmin. Then, construct a
test suite TS from the minimal DFCA Mmin using the W-method adapted
to bounded testing [10]. For every test sequence s for Mmin, the test data
generation process will check if proj1(s) and proj2(s) are test sequences for
M1 and M2, respectively. If this is the case, the test data values for proj1(s)
and proj2(s) will be reused. This variant is sound due to Corollary 2.

3. Construct only a global test suite TS from the local test suites TS1 and TS2
by composing individually the test cases, i.e. TS := {t ∈ E∗ | proj1(t) ∈
TS1 and proj2(t) ∈ TS2}. (Optionally, apply a symmetry reduction by only
keeping traces in TS that are not equivalent modulo swapping of independent
events.)

4. Construct directly a DFCA for the composed model Z without applying the
composition of Z1 and Z2, nor the product of M1 and M2. This is done by
applying a learning algorithm for global sequences of events (of length up
to �) and answering the global membership queries via answering the local
membership queries for the projections (this is sound because of Lemma 1).

550 I. Dinca, F. Ipate, and A. Stefanescu

Z RZ

RZ1

RZ2

RRZ1

RRZ2

Fig. 2. A sample of decomposition flow

The first two proposals above are correct, i.e. the obtained automata are DFCAs
with respect to L(Z, �), while the last two are heuristics that in our experiments
produced reasonable results, even though they are in general only approxima-
tions.

Approach for Integrated Process. Finally, let us sketch how the above pro-
posals can be integrated in our incremental, refinement based, model learning
and test generation strategy presented in [11].

Figure 2 describes a typical incremental development in Event-B involving
decomposition. There, RZ, which is a refinement of Z, is decomposed into RZ1
and RZ2, which are further refined into RRZ1 and RRZ2. For this example,
our approach will first construct a DFCA model for Z, which will be reused
in the construction of a DFCA for RZ. RZ will constitute the basis for the
construction of the DFCAs for RZ1 and RZ2 starting the learning procedure
with the projections as previously explained. The DFCAs for RZ1 and RZ2 will,
in turn, be reused in the construction of the final models, for RRZ1 and RRZ2.
These latter models are used to produce a DFCA model and tests for the overall
system by one of the methods proposed for the composition operator.

5 Experiments

We implemented the methods for decomposition presented in this paper, ex-
tending our Rodin plug-in that previously only addressed refinement [12]. The
experiments were conducted on a Windows 7 Professional 64-bit machine with
an Intel Core i7 2.80GHz (8 CPUs) processor and 12 GB of RAM.

For the benchmark, we investigated all the publicly available Event-B models
involving decomposition from the DEPLOY repository2. From the total of eight
found models, we could not use two of them because they involved some advanced
data types that were not yet supported by the Event-B constraint solver deployed
for the membership queries. From the rest of six models, the first three use shared
events and the last three use shared variables. Their dimensions are presented in
Table 1. The first column gives their name together with a reference. The sec-
ond column gives the evolution of the models by the operations of refinement and
decomposition in a similar fashion to Fig. 2. The ’/’ symbol represents a refine-
ment step, while ’{’ depicts a decomposition. For instance, for BepiColombo SE,
there are three refinement steps m0/m1/m2/m3, followed by a decomposition of
m3 intom4 andm5; then,m4 is further refined tom6 andm7. The third and forth

2 http://deploy-eprints.ecs.soton.ac.uk

http://deploy-eprints.ecs.soton.ac.uk

Model Learning and Test Generation for Event-B Decomposition 551

Table 1. The dimensions of 6 models from DEPLOY repository (development process,
no. of events and no. of variables)

Subject Development process No. events (m0/m1...) No. variables (m0/m1...)

BepiColombo SE from [19] m0/m1/m2/m3

{
m4/m6/m7
m5

6/11/13/17

{
15/19/23
10

5/10/12/16

{
12/16/20
4

UpdateMaster SE from [3] m0/m1/m2

{
m3/m5/m7
m4/m6/m8

5/6/6

{
4/5/5
4/6/6

4/5/5

{
4/6/6
3/8/8

Monitor SE from [3] m0/m1/m2

⎧⎨
⎩

m3/m6/m9
m4/m7/m10
m5/m8/m11

7/7/7

⎧⎨
⎩

7/5/5
4/6/6
4/6/6

4/6/6

⎧⎨
⎩

2/4/4
2/3/3
2/3/3

Monitor SV from [3] m0/m1/m2

⎧⎨
⎩

m3/m6/m9
m4/m7
m5/m8/m10

7/11/11

⎧⎨
⎩

9/11/11
10/10
7/7/9

4/4/4

⎧⎨
⎩

2/5/5
3/4
3/4/6

QResponse SV m0/m1/m2/m3/m4

⎧⎨
⎩

m5
m6
m7

2/3/4/5/5

⎧⎨
⎩

3
5
3

2/3/5/7/9

⎧⎨
⎩

4
7
4

FindP SV from [7] m0

{
m1/m3/m4/m5
m2

6

{
4/5/6/6
4

5

{
3/4/5/6
3

columns provide the corresponding numbers of events and global variables for the
models. For example, BepiColombo starts at m0 with 6 events and 5 global vari-
ables, increases its complexity via refinement to m3 which exhibits 17 events and
16 variables, and ends up having 23 events and 20 variables for the last refinement
m7 of one of the sub-models.

Note that the search space in BepiColombo case can be very large. E.g. the
third refinement m3 of BepiColombo has 17 events, so for � := 8 the number
of possible sequences or tests of length up to 8 is 178 which is almost equal to
7 · 109. Moreover, to this complexity we have to add the computation time for
test data for the generated test cases. The constraint solver performing this task
need to address a search space implied by 16 global variables of type Set and 17
local parameters appearing in the events.

In our experiments, we checked the feasibility of our approach and the scala-
bility of the implementation, by performing the steps for the integrated process
at the end of the previous section, i.e. we incrementally construct DFCAs for the
refinement and decomposition from abstract model to more concrete levels, com-
bining the (integration) tests at the end using a method for composition. Due
to space constraints, we provide the tables with experimental results only in the
extended version of our paper [22]. However, we report a successful generation of
DFCAs and test suites within reasonable time (max. 6 minutes) for sufficiently
high values of � (up to 13 for smaller models). Moreover, the experiments con-
firmed that the reuse improves the quality of the generated DFCAs (i.e. more
states compared to learning from scratch) and reduces the computation time in
many cases.

6 Conclusions

In this paper, we presented a method for automata learning and test generation
that can be applied along the specification process of Event-B. We focused on the

552 I. Dinca, F. Ipate, and A. Stefanescu

mechanism of decomposition, because this is an important way of dealing with
the large models that may occur in industrial practice. Our approach makes use
of the advantages of cover automata and its soundness is based on the theory of
product languages. In the future, we will continue to improve the prototype e.g.
by a better (UI) integration with decomposition and composition plug-ins [2,21]
and extend its use to the modularization plug-in [20]. We will also investigate
the quality of the generated test suites using mutation testing techniques.

In the end, we mention a couple of related papers, even though they solve
different problems in different settings. First, we are not aware of any work
that generates test cases for Event-B decomposed models, see e.g. [24] and the
references therein. An idea of using model projections combined with automata
learning for black-box testing of components is presented in [25]. Our relation
between learning and conformance test suite is similar to the one presented in
[26]. Learning is also used for the generation of communicating automata [27,28]
and for compositional verification of system components [17].

Acknowledgments. This work was supported by project DEPLOY, FP7 EC
grant no. 214158, and Romanian National Authority for Scientific Research
(CNCS-UEFISCDI) grant no. PN-II-ID-PCE-2011-3-0688 (project MuVet) and
grant no. 7/05.08.2010.

References

1. Abrial, J.-R.: Modeling in Event-B – System and Software Engineering. Cambridge
University Press (2010)

2. Silva, R., Pascal, C., Son Hoang, T., Butler, M.: Decomposition tool for Event-B.
Softw., Pract. Exper. 41(2), 199–208 (2011), Plug-in webpage:
http://wiki.event-b.org/index.php/Event_Model_Decomposition

3. Son Hoang, T., Iliasov, A., Silva, R., Wei, W.: A survey on Event-B decomposition.
ECEASST 46, 1–15 (2011)

4. Butler, M.: Decomposition Structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009)

5. Silva, R., Butler, M.: Shared Event Composition/Decomposition in Event-B. In:
Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS,
vol. 6957, pp. 122–141. Springer, Heidelberg (2011)

6. Abrial, J.-R.: Event model decomposition. Technical Report 626, ETH Zurich (May
2009)

7. Hoang, T.S., Abrial, J.-R.: Event-B Decomposition for Parallel Programs. In: Frap-
pier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS,
vol. 5977, pp. 319–333. Springer, Heidelberg (2010)

8. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010), Tool available online at:
http://sourceforge.net/projects/rodin-b-sharp

9. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines –
A survey. Proc. of the IEEE 84(8), 1090–1123 (1996)

10. Ipate, F.: Bounded sequence testing from deterministic finite state machines. The-
oret. Comput. Sci. 411(16-18), 1770–1784 (2010)

http://wiki.event-b.org/index.php/Event_Model_Decomposition
http://sourceforge.net/projects/rodin-b-sharp

Model Learning and Test Generation for Event-B Decomposition 553

11. Ipate, F., Dinca, I., Stefanescu, A.: Model learning and test generation using cover
automata (submitted, 2012)

12. Dinca, I., Ipate, F., Stefanescu, A.: Learn and Test for Event-B – A Rodin Plugin.
In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,
Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 361–364. Springer, Heidelberg
(2012), Plug-in webpage: http://wiki.event-b.org/index.php/MBT_plugin

13. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

14. Ipate, F.: Learning finite cover automata from queries. Journal of Computer and
System Sciences 78, 221–244 (2012)

15. Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages.
Theoret. Comput. Sci. 267(1-2), 3–16 (2001)

16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation, 3rd edn. Addison-Wesley (2006)

17. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L∗ algorithm to automate assume-
guarantee reasoning. Formal Methods in System Design 32(3), 175–205 (2008)

18. Thiagarajan, P.S.: A Trace Consistent Subset of PTL. In: Lee, I., Smolka, S.A.
(eds.) CONCUR 1995. LNCS, vol. 962, pp. 438–452. Springer, Heidelberg (1995)

19. Salehi Fathabadi, A., Rezazadeh, A., Butler, M.: Applying Atomicity and Model
Decomposition to a Space Craft System in Event-B. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 328–342.
Springer, Heidelberg (2011)

20. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K.,
Ilic, D., Latvala, T.: Supporting Reuse in Event B Development: Modularisa-
tion Approach. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves,
S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010),
http://wiki.event-b.org/index.php/Modularisation_Plug-in

21. Poppleton, M.: The Composition of Event-B Models. In: Börger, E., Butler, M.,
Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 209–222. Springer,
Heidelberg (2008),
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B

22. http://tinyurl.com/isola12-with-appendix – extended version of our paper
23. Jirásková, G., Masopust, T.: State Complexity of Projected Languages. In: Holzer,

M. (ed.) DCFS 2011. LNCS, vol. 6808, pp. 198–211. Springer, Heidelberg (2011)
24. Julliand, J., Stouls, N., Bué, P.-C., Masson, P.-A.: Syntactic Abstraction of B

Models to Generate Tests. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS,
vol. 6143, pp. 151–166. Springer, Heidelberg (2010)

25. Shahbaz, M., Li, K., Groz, R.: Learning and Integration of Parameterized Compo-
nents Through Testing. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W.
(eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 319–334. Springer, Heidelberg
(2007)

26. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the
Correspondence Between Conformance Testing and Regular Inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)

27. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M.: Learning communicating automata
from MSCs. IEEE Trans. Software Eng. 36(3), 390–408 (2010)

28. Bohlin, T., Jonsson, B., Soleimanifard, S.: Inferring Compact Models of Commu-
nication Protocol Entities. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I.
LNCS, vol. 6415, pp. 658–672. Springer, Heidelberg (2010)

http://wiki.event-b.org/index.php/MBT_plugin
http://wiki.event-b.org/index.php/Modularisation_Plug-in
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B
http://tinyurl.com/isola12-with-appendix

Inferring Semantic Interfaces of Data Structures�

Falk Howar1, Malte Isberner1, Bernhard Steffen1,
Oliver Bauer1, and Bengt Jonsson2

1 Technical University Dortmund, Chair for Programming Systems,
Dortmund, D-44227, Germany

{falk.howar,malte.isberner,steffen,oliver.bauer}@cs.tu-dortmund.de
2 Dept. of Information Technology, Uppsala University, Sweden

bengt.jonsson@it.uu.se

Abstract. In this paper, we show how to fully automatically infer se-
mantic interfaces of data structures on the basis of systematic testing.
Our semantic interfaces are a generalized form of Register Automata
(RA), comprising parameterized input and output, allowing to model
control- and data-flow in component interfaces concisely. Algorithmic
key to the automated synthesis of these semantic interfaces is the exten-
sion of an active learning algorithm for Register Automata to explicitly
deal with output. We evaluated our algorithm on a complex data struc-
ture, a “stack of stacks”, the largest of which we could learn in merely
20 seconds with less than 4000 membership queries, resulting in a model
with rougly 800 nodes. In contrast, even when restricting the data do-
main to just four values, the corresponding plain Mealy machine would
have more than 109 states and presumably require billions of membership
queries.

1 Introduction

With the increased use of external libraries and (web-)services, mining behav-
ioral interfaces of black-box software components gains practical and economical
importance. Automata learning techniques [3] have therefore successfully been
employed for inferring behavioral interfaces of software components [1], such as
data structures.

Most of these algorithms come with the limitation of being restricted to finite
input alphabets, which hinders adequate treatment of parameterized actions
whose parameter values often range over infinite domains. Apart from the infinite
structure of possible input actions, another issue is raised by the influence of data
on the control flow. As a simple example, consider a set-style data structure:
Upon insertion of a new element, the effect in terms of control flow will naturally
depend on whether this element is already contained in the set, or not. Such
behavior cannot be modeled adequately by “classical” automata models such

� This work was partially supported by the European Union FET Project CON-
NECT: Emergent Connectors for Eternal Software Intensive Networked Systems
(http://connect-forever.eu/).

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 554–571, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Inferring Semantic Interfaces of Data Structures 555

as DFAs or Mealy machines. What is required are semantic interfaces, which
transparently reflect the behavioral influence of parameters at the interface level.

In this paper, we show how to efficiently overcome these limitations by gen-
eralizing our approach for inferring register automata [6,11] models, which are
designed for symbolically dealing with parameterized input, to also capture pa-
rameterized output. This extension, which is similar in guise to the extension of
finite automata learning to the learning of Mealy machines, allows us to fully
automatically infer semantic interfaces solely on the basis of systematic test-
ing. Although this extension is technically quite straightforward, its impact is
dramatic: Our Register Mealy Machines

– express the data structures’ behavior concisely and faithfully, at a level ideal
even for manual inspection,

– the inference of RMMs does not require any prerequisites like manual ab-
straction, a real bottleneck for “classical” learning of practical systems, and

– RMMs can be learned much more efficiently than both Register Automata
and plain Mealy machines at some predefined level of abstraction.

In the evaluation section of this paper, we will discuss data structures whose
complexity reaches far beyond the state of the art [1,9], the largest of which would
comprise more than 109 states as a plain Mealy machine for an abstract data
domain of just four values. In contrast, the RMM model—which is semantically
richer—has only 781 nodes, independently of the size of the data domain, and is
learned fully automatically in approximately 20 seconds using only 9 equivalence
queries!

Related work. Synthesis of component interfaces has been a research interest for
the past decade. Presented approaches fall into three classes described in [15].

First, Client-side Static Analysis uses a static analysis of source code using
the component of which a model is to be inferred. The approach described in [15]
mine Java code to infer common sequences of method calls.

Second, Component-side Static Analysis uses a static analysis on the com-
ponent itself. In [1] an approach is presented that generates behavioral inter-
face specifications for Java classes by means of predicate abstraction and active
learning. Another approach uses counterexample guided abstraction refinement
(CEGAR) [10] instead of active learning in order to derive a regular model from
the Boolean program obtained by predicate abstraction.

Finally, Dynamic Analysis infers interface models from actual program exe-
cutions. The authors of [2] present an approach for inferring probabilistic finite
state automata (PFSA) describing a components’ interface using a variant of
the k-tail algorithm [5] for learning finite state automata from positive exam-
ples. In [12] behavioral models are inferred from program traces obtained through
monitoring using passive automata learning. The influence of data values on the
behavior is inferred with an invariance detector [8]. The authors of [7] use a com-
bination of component-side static analysis, identifying side-effect free methods
(so-called inspectors), which are then used to identify states of the component.
These states are explored systematically in a dynamic analysis.

556 F. Howar et al.

All static-analysis methods rely on access to source-code, either of the component
or of code using the component. Only dynamic analysis can deal with black-box
systems. Most of the dynamic approaches, on the other hand, use passive learning
and are thus limited to (possibly small) sets of observed concrete executions. In
case some functionality of a component is not executed, it will not be captured
in the inferred model. In contrast, our approach does not depend on the quality
of preexisting observations as it uses active automata learning to interact with
black-box components and produce a model in an “active” dynamic analysis.

Outline. This paper is organized as follows. In the following section, we will
introduce the modeling formalism of Register Mealy Machines. We will develop
an active learning algorithm for our new formalism in Section 3, highlighting the
key ideas and differences compared to Register Automata learning. The practical
impact of our algorithm is discussed in Section 4 by evaluating it on a number
of examples. Finally, Section 5 concludes the paper, giving an outlook on both
extensions and more elaborate case studies.

2 Modeling Data Structures

As discussed above, in many real systems data parameters of inputs influence
the behavior of the system. In order to represent such systems as finite models,
storing and comparing data values has to be made explicit in the automaton
representation. In this section we will present a Register Automaton model that
allows for modeling data in outputs and discuss how such an automaton can be
reconstructed from its semantics.

2.1 Register Mealy Machines

Let D be an unbounded domain of data values which can be compared for
equality, and Σ be a set of parameterized input symbols, each with a fixed arity
(i.e., number of arguments it takes from D). A data input is a pair (a, d̄), where
a ∈ Σ is the base symbol with arity k, and d̄ = 〈d1, . . . , dk〉 is a sequence of
data values from D. In the following, we will use the more intuitive notation
a(d1, . . . , dk) instead of (a, d̄). We write aD for the set of all data inputs with
base symbol a and data values from D, and ΣD for the set of all data inputs with
base symbols in Σ. Sequences of data inputs are data words, for given Σ and D
the set of all data words is denoted by WΣ,D =

(
ΣD)∗, and W+

Σ,D = WΣ,D \{ε}
for the set of all non-empty data words. For a data word w, let Acts(w) be
the sequence of parameterized input symbols in w and V als(w) be the sequence
of data values in w (from left to right). Let then V alSet(w) denote the set of
distinct data values in V als(w). Data words are concatenated just like plain
words.

Let now a symbolic input be a pair (a, p̄), of a parameterized input a of arity
k and a sequence of symbolic parameters p̄ = 〈p1, . . . , pk〉. Especially when de-
picting automaton models, we will use the more intuitive notation a(p1, . . . , pk).

Inferring Semantic Interfaces of Data Structures 557

Let further X = 〈x1, . . . , xm〉 be a finite set of registers. A guard is a proposi-
tional formula of equalities and negated equalities over symbolic parameters and
registers of the form

G ::= G ∧G | G ∨G | pi = pj | pi �= pj | xi = pj | xi �= pj | true,

where true denotes the atomic predicate that is always satisfied. A parallel as-
signment is a partial mapping σ : X → X ∪P for a set S of formal parameters.
Finally, a symbolic output is a pair (o, r̄), of a parameterized output o of arity k
and a sequence of symbolic references r̄ = 〈r1, . . . , rk〉, where ri ∈ X ∪ P .

Definition 1 (Register Mealy Machine). A Register Mealy Machine (RMM)
is a tuple M = (Σ,Ω,L, l0, X, Γ), where

– Σ is a finite set of parameterized inputs,
– Ω is a finite set of parameterized outputs,
– L is a finite set of locations,
– l0 ∈ L is the initial location,
– X is a finite set of registers,
– Γ is a finite set of transitions, each of which is of form 〈l, (a, p̄), g, (o, r̄), σ, l′〉,

where l is the source location, l′ is the target location, (a, p̄) is a symbolic
input, g is a guard, (o, r̄) is a symbolic output, and σ is a parallel assign-
ment. �

Let us describe how an RMM M = (Σ,Ω,L, l0, X, Γ) processes data words. A
valuation, denoted by ν, is a (partial) mapping from X to D. A state of M is a
pair 〈l, ν〉 where l ∈ L and ν is a valuation. The initial state is the pair of initial
location and empty valuation 〈l0, ∅〉.

A step of M, denoted by 〈l, ν〉 (a,d̄)/(o,d̄′)−−−−−−−→ 〈l′, ν′〉, transfers M from 〈l, ν〉 to
〈l′, ν′〉 on input (a, d̄) if there is a transition 〈l, (a, p̄), g, (o, r̄), σ, l′〉 ∈ Γ such that

1. g is satisfied by d̄ and ν, i.e., if it becomes true when replacing all pi by di
and all xi by ν(xi), and

2. ν′ is the updated valuation, where ν′(xi) = ν(xj) whenever σ(xi) = xj , and
ν′(xi) = dj whenever σ(xi) = pj .

When performing the above step, M generates an output (o, d̄′), where d̄′ is
obtained from r̄ = 〈r1, . . . , rk〉 by adequate substitution of the references, i.e.,
d′i = dj if ri = pj , and d

′
i = ν(xj) if ri = xj . Note that this means that r̄ refers

to the old valuation rather than the updated one.
A run of M over a data word (a1, d̄1) . . . (ak, d̄k) is a sequence of steps

〈l0, ∅〉
(a1,d̄1)/(o1,d̄

′
1)−−−−−−−−−→ 〈l1, ν1〉 . . . 〈lk−1, νk−1〉

(ak,d̄k)/(ok,d̄
′
k)−−−−−−−−−−→ 〈lk, νk〉.

The output data word produced during this run is (o1, d̄
′
1) . . . (ok, d̄

′
k).

An RMM M is called deterministic if every data word in W+
Σ,D has exactly

one run in M. For the remainder of this paper, we will assume RMMs to be
deterministic.

558 F. Howar et al.

l0 l1 l2 l3

put(p) | true
x1:=p

/
� put(p) | x1
=p

x2:=p

/
� put(p) | x1
=p∧x2
=p

x3:=p

/
�

get() | true
x1:=x2,x2:=x3

/
out(x1)

get() | true
x1:=x2

/
out(x1)

get() | true
−

/
out(x1)

put(p) | x1=p
−

/
× put(p) | x1=p∨x2=p

−

/
×

put(p) | true
−

/
×get() | true

−

/
×

Fig. 1. RMM for a FIFO-set with a capacity of 3

Example 1. At this point, we introduce our running example, which aligns with
the field of application we envision for our technique: inferring semantic interfaces
of data structures. Consider a collection data structure that allows storing a
bounded number of data values, which combines aspects of both a queue and a
set: when retrieving values from the collection, FIFO semantics apply. However,
like in a set, it is not possible to store the same value twice; doing so will have no
effect. For insertion and retrieval, the interface offers the input actions put(p)
and get(). The response upon put is � or ×, signaling whether or not the
collection was modified. A get operation is either answered by out(x), with x
being the value that is returned, or × if the collection is empty.

An RMM of this data structure is depicted in Fig. 1 for a capacity of three.
A transition 〈l, (a, p̄), g, (o, r̄), σ, l′〉 is represented by an arrow between l and l′,

with the label a(p̄) | g
σ

/
o(r̄). �

2.2 Register Mealy Machine Semantics

Let us now define the semantics of RMMs. Register Mealy Machines are trans-
ducers, consuming inputs and producing outputs. Technically speaking, an RMM
realizes a function from W+

Σ,D to W+
Ω,D. Since we further assume that an output

symbol is emitted every time an input symbol is read (and only then) and since
data outputs may only contain data values that have previously occurred in the
input data word the semantics of an RMM M can be expressed as a function
�M� : W+

Σ,D → ΩD, with �M�(w) being the last output symbol that was emitted

in the run of M over w ∈ W+
Σ,D.

Since a Register Mealy Machine M can test data values in parameters only
against values in registers (and not against constants), the function �M� is closed
under permutations on the data domain in the following sense: For all permu-
tations π on D it holds that �M�(π(w)) = π(�M�(w)). This property fits the
context of data structures very well: the behavior and output depend on the or-
dering in which data arises in the data structure while not depending on concrete
values.

This closedness under permutations on D can be leveraged when inferring
RMM models: it will be sufficient to use one word to represent an infinite number

Inferring Semantic Interfaces of Data Structures 559

of equivalent words. Let w * w′ if Acts(w) = Acts(w′) and π(w) = w′ for some
permutation π on D. Let [w]
 be the set of all words w′ * w, i.e., words that can
be derived from w by some π, and let w be the canonical representative word
for [w]
 in which the data values from D occur in some fixed order in V als(w).
Since �M� is closed under permutation, �M�(w) = π(�M�(w)) for w = π(w).

When constructing RMM models from a system under learning (SUL), we
will use test cases, i.e., canonical data words, to infer the semantics of a SUL
and then construct an RMM from it. While the first step is covered in the
next section, the remainder of this section will focus on how to derive an RMM
model from a function S : W+

Σ,D → ΩD with the properties discussed above.
In particular, it will be discussed how locations, registers and assignments, and
guarded transitions of an RMM can be constructed from a function S.

From semantics to locations. In classical Mealy machine learning, words are
recognized as leading to the same state if they have the same residual seman-
tics [16], i.e., the same output for all suffixes. This requirement has to be loosened
slightly, since we have to abstract from concrete data values while still respecting
(in-)equalities between data values.

Definition 2. Words u, u′ ∈ WΣ,D are equivalent wrt. S, denoted by u ≡S u
′,

iff for some permutation π on D

S(u · v) = π−1 (S(u′ · π(v))) ∀v ∈ W+
Σ,D. �

Definition 2 is a straightforward adaption of the well-known Nerode relation for
regular languages. The permutation on D helps abstracting from concrete data
values and focusing on the flow of data values. In an RMM for S, locations will
correspond to equivalence classes of ≡S .

1

Classes of ≡S can be distinguished by suffixes: According to Definition 2 there
is at least one suffix v ∈ W+

Σ,D for u �≡S u
′ such that for all permutations π on

D it holds that S(u · v) �= π−1 (S(u′ · π(v))).
In our running example, the two data words ε and put(1) are not equivalent.

They can be distinguished by the suffix get() for all permutations π:

S(ε · π(get())) = × �= π(out(1)) = π(S(put(1)get())).

In this particular case π is not essential for distinguishing locations. The dif-
ferent behavior is observable at the level of output symbols already. However,
to establish, e.g., the equivalence of words put(1) and put(1)get()put(2) the
permutation on D is mandatory.

From semantics to registers. Considering a prefix u and a suffix v, there are two
observations from which one might conclude that, in the state reached by u, a
value from u has to be stored in a register:

1 We will not introduce a location for every class of ≡S as is discussed at the end of
Section 2.2.

560 F. Howar et al.

1. A data value occurring in the output equals a data value in u.
2. The output depends on the equality of data values in u and v.

The set of memorable data values in u is denoted by mem(u). Memorable data
values have to be stored in registers of an RMM. In order to identify memorable
data values in the prefix, we will replace data values in the suffix and observe
the effect.

In particular, it is important to observe what happens if equalities between
data values in the prefix and in the suffix are eliminated: Let d ∈ V alSet(u) ∩
V alSet(v) and d′ ∈ D \ V alSet(uv). Let further π : D → D be a transposition
of d and d′, i.e., a permutation exchanging d and d′ and leaving all other data
values untouched. Applying π to v yields the suffix π(v) with all occurrences of
d replaced by d′.

Now, the data value d is memorable in u if π(S(uv)) �= S(u · π(v)): In such
a case either V alSet(S(u · π(v))) still contains a data value d (first case), or an
equality between an occurrence of d in both u and v was meaningful, leading to
the changed output (second case).

Considering our FIFO set, in put(1) the argument is memorable, as can be
proven either by the suffix get() (yielding out(1)) or by the suffixes put(1) and
put(2), yielding outputs × and �.

From semantics to transitions. In an RMM, transitions are guarded by logic
formulas over binary (in-)equalities between registers and symbolic parameters.
Assume a data word u with memorable data values mem(u) for some semantics
S. Then, the transitions for some input symbol a originating in the location
reached by u in the RMM for S can be derived from the set {u} × aD of a-
continuations of u in two steps. In the first step we construct many atomic
transitions, each describing exactly one combination of equalities between pa-
rameters of a and memorable data values of u, i.e., one atomic transition per
class [u · (a, d̄)]
. In a second step, we will group these transitions depending on
the location they lead to.

Let κu : mem(u) → X be an arbitrary injective function determining in which
registers the memorable data values of a prefix u are to be stored in the RMM
for S. Then, for some word u · (a, d̄) we can construct a transition, where

– the classes of u and u·(a, d̄) wrt. ≡S determine the source and target location
of the transition,

– the guard describes exactly the equalities of data values in u · (a, d̄), i.e., for
di ∈ d̄ and d ∈ mem(u) there will be the atomic proposition κ(d) = pi in
the guard if d = di, and the proposition κ(d) �= pi otherwise, and

– the assignment will be determined using κu and κu·(a,d̄).

Since S is closed under permutations on D this will result in a finite number
of transitions, bounded by the number of combinations of possible equalities
between parameters of a and the (finitely many) memorable data values in u.

In the second step we will group all a-transitions that (1) lead to the same
location and (2) have compatible assignments, i.e., where corresponding memo-
rable data values are stored in identical registers.

Inferring Semantic Interfaces of Data Structures 561

x1 = p ∧ x2 = p

x1 = p ∧ x2 �= p x1 �= p ∧ x2 = p

x1 �= p ∧ x2 �= p
x1 = p ∨ x2 = p

x1 = p ∧ x2 = p

x1 = p x2 = p

true

Fig. 2. Grouping atomic transition guards for the put-transitions originating from l2
in Fig. 1 (left) and corresponding poset of conjunctions of equalities; minimal elements
underlined for all transitions (right)

Figure 2 (left) shows an example of how atomic transitions can be grouped
for the put-transitions originating from l2 of the FIFO-set from Figure 1. The
atomic guard x1 �= p ∧ x2 �= p corresponds to the put-transition to l3. The
other atomic guards are grouped by the reflexive put-transition. The guard
x1 = p∧x2 = p is colored gray in the figure as it does not occur in the RMM: In
our example location l2 can never be reached with identical values in x1 and x2.
However, since the guard is not accessible, we can add the case to any transition,
resulting in the abstract guard x1 = p ∨ x2 = p

Now, we can construct an RMM for some function S: the locations are deter-
mined by the classes of ≡S, registers and assignments are determined using the
memorable data values and the guards of abstract transitions are obtained by
grouping atomic transitions. However, when inferring RMM models in the next
section, we will use two interrelated optimizations.

First, we do not introduce a location for every class of ≡S but merge com-
patible locations as is described in [6] to obtain exponentially smaller models
in some cases. Intuitively, we group locations that only appear to be different
because in one location data values in two registers are identical, resulting in
fewer memorable data values and inequivalence wrt. ≡S .

Second, we do not use all atomic transitions but only certain “representative”
ones. In [6,11] it is shown that one can introduce a partial order on the set
of atomic guards and that it is sufficient to use the minimal elements (wrt. to
this partial order) in the domain of each transition. The basic idea is shown in
Figure 2: Removing the in-equalities from each atomic guard (in the left) results
in a partially ordered set (by implication), which is shown in the right of the
figure. Representative elements are underlined.

During inference this will allow for an approach reminding of interval stacking,
adding one “representative” atomic case at a time.

3 Inferring RMM Models

In this section, we want to discuss the key ideas of adapting automata learning
techniques to Register Mealy Machines. Our algorithm is based on the one for

562 F. Howar et al.

inferring Register Automata as presented in [11]. As usual in active learning, we
will assume a teacher answering two kinds of queries:

– membership queries (MQs), which query the reaction of the system under
learning (SUL) for a given input word,

– equivalence queries (EQs), which check if a constructed hypothesis correctly
models the target system, and if not, return a counterexample exposing a
deviation in the behavior of the target system from the behavior predicted
by the hypothesis.2

According to this two kind of queries the learning algorithm can be divided into
two phases: hypothesis construction, during which the learner poses membership
queries until it has enough information to consistently construct a hypothe-
sis, and hypothesis verification, where an equivalence query is posed and the
counterexample—if existent—is handled accordingly.

3.1 Inferring Residuals from Test Cases

Before we describe the two phases of the algorithm, let us briefly consider how
membership queries can be used to infer residuals, which will be one cornerstone
of our algorithm. As discussed in the previous section, residuals are essential for
constructing an automaton from a semantic function. The main problem here is
to represent or infer an infinite (partial) residual with finitely many test cases.

Thus, first of all, instead of considering all data words, we can focus on
canonical data words as discussed early in Section 2.2. In the examples we will
use D = N and < as a total order on N. In our running example, the data
words put(1)put(1) and put(1)put(2) are canonical while put(2)put(1) and
put(1)put(3) are not.

Then, for a function S : W+
Σ,D → ΩD, a (canonical) data word u, and a set

V ⊂ Σ+ of sequences of inputs symbols (so-called suffix patterns), let the partial
residual of u wrt. S and V be a mapping SuV from W+

Σ,D to ΩD s.t.

SuV (v) = S(uv) for v with Acts(v) ∈ V .

The mapping SuV can be represented finitely using canonical words. In a partial
residual, memorable data values may be identified using the approach discussed
in the previous section. Let memV (u) denote the (subset of) memorable data
values of u identified by SuV .

Now, we need a means of comparing partial residuals algorithmically in order
to derive locations. The main problem here is that the finite representations of
partial residuals for words u, u′ with differently many distinct data values will
have domains of different sizes. In order to compare such partial residuals, we
will restrict their domains.

In [11], we have shown that the domain of the finite representation of SuV can
be restricted since the future behavior after u for suffixes from V only depends

2 In true black-box scenarios, equivalence queries cannot be realized. Several ap-
proaches have been proposed to approximate equivalence queries (e.g., [4]).

Inferring Semantic Interfaces of Data Structures 563

on data values from memV (u) (by construction of memV (u)). In particular, the
domain can be restricted to the set of suffixes v with Acts(v) ∈ V for which
(1) uv is canonical and (2) where data values that are shared between prefix
and the suffix are from memV (u). The size of this new domain depends only
on V , which will be uniform for all prefixes in our algorithm and on the size of
memV (u).

In fact, for u ≡P u
′ we will have |memV (u)| = |memV (u

′)| and there will exist
a permutation π on D such that for all suffixes v from the restricted domain of
SuV the word π(v) is in the (restricted) domain of Su

′
V and π(SuV (v)) = S

u′
V (π(v)),

denoted by SuV ≡V S
u′
V .

We can now formulate our learning algorithm for RMMs.

3.2 Hypothesis Construction

As usual in active learning, the algorithm uses a table for organizing observations.
An observation table is a tuple 〈U, V, T 〉, where U ⊂ WD is a prefix-closed set of
data words (the prefixes), the set V ⊂ Σ+ contains sequences of parameterized
symbols (the suffix patterns), and T maps prefixes u from U to their partial
residuals SuV .

The learning algorithm will maintain a special set Us ⊂ U of access sequences
(to locations in the SUL) and for all u ∈ Us there will at least be the canonical
word ua⊥ in U . There, ua⊥ denotes the canonical word from {u}×aD which has
no additional equalities between data values and corresponds to the true case in
Figure 2.

As usual, in order to be able to construct a well-defined hypothesis, we require
the observation table to be closed, meaning that every prefix in U \ Us has a
matching counterpart in Us. By matching we here mean that for u ∈ U \ Us
there is a prefix u′ ∈ Us with SuV ≡V S

u′
V . This can be achieved by subsequently

adding prefixes violating this requirement to Us.
In addition, we also require an observation to be register consistent, as defined

in [11]: For a prefix ua, we require all of its memorable data values which also
occur in u to be memorable for the prefix u as well, guaranteeing well-defined
register assignments along the transitions of the hypothesis. This can be achieved
by subsequently extending the set of suffix patterns. In case a data value d
from u is proven to be memorable in ua by the suffix pattern v̄, we extend the
observation table by Acts(a) · v̄, which will prove d memorable in u.

Now, constructing a hypothesis RMM H from an observation table turns out
to be rather straightfoward. Similar to L∗, prefixes in Us identify locations in H.
Transitions in the hypothesis are constructed as follows from prefixes ua ∈ U ,
with u ∈ WΣ,D, a ∈ ΣD:

1. The destination is the location for u′ ∈ Us with T [u′] ≡V T [ua] due to some
permutation π on D, transforming T [ua] to T [u′] (where ua = u′ in case
ua ∈ Us).

2. Guards are derived by analyzing which data values in a equal data values in
u. As prefixes are minimal words in the realm of a transition, none of these

564 F. Howar et al.

equalities are accidental and have to be expressed in the guard. The missing
inequalities and other atomic cases are added in a post-processing step once
all transitions are created (cf. Section 2.2).

3. For assignments, one has to copy the contents of the registers (corresponding
data values in memV (u)) as well as the parameter values (corresponding
to data values in memV (ua) \ memV (u)) to the target registers (concrete
registers are determined using π from step 1).

4. Outputs can be derived from analyzing the equalities of the values occur-
ring in the output symbol. If the data value in question is in memV (u),
then a register is used, and the respective parameter of the input symbol a
otherwise.

Once a hypothesis RMM is constructed from the observation table, an equiva-
lence query can be used to determine if the hypothesis is a model of the system
under learning, already.

3.3 Hypothesis Verification

In case a hypothesis is not equivalent to the system under learning, an equiva-
lence query will return a counterexample. Handling counterexamples in our case
is a much more involved task than in L∗, where each counterexample gives rise
to at least one additional state in the hypothesis. In contrast, when inferring
RMMs, the obtained growth can be in any of three dimensions. A counterexam-
ple can:

1. prove a data value to be memorable, leading to the introduction of a new
register;

2. disprove a permutation which is used for matching the target location of a
transition. If no alternative permutation accomplishing this can be found,
this leads to the creation of a new location;

3. prove an abstract transition too coarse, leading to a new minimal represen-
tative word and thus a new transition.

When a counterexample is returned, all of the above cases have to be investi-
gated accordingly. We refer to [11] for technical details of the approach. The
construction presented there can be extended to RMMs straightfowardly. We
here just state a variant of the resulting theorem.

Theorem 1. From a counterexample w with �H�(w) �= �SUL�(w) a prefix u
and a suffix v can be derived such that either

1. u is in Us and the suffix pattern Acts(v) witnesses a new memorable data
value in u,

2. u is in U \Us and the suffix pattern Acts(v) disproves the permutation used
in the table to show T [u] ≡V T [u

′] for some u′ ∈ Us
3. u = u′ · (a, d̄) /∈ U , where u′ ∈ Us, the prefix u is a new unknown minimal

canonical word for some transition. �
Thus, a counterexample will lead to progress in one of the three dimensions when
extending the observation table accordingly.

Inferring Semantic Interfaces of Data Structures 565

Algorithm 1 L∗RMM

Input: A set of parameterized input symbols Σ
Output: An RMM model H with �H� = �SUL�
1: Us := {ε} � Initialize observation table
2: U := Us ∪ {a⊥ | a ∈ Σ} � Use one “base-case” per input
3: V := Σ � Use inputs as suffix patterns
4: loop
5: repeat
6: T := compute residuals(U, V) � Fill table using MQs, cf. Section 3.1
7: if 〈U, V, T 〉 not closed then
8: Let u in U \ Us s.t. ∀u′ ∈ Us . T [u] �≡V T [u′] � New access seq.
9: Us := Us ∪ {u} � Extend prefixes
10: U := U ∪ {ua⊥ | a ∈ Σ} � by “base cases”
11: end if
12: if 〈U, V, T 〉 not register-consistent then
13: Let ua ∈ U , and |Acts(a)| = 1 s.t. for d ∈ V alSet(u) \ V alSet(a):
14: - d is memorable in T [ua] proven by v̄ ∈ V
15: - d is not memorable in T [u] � To make d memorable in u:
16: V := V ∪ {Acts(a) · v̄} � Extend suffixes accordingly
17: end if
18: until 〈U, V, T 〉 is closed and register-consistent.
19: H := construct hypothesis(U,V, T) � cf. Section 3.2
20: ce := EQ(H) � Perform equivalence query
21: if ce = ′OK′ then
22: return H � Done!
23: end if
24: (u, v) := decompose(ce) � cf. Theorem 1
25: if u ∈ U then
26: V := V ∪ {Acts(v)} � New remapping, location, or assigment
27: else
28: U := U ∪ {u} � New guarded transition
29: end if
30: end loop

3.4 The L∗
RMM Algorithm

Put together, this results in Algorithm 1. Lines 1-3 initialize the observation
table. The set Us contains the prefix ε, reaching the initial location. The remain-
ing prefixes are the canonical words representing the true cases (cf. Figure 2)
for transitions from the initial location. As usual in active learning of Mealy
machines, the set of suffix patterns is initialized using the input alphabet.

Hypothesis construction is covered in lines 5-19: First, in line 6 partial resid-
uals are computed as described in Section 3.1. Then, the observation table is
checked for closedness (lines 7-11) and for register consistency (lines 12-17). This
is repeated until a hypothesis can be constructed from the observation table (line
19) as discussed in Section 3.2.

566 F. Howar et al.

The second phase, hypothesis verification, begins in line 20 with performing
an equivalence query. If no counterexample is returned the algorithm terminates
successfully with the last hypothesis (line 22). Otherwise, the counterexample
is analyzed as described in Section 3.3. In case the obtained prefix is in the set
of prefixes, the obtained suffix will be used as the basis for a new suffix pattern
(line 26). In case the prefix is unknown, it will be added to the set of prefixes
(line 28).

As discussed in the previous section, this leads to progress in one of three di-
mensions: new locations (or at least less permutations), new register assignments,
or new guarded transitions. Progress achieved in any of the three dimensions is
strictly monotonic. The idea for proving convergence is the same as in [11]: the
model is monotonically refined only when this is observed to be necessary, thus
the hypothesis can never exceed the level of refinement of the (finite) model of
the target system. However, since the algorithm is guaranteed to make progress
after each equivalence query, a finite number certainly suffices.

The wost case complexity in terms of membership queries and equivalence
queries of L∗RMM is the same as in the case of inferring RAs [11] (in the worst
case the outputs in an RMM encode only acceptance and rejection). Instead
of restating the result here, we will show in the next section that the RMM
approach will outperform the RA approach on many concrete examples.

4 Experimental Evaluation

We have implemented the algorithm outlined in this paper on top of Learn-
Lib [14], our framework for active automata learning. We conducted several
experiments to demonstrate the efficiency of our algorithm. Note that for all of
the experiments we conducted, we used a cache, preventing membership queries
for the same words to be posed twice.

In a first series of experiments, we employed our algorithm for learning models
of small container data structures: a stack, a queue, and a (FIFO-)set with fixed
capacities. All those data structures expose two input actions: put of arity one,
and get without any parameters. The semantics of put and get is the same as
the one in our running example (cf. Fig. 1 for the example RMM of a FIFO-set
with a capacity of three). The queue and the stack allow storing the same object
multiple times, while the set can only store distinct elements.

For assessing the efficiency of our algorithm, we considered two different ap-
proaches that can be employed in order to infer models of such data structures:
We used a classical active learning algorithm, treating the data structure as an
ordinary Mealy machine. In this case, it was necessary to restrict the size of the
(visible) data domain in order to gain a finite representation. For a stack with a
capacity of two and D = {1, 2}, this is exemplarily displayed in the left of Fig. 3.
In the experiments we used n+ 1 as size of the data domain for data structures
of capacity n. This allows to observe the behavior of the data structures in the
case where all registers store different values. The additional “new” data value is
used as data parameter. We have used symmetry reduction, i.e., normalizing the

Inferring Semantic Interfaces of Data Structures 567

q0

q1 q2

q3 q4 q5 q6

put(1
)/

ok
put(2)/ok

pu
t(1

)/
ok

put(2)/ok pu
t(1

)/
ok

put(2)/ok

ge
t()
/o

ut
(1
) get()/out(2)ge

t()
/o

ut
(1
) get()/out(2)

ge
t()
/o

ut(1
) get()/out(2)

l0

l1

l2

put(p) | true
x1:=p

put(p) | true
x2:=p get(p) | p=x2

−

get(p) | p=x1
−

l0

l1

l2

put(p) | true
x1:=p

/
ok

put(p) | true
x2:=p

/
ok get() | true

−

/
out(x2)

get() | true
−

/
out(x1)

Fig. 3. Three variants of modeling a stack with a capacity of two: As a Mealy machine
with a sample data domain D = {1, 2} (left), as a prefix-closed Register Automa-
ton (right), or as a Register Mealy Machine (middle). Unsuccessful operations (e.g.,
reflexive transitions) and sink locations are omitted in all three models.

Table 1. Experimental results for inferring register automata models from data struc-
tures using various algorithms

Name Mealy (|D| = n+ 1) Mealy w/ sym.red. RA [11]3 RMM
|Q| MQs EQs MQs EQs |L| MQs EQs |L| MQs EQs

Stack (1) 3 30 0 16 0 3 35 2 2 10 0
Stack (2) 13 252 1 52 1 4 135 4 3 18 0
Stack (3) 85 2,833 3 232 3 5 554 6 4 38 1
Stack (4) 781 39,996 4 890 4 6 2,998 8 5 53 2

Queue (4) 781 39,996 4 890 4 6 2,711 5 5 76 2
FIFO-Set (4) 206 9,484 2 128 2 6 1,566 15 5 129 12

order of data values occurring in an input word as described in [13], to reduce
the number of queries when inferring plain Mealy machine models.

We also compared our algorithm to an alternative way of representing output
in systems with data: by modeling them as Register Automata, i.e., acceptors,

3 The algorithm infers a complete model also containing a sink, hence the greater
number of locations compared to our new algorithm.

568 F. Howar et al.

and considering the (prefix-closed) data language of all valid combinations of
input symbols with the respective data values in the output. This is detailed in
the right of Fig. 3 for the case of a stack: here, the input symbol get also has a
parameter, and transitions are only valid if the provided data value matches the
one in the output. This resembles a common way of encoding Mealy machines as
(prefix-closed) DFA. For inferring these models, we used the algorithm presented
in [11]. The difference between an RA model and an RMM model is apparent
in the figure: While in the RMM model (middle) transitions have outputs with
data values, these outputs have to be encoded as guarded transitions in the RA
model.

The results of this evaluation series are displayed in Tab. 1. Our novel algo-
rithm impressively outperforms the alternative approaches in all but one cases.
When looking at the series of stacks with growing capacities, it is particularly
striking that, while the number of membership queries for learning RAs grows
quickly, there is only moderate growth for the inference of RMMs. As was an-
alyzed in [11], handling counterexamples in order to infer guards is a task with
an exponential worst-case complexity in the number of registers, as numerous
combinations of (in-)equalities between parameter values have to be considered.
When modeling the component as an RMM, however, memorable data values
are provided by output symbols without any additional effort. Apart from this
improvement in terms of efficiency, our algorithm also produces a much more
intuitive model. In the case of the FIFO set of size 4, on the other hand, infer-
ring plain Mealy machines using symmetry reduction is as efficient as inferring
RMMs. This is due to the fact that for the FIFO set guards have to be inferred,
which is expensive.

Table 2. Impact of the size of D on model and algorithmic complexity when inferring
classical Mealy machine models of a stack with a capacity of 4

|D| |Q| w/o sym.red. w/ sym.red.
MQs EQs MQs EQs

1 5 32 2 32 2
2 31 486 4 277 4
3 121 3,072 4 657 4
4 341 12,710 4 854 4

Considering the plain Mealy machines, one notices the rather large state space.
This is due to the fact that, since Mealy machines are data-unaware, each pos-
sible combination of data values results in a different state (as can also be seen
in Fig. 3). Further, to faithfully relate data values in both input and output in
a Mealy machine, it would be necessary to have at least as many different data
values as can be distinguished by the component. This leads to an exponential
growth of the state space (and thus complexity in terms of membership queries),
as can be seen in Tab. 2, where both the size of the state space and the query
complexity are displayed for growing values of |D| and a fixed capacity of 4.

Inferring Semantic Interfaces of Data Structures 569

l0 l1 l2 l3 l4

l5 l6 l7 l8

l9 l10 l11 l12

push2d()
−

/
�

pop2d()
−

/
�

push2d()
−

/
�

pop2d()
−

/
�

push(p)
v0:=p

/
�

pop()
−

/
out(v0)

push(p)
v1:=p

/
�

pop()
−

/
out(v1)

pop2d()
−

/
�

pop2d()
−

/
�push(p)

v0:=p

/
� pop()

−

/
out(v0)

push2d()
−

/
�

pop2d()
−

/
�

push(p)
v1:=p

/
�

pop()
−

/
out(v1)

push(p)
v2:=p

/
�

pop()
−

/
out(v2)

pop2d()
−

/
�

pop2d()
−

/
�push(p)

v1:=p

/
� pop()

−

/
out(v1)

push2d()
−

/
�

pop2d()
−

/
�

push(p)
v2:=p

/
�

pop()
−

/
out(v2)

push(p)
v3:=p

/
�

pop()
−

/
out(v3)

pop2d()
−

/
�

pop2d()
−

/
�

pop2d()
−

/
�

pop2d()
−

/
�

Fig. 4. RMM for a 2-dimensional stack of overall capacity 4. Operations push2d and
pop2d operate the outer stack while push and pop operate the inner stacks. Unsuc-
cessful operations (i.e., reflexive transitions) are omitted.

As with increasing capacities more data values are needed to observe the be-
havior exhaustively, one easily sees that this becomes intractable very quickly.
Symmetry reduction helps to reduce the number of membership queries, but
does not solve the issues regarding the large state space.

We conducted a second series of experiments in order to analyze the behavior
of our algorithm on more complex data structures. For this, we chose a two-
dimensional data structure, a stack of stacks. The interface exposes operations
push2d,pop2d,push,pop, the former two operating on the (outer) “stack of
stacks”, the latter two on the (inner) stack (of plain values) currently at the top:
push2d() puts an additional stack on top of the outer stack (as long as this
does not violate capacity restrictions), and pop2d() removes this stack. On the
other hand, push(p) pushes a value onto the current inner stack, while pop()
outputs and removes the top value of the inner stack. The capacity of the inner
stacks is denoted by m, while n denotes the capacity of the outer stack. The
experimental results can be found in Tab. 3.

The inferred RMM model for the case m = n = 2 is shown in Figure 4:
From the initial location a push2d() in required to make the first inner stack
accessible. The transitions between locations l1, l5, and l9 are operations on
the first inner stack. From each of these locations a push2d() will lead to a

570 F. Howar et al.

subgraph, describing actions on the second inner stack – relative to the state
(contents) of the first inner stack.

For this series of experiments we did not compare our algorithm to alternative
approaches as this would certainly be a vain endeavor: Considering the stack
for m = 4, n = 4 (thus capable of holding in total 16 elements), the state
space of a Mealy machine with |D| = 4 would have significantly more than
416 = 232 states, which is several orders of magnitude higher than the number
of membership queries alone required by our algorithm. In particular, we tested
this for n = 3,m = 3, |D| = 3, where the unfolded Mealy machine has 65,641
states, compared to 3,910 membership queries for inferring the respective RMM.
Further, when increasing any of these values, it was not possible to unfold the
model in reasonable time any more.

We did not measure time in our experiments, as we deem the complexity
in terms of membership queries the more relevant result. However, even these
complex models could be inferred rather quickly with our tool, not exceeding 20
seconds even for n = 4,m = 4. This is by far lower than the time required to
unfold the RMM in order to obtain a plain Mealy machine, even for |D| = 2.

Table 3. Experimental results for inferring a two-dimensional stack with outer capacity
n and inner capacity m

n = 2 n = 3 n = 4
m |L| MQs EQs |L| MQs EQs |L| MQs EQs

1 7 160 1 15 470 3 31 1,142 5
2 13 373 2 40 1,596 5 121 5,126 5
3 21 744 3 85 3,910 6 341 16,454 6
4 31 1,283 5 156 8,551 9 781 44,589 9

5 Conclusions and Future Work

In this paper we have presented a new method for generating semantic (i.e.,
data-aware) interfaces for black-box components. Our approach is based on an
extension of active automata learning for Register Automata, allowing us to deal
with data values in inputs and outputs. Although this extension is technically
quite straightforward, its impact is dramatic: The complexity of our “stack of
stacks” examples is far beyond the reach of the state of the art in interface
synthesis: our largest example, whose RMM has only 781 states, independently
of the size of the data domain and is learned fully automatically in 20 seconds
using only 9 equivalence queries, would lead to more than 109 states for an
abstract data domain of just four values!

Currently, we are investigating the limitations of the RMM technology. In
particular, we are investigating whether this technology is sufficient to satisfy
the real time requirements of the Connect project, where component interfaces
must be learned fully automatically at run time, a requirement considered a true
bottleneck up to now.

Inferring Semantic Interfaces of Data Structures 571

References

1. Alur, R., Cerný, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for Java classes. In: POPL, pp. 98–109 (2005)

2. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: POPL, pp. 4–16
(2002)

3. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 75(2), 87–106 (1987)

4. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the
Correspondence Between Conformance Testing and Regular Inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)

5. Biermann, A.W., Feldman, J.A.: On the Synthesis of Finite-State Machines from
Samples of Their Behavior. IEEE Trans. Comput. 21, 592–597 (1972)

6. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A Succinct Canonical
Register Automaton Model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 366–380. Springer, Heidelberg (2011)

7. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with
ADABU. In: Proceedings of the 2006 International Workshop on Dynamic Systems
Analysis, WODA 2006, pp. 17–24. ACM, New York (2006)

8. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming 69(1-3), 35–45 (2007)

9. Ghezzi, C., Mocci, A., Monga, M.: Synthesizing Intentional Behavior Models by
Graph Transformation. In: ICSE 2009, Vancouver, Canada (2009)

10. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: ESEC/SIG-
SOFT FSE, pp. 31–40 (2005)

11. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring Canonical Register Au-
tomata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 251–266. Springer, Heidelberg (2012)

12. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: ICSE 2008, pp. 501–510. ACM (2008)

13. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for effi-
cient system-level test-based model generation. Innovations in Systems and Soft-
ware Engineering 1(2), 147–156 (2005)

14. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407
(2009)

15. Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using
automata-based abstractions. In: ISSTA 2007, pp. 174–184. ACM, New York (2007)

16. Steffen, B., Howar, F., Merten, M.: Introduction to Active Automata Learning
from a Practical Perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011)

Learning-Based Test Programming

for Programmers

Alex Groce, Alan Fern, Martin Erwig, Jervis Pinto,
Tim Bauer, and Amin Alipour

School of Electrical Engineering and Computer Science
Oregon State University, Corvalis, OR

Abstract. While a diverse array of approaches to applying machine
learning to testing has appeared in recent years, many efforts share three
central challenges, two of which are not always obvious. First, learning-
based testing relies on adapting the tests generated to the program being
tested, based on the results of observed executions. This is the heart of
a machine learning approach to test generation. A less obvious challenge
in many approaches is that the learning techniques used may have been
devised for problems that do not share all the assumptions and goals
of software testing. Finally, the usability of approaches by programmers
is a challenge that has often been neglected. Programmers may wish
to maintain more control of test generation than a ”push button” tool
generally provides, without becoming experts in software testing theory
or machine learning algorithms, and with access to the full power of
the language in which the tested system is written. In this paper we
consider these issues, in light of our experience with adaptation-based
programming as a method for automated test generation.

1 Introduction

The combination of machine learning (ML) and software/hardware correctness
is now well-established as a fruitful intersection. In some cases, learning is used
to aid complete verification: in these approaches, the stochastic nature of most
machine learning is incidental. The learning is either by nature complete (e.g.,
using Angluin’s algorithm [1] to learn a bounded finite state machine [2–4]) or in-
tended to help produce an effective abstraction for model checking [5–7]1. While
the learning in some of these cases may not be guaranteed to reach a correct
answer, it is easy to determine if the current answer is satisfactory: namely, when
an abstraction produces either a proof of correctness or a valid counterexample,
the current learned hypothesis is in no need of further refinement. Addition-
ally, in these settings, the “user” for machine learning is a essentially a model

1 In some cases, abstraction learning uses SAT to solve for a “perfect” hypothesis
over current information, rather than a traditional ML algorithm; the approach is
nonetheless learning, as it features an inductive bias and may be modified in response
to future “training set” examples. The connection between CEGAR [8] and active
learning is intuitively clear.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 572–586, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Learning-Based Test Programming for Programmers 573

checking algorithm; a human user of adaptive model checking or a learning-
assisted Counterexample Guided Abstraction Refinement (CEGAR) [8] system
need not even be aware that learning is taking place “underneath the hood”,
and is highly unlikely to have useful knowledge for improving the effectiveness
of learning. Moreover, because a “correct” answer can be mechanically checked,
there is typically no need for a user to assess the effectiveness of the learning
algorithm.

Another large body of recent work at the intersection of ML and system
reliability, however, has focused on learning to produce an effective test suite for a
program, whether by genetic/evolutionary techniques [9, 10] or by reinforcement
learning [11, 12]. In these cases, learning is obviously not expected to be complete
(there is no final, “correct” test suite), and evaluating the effectiveness of testing
techniques is notoriously difficult, since testing is typically applied to precisely
those systems where complete verification is not feasible, the set of all faults
for realistic systems is seldom if ever known, and coverage and other metrics of
test suite quality are of varied and difficult-to-predict effectiveness [13–16]. In
these cases, therefore, a human user often must assess the effectiveness of an
“answer” provided by an ML algorithm, without a general mechanical means for
evaluating its value. Moreover, even automated testing is usually much less of a
“black box” approach than model checking, and the user is likely to want to or
need to influence the choices made by a search or learning algorithm, or tune its
heuristics or reward structure.

Efforts where the machine learning is directed towards testing a program,
must therefore address a set of three potential core challenges:

1. First, learning-based testing is inspired by the idea of using machine learn-
ing to adapt the set of tests run to the Software Under Test (SUT): the
learning problem is to choose new inputs based on the behavior observed
on past inputs. Obviously, this problem is recognized and addressed by
all learning/search-based testing approaches: proposing a solution to this
problem defines the field! This problem is essentially equivalent to the core
problem in ML for verification — the application of machine learning to a
computational problem.

2. Second, in some cases, the learning techniques proposed may make assump-
tions that do not (quite) match the aims of software testing. In particular,
for reinforcement-learning (RL) [17] based techniques, the goal of maximiz-
ing total coverage can lead to formulations of reward that do not naturally
fit the usual RL assumptions.

3. Finally, programmers often want to experience the benefits of automated
test generation without completely abandoning part of their test effort to a
“black box” that is given, e.g., a set of method calls and input types, or a
numeric input range, and produces tests. Effective random testing tools for
complex system software, for example, are often highly engineered artifacts
with special-casing, test case filtering, human-designed feedback, and hand-
written specifications written in a standard programming language [18, 19].
In fact, random testing’s popularity among programmers (even among those

574 A. Groce et al.

who might be more inclined to prove programs correct, such as Haskell users
[20]) is likely due to the combination of ease of use, effectiveness, and control
that it provides programmers. The “interface” to random testing’s core test-
generation approach is simply a method for producing a pseudo-random
number, which is provided as a standard library by all popular programming
languages. The gap between test programming and “normal” programming
in random testing essentially vanishes, and the only “tool” that must be
understood is, typically, a small set of API calls.

In this paper, we discuss our experiences with these three challenges, in the
context of one ML-based approach to software testing based on adaptation-
based programming (ABP) [21]. Rather than new technical contributions or
experimental results, the primary aim of this paper is to bring the second and
third challenges of ML-based testing to the attention of other researchers and
practitioners. We first briefly introduce ABP-based testing [12], then discuss
the problems of adapting testing to learning (Section 2), adapting learning to
testing (Section 3), and adapting test programming to programmers (Section 5),
primarily focusing on the latter two, less widely recognized, challenges.

1.1 Adaptation-Based Programming

Adaptation-based programming (ABP) [21, 22] is a novel approach to program-
ming that allows a programmer to exploit reinforcement learning (RL) [17] to
“implement” difficult algorithms. Rather than writing code to compute a value,
the programmer simply asks an ABP-library to “suggest” a value, given a con-
text (the context is the formulation of the current state of the system). The
programmer then rewards the ABP library based on how good the suggestion is.
The ABP-library uses a reinforcement learning algorithm to attempt to optimize
expected reward.

RL is an approach to the problem of learning controllers that maximize ex-
pected reward in controllable stochastic transition systems. Such a system can
be imagined as a graph of control points with rewards possibly observed on
transitions. Each control node has an associated set of actions that influence
(perhaps only probabilistically) the transition taken. An optimum controller for
such a system is one that selects actions at all control points such that total
reward is maximized. Program-like structures annotated with control points are
isomorphic to Semi-Markov Decision Processes (SMDPs), widely used models
of controllable stochastic systems [23, 24]. The details of SMDP theory are not
essential to understand ABP: what is important is that there are well-known RL
algorithms for learning policies (action choices based on a context indicating the
control point) for SMDPs based on repeated interactions and rewards.

As an example, to program tic-tac-toe in ABP, a programmer would allow
the ABP library to suggest a move (e.g. a number 1-9 indicating a board po-
sition) based on the current board state (perhaps a string, e.g. ’X-XO-OO-X’),

Learning-Based Test Programming for Programmers 575

playGame():

ABP.beginEpisode();

while (!gameOver()) {
context = boardState();

move(ABP.suggest(boardState()));

if (victory())

ABP.reward();

opponentMove();

ABP.endEpisode()

Fig. 1. Pseudo-code for ABP-style Tic-Tac-Toe

and provide a positive reward if the move proposed resulted in a win (see Fig-
ure 1 for pseudo-code). Each game would constitute one “episode” of learning,
since moves in previous games have no influence on reward for future games.
Initially, behavior of the ABP-based player would be essentially random. Over
time, however, the adaptive process (the library’s encapsulation of all it has
learned about the problem using RL) should improve its play; for a simple game
like tic-tac-toe this might only take a small number of iterations. A key point
is that the programmer need not be aware of the concept of SMDPs underlying
this adaptation to the reward function. The programmer only needs to be able
to generate a good description of the current state and a reasonable evaluation
of choices made.

The ABP library referred to in this paper, available for download on the web
[25], makes use of a popular reinforcement learning algorithm called SARSA(λ)
[17]. At the heart of SARSA(λ) is the notion of a Q value defined as follows:
at adaptive A, the Q value of context c and action a (QA(c, a)) is the expected
sum of rewards seen by executing a in c and following the optimal policy there-
after. Learning these Q values allows us to pick actions optimally since the best
action is simply the one with the largest Q value. The SARSA(λ) algorithm
learns Q values from experience. This is done by executing the learning algo-
rithm for a number of episodes during which it updates the Q values at every
(context, action) pair that is encountered. The algorithm follows an ε-greedy
explore-exploit policy which means that the best action is chosen (i.e. exploited)
with probability (1− ε) while an action is chosen randomly (i.e. explored) with
the remaining ε probability. The library uses a small (typical) value of 0.1 for ε.
Finally, the value of λ (∈ [0, 1]) controls the extent to which a particular action
is given credit for future rewards. A large value of λ updates an action’s Q value
with rewards that occur long after the action is taken whereas a small value of
λ only updates the Q value with rewards seen immediately after the action is
taken. Our ABP library sets λ to the moderately high value of 0.75, allowing
test coverage that only results from a complex combination of operations to be
effectively taken into account.

576 A. Groce et al.

import abp.*;

. . .
public enum TestOp implements java.io.Serializable

INSERT,REMOVE,FIND;

public static final Set<TestOp> AllVals =

unmodifiableSet(EnumSet.allOf(TestOp.class));

. . .
AdaptiveProcess test = AdaptiveProcess.init();

HashSet<String> states = new HashSet<String>(); // Store all states visited

Adaptive<String,TestOp>opChoice =

test.initAdaptive(String.class,TestOp.class);

Adaptive<String,TestVal>valChoice =

test.initAdaptive(String.class,TestVal.class);

for (int i = 0; i < NUM ITERATIONS; i++) {
SUT = new SplayTree(); // Create an empty container at beginning of each test case

Oracle = new BinarySearchTree(); // Empty oracle container

String context = SUT.toString();

// The context/state is simply a linearization of the SplayTree

for (int j = 0; j < M; j++) {
TestOp o = opChoice.suggest(context, TestOp.AllVals);

// Used just like pseudo-random number generator

TestVal v = valChoice.suggest(context, TestVal.AllVals).ordinal();

Object r1, r2;

switch (o) {
case INSERT:

r1 = SUT.insert(v);

r2 = Oracle.insert(v);

break;

case REMOVE:

r1 = SUT.remove(v);

r2 = Oracle.remove(v);

break;

case FIND:

r1 = SUT.find(v);

r2 = Oracle.find(v);

break;

}
assert ((r1 == null && r2 == null) || r1.equals(r2)); // Behavior should match

context = SUT.toString(); // Update the context

if (!states.contains(context)) { // Is this a new state?

states.add(context);

test.reward(1000); // Good work, AdaptiveProcess test, you found a new state!

}
}
test.endEpisode();

}

Fig. 2. Adaptation-Based Programming: a Simple Example

Learning-Based Test Programming for Programmers 577

1.2 ABP-Based Testing

The key insight of ABP-based testing is that a programmer can take a similar
approach to generating tests for a program with a clear API or other stateful
input-definition. Rather than selecting moves in a game, she lets the ABP li-
brary select methods to call and parameters for the selected method calls for
the program being tested (the SUT). In practice, the programmer essentially
writes a random testing harness, replacing calls to a pseudo-random number
generator with calls to the ABP library’s suggest method, using, e.g., a string
representation (via toString) of the SUT’s current state as a context. Each
test sequence (from container initialization until we begin a new test on a new
container) constitutes an episode. Figure 2 shows an example ABP test harness
for a SplayTree class, using a binary search tree (a simpler to implement library
with equivalent functionality) as an oracle. Notice that the ABP-based testing
harness is just a standard Java program, making calls to a library implemented
in Java. No special compilation or execution environment is involved; concep-
tually, the ABP library’s interface is only slightly more complex than that of
a typical pseudo-random number generator. Note that the use of methods with
a single integer parameter is simply an accident of the example; an Adaptive
(action variable) can be based on any finite type (though, as in pure random
testing, we might expect poor results when the size of the domain is too large).
The key question is now: what can the programmer reasonably use as a reward,
in order to “encourage” the adaptive process to thoroughly test the SplayTree
code?

The example provides a concrete clue to the general answer. After each test
step, the harness checks to see if the current SUT state has been previously
seen during testing. If not, it adds it to the set of visited states and rewards
the ABP library for exposing new behavior of the SUT. In other words, the pro-
grammer can provide rewards based on increases in test coverage. It is easy to
augment coverage instrumentation to not only record statement/branch/path
coverage, but to signal an appropriate reward for new coverage. This gives the
ABP’s adaptive process an optimization goal that the programmer can hope
will correlate with effective testing, with little additional complexity over that
required in computing coverage in the first place. Initially, in the absence of expe-
rience, ABP chooses randomly, effectively duplicating random testing. However,
after the adaptive process has observed a few rewards, the learned policy will,
with high probability (about 90% of the time), take the actions with maximum
predicted reward, and only choose randomly 10% of the time. This alternation
between exploiting what has been learned and exploring with random actions
ensures that testing is likely to improve over time but that exploration is never
abandoned.

Note that in some sense this approach to rewards is “abusing” the basis of RL:
the objective function is changing with each episode, in that the probabilities of
reward for certain actions in certain states is decreasing with time. The adaptive
process will only receive a reward for its first exploration of a new coverage
element, whether that element is a statement, a branch, a shape, a path, or a

578 A. Groce et al.

predicate valuation. This approach to reward derives from typical methods for
evaluating software test suites: for any coverage metric, the “score” for a suite is
typically based on treating the suite as a “hitting set” for the coverage targets:
in typical usage, if suite A takes 100% of all program branches precisely once
each and suite B covers 90% of all branches, but takes each branch 10 times,
we simply say that suite A “has better branch coverage.” Even using a set of
coverages (including path, branch, and statement) as in our framework only
complicates this essential fact: repeated exploration is not considered valuable,
in and of itself. In the usual RL setting, e.g., game playing or planning, reaching
a goal in future episodes is just as good as reaching it the first time — e.g.,
there is no penalty for winning a game in the same state as in a previous game.
This property of rewards is known as stationarity. Experimental results [12]
indicate that this unusual reward structure does not prevent the ABP library
from learning a policy that, over time, improves test suite coverage. Informally,
we can think of this setting as playing a game against an opponent who never
“falls for” the same trick twice — but exploring strategies similar to those that
recently proved successful increases the chance of finding a new way to win.

Out experimental results indicate that ABP can be effective for testing, at
least for container classes and an HTML parser, even with no tuning of the RL
algorithm to the problem, and no programmer tuning of the contexts used or
reward structure beyond a naive combination of string linearizations and “off-
the-shelf” coverage metrics.

2 Adapting Testing to Learning

The previous section of this paper presents one approach to the problem of
adapting testing to learning. Many other approaches are possible, but all are
essentially applications of some learning or search algorithm to the problem
of test generation, and in this sense typical of much applied machine learning
research. The nature and importance of this problem is widely understood. We
do believe that one aspect of this problem (related to the generally difficult
problem of evaluating test suites) may merit further attention, but must delay
the discussion of this idea (in Section 4) until after we place it in the context of
adapting learning to testing.

3 Adapting Learning to Testing

ML-based testing has mostly applied off-the-shelf techniques to the problem of
software testing. While using ML as a “black-box” is a good start, it unfortu-
nately treats software testing as “just another domain.” This is in contrast to
much work in the ML community, where learning algorithms are often developed
to leverage the structure of a problem, particularly for those with significant ap-
plications. Such a learning algorithm can be expected to perform far better than
a more general one. The problem of testing software is of sufficient importance to
warrant a learning algorithm explicitly designed for it. Therefore, in this section,

Learning-Based Test Programming for Programmers 579

we attempt to identify the specific characteristics of software testing, viewed as
a class of learning problems. We use the gained insight to propose extensions to
the existing ABP-based testing framework followed by sketching an outline of
RL algorithms that might be better suited for our purpose.

3.1 Assessment of ABP-Based Software Testing

In section 1.2, we briefly described how the current use of the ABP system
violates one of the fundamental assumptions of the underlying RL algorithm,
namely, the stationarity of the reward signal. The assumption of stationarity
means that the expected reward we get for being in a particular context c does
not depend on how many times we have visited a context. However, this is clearly
violated in the software testing setting, where the reward for being in a context,
will typically decrease each time the context is re-visited. At the extreme, if a
context corresponds exactly to a program state, then the reward would often be
zero after the first visit, depending on the kind of coverage considered.

However, despite the non-stationarity, positive experimental results indicate
that the learner can still use the feedback to improve testing performance. In
order to understand this behavior, it is useful to note that each context c used in
software testing actually represents an entire class of program states. It appears
that this fact leads to a useful form of generalization that the ABP system
is able to exploit. In particular, if a context is visited for the first time and
results in a positive reward, then the ABP system will tend to estimate that
the context will have a positive reward in the future. This is a good assumption
when that context describes a set of unique but similar program states that will
each generate rewards on the first visit. In this situation, the ABP system will
tend to bias the exploration of the program executions toward such promising
contexts.

Qt+1(c, a) = Qt(c, a) + αz(rt) (1)

Of course, after visiting a context many times, we can expect that the posi-
tive rewards will become rare. Unfortunately, this is where the ABP system will
run into difficulty. The value estimates maintained by the ABP system, which
are used to select its actions, are averages of observed reward sequences (see
Equation 1). It can take significant time for this average to track the change
in reward for a context and in the meantime the ABP system will continually
explore the now exhausted context, wasting program executions. Eventually the
system will learn that the previously attractive contexts are exhausted and then
explore more promising areas. It is easy to imagine situations where this type of
behavior can lead an ABP-based system to perform worse than random testing.
In particular, this will happen when the early positive impact of ABP’s biased
exploration does not counteract the later inefficiencies resulting from slowly re-
alizing a context is no longer rewarding. In what follows, we propose a number
of simple extensions to the current ABP system that might allow it to better
leverage this insight.

580 A. Groce et al.

3.2 Dealing with Non-stationarity

One approach to dealing with non-stationarity is to use a more refined context.
For example, if we augment a given context with the counts of how many times
we’ve visited the context, then the reward signal will appear to be much more
stationary. However, there is a serious drawback to this “solution.” The number
of possible contexts would increase substantially and this would reduce the ABP
system’s ability to generalize, which was one of our main hypothesized reasons
for the ABP system’s current success. Thus, simply increasing the scope of the
context does not appear to address the fundamental issue.

Another approach would be to adjust the way that the system updates the
Q-values QA(c, a), which estimate the value of taking action a in context c for
adaptive A. Recall that these values are used to select an action to execute
in a given context. Currently, after each program trajectory, these values are
updated as a moving average of past rewards and the newly observed reward.
As mentioned above, this averaging process can be quite slow with respect to
realizing that a previously good Q-value is now bad. A solution would be to
place more weight on the newly observed rewards in the update equations. This is
certainly a reasonable engineering approach to the problem, that deserves further
investigation. However, there is no clear principle for selecting the particular
weighting scheme, which is likely to vary from problem to problem, leading to
robustness concerns.

A more principled approach would be to explicitly define a non-stationary
reward model that makes sense for software testing and to modify the RL algo-
rithms to take that model into account. In particular, this reward model should
encode the notion that subsequent visits to a newly discovered context are likely
to produce a reward pattern that tends to decrease toward.Working out the tech-
nical details of this approach is an interesting research problem and would sug-
gest new update mechanisms that would actively try to estimate non-stationary
changes and correct Q-value estimates accordingly.

The last observation raises an interesting question: Is learning online, as we
do here, the best way to apply RL to software testing? A fundamentally different
approach is training offline on a diverse set of programs which has the potential
of improving generalization between contexts. Furthermore, training offline pro-
duces a useful policy that can be applied off-the-shelf to testing a SUT which
is desirable since its performance can be carefully evaluated before deployment
and optimized for efficiency. This approach requires a carefully engineered con-
text encoding for an SUT (perhaps by ML experts) which seems feasible. For
instance, we may include features that compute counts of the number of new
states seen from a given (context, action) pair, number of visits since the last
reward was seen, and so on. It opens the door to using efficient feature vec-
tor representations which typically achieve better generalization compared to
the current tabular approach. If required, we may even have different contexts
corresponding to fundamental differences in search spaces.

Learning-Based Test Programming for Programmers 581

3.3 Monte-Carlo Tree Search

The ABP approach has so far focused on controlling exploration by biasing ran-
dom walks according to continually adapting Q-value estimates. There are, how-
ever, other approaches for exploration developed in the machine learning (and
more generally, the AI) field, that also deserve attention. One particularly promis-
ing class of algorithms is known as Monte-Carlo Tree Search (MCTS) [26], which
has demonstrated tremendous success in recent years, most famously for its major
advances in computer Go [27]. In the context of software testing, MCTS can be
viewed as a way of building a tree of program executions in a way that is biased to-
ward more promising areas of the tree. Each iteration of MCTS would correspond
to selecting a program execution, where the actions at adaptives are selected in a
way that attempts to balance exploration with exploitation of actions that look
more promising based on past executions. One of the key contributors to the re-
cent success of MCTS is the use of modern rules for managing this explore/exploit
tradeoff in a theoretically rigorous way that works well in practice.

MCTS seems well-suited for testing software since any good adaptive method
of testing software within a time budget should perform a careful exploration of
an unknown search space. It is easy to modify the existing ABP library so that
MCTS could be run under the hood rather than RL, with no noticeable difference
to the tester with respect to writing the adaptive test program. However, like
RL, MCTS also assumes the search problem involves stationary rewards. Thus,
an interesting research direction is to consider variants of MCTS that capture
its strengths while taking into account the non-stationary nature of the software
testing search problems. As for RL, there are a variety of starting points for
doing this, the most promising of which is to explicitly build a model of non-
stationary reward into an MCTS algorithm, which continually tries to estimate
the non-stationarity and account for that in its explore/exploit behavior.

4 Adapting Testing to Learning, Revisited

One mitigation of the problem of non-stationary reward is to abandon the typical
software testing evaluation of test suites as hitting sets. While re-visits of cov-
erage entities should almost certainly be de-valued according to some discount
function, considering one execution of a branch in a test suite to be just as ef-
fective for testing as multiple executions is not particularly intuitive. Certainly,
when evaluating randomly-generated suites in terms of fault detection, test en-
gineers prefer suites that detect a fault multiple times to suites that only detect
a fault once, on the grounds that the later method has a high probability of
not detecting the fault at all [28]. Model checking heuristics based on structural
coverage have used such a discounted (rather than binary) approach successfully
[29, 30]. Note that this approach, to our knowledge not applied in learning-based
approaches to date, only reduces the non-stationarity of the reward, rather than
completely removing it. We do not believe that considering a suite that executes
one branch 1,000 times “just as good as” a suite that executes 1,000 branches
once is wise, so some discount for revisits is clearly required.

582 A. Groce et al.

5 Adapting Test Programming to Programmers

It seems rather obvious that a program can be tested only after it has been
written. This view can easily lead to the assumption that test cases for a program
also have to be created after it has been been written. This perspective leads
to a decoupling of testing from programming, which has the danger of making
testing seem more like an optional part, something that can be left out. In a
sense, this is the point of view taken by testing approaches that take as input
a program, its input structure, and possibly a specification, and output a set
of tests, whether this generation is based on machine learning or some other
technique.

That testing can be integrated well with programming has been impressively
demonstrated by the QuickCheck tool for Haskell [20]. QuickCheck provides an
easy way for a programmer to generate random values of almost any prede-
fined or user-defined type. The programmer implements tests by writing Haskell
functions that represent properties to be checked. These properties can then be
tested using the automatically generated data. The fact that tests for Haskell
code are written as Haskell functions as well as the fact that automatic test data
generation is also expressed within the program to be tested leads to a testing
system that is tightly integrated into the language that is to be tested.

Specifically, QuickCheck is a domain-specific language for testing. A domain-
specific language (DSL) offers notations and abstractions that are designed to
work in a specific application domain [31]. DSLs can be implemented in quite
different ways. Most importantly, we can distinguish between external and in-
ternal DSLs. An external DSL is implemented as a stand-alone product, which
means that it has complete control over the syntax of the DSL, which is one of
the major advantages of external DSLs. On the other hand, the implementation
of an external DSL is usually quite complex and often difficult to adapt. In con-
trast, an internal DSL is implemented as an extension of an existing language
(called the host language) and uses constructs of the host language as part of
its syntax. Internal DSLs are also called domain-specific embedded languages
(DSELs) [32]. DSELs are easier to implement and adapt since they can reuse
much of the infrastructure of the host language. For example, all functionality
for arithmetic or string processing is immediately available whereas these have
to be reimplemented in an external DSL. QuickCheck is a DSEL in Haskell and
it depends crucially on the fact that it has direct access to Haskell code. It
is hard to imagine a version of QuickCheck implemented as an external DSL,
which would essentially have to re-implement a significant part of, if not all of,
the Haskell language.

We find ourselves in a quite similar situation for ABP. While QuickCheck is a
tool for deriving properties of a program, ABP is a tool for changing programs.
It is in a sense a metaprogramming tool. But much like QuickCheck, ABP needs
access to the program it is supposed to adapt — which is precisely what the
Java ABP library provides, a language embedded in Java that offers constructs
to produce adaptive Java programs.

Learning-Based Test Programming for Programmers 583

The combination of ABP with testing further leverages the integration into
the host language and makes it possible to base the adaptation process of test
cases on information obtained directly from the program to be tested during
the testing process itself. In particular, in contrast to test-generation approaches
that operate as external tools, ABP-based testing can “talk to” the program
being tested (and its host language) with great ease, letting programmers assert
as much or as little control over the testing process as with random testing. This
gives programmer some extremely useful abilities:

– A context in ABP can be anything that can be computed by the SUT or by
auxiliary functions in the host language. In our container class experiments,
“system state” was produced by simply calling toString, abstracting the
result with a simple string-processing function written in Java, and merging
in some single-test coverage results.

– The reward in ABP can, again, be computed by arbitrary code. It can make
complex context-sensitive evaluations of test fitness easy by directly inspect-
ing system state. There is no need to express desirable properties of the
system’s behavior in any language other than that of the implementation
itself.

– Similarly, if programmers wish to introduce new coverage metrics that gener-
alize to more than one program, they can program these instrumentations in
Java itself, making use of reflection. Our own implementation uses automatic
instrumentation to compute path coverage based on Java-coded branch and
statement coverage provided by CodeCover [33].

– A programmer can “override” ABP when needed — if certain behaviors in
rare states are known to lead to known faults, for example, a hand-coded
choice function can be used in place of the ABP suggestion.

– Contracts/properties can be implemented directly in SUT terms, without
the need to learn a new property language.

– ABP-based testing, as noted before, “looks like” simple random testing (or
generalized unit testing) to a large extent, and does not require a programmer
to leave the “comfort of home” by changing languages or running an external
tool.

In a sense, ABP-based testing has some similarities to the approach to checking C
code introduced in version 4.0 of the SPIN model checker [34, 35]. The ability to
directly call C code, check properties, and bias model checking exploration based
on C-language constructs made it much easier to model check large, complex
C programs in SPIN [36, 37]. C served as a “DSEL” for SPIN’s PROMELA
language; in our case, we are similarly describing a search problem, with the
added advantage of not requiring programmers to switch between two languages
(SPIN and PROMELA): testing and tested code are both written in Java, and
have the same language of discourse.

In short, the realization of ABP as a DSEL is crucial in feeding test-relevant
program information into the adaptation process, and it is this language design
decision which contributes significantly to the style of ABP-based testing that
makes it into an interesting new opportunity for programmers.

584 A. Groce et al.

6 Conclusions

While the use of machine learning (and related AI approaches) in testing has
already proved fruitful, we believe that the full potential of this combination can
only be reached when research efforts move beyond formulating testing problems
as machine learning problems to consider two additional aspects that distinguish
learning-based test generation from the use of machine learning in model check-
ing:

– First, while off-the-shelf ML/AI approaches may work well for testing, many
of the most effective uses of ML involve leveraging the structure of a unique
problem domain with new machine learning algorithms specially suited for
the nature of the problem at hand.

– Second, the adaptation of learning-based testing by users outside the research
community may be greatly speeded by placing test generation in a context
that such users already understand: namely, the language in which they
are developing the Software Under Test. Such an approach not only makes
using ML to produce tests more appealing to programmers; it also gives test
generation systems access to programmer knowledge and the full power of
the implementation language, which may improve the quality of the tests
generated.

In particular, the second point brings us to the title of this paper. We have come
to believe that it may be fruitful to think of learning-based test generation not
so much as “generation” which implies a completely automatic process without
human control but as test programming where a human test engineer/domain
expert makes use of algorithmic techniques to ease the task of programming a
highly effective method for generating tests. ABP systems (in conjunction with
automated coverage tools) can in this light be seen simply as libraries, albeit more
sophisticated and powerful than most, for helping programmers write programs
to accomplish their tasks. It may be possible to (mostly) remove the human
programmer from testing; we do not know if it is altogether wise.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75, 87–106 (1987)

2. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for
Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

3. Groce, A., Peled, D., Yannakakis, M.: Adaptive Model Checking. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg
(2002)

4. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: FORTE, pp. 225–
240 (1999)

5. Brady, B., Bryant, R.E., Seshia, S.A.: Learning conditional abstractions. In: Pro-
ceedings of the IEEE International Conference on Formal Methods in Computer-
Aided Design (FMCAD), pp. 116–124 (October 2011)

Learning-Based Test Programming for Programmers 585

6. Gupta, A., Clarke, E.M.: Reconsidering CEGAR: Learning good abstractions with-
out refinement. In: International Conference on Computer Design, pp. 591–598
(2005)

7. Chaki, S., Clarke, E., Groce, A., Strichman, O.: Predicate Abstraction with Mini-
mum Predicates. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860,
pp. 19–34. Springer, Heidelberg (2003)

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

9. McMinn, P.: Search-based software test data generation: A survey. Software Test-
ing, Verification, and Reliability 14, 105–156 (2004)

10. Andrews, J., Li, F., Menzies, T.: Nighthawk: A two-level genetic-random unit test
data generator. In: Automated Software Engineering, pp. 144–153 (2007)

11. Veanes, M., Roy, P., Campbell, C.: Online Testing with Reinforcement Learning.
In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV 2006. LNCS,
vol. 4262, pp. 240–253. Springer, Heidelberg (2006)

12. Groce, A.: Coverage rewarded: Test input generation via adaptation-based pro-
gramming. In: IEEE/ACM International Conference on Automated Software En-
gineering, pp. 380–383 (2011)

13. Frankl, P.G., Weiss, S.N.: An experimental comparison of the effectiveness of
branch testing and data flow testing. IEEE Transactions on Software Engineer-
ing 19, 774–787 (1993)

14. Frankl, P.G., Iakounenko, O.: Further empirical studies of test effectiveness. In:
International Symposium on Foundations of Software Engineering, pp. 153–162
(1998)

15. Lyu, M.R., Huang, Z., Sze, S.K.S., Cai, X.: An empirical study on testing and
fault tolerance for software reliability engineering. In: International Symposium on
Software Reliability Engineering, pp. 119–126 (2003)

16. Cai, X., Lyu, M.R.: The effect of code coverage on fault detection under different
testing profiles. In: International Workshop on Advances in Model-Based Testing,
pp. 1–7 (2005)

17. Sutton, R., Barto, A.: Reinforcement Learning: an Introduction. MIT Press (1998)
18. Groce, A., Holzmann, G., Joshi, R.: Randomized differential testing as a prelude

to formal verification. In: International Conference on Software Engineering, pp.
621–631 (2007)

19. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Programming Language Design and Implementation, pp. 283–294
(2011)

20. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
haskell programs. In: International Conference on Functional Programming, pp.
268–279 (2000)

21. Bauer, T., Erwig, M., Fern, A., Pinto, J.: Adaptation-based programming in Java.
In: ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
pp. 81–90 (2011)

22. Pinto, J., Fern, A., Bauer, T., Erwig, M.: Robust learning for adaptive programs by
leveraging program structure. In: International Conference on Machine Learning
and Applications, pp. 943–948 (2010)

23. Andre, D., Russel, S.: State abstraction for programmable reinforcement learning
agents. In: National Conference on Artificial Intelligence (2002)

24. Mahadevan, S.: Agent reward reinforcement learning: Foundations, algorithms, and
empirical results. Machine Learning 22(1), 159–195 (1996)

586 A. Groce et al.

25. Fern, A., Pinto, J., Bauer, T.: Adapatation-based programming library in Java,
http://groups.engr.oregonstate.edu/abp/

26. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo
tree search methods. IEEE Transactions on Computational Intelligence and AI in
Games 4(1), 1–43 (2012)

27. Gelly, S., Silver, D.: Achieving master level play in 9× 9 computer go. In: Proceed-
ings of the AAAI on Artificial Intelligence, pp. 1537–1540 (2008)

28. Andrews, J.H., Groce, A., Weston, M., Xu, R.G.: Random test run length and
effectiveness. In: Automated Software Engineering, pp. 19–28 (2008)

29. Groce, A., Visser, W.: Model checking Java programs using structural heuristics.
In: International Symposium on Software Testing and Analysis, pp. 12–21 (2002)

30. Groce, A., Visser, W.: Heuristics for model checking Java programs. Software Tools
for Technology Transfer 6(4), 260–276 (2004)

31. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
32. Hudak, P.: Building Domain-Specific Embedded Languages. ACM Computing Sur-

veys 28(4es), 196–196 (1996)
33. Codecover - an open-source glass-box testing tool., http://codecover.org/
34. Holzmann, G.J., Joshi, R.: Model-Driven Software Verification. In: Graf, S.,

Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 76–91. Springer, Heidelberg
(2004)

35. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional (2003)

36. Groce, A., Holzmann, G., Joshi, R., Xu, R.G.: Putting flight software through
the paces with testing, model checking, and constraint-solving. In: International
Workshop on Constraints in Formal Verification, pp. 1–15 (2008)

37. Holzmann, G., Joshi, R., Groce, A.: Model driven code checking. Automated Soft-
ware Engineering 15(3-4), 283–297 (2008)

http://groups.engr.oregonstate.edu/abp/
http://codecover.org/

LearnLib Tutorial: From Finite Automata
to Register Interface Programs

Falk Howar1, Malte Isberner2, Maik Merten2, and Bernhard Steffen2

1 Carnegie Mellon University, Silicon Valley Campus,
Mountain View, CA

falk.howar@tu-dortmund.de
2 Technical University Dortmund, Chair for Programming Systems,

Dortmund, D-44227, Germany
{malte.isberner,maik.merten,steffen}@cs.tu-dortmund.de

1 Motivation

In the past decade, active automata learning, an originally merely theoretical
enterprise, got attention as a method for dealing with black-box or third party
systems. Applications ranged from the support of formal verification, e.g. for
assume guarantee reasoning [4], to usage of learned models as the basis for
regression testing. In the meantime, a number of approaches exploiting active
learning for validation [17,20,6,7,2,1] emerged.

Today, active automata learning is on the verge of becoming a valuable asset
in bringing formal methods to systems lacking formal descriptions (e.g., the
huge class of legacy systems): This edition of ISoLA alone features a track on
active learning in formal verification [16], one on model-based testing and model
inference [12], this tutorial, and is co-located with the STRESS summer school,1
where active automata learning is part of the curriculum.

In particular when dealing with black-box systems, i.e., systems that can be
observed, but for which no or little knowledge about the internal structure or
even their intent is available, active automata learning can be considered as a key
technology due to its test-based approach to model inference. However, the test-
based interaction introduces a number of challenges when using active automata
learning to infer models of real word systems, which have been summarized
in [21]:

A: Interacting with Real Systems
The interaction with a realistic target system comes with two problems. The
technical problem of establishing an adequate interface that allows one to
apply test cases for realizing so-called membership queries, and a conceptual
problem of bridging the gap between the abstract learned model and the
concrete runtime scenario.

B: Membership Queries
Whereas small learning experiments typically require only a few hundred
membership queries, learning realistic systems may easily require several
orders of magnitude more.

1 http://info.santoslab.org/event/stress2012

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 587–590, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://info.santoslab.org/event/stress2012

588 F. Howar et al.

C: Reset
Active learning requires membership queries to be independent. Whereas
this is no problem for simulated system, this may be quite problematic in
practice.

D: Parameters and Value Domains
Active learning classically is based on abstract communication alphabets.
Parameters and interpreted values are only treated to an extent expressible
within the abstract alphabet. In practice, this typically is not sufficient, not
even for systems as simple as communication protocols, where, e.g., increas-
ing sequence numbers must be handled, or where authentication requires
matching user/password combinations.

E: Equivalence Queries
Equivalence queries compare a learned hypothesis model with the target
system for language equivalence and, in case of failure, return a counterex-
ample exposing a difference. In practice, equivalence queries will have to be
approximated using membership queries. Methods from conformance testing
have been suggested as approximations but are in general too expensive to
be feasible for industry scale applications.

The tutorial discusses all these issues along a number of practical examples. In
particular, using the LearnLib [19,18,15,13], a flexible automata learning frame-
work, it provides hands-on experience on

– Challenge A: It is discussed how test drivers can be created for the LearnLib.
Starting with the construction of application-specific test drivers by hand, it
is discussed how a generic test driver can be employed by means of config-
uration. This configuration can be (semi-)automatically created by analysis
of the target system’s interface [14].

– Challenge E: Here we illustrate how a more global view of the learning pro-
cess that more closely coalesces the two intertwined learning phases of model
construction and model validation improves both, intuition and efficiency.
This approach was applied successfully as part of the winning contribution
of the ZULU competition [5,9] where it clearly dominated other methods of
searching for counterexamples.

– Challenge D: Here two approaches are discussed and applied [22], alphabet
abstraction refinement [10], and the explicit treatment of data flow using the
more powerful modeling format of register automata [3,8,22].

Participants are invited to experience the impact of all these methods on their
own laptop using their own LearnLib installation.2

References

1. Aarts, F., Schmaltz, J., Vaandrager, F.W.: Inference and Abstraction of the Bio-
metric Passport. In: Margaria, Steffen [11], pp. 673–686

2 http://www.learnlib.de

http://www.learnlib.de

LearnLib Tutorial: From Finite Automata to Register Interface Programs 589

2. Bohlin, T., Jonsson, B.: Regular Inference for Communication Protocol Enti-
ties. Technical report, Department of Information Technology, Uppsala University,
Schweden (2009)

3. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A Succinct Canonical
Register Automaton Model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 366–380. Springer, Heidelberg (2011)

4. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for
Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

5. Combe, D., de la Higuera, C., Janodet, J.-C.: Zulu: An Interactive Learning Com-
petition. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.) FSMNLP
2009. LNCS, vol. 6062, pp. 139–146. Springer, Heidelberg (2010)

6. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model Generation by Moderated
Regular Extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, p. 80. Springer, Heidelberg (2002)

7. Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.-D.: Efficient
Regression Testing of CTI-Systems: Testing a Complex Call-center Solution. An-
nual Review of Communication, Int.Engineering Consortium (IEC) 55, 1033–1040
(2001)

8. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring Canonical Register Au-
tomata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 251–266. Springer, Heidelberg (2012)

9. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS – Lessons Learned in
the ZULU Challenge. In: Margaria, Steffen [11], pp. 687–704

10. Howar, F., Steffen, B., Merten, M.: Automata Learning with Automated Alphabet
Abstraction Refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011)

11. Margaria, T., Steffen, B. (eds.): ISoLA 2010, Part I. LNCS, vol. 6415. Springer,
Heidelberg (2010)

12. Meinke, K., Walkinshaw, N.: Model-based Testing and Model Inference. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 440–443.
Springer, Heidelberg (2012)

13. Merten, M., Howar, F., Steffen, B., Cassel, S., Jonsson, B.: Demonstrating Learning
of Register Automata. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 466–471. Springer, Heidelberg (2012)

14. Merten, M., Isberner, M., Howar, F., Steffen, B., Margaria, T.: Automated Learn-
ing Setups in Automata Learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part I. LNCS, vol. 7609, pp. 591–607. Springer, Heidelberg (2012)

15. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011)

16. Pasareanu, C., Bobaru, M.: Learning Techniques for Software Verification and Val-
idation. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609,
pp. 505–507. Springer, Heidelberg (2012)

17. Peled, D., Vardi, M.Y., Yannakakis, M.: Black Box Checking. Journal of Automata,
Languages and Combinatorics 7(2), 225–246 (2002)

18. Raffelt, H., Steffen, B.: LearnLib: A Library for Automata Learning and Ex-
perimentation. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922,
pp. 377–380. Springer, Heidelberg (2006)

590 F. Howar et al.

19. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: A Framework for Ex-
trapolating Behavioral Models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407
(2009)

20. Shahbaz, M., Li, K., Groz, R.: Learning Parameterized State Machine Model for In-
tegration Testing. In: Proc. 31st Annual Int. Computer Software and Applications
Conf., vol. 2, pp. 755–760. IEEE Computer Society, Washington, DC (2007)

21. Steffen, B., Howar, F., Merten, M.: Introduction to Active Automata Learning
from a Practical Perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011)

22. Steffen, B., Howar, F., Isberner, M.: Active Automata Learning: From DFAs to
Interface Programs and Beyond. In: ICGI 2012 (2012)

Automated Learning Setups

in Automata Learning�

Maik Merten1, Malte Isberner1, Falk Howar1,
Bernhard Steffen1, and Tiziana Margaria2

1 Technical University Dortmund, Chair for Programming Systems,
Dortmund, D-44227, Germany

{maik.merten,malte.isberner,falk.howar,steffen}@cs.tu-dortmund.de
2 University Potsdam, Chair for Service and Software Engineering,

Potsdam, D-14482, Germany
margaria@cs.uni-potsdam.de

Abstract. Test drivers are an essential part of any practical active
automata learning setup. These components to accomplish the trans-
lation of abstract learning queries into concrete system invocations while
managing runtime data values in the process. In current practice test
drivers typically are created manually for every single system to be
learned. This, however, can be a very time-consuming and thus expensive
task, making it desirable to find general solutions that can be reused.

This paper discusses how test drivers can be created for LearnLib, a
flexible automata learning framework. Starting with the construction of
application-specific test drivers by hand, we will discuss how a generic
test driver can be employed by means of configuration. This configuration
is created manually or (semi-)automatically by analysis of the target
system’s interface.

1 Introduction

In recent years, automata learning has been employed to create formal mod-
els of real-life systems, such as electronic passports [1], telephony systems [5,7],
web applications [14,15], communication protocol entities [3], and malicious net-
worked agents [4]. The wide scope of application areas gives testimony on the
universality of the automata learning approach.

However, challenges remain regarding the construction of application-specific
learning setups. A major obstacle for widespread deployment of active automata
learning is the effort needed to design and implement application-fit learning se-
tups. This involves determining a suitable form of abstraction and finding ways to
manage concrete runtime data that influences the behavior of the target system.
In [16], the combined effort for constructing an application-specific abstraction
and a test driver is estimated to have consumed approximately 27% of the total
� This work was partially supported by the European Union FET Project CON-

NECT: Emergent Connectors for Eternal Software Intensive Networked Systems
(http://connect-forever.eu/).

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 591–607, 2012.
© Springer-Verlag Berlin Heidelberg 2012

592 M. Merten et al.

Fig. 1. High-level overview on an active learning setup

effort of analyzing an embedded system from the application area of automotive
systems.

Learning aims at inferring an abstract model of the SUL. While the chosen
abstraction has influence on the expressiveness of the final learned model, deal-
ing with concrete runtime data is an immediate concern when interacting with
reactive systems where communication often is dependent on concrete data val-
ues previously transferred. For example, a system guarded by an authorization
system may transport a security token to the client on login, which then has to
be included in any interaction with protected system areas.

In order to support the full communication of the learner with the SUL, the
learning setup has to translate abstract learning queries into concrete requests
to the target system. These concrete requests may have to be outfitted with data
values. In automata learning, the building block facilitating the translation is a
so-called mapper [8]. In this paper we show how to manually create test drivers
that include mapper functionality, and discuss how a reconfigurable and reusable
test driver can be set up by means of interface analysis.

2 Active Automata Learning

In active automata learning, models of a target system—here denoted as SUL
(System Under Learning)—are created by active interaction and by reasoning
on the observed output behavior. This is done by constructing queries, which are
sequences of input symbols from an alphabet that represents actions executable
on the SUL, and answering these queries by means of actual execution. A high-
level overview of the structure of an active automata learning setup is provided
in Figure 1.

There exists a variety of different active learning algorithms that interrogate
the SUL in the described fashion. A selection of algorithms, complete with corre-
sponding infrastructure, is provided with LearnLib [13,11], a versatile automata
learning framework available free of charge at http://learnlib.de.

http://learnlib.de

Automated Learning Setups in Automata Learning 593

Fig. 2. A possible data dependency between method calls

3 A Running Example

In this paper, we will discuss the construction of test drivers along the example
of a fictional e-commerce application where users can log in, retrieve a list of
products, add products to their shopping cart, and finally buy its contents. This
example has been implemented as web service exposing a WSDL interface and
thus offers a standardized and networked way of interaction. Following methods
are exposed:

– openSession expects user credentials and returns an authentication token.
Conversely, destroySession invalidates a specified session and the associ-
ated shopping cart.

– getAvailableProducts returns a list of available products.
– addProductToShoppingCart expects an authentication token identifying a

user session and adds a provided product to the associated shopping cart.
Conversely, the emptyShoppingCart primitive empties the shopping cart of
a specified session. The method getShoppingCart returns a representation
of the session’s shopping cart, with references to all products it contains.

– buyProductsInShoppingCart will purchase the contents of the shopping
cart associated with the provided session.

When interacting with this example system, the following challenges have to be
addressed, and we will refer to these challenges when demonstrating ways to
establish application-fit learning setups:

Data dependencies: To be able to learn this system, the learning setup needs to
deal with the data dependencies between methods. For instance, most actions
require a valid authentication token which is provided by the openSession prim-
itive. However, this method again is dependent on data values, namely valid login
credentials, which have to be provided beforehand. This situation is illustrated
in Figure 2.

Dependencies on substructures: Merely filling in parameters with runtime val-
ues is not sufficient to interact with this system. For instance, the addPro-
ductToShoppingCart method expects a single product to be provided. The
getAvailableProducts method provides a collection of fitting data values, but
the returned data structure cannot be directly used as a parameter value for
addProductToShoppingCart, that expects only a single data value, as illustrated
in Figure 3. Determining a fitting valuation for this parameter requires a basic

594 M. Merten et al.

Fig. 3. A data dependency involving a singular value out of a collection of values

understanding of the application’s data structures, accompanied by means to
execute basic operations on these data structure such as, e.g., isolating single
data values out of a collection of values.

These two forms of dependencies imply a required, but not sufficient order on
method calls. For instance, the method buyProductsInShoppingCart needs a
valid session identifier to conclude a purchasing transaction, implying that the
method openSession needs to be called beforehand. However, this alone is not
sufficient, as empty shopping carts cannot be purchased, which is a behavioral
aspect arising from the stateful nature of the system that cannot be determined
by data dependency analysis alone. Active automata learning, however, is able
to fill in these state-dependent behavioral traits.

In the following we discuss an architecture for test drivers that enables dealing
with these challenges.

4 Test Drivers and Mappers in Active Automata
Learning

In most real-life automata learning applications, learning alphabets impose an
abstraction on the actual interaction with the SUL. For instance, a sequence
of several concrete input symbols of the SUL may be combined into one single
abstract symbol that represents a single use case.

Consequently, as the active automata learning procedure has to procure the
production of observable system output, these abstract learning alphabets have
to be translated into concrete system alphabets, i.e., alphabets composed of
inputs the target system can process. Conversely, the concrete system output
has to be translated into abstract output symbols that fit the intended model
structure.

In practice, this two-way translation process can be handled by a test driver,
which can be integrated seamlessly into LearnLib’s modular framework. Figure 4
shows a component-wise view onto such a test driver, embedded within a learning
setup. In this figure, the following core components are visible:

– A mapper is responsible for bridging the gap between abstract and con-
crete alphabets, i.e., the mapper is responsible for the translation of learning
queries composed of abstract input symbols into queries composed of con-
crete system inputs. For parameterized symbols, the mapper also determines
fitting parameter valuations and inserts these data values accordingly. Refer-
ring to the running example, the mapper concretely invokes the openSession

Automated Learning Setups in Automata Learning 595

Fig. 4. General architecture of a test driver for active automata learning

action on the SUL with fitting credentials whenever an abstract symbol such
as “login” is encountered. The concrete return value of this method, which
differs for every invocation, needs to be abstracted to gather reproducible
observations. This can be done, e.g., by emitting an output symbol that
merely denotes invocation success or failure.

– The data value context supports the mapper whenever parameterized ac-
tions have to be translated. Many interactions with SULs require parameter
values, e.g., login procedures need preset credentials that do not change dur-
ing learning, while subsequent actions may require an authentication token
determined at runtime. The data value context manages such concrete val-
ues from the application’s data value domain, which is a prerequisite for
overcoming both data-related challenges outlined in Section 3. Data values
are fetched and updated according to requests issued by the mapper com-
ponent during concretization and abstraction steps. During concretization
data values are fetched from the data value context and used by the mapper
for parameterized invocations. Consequently, when abstracting from concrete
return values, the mapper will generate a fitting abstract output symbol, but
will also issue a request to the data value context to store the concrete data
value for future reference. In the running example, the openSession action
returns an authentication token whose concrete value needs to be stored for
methods such as addProductToShoppingCart.

– The proxy is a component that directly interfaces with the SUL, maintains
a connection and thus serves as the funnel to direct learning queries to the
target system. Responses of the target system are collected by the proxy
and transferred into concrete output symbols subsequently processed by the
mapper component. The main purpose of the proxy thus is to facilitate in-
teraction with the SUL by means of a unified invocation mechanism (e.g.,
simple Java methods), abstracting from the underlying invocation technol-
ogy (such as, e.g, SOAP, RMI or CORBA). For systems with an interface
description in a standardized format such as WSDL, fitting proxy objects
can often be generated fully automatically by employing connector genera-
tion tools for that standardized format. The example application falls within
this category: it exposes a WSDL interface that can be converted into in-
vocable code by a tool that emits a Java class encapsulating the remote
invocation mechanics.

596 M. Merten et al.

Providing these three components can be a major bottleneck when preparing
real-life learning scenarios. This effort includes thoughtful construction of the in-
volved abstraction layers and implementation of the according translation mech-
anisms, i.e., the construction of a fitting mapper.

5 Manual Construction of Test Drivers and Setups

In LearnLib, any components that answer learning queries need to implement
the MembershipOracle interface. A test driver implemented according to this
interface possesses one single method processQuery providing system output in
response to system input, i.e., it generates output for learning queries.

Figure 5 shows a manually created test-driver for the example system de-
scribed in Section 3. For reasons of simplicity, not all actions available on the
target system are implemented in this test driver. Regarding the core compo-
nents of the test driver, the following implementations can be observed:

– The mapper is implemented using hardwired abstraction and concretization
steps, e.g., by invoking the openSession method of the target system when
the abstract input symbol “login” is encountered. In the code example, the
mapping between abstract symbols and concrete invocations is realized em-
ploying simple if statements (lines 20 to 26). In a similarly coarse fashion
system output is abstracted as “ok” if no error was signaled, as “error”other-
wise (lines 26 and 30 respectively). In effect this means that both the abstract
input alphabet (“login”, “getProducts”, and “addProduct”) and the abstract
output alphabet (“ok” and “error”) are fixed, as is the mapping from the ab-
stract input alphabet to the concrete system invocations (methods openSes-
sion, getAvailableProducts and addProductToShoppingCart). Note that
this particular test driver does not support any additional symbols: for in-
stance, to actually conclude a purchase, it would have to be extended ac-
cordingly.

– The variables session and products in the processQuery method (lines
11 and 12) are used as a data-value context to resolve data dependencies.
The former is employed to store the invocation result of the openSession
method, the latter stores a collection of product information returned by
getAvailableProducts. The credentials for the openSession method (line
21) are hardcoded strings which were determined beforehand.

As described in Section 3 on the challenge of dependencies on substructures,
direct use of runtime data as parameter valuations is not always sufficient.
This is visible in line 25, where the addProductToShoppingCart action is
invoked. There, the second parameter is instantiated using the products
variable. However, instead of passing the whole collection of products as
parameter, a single value is selected (in this case always the first element).
This constitutes an operation upon a data structure previously returned by
the application, which involves a basic understanding of the organization of
the affected data structure.

Automated Learning Setups in Automata Learning 597

1 public class TestDriver implements MembershipOracle {
2

3 private ShopSystem system = new ShopSystem () ;
4

5 @Override
6 public Word processQuery (Word query) throws LearningExcept ion {
7 // output word c o l l e c t i n g system reac t i on

8 Word output = new WordImpl () ;
9

10 // v a r i a b l e to s t o r e au t h en t i c a t i on token

11 Se s s i on s e s s i o n ;
12 Product [] products ;
13

14 for (int i = 0 ; i < query . s i z e () ; ++i) {
15 // r e t r i e v e current symbol from query

16 Symbol inputsym = query . getSymbolByIndex (i) ;
17

18 try {
19 // ac t on system accord ing to a b s t r a c t symbol

20 i f (inputsym . toS t r i ng () . equa l s (” l o g i n ”)) {
21 s e s s i o n = system . openSess ion (”username ” , ”password ”) ;
22 } else i f (inputsym . toS t r i ng () . equa l s (”getProducts ”)) {
23 products = system . getAva i l ab l eProduct s () ;
24 } else i f (inputsym . toS t r i ng () . equa l s (”addProduct ”)) {
25 system . addProductToShoppingCart (s e s s i on , products [0]) ;
26 }
27

28 // no error

29 output . addSymbol (new SymbolImpl (”ok ”)) ;
30

31 } catch (Exception e) {
32 // error s i g n a l l e d v i a system excep t i on

33 output . addSymbol (new SymbolImpl (” e r r o r ”)) ;
34 }
35 }
36

37 return output ;
38 }
39 }

Fig. 5. A manually created test-driver

598 M. Merten et al.

– The proxy in this example is provided in the form of the system variable
(line 3), which contains a reference to an object directly exposing the SUL’s
methods, e.g., an object generated from the system’s WSDL interface de-
scription. This object encapsulates interacting with the SUL by means of
network messages, shielding the test driver developer from interaction de-
tails such as maintaining a network connection and assembling, e.g., SOAP
(Simple Object Access Protocol) messages. Thus the proxy object enables
interaction with the target system by means of simple method invocations,
as is done in lines 21, 23 and 25.

Clearly, hand-tailoring fitting test drivers for more complex systems can quickly
become a bothersome, time-consuming (and thus expensive) task. To make mat-
ters worse, such test drivers are not reusable for any other system than for the
original SUL and offer only limited flexibility even when considering a single
system, because each adaption necessitates code changes.

The following sections will discuss how the setup effort can be dramatically
reduced, to the point of approaching fully automated construction and execution
of learning setups.

6 Constructing Learning Setups by Interface Analysis

Key to automated instantiation of learning setups is the development of flexible,
configurable test drivers. Such a test driver was developed for LearnLib, which
can operate on a wide range of systems [12]. It is structured as follows:

– The mapper translates abstract input symbols into concrete Java method in-
vocations of the proxy. The return values are stored in the data value context
as named variables. Abstract output symbols named after these variables are
returned on success. If, e.g., the proxy signals a system exception, an abstract
error symbol is emitted instead. In contrast to the manually constructed test
driver discussed in Section 5 the abstraction function is not hard coded, but
configurable.

– As data value context a JavaScript context is employed. It can not only store
named variables to resolve data dependencies, and also allows the execution
of data retrieval operations, such as isolating single data values from complex
data structures such as collections to resolve the challenge of dependencies
on substructures. The data value context is also employed to store predefined
data values such as login credentials.

– The proxy is a Java object upon which methods are invoked employing the
Java reflection API. While in Section 5 the proxy object was hardcoded in
the test driver, the configurable test driver is designed to generate a proxy
object at runtime from an interface description and subsequently use it for
system invocation. This is currently implemented for WSDL, employing the
wsimport utility, so it suffices to provide only an URL to the interface de-
scription.

Automated Learning Setups in Automata Learning 599

When employing such a test-driver, fitting configurations must be determined for
the mapper, the proxy generation and the data value context. This boils down
to the questions of how to construct an alphabet, how to locate to the SUL’s
interface description, and how to manage live data values necessary to drive
interaction with the target system. The questions can be answered by interface
analysis, as illustrated in the following.

6.1 Constructing the Alphabet

Most APIs are structured with some sense of abstraction in mind. In fact, a
major purpose of well-designed APIs is the abstraction from the underlying im-
plementation details, offering application features in a structured and meaningful
way.

When documenting how to interact with a target system, the abstraction level
imposed by the design of the system’s API is a natural abstraction level of the
model that is to be created for documentation purposes. Thus, an alphabet can
be constructed in a straightforward way:

– Every method in the API can be translated into an abstract symbol of the
learning alphabet. The runtime semantics of these abstract learning symbols
is the concrete invocation of the corresponding method exposed by the API.

– Parameters of API methods are handled by parameterizing the abstract
learning symbols of parameterized interface methods. At runtime, fitting
valuations have to be retrieved from the data value context and included
in the concrete system invocations. Data values can be stored in named
variables in the data value context. Parameters in abstract learning symbols
subsequently refer to these variable names.

– Return values can be abstracted according to the return type, i.e., the ab-
stract output symbol merely denotes that a data value of a specific type
has been returned. The concrete live data values are delivered to the data
value context and stored in variables named after the corresponding return
types. In effect this means that only one data value per data type can be
stored, a limitation which precludes, e.g., the possibility of invoking actions
that require two distinct values of the same type. For systems that employ a
single data type to encode data values with distinct purposes (e.g., if all data
values are encoded as character strings) this limitation can severely restrict
the ability to interact with the SUL, necessitating a refined approach for
output abstraction. As demonstrated for learning Register Automata, it is
possible to determine the exact set of data values that have to be memorized
[6].

In case of standard Java interfaces, the necessary analysis steps can easily be
done using the class reflection scheme that is part of the Java platform. Cross-
platform interface description formats can usually be parsed by specialized tools
in a comparable fashion.

600 M. Merten et al.

6.2 Interfacing with the Target System

The configurable test driver includes a component to generate a proxy object
from interface descriptions, which is currently implemented for WSDL interface
descriptions. The wsimport tool employed generates a Java class that exposes the
methods defined in the interface description and handles all networked commu-
nication with the SUL, abstracting from the underlying protocol details. Thus,
from the perspective of the test driver, proxy objects generated by wsimport are
merely normal Java objects, with methods that can be invoked dynamically at
runtime by the Java reflection mechanism. Apart from WSDL web services (such
as the discussed example system) this approach is also feasible for other remote
invocation technologies, such as CORBA, for which similar code generation tools
exist.

6.3 Managing Live Data Values

Method calls in interfaces often depend on parameters that are instantiated
with runtime data. For example, a method may produce data values that are
consumed by a consecutive method call. This is easy to witness in the example
e-commerce scenario of Section 3, where one API method produces an authenti-
cation token that has to be provided by other methods of the system (a situation
illustrated in Figure 2). This sort of data dependency must be satisfied with live
data values determined at runtime. To be able to solve this problem with no
or little manual intervention, such data dependencies must be determined auto-
matically. In the following, a solution is sketched:

– In case of interfaces with strongly typed data, data dependencies can only
exist in alignment with the type concept, i.e., a value returned by one method
can only be provided as input parameter for another method if the return
value type equals (or is a subtype of) the parameter type. Consequently,
no data dependencies have to be assumed outside of the type hierarchy. In
the example sketched above, one method may produce a sequence of values,
each typed as “Product”, which can subsequently be consumed by another
method. Thus the former is a potential producer of viable data values for
the latter.
This type of analysis is bound to be impractical if the interface is specified

over a depleted type system. For instance, many web services encode all or
most data values as simple character strings. From the perspective of the
type system thus any data values could apply “anywhere”, devoid of any
semantic meaning.

– If no data type concept is present (or if a depleted type concept is employed
as described above), the syntactic analysis over data types can be replaced
or augmented by a testing phase in which active interaction with the target
system determines which return values are fitting input for parameters of
subsequent method calls. This, in effect, means that static analysis of a
strong type system is replaced by a training phase to determine a type system

Automated Learning Setups in Automata Learning 601

regarding interoperability of method calls. A tool for performing this kind
of analysis on WSDL interfaces is StrawBerry [2].

Once the relation between methods and involved data types has been determined,
the data flow induced by data dependencies can easily be realized by allocating
one variable in the data value context per data type. Parameter values can
be retrieved according to the parameter type and return values can be stored
according to the returned data type. This scheme can be implemented with a
data value context that in essence is a map containing data values associated
with keys corresponding to the involved data types.

It is easy to see how simple data dependencies over single data values can be
handled in this fashion.

However, the dependencies on substructures challenge described in Section 3
eludes this simple treatment as shown in Figure 3, where one method provides a
sequence of values, while the other method consumes single values. This means
that merely providing the returned sequence as parameter value is not an option.
While it is possible to detect this situation during in-depth type analysis, a
conventional map data structure is not a fitting implementation for the data
value context, as simple operations such as isolation of single data values out of
data value sequences are needed. The same problem occurs when only a single
attribute of a complex data type has to be provided as an argument to another
method call.

For this reason the data value context of the reconfigurable test driver employs
a scriptable JavaScript context that can execute arbitrary program statements
on stored data values, such as, e.g., “elementof(collection)”, which retrieves
one single data value out of a collection, and also supports the common dot no-
tation for accessing attributes and methods of complex types. These statements
are included in the abstract parameterized learning symbols and are evaluated
as provided by the mapper component that inspects symbols of the abstract
learning alphabet as part of the mapping process.

6.4 Employing Semantic Analysis

In Section 6.3, type analysis was employed to determine data-flow between invo-
cations of the SUL. For cases where the type system of the interface description
was nondescript or even missing, a testing phase was proposed to experimentally
determine data dependencies between method invocations.

Any such testing procedure, however, may yield unsatisfactory results, de-
pending on the complexity of inter-method data dependencies and the employed
coverage criteria used during the testing phase. Thus data dependencies may be
missed, causing the construction of incomplete system models in the subsequent
active learning phase.

Due to the limitations of pure syntactical interface analysis, which can detect
false data dependencies if generic data types are used as parameters and return
types, and test-based analysis of data dependencies, which can miss data depen-
dencies if testing is not thorough enough, an alternative approach is desirable.

602 M. Merten et al.

One such approach is based on explicitly specifying the semantical concepts
of parameters and return values in a way that is independent of the type system.
For WSDL, an extension called Semantic Annotations for WSDL (SAWSDL) has
been proposed [17]. Using SAWSDL, data occurring in the interface description—
not only on the level of formal parameters, but also for attributes of complex
types—can be annotated with a reference to a concept in an Ontology. A common
example is distinguishing the semantic concepts of the username and password
parameters of a login operation, which usually are both strings, even in case of
depleted type systems. Using an OWL reasoner like Pellet,1 also more complex
relations like subclassing and inferring class membership can be realized.

This approach crucially relies on semantic annotations (and a corresponding
ontology) being available, an assumption which is false for most third-party web
services. Despite allowing the most fine-grained inference of data dependencies,
we will therefore not detail this approach here any further, as its applicability
to real-world use cases is limited.

7 The Setup Interchange Format

The result of the analysis steps is stored in an interchange format, which is
parsed to instantiate an actual learning setup. This format includes the following
information:

– A location of the target system
– An instance pool of predetermined data values (such as credentials)
– A description of the alphabet, i.e., a list of methods that are to be invoked
– For every method information the symbolic names of parameters and return

values

Such of a setup description file concerned with learning the example WSDL
e-commerce application is presented in Figure 6.

The location of the target system is provided in Line 2, which denotes a URL
from which to retrieve the WSDL interface descriptor. From this descriptor, tools
such as wsimport can fully automatically generate Java proxy classes, which can
be employed by a configurable test driver to facilitate SUL invocations.

Lines 3 to 6 specify an instance pool of two string values which represent
authentication credentials for the target system. By their very nature, such values
have to be provided beforehand, i.e., have to be present in the instance pool.

The provided credentials are utilized in Lines 8 to 18, where a symbol for
the openSession method of the SUL is defined. This method is parameterized,
expecting the credentials previously defined for the instance pool. The execution
result is stored in a variable as defined in Line 17.

The method getAvailableProducts, defined in lines 20 to 23, is simpler
in comparison, as no parameters are expected. The most sophisticated sym-
bol declaration is the one of addProductsToShoppingCart, where the second

1 http://clarkparsia.com/pellet

http://clarkparsia.com/pellet

Automated Learning Setups in Automata Learning 603

Fig. 6. Example of a setup description file for automated setup instantiation

604 M. Merten et al.

method parameter can retrieve valuations from two different named variables:
productArray, which is returned by the getAvailableProducts symbol, or
shoppingCart, which is provided by a symbol not visible in the chosen excerpt
of the setup descriptor. Each of those two variables indeed provides collections
of values of the required type Product, whereas the method parameter only ex-
pects a single Product object. Thus the elementOf selector is applied onto the
respective fields of the data structures, retrieving a singular data value.

8 Usage in LearnLib

The main class for interfacing the above description of learning setup in a Learn-
Lib application is the class LearnConfig. Upon construction it receives the XML
file name, and provides the deduced information, such as the learning alphabet,
in a form compatible with the LearnLib API.

Figure 7shows how such an automatically generated test driver is used in a
LearnLib scenario. In lines 1–2, the LearnConfiguration object is created from
the path name of a learning setup descriptor. For interfacing the target system
(which is assumed to be a web service), a dynamic proxy object of type WSDL-
DynamicProxy is instantiated (line 3). The purpose of this object is to provide
a simple interface for invoking operations by name, which is achieved by gener-
ating proxy classes using the wsimport tool from the WSDL description of the
service.

1 LearnConf igurat ion c on f i g
2 = new LearnConf igurat ion (new Fi leInputStream (” l ea rn s e tup . xml ”)) ;
3 DynamicProxy proxy = new WSDLDynamicProxy(c on f i g . getServiceURL ()) ;
4 MembershipOracle mqOracle
5 = new ProxyOracle (c on f i g . getContextSeed () , proxy , ERROR, ERROR) ;
6

7 LearningAlgorithm l e a r n e r = new Angluin () ;
8 l e a r n e r . setAlphabet (c on f i g . getAlphabet ()) ;
9 l e a r n e r . s e tOrac l e (mqOracle) ;

10

11 for (; ;) {
12 l e a r n e r . l e a rn () ;
13 Automaton hypothes i s = l e a r n e r . ge tResu l t () ;
14 // . . .

15 }

Fig. 7. Using an automatically generated test driver for a webservice in LearnLib

As has been noted in Section 5, a component answering queries has to imple-
ment the MembershipOracle interface. In our scenario, this is the ProxyOracle
(lines 4–5). This oracle translates symbols of a special form to invocations on
the proxy object. The LearnConfiguration method getAlphabet() (line 8)
provides a learning alphabet which consists of symbols of the required form.

Automated Learning Setups in Automata Learning 605

Fig. 8. Learned model of an e-commerce application, learned with the setup descriptor
of Figure 6

Fig. 9. Overall workflow for (semi-)automated active automata learning

The single symbols are created from the setup description in the fashion sketched
in Section 7. Having instantiated a membership oracle along with a compatible
learning alphabet, learning can be performed in the usual fashion with an arbi-
trary learning algorithm such as Angluin’s L∗.

606 M. Merten et al.

Figure 8 shows the result of executing a learning setup with the presented
configuration. The result of executing a learning setup with the presented con-
figuration is shown in Figure 8. This model reveals properties of the system’s
behavior, for instance how to finally place an order (which requires a non-empty
shopping cart), which is useful behavioral information when trying to interact
with the system.

The overall workflow for active automata learning within the presented frame-
work, formalized in XPDD [9], is shown in Figure 9: on the left hand side input
artifacts are visualized (e.g., the SUL’s interface description), while on the left
hand side output artifacts are visible (most importantly the learned model). If
all processing steps (shown in the center of the figure) are automated, complete
learning setups can be instantiated and executed without manual intervention.

9 Conclusion

Test drivers with mapper functionality are essential components of pretty much
every active learning setup involving real-life systems that react according to
data generated at runtime.

In this paper we presented how to manually create application-specific data-
aware test drivers for LearnLib, an extensible framework for automata learning.
This is a straightforward process for systems of limited size, supported by the
component-based approach of the LearnLib library.

For large-scale application and to create flexible learning setups, however, the
approach of hand-crafting test-drivers is of limited appeal. Thus we presented a
general architecture and concrete implementation of a reconfigurable test driver.
The setup configuration for this test driver is generated by means of interface
analysis, either conducted manually or (preferably) by automated means.

By introducing means to automatically generate setup descriptions, it is ex-
pected that automata learning becomes a much less laborious process, making
adoption for real-life scenarios routinely feasible.

References

1. Aarts, F., Schmaltz, J., Vaandrager, F.W.: Inference and Abstraction of the Bio-
metric Passport. In: Margaria, Steffen [10], pp. 673–686

2. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of be-
havior protocols for composable web-services. In: van Vliet, H., Issarny, V. (eds.)
ESEC/SIGSOFT FSE, pp. 141–150. ACM (2009)

3. Bohlin, T., Jonsson, B., Soleimanifard, S.: Inferring compact models of communi-
cation protocol entities. In: Margaria, Steffen [10], pp. 658–672

4. Bossert, G., Hiet, G., Henin, T.: Modelling to Simulate Botnet Command and
Control Protocols for the Evaluation of Network Intrusion Detection Systems. In:
Proceedings of the 2011 Conference on Network and Information Systems Security,
La Rochelle, France, pp. 1–8 (June 2011)

Automated Learning Setups in Automata Learning 607

5. Hagerer, A., Hungar, H., Margaria, T., Niese, O., Steffen, B., Ide, H.-D.: Demon-
stration of an Operational Procedure for the Model-Based Testing of CTI Systems.
In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 336–340.
Springer, Heidelberg (2002)

6. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring Canonical Register Au-
tomata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 251–266. Springer, Heidelberg (2012)

7. Hungar, H., Margaria, T., Steffen, B.: Test-based model generation for legacy sys-
tems. In: Proceedings of International Test Conference, ITC 2003, October 2-30,
vol. 1, pp. 971–980 (2003)

8. Jonsson, B.: Learning of Automata Models Extended with Data. In: Bernardo, M.,
Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 327–349. Springer, Heidelberg
(2011)

9. Jung, G., Margaria, T., Wagner, C., Bakera, M.: Formalizing a Methodology for
Design- and Runtime Self-Healing. In: IEEE International Workshop on Engineer-
ing of Autonomic and Autonomous Systems, pp. 106–115 (2010)

10. Margaria, T., Steffen, B. (eds.): ISoLA 2010, Part I. LNCS, vol. 6415. Springer,
Heidelberg (2010)

11. Merten, M., Howar, F., Steffen, B., Cassel, S., Jonsson, B.: Demonstrating Learning
of Register Automata. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 466–471. Springer, Heidelberg (2012)

12. Merten, M., Howar, F., Steffen, B., Pellicione, P., Tivoli, M.: Automated Inference
of Models for Black Box Systems Based on Interface Descriptions. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 79–96. Springer,
Heidelberg (2012)

13. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011)

14. Raffelt, H., Margaria, T., Steffen, B., Merten, M.: Hybrid test of web applications
with webtest. In: TAV-WEB 2008: Proceedings of the 2008 Workshop on Testing,
Analysis, and Verification of Web Services and Applications, pp. 1–7. ACM, New
York (2008)

15. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata
learning. Int. J. Softw. Tools Technol. Transf. 11(4), 307–324 (2009)

16. Shahbaz, M., Shashidhar, K.C., Eschbach, R.: Iterative refinement of specification
for component based embedded systems. In: ISSTA, pp. 276–286. ACM (2011)

17. W3C. Semantic Annotations for WSDL and XML Schema. Technical report (2007),
http://www.w3.org/TR/sawsdl/

http://www.w3.org/TR/sawsdl/

The RERS Grey-Box Challenge 2012:

Analysis of Event-Condition-Action Systems

Falk Howar1, Malte Isberner2, Maik Merten2,
Bernhard Steffen2, and Dirk Beyer3

1 Carnegie Mellon University, Mountain View, USA
2 TU Dortmund, Germany

3 University of Passau, Germany

Abstract. The goal of the RERS Grey-Box Challenge is to evaluate the
effectiveness of various verification and validation approaches on Event-
Condition-Action (ECA) systems, which form a specific class of systems
that are important for industrial applications. We would like to bring
together researchers from all areas of software verification and validation,
including theorem proving, model checking, program analysis, symbolic
execution, and testing, and discuss the specific strengths and weaknesses
of the different technologies.

Keywords: Program Analysis, Model Checking, Verification, Model-
Based Testing, Competition, Event-Condition-Action System.

1 Motivation

Event-Condition-Action (ECA) Systems are omnipresent in industrial practice.
Notable applications include programmable logic controllers (PLCs) [1], active
databases [20], and web-service composition [4]. Moreover, they are the basis
of the increasingly popular rule-based systems [16], which can be regarded as
de-facto standard for dealing with permissions and access control, and ECAs are
promoted as a means for realizing compliant business processes on top of rule
engines like Drools [9] or JRules [8].

The popularity of this rule architecture comes from its apparent simplicity:
one can add and change the functionality simply by adding and removing rules.
However, this simplicity has its price: it is extremely difficult to understand and
control the global implications of these apparently simple changes. It is almost
impossible to manually find out if there are side-effects, whether the new rule
is executed at all, if the whole rule system behaves deterministically, or if the
system does actually terminate—to name only a few problems.

Modern verification techniques make it possible to automatically answer many
of those questions. However, treating ECA systems is challenging for almost all
verification and validation approaches, because there is little control structure
to hook on to. The inherent structure of ECA systems (causalities, conflicts,
dependencies, etc.) needs therefore to be inferred from their data-flow alone.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 608–614, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The RERS Grey-Box Challenge 2012 609

To obtain an overview over the various techniques, and to compare the techniques
on a common set of problems, we have set up a grey-box challenge.

The RERS1 Grey-Box Challenge at ISoLA 2012 proceeds in two parts:

– an offline part, where the contestants have two months to analyze all bench-
mark systems and to carefully prepare their results, and

– an online part during ISoLA, where the contestants have to prepare their
results between the opening on Sunday, October 14th, 2012 and the presen-
tation session on Thursday, October 18th, 2012, in the morning.

Everybody who is interested in the verification of ECA systems is invited to
apply his/her techniques to the ECA setting. The aim is to reveal, compare,
and combine the specific strengths of the various verification techniques, be
they manual, tool-supported, or fully automated, for treating this peculiar but
nevertheless practically highly important kind of systems.

Springer sponsors a 500 Euro gift certificate for Springer books for the best
solutions, and the teams with the best solutions in their categories will be invited
for an STTT Special Section summarizing the results of the challenge, and, in
particular, presenting the most advanced solutions.

The RERS Grey Box Challenge at ISoLA 2012 is the first of a series of events
in which we aim at successively refining the 2012 challenge scenario in order
to specifically discuss current strengths and limitations, and to exchange imple-
mentations, algorithms, ideas, and visions. In particular, during the challenge
meeting at ISoLA 2012 it is planned to discuss the profile of the 2013 chal-
lenge held in fall in Mountain View as a satellite of ASE 2013. The third RERS
challenge is planned to be part of ISoLA’s 10th anniversary in 2014.

2 Characteristics of the Challenge

The challenge is very special. On the one hand, it is fully ’white-box’—the full
Java/C code is available. On the other hand, it has a black-box character—ECA
code is particularly unstructured, not easy to analyze.

It will therefore be interesting to see how well, e.g., program-analysis tech-
niques and model checking, perform in comparison with black-box techniques
like model-based testing, and how these techniques may be profitably combined.
We are therefore particularly looking forward to contributions based on tools
that comprise one or the combination of many of the following technologies:

– program analysis and verification [22],
– symbolic execution [18],
– software model checking [12, 17],

1 The name RERS originally was an acronym for Regular Extrapolation of Reactive
Systems. Although the name remained the same, the challenge itself has evolved to-
wards a broader focus, addressing a variety of techniques for analyzing and inferring
the behavior of reactive systems.

610 F. Howar et al.

– statistical model checking [6],
– model-based testing [10],
– inference of invariants [14],
– automata learning [2, 23],
– run-time verification [19], and
– monitoring [15].

Of course, this list is not meant to be exhaustive. Rather we want to encourage
everybody to approach this challenge with all the available means and ideas, and
people are welcome to join effort and to approach the problem in heterogeneous
teams.

3 Challenge Setup and Rules

Contestants are confronted with a number of ECA systems given in both Java
and C, ranging from structurally simple and small to structurally complex and
large, as well as corresponding collections of properties to be checked against
these systems, which fall into two categories:

Reachability Properties: Some assignments to internal state variables corre-
spond to erroneous states, which cause the system to fail with a specific error
code. Not all of those error states are reachable, and the goal is to check which
of these states can in fact be reached (it is not expected to also provide a se-
quence of inputs reaching them). Those errors come in the form of either an
IllegalStateException (Java) or a failed assertion (C), along with a specific
error label. Each individual such reachability problem is evaluated and ranked
exactly in the same fashion as the behavioral properties.

Behavioral Properties: An execution trace of the ECA system consists of
a sequence of inputs and outputs, each from a finite alphabet. For each of the
systems, a file properties.txt is provided, containing a set of 100 properties for
which the contestants have to check whether they are satisfied by all traces, or if
there are traces that violate them (it is not expected to also provide these traces).
The properties are given both as an LTL formula and a textual description. For
example, (G ! oU) means that output U does never occur. In other words, the
expression states that it is not possible—by any sequence of input events—to
make the system produce an output action U.

To allow an intuitive mapping from LTL expressions to textual descriptions,
the properties to be checked are closely adhering to the patterns in property
specifications identified by Dwyer et al. [13]

In LTL formulas, the atomic propositions correspond to input and output
symbols, where the prefix i is used for input and o is used for output symbols,
to allow a clear distinction.2

The LTL formulas are given in a standard syntax, making use of the following
temporal operators:

2 The more common prefixes ? and ! for inputs and outputs, respectively, cause con-
fusion with the unary negation operator !.

The RERS Grey-Box Challenge 2012 611

– Xφ (next): φ has to hold after the next step
– Fφ (eventually): φ has to hold at some point in the future (or now)
– Gφ (globally): φ has to hold always (including now)
– φUψ (until): φ has to hold until ψ holds (which eventually occurs)
– φWUψ (weak until): φ has to hold until ψ holds (which does not necessarily

occur)
– φRψ (release): φ has to hold until ψ held in the previous step.

Additionally, the boolean operators & (conjunction), | (disjunction) and ! (nega-
tion) are used.

In order to better reflect the multiple facets of the grey-box challenge, there will
be two kinds of rankings:

– A purely numeric ranking, according to the percentage of correctly verified
properties, providing a true competition. In order to express ones confidence
in own verification results, one can assign to each verification result a con-
fidence weight from 0 to 9. In case of a correct answer, the weight value
is added to the overall score of the contestant. Otherwise, twice the weight
value is subtracted.

– A conceptual ranking, according to the employed (combination of) meth-
ods, emphasizing the challenge character. In this category, solutions will be
reviewed and ranked by the challenge team. Due to the possible variety of
methods, there may be several winners in this category.

4 How to Proceed

We have set up the challenge problems for Java and C almost identically. The
main difference is that input and output symbols are given as strings in the
Java setting, and as plain integers in the C setting (an explicit request from
the community). Despite this difference, one can proceed exactly in the same
fashion, e.g.:

– For solving the implicit problems, a tool might analyze the code for er-
ror/exception/assertion labels. Each such label that occurs in the code de-
fines a reachability problem, which can be solved with the method of the
contestant’s choice. There are no limitations.

– The explicit problems, even if reminding of typical model-checking prob-
lems, may also be dealt with in any fashion, e.g. data-flow analysis, symbolic
execution, testing, learning, (statistical) model checking, run-time methods,
etc.

– The challenge is free-style. The contestant’s are allowed to patch the code
in any way, but the validity has, of course, to be stated according to the
original problems.

– One should first concentrate on the problems and properties that one can
master well. There is no need to give an answer to all problems. Of course,
the more problems one can tackle, the more points one may be able to win,
but be aware: wrong answers have a large penalty!

612 F. Howar et al.

– The weighting scheme gives a way to express personal confidence in the
obtained results, e.g., if one has found a path to some error and is convinced
that this is indeed feasible, then one should weight it with confidence level 9.
A liveness property, or stating that certain errors do not occur, is of course
more risky.

Concerning the second form of ranking, the team needs to write a short summary
of the chosen approach, the encountered hurdles, the solutions, and the obtained
results. In these summaries, honesty, e.g., also concerning weaknesses/limitations
of the employed methods, is important. Our challenge aims at profiling the var-
ious approaches and methods, which in particular means that weaknesses need
to be identified. Of course, we are also very interested in new ideas and solutions
that were motivated by the challenge.

The challenge starts with nine categories of ECA systems of varying com-
plexity. After an initial phase of four weeks, three further problems of higher
complexity will be added, specifically tailored to differentiate the participating
competitors.

5 Relation to Other Challenges and Competitions

Competition and challenge events are well-understood in the community as an
effective means for technology evaluation and exchange, for revealing the state
of the art in a tangible fashion, and to stimulate robust tool implementations.
Notable examples range over various fields such as software verification [5], SAT
and SMT solving [3, 11], planning [25], quantified boolean formulas [21], hard-
ware model checking [7], or theorem proving [24]. All of those events impact the
development pace and the quality of the competing software tools; results from
theory are almost instantly transferred to practical tool implementations.

Of the mentioned events, the Competition on Software Verification (SV-
COMP) [5] at TACAS is thematically closest to the RERS Grey-Box Challenge,
even though it is complementary in the following respects:

– The RERS Challenge focuses on a very specific program pattern, but consid-
ers complex properties, and allows competitors to employ arbitrary means,
both in terms of hardware and in terms of software.

– In contrast, SV-COMP focuses mainly on reachability problems to be solved
on a given platform under clearly defined frame conditions, but with strongly
varying program structures.

This difference characterizes SV-COMP as a pure competition with a clear rank-
ing, which contrasts the RERS Challenge, whose frame conditions make it diffi-
cult to define a global ranking. This is why we have two rankings, one which is
purely numerical, simply based on a ‘multiple choice’ test which may be solved
‘free-style’, and one where the approach taken, the underlying ideas, and the
concrete realization are evaluated by the challenge team.

The RERS Grey-Box Challenge 2012 613

Acknowledgement. We would like to thank Rustan Leino and Jaco van de Pol
for their helpful comments, and Maren Geske for her assistance in implementing
the challenge infrastructure.

References

[1] Almeida, E.E.: Event-Condition-Action Systems for Reconfigurable Logic Control.
IEEE Transactions on Automation Science and Engineering 4(2), 167–181 (2007)

[2] Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 75(2), 87–106 (1987)

[3] Balint, A., Belov, A., Järvisalo, M., Sinz, C.: SAT Challenge 2012. In: SAT (2012),
http://baldur.iti.kit.edu/SAT-Challenge-2012/index.html

[4] Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self-Serv Environment for Web
Services Composition. IEEE Internet Computing 7(1), 40–48 (2003)

[5] Beyer, D.: Competition on Software Verification (SV-COMP). In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012), http://sv-comp.sosy-lab.org/

[6] Bianco, A., de Alfaro, L.: Model Checking of Probabilistic and Nondeterministic
Systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

[7] Biere, A., Heljanko, K., Seidl, M., Wieringa, S.: HWMCC 2012. In: FMCAD
(2012), http://fmv.jku.at/hwmcc12/

[8] Boyer, J., Mili, H.: IBM WebSphere ILOG JRules. In: Agile Business Rule Devel-
opment, pp. 215–242. Springer (2011)

[9] Browne, P.: JBoss Drools Business Rules. Packt Publishing, Birmingham (2009)
[10] Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-

Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)
[11] Bruttomesso, R., Cok, D., Griggio, A.: SMT-COMP 2012. In: IJCAR (2012),

http://smtcomp.sourceforge.net/2012/

[12] Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (2001)
[13] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for

Finite-State Verification. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) ICSE,
pp. 411–420. ACM (1999)

[14] Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically Discovering
Likely Program Invariants to Support Program Evolution. IEEE Transactions on
Software Engineering 27(2), 99–123 (2001)

[15] Havelund, K., Roşu, G.: Monitoring Java Programs with Java PathExplorer. Elec-
tronic Notes in Theoretical Computer Science 55(2), 200–217 (2001); RV 2001,
Runtime Verification (in connection with CAV 2001)

[16] Hayes-Roth, F.: Rule-Based Systems. Commun. ACM 28(9), 921–932 (1985)
[17] Holzmann, G.J., Smith, M.H.: Software Model Checking: Extracting Verification

Models from Source Code. Software Testing, Verification and Reliability 11(2),
65–79 (2001)

[18] King, J.C.: Symbolic Execution and Program Testing. Commun. ACM 19(7),
385–394 (1976)

[19] Leucker, M., Schallhart, C.: A Brief Account of Runtime Verification. Journal of
Logic and Algebraic Programming 78(5), 293–303 (2009)

[20] McCarthy, D., Dayal, U.: The Architecture of an Active Database Management
System. In: Proceedings of the 1989 ACM SIGMOD International Conference on
Management of Data, SIGMOD 1989, pp. 215–224. ACM, New York (1989)

http://baldur.iti.kit.edu/SAT-Challenge-2012/index.html
http://sv-comp.sosy-lab.org/
http://fmv.jku.at/hwmcc12/
http://smtcomp.sourceforge.net/2012/

614 F. Howar et al.

[21] Narizzano, M.: QBFEVAL (2012), http://www.qbflib.org/index_eval.php
[22] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-

Verlag New York, Inc., Secaucus (1999)
[23] Steffen, B., Howar, F., Merten, M.: Introduction to Active Automata Learning

from a Practical Perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011)

[24] Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1), 35–48
(2006), http://www.cs.miami.edu/~tptp/CASC/

[25] Vaquero, T.S., Fratini, S.: ICKEPS – International Competition on Knowledge
Engineering for Planning and Scheduling. In: ICAPS (2012),
http://icaps12.poli.usp.br/icaps12/ickeps

http://www.qbflib.org/index_eval.php
http://www.cs.miami.edu/~tptp/CASC/
http://icaps12.poli.usp.br/icaps12/ickeps

Author Index

Adedjouma, Morayo II-111
Ahrendt, Wolfgang I-312
Ait-Ameur, Yamine II-327
Alipour, Amin I-572
Asche, Hartmut II-324
Asirelli, Patrizia I-146
Autexier, Serge I-238

Baudry, Benoit I-208
Bauer, Oliver I-554
Bauer, Tim I-572
Bellatreche, Ladjel II-344
Bender, Andreas II-12
Bensalem, Saddek I-327
Beyer, Dirk I-608, II-1
Birken, Klaus II-173
Blech, Jan Olaf I-405
Bobaru, Mihaela I-505
Bodden, Eric I-4, I-162
Bosch, Jan I-19
Boßelmann, Steve II-70
Boukhari, Ilyès II-344
Bozga, Marius I-327
Braun von Reinersdorff, Andrea II-67
Bravetti, Mario I-64, I-269
Breu, Ruth I-112

Čaušević, Aida II-308
Clarke, Dave I-178
Cordy, Maxime I-208
Crégut, Xavier II-143, II-329
Crocker, Paul Andrew I-508

Damiani, Ferruccio I-193
David, Alexandre I-388, II-293
Delahaye, Benoit I-327
de Matos Pedro, André I-508
de Sousa, Simão Melo I-508
Devroey, Xavier I-208
Dietrich, Dominik I-238
Di Giusto, Cinzia I-269
Dimitrova, Rayna I-342
Dinca, Ionut I-539
Do, Ngoc Thi Bich I-458
Doedt, Markus II-75
Dovland, Johan I-253

Eichenberger, Remo II-325
Eklund, Ulrik I-19
Emmerich, Michael T.M. II-12
Ernst, Rolf II-96
Erwig, Martin I-572

Falcone, Yliès I-284, I-405
Falzon, Kevin I-162
Fang, Ling I-458
Fantechi, Alessandro I-146, II-187,

II-276
Farzan, Azadeh I-372
Felderer, Michael I-112
Feller, Christoph I-97
Fern, Alan I-572
Ferrari, Alessio II-216
Finkbeiner, Bernd I-342
Flammini, Francesco II-187, II-190
Follner, Andreas I-4

Ge, Ning II-143
Gigante, Gabriella II-205
Gnesi, Stefania I-146, II-187
Göke, Thomas II-75
Goknil, Arda II-111
Grimshaw, Simon II-12
Groce, Alex I-572
Groz, Roland I-444
Gueguen, Pierre Yves II-111

Hähnle, Reiner I-1, I-32
Hallé, Sylvain I-295
Hartmanns, Arnd I-420
Havelund, Klaus I-292
Haxthausen, Anne E. II-261
Henry, Andrew H. II-12
Hermanns, Holger I-420
Heymans, Patrick I-208
Hollenstein, Livia II-325
Holubek, Andreas II-73
Holzer, Andreas I-372
Howar, Falk I-79, I-554, I-587, I-591,

I-608
Hutter, Dieter I-238

616 Author Index

Ipate, Florentin I-539
Irfan, Muhammad-Naeem I-444
Isberner, Malte I-554, I-587, I-591,

I-608

Jean, Stéphane II-344
Jegourel, Cyrille I-327
Johnsen, Einar Broch I-253
Jonsson, Bengt I-554

Kalb, Philipp I-112
Kamischke, Jochen I-223
Kang, Eun-Young I-208
Katoen, Joost-Pieter II-290
Kirner, Raimund II-158
Kitamura, Takashi I-458
Knoop, Jens II-323
Kok, Joost II-7
Kujath, Bertold II-70
Kurnia, Ilham W. I-97

Lamprecht, Anna-Lena I-47, II-7
Larsen, Kim Guldstrand I-388, II-290,

II-293
Legay, Axel I-208, I-327, I-388, II-293
Leucker, Martin I-127, I-131, I-524
Lienhardt, Michaël I-64, I-178
Lisper, Björn II-78, II-80
Lochau, Malte I-127, I-223
Lu, Zheng I-474
Lüth, Christoph I-238

Maeder, Christian I-238
Margaria, Tiziana I-47, I-591, II-67,

II-70
Marrone, Stefano II-190, II-231
Martelli, Giacomo II-216
Mazzocca, Nicola II-190
McCarthy, Luke II-56
Meinke, Karl I-440, I-488
Menabeni, Simone II-216
Merten, Maik I-79, I-587, I-591, I-608
Méry, Dominique II-327
Metzger, Christian II-73
Mikučionis, Marius I-388, II-293
Mounier, Laurent I-358
Mukhopadhyay, Supratik I-474

Nardone, Roberto II-190, II-231
Neider, Daniel I-524

Nezhinsky, Alexander E. II-42
Niu, Fei I-488
Nordlander, Johan II-78, II-80
Nouri, Ayoub I-327

Ogata, Kazuhiro II-126
Ohsaki, Hitoshi I-458
Orazzo, Antonio II-231
Oriat, Catherine I-444
Ouranos, Iakovos II-126

Pace, Gordon J. I-312
Pantel, Marc II-143, II-329
Pardo, Jan II-75
Păsăreanu, Corina S. I-505
Pascarella, Domenico II-205
Pellicione, Patrizio I-79
Peraldi-Frati, Marie-Agnès II-111
Pérez, Jorge A. I-269
Perrouin, Gilles I-208
Petrenko, Alexander K. II-1
Petrone, Ida II-231
Pettersson, Paul II-308
Pinto, Jervis I-572
Poetzsch-Heffter, Arnd I-97
Poulsen, Danny Bøgsted I-388
Pun, Ka I. I-162

Quinton, Sophie II-78, II-96

Rabe, Markus N. I-342
Rasche, Christoph II-67
Rasthofer, Siegfried I-4
Razavi, Niloofar I-372
Rueß, Harald I-405

Sanchez-Faddeev, Hernando II-12
Sangiorgi, Davide I-64
Schaefer, Ina I-1, I-32, I-127, I-193
Schätz, Bernhard I-405
Schneider, Gerardo I-312
Schobbens, Pierre-Yves I-208
Schreiner, Dietmar II-323
Seceleanu, Cristina II-308
Sedwards, Sean I-388
Sieber, René II-325
Sifakis, Emmanuel I-358
Spagnolo, Giorgio Oronzo II-216
Spaink, Herman P. II-12
Stefaneas, Petros II-126

Author Index 617

Stefanescu, Alin I-539
Steffen, Bernhard I-79, I-554, I-587,

I-591, I-608, II-75
Stolz, Volker I-162

ter Beek, Maurice H. I-146
Thoma, Daniel I-131
Tivoli, Massimo I-79
Tremblay-Lessard, Raphaël I-295

Vandervalk, Ben II-56
van Vlijmen, Herman W. II-12
Velardi, Luigi II-231
Verbeek, Fons J. II-7, II-12, II-25, II-42
Vittorini, Valeria II-190

Walkinshaw, Neil I-440
Welsch, Yannick I-97
Wilkinson, Mark D. II-7, II-56
Winter, Kirsten II-246
Wood, Ian II-56

Yan, Kuan II-25
Yatabe, Shunsuke I-458
Yu, Ingrid Chieh I-253

Zalila, Faiez II-329
Zavattaro, Gianluigi I-269
Zech, Philipp I-112
Zuck, Lenore D. I-284

	Title
	Preface
	Organization
	Table of Contents
	Adaptable and Evolving Software for Eternal Systems
	Adaptable and Evolving Softwarefor Eternal Systems
	Motivation and Goals
	Contributions
	References

	Challenges in Defining a Programming Languagefor Provably Correct Dynamic Analyses
	Introduction
	Dynamic Analysis
	Static Optimization
	Correctness
	Reuse, Sharing and Composition
	Related Work
	Conclusion
	References

	Eternal Embedded Software:Towards Innovation Experiment Systems
	Introduction
	Characteristics of Current and Future Embedded Systems
	Concept of Innovation Experiment Systems
	Applying Innovation Experiment Systems to Modern/Future Embedded Systems
	Overall Implications on R&D Process
	Business Model Implications
	Architecture Implications

	Case Study
	Experimentation
	Architecture

	Conclusion
	Future Work

	References

	A Liskov Principlefor Delta-Oriented Programming
	Introduction
	Delta-Oriented Programming
	Preliminaries
	Running Example

	Specifying Deltas
	Design by Contract
	Specification Deltas

	Liskov's Principle
	Standard Object-Oriented Design with Code Inheritance
	Delta-Oriented Specification

	Compositional Verification of Delta Models
	Verification of Invariants
	Core Invariants
	Family Invariants

	Related Work
	Discussion and Future Work
	References

	Scientific Workflows: Eternal Components,Changing Interfaces, Varying Compositions
	Introduction
	Abstraction for Fast-Paced Workflow Evolution
	Handling Technical Abstraction: The SIBs
	Handling Semantic Abstraction: Loose Programming

	Examples and Experiences
	SIBs for ``Good Old" Command Line Tools
	SIBs for Bioinformatics Web Services: From SOAP to REST
	Agile Models for Variable/Evolving Scientific Workflows
	Loose Models for Variable and Evolving Scientific Workflows

	Conclusion
	References

	An Object Group-Based Component Model
	Introduction
	Core ABS
	Component Model
	Ports and Bindings
	Locations

	Semantics
	Runtime Syntax
	Reduction Relation
	Properties

	References

	Automated Inference of Modelsfor Black Box Systems Based on Interface Descriptions
	Introduction
	Motivating Example
	StrawBerry
	LearnLib and Active Automata Learning
	The Integrated Approach
	Instrumentation
	Determining an Alphabet and Mapper Configuration
	Storing and Accessing Data-Values

	Application to the Example and Discussion
	Related Work
	Conclusions and Perspectives
	References

	Model-Based Compatibility Checkingof System Modifications
	Introduction
	Modeling Software Systems
	ABS Modeling
	Example: Flight Booking System

	Evolution of Systems
	Reasoning Approach
	Group Transition Systems
	Component Transition Systems
	Checking Compatibility

	Related Work
	Conclusion and Future Work
	References

	A Generic Platformfor Model-Based Regression Testing
	Introduction
	Related Work
	Building Blocks
	MoVE - Model Versioning and Evolution
	Model-Based Testing Approaches

	Model-Based Regression Testing Platform
	A Generic Model-Based Regression Testing Approach
	A Generic Model-Based Regression Testing Implementation

	Case Study
	System Under Test
	Application of the Model-Based Regression Testing Platform

	Conclusion
	References

	Approaches for Mastering Change
	Approaches for Mastering Change
	Motivation
	Goals
	Contributions
	References

	A Formal Approach to Software ProductFamilies
	Introduction
	Related Work
	Features
	Specification of Product Lines
	PL-CCS
	Model-Checking PL-CCS
	Conclusion
	References

	A Compositional Frameworkto Derive Product Line Behavioural Descriptions
	Introduction
	Running Example: A Family of Coffee Machines
	Modelling Product Family Behaviour with MTSs
	Generating and Analyzing Valid Products with VMC
	Compositional Modelling of Feature Models and MTSs
	Getting Acquainted with VMC
	Related Work
	Conclusions and Future Work
	References

	Delta-Oriented Monitor Specification
	Introduction
	Overview
	Enforcing Correct Behaviour
	Formalization
	Defining Base Automata
	Well-Formedness of Automata
	Deltas
	Further Design Decisions

	Implementation
	Related Work and Conclusion
	References

	Conflict Detectionin Delta-Oriented Programming
	Introduction
	Delta-Oriented Programming
	Conflicts
	Type System
	Related Work
	Conclusion
	References

	Family-Based Analysis of Type Safetyfor Delta-Oriented Software Product Lines
	Introduction
	Recalling Delta-Oriented Programming
	Concepts of Delta-Oriented Programming
	IFJ: A Core Calculus for Product Lines of Java Programs
	Constraint-Based Typing for IFJ Product Lines

	Family-Based Analysis of Type-Safety for IFJ Product Lines
	Product Family Generation Trie
	Checking Type-Safety by Using the Product Family Generation Trie
	Minimizing the Size of PFGTs
	Heuristics

	Related Work
	Conclusions and Future Work
	References

	A Vision for Behavioural Model-Driven Validationof Software Product Lines
	Introduction
	Background
	Variability Management
	Model Checking and Product Lines
	Model-Based Testing and Product Lines

	Overview
	Modelling SPL Behaviour with SDVA
	Validation of Refined SPLs
	Design and Validation

	Conclusion and Perspectives
	References

	Parameterized Preorder Relations forModel-Based Testing of Software Product Lines
	Introduction
	Model-Based Conformance Testing of SPLs
	Foundations of Model-Based Conformance Testing
	Parameterized Decorated Trace Preorder Relation
	Model-Based SPL Conformance Testing

	Parameterized LTS Test Model
	Feature Parameters and Feature Models
	Feature-annotated Labeled Transition Systems

	Reuse of LTS Test Artifacts
	Reuse of Test Cases
	Reuse of Test Results

	Related Work
	Conclusion
	References

	SmartTies –Management of Safety-Critical Developments
	Introduction
	Developing Safety Critical Systems
	Document Management
	Change Management
	Document Semantics and Implementation
	Conclusion
	References

	Tracking Behavioral Constraintsduring Object-Oriented Software Evolution
	Introduction
	Motivation
	Proof Outlines and Soundness
	Proof Outlines for Object-Oriented Programs
	An Object-Oriented Kernel Language
	Proof Outlines and Inheritance

	A Soundness Invariant for the Open World
	Evolution through Adaptable Class Hierarchies
	Basic Program Adaptations
	Combining Adaptations
	Analysis Tasks

	Example
	Related Work
	Conclusion
	References

	Towards the Verification of Adaptable Processes
	Introduction
	The E Calculus
	A Logic for Adaptable Processes
	Two Compelling Examples
	(Un)decidability Results for L and Lr
	Preliminaries
	Results for L
	Results for Lr

	Concluding Remarks
	References

	Runtime Verification: The Application Perspective
	Runtime Verification: The Application Perspective
	Introduction
	Towards More Efficient RV
	Combining RV with Other Techniques
	(New) Application Domains for RV
	Information-Flow Properties and Concurrent Programs
	System Biology
	OSGi Services
	Power-Micro Grids

	Concluding Remarks
	References

	What Does AI Have to Do with RV?
	References

	A Case for “Piggyback” Runtime Monitoring
	Introduction
	State-of-the-Art in Java Runtime Monitoring
	Stateful Properties of Java Objects
	Current Monitoring Methods

	A Monitor in the Program
	A Simple Example
	Consequences for Traditional Monitoring

	Finding a Suitable Mapping
	Piggyback Monitoring on Java Objects
	Stateful Properties Revisited
	Syntactical vs. Semantic Properties

	Experiments
	Experiment Setup
	Runtime Overhead
	Memory Usage

	Monitoring as a Design Rule
	A Formal Definition
	Design for Monitoring in the Java API
	A Threat to Information Hiding?

	Conclusion
	References

	A Unified Approach for Static and RuntimeVerification: Framework and Applications
	Introduction
	Background
	Static Verification of Software
	Runtime Verification of Software

	A Proposed Framework for Integrated Static and Runtime Verification
	A Unified Specification Language for Static and Dynamic Verificaion
	Description of the Framework
	Additional Features

	An Illustrative Example
	Applications
	Electronic and Legal Contracts
	Transaction-Handling Systems

	Related Work
	Conclusion
	References

	Statistical Model Checking QoS Propertiesof Systems with SBIP
	Introduction
	Background on BIP
	SBIP: A Stochastic Extension for BIP
	SMC Approach and Implementation
	Statistical Model Checking
	The SBIP Tool

	Case Studies
	Accuracy of Clock Synchronization Protocol IEEE.1588
	Playout Buffer Underflow in MPEG2 Player

	Conclusion and Future Work
	References

	Monitoring Temporal Information Flow
	Introduction
	The Specification Language SecLTL
	System Model
	SecLTL: Syntax and Semantics
	Finite-Trace Semantics

	Monitoring SecLTL
	From SecLTL Formulas to Automata
	The Monitoring Algorithm
	Towards Stronger Security Guarantees

	Outlook and Conclusions
	References

	Dynamic Information-Flow Analysisfor Multi-threaded Applications
	Introduction
	Information-Flow Analysis of Multi-threaded Programs
	Static Analysis Techniques
	Dynamic Analysis Techniques

	Building Tools for Dynamic Analysis
	Dynamic Binary Instrumentation
	Hardware-Based Monitoring Techniques

	Extended Information-Flow Analysis
	The ``butterfly'' Approach
	A Window-Based Information Flow Analysis
	Iterative Information Flow Computation
	Experimental Results

	Conclusion
	References

	Bounded-Interference Sequentializationfor Testing Concurrent Programs
	Introduction
	Motivating Examples
	Preliminaries
	From Concurrent to Sequential Programs
	Transformation Scheme
	Checking Feasibility of Corresponding Concurrent Runs
	Soundness and Reproducibility

	Concurrency Bug Coverage
	Experiments
	Related Work
	References

	Runtime Verification of Biological Systems
	Introduction
	Beyond Runtime Verification with SMC
	Model and Properties
	A Genetic Oscillator
	Properties
	Properties of the Oscillator
	Frequency Domain Analysis

	UPPAAL-SMC
	Modeling and Checking in UPPAAL-SMC

	PLASMA
	Modeling and Checking in Plasma
	Rare Events

	Experiments
	Frequency Domain Analysis

	Conclusion
	References

	Behavioral Specification Based Runtime Monitorsfor OSGi Services
	Introduction
	Main Research Questions
	Contribution
	Overview

	Related Approaches
	From Behavioral Specifications to Monitors in System Development
	Formalizing Requirements
	Inferring Monitors from Requirements and Specifications
	Integration of Monitors into the Implementation
	Comparing Behavioral Specifications

	An Architecture for OSGi Bundles, Behavioral Descriptions and Monitors
	An Overview on OSGi
	Extending OSGi with Behavioral Descriptions
	Integration of Runtime Monitors
	Eclipse Integration of Behavioral Descriptions

	OSGi-Based Home Automation Services
	Conclusion
	References

	Modelling and Decentralised Runtime Controlof Self-stabilising Power Micro Grids
	Introduction
	Last Mile Power Micro Grids
	Elements of Power Micro Grids
	Modelling and Abstraction Choices
	Properties and Challenges

	Formal Modelling Challenges
	Modest

	Decentralised Runtime Control
	Centralised vs. Decentralised Control
	Current Approaches
	Probabilistic Alternatives

	Modelling Decentralised Controllers
	A Model Template for Power Micro Grids
	Control Strategy Models
	A Simulation Study

	Conclusion
	References

	Model-Based Testing and Model Inference
	Model-Based Testing and Model Inference
	Introduction
	Overview of the Session Papers
	References

	Algorithmic Improvements on Regular Inference of Software Models and Perspectivesfor Security Testing
	Introduction
	Dealing with Software Inputs
	I/O Behaviour
	L1: Dealing with Large Input Sets
	Parameterized Inputs

	Processing Counterexamples
	Perspectives Raised by Security Testing
	SPaCIoS Project
	Research Directions

	Conclusion
	References

	Test-Case Design by Feature Trees
	Introduction
	A Motivating Example
	Feature Trees for Testing
	Requirements and Design Choices
	Requirements.
	Design Choices.

	Syntax of Feature Trees for Testing
	Semantics

	SAT-Based Automated Analysis of FTT
	Propositional Formulas Encoding
	A SAT-Based Automated Test-Suite Generation
	An Algorithm Design and Early Implementation.
	Computational Complexity.
	Experimental Results.

	SAT-Based Correctness Checking of Test-Case Designs

	A Case Study: A Test-Case Design for OSEK-OS
	Tool Development
	Discussions and Related Work
	Conclusion and Future Research
	References

	Model-Based Static Code Analysis for MATLAB Models
	Introduction
	Related Work
	Static Analysis Techniques

	Preliminaries
	MATLAB Features
	SMT-LIB Formulas and Yices

	Verification Approach
	Experimental Results
	Conclusions
	References

	An Incremental Learning Algorithm for Extended Mealy Automata
	Introduction
	Motivating the Congruence Generator Approach
	Towards Incremental Congruence Generator Extension
	Incremental Learning Algorithms for Automata

	Mathematical Preliminaries and Notation
	String Rewriting Systems
	Incremental CGE Learning
	 Performance Results

	 Conclusions
	References

	Learning Techniques for Software Verification andValidation
	Learning Techniques for Software Verification and Validation
	Learning Stochastic Timed Automata from Sample Executions
	Introduction
	Contribution of the Paper
	Structure of the Paper

	Preliminaries
	Learning Stochastic Timed Automata
	The Inclusion Relation and the State Relation
	Testing Statistically the Similarity of States

	Model Identification in the Limit
	Tool and Proof of Concept
	Conclusion and Future Work
	References

	Learning Minimal Deterministic Automata from Inexperienced Teachers
	Introduction
	Learning from Inexperienced Teachers
	Learning without Membership Queries
	Naive Enumeration
	Counter-Example Guided Learning
	Computing Minimal Consistent DFAs

	Learning with Membership Queries
	An Improved Algorithm for Regular L1, L2
	Conclusion
	References

	Model Learning and Test Generation for Event-B Decomposition
	Introduction
	Preliminaries
	Cover Automata Based Learning and Test Generation for Event-B
	Model Learning for Event-B Decomposition
	Event-B Decomposition Styles
	Learning and Test Generation for Shared Events Decomposition

	Experiments
	Conclusions
	References

	Inferring Semantic Interfaces of Data Structures
	Introduction
	Modeling Data Structures
	Register Mealy Machines
	Register Mealy Machine Semantics

	Inferring RMM Models
	Inferring Residuals from Test Cases
	Hypothesis Construction
	Hypothesis Verification
	The L*RMM Algorithm

	Experimental Evaluation
	Conclusions and Future Work
	References

	Learning-Based Test Programmingfor Programmers
	Introduction
	Adaptation-Based Programming
	ABP-Based Testing

	Adapting Testing to Learning
	Adapting Learning to Testing
	Assessment of ABP-Based Software Testing
	Dealing with Non-stationarity
	Monte-Carlo Tree Search

	Adapting Testing to Learning, Revisited
	Adapting Test Programming to Programmers
	Conclusions
	References

	LearnLib Tutorial: From Finite Automata to RegisterInterface Programs
	LearnLib Tutorial: From Finite Automatato Register Interface Programs
	Motivation
	References

	Automated Learning Setupsin Automata Learning
	Introduction
	Active Automata Learning
	A Running Example
	Test Drivers and Mappers in Active Automata Learning
	Manual Construction of Test Drivers and Setups
	Constructing Learning Setups by Interface Analysis
	Constructing the Alphabet
	Interfacing with the Target System
	Managing Live Data Values
	Employing Semantic Analysis

	The Setup Interchange Format
	Usage in LearnLib
	Conclusion
	References

	RERS Grey-Box Challenge 2012
	The RERS Grey-Box Challenge 2012:Analysis of Event-Condition-Action Systems
	Motivation
	Characteristics of the Challenge
	Challenge Setup and Rules
	How to Proceed
	Relation to Other Challenges and Competitions
	References

	Author Index

