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Preface

Research domains for which an understanding of human behavior is a crucial
need (e.g., robotics, human-computer interaction, affective computing, and so-
cial signal processing) rely on advanced pattern recognition techniques to auto-
matically interpret complex behavioral patterns generated when humans interact
with machines or with each other. This is a challenging problem, where many
issues are still open, including the joint modeling of behavioral cues taking place
on different time scales, the inherent uncertainty of machine-detectable evidences
of human behavior, the mutual influence of people involved in interactions, the
presence of long-term dependencies in observations extracted from human be-
havior, and the important role of dynamics in human behavior understanding.
Implementing these methods on robotic platforms introduces further constraints
on processing resources, tracking over time, model building, and generalization.

The Third Workshop on Human Behavior Understanding (HBU), organized
as a satellite to IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2012), gathered researchers dealing with the problem of modeling
human behavior under its multiple facets (expression of emotions, display of rela-
tional attitudes, performance of individual or joint actions, imitation, etc.), with
particular attention to implications in robotics, including additional resource
and robustness constraints of robotic platforms, social aspects of human-robot
interaction, and developmental approaches to robotics.

The workshop featured three invited talks by François Brémond (INRIA,
France), Erol Şahin (METU, Turkey), and Oussama Khatib (Stanford Univer-
sity, USA).

François Brémond, in his talk entitled “Scene Understanding and Assisted
Living,” described scene understanding, which requires five levels of generic com-
puter vision functionality of detection, localization, tracking, recognition, and
understanding. Scene understanding systems go beyond the detection of visual
features such as corners, edges, and moving regions to extract information re-
lated to the physical world that is meaningful for human operators. The aim is
to achieve more robust, resilient, and adaptable computer vision functionalities
by endowing them with a cognitive faculty: the ability to learn, adapt, weigh
alternative solutions, and develop new strategies for analysis and interpretation.
Brémond also discussed how scene understanding can be applied to home care
monitoring.

In his talk on “Affordances and Concepts”, Erol Şahin reviewed Gibson’s
popular notion of affordance through its different, sometimes contradictory, in-
terpretations in fields ranging from human-computer interaction to autonomous
robotics, to develop a formalization of affordances for its use at different levels
of autonomous robot control. Using this formalization as a framework, he ex-
posed methods on how robots could automatically learn to perceive affordances
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in their environments, use learned affordance relations to ground symbolic plan-
ning mechanisms in the continuous sensory-motor experiences of the robot, and
link them with concepts represented by verbs and nouns to communicate with
humans. He concluded by pointing out future directions in this line of research,
briefly discussing social affordances observed in human-robot interactions.

In the field of robotics, the motivation to emulate human movement has been
driven by the desire to endow robots, humanoids in particular, with human-like
movement properties. In his talk entitled “Robots and the Human”, Oussama
Khatib discussed the connection between humans and robots in terms of de-
velopment of accurate models of the kinematics, dynamics, and actuation of
human musculoskeletal systems, building full-body human motion simulations,
performing motion reconstruction from captured data, as well as analysis and
characterization of human movement. These developments, which are proving
extremely valuable in human biomechanics, are providing new avenues for ex-
ploring human motion – with exciting prospects for novel clinical therapies,
athletic training, character animation, and human performance improvement.

This proceedings volume contains the papers presented at the workshop and
a summarizing paper. We received 31 submissions in total, and each paper was
peer-reviewed by at least two members of the technical program committee.

We would like to take the opportunity to thank our program committee
members and reviewers for their rigorous feedback, our authors and our keynote
speakers for their contributions. We thank the PAL project of INRIA, BAP
6531 project of Boğaziçi University, and the EUCogIII network for their financial
support.

October 2012 Albert Ali Salah
Javier Ruiz-del-Solar

Çetin Meriçli
Pierre-Yves Oudeyer
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Pierre-Yves Oudeyer

Sensing Human Behavior

Real-Time Exact Graph Matching with Application in Human Action
Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Oya Çeliktutan, Christian Wolf, Bülent Sankur, and Eric Lombardi

An Efficient Approach for Multi-view Human Action Recognition
Based on Bag-of-Key-Poses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Alexandros Andre Chaaraoui, Pau Climent-Pérez, and
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Abstract. Human behavior is complex, but structured along individual
and social lines. Robotic systems interacting with people in uncontrolled
environments need capabilities to correctly interpret, predict and respond
to human behaviors. This paper discusses the scientific, technological and
application challenges that arise from the mutual interaction of robotics
and computational human behavior understanding. We supply a short
survey of the area to provide a contextual framework and describe the
most recent research in this area.

1 Introduction

Personal robots are predicted to arrive in homes and everyday life in the coming
decades, and assist humans physically, socially, and/or cognitively. They are ex-
pected to become an integral part of the lives of people with physical or cognitive
disabilities, for example, allowing the elderly or the handicapped to maintain a
comfortable and autonomous life in their homes for a prolonged period of time.
Furthermore, with a drastic paradigm shift in the industrial robotics, robots are
also becoming closer to humans in the factories, where we observe a shift towards
robots that can be intuitively and dynamically re-programmed by workers, and
work jointly with them to achieve manufacturing and maintenance tasks.

Nevertheless, considering that the robots becoming so ubiquitous would result
in their operating in uncontrolled environments and interacting with non-expert
users, several challenging issues need to be addressed. One of these issues is
human behavior understanding: in order to act in a useful, relevant, and socially
acceptable manner, robots will need to understand the behavior of humans at
various levels of abstractions (ranging from identifying the current action of the

A.A. Salah et al. (Eds.): HBU 2012, LNCS 7559, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 A.A. Salah et al.

human to identifying goals in the discussion of two humans) and at various time
scales (ranging from milliseconds to minutes and days).

A large body of work exists in the field of computational human-behavior
understanding, and the International Workshop of Human Behavior Under-
standing, previously organized with a focus on pattern recognition and ambi-
ent intelligence, brings together scientific and technological responses to some
of the challenges in this field [56,57]. While some of the proposed methods can
be readily re-used for robots, novel scientific and technological challenges arise
when one considers achieving human behavior understanding in the context of
human-robot interaction:

– First, humans who interact with a social robot behave in ways that differ
significantly from natural human-human interaction, and there is an associ-
ated new repertoire of behaviors and contextual interpretations. Thus, it is
paramount to design techniques that understand human behavior specifically
in the context of human-robot interaction.

– Second, and in a related manner, interaction with an intelligent system (be
it a robot, or any artificial or ambient intelligence system) in the loop can
produce dynamical evolution of human behavior, where new semiotic con-
ventions can emerge [53]. New dynamic conventions (for example, through
linguistic alignment) can be negotiated between a particular robot and a par-
ticular human, and a corresponding dynamic update of human behavior
understanding is needed.

– Third, what makes robots specific as compared for example to classical intel-
ligent ambient systems is that they typically have a rich repertoire of motor
behaviors and actions. To be useful, relevant and socially acceptable, they
need to act properly. This implies that techniques for human behavior un-
derstanding need to provide internal representations that are compatible
and reusable by the robot’s action system.

A second key challenge is the capability of robots to adapt to and learn from hu-
mans. Each human user may typically have its own preferences and habits, which
a robot needs to infer. The interaction between learning and human behavior
understanding can be expressed in two complementary directions:

– Robots need to be capable of learning dynamically how to interpret, and thus
understand human multi-modal behavior. This includes for example learning
the meaning of new linguistic constructs used by a human [18], learning to
interpret the emotional state of particular users from para-linguistic or non-
verbal behavior [34,58,38], characterizing properties of the interaction [44] or
learning to guess the intention, and potentially the combinatorial structure
of goals [39] of a human based on its overt behavior [1].

– Robots also need to be capable of learning new tasks or refining existing
tasks through interaction with humans, for example using imitation learning
or learning by demonstration [59,9,4,42]. This heavily involves the capacity
for decoding linguistic and non-linguistic cues [34,58,38], feedback and guid-
ance provided by humans, as well as inferring reusable primitives in human
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behavior [39]. Thomaz and Breazeal [66] have for example shown that prior
studies of how humans use social cues to teach can be transferred into highly
useful mechanisms used by a robot to learn from humans. Such a study, re-
lated to the problem of how non-expert humans can teach new words to a
robot, is presented in this volume [18].

Given that human behavior understanding in general needs to be at least par-
tially learnt, and that learning new tasks from humans require human behavior
understanding, a long-term challenge for research is to study what mechanisms
can allow the joint developmental and potentially simultaneous learning of feed-
back/guidance/cueing models and new task models (see for example [35]).

At the same time, robotics offers stimulating opportunities for improving hu-
man behavior understanding, and especially to allow a deeper analysis of the
semantics and structure of human behavior. Indeed, it is now widely known that
the human action system mediates the understanding of other people’s actions,
in particular through the mirror neurons system [19]. Humans tend to interpret
the meaning and the structure of other’s behaviors in terms of their own ac-
tion repertoire, which acts as a strong helping prior for this complex inference
problem. Robots are also embodied and have an action repertoire, which can
be similarly used to decode and interpret human behavior. For example, in this
volume, Schillaci et al. show how generative action forward and inverse models
of previously learnt motor primitives can be used to recognize ambiguous human
movements, or to infer the target of a movement [61]. Mangin and Oudeyer show
how biases on action representations can not only allow to infer the underlying
combinatorial structure of complex movements demonstrated by humans, but
also can be used to reproduce them [39].

In the next sections, we deal with the major contact points of human behavior
understanding and robotics. Section 2 is a brief overview of systems for sensing
human behavior, including pervasive systems, action and activity recognition.
Section 3 discusses the social and affective aspects of human behavior from a
robotics standpoint. Section 4 focuses on human-robot interaction, and Section 5
describes recent issues in imitation and learning from demonstration. Before
concluding, we review a few relevant application areas briefly in Section 6 to
show the practical implications of this line of research.

2 Sensing Human Behavior

The first task of a robot interacting with humans in uncontrolled environments is
to sense the location of the interacting parties, as well as to recognize the relevant
actions and activities. Since a lot of information can be gained by analyzing the
context of interaction, multiple pattern recognition tasks are overlapped for this
challenge.

2.1 Pervasive Systems

Pervasive systems describe a paradigm in which computational elements en-
hance interaction and intelligence of environments and objects of interaction
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in a person’s daily life. While many sensors are used to collect data to guide
these systems, visual sensors provide perhaps the richest data over short peri-
ods [54]. François Brémond describes five levels of computer vision functionality
for understanding a scene: those of detection, localization, tracking, recogni-
tion and understanding. Especially for localization, vision based sensors provide
the highest accuracy for acceptable convenience levels. While recently popular-
ized RGB-D camera technologies provide fast and accurate body tracking, most
RGB-D cameras operate in limited ranges, and only under controlled illumina-
tion conditions. For mobile robots, the use of these cameras have proven to be
very useful, as face-to-face interaction with humans usually occurs over small
distances. The depth camera based approaches also seem to help with the high
computational demands of the traditional vision-based solutions.

Cameras installed in a smart environment are typically static, configured to
cover a maximal area of interest. It is possible to use multiple cameras to deal
with problems of occlusion and view angles that may not be adequate at any
given situation, but multi-camera systems require more complex algorithms to
integrate information coming from different cameras, and are subsequently more
difficult to deploy. In [14] a low-cost silhouette-based pose representation is ob-
tained from multiple cameras and fused for action recognition.

It is obvious that installing sensors on a robot is fundamentally different than
deploying the sensors on a smart environment. While the former provides a
certain flexibility, it is limited by resource constraints of the robot. A promising
approach to overcome some of these limits is the combination of sensors in a
smart environment with the sensors on the robot. In [23], a Bayesian framework
is described where a ceiling mounted camera is used for detection and tracking
of people in conjunction with a laser range finder located on a mobile robot.

2.2 Action and Activity Recognition

Understanding human action mostly boils down to finding good representations
of the sensed primitives. The chosen representation should be rich enough to dif-
ferentiate between the action classes targeted by the application, but often it is
not chosen to be much richer than that. The reason for this is purely pragmatic;
more powerful representations require correspondingly complex training proce-
dures, more training samples for learning, and longer computation time during
operation. Consequently, the human body, for instance, is often represented by
a graph structure made up of nodes representing landmark points on the body,
and edges that connect these nodes in a fixed topology. Refinement on such a
representation may be achieved by adding more landmarks (i.e. nodes) to the
body parts being modeled.

In approaches where interest points do not necessarily correspond to known
landmarks, space-time corners and similar ‘salient’ points are detected and used
for learning spatio-temporal representations of actions [33]. In the present vol-
ume, Çeliktutan et al. propose an approach to solve the point set matching
problem for establishing the correspondence between an action, represented by
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interest points, to a template [13]. In [14], silhouettes are used for action recog-
nition. The action template in this case is a bag of key poses representing the
action in a temporal sequence.

3 Social and Affective Signals

Action recognition literature mostly focuses on simple actions, performed by a
single actor [48]. A broad class of actions, however, are social in nature, and
require either detailed analysis of multiple actors performing in tandem, or the
distinction of very fine cues that can easily change the meaning of an action
semantically. For instance, it takes a very small cue, like the creasing of the eye
corners to change the meaning of a smile. Social signal processing arose from the
need of intelligent systems interacting with humans to interpret and reproduce
social signals, and to increase the sensitivity of the computer (or of the robot)
to the interacting person’s emotional and mental state [7,55]. Social signals are
communicative or informative signals or cues “that directly or indirectly pro-
vide information about ‘social facts’: social interactions, social emotions, social
attitudes, evaluations and stances, social relations, and social identities.” [47].

3.1 Multimodal Analysis of Social Signals

Humans convey social information in many different ways. Facial expressions,
posture, gait, body and hand gesture, speech, vocal prosody, and nonverbal cues
like turn-taking behavior can all contain information relevant for interactions.
Not all these signals are consciously or cognitively produced. In the present vol-
ume, Vincze et al. discuss problems that arise when people provide a certain
information in a vague or approximate way, as well as the case where detectable
cognitive qualities are associated with conveying information, like hesitation or
hastiness [68]. An important point we made in the Introduction section of this
paper is that semiotic conventions need to be established between a robot and a
human in communication. While vagueness can arise because of an information
gap, it can also be a device to leave open the goals designated in the communi-
cated message. What would, for instance, be the benefit of employing vagueness
when communicating with a robot? It can very well be to set up a situation
where the robot decides on the correct level of abstraction or a most plausible
resolution of the vague reference by examining other information available to
it. This is a flexibility people have in human-human communication, and would
eventually require in human-robot communication.

In natural interactions, humans also emit signals that have no real counterpart
for robots. Research into human behavior understanding creates methods of
analyzing these signals, which will open up new response patterns for robotic
systems. In [38], an algorithm is described to determine a laughter index from
visual input. This research is part of the EU-ICT FET Project ILHAIRE, which
is aimed at endowing machines with automated detection, analysis, and synthesis
of laughter. The authors use psychophysical descriptions of the laughter process
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and propose a set of features including shoulder and body movement energy
and periodicity. Obviously, a better understanding of the features that lead to
accurate detection of laughter will also help us build systems that can synthesize
realistic instances of laughter.

3.2 Perception of Affect

Emotions are important modifiers of human behavior, serving to enrich the re-
sponse palette, but also allowing faster and contextualized decisions to help the
human function better. Part of the importance of emotions also comes from the
fact that humans are quite adept at recognizing emotional displays in others, and
this forms the backbone of a social existence. In fact, this capability is so strong
that humans easily attribute affect even to technological artifacts, as the well
known Heider-Simmel study has demonstrated with simple moving geometric
shapes [22]. In [58], Hylozoic Soil, a responsive architectural geotextile environ-
ment, is used to induce affective responses in viewers. Basic emotions like anger,
sadness and happiness can be conveyed with simple movements of these dynamic
structures. The authors also establish that there are gender differences in the
perception of these affective movements [58]. These studies confirm that social
interaction between humans and robots cannot ignore the affective dimension.

Movement is rarely used for automatic affect analysis of humans. In face to
face communication, robots can observe the facial expressions of the interacting
humans, as well as analyze the voice for affective signals. These are the most
typically used modalities for affect analysis. In the present volume, Lim and
Okuno show that a robot can also use the gait of a person to determine affective
states [34]. In their approach, speed, intensity, irregularity, and extent features
are extracted from the gait and speech of persons to determine affective states
like happiness, sadness, anger, and fear. The advantage of using gait is that
the face may not be available to a robot at all times, and the movement and
resolution of the face may make emotion recognition difficult.

Ziemke and Lowe characterize emotion as (a) being closely connected to em-
bodied cognition, (b) grounded in homeostatic bodily regulation, and (c) a pow-
erful and useful organizational principle for modulation of behavioral and cogni-
tive mechanisms [70]. Their focus is on maintaining emotion as an integral part
of the internal environment of a robot, and as they admit, the role of emotion
in social interactions is not addressed in their work, but they do note that the
interplay of internal (i.e. individual) and external (i.e. social) aspects of emotion
is still not very well known [3]. Robotic platforms can be excellent experimental
tools for probing into these relatively unexplored areas.

4 Human-Robot Interaction

One of the long term ambitious goals of robotics research is to have robots ca-
pable of seamlessly integrating themselves in our daily environments. Therefore,
recognizing, interpreting, and reasoning about the human behavior is a critical
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skill for a robot that co-inhabits the human environments and interacts with
humans on a regular basis. Particularly difficult challenges in human behavior
understanding from the robotics point of view are the necessity to perform the
processing using the limited computational resources on board, and using the
sensors that can be mounted on a robotic platform.

4.1 Interacting with Robots

In general, the human-robot interaction (HRI) research can be divided into two
main categories:

– Human-centered HRI investigates issues like the design and usability of
proper interaction interfaces, robot platforms, and behaviors through exten-
sive user studies.

– Robot-centered HRI focuses on algorithms, engineering innovations, and
other computational approaches that would improve the overall performance
of the interaction.

Although there is no clear distinction, the majority of the research on syn-
thesizing behaviors, facial expressions and whole body gestures, and the devel-
opment of proper interaction media fall into the human-centered HRI branch,
especially from the validation point of view, while perceiving and interpreting
behaviors, recognizing speech, and interactive learning applications fall into the
robot-centered HRI branch.

A good example of the first approach is [28] in this volume, which reports
the use case development for an outdoor robotic tour guide. In this work, ab-
stractions of human behaviors appropriate for robot tour guides were developed.
These abstractions form the basis of implemented robotic behaviors, which are
then assessed in the real application scenario, where the robot meets visitors in
a fairly unconstrained manner.

4.2 Closing the Interaction Loop

In the present volume, Fischer and Saunder investigate how people’s initial ex-
pectations from an interaction, and their increasing experience and acquaintance
with the robot over prolonged interaction sessions affect the way people tend to
interact with robots [18]. Speech-based interaction has been heavily studied over
the past decade. Grounding spatial commands given using unrestricted natural
language for commanding a robot to navigate in the environment and manipulate
objects have been studied in [65,24,29].

Humans also use gaze and gestures heavily to narrow down the uncertainties
about the context when conversing verbally. Especially, forming joint attention
through modeling the gaze of a human can be very useful in human-robot collab-
oration scenarios or when a human teacher teaches tasks or concepts involving
the objects in the environment [69,63]. In [69], object saliency is used in con-
junction with head pose estimates to allow a humanoid robot to determine the
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visual focus of attention of the interacting human, while in [63] a fixed mapping
between head pose directions and gaze target directions was not assumed, and
models are investigated that perform a dynamic (temporal) mapping implicitly
accounting for varying body/shoulder orientations of a person over time, as well
as unsupervised adaptation.

Closing the interaction loop requires robots that behave closer to humans,
and have more exploratory behavior than currently allowed for. An important
concept related to the exploration capabilities of the robot is the notion of “Sym-
biotic Autonomy”. Accepting the fact that the robot has physical and cognitive
limitations, and assuming the robot is also aware of some of its limitations,
symbiotic autonomy advocates the benefits of engaging with the humans in the
environment in a symbiotic relationship so that the robot does tasks for people,
and asks people for help whenever its capabilities fall short of dealing with a
certain situation [50]. Human interaction with the objective of asking for help
raises new challenges like how and where to find humans who would likely pro-
vide help [51,52], and if there are more than one human present in the scene,
whom to approach, as well as how to approach. Especially for the latter case,
the ability to infer the intent of people as well as their predicted movement tra-
jectories can drastically improve the way the robot interacts with the humans,
and hence, the quality of the help it receives.

5 Imitation and Learning from Demonstration

Imitation is a process of paramount importance in both human-human and
human-robot interaction. It is used for diverse functions, ranging from inter-
action regulation and social bonding to learning new knowledge and new com-
petencies from others. In the recent years, imitation has been highly explored
in various robotics contexts: its role for natural, intuitive and usable human-
robot social interaction [46], robot learning of new tasks from demonstration
[6,4], and its origins and functions in the course of epigenesis in developmental
robotics [2,27,5]. Imitation learning in particular poses fundamental and chal-
lenging scientific problems [45], related to what, when and who to imitate, and
it may be achieved at various levels of abstractions. Lopes et al. [36] describe
three main levels of abstraction in imitation, which are respectively addressed
by three chapters in this book: Mimicking behavior and trajectory-level imita-
tion [44], imitation mediated by the action system and motor primitives [61],
and imitation of goals and intentions [39].

The first level of abstraction in imitation is mimicking, where imitation con-
sists of directly trying to reproduce the observed movements without an attempt
to infer their underlying structure or goals [36]. A large amount of methods
and approaches have been developed within this approach, and more particu-
larly in the context of imitation learning where many researchers have studied
how machine learning regression techniques could be used to reproduce smooth
and generalizing trajectories out of sets of noisy human demonstrations (e.g.
[6,11,20,12]). Besides robot learning of new skills by trajectory-level imitation, it
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is also highly useful that robots be able to detect when two humans, or a human
and a robot, are imitating each other [44]. Michelet et al. propose a combined
computer vision and machine learning approach, which targets automatic iden-
tification of imitative interaction among humans [44]. A useful feature of this
approach for easy deployment in the real-world is that the approach is capable
of analyzing fine aspects of movements without the need to identify and track
human skeletons.

The second level of abstraction in imitation leverages the mediation of the
action repertoire, and consists in first interpreting observed behavior in terms
of one’s own repertoire of motor primitives, which are then re-used to gener-
ate the imitation [36]. Such approaches have been gaining popularity in robot
learning recently, in particular because such an approach allows to reduce the
dimensionality of movement and behavior representations meaningfully, which in
turn often allows for better robustness and generalization [41,26]. A central ques-
tion within these approaches, both in biology and robotics, is to understand how
these motor primitives form initially. Some works have explored various learn-
ing techniques that allow to automatically infer and learn motion primitives
from observation of human behaviors, e.g. [60,32,31,40]. In the present volume,
Schillaci et al. study a complementary question [61]: once motor primitives have
been learnt - in this case with the help of an annotated database -, how can they
be used to recognize human actions and disambiguate potential targets? Using
such a motor primitive representation, in the form of paired forward and inverse
models, is highly useful, since it can allow direct reproduction of the observed
behavior.

The third level of abstraction in imitation is goal imitation [36]. Here, the
imitator tries to infer the intention, or the goal of the observed behavior, and
then tries to reproduce this goal, possibly with different means (for example with
a different motor policy). Mathematically, this amounts to learning the hidden
cost function that the observed behavior may try to maximize, and then using
this cost function to define a surrogate optimization/learning problem which the
imitator has to solve. From a theoretical point of view, these approaches have
been studied in two fields, optimal feedback control [49] and inverse reinforce-
ment learning (IRL) [1], respectively. In recent years, they have been applied
to imitation learning in robotics, where they have been shown to be powerful
for generalization and robust to environment change at the same time [1,67].
For example, Abbeel and Ng[1] showed how autonomous helicopters could learn
to achieve acrobatic flights better than professional human demonstrators using
this approach. Lopes et al. [37] showed how active learning techniques could
be used to increase the efficiency of IRL. In the present volume, Mangin and
Oudeyer explore a frontier of these approaches [39]: how can a robot learn the
combinatorial structure of the hidden goals underlying demonstrated behaviors?
Previous approaches assumed that observed behavior corresponds to a single
hidden cost function/goal. On the contrary, Mangin and Oudeyer consider the
case when the demonstrator has a repertoire of hidden goals and only produces
behaviors which concurrently target several goals. The proposed approach relies
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on establishing a bridge between inverse feedback control techniques and dic-
tionary learning techniques [25]. Like [61], [39] infers a motor representation of
observed behaviors of a demonstrator, which allows the learning system to both
recognize and reproduce behavior with adequate generalization.

6 Applications

In the future, we envision robots that not only assist humans in domestic en-
vironments, but also interact with them in public spaces and factories. These
robotic applications will require proper social interactions to be maintained be-
tween robots and humans. We will move from the current situation in which
robots carry out certain tasks without any interaction with humans (e.g. au-
tomotive factory) to situations in which humans and robots will co-work, and
subsequently robots becoming co-workers and co-inhabitants [21], carrying out
tasks of increasing complexity that require understanding the behavior of hu-
mans. Even the simple task of cooperatively carrying a table by a human and
a robot [64], requires the synchronization of the individual’s movements, which
can only be achieved if the other’s behavior is correctly analyzed in real-time
with the correct resolution and level of abstraction.

In this section, we give some application examples to make the requirements
more concrete.

6.1 Socially Assistive Robotics

One of the envisioned applications of robotics is assisting specific human popula-
tions, such as children, elderly people, and patients. These are tasks that require
specific expertise in relatively restricted domains, embodiment, and most impor-
tantly, a social aspect that makes robots preferable to automated systems that
are less suited to display and interpret social and affective signals. Socially as-
sistive robotics defines the robot’s goal to be the creation of “close and effective
interaction with a human user for the purpose of giving assistance and achieving
measurable progress in convalescence, rehabilitation, learning, etc.” [17]. Some
related applications are robots as exercise coaches, evaluating the moves of the
interacting humans [16], and guiding robots providing context-dependent infor-
mation to people [28].

In these applications human behavior understanding will be crucial for inter-
preting the human needs and requirements, but also for understanding the mood
and for taking actions to manage it appropriately. Understanding human moods
and needs requires having some basic functionality. One of them is understand-
ing the visual focus of attention of humans while interacting with robots. This
is addressed in this volume [63].

Applications in which robots interact with humans have increased largely
in the last years thanks to the development of the Microsoft Kinect sensor.
The sensor’s ability of obtain 3D-images at a low cost, and the availability of
libraries with functionalities such as human body segmentation, have boosted
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the development of HRI applications. Most of these applications are related with
entertainment, although they can be expanded to education. However, the use
of infrared lighting makes the sensor being surface dependent (e.g. on black
surfaces the reflection is very limited), and not appropriate to be used outdoors.
Therefore, complementary sensors need to be used in applications with those
constraints.

6.2 Playful Interactions

The work of Cynthia Breazeal and others has established that people interacting
with robots will treat the robot as a social entity [8,10]. Consequently, robots
have the potential to be much more than elaborate toys in children’s games.
In social games of children, interactions are not pre-determined, but emerge
through mutual interaction. The ideal game partner is thus one that adapts to
a game scenario, and one that can assume one of many different roles, each
as coherent as possible in the social and affective displays that belong to the
designated role. The contribution of human behavior understanding to this kind
of a scenario would be the detailed analysis of gaming roles to create the coherent
role models, as well as real-time observation of the playing partners to determine
which mode should be selected and put into action.

A less ambitious, but worthy goal is to use robots as mediators in playful
interactions. A very important research direction is for instance the work with
autistic children, who may shun social contact in the form provided by their
peers, but may come to like what a social robot has to offer. An example is the
work of Michaud and Théberge-Turmel, who used robust robotic toys in play ex-
periments with children to obtain promising results [43]. The AURORA project
is an important initiative in this area with the aim of to encouraging autistic
children “to become engaged in a variety of different interactions important to
human social behavior” [15]. Another good example of toy robots for interacting
with children is the Keepon robot, which is capable of conveying limited emotion
and attention, promoting social playful interaction [30].

The basic idea that underlies these applications is that play is a fundamental
activity in learning social interactions. While human behavior understanding has
been used in gaming scenarios in the design phase, to specify interaction scenar-
ios, real-time behavior analysis is only recently being integrated into games [62].

7 Conclusions

In this introductory paper of the 3rd International Workshop on Human Be-
havior Understanding, our primary aim was to articulate the points of contact
between robotics and human behavior understanding. It is clear that progress in
the latter will have direct bearing on the design and implementation of robots
that have social skills and interact with humans in more natural ways. The
proper approach to do this is not mere imitation of the human behavior, but
goes through a deeper understanding of the abstract processes leading to par-
ticular behavior and ways of interaction, so as to let the counterparts emerge in
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the interacting robots. Obviously, a lot of basic skills must be in place before
this can be achieved.

The second important point is what robotics has to offer to human behav-
ior understanding, especially in terms of new scientific questions it poses. Since
robots need to act in an embodied manner, it is essential that human-behavior
understanding capabilities provided to/learned by robots are adapted to allow
leveraging this understanding (e.g. the representations) to act appropriately.
Purely functional representations may not be sufficient, and robotics is an ex-
cellent testbed for this; if the correct abstraction is not achieved, transferring
behavior patterns to the robot will not be successful.

A final point is that the presence of the robots causes changes in the behavior
of humans. It is important to understand what kind of new social situations are
created by putting robots with social capabilities, and social roles, in a natural
environment. As the skill palette of robots grows, and they start reading and
responding to social and affective displays of humans, these mutual relationships
will be increasingly complex, and will require more thorough analysis.
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LNCS, vol. 7559, pp. 41–51. Springer, Heidelberg (2012)

24. Huang, A.S., Tellex, S., Bachrach, A., Kollar, T., Roy, D., Roy, N.: Natural lan-
guage command of an autonomous micro-air vehicle. In: Int. Conf. on Intelligent
Robots and Systems (IROS), Taipei, Taiwan (October 2010)

25. Jenatton, R., Mairal, J., Obozinski, G., Bach, F.: Proximal Methods for Hierarchi-
cal Sparse Coding. Journal of Machine Learning Research 12, 2297–2334 (2011),
http://hal.inria.fr/inria-00516723
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43. Michaud, F., Théberge-Turmel, C.: Mobile robotic toys and autism. Socially Intel-
ligent Agents, 125–132 (2002)

44. Michelet, S., Karp, K., Delaherche, E., Achard, C., Chetouani, M.: Automatic
Imitation Assessment in Interaction. In: Salah, A.A., Ruiz-del Solar, J., Meriçli,
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2 Université de Lyon, CNRS,
INSA-Lyon, LIRIS, UMR CNRS 5205, F-69621, France

Abstract. Graph matching is one of the principal methods to formulate the cor-
respondence between two set of points in computer vision and pattern recogni-
tion. However, most formulations are based on the minimization of a difficult
energy function which is known to be NP-hard. Traditional methods solve the
minimization problem approximately. In this paper, we show that an efficient so-
lution can be obtained by exactly solving an approximated problem instead of
approximately solving the original problem. We derive an exact minimization al-
gorithm and successfully apply it to action recognition in videos. In this context,
we take advantage of special properties of the time domain, in particular causal-
ity and the linear order of time, and propose a novel spatio-temporal graphical
structure.

Keywords: Spatio-temporal graph, Hyper-graph matching, Action recognition.

1 Introduction

In many applications involving the recognition of complex visual patterns, for instance
recognition of object classes or actions in video scenes, salient local features collected
on sparse set of points provide a compact yet rich representation, for classification or
matching. This approach can be robust, e.g. against occlusion and bypasses the tedious
segmentation task. The resulting representation is inherently structural and is therefore
difficult to use in a statistical learning framework without sacrificing all or a part of
the spatial or spatio-temporal relationships. In fact, the ensemble of local features is
often converted into a numerical representation, discarding all or most of the structural
information in the process. A typical example is the bag-of-words (BoW) formalism,
originally developed for image classification [1]. However, graphs (and hyper-graphs)
form a natural description of this type of data.

In the context of human action recognition, a graph can effectively represent the rela-
tionship between low-level features such as spatio-temporal interest points, descriptors,
human body parts etc. In [2], a number of interest points is structured into a graph per
frame. Distance between a scene frame-graph and a set of prototypes are fed to Hidden
Markov Models (HMMs) for classification. In [3], the relationship between different
entities, e.g. spatio-temporal descriptors and spin-images, is modeled by a graph em-
bedded into a common Euclidean space. In [4], the nodes correspond to the five body

A.A. Salah et al. (Eds.): HBU 2012, LNCS 7559, pp. 17–28, 2012.
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parts and the energy function is penalized with the constraints on the human body con-
figuration.

In this work, we concentrate on hyper-graph matching and point set matching, where
the nodes of the graph(s) encode both position and description of spatio-temporal in-
terest points, and the neighborhood relationship is derived from proximity informa-
tion. Matching corresponds to finding an action model point set in a (usually larger)
scene point set. Up to our knowledge, prior work on space-time graph matching can be
summed up by a few recent papers. In [5], matching is done via temporally ordered local
feature-graphs where each graph models spatial configuration of the features in a small
temporal segment. Graphs are built from adjacency relationships of space-time tubes
produced from oversegmenting the test video in [6], and from proximity by threshold-
ing distances in space and time in [7]. These methods resort to off-the-shelf spectral
methods or slightly modified versions of them. In contrast, our proposed method takes
advantage of some properties of the 3D space in which the data is embedded to devise
an exact algorithm.

There are alternative approaches taking into account space-time 3D geometry: In
[8], the interest points are divided into clusters where each cluster is modeled by its
relative spatial position as well as the distribution of the appearance and position of in-
terest points. In [9], the correlation of spatio-temporal (ST) patterns is measured and ST
correlograms are constructed. Pairwise spatio-temporal relations are introduced in [10],
based on a set of rules, and this information is transformed into 3D histograms. In [11],
interest points, optical flow and image segmentation are mixed, and classification is
done with multiple search trees. In [12], a parts-based model integrates spatio-temporal
configuration, appearance, and human-object interactions. Finally, in [13], a branch-
and-cut algorithm searches the best scoring subgraph over a learned spatio-temporal
graph for each action class.

The linear nature of the time dimension is frequently used to devise methods based
on sequence alignment. In [14], a chain graph model exploits a priori knowledge of the
nature and semantics of the relationship between different variables. More examples are
trajectory matching with Gabor filters [15], learning salient state transitions by HMMs
[16], and modeling the evaluation of silhouettes over time [17].

Our proposed algorithm is related to sequence alignment in that it exploits tempo-
ral information and its linear nature in a similar way. However, we do not perform
simple sequence alignment. The novelty of our approach is that we use a full-fledged
hyper-graph model with all its rich structural information stored in its nodes, embed-
ded in space-time, and in its hyper-edges built from proximity information. The derived
minimization algorithm is capable of dealing with classical energy functions including
unary, binary and ternary terms, which makes it possible to include scale invariant po-
tentials, as the formulations in [18,19,20] and others. Once the graph representation of
a given video sequence is obtained, action recognition problem boils down to search-
ing for the closest prototype graph in the graph-space. Overview of our approach is
illustrated in Figure 1.

Techniques for graph matching and for point set matching have been studied inten-
sively in pattern recognition. While the graph isomorphism problem can be calculated
in polynomial time, it is widely known that exact subgraph matching is NP-complete
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Fig. 1. Overview of the proposed algorithm for action recognition

[20], as is subgraph isomorphism [21]. In the context of object recognition, a method
which approximates the graph, which in turn enables computation of the exact solution
in polynomial time has been proposed in [22]: a k-tree is built randomly from the spatial
interest points on an object, which allows for the application of the classical junction
tree algorithm [23]. Spectral methods such as in [24] relax the binary assignment prob-
lem into a continuous one and show that the solution for the continuous problem is the
principal eigenvector of the constraints matrix. The solution of the original problem is
calculated by thresholding the solution of the continuous problem, which is an approx-
imation — the discrete optimum is not necessarily related to a continuous solution. In
[19], this is extended to hyper-graphs and the Eigenproblem is solved efficiently with
an iterative algorithm. In [25], a convex-concave programming approach is employed
on a least-squares problem of the permutation matrices. Several methods decompose
the original problem into sub problems which are solved with different optimization
tools like graph cuts [20,26]. In [27], a multi-label graph cuts minimizer is extended
to 2D problems by alternating between labels and nodes. In [28], a candidate graph
structure is created and the problem is formulated as a multiple coloring problem on a
layered structure. A solution for the resulting integer quadratic programming problem
is advanced in [29], the problem is extended to relationships of general order (> 3) and
solved with random walks. Finally, in a related paper dynamic programming and graph
algorithms [30] are described.

The contributions in this paper are two-fold:

– A theoretical result stating that for the data embedded in space-time, the exact
solution to the point set matching problem with hyper-graphs can be calculated
in complexity exponential on a small number, which becomes bounded when the
hyper-graph is structured using proximity relationships.

– A practical solution to the action recognition problem in videos applying the pro-
posed algorithm to graphs designed with a special structure. This allows calculat-
ing matches with computational complexity, which grows linearly in the number of
model nodes and linearly in the number of scene nodes.

The paper is organized as follows: Section 2 formulates the graph matching problem
and discusses related work on the problem. Section 3 discusses the special properties of
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the space in which our data are embedded. In Section 4, we propose a special structure
of our model graphs and derive an algorithm which further reduces the computational
complexity of the matching algorithm. Section 5 describes the experiments and Section
6 finally concludes.

2 Problem Formulation

In this paper, we formulate the problem as a particular case of the general correspon-
dence problem between two point sets. The objective is to assign points from the model
set to points in the scene set, such that some geometrical invariance is satisfied. We solve
the problem through a global energy minimization which takes into account a hyper-
graph1 constructed from the model point set. The M points of the model are organized
as a hyper-graph G = {V , E}, where V is the set of nodes (corresponding to the points)
and E is the set of edges. From now on we will abusively call hyper-graphs ”graphs”
and hyper-edges ”edges”. The edges E in our graph connect sets of three nodes, thus
triangles.

While our method requires the data in the model video to be structured into a graph,
this is not necessarily so for the data in the scene video. While structural information
on the scene data can be integrated easily into our formulation, which allows adding
structural terms into the minimization framework, and thus results in a classical graph-
matching problem. Our formulation is thus more general but can also deal with graph
matching.

Each point i of the two sets (model and scene) is also assigned a position pi =

[ p<x>
i p<y>

i p
〈t〉
i ]T and a feature vector fi describing the appearance of a local space-

time region around this point. When necessary, we will distinguish between model and
scene values by the superscripts 〈m〉 and 〈s〉: p〈m〉

i , f
〈m〉
i , p

〈s〉
i , f

〈s〉
i etc. Note that sym-

bols in superscripts enclosed in angle brackets 〈.〉 are not numerical indices, they are
mere symbols indicating a category.

Each node i of the model graph is assigned a discrete variable xi, i = 1..M , which
represents the mapping from the ith model node to some scene node, and can take values
from {1 . . . S}, where S is the number of scene nodes. The whole set of variables xi is
also abbreviated as x. A solution of the problem is given through the values of the xi,
where a value of xi = j is interpreted as model node i being assigned to scene node
j. To handle occlusions, an additional dummy value ε is admitted, which semantically
means that no assignment has been found for the given variable.

Each combination of assignments x evaluates to an energy value using an energy
functionE(x). In principle, the energy should be lower for assignments that correspond
to a realistic transformation from the model image to the scene image, and it should be
high otherwise. We search for the assignments that minimize this energy.

Using pairwise edges mostly restricts geometrical coherence constraints to distance
similarities, which are not invariant to scale changes. Higher order matching through
hyper-graphs has been proposed in the context of object recognition [24]. Typically,

1 A hyper-graph is a generalization of a graph, where a hyper-edge can connect any number of
vertices, typically more than two [31].
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hyper-edges connect 3 nodes, which allows to formulate geometrical constraints be-
tween pairs of triangles. In particular, geometrical similarity can be measured through
angles, which are scale invariant. Our proposed energy function is of the following
form:

E(x) = λ1

∑
i

U(xi) + λ2

∑
(i,j,k)∈E

D(xi, xj , xk) (1)

where U is a data attached term taking into account feature distances, D is the space-
time geometric distortion between two triangles and λ1 and λ2 are weighting param-
eters. For convenience, all dependencies on all values over which we do not optimize
have been omitted. U is defined as the Euclidean distance between the appearance fea-
tures of assigned points, taking into account a penalty WP for the dummy assignment:

U(xi) =

{
W p if xi = ε,

||fi〈m〉 − f
〈s〉
xi || else.

(2)

Since our data is embedded in space-time, angles are projections from 3D+t to 2D, thus
include a temporal component not related to scale changes induced by zooming. We
therefore split the geometry term D into a temporal distortion term Dt and a spatial
geometric distortion term Dg:

D(xi, xj , xk) = Dt(xi, xj , xk) + λ3D
g(xi, xj , xk) (3)

where the temporal distortion Dt is defined as truncated time differences over two pairs
of nodes of the triangle and geometric distortion Dg is defined over differences of
angles.

3 Space-Time Matching

In our work, the geometric data are embedded in space-time. We assume the following
commonly accepted properties of space-time to derive an efficient algorithm:

Hypothesis 1: Causality — Each point in the two sets (i.e., model and scene) lies in
a 3-dimensional space : (p〈x〉i , p

〈y〉
i , p

〈t〉
i ). The spatial and temporal dimensions should

not be treated in the same way. While objects (and humans) can undergo arbitrary geo-
metrical transformations like translation and rotation, which is subsumed by geometri-
cal matching invariance in our problem, human actions can normally not be reversed.

In a correct match, the temporal order of the points should be retained, which can be
formalized as follows

∀ i, j : p
〈m〉〈t〉
i ≤ p

〈m〉〈t〉
j ⇔ p〈s〉〈t〉xi

≤ p〈s〉〈t〉xj
(4)

Let us recall that the superscript 〈t〉 stands for the time dimension, and it is not an index.
Hypothesis 2: Temporal closeness — Another reasonable assumption is that the

extent of time warping between model and scene time axes must be limited. In other
words, two points which are close in time must be close in both the model set and
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the scene set. This property can be used to further decrease the search space during
inference. Since our graph is created from proximity information (we threshold space-
time distances between nodes to extract the hyper-edges), it can be formalized as

∀ i, j, k ∈ E : |p〈s〉〈t〉xi
− p〈s〉〈t〉xj

| < T t ∨ |p〈s〉〈t〉xj
− p〈s〉〈t〉xk

| < T t (5)

Hypothesis 3: Unicity of time instants — We assume that time instants cannot be
split or merged. In other words, all points of the same model frame should be matched
to points of the same scene frame.

∀i, j : (p〈m〉〈t〉
i = p

〈m〉〈t〉
j ) ⇔ (p

〈s〉〈t〉
xi = p

〈s〉〈t〉
xj ) ∧

(p
〈m〉〈t〉
i 
= p

〈m〉〈t〉
j ) ⇔ (p

〈s〉〈t〉
xi 
= p

〈s〉〈t〉
xj )

(6)

In [32], we showed that (under these hypotheses) the complexity of exactly minimizing
in Eq. (1) is exponential only on the maximum number of points per frame, which is
typically a small number, e.g., 1 − 4. However, in practice and for general graphs it
is still too high for practical usage. The next section will introduce a special structure
which further decreases complexity.

4 A Special Graphical Structure

Recall that classical methods use approximate solutions since exact minimization of
formulations such as in Eq. (1) is infeasible. In this work, we advocate an alternative
and perhaps better idea, which is to approximate the problem — the graphical structure
in this case — and to solve the new problem exactly. This is particular appealing in point
matching problems where the structure of the graph is less related to the description of
the object, but rather to the constraints of the matching process.

We propose to structure the model points as follows:

– We keep a single point in each model frame by choosing the most salient one, i.e.
the ones with the highest confidence of the interest point detector. However, no
restrictions are applied to the scene frames, which may contain an arbitrary number
of points.

– Each model point i is connected to its two immediate predecessors i− 1 and i− 2
as well as to its two immediate successors i+ 1 and i+ 2.

This creates a planar graph with triangular structure, as illustrated in Figure 2. The
general case of the energy function (1) can be simplified in this case. The neighborhood
system can be described in a very simple way using the index of the nodes of the graph,
similar to the dependency graph of a second order Markov chain:

E(x) =

M∑
i=1

U(xi) +

M∑
i=3

D(xi, xi−1, xi−2). (7)

The general recursive formula of the inference algorithm can be derived as

αi(xi−1, xi−2) = min
xi

[
U(xi) +D(xi, xi−1, xi−2) + αi+1(xi, xi−1)

]
(8)
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with the initialization

αM (xM−1, xM−2) = min
xM

[U(xM ) +D(xM , xM−1, xM−2)] . (9)

During the calculation of the trellis, the arguments of the minima in equation (8) are
stored in a table βi(xi−1, xi−2). Once the trellis completed, the optimal assignment can
be calculated through classical backtracking:

x̂i = βi(x(i − 1), x(i − 2)), (10)

starting from an initial search for x1 and x2:

(x̂1, x̂2) = arg min
x1,x2

[U(x1) + U(x2) + α3(x1, x2)]. (11)

The algorithm as given above is of complexity O(M ·S3): a trellis is calculated in a
M × S × S matrix, where each cell requires to iterate over S possible combinations.

Exploiting the different hypotheses on the spatio-temporal data introduced in section
2, the complexity can be decreased further:

Ad) Hypothesis 1 — taking causality constraints into account we can prune many
combinations from the trellis of the optimization algorithm. In particular, if we calculate
possibilities in the trellis given a certain assignment for a given variable xi, all values
for the predecessors xi−1 and xi−2 must be necessarily before xi, i.e. lower.

Ad) Hypothesis 2 — similar as above, given a certain assignment for a given vari-
able xi, we will allow a maximum number of T t possibilities for the values of the
successors xi−1, xi−2, which are required to be close.

Thus, the expression in equation (8) is only calculated for combinations satisfying
the following constraints:

|xi − xi−1| < T t ∧ |xi−1 − xi−2| < T t ∧
xi > xi−1 ∧ xi−1 > xi−2.

(12)

These pruning measures decreases the complexity to O(M ·S·T t2), where T t is a small
constant measured in the number of frame, so the complexity is linear on the num-
ber of points in the scene: O(M ·S). For example, let the number of model nodes and
scene nodes be M = 30 and S = 500, respectively, we achieve 2500 fold complexity
reduction when T t = 10.

5 Experimental Results

We tested the proposed method on the widely used public KTH dataset [34]. It includes
25 subjects performing 6 actions (walking, jogging, running, handwaving, handclap-
ping and boxing) recorded in four different scenarios including indoor/outdoor scenes
and different camera viewpoints. Spatio-temporal interest points extracted with the 3D
Harris detector [33] constitute the nodes of the proposed graphical structure. Appear-
ance features fi are the well known HoG/HoF extracted with the publicly available code
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(a) (b)

Fig. 2. (a) A special graphical structure for the model point set designed for very low compu-
tational complexity: a second order chain. However, no requirements are imposed on the scene
point set. (b) An example model graph.

Table 1. Confusion matrix without (a) and with (b) prototype selection. Respective accuracies:
86.3%, 90.6%. (B: Box, HC: Handclap, HW: Handwave, J: Jog, R: Run, W: Walk).

B HC HW J R W
B 97 3 0 0 0 0
HC 0 100 0 0 0 0
HW 3 16 81 0 0 0
J 0 0 0 71 29 0
R 0 0 0 25 75 0
W 0 0 0 3 3 94

B HC HW J R W
B 100 0 0 0 0 0
HC 0 100 0 0 0 0
HW 13 6 81 0 0 0
J 0 0 0 78 19 3
R 0 0 0 10 85 5
W 0 0 0 0 0 100

(a) (b)

Table 2. Comparison with existing methods using the same KTH dataset protocol. (B: Box, HC:
Handclap, HW: Handwave, J: Jog, R: Run, W: Walk).

Method B HC HW J R W Tot.

Laptev et al. [33] 97 95 91 89 80 99 91.8
Schuldt et al. [34] 98 60 74 60 55 84 71.8
Li et al. [35] 97 94 86 100 83 97 92.8
Niebles et al. [36] 99 97 100 78 80 94 91.3
Our method 100 100 81 78 85 100 90.6

in [33]. As mentioned in section 4, we choose a single point per model frame based on
the confidence score of the detector. All points are kept for testing videos.

The parameters are fixed as follows. The penalty parameter WP should theoretically
be higher than the average local energy of correctly assigned triangles and lower than
the average local energy of incorrectly assigned triangles. We estimate it by sampling
energies (without penalty) of pairs of training sequences in two settings: intra-class and
inter-class, resulting in two histograms of local energies. We set WP = 4 as the point
of minimal Bayes error. The weighting parameters are optimized over the validation
set: λ1 = 0.6, λ2 = 0.2, λ3 = 5, T t = 10, and W t = 20.
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First, we build up a model dictionary using leave-one-subject-out (LOSO) strategy.
We generate several model graphs by partitioning the sequences into subsequences each
containing between 20 to 30 number of frames with salient interest points. This results
in approximately 2200 model graphs in total. Action classes on the unseen subjects are
recognized with a nearest neighbor (NN) classifier where the distance is defined as the
matching energy (1). The average recognition performance of the proposed scheme is
found to be 86.3%. The main cause of this modest performance is the poor discrimina-
tion between the jogging and running classes (see Table 1a). The algorithm also suffers
from handwaving, while significantly successful in boxing, handclapping and walking.
We conjecture that this issue can be handled by a prototype selection algorithm.

Prototype selection — In prototype-based approaches, prototype selection plays
a key role in recognition performance. Intra-variation can be large among action cate-
gories; some categories include different numbers of views or different categories can
be similar, thus misleading, in the graph-space constructed. We balanced and optimized
the dictionary with Sequential Floating Backward Search (SFBS), which removes ir-
relevant model graphs from the training set. SFBS has been successfully used as a su-
pervised feature selection method in many previous studies [37]. Briefly, we start with
a full dictionary and proceed to remove conditionally the least significant models from
the set, one at a time, while checking the performance variations. Deletions which im-
prove the performance are made permanent in this greedy search. After a number of
removal steps, we reintroduce one or more of the removed ones provided they improve
the performance. At each step, performance is evaluated on a validation set. We use
the same data partition protocol (8/8/9) as proposed in [34]. We select 44 models as
our best subset of model graphs, which increased test performance to 90.6%. As ex-
pected, the jogging and running sequences benefit the most from dictionary learning
(see Table 1b).

Sample matched model and scene sequences are illustrated in Figure 3. While the
first action (handwaving) is successfully recognized, the second one (running) gives
an example of misclassification. Table 2 proves that our method has a comparable per-
formance with state-of-the-art methods. We want to point out that many results have
been published on the KTH database, but the protocols are not comparable for most of
them, see the review in [38]. In the figure, we chose results obtained with the same data
partition protocol [34].

The algorithm has been implemented in Matlab. Matching each model graph is done
simultaneously with 0.02 seconds per frame, i.e. for an average scene of 30 seconds
(S = 750) recognition takes 13.8 seconds on a CPU with 3.33GHz and 4GB RAM.

A real-time GPU implementation– A first preliminary GPU implementation allows
real-time performance on standard medium end GPUs, e.g. a Nvidia GeForce GTS450.
Table 3 compares run times of the CPU implementation in Matlab/C and the GPU
implementation running on different GPUs with different characteristics, especially the
number of calculation units. The run times are given for matching a single model graph
with 30 nodes against scene blocks of different lengths. If the scene video is cut into
smaller blocks of 60 frames, which is necessary for continuous video processing, real
time performance can be achieved even on the low end GPU model. With these smaller
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Fig. 3. Examples for matched sequences: Upper match results in correct recognition, while the
lower match is misclassified

Table 3. Running times in milliseconds for two different GPUs and for 4 different scene block
sizes. The last column on the right gives times per frame for matching the whole set of 44 model
graphs.

Implementation Nodes Frames Time (ms) Time/fr (ms) Time/fr (ms)
— — A single model — — — All 44 models —

CPU: Intel Core 2 Duo, 754 723 13800 19.09 840
E8600 @ 3.33Ghz,
Matlab/C(mex)

Nvidia GeForce GTS450, 754 723 748 1.03 45
192 cuda cores, 60 55 4 0.07 3 (real time)
128 bit memory interface

Nvidia GeForce GTX560, 754 723 405 0.56 25 (real time)
336 cuda cores, 60 55 4 0.07 3 (real time)
256 bit memory interface

chunks of scene data, matching all 44 graph models to a block of 60 frames (roughly 2
seconds of video) takes roughly 3ms regardless of the GPU model.

The processing time of 3ms/fr is very much lower than the limit for real time process-
ing, which is 40ms for video acquired at 25fps. Additional processing will be required
in order to treat overlapping blocks, which increases running time to 6ms/fr. The times
given above also do not include interest point detection and feature extraction, but these
are negligible compared to the matching requirements and can also be calculated on a
GPU.

6 Conclusions and Future Work

In this paper we showed that — when the data is embedded in space-time — the ex-
act solution to the point set matching problem with hyper-graphs can be calculated in
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complexity exponential on a small number, which is bounded when the hyper-graph is
structured with proximity information. As a second contribution we presented a special
graphical structure which allows to perform exact matching with very low complexity,
linear in the number of the model nodes and the number of scene nodes. The method
has been tested on the KTH dataset where it shows competing performance with very
low runtime.

Our current work concentrates on extension of graphical structure to more than one
interest point per frame. This idea is formulated through ”meta” graph or ”frame” graph
matching in which each node in the graph corresponds to a frame of the video and each
frame is characterized by spatio-temporal interest points and triangles. Following this,
we will use more challenging videos.
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Abstract. This paper presents a novel multi-view human action recog-
nition approach based on a bag-of-key-poses. In the case of multi-view
scenarios, it is especially difficult to perform accurate action recogni-
tion that still runs at an admissible recognition speed. The presented
method aims to fill this gap by combining a silhouette-based pose repre-
sentation with a simple, yet effective multi-view learning approach based
on Model Fusion. Action classification is performed through efficient se-
quence matching and by the comparison of successive key poses which
are evaluated on both feature similarity and match relevance. Experi-
mentation on the MuHAVi dataset shows that the method outperforms
currently available recognition rates and is exceptionally robust to actor-
variance. Temporal evaluation confirms the method’s suitability for real-
time recognition.

Keywords: human action recognition, multi-view action recognition,
key pose, bag-of-key-poses, MuHAVi dataset.

1 Introduction

In human action recognition based on vision techniques, one of the first ques-
tions to address is if a single- or a multi-view based approach should be chosen.
Some application scenarios (e.g. interactive robots) or field of view (FOV) re-
strictions (e.g. in automotive systems) can limit the number of available camera
views to only one. Nevertheless, due to the reduction of costs and the increase
of popularity of outdoor and indoor cameras, there are commonly several cam-
eras installed covering the same FOV. Especially in human action recognition,
one camera can be insufficient due to partial occlusions (objects like furniture
could be in the way, but also other persons) and ambiguous or unfavorable view-
ing angles. While great effort has been made in the last ten years to improve
single-view human action recognition in order to achieve high recognition rates
and satisfying recognition speeds [1,2], there are still few successful multi-view
methods [3]. The main reasons for this situation are: 1) the additional increase

A.A. Salah et al. (Eds.): HBU 2012, LNCS 7559, pp. 29–40, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



30 A.A. Chaaraoui, P. Climent-Pérez, and F. Flórez-Revuelta

of difficulty in learning from multiple views, because the combination of multi-
view data leads to a greater data variance and complex learning models; and
2) the resulting decrease of recognition speed, as at least two views need to be
processed and analysed (or chosen from).

In this paper, we present a multi-view human action recognition method which
targets the two aforementioned difficulties. With a simple silhouette-based pose
representation, an efficient combination of multiple views is achieved by a learn-
ing approach based on Model Fusion using a bag-of-key-poses, similar to the
bag-of-words paradigm. This leads us to a very effective method that outper-
forms current state-of-the-art recognition rates and still maintains its real-time
suitability. At the same time, no restrictions are imposed about the points of
view (POV), besides of training-testing coincidence.

The remainder of this paper is organized as follows: Section 2 summarizes
recent works on human action recognition, emphasising the different ways of
combining data from multiple views. Section 3 details the chosen pose represen-
tation which is used in section 4 as input for the learning process. In section 5,
action recognition through sequence matching is detailed. The obtained results
of recognition accuracy and speed are presented in section 6. Section 7 presents
some conclusions and discussion.

2 Related Work

Regarding the type of input features used for classification in human action
recognition, we can divide between global and local approaches. The former takes
into account the whole image or a specific region of interest (ROI), normally
defined by motion’s location. In this sense, [4] presented an encoding of tempo-
ral evolution and spatial location of motion over a sequence of frames (Motion
History- and Energy-Images). This has been extended by [5] to a 3D Motion His-
tory Volume in order to obtain a free-viewpoint representation. A similar goal
is pursued in [6], where the temporal dimension is considered explicitly build-
ing space-time volumes based on a sequence of binary silhouettes. Space-time
saliency and orientation features are used for action recognition, detection and
clustering. In local or sparse representations, research interest lies in obtaining
and encoding a set of points of spatial and temporal interest. Consequently,
several works extended traditional salient point detectors to 3D in order to cap-
ture motion clues [7,8,9]. A different proposal is given at [10], where oriented
rectangular patches combined with a histogram-based approach and Dynamic
Time Warping (DTW) showed great effectiveness. For greater detail about the
state-of-the-art of human action recognition we refer to [1,11].

More specifically, in multi-view scenarios, different levels of combination of
visual data obtained from multiple views can be found. At the uppermost stage,
information fusion is applied at decision-level. In other words, single-view hu-
man action recognition methods are applied individually for each view, and in
the final recognition phase the test video sequence is matched with the best-view.
Examples are found in [12,13,14], where the best view is chosen based on classifi-
cation outputs as lowest distance, highest score/probability of feature matching,
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number of detected features, majority voting, etc; or on criteria depending on
the input data like the view with the biggest ROI or the best retrieved silhouette.
Naturally, this type of multi-view action recognition is the most straightforward
and simple option, and its great advantage is the ease of transition from single- to
multi-view. Nevertheless, its major difficulty is the definition of an appropriate
decision rule, as this strongly depends on the application scenario and the nature
of the actions to recognize. Furthermore, when dealing with a greater number of
views, parallel execution of single-view action recognition methods would require
a distributed approach in order to maintain an acceptable recognition speed.

At the underneath level, the so-called Model Fusion aims to consider multiple
views in the model learning phase. This can be done either implicitly, feeding the
classifier with images ignoring their viewing angle [13], or explicitly, adapting the
learning process to multiple views [15]. This approach can have clear performance
advantages over the former, since a single learning process enables multi-view
recognition. The main difficulty is to successfully change the learning scheme.
Differences can be found whether or not possible POV are restricted and if a 2D
or 3D model is chosen.

Another common approach is to inherently learn features proceeding from
multiple views by applying Feature Fusion. The combination of multiple features
in order to be considered as a single complex feature can be achieved, for instance,
by concatenating [13] or averaging [12] the single-view features. Similarly to the
information fusion applied at decision-level, combination of this technique with
single-view action recognition methods is relatively effortless. Nonetheless, the
complexity of classification may increase when adding further views.

Finally, in [16,17], Data Fusion is applied, since binary silhouettes obtained
from multiple views are considered as 3D data before applying any feature ex-
traction. The appeal of this level of information fusion lies in avoiding multiple
information loss when generating features from raw data. However, it requires
observations which can be fused and compatible feature generations.

3 Silhouette-Based Pose Representation

As introduced in section 1, our method uses a silhouette-based pose representa-
tion as input feature. Specifically, the contour points P = {p1, p2, ..., pn} of the
silhouettes (extracted with a border following algorithm [18]) are used, as these
preserve the spatial information but ignore the redundant interior points. Ad-
vantages of contour-based features lie in resistance to small viewpoint variations
or lighting changes [19], and in the fact that morphological pre-processing steps
are not needed. Concretely, we use the work by Dedeoğlu et al. presented in [20]
and described shortly as follows:

1. Defining pi = (xi, yi), the center of mass Cm = (xc, yc) is obtained as:

xc =

∑n
i=1 xi

n
, yc =

∑n
i=1 yi
n

. (1)
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2. A distance signal DS = {d1, d2, ..., dn} is generated, whose elements are
defined as the Euclidean distance between each point and the center of mass:

di = ‖Cm − pi‖, ∀i ∈ [1...n] . (2)

3. Defining a constant size L of the distance signal and normalising its values
to unit sum, scale-invariance is achieved:

D̂S[i] = DS
[⌈
i ∗ n

L

⌉]
, ∀i ∈ [1...L] , (3)

D̄S[i] =
D̂S[i]∑L
i=1 D̂S[i]

, ∀i ∈ [1...L] . (4)

As further detailed in section 6, this feature successfully encodes spatial infor-
mation and its generation presents a very low computational cost.

4 Model Fusion of Multiple Views

Once all the video frames are processed to their silhouette-based pose represen-
tation, these samples are reduced to a representative subset of key poses, the
bag-of-key-poses, which represents the most characteristic poses in time. The
motivation behind using key poses is to distinguish one action from another
based on a few individual poses, achieving this way a significant decrease of the
problem scale by omitting redundant data.

4.1 Learning a Bag-of-Key-Poses

Figure 1 shows an overview of the learning process. Let us suppose there are M
available view points and R action classes to learn. Considering a single action a,
all the pose representations are reduced toK key poses per-view. This means that
the pose representations of each view are considered separately so as to simplify
the key pose generation process. Key poses are obtained by K-means clustering
with Euclidean distance. Taking the cluster centers as the representatives of each
group of the training data, K key poses are generated. This process is repeated
for each action class ending up with a bag-of-key-poses of R×K×M key poses.

With this definition, the bag-of-key-poses is made up of the most characteristic
poses of multiple views. However, some key poses could be more discriminative
than others if they can be only found in a specific action. On the other hand,
key poses that represent very characteristic, but also very common poses (e.g.
standing still) could provide a poor discriminative value as they are present in a
wide variety of actions. For this reason, all available pose representations from
all views and action classes are assigned to their nearest neighbor key pose of
the bag-of-key-poses (based on the Euclidean distance between their features),
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and the ratio of within class matches is computed to be used later as the weight
w of each key pose:

w =

{
matches

assignments if assignments > 0 ,

0 otherwise .
(5)

Fig. 1. Overview of the generation process of the bag-of-key-poses

4.2 Learning Sequences of Key Poses

So far, no temporal aspects have been taken into account, and frame-by-frame
recognition could be handled without considering any particular motion order.
Nevertheless, as video sequences of action performances are used for training,
valuable information about the temporal evolution of silhouettes is available.
Similarly, in an on-line recognition scenario, silhouettes would be acquired in
the particular order of the subject’s performance.

Consequently, the long-term temporal evolution of key poses can be modelled
by finding, for all available training sequences, the nearest neighbor key pose kp
of each video frame’s pose representation. The corresponding successive nearest
neighbor key poses compose a simplified sequence of known key poses and their
temporal evolution: S = {kp1, kp2, ..., kpt}. In this step, not only the temporal
order of appearance of key poses is modelled, but the training data is also shifted
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to the shared and defined domain of the bag-of-key-poses, what leads to noise
and outlier filtering.

5 Action Sequence Recognition

At the recognition stage, the same procedure is initially performed: 1) the frames
of the test video sequence are processed to their pose representation; and 2)
the corresponding sequence of key poses is built by obtaining the successive
nearest neighbor key poses. At this point, the recognition problem can be solved
with a sequence matching algorithm. For this purpose, DTW has been chosen
because it shows proficiency in temporal alignment of sequences that share the
same temporal order, but could present inconsistent lengths, accelerations and
decelerations. This is exactly our case, since action performances among humans
of different age or condition can vary in speed, and the involved parts can present
different motion paces.

Given two sequences of key poses Strain = {kp1, kp2, ..., kpt} and Stest = {kp′1,
kp′2, ..., kp

′
u} we compute the DTW distance dDTW (Strain, Stest) as:

dDTW (Strain, Stest) = dtw (t, u) , (6)

dtw (i, j) = min

⎧⎨
⎩

dtw (i− 1, j) ,
dtw (i, j − 1) ,
dtw (i− 1, j − 1)

⎫⎬
⎭+ d(kpi, kp

′
j) , (7)

where d(kpi, kp
′
j) is the distance between two key poses whose weights are respec-

tively wi and w′
j . This distance takes into account the distance of the features

and the relevance of the specific match of key poses. In short, priority is given to
matches between very discriminative key poses: if their distance is low, it should
be decreased; if it is high, it should be increased. The distance is obtained as
follows:

1. Let average distance be the average Euclidean distance between features
obtained at the training stage. The signed deviation of the distance between
the key pose features is defined as:

dev(i, j) = |kpi − kp′j | − average distance . (8)

2. The relevance rel(i, j) of the match of key poses is obtained by correlating
the deviation of the feature distance with the weights of the key poses. In
this way, feature distances close to average are considered as irrelevant:

rel(i, j) = |dev(i, j) ∗ wi ∗ w′
j | . (9)

3. This relevance is added to the feature distance in order to obtain the key
pose distance:

d(kpi, kp
′
j) = |kpi − kp′j|+ v rel(i, j) , (10)

where the value of v is decided based upon the desired behavior, which is
summarized in the following table.
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Table 1. Value of v based on the pairing of key poses and the signed deviation.
Key poses are understood as ambiguous when their weights are under 10%, and as
discriminative when they are over 90%. (These values have been chosen empirically.)

Signed deviation Pairing v
dev(i, j) < 0 both discriminative −1
dev(i, j) > 0 both discriminative +1

any both ambiguous −1
any a discriminative and an ambiguous +1

In discriminative pairings, i.e. key poses with high weights, matches are very
significant, as these are the key poses that uniquely distinguish one action from
another. Therefore, their relevance will decrease the key pose distance if the
signed deviation is below zero, or increase it if it is above zero. On the other
hand, when both key poses are ambiguous, i.e. they have low weights, these
pairings should not be considered as important as the rest. That is why a negative
relevance is used so as to reduce the influence of their distance. Lastly, a pairing
of a discriminative key pose and an ambiguous one will be unfavored, since both
should be able to find matches with similar weights. In the remaining cases of
pairings which are not shown in Table 1, the same value as for both discriminative
pairings is used.

In conclusion, this weight tuning scheme allows us to influence the behavior
of the sequence matching algorithm by favoring those matches from which we
know that they are important, and disfavoring those which are not.

Finally, evaluating the DTW distance between the test sequence and the pre-
viously learned training sequences, the nearest neighbor sequence of key poses
is found for each view, and the label of the closest match supplies the final re-
sult. Hence, the best matching view is used and single-view action recognition
is supported if necessary.

6 Experimentation

In order to analyse the performance of the proposed multi-view action recogni-
tion method, the MuHAVi [21] dataset has been chosen. This dataset includes
multi-view images of a resolution of 720x576 px in complex background and
lighting conditions. Specifically, the MuHAVi-MAS (Manually Annotated Sil-
houettes) is used as it provides silhouettes for two different views (front-side and
45◦ angle). Two actors were recorded performing 14, or 8 actions in its simplified
version. The authors of this dataset introduced two additional tests so as to ver-
ify the actor- and view-invariance of the method. These tests give further insight
of the method’s behavior when training and testing conditions differ. Only the
actor-invariance test has been applied because the introduced view-invariance
test does not support multi-view learning.

Furthermore, not only the achieved results are compared with those of similar
state-of-the-art methods, but also a different type of data fusion from multiple
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views has been developed with the purpose of verifying the chosen Model Fusion
approach. In this sense, Feature Fusion based on concatenation of features as
proposed in [13] is used to obtain a multi-view pose representation. Simplifying
the proposed method to only one view, made up of multi-view pose representa-
tions, the algorithm is used as before. Lastly, results without any type of data
fusion are obtained. In this case, the system is fed with video sequences ignoring
from which view they come from, and at testing each view is considered as an
independent test sequence.

The constant parameters of the presented method L, the feature size, and K,
the number of key poses per action class (and per view in the case of Model
Fusion), are detailed for the best results achieved.

6.1 Leave-one-sequence-out Cross Validation

In leave-one-sequence-out cross validation, one fold per sequence is executed,
i.e. all but one sequence are used for training and the remaining one is used
for testing. This procedure is repeated for each possible test sequence, and the
accuracy scores are averaged. Figure 2 shows the obtained confusion matrix for
MuHAVi-14 in which it can be seen that only 4 sequences are misclassified,
achieving a final recognition rate of 94.1%. Furthermore, the matrix shows that
errors are mostly made between very similar actions as StandupLeft and Stand-
upRight. On MuHAVi-8 (see figure 3) only one sequence is misclassified and a
final recognition rate of 98.5% is reached.

Fig. 2. Confusion matrix of the leave-one-sequence-out cross validation on the
MuHAVi-14 dataset

Table 2 shows the results that have been achieved with the Feature Fusion
approach or without considering any multi-view recognition. It can be seen that
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Fig. 3. Confusion matrix of the leave-one-sequence-out cross validation on the
MuHAVi-8 dataset

Model Fusion clearly outperforms these methods, and that a significant improve-
ment is obtained when multiple views are learned explicitly at the model level.
Moreover, in comparison with the baseline and the latest and highest recognition
rates achieved by other state-of-the-art methods, our approach presents, to the
best of our knowledge, the best result so far on the MuHAVi-14 dataset.

Table 2. Comparison of our results with similar state-of-the-art approaches on the
MuHAVi dataset (all use leave-one-sequence-out cross validation)

Approach MuHAVi-14 MuHAVi-8
Singh et al. [21] (baseline) 82.4% 97.8%
Cheema et al. [22] 86.0% 95.6%
Mart́ınez-Contreras et al.[23] - 98.4%
Eweiwi et al. [24] 91.9% 98.5%

Without Fusion (L = 600, K = 120) 85.3% (L = 350, K = 60) 95.6%
Feature Fusion (L = 200, K = 140) 92.6% (L = 300, K = 100) 97.1%
Model Fusion (L = 450, K = 60) 94.1% (L = 250, K = 75) 98.5%

6.2 Novel Actor Test

In this section, actor-invariance is tested. For this purpose, all the sequences of
one actor are used for training, whereas the sequences of the second actor are
used for testing. This test is executed twice, interchanging the training and the
testing groups and averaging the accuracy scores. Table 3 shows the results of
the Novel Actor test. Again, Model Fusion achieves significantly better results
than the other methods. Interestingly, Feature Fusion performs worse than the
single-view recognition. This can be attributed to the increased actor-variance
that results of using the multi-view pose representation. These results outperform
the currently available recognition rates by 8.9% and 10.3% respectively.

The presented method performs specially well in this test, because of the per-
formed shift from sequences of pose representations to sequences of key poses.
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Table 3. Comparison of results of the MuHAVi Novel Actor test

Approach MuHAVi-14 MuHAVi-8
Singh et al. [21] (baseline) 61.8% 76.4%
Cheema et al. [22] 73.5% 83.1%
Eweiwi et al. [24] 77.9% 85.3%

Without Fusion (L = 200, K = 80) 81.6% (L = 300, K = 60) 92.6%
Feature Fusion (L = 200, K = 100) 80.9% (L = 200, K = 100) 91.2%
Model Fusion (L = 450, K = 60) 86.8% (L = 250, K = 75) 95.6%

This moves the test data domain to our domain of key poses and constitutes an
essential step in the process, as noise and possible dissimilarities between actors
are filtered.

6.3 Temporal Evaluation

As stated beforehand, our work has been driven by the ambition of creating a
multi-view action recognition method which could deal with both the increased
complexity of multi-view learning, and the necessity of an adequate recognition
speed in order to perform real-time action recognition. This guided the deci-
sions that have been taken about the design of the multi-view action recognition
method whose temporal performance is tested in this section.

The temporal evaluation of the presented method has been performed on a
standard PC with an Intel Core 2 Duo CPU at 3 GHz with Windows 7 64-bit.
The method has been implemented using the OpenCV library [25] and the .NET
Framework. All the necessary processing stages have been measured taking the
binary silhouette as input and going trough contour extraction, feature extrac-
tion and multi-view learning by Model Fusion or classification by means of se-
quence matching. No specific hardware optimizations have been performed.

Running the MuHAVi-14 benchmark, each sequence is processed in 1.14 s
achieving a recognition speed of 51 FPS. As MuHAVi-8 presents fewer classes,
the recognition speed rises to 66 FPS, i.e. 0.88 s per sequence.

It is worth mentioning that the presented approach also proofs to be efficient
at the training stage. An average training speed of 39 FPS and 50 FPS has been
measured on MuHAVi-14 and MuHAVi-8 respectively.

7 Conclusion and Discussion

In this paper, a multi-view action recognition method based on a bag-of-key-
poses has been presented. A simple contour-based feature allows us to obtain a
very efficient pose representation whose most characteristic instances for each
action class and view are learned by means of the bag-of-key-poses. Sequence
matching finally leads to consider the temporal evolution between key poses. The
method obtains highly stable and accurate results and establishes new reference
recognition rates for the MuHAVi dataset. Furthermore, real-time suitability is
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shown in the temporal evaluation because the method performs above video
frequency.

Future work includes experimentation on other datasets with more camera
views. This will foreseeably affect the method’s performance and may require
adjustments in the learning scheme. Nevertheless, the ideal number of camera
views should be determined for each application scenario since FOV conditions
change between indoor and outdoor spaces.

Acknowledgements. This work has been partially supported by the Spanish
Ministry of Science and Innovation under project “Sistema de visión para la
monitorización de la actividad de la vida diaria en el hogar” (TIN2010-20510-
C04-02) and by the European Commission under project “caring4U - A study
on people activity in private spaces: towards a multisensor network that meets
privacy requirements” (PIEF-GA-2010-274649). Alexandros Andre Chaaraoui
acknowledges financial support by the Conselleria d’Educació, Formació i Ocu-
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Abstract. Robust people detection and localization is a prerequisite for many
applications where service robots interact with humans. Future robots will not be
stand-alone any more but will operate in smart environments that are equipped
with sensor systems for context awareness and activity recognition. This paper
describes a probabilistic framework for the fusion of data from a laser range finder
on a mobile robot and an overhead camera fixed in a domestic environment. The
contribution of the framework is that it enables seamless integration with other
sensors. For tracking multiple people it is possible to use a probabilistic parti-
cle filter tracker. We show that the fusion improves the results of the individual
subsystems.

1 Introduction

As the baby boom generation is coming to retirement age, the number of elderly citizens
over 60 years of age is expected to grow further to a proportion of 1 out of 3 by the year
2030. Alongside this growth in the elderly population, we face short and long-term labor
shortages, especially in the health-care sector. Robots may offer a solution for making
elderly care affordable by using them for physical [9], cognitive [12] or social [16]
support. All these studies share a common foundation that the robots interact intensively
with humans, and locations, of both the person and the robot, are estimated robustly.

Sensing systems for robot localization or people localization are usually mounted
either on the robot or are fixed in the environment. In this paper we describe a proba-
bilistic framework for the fusion of data from robot and fixed sensors. Here we restrict
ourselves to a laser scanner on the robot and an overhead camera fixed in the room.
The contribution of our work is that by mapping all information into a probabilistic
model, the system can be easily extended with other sensors such as multiple cameras
or RGB-D cameras, and is robust to the absence of sensors.

In the next sections we will describe related work and systems. In section 4 our own
model will be introduced. The sections after that will describe the likelihood functions
for the laser on the robot and the camera in the room. In section 7 we describe the
experiments and results. We conclude with a discussion on the method and results.
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2 Related Work

There is a long tradition of research in the field of people detection and localization
in robot applications. Many studies concentrate on people detection using the sensors
on the mobile robot. Relatively simple sensors such as laser range finders were used
for detection and localization [11,15]. People are extracted from range data as single
blobs or found by merging nearby point clusters that correspond to legs. Probabilistic
techniques such as multi-hypothesis trackers are used for tracking multiple objects [1].

Instead of using the laser range systems on the robots, vision systems have also
been used for people detection. Since robot-mounted cameras are moving, the detection
cannot be based on background modeling methods, and local characteristics such as
color histograms or local features have been used [14,17]. To make detection more
robust, the fusion of different modalities of robot sensors is suggested. Leg detection
by laser range finders in combination with face detection has shown to be more robust
than individual modalities [10,2]. In [18], Viola-Jones type of visual detectors are used
to recognize body parts and are combined with laser range data.

However, future robots will operate in smart homes that are equipped with sensors,
and it seems obvious to use these sensors also for person detection. One advantage is
that the system may be more robust: noise or deviations in a sensor may be detected
and corrected. Another advantage is that the robot does not need to keep monitoring the
persons all the time. The robot may be required to finish other tasks from time to time,
rather than allocating its resources to the task of tracking each person all the time.

Person tracking systems that are mounted in domestic environments are usually
based on vision systems, although there are some exceptions using laser range find-
ers [8] or speech [6]. Overhead cameras are often used, which are usually mounted very
high, and have a very wide angle of view, covering most of the areas in the room. Since
they look down from above, it turns out that human users are less likely to be occluded
compared with cameras mounted on the side. An application in a kids playroom is given
in [3].

In our set-up we combine an overhead camera with the laser range finder on the
robot. In order to have a sound probabilistic framework we build on the approach of
[7], who uses a probabilistic foreground segmentation with a template based detection.
The result is a posterior distribution on the locations of the persons in the room. This is
combined with a distribution based on the laser range finder.

3 System Overview

Our proposed system is used to detect and localize the elderly people in chores of robot
home-care. With our system, the robot is able to obtain accurate locations of the users
in the room, and thereby it can interact with the human users precisely. The robot we
use possesses multiple on-board sensors, including a Kinect camera, a stereo camera,
and a laser range finder.

In the recent work, most of the robots are designed for following the targets. These
approaches, therefore, require that the users are always in the range of the robot sen-
sors. In the case of home care, however, the robot moves around in the room to execute
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a variety of tasks, and at some points the robot sensors will loss the track of the human
user, e.g. the robot is asked to get an object that is in an opposite direction to the user.
To overcome such a problem and enable continuous human localization, we adopt an
ambient camera and mount it on the ceiling of the room. The advantage of the ambient
camera is twofold: (1) that it gives a top view of the whole room, and (2) that people in
the room are less likely to be occluded compared with the robot cameras. Since it cov-
ers the whole area of the room, the ceiling-mounted camera is able to localize persons
continuously when the users are present in the room, so that when the robot sensors fail
to detect the users, the ambient camera is still able to report the correct location to the
system. Besides, the robot sensors and the ambient camera observe the persons from
different directions, giving complementary cues for the human detection and localiza-
tion. The fusion system can, therefore, obtain a better estimate of the location of the
users compared with the approaches using single modality.

To combine the robot sensors and the ambient camera, we propose a Bayesian fusion
framework. Next, we formulate the problem and introduce our fusion framework.

4 Probabilistic Fusion Framework

The Bayesian approach provides an elegant way of fusing between different sensor
sources as well as dealing with noise and uncertainty in sensor measurements [13].

Assume IR is the observed data from the robot sensor, and IC is observed from the
ambient camera, i.e. the overhead camera. Given IR and IC, we aim to find a robust
estimation of the location of multiple persons LH , the location of the robot LR, and
the orientation of the robot θR. In the context of a Bayesian framework, the posterior
distribution P(LR,LH ,θR|IR, IC) is the target we would like to know by the end.

Using the Bayesian Theorem, the posterior probability can be derived as

P(LR,LH ,θR|IR, IC) ∝ P(IR, IC|LR,LH ,θR)P(LR,LH ,θR) (1)

where P(LR,LH ,θR) = p(LR)p(LH)p(θR) is the prior distribution that is known before
the sensory data is observed. These priors can be estimated either from separate training
data, or from prior knowledge of the problem. In our case, we simply assume a uniform
distribution over the ground area of the floor, and a uniform distribution over the angles
of the orientation. P(IR, IC|LR,LH ,θR) is the likelihood.

By assuming IR and IC are measured independent with separate sensors, and IC is not
dependent on the rotation of the robot θR, the likelihood probability of Equ. 1 can be
decomposed as

P(IR, IC|LR,LH ,θR) = P(IR|LR,LH ,θR)P(IC|LR,LH) (2)

where P(IR|LR,LH ,θR) is the likelihood of generating the image IR given the combi-
nation of LR, LH , and θR, while P(IC|LR,LH) represents the likelihood of the ambient
camera that generates the observation IC.

Again, our goal is to find the optimal combination of L∗
R, L∗

H and θ ∗
R that maximizes

the posterior distribution P(LR,LH ,θR|IR, IC), which is a typical MAP problem that can
be solved by particle filtering [5].
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The camera likelihood P(IC|LR,LH) is used as the proposal distribution to sample
particles, and the particles are weighted by the corresponding likelihood of the laser
data P(IR|LR,LH ,θR). The optimal combination L∗

R, L∗
H and θ ∗

R is considered as the
particle that holds the highest weight. In a Bayesian framework, however, we find the
expectation of the parameter values rather than the most probable value. Therefore,
rather than choosing one particle that maximizes the joint distribution, we compute the
solution as a weighted sum of all the particles.

The remaining is to compute the two likelihood terms in Equ. 2. In the following two
sections, we introduce the methods of estimating the two likelihood items separately.
Here, we will focus on modeling the likelihood of the robot sensor. For the camera, we
adopt the algorithm from [7].

5 Measuring Likelihood of Robot Sensors

In our data fusion framework, the state is to be estimated is a triplet of {LR,LH ,θR}. The
likelihood of the robot sensors measures the probability of generating the observation
IC rather than all the observations that can be possibly generated from such a triplet,
given such a state triplet, i.e. P(IR|LR,LH ,θR).

In this paper, we adopt the Laser Range Finder as our robot sensor. The Laser Range
Finder scans in a plain and detects the distance to the objects in range. In the context of
human localization in a home setting, the detected objects can either be objects that exist
in the room or be part of the human in the room. In this paper, we use the background
model and the human model, respectively, to model the probability that a region is
occupied by either of these two objects. Then we can compute the occupancy map of
the room, i.e. the probability that the area is occupied by either the background object
or by a human.

The occupancy maps are used to estimate the probability of the robot sensor gener-
ating a certain set of observations, i.e. the robot sensor’s likelihood.

5.1 Probabilistic Background Model

To find out what the room looks like in terms of background obstacles, the robot is first
driven around to build a background model of the room.

For each time stamp, the robot sensor fires a set of laser beams l = {l1, l2, l3, ...}.
Whenever there is an object in the way, the laser is reflected back to the base and
thereby the distance to the background objects is detected. Given the coarse location
of the robot, we are able to find the approximate locations of these laser detections. But
due to the uncertainty in the location of the robot as well as the noise in laser data, these
locations are not fully reliable. Therefore, simply giving a Boolean answer to the occu-
pation of the local region is not an elegant solution, and a probabilistic way of modeling
the background is required.

In our approach, the ground plane is first discretized into small cells of equal size.
We denote k as the index of the cell on the ground plane. Then for each cell k, we
aim to estimate the probability that the cell is occupied by a part of the background.
Collectively, these probabilities form the background model Pb(k).
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Fig. 1. The relation between a laser beam and a cell can be summarized into three patterns. In
the left pattern α l

k = 1, the laser is blocked by the cell, referring that the cell is occupied by
certain background objects. The middle pattern α l

k = 2 shows the laser has passed through the
cell, indicating the cell is empty. As for the third pattern, however, the laser beam is blocked
before it reaches the cell. Therefore, no clue about whether the cell is occupied can be deduced
from the third pattern.

In this paper, the background model Pb(k) is measured as the number of times the
laser scanner observes an occupied cell normalized by the number of times that the cell
is in the range of the laser scanner. To formalize the problem, we define three patterns
that can be observed given a scan l and a cell k, see Fig. 1. We use a random variable
α l

k to denote the index of the three patterns. The first pattern refers that the cell k is
detected by l as an occupied cell. The second pattern denotes that the cell is observed
as an empty cell. As for the third pattern, no information about the cell can be inferred
since the cell is either occluded by other background objects that is in front of the cell,
or the laser is not fired in the direction of the cell. Therefore, the third pattern does not
contribute to the background model while only the first two do. Next, we estimate the
background model by

Pb(k) =
∑l δ (α l

k − 1)

∑l δ (α l
k − 1)+ δ (α l

k − 2)
(3)

where δ is a Kronecker delta function, and the equation sums over all the lasers that
pass through the cell k.

5.2 Learning Human Model

The human model Ph reflects how the human looks like from the robot sensors in the
world frame. It is learned by accumulating the laser points that locate in a small region
around the center of the person. Each pixel in such a region holds a value indicating the
probability that the cell is occupied by the person, i.e. a higher value means the cell is
more likely to be detected by the robot sensor due to the occurrence of the human.

Similar to training the background model, we learn the human model Ph by calcu-
lating the number of laser beams that either have a positive detection at the cell or pass
through the cell. Again, we adopt the Equ. 3 for computing the human model Ph.

Given the person locating in cell k, the local human model Ph can be translated into
the world frame to generate a human model map Ph(k).
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5.3 Occupancy Map

Knowing the background model and the human model, we are able to compute the
probability of occupancy for each of the cells on the ground plane. Note that the cell
cannot be occupied by both the human and the background obstacle at the same time,
therefore the occupancy map is computed as

ωk =
Pb(k)P̃h(k)+Ph(k)P̃b(k)

1−Pb(k)Ph(k)
(4)

where

P̃(k) = 1−P(k) (5)

5.4 Likelihood of Laser Range Finder

The likelihood of the Laser Range Finder denotes the probability of generating the
current observation given the state {LR,LH ,θR}. IR represents a vector of the laser range
data. Assume IR contains N independent measurements {i1R, i

2
R, ..., i

n
R, ..., i

N
R }. Suppose

the direction of the range measurement inR is defined by θ n
R . Therefore

P(IR|LR,LH ,θR) =
N

∏
n=1

P(inR|LR,LH ,θ n
R) (6)

LR and θ n
R define a robot at the location LR, and the robot fires a laser beam in the

direction of θ n
R . LH refers to the location of multiple persons.

Suppose the laser beam inR passes through a set of cells in a straight line, e.g.
{c1,c2, ...,cm−1}, and then it detects a certain object at the cell cm. cM denotes the
maximal range that the laser can reach. See Fig. 2. Then the probability of obtaining a
detection at cell cm rather than the other locations can be computed by

P(inR|LR,LH ,θ n
R) =

ωcm ∏m−1
i=1 ω̃ci

∑M
j=1 ωc j ∏ j−1

i=1 ω̃ci

(7)

Since multiplications of the probabilities can result in very small numbers which lead
to floating point overflows, we compute the log-likelihood instead

L (inR|LR,LH ,θ n
R) = λm −

M

∑
j=1

λ j (8)

where

λm = log(ωcm)+
m−1

∑
i=1

log(ω̃ci) (9)
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Fig. 2. The laser beam (Arrow) passes through m− 1 empty cells and finally reaches the cell at
Cm. The maximal range of the laser covers M cells.

6 Likelihood of Ceiling Mounted Camera

The likelihood of over head camera is computed the same way as in [7]. Assuming the
pixels are independent from each other given the image taken by the ceiling mounted
camera, the likelihood P(IC|LR,LH) can be derived as

P(IC|LR,LH) = ∏
n=1:N

P(inC|LR,LH) (10)

We build a specific polyhedron to model the 3D shape of both the human and the robot.
Given the location of the human LH and the robot LR, the polyhedrons are projected
into the image space, generating a foreground mask M . For each pixel location P(inC)
on the image, we look up in the mask and use Mn to determine whether the pixel is a
part of the foreground or background. Then the likelihood can be computed as

P(inC|LR,LH) = Pf (i
n
C)Mn +Pb(i

n
C)(1−Mn) (11)

where Pb(inC) is the background model which is learned beforehand using the back-
ground images. Pf (inC) is the foreground model, and in our case we apply a uniform
distribution over the colors.

7 Experiment and Results

The proposed data fusion framework was evaluated on data collected with a Nomad
robot platform and an overhead camera, see Fig. 3. The overhead camera is mounted
centrally on the ceiling and gives a panoramic view of the room. The frames that are
captured with the camera are highly distorted due to the fish-eye effect. The camera’s
lens parameters are calibrated with the OpenCV module [4].

On the Nomad robot platform, a Laser Range Finder, a Kinect camera and a stereo
camera are mounted on the robot. For the present experiments, we restrict ourselves
to test the framework by using the Laser Range Finder, mounted at a height of 20 cm.
The robot is remote-controlled and manually driven around in the room. The robot
records its odometry information by measuring the rotations of its two wheels. The
odometry data are then adopted for generating the orientation and location of the robot.
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Fig. 3. An overview of the experiment room and the observed data. Left: captured by the over
head camera; Right: laser detection points (red dots).

The Nomad robot runs on the Robot Operating System (ROS), and all data captured on
the robot site is time stamped in ROS.

The exact time stamp of each frame collected with the overhead camera is obtained
by means of a stopwatch mounted close to the camera. We use a nearest-neighbors
classifier to recognize digits in the image to recover the time stamp. We synchronized
the robot sensors and the overhead camera based on specific time points, where an event
(e.g. the puncturing a balloon in front of the Laser Range Finder) was observed by both
the robot sensor and the overhead camera.

The ground plane is subdivided into small cells of 50×50mm. In a first training run,
the robot was remote-controlled to generate the background model. Second, the human
model is trained according to Equ. 3. During testing, the two models are combined
probabilistically into an occupancy map given the particles, as depicted in Fig. 4. Here
each pixel of the occupancy map reflects the probability that that location is occupied,
either by a person or by a background object in the room.

We evaluate the systems by measuring the Euclidean distance between the detec-
tion results and the ground truth locations of persons. In this paper, three localization
approaches are tested and compared: a) with a single Laser Range Finder; b) with a
single over head camera; c) with our proposed fusion framework. We evaluate the pro-
posed system and the single modality approaches on 165 camera frames together with
synchronized laser data. For each of these frames, volunteers manually annotated the
locations of the persons in the ground plane, based on physical markers that were po-
sitioned on the floor during the recording, and these markers were used as reference to
compute the ground truth location.

A particle sampling approach is applied both in the single laser and the data fusion
approach. An equal number of 800 particles are sampled. Due to the fact that humans
are not likely to be too close to each other, we define the safe distance between two
persons as 500mm. We incorporate such assumption to reduce the space when sampling
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Fig. 4. The occupancy map is generated from combining the human model and the background
model. For each set of locations of persons, i.e. a particle, an occupancy map is estimated. Left:
Human model. Middle: Background model. Right: Occupancy Map given the hypothetical loca-
tion of persons (green crosses).

particles, i.e. the sampled point is always at least 500mm away from each of the points
the previous sample set.

The single laser approach detects the foreground laser points by set a threshold to
their probability in the background model. The threshold in our experiment is empir-
ically set to 0.3. The particles are sampled from the foreground laser points with a
Normal distribution on the location of the points. The weights are assigned by the like-
lihood of the laser data given the particles, and they are quantized in the sub-divided
cells on the ground plane according to the locations of the particles. The human is then
localized by recursively finding the cell that has the largest sum of weights as in [7].
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Fig. 5. Comparing the proposed data fusion approach and the single modality approach
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In the approach with a single camera, we adopt the human detection algorithm from
[7]. For each candidate location of the persons on the ground plane, the likelihood of the
camera frame is measured. The locations of the multiple persons are found by choosing
the locations that maximize the likelihood of the camera image.

The proposed approach combines the over head camera and the robot Laser Range
Finder in a probabilistic Bayesian framework. After persons are localized with the sin-
gle camera, the particles are sampled around the location of the persons with a Normal
distribution. These particles are then weighted by the likelihood of the laser observa-
tions. The final detection is computed by the weighted sum of the particles that are
sampled from the same person.

Fig. 5 shows the detection results of our data fusion system comparing with the
approach using single modality. The proposed fusion system consistently outperforms
the single-camera and the single-laser approach, and approximately 80 percent of the
detections are less than 200 mm from the ground truth location. In contrast, only 70%
of the camera-only detections and 27% of the laser-only detections are within such
distance of the ground truth.

8 Conclusion and Future Work

We have proposed a novel probabilistic fusion framework for the localization of humans
using ambient cameras and robot-mounted Laser Range Finders. Our experiments show
substantial improvements in the accuracy of the localization, thus enabling more precise
interaction between robot and humans. Due to its probabilistic nature, our framework
can deal with occlusions and the absence of measurements in a principled way. As
a result, the localization of humans is more robust, and natural interaction becomes
possible even in challenging conditions.

In our current experimental work, the orientation and the location are not considered
as part of the particle, but only the location of multiple persons are sampled. But we
expect the performance can be improved by incorporating robot location and orientation
into particles. We plan to specifically address occlusions and missed detections in one of
the sensors. We will also extend the method to use more and different sensors, including
the robot-mounted Kinect camera, as well as multiple overhead cameras.
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Abstract. Robots that can recognize emotions can improve humans’
mental health by providing empathy and social communication. Emotion
recognition by robots is challenging because unlike in human-computer
environments, facial information is not always available. Instead, our
method proposes using speech and gait analysis to recognize human
emotion. Previous research suggests that the dynamics of emotional hu-
man speech also underlie emotional gait (walking). We investigate the
possibility of combining these two modalities via perceptually common
parameters: Speed, Intensity, irRegularity, and Extent (SIRE). We map
low-level features to this 4D cross-modal emotion space and train a Gaus-
sian Mixture Model using independent samples from both voice and gait.
Our results show that a single, modality-mixed trained model can per-
form emotion recognition for both modalities. Most interestingly, recog-
nition of emotion in gait using a model trained uniquely on speech data
gives comparable results to a model trained on gait data alone, providing
evidence for a common underlying model for emotion across modalities.

Keywords: robot emotions, emotional gait, emotional voice, affect
recognition.

1 Introduction

Emotions can be conveyed in many ways outside of facial expression. Consider
the sympathy we feel for a quivering puppy – he looks scared, we might say. Or
the shouts of neighbors fighting in a foreign language; they can still sound angry
even without knowing what they are saying. Even a singer on stage can belt out
a tune with such emotional intensity that listeners are moved to tears. It is a
curious phenomenon: how can mere movements or sounds affect us in this way?
This kind of ‘emotional intelligence’ – to sense emotions through various means –
appears to be built into any normal-functioning human and even some animals.
We propose that robots, too, can be given the ability to understand emotions,
no matter the communication channel. The goal of our research is to investigate
a single model for emotion recognition, whether the channel is movement, voice,
or any other type of sound.

First, consider that any movement can be colored with emotion. In the 1980’s,
the neurologist Manfred Clynes performed extensive cross-cultural studies using
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his sentograph, a device to measure touch [1]. He asked subjects to tap the device
at regular intervals while imagining emotions such as love, hate, and grief. The
resulting dynamic forms of the movements appear similar across cultures, e.g.,
abrupt, jabbing movements for hate, and soft, lethargic taps for sadness. More
recently, psychologists show the importance of movement by attaching balls of
light to actors’ joints, turning off the lights, and recording these so-called ‘point-
light’ displays. Actors in [2] made “drinking and knocking” movements in 10
different emotions, and despite the impoverished format, raters could still recog-
nize emotional information. Walking style, or gait, can also reveal the walker’s
emotional state [19] [20]. For instance, heavyfootedness can signify anger, and
slow walking speed can signify grief. For a given emotion, the dynamics of tap-
ping, knocking, and walking already appear to have underlying similarities.

Another common way we express emotions is through the voice. In a typical
study on emotional voice, researchers ask actors to utter gibberish words in
various emotions. Van Bezooijen et al. [3] asked native Dutch speakers to say twee
maanden zwanger (“two months pregnant”) in neutral and nine other emotions,
and then played them to Dutch and Japanese subjects. Changes in properties like
pitch, tempo and loudness of speech due to physiological changes appear to create
universally perceptible emotional differences [6]. Juslin and Laukka [4] reviewed
dozens of studies of this kind, and found that hearers can judge anger, fear,
happiness, sadness and tenderness in voice almost as well as facial expressions,
around 70%. Emotion in sounds may even stretch to the animal kingdom; among
some animals, alarm calls mimic human fear vocalizations, with high-pitches
and abrupt onset times [7]. In primates, dominant males often emit threatening
vocalizations with characteristics similar to those of human anger.

It has long been speculated that whether it be a step, tone of voice, or
even a musical phrase, the expression of emotions have the same underlying
‘code’ [1] [4] [5]. For example, both loud, intense voices and large, forceful move-
ments convey anger. Sadness can be conveyed through small and slow movements
and quiet, slow speech. If emotions in various modalities truly share the same
underlying model, then this may serve as a common base to combine disparate
robot emotion systems instead of one model for vision, one for sound, and so
on. Furthermore, it may give insight into human’s ability to generalize to new
situations. For example, what exactly do infants glean about emotions from their
mother’s voice? Can they store their knowledge about joyful speech and apply it
to evaluate happy music or dance? As Breazeal states, “robots can be used as ex-
perimental testbeds for scientific investigation” to help us understand ourselves
as humans [8].

In our previous studies [9] [10], we proposed a modality-independent emotion
model in four dimensions representing speed, intensity, regularity and extent
(SIRE)1. We tested this model by using SIRE features from emotional human
voice to control a gesturing and music-playing robot. Human evaluators then

1 In this paper, we change the “R” from regularity to stand for irRegularity. Whereas
the perceptual feature remains the same, irregularity is simpler to represent, because
it can be written in terms of the variance from a mean.
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selected which emotion they perceived in the resulting robot gestures or mu-
sical sounds. These perceptual experiments showed that some combinations of
SIRE invariably produced the same emotion across modalities; for example, fast,
intense, irregular speech with a small pitch range produced fast, intense, irregu-
lar, small movements perceived as expressing “fear”. These initial SIRE studies
showed promising results, but conclusions were limited. Only a small number of
samples were used, and ad-hoc scaling methods were used, i.e., “fast” and “slow”
were not defined in a quantitative manner. Additionally, only emotion transfer
was performed, not automatic recognition of emotion.

In this paper, we extend our SIRE approach in three ways: 1) quantitative
analysis and scaling, made possible by a large sample size, 2) extension to anal-
ysis of emotional gait and 3) machine learning and classification. We ask the
following research question: Is it possible to train a classifier using voice data,
then use that classifier to recognize emotion in gait? If so, this provides evidence
towards a unified emotion system, as opposed to one recognition module for each
modality.

2 Approach

We investigate emotion recognition in voice and gait using four steps:

1. Feature selection. We select and extract low-level, modality-specific fea-
tures representing Speed, Intensity, irRegularity, and Extent (SIRE). For ex-
ample, speech rate in syllables per second is an indicator of speed in speech.

2. Mapping to SIRE space. We use a Gaussian normalization scheme to
scale each of the four low-level features to [0,1].

3. Personalization. We normalize the data depending on each individual’s
mean speed, intensity, etc. This takes into account that elderly individuals
may walk slower than average, for instance.

4. Training and testing in SIRE space.

2.1 Feature Selection

The general idea is to select features that may perceptually be mapped to speed,
intensity, irregularity and extent. These are dynamic features that are found as
principal characteristics in emotion studies across voice [11] [12], music [13] [14],
and motion [15] [16] [17]. In our approach, selecting exactly which low-level
feature to use is an important step up to the system designer. For example,
what is a low-level definition of extent for voice? Both volume and pitch range
are important features in vocal expressions of emotion. For the purposes of this
experiment, we selected the features in Table 1 to map voice and gait to SIRE
parameters.

Speech Analysis. We consider a database containing emotional speech data.
Such a dataset may contain men and women of various ages saying the same
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Table 1. Low-level feature to SIRE mappings

Voice feature Parameter Gait feature

Speech rate (syllables/sec) Speed Walking speed (steps/min)
Voice onset rapidity (dB/sec2) Intensity Maximum foot acceleration (cm/sec2)

Jitter (dB/sample) irRegularity Step timing variance (sec)
Pitch range (Hz) Extent Maximum step length (m)

sentence in different emotional styles, such as joyful, sad or angry. In Section 3,
we describe our experiments with the Berlin Emotional Database2, though many
others such as [18] exist. Extraction of the four voice features in Table 1 has
previously been described in [10].

Gait Feature Extraction. Gait studies such as [19] analyze data from multi-
ple participants walking in various emotional styles. They may take into account
walker’s posture, arm swing, speed, and may use measurement instruments such
as force pads, motion capture, or a combination of both: Montepare [20] and
Janssen [21] considered the force of the steps, and Unuma et al. [22] took into
account step-length and hip position. Montepare [23] also found correlations be-
tween emotions and perceptual cues such as smooth-jerky, stiff-loose, expanded-
contracted, and so on.

What is the minimum amount of information needed to deduce emotion in a
walk? Often, gait data is collected as full-body motion capture data. For instance,
in [24], thirty-five points on the body were recorded, and 30 principal components
used for training and classification. This produced a recognition accuracy of 69%
over five emotions. On the other hand, in a real-world human-robot interaction,
it may be difficult to obtain a continuous stream of full body configuration data.

We suggest that only positions of feet through time are sufficient. This could
be obtained by sensors in a human partner’s shoes or slippers, for example. Our
current study uses the Body Movement Library [25], which contains emotional
walking by non-professionals, in neutral, happy, sad, angry, and a few samples
of afraid. We use the data points of the ankle joints in x, y, z space, where z is
the vertical axis.

Speed. We calculate speed in steps per minute. We subtract the position of
one foot from the other in the horizontal (x, y) plane. We then perform peak
picking (using average foot distance as the threshold), assuming that feet are
at their maximum horizontal distance when stepping. These centroids of these
peaks determine the time of each step.

Intensity. Given our dataset, we calculate the maximum acceleration achieved
in the sample in x, y, z space. In a real-time situation, this may need to be used in
conjunction with a sliding window. Intuitively, this corresponds to the “heavy-
footedness” of the steps. In [26]’s emotion recognition approach for knocking

2 http://pascal.kgw.tu-berlin.de/emodb/
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(a) Example of angry gait of user “ale” (b) Example of sad gait of user “ale”

Fig. 1. Examples of gait analysis. The horizontal line indicates the threshold for peak-
picking (mean value). For sad gaits, the step lengths (inter-foot distances) are shorter,
and foot acceleration is lower.

movements, average acceleration was used. It is not clear whether one formula-
tion over the other offers any advantage.

Irregularity. Step timing variance is calculated as the standard deviation in
the step lengths, in seconds. For instance, walking with a “regular” pace may
give a different impression compared to an “irregular” pacing which stops and
starts.

Extent. This is defined as the maximum step length in x, y space.

2.2 Mapping to SIRE Space

In previous work, we performed a simple linear scaling of data between 0 and 1,
relative to the maximum and minimum values of the data [10]. Here, we propose
a bidirectional mapping scheme based on dataset statistical characteristics, to
deduce actual speed from and S on [0, 1] and vice versa.

Here, we model each of the features (speed, intensity, irregularity, extent) as
Gaussian normal distributions, based on the μ and σ of the datasets (cf. Table 2
and Table 3). To perform mapping, after discretizing the feature value range, we
assume the area under the curve of each segment is proportional to the amount
allotted in the SIRE [0-1] range (Figure 2). This ensures more detailed sampling in
the feature value ranges where samples occur most. Although we assume a single-
Gaussian probability distribution function (pdf) for now, a mixture of Gaussians
may prove a more accurate model. This should be tested in future work.

Table 2. Feature distributions of the Berlin Emotional Database dataset

Feature μ σ
Speech rate (syll/sec) 5.87 1.26

Voice onset rapidity (dB/sample2) 11.36 4.56
Jitter (dB/sample) 871.91 269.39
Pitch range (Hz) 111.57 44.04
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Table 3. Feature distributions of the Body Movement Library walking dataset

Feature μ σ
Walking speed (steps/min) 91.75 16.76

Maximum foot acceleration (cm/sec2) 341.22 68.88
Step timing variance (sec) 0.07 0.06
Maximum step length (cm) 63.21 8.08

Fig. 2. Example mapping speech rate to SIRE speed using pdf fitted to data

Determining Real-to-SIRE Mapping Array C. Concretely, given μ, σ, we
seek C = {c0, ...ck} where c0 = μ− 3 ∗σ and c10 = μ+3 ∗σ, and we numerically
calculate C(k) where k = 0, ...9, such that

0.1 = cdf(xk+1)− cdf(xk). (1)

In other words, we first define all values less or more than 3 standard deviations
from the mean as 0 and 1 respectively. Then, C is a monotonically increasing
sequence which defines boundaries for 10% slices of our distribution. We use
these boundaries to compose a piece-wise function containing linear functions.
Using C, we can define our mappings as follows. We use the example of speech
and speed S here, but scaling is similarly defined for intensity I, irregularity R,
and extent E using the low-level features in Table 1.

Converting SIRE Value to Real-World Value. Given C and an arbitrary
value for S on [0, 1], we can find a corresponding speechRate based on our dataset:

speechRate(S) =

⎧⎪⎪⎨
⎪⎪⎩

c0 + S ∗ (c1 − c0) : 0 ≤ S < 0.1
c1 + (S − 0.1)(c2 − c1) : 0.1 ≤ S < 0.2
...
c9 + (S − 0.9)(c10 − c9) : 0.9 ≤ S ≤ 1.0
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Converting Real-World Value to SIRE Value. Similarly, to find S, the
speed value, we can define a mapping given C and a real-world value x:

S(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 : x < c0
0.1(x− c0)/(c1 − c0) : c0 ≤ x < c1
0.1 + 0.1(x− c1)/(c2 − c1) : c1 ≤ x < c2
...
0.9 + 0.1(x− c9)/(c10 − c9) : c9 ≤ x
1 : c10 < x

Both Equations can be similarly defined for I, R,E.

2.3 Personalization and Training

Following the result of [26], we adjust each sample depending on the relative
difference of the individual compared to the dataset average. Given k emotional
samples created by an individual P = p0, .., pk, and a given feature f ∈ S, I, R,E,
we can find the individual’s average speed μ(PS), intensity μ(PI), and so on.
Then, given a group (dataset) G of n individuals, we can also determine the
group’s average feature values μ(Gf ). We determine a personalized bias b(Pf )
for each individual/feature pair in the dataset, and define it as b(Pf ) = μ(Gf )−
μ(Pf ). In the personalization step, we update each sample: Pf,k = Pf,k + b(Pf ).

Given the datasets described above, we perform training using expectation
maximization to train a K-mixture Gaussian Mixture model, where K is the
number of classes (e.g. happy, sad, angry, scared, and neutral). It possible that
we would need more components to model each emotion. For example, a “fear”
gait may have two possibilities for speed: slow for a hesitant approach, or fast
to run away. The number of mixtures should be explored in future work.

Multi-modal Training. Since the two modalities are mapped to the same
perceptual feature set, we can propose a new multi-modal recognition scheme
which differs from traditional multi-modal fusion approaches. In Figure 3, we can
see that the SIRE classification scheme is simple, if we can assume that both
modality sources can independently add information to generalize about the
other. In this example, we see how it assures low dimensionality compared to the
concatenation method, in which classifiers train on a feature vector containing
values from multiple sources. Indeed, in (c), the weights also add dimensions for
optimization.

3 Experiments

3.1 Purpose

We aim to answer the following research questions: 1) What are the real-world
values defining emotions in speech and gait? 2) Are the SIRE values defining
emotions in speech and gait similar? 3) What is the effect of using SIRE mapping
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(a) Our approach

(b) Concatenation

(c) Voting/weighting

Fig. 3. Comparison of approaches for integration and classification of multimodal data

and personalization on emotion training and recognition? 4) Can modalities be
integrated using the training scheme described in Sec. 2.3? What is the effect? 5)
Can emotion classifiers be trained with one modality and tested with another?

3.2 Materials and Procedure

For the emotional walking data, we used 28 subjects from the Body Movement
Library [25]. Each individual provided 2 samples each of happiness, sadness,
anger and neutral styles of walking. Six subjects also provided 2 samples each
of fear. In total, 236 gait samples were used. Each sample was approximately 23
seconds long.

For emotional speech data, we used 10 subjects (5 female, 5 male) from the
Berlin Emotional Speech database, who spoke up to 10 different sentences in
happy, sad, angry, neutral and fear styles. Some were not included in the analysis
if the recognition rate by humans was not at least 80%. In total, we used 408
voice samples from this database.

We use the Scikit-learn [27] toolkit to train a 5-component Gaussian mixture
model and perform a recognition step. We perform 10-fold cross validation with
the following training and testing sets: 1) voice samples only 2) gait samples
only 3) voice and gait samples 4) training with voice and testing with gait, and
5) training with gait and testing with voice.
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Table 4. Mean real-world values for emotions based on voice samples

Feature Speech rate Voice onset rapidity Jitter Pitch range
(syll/sec) (dB/sample2) (dB/sample) (Hz)

Happiness 6.1 13.0 871 144
Sadness 4.3 8.5 724 101
Anger 6.0 13.7 964 131
Fear 7 10.8 1025 105

Neutral 6.4 10.3 754 82

Table 5. Mean real-world values for emotions based on gait samples

Feature Walking speed Acceleration Variance Step length
(steps/min) (cm/s2) (ms) (cm)

Happiness 96 362 64 65
Sadness 76 272 77 56
Anger 105 411 63 71
Fear 92 324 78 62

Neutral 90 323 58 61

4 Results and Discussion

4.1 Quantitative Descriptions of Emotions

Real-world values defining emotions in speech and gait, in terms of our feature
set, are given in Table 4 and 5. These values can be used for generation of
emotionally expressive robot voices or gaits.

Our most useful results come from comparing emotional styles to neutral. For
instance, a fear gait is very similar to a neutral gait, except that step timing is
more irregular. An angry gait has much higher values on all dimensions com-
pared to neutral, except that step timing is relatively regular compared to other
emotions. Happiness is conveyed with slightly higher values along all dimensions.
Sadness values are lower than neutral on all dimensions, except for step timing:
steps are irregular – perhaps indicating a faltering, energy-less gait.

In future work, it will also be interesting to compare these values to real-
world values of SIRE in music. For example, the adagio tempo typically found
in sad songs is defined for classical music at around 66-76 beats per minute.
Here, we also find “sad” gait walking speed at 76 steps per minute. There may
be absolute thresholds defining emotions in a general sense. This would be an
interesting direction for investigation.

4.2 SIRE Descriptions of Emotions

In our previous work [9], we published the perceptually-scaled SIRE parameters
of the highest rated sample for a given vocal emotion. Now we use the information
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Table 6. Mean SIRE values for emotions based on voice and gait samples (S=speed,
I=intensity, R=irregularity, E=extent)

Voice S I R E

Happiness 0.59 0.63 0.49 0.74
Sadness 0.13 0.27 0.29 0.40
Anger 0.56 0.68 0.62 0.65
Fear 0.81 0.45 0.70 0.43

Neutral 0.66 0.41 0.34 0.25

Gait S I R E

Happiness 0.60 0.61 0.49 0.64
Sadness 0.18 0.16 0.58 0.19
Anger 0.78 0.84 0.48 0.83
Fear 0.51 0.41 0.58 0.39

Neutral 0.46 0.41 0.44 0.39

from many samples and compare the voice results to gait data. In comparing the
two modalities in Table 6, we see many SIRE values overlap across modalities.
For instance, the speed for happiness is about 0.6 for both voice and gait. We
highlight those which differ more than 15%.

We can see that sadness in voice was found to be fairly regular, and in motion
more irregular. Additionally, sadness “extent” is much smaller in gait than voice.
One possible explanation is the interpretation of “sadness”. Consider that Par-
rot’s emotion hierarchy [28], further classifies “sadness” into more specific terms,
such as “anguish” and “depression”. Anguish may manifest itself with a plead-
ing, highly variant pitch, versus a more monotone depressed style. This indicates
the necessity to specify subcategories of emotion in future studies. Similarly, the
voice database specified that anger was “hot anger”, whereas the individuals in
the gait database were free to choose their interpretation of anger.

As for the stark difference in speed for fear, we suggest that speed appears to
fall into two categories – slow and hesitant (fear of approaching something) and
fast (running away from something). According to the Body Movement library
authors [25], participants expressed difficulty with this emotion because they felt
the need to express fear relative to an object. This indicates the importance of
the object in question and its orientation relative to the robot in expressing the
fear emotion correctly.

4.3 Recognition Results

Here, we look at the effect of using SIRE mapping and personalization on emo-
tion training and recognition. In Figure 4, we can see that the personalized SIRE
method gives the best results in all cases, given chance level at 20%. Personal-
ization seemed particularly important in the gait dataset. This may be due to
the fact that the voice dataset was created using actors, who may have learned
a standard method to convey emotions.

In terms of multimodal training, we can see in Figure 4(c), that SIRE allows
for integration of the two features, where a simple bag of features approach fails.
On the other hand, using the augmented voice+gait dataset does not appear to
show any significant improvement over training with voice or gait respectively.
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(a) (b) (c)

(d) (e)

Fig. 4. Recognition results using different methods (raw=real-world features,
SIRE=SIRE features, Praw=personalized raw features; PSIRE=personalized SIRE fea-
tures) and test-train combinations

Most interestingly, cross-modal learning was observed. In Figure 4(d) and (e),
we see that it is indeed possible to train with one modality and test on another.
SIRE mapping is essential, and gives 46% accuracy testing on gait when the
model was trained with voice.

5 Conclusion

In this paper, we proposed a new approach to detecting emotion in gait for robot
understanding of emotion. Along the way, we answered the following research
questions, giving evidence to support our SIRE model of emotion:

1. What are the real-world (quantitative) dynamic values defining emotions in
speech and gait? These values are given in Table 4 and 5.

2. What are the SIRE values defining emotions in speech and gait, and are
they similar? Yes, they are similar to a certain extent. Differences may be
attributed to varying interpretations of emotions, such as “anguish” vs. “de-
pressed” sadness.

3. What is the effect of using SIRE mapping and personalization on emotion
training and recognition? Personalization and SIRE mapping together pro-
vide the best performance in our independent classification tests.

4. Can modalities be integrated using the training scheme described in Sec. 2.3?
What is the effect? SIRE allows the integration of the voice and gait modal-
ities in the same space, giving comparable results to separate recognition
modules. This suggests that it is possible to model emotion (of a robot, for
example) in one unified space.
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5. Can an emotion classifier be trained with one modality and tested with an-
other? Yes, in training with voice and testing with gait, we showed up to
46% recognition compared to a chance baseline of 20%.

Although the recognition result rate may not be as high as other methods us-
ing higher dimensional feature sets, this study provides additional evidence to
an underlying 4-parameter emotion model across voice and gait. In particular,
values for emotions in SIRE space for voice and gait are so similar that training
with one modality allows recognition in the other. Future work should include
examining the improvement of recognition when adding other cues (e.g. head
down versus head up), taking into account emotional intensity (e.g. somewhat
angry versus very angry), and evaluation of the SIRE model in a human-robot
interaction setting.
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Abstract. Identifying human capabilities in perceiving affective expres-
sions is essential for developing interactive machines that can engage with
their human users. In order to ensure that the behaviour of the interactive
machine is perceived as intended, any gender–specific differences in the
perception of affective expressions are an important design consideration.
This paper presents a preliminary study investigating the role of gender
in the perception of affective hand movements displayed on both anthro-
pomorphic and non-anthropomorphic structures. The results show that
gender significantly influences the participants’ perception and that the
impact of the display structure and intended-emotion on the perception
of the affective movements differs between male and female observers.

Keywords: Affective movements, Gender differences, Display structure,
Perception, User study.

1 Introduction

Humans associate different body movements and postures with distinct affective
expressions (e.g., anger is associated with frequent tempo changes) [6], [34], [12],
[20], [1], and are able to identify the feeling encoded in a displayed movement
even when demonstrators try to conceal their expression (e.g., negative body
language) [4], [22], [10], [8]. Moreover, the psychology literature reports on the
human tendency to ascribe human–like social and affective attributes to non–
anthropomorphic structures such as abstract moving geometrical shapes, and
even consider them to be engaging in social interactions [15]. Affective move-
ment recognition and generation capabilities are particularly important in the
field of human–machine interaction, in applications such as robotic social agents,
kinetic sculptures, and animated characters. In order to develop reliable com-
putational models for automatic affective movement recognition and generation
for autonomous systems, it is important to understand how humans perceive
affect from movement and whether there are gender-specific differences in the
perception of affective movement.

The present work is a collaboration with Philip Beesley Architect Inc., a de-
sign practice developing a series of architectural responsive environments, called
the Hylozoic series [3], [2]. These environments use massively repeating compo-
nents, microprocessors, sensors and actuators to create decentralized responsive
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systems capable of subtle motions giving the impression that the environments
are ‘sensitive’ and may even have affective states (Figure 1). The long term
goal of our research is to develop sufficient understanding of affective movement
generation and perception to enable these structures to engage in affective com-
munication with their occupants through movement.

Fig. 1. a) Two visitors highlighted with a red outlined rectangle immersed in Hylozoic
Soil, a responsive architectural geotextile environment [2]. b) Hylozoic Soil consists of
layers of mechanical fronds and whiskers that move in response to the human occupants
[2]. Reprinted with permission.

The effect of gender on the perception of body language and in particular,
bodily expression of emotion is largely unexplored. Differences in affective move-
ment perception could arise due to the gender of the demonstrator and/or ob-
server. Furthermore, the structure on which the affective movement is displayed
may have a different effect on how the emotion is perceived by male or female
participants. In an early study by Carmichael et al. [7], behavioural hand and
arm gestures performed by an actor (e.g., hand and arm gestures for prayer,
fear, anxiety) were correctly recognized above the chance level and no signifi-
cant gender-differences in the perception of the gestures was observed. In general,
reports on gender differences in the perception of affective expressions mainly
focus on facial expressions. Male and female high school, college and university
students showed significant differences in their rating of facial expressions cor-
responding to the six Ekman emotions [17]. Women perceive conveyed emotions
through facial expressions more accurately than men [17, 13]. In another study,
participants were shown videos of neutral faces gradually changing to express
different emotions and women were more accurate and sensitive in perceiving
the facial expressions [24]. Furthermore, neurological studies report on the in-
volvement of different underlying circuitry in perception of emotion in men and
women [32].

Other studies investigate the role of the demonstrator’s gender in the percep-
tion of affective movements. In a user study, participants tended to apply social
stereotypes to infer the gender of a point-light display throwing a ball with dif-
ferent emotions: happiness, sadness, anger, and neutral. Angry movements were
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perceived to be demonstrated by men and sad movements were more likely to
be attributed to women [16]. Due to kinematic similarities between fearful gait
and female gait, the fearful gait is better perceived if the walker is female [14].
Significant gender differences in the perception of emotion from static postures
of Venus and Apollo with different arm positions are reported in [30].

According to these studies, gender might play an important role in the percep-
tion of affective movement; hence, further investigation is needed to identify the
role of gender in affective movement perception. To the best of the our knowl-
edge, there has been no research reported on gender differences in the role of
display structure on the perception of affective movements.

We have conducted a user-study in which participants watched videos of a
set of affective hand movements displayed on human-like and frond-like struc-
tures (Figure 2) and evaluated the perceived affective expressions. The frond-like
structure appearance was designed to be similar to the Hylozoic soil structural el-
ements. In a previous study, the effect of the intended–emotion and display struc-
ture on the participants’ perception of the movements was investigated and it
was found that the intended–emotion has a main affect on the participants’ per-
ception of the affective movements and that the participants’ perception of the
affective movements was significantly affected by the display structure, specifi-
cally in the case of sad movements [28]. In the present study, we investigate the
following questions:

1. Did the gender of the observers have an influence on the perception of affec-
tive hand movements?

2. Did the intended–emotion and display structure have a different impact on
male or female observers?

Fig. 2. Structures used to display expressive movements. a) anthropomorphic (human–
like) hand model, b) non–anthropomorphic frond–like structure. These animated struc-
tures are produced using Poser (version 8, Smith Micro Inc.).
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2 Affective Human Hand Movements

The labeled dataset from [29] is used in this study, and includes one movement
type, closing and opening of the hand, which mainly involves phalangeal and
carpo–metacarpal joint movements. Three different affective expressions were
considered: sadness, happiness and anger. Five repetitions of each expression
were collected. A demonstrator, who has been exposed to Laban notation [18],
and is familiar with other human movement perception works (e.g. Camurri et
al [6]), performed the hand movements while wearing a data glove (ShapeHand
from Measurand [21], [23]). Videos of these movements are available in [27].

The movements were animated on each of the two structures shown in
Figure 2. These structures have the same kinematics but their physical ap-
pearance differs. The rationale for choosing hand movements in this study is
that the hand is an important medium for communicative gestures [34], and it
closely resembles the motion style and structure of the moving components of
the Hylozoic environments.

3 Questionnaire Study

In order to assess how affective movements are perceived and any impact of dis-
play structure, human observers were asked to rate the level of observed affective
expression in each movement.

Observers were asked to rate the level of affect using both a discrete and
dimensional emotion models. For the discrete model, the well known Ekman
model was used, which proposes anger, happiness, sadness, surprise, disgust and
fear as the six basic and universally recognized emotions [11]. For the dimen-
sional model, the Circumplex model of emotion [26] was used, which represents
emotions in a continuous two dimensional space defined by arousal and valence.
The arousal dimension represents the intensity of an emotion and the valence
dimension ranges from negative (unpleasant) to positive (pleasant).

During the user study, videos of the movements performed on the two dif-
ferent structures (Figure 2) were shown to the participants. They were then
asked to evaluate the demonstrated movements in terms of expressivity. A total
of 22 participants (26.1 years ± 5.8 years, 12 male, 10 female) completed the
questionnaire. Participants were healthy adults with a basic working knowledge
of computers and were students at the University of Waterloo. They were pro-
vided with detailed information on the study and the procedure to complete the
computer–based questionnaire. All the questionnaire sessions took place at the
same location and were administered by the author to ensure a uniform experi-
ence for all the participants. The study received ethics approval from the Office
of Research Ethics, University of Waterloo, and a consent form was signed elec-
tronically by each participant prior to the start of the questionnaire.

In a questionnaire session, a participant watches and rates the same affective
movements displayed on the human–like hand structure (Figure 2.a) and the
frond–like structure (Figure 2.b). The following naming format is used to refer
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to the animations in the rest of the paper: “(structure: hand, frond) (intended–
emotion: angry, happy, sad)” (e.g., “Hand Happy” represents the happy move-
ment displayed on the human–like hand structure).

The animations of affective hand movements were shown to the participants
in randomized order. Each video was accompanied by two questions. The first
question was a multiple–selection question asking participants to select among
a list of keywords those that most closely described the animated structure in
the video. Detailed data analysis for the first question can be found in [28].

The second question asked the participants to rate on a Likert scale the extent
to which each of the six Ekman basic emotions was conveyed in the displayed an-
imation, with 1 being “not conveyed at all” and 6 being “strongly conveyed”. We
used all six Ekman emotions in the questionnaire to determine emotion recogni-
tion capabilities accurately. Offering participants the choice of six emotions gives
a more accurate picture of recognition rate, since it does not artificially constrain
the responses and shows whether emotions are unambiguously recognized. In the
third question, participants were asked to rate the arousal and valence compo-
nents of the emotion perceived for each displayed movement, using a 7-point
scale. A brief description of the arousal and valence dimensions of emotion was
provided, along with a schematic representation of Circumplex model of emo-
tion adapted from [9] and shown in Figure 3. Low intensity–high intensity and
unpleasant–pleasant are the adjective pairs displayed at the extremes of arousal
and valence scales, respectively, to further guide the participants in evaluating
the arousal and valence components.

Fig. 3. A schematic representation of affective Circumplex used in the questionnaire.
This figure is adapted from [9].
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4 Questionnaire Data Analysis

To investigate the effect of gender and its interaction with the display structure
and intended–emotion on the participants’ ratings of the affective movements, a
three-way repeated measure ANOVA can be used with gender as a between-
group variable, and display structure and intended–emotion as within-group
variables. However, the interpretation of the significant effects from a three-way
repeated measure ANOVA is difficult due to the large number of variables and
their main and interaction effects (7 main and interaction effects). Furthermore,
a larger sample size would be needed to detect significant effects of all the vari-
ables presented in the study. To reduce the number of effects and simplify the
analysis, we instead performed two sets of two-way repeated measure ANOVAs
(each set contains five ANOVA tests) to assess the main and interaction effects of
the intended–emotion and structure on the ratings of anger, happiness, sadness,
arousal, and valence by the male participants (set 1) and female participants (set
2). This way, we have reduced the number of variables to two within-group vari-
ables: intended–emotion and display structure. Therefore, the number of main
and interaction effects is reduced to three, which facilitates the interpretation of
different effects on the male and female participants’ perception. Table 1 shows
the null hypotheses tested in each repeated measure ANOVA.

Tables 2 and 3 show the resulting F–statistics, p–values, and effect sizes (η2)
for male and female participants, respectively. The SPSS statistical software
package [31] was used to generate the user study results. The ANOVA results
are considered significant at p<0.05.

According to the ANOVA results in Table 2, there is a significant inter-
action between structure and intended–emotion in the male participants’ rat-
ings of anger, happiness, sadness, and valence; hence rejecting Hmale

0 (3, i) for
i = {anger, happiness, sadness, valence}. However, no significant interaction
between the intended–emotion and structure in the female participants’ ratings
was observed (Table 3); hence, retaining Hfemale

0 (3, i)’s.
There are also differences in the main effects of the intended–emotion and

display structure on the male and female participants’ perception. The intended–
emotion was found to significantly influence the ratings of both the male and

Table 1. Null hypotheses tested in the repeated measure ANOVAs for the male
participants’ ratings; i = {Anger,Happiness,Sadness,Arousal, V alence}, G =
{male, female}

HG
0 (1, i): The means of the G participants’ ratings of i for different intended–

emotions are equal.

HG
0 (2, i): The means of the G participants’ ratings of i for different structures are

equal.

HG
0 (3, i): Structure and intended–emotions are independent and no interaction ef-

fect between the two is present in the G participants’ ratings of i.
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Table 2. F–statistics, p-values and effect size (η2) results from two-way repeated mea-
sure ANOVAs each testing the main and interaction effects of structure and intended–
emotion on male participants’ ratings of anger, happiness, sadness, arousal, and valence.
There are 12 male participants. Greenhouse-Geisser correction is used when sphericity
assumption is violated. “*” sign indicates a significant effect. Bonferroni adjustment
was made for multiple comparisons.

i : Anger Happiness Sadness Arousal Valence

Intended–Emotion F (2, 22) = 15.006 20.749 2.127 18.947 9.981(
Hmale

0 (1, i)
)

p = 0.000* 0.000* 0.143 0.000* 0.001*
η2 = 0.315 0.244 0.089 0.503 0.162

Structure F (1, 11) = 0.014 4.068 3.000 1.232 2.129(
Hmale

0 (2, i)
)

p = 0.908 0.069 0.111 0.291 0.172
η2 = 0.000 0.027 0.014 0.004 0.012

Structure x Intended–emotion F (2, 22) = 5.421 7.871 8.406 1.329 17.488(
Hmale

0 (3, i)
)

p = 0.012* 0.003* 0.002* 0.285 0.000*
η2 = 0.071 0.166 0.103 0.008 0.228

Table 3. F–statistics, p-values and effect size (η2) results from two-way repeated mea-
sure ANOVAs each testing the main and interaction effects of structure and intended–
emotion on the female participants’ ratings of anger, happiness, sadness, arousal, and
valence. There are 10 female participants. Greenhouse-Geisser correction is used when
sphericity assumption is violated. “*” sign indicates a significant effect. Bonferroni
adjustment was made for multiple comparisons.

i : Anger Happiness Sadness Arousal Valence

Intended–Emotion F (2, 18) = 8.825 7.676 14.333 33.081 15.221(
Hfemale

0 (1, i)
)

p = 0.002* 0.004* 0.000* 0.000* 0.000*

η2 = 0.254 0.174 0.230 0.612 0.311

Structure F (1, 9) = 16.308 1.385 11.000 11.184 38.383(
Hfemale

0 (2, i)
)

p = 0.002* 0.269 0.009* 0.009* 0.000*

η2 = 0.114 0.009 0.042 0.047 0.122

Structure x Intended–emotion F (2, 18) = 1.619 2.739 3.508 0.360 2.521(
Hfemale

0 (3, i)
)

p = 0.226 0.092 0.084 0.703 0.108

η2 = 0.019 0.050 0.064 0.003 0.060

female participants in all the cases in this study except for the male sadness
ratings. The structure has a significant main effect on the female participants’
ratings in all the cases at p < 0.05 except for the happiness ratings (rejecting

Hfemale
0 (2, i) for i = {anger, sadness, arousal, valence}), whereas the effect of

structure on the male participants’ ratings was not found significant at p < 0.05.
Bar charts of average ratings of anger, happiness, sadness, arousal, and va-

lence by male and female participants are shown in Figure 4. Paired t -tests are
performed between the pairs of the male and female participants’ ratings of the
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Fig. 4. Average ratings (mean ± SE) for the affective movements displayed on the
human–like and frond–like structures by 12 male and 10 female participants. From left
to right, ratings for: anger, happiness, sadness, arousal, valence. Significant pair-wise
differences between the ratings of an intended–emotion displayed on different structures
are indicated using “*” sign and their p-values are reported.

affective movements displayed on the hand–like and frond–like structures and
significant pair-wise differences are shown using “*” in Figure 4.

Table 4 shows a confusion matrix of the perception of the intended–emotions
(i.e., anger, happiness, sadness). For the confusion matrix, an emotion is con-
sidered recognized if it is rated 3 or above on the Likert scale. Note that this
recognition cut–off is applied only for illustrative purposes in Table 3 and all
the analysis in Section 4 is done on the full scale of ratings obtained in the
questionnaire study.

As can be seen in Table 4, the perception of anger by the female participants
was significantly affected by the structure as the angry movement displayed on
the frond–like structure was less frequently recognized as conveying anger in
comparison with the angry movement displayed on the human-like structure (fe-
male anger rating of the angry movements in Figure 4). The male participants
equally attributed high-arousal and negative valence to the angry movement and
correctly recognized angry movement regardless of the structure (male anger,
arousal, and valence ratings of the angry movement in Figure 4). However, fe-
male participants associated a lower-level of arousal and less-negative valence
to the frond–like structure displaying the angry movement (female arousal and
valence ratings of the angry movement in Figure 4). The better performance of
the male participants in recognizing angry movements is congruent with [33, 25]
suggesting that men are more accurate in recognizing angry expressions. The
happy movement displayed on the human–like structure is correctly recognized
as conveying happiness and positive valence by both male and female partici-
pants, whereas the frond–like structure displaying happiness is less frequently
recognized as happy. The male participants frequently misperceived the happy
movement displayed on the frond–like structure as conveying anger, which might
be the reason for the slightly negative valence attributed to the Frond Happy
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movement by the male participants. Frond Happy movement is correctly rec-
ognized by the female participants. Although there is a significant difference
between the average arousal ratings of the Frond Happy and Real Happy move-
ments by the female participants, these average ratings are relatively high for
both structures with the Real Happy movement regarded as conveying a higher
arousal. The relatively higher accuracy of the female participants in recognizing
happy movements in comparison to the male participants is similar to the re-
ports in [35, 5] suggesting that women are more tuned to experiencing positive
expressions.

Both the male and female participants correctly rate the sad movement dis-
played on the human–like structure as sad with low arousal and negative valence
attributes, while the Frond Sad movement is less frequently recognized as sad.
The Frond Sad movement is frequently perceived as conveying happiness and
positive valence, especially by the male participants. Overall, both male and
female participants correctly recognized differing levels of arousal from the af-
fective movements, while women rate the perceived valence more accurately,
which is consistent with [19].

Another important observation in this user–study is that the male and fe-
male participants exhibit a more similar affective movement perception when the
demonstrator structure is human-like (Figure 4 and Table 4). Such structure-
specific similarities in the perception of affective movements merit further inves-

Table 4. Confusion matrix showing percentage (%)* of anger, happiness, and sadness
ratings for different affective movements by the 12 male and 10 female participants.
The recognition rates greater than 50% are highlighted.

Perceived emotions

Anger Happiness Sadness

Hand Angry (male) 92% 0% 33%
Frond Angry (male) 75% 8% 33%

Hand Angry (female) 70% 10% 30%
Frond Angry (female) 30% 20% 40%

Hand Happy (male) 17% 83% 0%
Frond Happy (male) 50% 50% 25%

Hand Happy (female) 50% 70% 30%
Frond Happy (female) 0% 60% 20%

Hand Sad (male) 25% 17% 58%
Frond Sad (male) 0% 67% 17%

Hand Sad (female) 20% 10% 90%
Frond Sad (female) 0% 40% 40%

∗ There are cases where an affective movement was rated 3 or above for more than one
emotion. On the other hand, there are cases in which anger, happiness and sadness
were all rated below 3. This is why none of the emotion ratings add up to 100% in the
confusion matrix.
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tigation and would potentially motivate the use of more human–like structures
for communicating affect during human-robot interaction to ensure consistent
perception.

5 Conclusions

User studies allow for the exploration of the human capabilities in recognizing
affective expressions displayed on different structures. Insight gained from such
user studies can inform the design of interactive technologies capable of display-
ing various affective expressions. To the best of our knowledge, this study is the
first report on gender differences in the perception of dynamic structures dis-
playing affective movements. In the preliminary study presented in this paper,
gender-specific differences in the perception of affective hand movements dis-
played on two different structures were investigated. It was found that the gender
significantly influenced the perception of the affective movements in many cases.
Furthermore, cases were observed in which the impact of the intended–emotion
and display structure on the participants’ perception of the affective movements
varied between male and female participants (e.g., anger ratings for Frond Angry
movement). The male participants perceived angry movements more accurately
than the female participants regardless of the display structure, whereas the fe-
male participants performed better in recognizing happy movements. Both male
and female participants frequently misperceived sad movements displayed on the
frond-like structure as conveying a positive expression.

The detected main and interaction effects of the intended–emotion and dis-
play structure in this study are of medium to large sizes. These findings demon-
strate the important role that gender might play in the perception of affective
movements and emphasize the importance of considering gender in the design
of affective display mechanisms in general. There are a few prominent effects
(e.g., intended–emotion effect on the sadness ratings of the male participants)
that were not detected in this study. Future studies with a larger sample size
will enable investigating the importance of these effects.

In future studies, the role of gender in the perception of affective movements
will be further explored with a larger number of participants and a larger variety
of affective movements in terms of expressivity and motion path. Furthermore,
gender differences in the perception of different display structures will be further
investigated to identify if there exist structures that might limit (or modulate)
the communication of affective expression with male or female observers.
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affective hand movements. Submitted to International Journal of Social Robotics
(2012)

[29] Samadani, A., DeHart, B.J., Robinson, K., Kulić, D., Kubica, E., Gorbet, R.: A
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Abstract. The paper provides a conceptual definition of the notions of vague-
ness and approximation (a lack of detail or precision in the knowledge one has 
of something), hesitation and hastiness (the act of waiting before, or hurrying 
up while speaking), and overviews some reasons why people can be vague, ap-
proximate, hesitating or hasty. A study is presented in which participants tell a 
recent dream of theirs, and a qualitative analysis is proposed of the words, ges-
tures and other bodily signals that communicate vagueness, approximation, 
hesitation, hastiness, and word search during dream-telling, by pointing out 
their semantic differences and the features that distinguish them. 

Keywords: Vagueness, approximation, hesitation, hastiness, social signals, 
multimodal communication.  

1 Introduction 

When we talk to other people, whether arguing in a discussion or telling a story dur-
ing small talk, we are bound to implicit norms of communication, like Grice’s Coop-
eration Principle and the maxims of Quantity, Relation, Quality, Manner, that impose 
to provide sincere and unambiguous information, and not to tell not more nor less 
than what is relevant for our interlocutor. Sometimes, though, we do know the infor-
mation we are providing is not totally certain, complete, accurate or detailed, and we 
acknowledge this by verbal, prosodic or gestural markers of uncertainty (Lakoff, 
1973; Rowlands, 1995; Dral et al., 2011) or vagueness (Poggi & Vincze, 2012) that 
metacommunicate our “caveats” about the information conveyed. By doing so we in a 
sense apologize and justify ourselves for keeping below the threshold of minimum 
needed quantity and clarity of information.  

Actually, two kinds of problems may hold in the information we are providing and 
the way we convey it: one concerning the cognitive properties of information itself, 
for instance its being vague or approximate, and one concerning our own cognitive 
activity while conveying it, like our hesitation or hastiness. This work deals with a set 
of signals that convey these two kinds of meaning: the vagueness or approximation of 
the information we are providing, and our own hesitation or hastiness in phrasing it. 
Investigating these signals enlightens the level of sophistication of our everyday 
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communication but also provides insights about how sophisticated nuances of human 
communication might be sensed and simulated by Virtual Agents and Robots. 

2 Vagueness and Connected Notions 

The concept of vagueness has been so far investigated by language philosophers 
(Keefe, 2006) but while markers of uncertainty have been tackled no one has studied 
how people acknowledge their vagueness in discourse through multimodal 
communication. Recently, Poggi & Vincze (2012) provided a cognitive definition of 
vagueness as a property of the knowledge assumed about a certain topic: a lack of 
detail in what one knows about something. As we are vague, we do not have a 
detailed knowledge of the topic, but only general beliefs, and not ones on particular 
aspects of it.  

Vagueness was contrasted to precision; the fact of having beliefs on each specific 
aspect of a topic, but distinguished from uncertainty, since we may have a vague 
knowledge, a vague idea, a vague remembering of something, but still be certain of it. 
Vagueness was distinguished from approximation, a lack of precision concerning 
quantitative aspects of the topic, as opposed to vagueness that concerns qualitative 
aspects of it: the former has to do with measuring, the latter with describing. Approx-
imation is close to uncertainty and, like vagueness, opposed to precision, and preci-
sion is the opposite of both approximation and vagueness, but viewed from two dif-
ferent angles: quantity and quality.  

Besides setting the conceptual differences between these phenomena, Poggi & 
Vincze (2012) looked at how we multimodally communicate meanings of vagueness 
and approximation during discourse, by defining “vagueness signals” as the verbal or 
bodily metadiscursive signals (Poggi, 2007) that convey the meaning “I am being 
vague”. In general, metadiscursive signals reveal the Sender’s goals concerning 
her/his discourse planning, i.e. what s/he considers important, what s/he affords to 
skip, and what logical links s/he states among parts of her/his plan. During discourse, 
if we want to convey we are being less detailed or accurate in some parts of it,  e.g., 
because those parts are not so important in the economy of the whole discourse, we 
may do so by words, gestures, gaze or facial expressions. These are “vagueness sig-
nals”, i.e. metadiscursive signals that convey “I deliberately choose to be vague about 
this”.  

The quoted work also singled out the characterizing features of signals for vague-
ness and approximation: “vagueness gestures” generally share the features of a basic 
and easy handshape (open hand, curve fingers, generally no protruded fingers), and 
curve movement trajectory. They are generally repeated, possibly in shape of a circle 
and with a cyclic form, and often involve movements of outward rotation (as opposed 
to the oscillation of approximation gestures), with low muscular tension and high 
fluidity. Moreover, they are sometimes accompanied by eyes looking upward or 
sideways, typical of someone who has not yet found the right concept, or by a gri-
mace with lips lowered conveying “I don’t know”. 

The motor features of curve handshape, outward rotation and low tension of the 
“metadiscursive vagueness gestures” metaphorically evoke the blurred and fuzzy 
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knowledge typical of vagueness, and can be seen as an embodied meaning of relaxa-
tion of someone who is aware of being vague, but feels s/he can afford to be so, and 
conveys: “I am relaxed since speaking of this is not so important, thus I can afford 
being vague”.  

“Approximation gestures” instead generally involve an oscillation of head and 
hands, with open stretched hands, sometimes with spread fingers. 

 Two main reasons were singled out why we may deliberately decide to be vague: 
..: either we do not have detailed information about the topic (no power) or we are 
aware of details, but do not want to provide detailed information (no goal). In the 
former case, we lack information for being precise, in the latter, we deliberately de-
cide not to provide precise information.  

These two causes may combine in approximation: we may be approximate either 
because we lacks knowledge about the precise quantity at issue (no power), or be-
cause stating a different quantity than the actual one does not make a significant dif-
ference for either ourselves or our Interlocutor (no goal). 

3 Cognitive Properties of Knowledge and Cognitive Processes 
in Communication 

This work further investigates the signals of vagueness and approximation, while 
trying to go more in detail in the notions and expressive signals of three more pheno-
mena: word search, hesitation, and hastiness.  

We first assign these five areas to two different classes: vagueness and approxima-
tion are properties of the knowledge one conveys in communication, while word 
search, hesitation and hastiness are processes occurring when one has to transfer piec-
es of knowledge through communication.  

The two further concepts of hesitation and hastiness are connected, as we shall see, 
to the notions of vagueness and approximation investigated so far. In a sense, hesita-
tion is the opposite of hastiness, since as we hesitate we have the goal to take more 
time before doing something, while when we are hasty, we have the goal to hurry up 
not to lose time. 

4 Hesitation 

Hesitation can be defined as a non-action, or better, an action of waiting, of delibe-
rately taking time – leaving time elapse – before doing something (something that in 
any case one has the goal, or is expected to do) either due to total lack of knowledge 
on what to do, or due to indecision between two or more actions. In fact one may 
hesitate because one utterly does not know what to do, but also because one has not 
yet made up one’s mind on either pursuing a goal or not, or on which action to do to 
pursue some goal. If one offers me a pastry with cream I may be undecided on wheth-
er to eat the pastry or dieting; but if I already decided not to diet,  I may be undecided  
on whether to choose a cream or a chocolate pastry .  
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Besides hesitating before doing some practical action, we can hesitate before some 
communicative action, like answering a question. In this case too, hesitation may be 
caused by indecision on whether to give the answer A or the answer B, by indecision 
on whether to answer or not, or finally by total lack of knowledge on what to answer.  

In this work we focus on hesitation in communication, which can be defined as 
waiting before doing a communicative action. Let us make some hypotheses about the 
process that gives rise to phenomena of hesitation and hastiness, and to their commu-
nication. Hesitation in communication can be generated by at least three cases: 

1. WORD SEARCH: I have the goal to convey some concept and search my mental lex-
icon for a right word to convey this; but I cannot retrieve the right word: this gives 
rise to a goal of waiting and taking time before uttering new words and generally 
going on in discourse 

2. COMMUNICATIVE INDECISION: I have the goal to convey some concept, I search my 
mental lexicon, but I find more than one word: this gives rise to indecision, and 
consequently to a goal of making up my mind on which word to utter, which in its 
turn generates a goal of taking time 

3. RETICENCE: At first I have the goal to communicate a particular content, or to find 
a particular word that conveys it; but then I evaluate the possible consequences of 
my communicating it, either in view of my own interests (selfish worry) or in view 
of my Interlocutor’s interests (altruistic worry). This generates the goal of not ut-
tering exactly that word, or phrasing that concept, but substituting it with a lie (in 
the selfish case) or, for example, with a euphemism (in the altruistic case). This ne-
cessity for further concept or word search triggers a need for taking time.  

In the first two cases the goal of taking more time may be consciously and deliberate-
ly communicated, not only by the actual time elapsed before the next word, (i.e. long-
er than expected), but also by perceivable signals like filled pauses or so; in the third 
case the unexpected length of time elapsed may work as an informative signal (Poggi 
& D’Errico, 2012) – i.e., a signal that provides information to the receiver though not 
deliberately emitted by the sender. In both the selfish and the altruistic case, the Send-
er’s goal is not to let the Interlocutor understand the reason for one’s hesitation, nor, if 
possible, to make the hesitation itself observable and conspicuous. 

Interestingly, vagueness may be a sub-case of case 1. Sometimes it is not that you 
really can’t find a word, but you simply feel that word is not precise enough as you 
would like it to be; in this case you can hesitate just because you do not want to be 
vague. 

5 Hastiness 

We define hastiness as the goal of not losing time while doing something. One who is 
hasty is doing something, but in doing it, one does not want to bother to do things in a 
particularly precise or accurate manner. This is so in hasty communication too, where 
hastiness can be defined as the goal of not wasting time in the lengthy definition or 
description of contents of ongoing discourse.  
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Hastiness may be determined by some steady trait of the Speaker. As argued by 
Poggi (2007), personality can be seen as the fact of attributing more importance to 
some goals than to others. Therefore people’s personality may determine their com-
municative style, i.e., their tendency to be more or less hasty, but also the respective 
communicative outputs of their hastiness. Let us describe various types of possible 
senders, the reasons and outcomes of their hastiness, and make some predictions 
about their hastiness signals. 

4. VAGUE BY NATURE. Mr. X generally does not bother about being precise: the goal 
of being precise is not so important for X, so when competing with a possible goal 
of saving time in conversation, the latter wins: this triggers a goal of being con-
tented with a low level of precision. Yet, X realizes he is keeping below the Gri-
cian norm of sufficient information, and metacommunicates his being brief and 
hasty. 

5. PRECISE BY NATURE. Mr. Y, the opposite of Mr. X, generally likes being detailed: 
he attributes high importance to the goal of being precise. But in this case he can-
not be precise, due to vagueness or imprecision in his very underlying knowledge: 
he then he communicates his imprecision, but since this is a blow to his own image 
of a precise person, he feels irritated. So we may predict a nuance of irritation leak-
ing from the parameters of movement in his gestures.  

6. SELFISH PRIVACY PROTECTOR. For Mr. Z, his goal of privacy is very important, 
while the goal of being precise is of medium importance. When he feels that going 
too much into detail might disrupt his goal of privacy, he decides to be imprecise; 
but instead of saying “well it’s too private”, he may mask his will of being impre-
cise by a will of being fast. He is in a sense forced to do so because, should he sin-
cerely confess he does not want to go into details, this would anyway give hints to 
the interlocutor.  

7. ALTRUISTIC EUPHEMISTIC PROTECTOR. Mr. K does like to be precise. Yet, when in-
formation can be painful or disrupting (Castelfranchi & Poggi, 1998), since he con-
siders the goal of not hurting the other very important, he prefers to protect the In-
terlocutor by being imprecise. In this case too, like as for Mr. Z, to conceal that he 
is being imprecise only to avoid hurting, Mr. K pretends to simply be in a hurry: 
hastiness as a means for euphemism. 

In the following we present a study aimed at analyzing verbal and multimodal signals 
of Vagueness, Approximation, Word Search, Hesitation and Hastiness.  

6 Data Collection and Analysis 

The analysis of body signals of vagueness, word search and approximation undertook 
by Poggi & Vincze (2012) was performed on a corpus of recorded oral examinations. 
Although during exams answering questions in a vague or blurred way definitely goes 
against one’s interests, yet in this context students often do provide vague accounts of 
very precise issues. And while oral exams are rich in gestures, prevalently batons,  
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iconic and deictic, because in trying to be clear the students tend to employ every 
possible means (linguistic, kinetic and paralinguistic),  body signals of vagueness are 
also present, though fewer than other types of signals.  

To go deeper in the area of vagueness signals, we collected another type of corpus. 
Capturing instances in which people report about vague concepts required eliciting 
situations where one does not have precise knowledge/remembrance about the spe-
cific concepts at issue: such as in dream-telling. The events in a dream are, by their 
nature, often confuse and vague, as one does not only mismatch entities (people, 
places) with one another by attaching some attributes of x to y; but sometimes, one 
does not have precise remembrance about some relevant attributes of these entities. 
Therefore we assumed that people reporting their dreams might employ fuzzy ges-
tures with imprecise trajectories.  

We designed an experiment where 25 students in Education Sciences, 23 females 
and 2 males, between 20 and 30, were asked to tell a recent dream.  While telling their 
dream to an interviewer, the participants’ body movements were recorded by a digital 
Panasonic camcorder. Participants were seated on a chair without armrest and only 
their upper body (trunk, arms, hands and head) were video-recorded. When partici-
pants, during their narration, mentioned vague remembrance or vague knowledge of 
events happening in the dream, the interviewer would ask them to detail those aspects 
of the dream with the intent of “raising” (Gianturco, 2004) the performance of (possi-
bly vague) gestures accompanying vague memories.  

A total of 25 fragments of dream telling were collected, consisting of approxi-
mately 5 minutes each. The verbal behaviour of participants was transcribed by taking 
into account the intonation unit (IU) as the basic unit of transcription. The intonation 
unit is a prosodic unit in natural discourse, a speech segment that falls into a single 
coherent intonation contour, and is sometimes separated by pauses at the beginning 
and the end (Chafe 1987, Du Bois et al. 1992).Transcribing the data in IUs, each IU 
lined up on a separate line, helps readers to more easily grasp the pauses in speech.  

Before this transcription, the vide-recorded data were first viewed on mute mode to 
avoid bias from the verbal context. When items of gestures or facial expressions pos-
sibly conveying vagueness meanings were singled out, the video fragment was re-
viewed on voiced mode, transcribed and later coded by two independent coders. All 
the body signals conveying vagueness, approximation, word search, hesitation and 
hastiness were transcribed and analyzed in an annotation scheme of multimodal 
communication (of the type of Poggi, 2007). For each signal we annotated: 1. con-
comitant verbal behaviour, 2. analysis of the signal (for a gesture, its handshape, 
place, orientation, and the parameters of movement, such as direction, path, tension, 
amplitude, fluidity, repetition); 3. possible concomitant body behaviour, like gaze, 
smile, posture; 4. the meaning attributed to the signal at hand. Based on such annota-
tion, each signal was coded as one of vagueness, approximation, word search, hesita-
tion or hastiness, and a hypothesis was made as to the reason (no-goal or no-
knowledge) for the participant to be vague, approximate or other in that context.  
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7 A Qualitative Analysis of Signals of Vagueness, 
Approximation, Word Search, Hesitation and Hastiness 

Let us illustrate some cases extracted from the dream telling corpus.  
In the first video a female student tells us about her attempts to rescue a crow, in 

her dream of the previous night. She often stops and takes time to search for the right 
words, accompanying these moments by word search gestures, or else she interrupts 
the sentence flow because of vague remembrance, often making with loose, rotating 
gestures. Let us first analyze and distinguish between instances of word-search, ap-
proximation and hastiness.  

7.1 Word-Search Gestures  

When searching the most appropriate term for the particular context at hand, the 
speaker tends to fill her pause in speech either with fillers such as come dire “how to 
say” or by prolonging the preceding vowel. Jerky gestures, sometimes with rotating 
wrist or oscillating stretched fingers, often occur, symbolically representing the 
speaker’s search for the right term.  

(1) 
00.40 E mi ricordo appunto che mentreeeee […] 
Questo sogno 
è particolare perché il giorno dopo mentre uscivo di casa  
ho visto  
un corvo di fronte aaaaaaal  
roseto  
di casa mia […] 
(And I remember that whiiiiiiile […] This dream is special because the day after while Iwas 

going out of myyyyy house I saw a crow in front ooooof the rosebush in my garden[…]).  
 

While in the first case of prolonged vowel (mentreeeee= whiiiile) the Speaker aban-
dons the sentence and the word search (or memory search) and starts all over again by 
telling about the dream in general “Questo sogno è particolare” (This dream is spe-
cial), in the second case (aaaaaaal, = ooooof) the Speaker successfully concludes her 
search of the word roseto (rosebush) and iconically represents it.  

It might be that every time one is searching a word one prolongs the previous vo-
wel, with the only difference being that in the latter case the search was successful, 
while in the former the speaker decides to go on with the narrative, even if the search 
of that word has not been successful. 

7.2 Approximation Gestures  

To detect fragments where the speaker was being approximate we often relied on the 
“lexical affiliates” (Hadar & Butterworth 1997) of approximation gestures: typically, 
adverbs communicating approximation, such as “more or less”, “about”, “around”, 
“almost” “a bit more than”, “approximately”, “roughly”. To communicate approx-
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imate quantities by body signals, our participants perform oscillating gestures where 
the hand goes from right to left as windscreen wipers, but without the wrist rotation 
typical for vagueness gestures. The hand oscillation from right to left and back is 
symbolically parallel to the concept of “around”. It is as if the speaker sets out a point 
in space where the precise quantity is, and by oscillating around that point, she com-
municates the impossibility of reaching that very point. This impossibility of commu-
nicating a precise quantity stems either from a no-knowledge or from a no-goal cause 
(she may either ignore the precise quantity or not consider it important for the goals 
of the discourse). In fact, the very meaning “more or less” testifies that a higher or 
lower amount does not really make a difference. In fact, as already mentioned, ap-
proximation is a lack of precision concerning quantitative aspects of the topic. 

Let us see a gesture of approximation (or, strictly speaking, of unspecificity1) that 
appears in concomitance with lexical affiliates like una specie di (a sort of) and  come 
(like).  

 
(2) 
Però era tipo una specie di discoteca c’era la musica fortissima  
(But it was a sort of disco there was very loud music) 
 

Tipo una specie di discoteca (a sort of (disco)) implies that the concerned  place does 
not fulfill all the conditions to be considered a disco comme il faut. “A sort of” com-
municates that the place at issue cannot reach the threshold of defining features ac-
cording to which one can call a disco a disco: it is less than that. How much less, one 
cannot tell, one can only be approximate, as the girl in the video. She is telling her 
dream about being in a (sort of) disco and while stating una specie (a sort), her left 
hand goes from right to left as windscreen wipers, without any wrist rotation. 

In another example a student tells the interviewer about her dream about the end of 
the world. When describing the color of the sky as she perceived it in the dream, she 
uses several hedges to warn the listener of her incapacity of being more specific. A 
first hedge is colore tipo (a colour like/kind of); another one is a neologism: un cielo 
giallastro arancionato (a yellowish oranged sky). In Italian  –astro is a consolidated 
                                                           
1 We tend to distinguish lack of precision due to uncertainty concerning quantities or intensities 

(the case of approximation) from lack of precision due to lack of detailed knowledge of the 
qualitative aspects of the topic. This latter case, depending on whether the lack of detailed 
knowledge stands in the field of definition or in one of description, results in either unspeci-
ficity or vagueness, respectively. This subtle issue will be investigated in depth in a later 
work; for now we only mention that the three last examples belong, in our view, to the cate-
gory unspecificity, and not so much approximation, since  the impossibility of the Speaker is 
one of defining the object at issue due to lack of knowledge on its qualities.  

Some hedges (Lakoff, 1973), the words to acknowledge lack of precision, stand at the 
border between unspecificity and approximation, as they can be used both for quanti-
ties/intensities and for qualities. “Almost” (it. quasi) is one of them: one can both say: “There 
were almost 20 people at the party” (where “almost” clearly has a quantitative valence) and 
“He’s almost a man” (where “almost” refers to qualitative aspects, i.e. getting qualitatively 
close to being a man). As it often happens, the reign of designation gets extended from physi-
cal, concrete objects to abstract ones as well; this is also the case for “almost”.  
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suffix for colour derivates, that when added to the end of a color name communicates 
a close but not total similarity to that colour (giallo-giallastro = yellow-yellowish; 
verde-verdastro = green-greenish): it communicates closeness to the original color but 
at the same time a difference from. Unlike –astro, the suffix -ato is not morphologi-
cally productive as meaning “something like”. In our case, then, to tell the color of a 
sky that she cannot describe precisely, our participant creates a neologism, a new 
word with a suffix added to a root to which it is not usually attached: she adds the 
non-productive suffix (-ato) to a root to which it is not usually attached. And using a 
completely new term (arancionato) is well adapted to the necessity of conveying a 
somewhat unknown content, like the strange things we dream in our dreams. The 
speaker herself, not completely satisfied with her lack of specificity and also insecure 
whether her neologism created on the spot will be accepted by the interlocutor, turns 
her nose up in a grimace and lowers her head and shoulders. To turn nose up, a part of 
the expression of disgust, is often used to express a negative evaluation; so she is 
herself evaluating her own neologism badly; while lowering head and shoulders is a 
submissive posture by which she is apologizing for it.  

Approximation can also be a subgoal of a further goal like not wasting time for ir-
relevant explanations. In communication, when the interlocutor asks a clarification 
question, he expects an answer containing the due quantity of explanation. The speak-
er may then have two, possibly incompatible, goals: one of providing due clarifica-
tions and one of not wasting time in irrelevant details. This clash between the two 
goals can lead to the goal of being imprecise to save time, consequently causing a 
lack of precision in the speaker’s answer (which becomes either approximate or va-
gue).  Both approximation and vagueness can therefore also stem from a goal of not 
wasting time, not only from uncertainty or lack of knowledge.  

We now see how approximation and vagueness can be connected to the concept of 
hastiness. As seen in section 5, hastiness stems from one’s not wanting to waste time. 
In our next example approximation combines with hastiness. The girl of the “crow” 
dream is now talking about the people who were present in her dream while she was 
trying to help the crow. In the dream there was also a boy that she knew.  

(3) 
e io questo ragazzo conosco, 
èèèèèèè un  
diciamo un amico mio  
(and I know this boy he iiiiiiiiis a let’s say a friend of mine)  
 

The hedge diciamo (let’s say) works, in this case, as an alert signal warning of some-
thing that we might call “conceptual approximation”: the Speaker’s statement should 
be taken with a grain of salt, that is, the interlocutor should maintain a degree of skep-
ticism about its truth. Saying that someone “is, let’s say, a friend” signals that from a 
quantitative point of view that person does not have all the prototypical qualities to 
deserve being called a friend. Nonetheless, the Speaker does not wish to insist on this 
matter because irrelevant for the goals of the present discourse. Hence, the meaning of 
that statement may be paraphrased as: “It is not really so but it does not matter. Let’s 
not get into that”.  



86 L. Vincze, I. Poggi, and F. D’Errico 

 

In our case, before saying “let’s say, a friend of mine”, the participant hesitates and 
takes time to decide how to call the boy at issue. Her hesitation is marked by a pause 
in speech flow, a pause filled by the prolongation of the monosyllabic verb “è” (is). 
The speaker decides not to waste time to get into detail on the degree of friendship 
between herself and the boy, and she accompanies her words with rapid rotating 
movements. Velocity implies tension, so we are not dealing with a vagueness gesture 
here. It is a metaphorical gesture designating big quantities which are accepted on the 
basis of no special control: something like saying “grossly speaking”. In fact, this is 
where the inattention to details comes from. As you are worried about wasting time, 
details are not your main concern.  

7.3 Hastiness Gestures 

In the previous example the participant gives approximate information not to waste 
time in irrelevant details. Later, in the same video, she gives an example of hastiness 
due to slight irritation: as the interviewer insists on a more detailed description of the 
boy at issue (how he looked like), she mentions a quite distinctive feature of the boy 
(he had a pony-tail), but tries to make this detail pass as non relevant, one not worth 
wasting time talking about it. She also looks somewhat irritated since she performs a 
tense and rapid gesture with both hands open, facing upwards and intersecting each 
other moving as scissors. In this gesture, the upward orientation of palms evokes the 
visual metaphor of showing one’s bare hands, paraphrasable both as “I’m sincere, I do 
not hide anything from you” and as “What I show you (bare hands) is all I have”. 
These two possible interpretations may be combined in the meaning of “I do not 
know anything more than this” while the movement of both hands intersecting with 
each other like two blades of scissors conveys “let’s cut the unimportant details”. 
Thus, globally the gesture can be interpreted as a cutting short strategy. The student’s 
head comes forward  as if asking “What do you want me to say?”. Her hastiness 
might derive either from not wanting to pause over such personal things (see the case 
above “selfish privacy protector”) or from having imprecise or vague knowledge 
(“precise by nature”).  

7.4 Vagueness Gestures 

The “crow” dream gives us two examples of the two possible reasons for being va-
gue: no knowledge and no goal. Let us see the former: a gesture motivated by no 
knowledge, not only of a word but even of the concept.  

While word search instances are, in most cases, resolved by finding the wanted 
word (consequently prosodically and/or gesturally emphasized), vague concepts are 
difficult to seize and most speakers give up in the middle of the description, abandon-
ing the task and leaving the sentence suspended. In one fragment the girl unsuccess-
fully tries to shed light on aspects of her dream. After saying mi ricordo appunto che 
mi ricordo (I in fact remember that I remember), she makes a pause and performs a 
vagueness gesture with both hands open, right hand performing circular and loose 
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rotating movements: remembrance is vague. She therefore gives up remembering and 
moves forward with the dream account.  

In another example, vagueness is a conscious choice and comes after a moment of 
hesitation about whether or how to mention certain unpleasant issues. This fragment 
comes immediately after she mentioned the crow in the rosebush: 

(4) 
[...] che stava praticamente ha preso un uccellino  
e se l’èèèèè praticamente portato via  
(which was standing it virtually  caught a little bird and virtually took it away) 

 
The Speaker uses a vague euphemism to convey the idea, as if preferring not to men-
tion certain macabre things such as the crow killing the little bird. While prolonging 
the vowel èèèè she rotates right hand open with rapid and tense movements.  The 
Speaker performs a light embarrassment smile while fixedly gazing at the interlocu-
tor. We may notice that a conscious choice of being vague is not characterized by 
loose movements as in the previous case where the Speaker dealt with vague remem-
brance, but by rapid and tensed rotations. In fact, when deciding whether to tackle 
unpleasant information, the Speaker makes a conscious choice which eventually may 
lead not to mention certain things (no goal). Decision making can sometimes be a 
tense and stressing process, not at all loose and relaxing as when we give up search 
and admit – to oneself and others – that we do not have that specific piece of informa-
tion. 

8 Concluding Remarks 

From a conceptual point of view, the five notions tackled in our work (vagueness, 
approximation, hastiness, hesitation) are all connected to one another. Three of them 
share an element of lack of precision (approximation and vagueness stand for quantit-
ative and qualitative lack of precision, respectively, while hastiness stems from the 
goal of not wasting time by being too precise). Hesitation only (here we refer to hesi-
tation in word search) does not stem from a lack of precision, but in a way, from a 
desire of precision, and in this sense it is the opposite of hastiness.  

As we have seen, word search may determine hesitation in discourse flow. On the 
contrary, hastiness, being characterized by a lack of interest in doing things in a par-
ticularly precise or accurate manner, may trigger approximation. One who is required 
to give some information but is in a hurry and does not want to waste time, may settle 
with providing an approximate information and signal this by an approximation ges-
ture. In our corpus, we singled out gestures belonging to all these categories. Every 
gesture having a fuzzy-round, oscillatory, rotating or jerky trajectory was taken into 
consideration and analyzed. Four categories of gestures were singled out as belonging 
to this trajectory description, namely: vagueness (fuzzy-round), approximation (oscil-
latory), word search (rotating) and hastiness gestures (jerky).  

Some categories of gestures share common parameters: vagueness and word search 
have the rotating movement in common, but while in vagueness the rotation is loose, 
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in word-search the Speaker performs more rapid rotations (possibly due to irritation 
for not finding the right word and/or to time constraints in conversational turn-taking). 
Other times, within the same gestures category there may be a difference in gesture 
parameters. This is the case of vagueness gestures, that may either be loose and slow 
with averted gaze (eyes up in the sky or lowered often with tight eyelids possibly 
conveying effort in focusing) or rapid and tensed, accompanied by direct eye contact 
and sometimes by smile. The former is the case of vagueness gestures performed 
when there is no remembering (no knowledge), while the latter is the case of vague-
ness gestures performed when the Speaker prefers to remain vague and allusive in the 
expression of his communicative content. The former may occur either in absence of 
vocalizations or, if vocalizations are present, the gesture is accompanied by a pro-
longed mmmmmmm sound (it signals the ongoing cognitive process while trying to 
shed light on the vague remembrance). Sentences are sometimes left suspended as the 
Speaker does not know how to continue the description (no knowledge). In the latter 
(no goal) case, the produced vocalization is the prolongation of the last preceding 
vowel or of a [ǝ]. This particular case is very similar to hesitation. In fact while hesi-
tating one mentally calculates the advantages and disadvantages – for oneself, interlo-
cutor or third person – of speaking or not speaking and while reasoning on this, one 
fills in this hesitation moment by a prolonged [ǝ].  

This paper stems from the desire of investigating the concept of vagueness in body 
communication and it represents a further step towards the understanding of the so-
called vagueness gestures and the speakers’ goals in performing them. It is nonethe-
less a preliminary research, tackling only qualitative aspects of vagueness communi-
cation. In a future study we will investigate quantitative differences between vague-
ness, approximation, word-search and hastiness gestures in the two corpora of dream-
telling and oral examination, and possibly in other corpora.  
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Abstract. The EU-ICT FET Project ILHAIRE is aimed at endowing
machines with automated detection, analysis, and synthesis of laughter.
This paper describes the Body Laughter Index (BLI) for automated de-
tection of laughter starting from the analysis of body movement captured
by a video source. The BLI algorithm is described, and the index is com-
puted on a corpus of videos. The assessment of the algorithm by means of
subject’s rating is also presented. Results show that BLI can successfully
distinguish between different videos of laughter, even if improvements
are needed with respect to perception of subjects, multimodal fusion,
cultural aspects, and generalization to a broad range of social contexts.

1 Introduction

Traditional Human Computer interfaces are frequently perceived as “cold, in-
competent, and socially inept”. According to Zeng and colleagues, this results
from the fact that they ignore the user’s affective state and consequently miss
a key component of human-human communication [1]. This is why, in the last
years, progress was made toward the creation of emotional Human-Computer
interfaces, see for example Affective Computing [2] and Kansei Information pro-
cessing [3].

Laughter is a relevant component in human-human nonverbal communication
and it is a powerful trigger for facilitating social interaction. Indeed, Grammer [4]
suggests that it conveys signals of social interest and reduces the sense of threat
in a group [5]. Further, laughter seems to improve learning of new activities from
other people [6] and facilitates sociability and cooperation [7].

For the above reasons, the newly started EU-ICT FET Project ILHAIRE
(http://www.ilhaire.eu) aims to investigate how machines can decode laugh-
ter (i.e., to know when the user is laughing, to measure intensity of laughter, to
distinguish between different types of laughter) and also how Embodied Conver-
sational Agents can communicate laughter.

In our work, we mainly focus on the detection and on the analysis of the
movement descriptors (e.g., speed, direction, periodicity, and so on) that are
deemed to characterize laughter. Very few researchers investigated the role that
body plays in human laughter, even if all of them agree that body configuration
and dynamics contribute to the communication of different types of laughter.

A.A. Salah et al. (Eds.): HBU 2012, LNCS 7559, pp. 90–98, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Ruch and Ekman [8] observed that laughter is often accompanied by one or
more (i.e., occurring at the same time) of the following body behaviors: “rhyth-
mic patters (five pulses per second)”, “initial forced exhalation”, “rock violently
sideways, or more often back and forth”, “nervous tremor . . . over the body”,
“twitch or tremble convulsively”. Becker-Asano and colleagues [9] observed that
laughing users “moved their heads backward to the left and lifted their arms
resembling an open-hand gesture”. De Graaf [10] observed that laughing con-
sists of a deep inspiration followed by a rapid convulsive expiration whereas de
Melo et al. [11] implemented a virtual agent that “convulses the chest with each
chuckle”. Finally, Markaki and colleagues [12] analyzed laughter in professional
meetings: the user laughs “accompanying the joke’s escalation in an embodied
manner, moving her torso and laughing with her mouth wide open” and “even
throwing her head back”.

A pioneering system including automatic detection of laughter is the Affective
Multimodal Mirror [13][14]. This system “tries to induce positive emotions in
users by showing a distorted (“funny”) representation of their face” [13]. The
system senses and elicit laughter, based on a vocal and a facial affect-sensing
module, whose outputs are integrated by a fusion module.

The above studies suggest that it should be possible to develop systems for
automatic detection of laughter and even differentiate between different types of
laughter (e.g., hilarious vs. social [12]). In this paper, we present a preliminary
work in this direction in the framework of the ILHAIRE Project: we conceived
and implemented the Body Laughter Index (BLI), an index that, by combining
together movement descriptors, allows to automatically determine whether a
user is laughing or not. We also describe a pilot evaluation study we conducted
on the BLI.

2 Computation of the Body Laughter Index

Figure 1 depicts the software architecture for computing BLI. Next subsections
provide details on the major software modules. All of them have been imple-
mented in the EyesWeb XMI platform (http://www.eyesweb.org) and in the
EyesWeb Expressive Gesture Processing Library [15]. EyesWeb is a software
platform that allows developers to implement software modules for automatic
analysis of user’s expressive movement in an intuitive, visual way.

Based on the above literature, since laughter implies deep breathing (e.g., [10])
and possible rhythmic patterns, the initial set of descriptors taken into account
for developing BLI includes shoulders correlation and energy of body movement,
integrated with a measure of periodicity of movement.

2.1 Tracking of Head and Shoulders

Starting from an input video source (e.g., recorded video or camera), we de-
tect and track the 2D position of user’s head and shoulders. Head and arms
movements are useful hints to detect one’s affect [16]. We manually identify the

http://www.eyesweb.org
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Fig. 1. The software architecture for computing BLI. Firstly, tracking of head and
shoulders is carried out: the cloud of red points determines the Regions Of Interest
(ROIs) head and shoulders are located in. The blue dots are the geometrical barycenters
of each cloud. The boxes are the major software modules extracting and processing
movements descriptors.

Regions Of Interest (ROIs) user’s head and shoulders are located in (see the light
areas in Figure 1). Standard computer vision tracking techniques are applied to
each ROI, resulting in a cloud of points for each of them (see the red dots in
Figure 1). Then we compute the geometrical barycenter of the cloud (see the
blue dots in Figure 1) and we extract its x and y coordinates.

2.2 Low-Level Descriptors

We extract two low-level descriptors of the head and shoulders movement: kinetic
energy and correlation of shoulders movement.
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– Kinetic energy (E) is computed from the speed of the head (vh), of each
shoulder’s barycenter (vls and vrs), and their percentage masses (mh, mls,
and mrs). These are derived from anthropometric tables as referred by [17].
In particular, kinetic energy is computed as:

E =
1

2

3∑
i=1

miv
2
i =

1

2
(mhv

2
h +mlsv

2
ls +mrsv

2
rs) (1)

– Correlation of shoulders’ movement (ρs) is computed as the Pearson cor-
relation coefficient between the vertical position of the user’s left shoulder
and the vertical position of the user’s right shoulder. Vertical positions are
approximated by the y-coordinate of each shoulder’s barycenter extracted
as mentioned above.

2.3 Periodicity Index

Kinetic energy is serialized in a sliding window time-series having a fixed length.
Periodicity Index is then computed on such time-series. The Periodicity Index
(PI) is a real-time implementation of the Periodicity Transforms described in
[18]. The input data is decomposed into a sum of its periodic components by
projecting data onto periodic subspaces. Periodicity Transforms also provide
a measure of the relative contribution of each periodic signal to the original
one. Among many algorithms for computing Peridiocity Transforms, we choose
mbest. It determines the m periodic components that, subtracted from the origi-
nal signal, minimize residual energy. With respect to the other algorithms,mbest
also provides a better accuracy and does not need the definition of a threshold.
Figure 2 shows an example of computation of the Periodicity Index in EyesWeb
for the following input signal:

I(t) = sin(t) +N(t) (2)

where N(t) is a uniform random function generating values in [0, 0.6] to simulate
random noise. Such a range for N(t) is chosen so that the noise is strong enough
for simulation, but not so strong to destroy the original signal. The Periodicity
Index value for such an input function is 20 frames, as Figure 2 shows.

2.4 Body Laughter Index

As mentioned above, the Body Laughter Index (BLI) stems from the combina-
tion of the averages of the low-level descriptors, integrated with the Periodicity
Index. Such averages are computed over a fixed range of frames. However such
a range could be automatically determined by applying a motion segmentation
algorithm on the video source. A weighted sum of the mean correlation of shoul-
ders’ movement and of the mean kinetic energy is carried out as follows:

BLI = αρs + βE (3)
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Fig. 2. An example of Periodicity Index computation: the input time-series (on the
left) has a periodicity of 20 frames

As reported in [8], rhythmical patterns produced during laughter usually have
frequencies around 5Hz. In order to take into account such rhythmical patterns,
the Periodicity Index is used. In particular, the computed BLI value is acknowl-
edged only if the mean Periodicity Index belongs to the arbitrary range [ fps8 , fps

2 ],
where fps is the input video frame rate (number of frames per second).

2.5 Example

We ran our algorithm for BLI computation on 8 short input videos at 25 fps
taken from: (1) a previously recorded video corpus named “The Belfast Induced
Natural Emotion Database”, collected by the Queen’s University of Belfast [19];
(2) the YouTube website (videos generated with the Skype Laughter Chain appli-
cation, www.skypelaughterchain.com). The videos show users laughing while
watching funny images on TV. They smile and laugh, tilting their head and
producing rhythmic body movements.

Table 1 summarizes the results: the first column reports the video id; the
second and third columns show the average values of the low-level descriptors
(mean kinetic energy and mean Pearson correlation of shoulders’ movements);
the fourth column shows the computed BLI value; the last column reports the
mean Periodicity Index.

In this example, parameters for BLI were set to α = 0.7 and β = 0.3, respec-
tively. These are arbitrary values, argued from the literature reported in Section
1. An in-depth study for optimal values of these parameters will be needed in
future work.

3 Evaluation of the Body Laughter Index

BLI was also tested on 8 participants that watched and rated the 8 videos stimuli
of Section 2.5. The stimuli were randomized using a balanced latin square. Par-
ticipants were asked to rate on the following two 3-point Likert items: Q1 “Did
you perceive energetic body movements, involving shoulders rhythmically mov-
ing together?” and Q2 “How fast was the rhythmic movement you perceived?”.

www.skypelaughterchain.com
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Table 1. An example of computation of BLI. Kinetic energy E ranges in [0,+∞),
correlation of shoulders’ movements ρs ranges in [−1, 1], BLI ranges in [0,+∞), and
Periodicity Index PI ranges in [0, w], where w is the time window length in frames.

Video id E ρs BLI PI

1 40.7472 0.312 12.44256 16.2778

2 172.6268 0.358 52.03864 16.5362

3 117.4252 0.3508 35.47312 19.6532

4 14.458 0.6982 4.82614 7.874

5 0.5064 0.3092 0.36836 10.7522

6 0.1112 0.0664 0.07984 6.8234

7 250.8674 -0.2226 75.1044 18.9312

8 2.1034 0.5064 0.9855 10.293

These items were aimed at an initial assessment of BLI and of its components.
Both items were rated from 0 (not at all) to 2 (very much/fast).

3.1 Video Samples

We first checked whether the ratings between videos are significantly different
from one another. In other terms, we aimed at checking whether the 8 video
samples, submitted to the participants, offered a sufficiently variable level of
laughs for the pilot. We ran a Friedman test to observe possible differences
between the participants’ ratings for items Q1 and Q2 (see Figure 3).

Results show a significant effect for item Q1, χ2(7, n = 8) = 16.492, w = 1.4,
p < .05, but no effect for item Q2, χ2(7, n = 8) = 12.388, w = 1.24, p > .05
(p = .089).

Post-Hoc tests were conducted to put in evidence possible differences between
videos with respect to their Q1 ratings. The Bonferroni correction was applied
to the levels of statistical significance (p-values) to control the inflation of type 1
error probability due to multiple comparisons. A significant difference was found
between the ratings of video 2 and video 3 (p = .032).

3.2 Correlation of Movement Descriptors with Participants’
Ratings

We were interested in evaluating Periodicity Index and Body Laughter In-
dex with respect to the participants’ ratings. We conducted a set of bivariate
Kendall’s tau-b correlations, whose results are shown in Table II. Findings show
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Fig. 3. Participants’ ratings for Q1 and Q2

Table 2. Computation of bivariate Kendall’s tau-b correlation between movement
descriptors and participants’ ratings

Participants’ rating

Q1 Q2

Descriptors
BLI .07 -.09

PI -.14 -.25

the highest negative relationship between the Periodicity Index (PI) and Q2:
τ = −.25. Smaller relationships were also found between PI and Q1, τ = .14,
and between Body Laughter Index (BLI) and Q1, τ = .07, and Q2, τ = −.09.

4 Conclusion

In this paper we presented the implementation and evaluation of the Body
Laughter Index, a body descriptor of laughter. Evaluation results show that
some improvements are needed to reach successful automatic detection of laugh-
ter. The outcomes of BLI computation, reported in Table 1, indicate that BLI,
combined with the Periodicity Index, allows us to successfully distinguish be-
tween different videos of laughter. However the evaluation of these videos by
human participants, reported in Table 2, reveals that BLI and PI only partially
match human perception. A possible reason is that laughter is a complex con-
struct depending upon many features, as demonstrated by several studies.

In the future, in the framework of the EU-ICT FET Project ILHAIRE, we aim
to carry out multimodal (audio, face, and body) fusion of descriptors: if audio
signals analysis, facial expression detection and BLI computation agree with
a high statistical significance, then we could claim that the user is laughing.
We also aim to automatically differentiate between, for example, hilarious and
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social laughter. Moreover, cultural aspects need to be considered as modulators
of the interpretation of human movement. The resulting multimodal fusion will
be assessed with a new set of experiments and the concerning evaluation.

An important issue to be taken into account is the context (activity which is
performed, personality of the user, social environment) for laughter detection.
Whereas BLI was computed with reference to a specific context (watching funny
images on TV) and was evaluated in laboratory conditions, more research is
needed to assess to what extent it is able to generalize to other, more general
contexts.

From the implementation point of view, we aim to detect user movement
with a higher resolution and more reliable systems, enabling to distinguish be-
tween different body parts (head, shoulders, and so on), such as Qualisys Mo-
cap (http://www.qualisys.com) and Microsoft Kinect (http://www.xbox.com).
An initial real-time implementation of BLI from live video input, using color
tracking techniques, was developed and tested at the eNTERFACE’12 Summer
Workshop on Multimodal Interfaces (Metz, France, July 2012).
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Abstract. We address the recognition of people’s visual focus of atten-
tion (VFOA), the discrete version of gaze that indicates who is looking
at whom or what. As a good indicator of addressee-hood (who speaks
to whom, and in particular is a person speaking to the robot) and of
people’s interest, VFOA is an important cue for supporting dialog mod-
elling in Human-Robot interactions involving multiple persons. In ab-
sence of high definition images, we rely on people’s head pose to recognize
the VFOA. Rather than assuming a fixed mapping between head pose
directions and gaze target directions, we investigate models that per-
form a dynamic (temporal) mapping implicitly accounting for varying
body/shoulder orientations of a person over time, as well as unsuper-
vised adaptation. Evaluated on a public dataset and on data recorded
with the humanoid robot Nao, the method exhibit better adaptivity and
versatility producing equal or better performance than a state-of-the-art
approach, while the proposed unsupervised adaptation does not improve
results.

Keywords: Human robot interaction, visual focus of attention, gaze,
head pose.

1 Introduction

Endowing a humanoid robot with the capacity to interact with multiple persons
at the same time requires the design of perceptual algorithms allowing the robot
to analyze human behaviors and understand their intent. In particular, it is
essential for the robot to be able to recognize communicative behaviors expressed
by surrounding people.

In this paper, we addressed the recognition of gaze, and more precisely, the
recognition of the VFOA (who is looking at whom or what). VFOA is an impor-
tant cue for supporting interactions and dialog modeling: it is a good indicator
of addresseehood (who speaks to whom, and in particular is a person speaking
to the robot), but also a good cue to understand interaction between people or
their level of interest. For instance, in a Museum scenario, if people are looking at
the painting currently explained by Nao (our project robot), they are probably
following the discourse. In order to create effective and natural conversational
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human-robot interfaces, it is desirable to have robots which can sense a user’s
gaze and infer appropriate conversational cues [14].

For estimating people’s gaze, two main streams of work exist. Active sens-
ing based methodologies based on infrared light are used very often. They are
accurate but quite invasive and restrictive [5]. Computer vision techniques on
the other hand use perceived information from gaze, head and body posture for
recognizing VFOA [12]. This can be done using high definition images of the
eyes. Still, it remains relatively constraining and usually restrict the mobility of
the subject, considering the need for cameras with narrow field-of-views.

As an alternative, researchers have considered head pose as a clue for gaze
[20], [18], [4], [15]. This idea is supported by the fact that turns of the head
are a very informative cue in recognizing where the subjects are looking at [12].
Nevertheless, despite being very informative for recognizing VFOA, head pose it
is an ambiguous cue: in realistic scenarios, the same head pose can be related to
looking at different targets, depending on the situation; conversely, looking at a
given target can be done using different head poses, as illustrated in Fig. 2. In
this context, the following strategy is often exploited to recognize the VFOA:

– for a given person, track his head and estimate his head pose;
– map the head pose information to VFOA targets (looking at me, i.e. at

the robot-, looking at another person, looking down, looking at a painting,
elsewhere), and use this information within a recognizer to decode the latent
sequence of VFOA targets. Note that the use of other cues like speaking
utterance could be exploited as contextual information for recognition [4],
[15], but is not addressed in this paper.

In practice, data driven approaches try to directly infer VFOA from head pose
without estimating gaze as an intermediate step. Learned parameters, however,
are then specific to the geometric configuration between the sensor (robot), the
person, and VFOA targets. While this might be suitable in fixed settings [9], it
is not adapted for a mobile robot dealing with moving people.

As an alternative we can exploit results from cognitive science studies about
human gazing behavior and the dynamics of the head-eye motions involved in
saccadic gaze shifts [10,8,11] to automatically determine which head poses should
be associated with looking at a given target. This is done using a gaze model
relating the head pose, a head-to-gaze ratio, and a head reference direction [3].

This reference direction, which corresponds to the direction perpendicular to
the shoulder, was assumed to be fixed in [3] and set according to the setup. This
assumption might not hold true in potentially more dynamic settings, e.g. those
involving the robot. In these situations, we believe that an explicit or implicit
estimation of the reference direction can result in more accurate VFOA recogni-
tion. In this context the contributions of the paper are the investigation of two
models to dynamically estimate the reference pose, within a VFOA recognition
task, and their evaluation on 3 datasets (meeting and robotics domain).

Section 2 goes through the related works. Section 3 reminds the basic Hidden
MarkovModel (HMM) used to recognize VFOA, the parameter setting issue, and
introduce the standard gaze model. In Section 4, we introduce our new models,
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providing the intuition behind them and their formal description. Results on
meeting benchmark data and on Humavips Nao data are presented in Section 5,
while Section 6 concludes the paper.

2 Related Work

In HRI and HCI context, many conversational systems need VFOA information
for analyzing and performing necessary interactions. However, with respect to
VFOA recognition, most works use either sensor-based or high definition image
approaches which are not usually applicable for interaction with robots. The
remaining works mostly take a very simplified version of the problem or do not
explicitly mention VFOA recognition at all. For instance, in [7], [6] it is not
mentioned how the VFOA is extracted and it is only used by the other modules.
In [6] the problem is relaxed by only inquiring if the person is looking at the
system or not. In [13] detecting a frontal face at a suitable spatial location is
enough to adjust the classification to a higher level of engagement. In other
works such as it is not clear how they solve the task. In [16] gaze is expressed in
terms of head movements but it is not mentioned how to extract it and in [17]
it is admitted that gaze is a very fundamental cue in human-human and HRI,
but still nothing is mentioned about its extraction.

In another context (meeting), several works explored Dynamic Bayesian Net-
works (DBN) relying on head pose only [18] or multimodal data [15], [4] for
VFOA recognition. All of them rely on Gaussians to model the distribution of
head pose for looking at a given target, but only [3] uses a gaze model that does
not require annotated data for setting the Gaussian means, or the manual setting
of prior values. This allows for an easy exploitation for different observer-VFOA
target configuration. Still, the head reference used in [3] is considered to be fixed
and and set to the middle of the VFOA targets, it does not evolve dynamically
preventing its adaptation to the focus context.

The approach in [19] follows the same approach for setting the means of the
Gaussians. In a dynamic scenario they propose to use a discrete set of different
head-to-gaze ratios according to the gaze dynamics. From the set of different
ratios they take the one with the highest weight for each situation. This is quite
different from our proposition since we try to compensate the model limitation
by estimating real reference head directions.

3 VFOA Recognition Using HMM

3.1 The HMM Model

A basic solution for inferring the VFOA from head poses is to model the distri-
bution of head poses with a K component Gaussian mixture model where K is
the number of existing targets [18]. This method assigns the head poses lying on
a specific Gaussian with the corresponding visual target. The model can be eas-
ily extended to an HMM as shown in Fig. 1(a), allowing to incorporate temporal
information and obtaining more continuous and consistent VFOA results.
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(a) (b)

Ref gaze  
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μhead

Fig. 1. (a) HMM graphical model for VFOA recognition with raw parameters. (b)
Head-Gaze relationship. The person is assumed to be looking at the reference direction
at rest (this direction grossly corresponds to the body orientation). Then, looking at a
gaze target is accomplished by both the eyes and head. As a first approximation, the
head rotation is a linear fraction of the full gazing rotation.

Let Ht and Ft indicate head pose (represented by a pan and tilt angles) and
focus values at time t, and A denote the transition matrix in the HMM. Moreover
let μhead ∈ IRK×2 and ΣH ∈ IRK×4 denote the means and covariances of the K
Gaussians. The HMM equations can then be written as follows:

P (Ht|Ft = n) = N (Ht|μhead(n), ΣH) (1)

P (Ft = m|Ft−1 = n) = Anm (2)

3.2 The Parameter Setting Issue

A major question is how to set the HMM parameters: the means μhead, covari-
ances ΣH and transition matrix A. Following previous work, covariances can be
set according to the size and proximity and of targets. The transition matrix
A can also be set to satisfy our expectation of preserving the continuity in the
sequence, an no other preferences. However, setting the means of the Gaussians
μhead is not possible in an easy way as it is highly related to the configuration
of the observer and the targets and plays the most important role in the model.

The Training Approach. relies on annotated data to estimate the model pa-
rameters. However, annotating the VFOA of people in videos is difficult and time
consuming, as training data needs to be gathered and annotated for each possible
configuration of participant, targets and settings. This is especially problematic
if people are free to move.

The Geometric Gaze Modeling Approach and Head Reference Direc-
tion. To overcome the above difficulty we can use cognitive findings on gazing
behavior [8,11] which state that gazing at a target is accomplished by rotating
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both the eyes (’eye-in-head’ rotation) and the head (and sometimes even the
body in the same direction) as illustrated in Fig. 1(b). The relative contribution
of the head and eyes towards a given gaze shift is found to follow simple rules [8],
[11]. More precisely, the means of the Gaussians corresponding to each specific
target can be set as a fixed linear combination of the target direction and the
head reference direction. For a gaze target indexed by n, we have:

μhead(n)−R = α (μ(n)−R) if |μ(n)−R| > λα (3)

or equivalently (if we set λα to 0):

μhead(n) = α μ(n) + (1− α)R (4)

where μhead(n)−R is the rotation made by the head to look at the direction of
the target, R ∈ IR2 denotes the head reference direction and μ ∈ IRK×2 denotes
the target directions. The coefficient α is usually set between 0.5 and 0.7 for pan
and between 0.3 and 0.5 for the tilt angle. For a given application, a suitable
value can be obtained by studying the existing behavior on training data of
different individuals.

Equation 4 can be used to set the mean of the Gaussian corresponding to
target n in our HMM model. In previous work, the reference vector R was set to
a constant value (eg the median of the target directions in [3]). Assuming this as
a baseline, the probability of observations given the VFOA states is then given
by the following equation:

P (Ht|Ft = n, μt) ∼ N (Ht| αμt(n) + (1− α)R, ΣH) (5)

4 Exploiting Temporal Head Reference Estimates

Setting the means of the Gaussians using the cognitive model requires the knowl-
edge about the value of the reference R as well as the directions of the targets.
Equation 4 shows the importance of the reference for recognizing correct targets.
Note that using a wrong value for R produces shifted mean values for all of the
targets μhead(n) simultaneously, which can have dramatic effects.

This importance of knowing the head reference is also illustrated in Fig. 2. It
shows that, unless the head reference directions (people shoulder’s orientation)
are more or less constrained by the setting (e.g. like when people are seated
in a meeting) or the situation is known (e.g. in the quiz scenario, people are
dominantly facing the robot), when can not use a constant reference direction in
our model. In more versatile situations and interactions, we have many variations
and shifts in the reference as people are free to move. These reasons motivate
us to find a suitable way for setting the reference dynamically. Therefore, we
proposed two different solutions for setting the reference and their corresponding
probabilistic models as explained in the following sections.
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Fig. 2. Different reference directions (shoulder orientations) lead to different poses for
looking at the same target. In both images, person J looks at person S. These images
illustrate that the geometric model is holding true: the head orientation is approxi-
mately half-way between the reference direction and the gaze direction. On the left
image, using looking at Nao as reference direction could lead to a wrong interpretation
of the head pose on the right as looking at Nao.

4.1 First Model G1

Intuition: For the first model we tend to use a general notion for the reference
which is in average acceptable. The principle is that a person tends to orient
himself towards the set of gaze targets he/she spends time looking at. Such a
body position makes it more comfortable and less energy consuming to rotate his
head towards different gaze targets. As a corollary, this means that his average
head pose over a time window is a good indicator of his reference direction, and
can be used as an estimate of this direction. Although such an estimate might
not be very sensitive to local changes and temporal variations and does not
account for the previous head pose (that is involved in gaze shifts according to
the cognitive studies that led to the geometrical model), it can provide a robust
angle estimate that reflects the overal balanced direction of the head or body.
Therefore we can set the reference value at each frame R0

t to the average of the
person’s head pose over a previous time window:

R0
t =

t∑
i=t−w

Hi/w

Setting the reference in this way is also linked to the midline effect [12] which
plays an important role in the head direction needed looking at a target.

Model: Since the reference directions set this way are known from the head
poses, they serve as the observations in the model as illustrated in Fig. 3. Here
again μhead

t denotes the expected means for the head poses. The dynamics be-
tween the hidden states are the same as previously and the rest of the relation-
ships are formulated as follows:

P (μhead
t (n)|R0

t ) ∼ N (μhead
t (n)| αμ(n) + (1− α)R0

t , Σμ) (6)

P (Ht|Ft = n, μhead
t ) ∼ N (Ht| μhead

t (n), ΣH) (7)
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Fig. 3. First model. The head reference
direction and the mean head pose of the
Gaussians are now variables over time.
However, they are observed variables: the
head direction is defined as the average
of the head poses over a temporal win-
dow, and the mean head poses are then
deduced from the geometric gaze model.

Fig. 4. Unsupervised reference adapta-
tion. Assume that at time t+ 1 the head
pose Ht+1 is associated with target A of
current head pose mean μt

A in the picture.
Trusting the current recognition, adapta-
tion will move the mean μt+1

A at time t+1
closer to the observation and as a result
of the gaze geometrical model (assuming
there is no change in target positions dur-
ing this time interval), the reference direc-
tion will move accordingly.

The recognition of the VFOA values is straightforward by running the classical
inference algorithm on this HMM.

4.2 Second Model G2

Intuition: Setting the reference using long term head pose value statistics might
not be sufficient, as more local (short term) gaze activity can come into play. We
can thus try another strategy and adapt it in an unsupervised way in order for
the model to better fit the observations. This is illustrated and explained in Fig.
4: we would like to change the reference R in order to maximize the probability
of observing these new head pose values given their recognized targets.

Model: to accommodate the long term statistics with the short term adap-
tation, we add a new variable Rt denoting the real reference direction at each
frame t and use the estimated head reference direction R0

t from the average head
pose as a prior to this variable. This is illustrated in Fig. 5. By adding Rt as a
hidden variable to the model we would then infer the reference values around
R0

t such that the predicted means μhead
t can best fit the observations.

Notice that the same equations 7 and 6 from the previous model are still valid
here by substituting Rt for R0

t . We also expect the reference to be continuous
over successive frames and thus the value of Rt should be dependent on its value
Rt−1 at the previous frame. Therefore, we set it as a linear combination of Rt−1

and R0
t . The main intention for including the prior value R0

t in our model is
to avoid R from deviating too much from a reasonable range. The following
equation formulates this relationship:
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Fig. 5. Second model, unsupervised adaptation for the reference

P (Rt|Rt−1, R
0) ∼ N (Rt| βRt−1 + (1− β)R0, ΣR) (8)

Inference: Given the probabilistic model, we wish to determine the sequence of
visual focus of attentions Ft (VFOA) of a person from the observed head poses
Ht. All the parameters in the model are assumed to be given and remain fixed
throughout the inference. We can note that if the head poses μhead are known,
our cognitive VFOA model splits into two parts: the VFOA values follow a
standard HMM model, whereas the reference variables follow a Kalman filter
model. We thus use the following approximate procedure for inference. At time
t, we first apply the prediction step for the Rt value and then the targets μhead

mean, apply the HMM filtering step for the VFOA state, and then apply the
update steps for μhead and Rt given the estimated VFOA for which efficient
inference procedures exist.

5 Experimental Results

5.1 Data Sets and Experimental Protocol

For our experiments we use three sets of data. In the first dataset we have
the recordings of eight meeting sessions with a total duration of 145 minutes.
All of the meetings are recorded under the same condition and with similar
configuration as shown in Fig. 6, with four people (Person left Pl and Person
right Pr seen on the image, and two organizers O1 and O2 seating in front
of them) discussing statements displayed on slides. We perform our study on
the two persons on the seats in front of the camera. For this dataset we have
ground truth head poses, captured from flock of bird sensors which will be used
for analysis. Each of the participants has five possible gaze targets: three other
persons, the slide screen and the table.

In the second dataset (D1) we have a video recorded by our robot, Nao. The
total duration of this video is 22 minutes. In this case there are two partici-
pants seating in front of Nao as shown in Fig. 6. For this dataset, we do not have
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Fig. 6. Datasets. (Left) Meeting setting, with VFOA targets for the person on the
right (PR). (Middle) Nao dataset 1 (D1) with two participants in front of Nao. (Right)
Nao dataset 2 (D2), from Vernissage recordings, with VFOA targets for one of the two
participants.

ground truth head poses and analysis are done using the tracked head poses [2]
which does joint tracking and head pose estimation [1]. Each of the participants
have three visual targets: the other participant, Nao and a booklet which they
refer to during the recording.

In the third dataset (D2) comes the Vernissage (the word refers to the preview
of an art exhibition) data recording (Fig. 6). There we have one session during
which people participate in a quiz given by the robot. The recordings take around
6:30 minutes. Here again we used tracked head poses for analysis. As shown in
Fig. 6, there are five main VFOA targets in this recording: Robot (NAO) Person1
(partner), Painting1, Painting2, Painting3. In addition, we use the label Others
when people look elsewhere (often down in front of them, with not much head
pose change).

Performance Measure: As performance measure we use “Frame based Recog-
nition Rate (FRR)” which corresponds to the percentage of frames during which
the VFOA has been correctly recognized.

Algorithms: We have performed our experiments with three different models
as summarized in Table 1. The baseline is the basic HMM model using an ini-
tially set and fixed reference value for all of the frames. The other models were
presented in the previous Section: G1 uses the head pose average over a temporal
window as the reference; and G2 adapts the reference value in an unsupervised
fashion, using the head pose average value as prior at each frame.

Table 1. Tested algorithms

Model Reference Prior Unsupervised
Adaptation

Baseline set as the initial reference No

Model G1 head pose average over a window No

Model G2 head pose average over a window Yes
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5.2 Parameter Setting

Meeting Data. We set the variances of the Gaussians according to the size of
the targets. For the meeting data we use the same values as in [3] which are
σα(O1, O2, PR, PL) = 12, σα(SS) = 25 , and σα(TB) = 20 for the pan, and
σβ(O1, O2, PR, PL) = 12 , σβ(SS, TB) = 15 for the tilt. Here, σα and σβ show
the variances for pan and tilt values. Moreover, O1, O2 indicate the observers,
PR, PL the persons on the right and left, and SS, TB indicate the slide screen
and the table respectively.

For the gaze directions, they were assumed to be fixed for each recording
(thus neglecting people’s motion), and currently defined from the geometrical
setting. The initial value for the reference direction is particularly important
for the baseline for which it remains the same over time, but not important
for the other models as the reference value is quickly set as the average over
head pose values. For the baseline, we experimented with setting the reference
as the middle of the gaze target directions, which was shown to work the best
in previous works [3].

Table 2. Parameter set using cross-validation

Parameters Baseline 1st Model G1 2nd Model G2

αpan
√ √ √

αtilt
√ √ √

self-loop
√ √ √

window-size × √ √
σR × × √
ratio σμ/σH × × √
β × × √

The remaining parameters of the models which are summarized in Table 2
were adjusted by cross-validation separately for each of the models. For the
meeting data there are two different set-ups for people seating on the first and
second seats and therefore we did the cross validation once by taking the training
set from the same seat and once by taking it from the other seat. The second
case is useful to evaluate whether our model is sensitive to a specific setting or it
is more general. For training with data from the same seat, leave-one-out cross
validation was used, taking seven meetings for training and testing on the eighth
meeting. For training with data from the other seat, all eight meetings from the
other seat were used for training and obtained parameters were used to test on
the other seat.

Table 3 summarizes the parameters which were obtained in cross validation
for the baseline and Table 4 summarizes chosen parameters for the first model
G1. There is a strong agreement between the parameters which were obtained
for left and right people. Also there is a strong overall consistency between the
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parameters trained using the first seat data and those of the second seat. For the
baseline model, αpan obtained from two different seats is different. This could
be through to the fact that the reference which is used there (the middle of the
targets) is a poor reference and force and introduces different results for these
two different settings. This effect does not exist for the fist model G1 and the
chosen parameters are completely consistent.

Table 3. Chosen parameters for the meeting data and baseline model

Person Training Parameters:
αpan, αtilt, self-loop

Person on left same seat 0.5 - 0.5 - 0.75

Person on left other seat 0.8 - 0.5 - 0.75

Person on right same seat 0.8 - 0.5 - 0.75

Person on right other seat 0.5 - 0.5 - 0.75

Table 4. Chosen parameters for the meeting data and first model G1

Person Training Parameters:
αpan, αtilt, self-loop, wind-size

Person on left same seat 0.7 - 0.5 - 0.75 - 500

Person on left other seat 0.7 - 0.4/0.45 - 0.75 - 500

Person on right same seat 0.7 - 0.4/0.45 - 0.75 - 500

Person on right other seat 0.7 - 0.5 - 0.75 - 500

Nao First Dataset (D1). For the gaze directions, same as the meeting data,
they are assumed to be fixed for each recording and defined from the geometrical
setting. The initial value for the reference direction is considered to be at Nao’s
direction which is a reasonable choice in human robot interaction scenario. We
set the standard deviations of the targets to 8◦ for the pan and 4◦ for the tilt
angle. Notice that these values are smaller compared to the meeting data. This
choice is made both our Nao datasets where we use tracker results for head poses
since those head poses are usually smaller than the ground truth pose values.

For the rest of the parameters, as there are a few number of people participat-
ing in this dataset with very different gazing behaviors cross-validation will not
produce reliable parameters. To choose the parameters we consider the meeting
data as the training set and use parameters obtained from that data for running
our algorithms on Nao’s data. Note however, that the resulted αpan value from
meeting data is 0.7. In Nao data this ratio is big considering the tracked head
poses which are a little underestimated. Therefore we do our experiments with
a smaller value of 0.65.

Nao Second Dataset (D2). Standard deviations of the pan angles were set
to 8◦, 8◦, 8◦, 9◦, 10◦ respectively for Robot, Partner, Painting1, Painting2 and
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Painting3, according to their size and proximity. The tilt angle standard devia-
tions were set to 4◦ for all targets. The remaining parameters are all set in the
same way they are set for D1.

5.3 Results

Meeting Data. Table 5 shows the results of the baseline, G1 and G2 models. As
can be seen, the first model outperforms the baseline. This is particularly true
in more mismatched conditions, when parameters are learned from another seat
rather than the same seat, thus exhibiting a better adaptation capacity. In par-
ticular, we can notice the performance degradation for person right (PR) when
using the optimal parameters for person on left (PL). The main (mismatched)
parameters leading to the degradation is the parameter α of the gaze model (see
Eq. 4) that directly impact the prediction of the head poses: for PL, the opti-
mal parameters is around 0.8, whereas for PR, it is around 0.5. Using the head
pose average for the reference is indeed a more stable choice for this important
parameter, with an optimal value for both seats around 0.7.

On the other hand, we can see that the 2nd model G2 performs very closely
to the G1 model, a behavior that will be seen in other recordings as well. This
means that in practice the unsupervised adapted head reference remains very
close to the prior, and thus the models behave very similarly.

Table 5. Performance evaluation on Meeting data

Person Training Baseline Model G1 Model G2

Person on left same seat 64.7 65.7 65.5

Person on left other seat 64.5 66.7 66.8

Person on right same seat 57.0 58.7 58.6

Person on right other seat 43.9 59.0 59.0

Nao First Data D1. The results of the baseline, G1 and G2 are summarized
in Table 6. Despite the quite different setting (situation, number of gaze targets,
use of estimated head pose vs ground truth head pose), the conclusions are
similar to the meeting data. More precisely, model G1 outperforms the baseline,
particularly for people on the left with a large difference, and model G2 performs
almost the same as model G1.

Table 6. Performance evaluation on Nao data D1

Person Baseline Model G1 Model G2

Person on left 69.4 78.7 78.8

Person on right 66.5 66.2 66.2

As the table shows, we have a high gain using our models for the person on
the left while the performance of the models are very close for the person on
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the right. The main reason for this behavior is that considering the participants
body configuration Nao’s direction is quite a suitable choice for the reference for
the person on the right but it cannot perform as a good reference estimation for
the person on the left.

Nao second Data D2. Table 7 shows VFOA recognition rates obtained our
first model compared to the baseline model. As it is shown in the table for person
on the right we get better results using our model G1 whereas for the person on
the left this is not true. We need to verify these results using more sequences
from this dataset to find the overall performance behavior.

Table 7. Comparison of FRR of Baseline and the 1st model G1 on quiz recording 9

Person Baseline Model G1

Person on Left 54.6 51.2

Person on Right 58.8 59.6

6 Conclusion

In this Section, we have presented our research towards designing better gaze
models for improved VFOA recognition. We have shown that the implicit estima-
tion of the head reference has a positive impact on performance. It is important
to underline that for the different recordings the choice of head reference for
the baseline is a very good approximation of the actual value. In practice, such
a value might be difficult to set. As we have seen, in the robot interaction ap-
plication, the same strategy (looking at Nao) does not produce good results in
all conditions. Similarly, using the middle of the gaze target directions might
work, but assumes that the robot is aware of all target directions a person can
be looking at. This might not hold true in all cases.

Our future work contains an assessment of the model on larger amounts of
recordings with the robot from the Vernissage dataset; assessment of the model
using the true head poses, to mitigate the effect of head pose estimation on
performance evaluation. Moreover, we would compare the results of our VFOA
models using tracked head poses versus the ground truth head poses to study
how the head pose estimation error affects the VFOA recognition.
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Abstract. This paper reports the first step in a series of studies to design the in-
teraction behaviors of an outdoor robotic guide. We describe and report the use 
case development carried out to identify effective human tour guide behaviors. 
In this paper we focus on non-verbal communication cues in gaze, gestures and 
movements. The work reported involves the observation of human tour guide 
behaviors and visitor responses as well as interviews with guides. An affinity 
diagram is used to identify effective communication cues of human guides and 
the relations between them. The opportunities for a robotic guide are discussed. 
We argue that human guide behaviors and strategies cannot be one-on-one ap-
plied to robot tour guides. Instead, we aim to develop abstractions of the human 
behaviors, appropriate for robot tour guides and effective in realizing visitor 
engagement. The results of this study will be used to create a first Fun Robotic 
Outdoor Guide prototype with the abstracted interactive robot guide behaviors 
implemented to assess the effects on visitor experience in ‘the wild.’ 

Keywords: Human Tour Guide Behavior, Non-Verbal Robot Behavior,  
Contextual Analysis.  

1 Introduction 

The EU 7th Framework project FROG (Fun Robotic Outdoor Guide 
www.FROGrobot.eu) aims to develop a guide robot with a winning personality and 
behaviors that will engage tourists in a fun exploration of outdoor attractions. The 
work involves innovation in the areas of vision-based detection, robotics design and 
navigation, human-robot interaction, affective computing, intelligent agent architec-
ture and dependable autonomous outdoor robot operation. In this paper the focus is on 
the Human-Robot Interaction (HRI). 

In many museums and tourist sites human tour guides are guiding visitors and con-
vey information about the sites. However, not all visitors want to join or cannot afford 
a two hour guided tour. We believe that an autonomously navigating mobile robot can 
provide information to visitors in new and innovative ways.  
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The first step in developing the FROG-robot was to determine the requirements for 
the robot in the different tourist sites and identify opportunities to improve the visitor 
experience with a robotic guide. From this analysis it became clear that the FROG-
robot needs to be available for small groups of visitors, will present some interesting 
and historical information and curiosities about the site and will guide visitors for a 
limited amount of time through a part of the site. The information conveyed will be 
based on the visitors interests [1]. 

The goal of the HRI part of the FROG project is to determine personality and be-
havior for the robot. We argue that using anthropomorphic communication cues will 
help visitors understand the robot, because humans naturally respond to non-verbal 
communication cues. The next step in the development of the FROG-robot, described 
in this paper, is exploring the non-verbal robotic guide behavior, such as gaze beha-
vior, gestures and movements. This will be done by first observing and analyzing the 
human tour guide behavior, strategies and personality. Possibilities and limitations of 
transferring this behavior to robots will be examined based on literature. 

In Section 2 the related work on robotic guide and communication behavior and 
human tour guide behavior is presented. The methodology of observing and analyzing 
behaviors of human tour guides and the visitor responses are given in Section 3 and 
subsequently the results of the analysis are reported in Section 4. Suggestions on how 
to apply the human behavior cues to a robot guide are indicated in Section 5. Finally, 
conclusions and future work are presented. 

2 Related Work 

Research on robotic museum guides has focused on various aspects. The robot Mi-
nerva, does quite a good job on interaction with visitors, because this robot is able to 
express itself in different moods [2]. The Robovie robot in the science museum does 
very well in addressing visitors and keeping their attention [3]. However, the interac-
tions between the robots and the humans are still limited, because humans are still 
testing the boundaries of the systems [4], or are distracted by seeing a robot and lose 
interest in the exhibit.  

Research has also looked into the influence of different modalities, e.g. the gaze of 
robots has been proven to be very important. As Mutlu et al. [5] found, robot gaze 
behavior influences the abilities of visitors to recall a story. When the robot looked at 
the visitors, the listeners could remember the story better than when the robot was 
looking around randomly [5]. Also gaze behavior in combination with pointing seem 
to be very important, because human tour guides’ use of head movements at commu-
nication relevant places helps humans understanding the story told. Kuno et al. [6] 
tested these behaviors in a robot and the head movements were efficient for under-
standing the robot, too. 

The robots mentioned above are (more or less) based on behaviors human tour 
guides show. Humans use effective guide behavior, so looking at the behavior of hu-
man tour guides may help setting the behavior of robotic tour guides. As Duffy states: 
using anthropomorphism and anthropomorphic communication cues can be powerful 
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and intuitive to make humans understand and naturally interact with robots [7]. We 
have to keep in mind that humans respond more rapidly to humans than to robots as 
Kanda et al. [8] found, because this will influence the human robot interaction. 

However, the robots in these examples are only doing parts of the tour guiding, e.g. 
telling the story, but not interacting with human and conveying information very well 
at one exhibit, but cannot perform at another. Finally joining a robot tour guide should 
be as satisfactory as joining a human tour guide. So to determine effective behaviors 
for robot guides, it might be helpful to study effective human tour guide behaviors, 
strategies and procedures. 

Some related work has been conducted in this direction with human tour guides. 
This work found that originally tours were like lectures and were more or less a mo-
nologue of the tour guide [9], but nowadays the tours have become more adjusted to 
the interests of the visitors which has the advantage that visitors are more involved in 
the tour and like the tour better [10]. To adapt the tour to the interest of the visitors, 
the guide needs to be able to tell flexibly about everything they encounter, so visitors 
do not notice the change in the tour when the guide makes changes in content, e.g. in 
case of some places of the trip not being available [11]. 

To give an engaging tour, guides use several strategies to get and keep the attention 
of the visitors. One of these strategies is to interact with them [9]. The interaction with 
visitors (e.g. verbal interaction) is important to keep the visitors’ attention. And ex-
cept from giving cues to the visitors, the guides also obtain a lot of non-verbal feed-
back about involvement of the visitors by looking at them. Visitors that are gazing at 
the guide or the object of interest and who are nodding or smiling are interested, the 
ones looking away or talking to each other may not interested anymore [10].  

Robot tour guides as well as human tour guides should have behaviors and strate-
gies that modify the tour in a positive way. For determining the robot behaviors, look-
ing at human tour guide behavior might be helpful, as proven by the examples above. 

3 Methodology 

To get insight in the effective human guide behavior, especially gaze behavior, ges-
tures and movements, a qualitative research was performed by two researchers fol-
lowing four guides guiding different groups in two touristic sites. Notes taken during 
the tour, answers of guides in the interviews, notes from analysis of video data and 
notes of literature search were combined in analysis using an affinity diagram. The 
result of the research is a connection diagram and in-depth analysis of human tour 
guide behavior.  

3.1 Research Context 

For the analyses two different outdoor tourist sites with guided tours were selected. 
These sites were the Lisbon City Zoo in Lisbon, Portugal and the Royal Alcazar in 
Seville, Spain. Both sites offer interesting and challenging opportunities for having 
robot guides guiding visitors. In these sites the amount of information that is available 
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without a guide is not satisfying the visitors [1] and these sites offer outside environ-
ment to be covered by the FROG-robot. 

The Lisbon City Zoo is a park showing several species of wild animals to humans 
and educating the visitors about nature and animals. Besides that, the Zoo also pro-
vides access for scientific research and participates in conservation programs for spe-
cies. The guides giving tours in the Lisbon City zoo are educated and employed by 
the Zoo. Visitors of the Zoo are mainly families with one or two (young) children, 
couples with or without children, school classes and groups of friends. The day is 
experienced as a social day out.  

The Royal Alcazar is a royal home, the first building was built in the ninth century 
and during ages Christians and Muslims built, destroyed and rebuilt the buildings in 
the site. The guides in the Royal Alcazar are educated and employed by different 
agencies or entrepreneurs. All guides must have certification, but the board of the 
Royal Alcazar does not control the guides a lot. The guides that contributed to this 
research were certificated. Visitors of the Royal Alcazar are mostly couples (with 
older children), groups of tourists and school classes. The purpose of the visit is to 
learn about the history of the site.  

3.2 Sample 

For the research a total of four guides were observed, video-taped and interviewed. In 
the Lisbon City Zoo two guides participated. The first guide (male, ten years of expe-
rience) guided a group of seven adult visitors. The second guide (female, some years 
of experience) guided a school class of 19 children aged 9-10 years old. In the Royal 
Alcazar two guides participated, both were female. The first (ten years of experience) 
guided a group of eight adult persons, and the last guide (several years of experience) 
guided a group of twelve adults (and two small kids). 

3.3 Procedure 

At the start of the tour all visitors and the guide were informed about the research and 
the filming. In the end of the tour the group was lead to a room and all adults com-
pleted a consent form. 

Two researches joined the four tours. One of the researchers was video-taping the 
whole tour. In the tape the guide and his/her expressions and some visitors or the 
whole group of visitors are visible. The story is not always clear hearable on the tape, 
but non-verbal behavior of the guide and the visitors’ responds is very well visible.  

The second researcher followed the guide close and made notes on the story the 
guide told, outstanding guide behavior and on the events that happened during the 
tour.  

After the tour the researchers interviewed the guides and took individually notes of 
the answers. When the guide had left, the researchers completed the notes of the ob-
servation of the tour and the interview. 
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3.4 Measures 

Notes were taken during and completed after the tour on things that stood out about 
guide behavior. One of the researchers was following the guide close and took notes 
during the tour, the second researcher was filming and took the notes at the end of the 
tour. 

After the tour, the two researchers had a short semi-structured interview (approx. 
15 minutes) with the guides about the tour they just gave, their experiences guiding 
different kind of groups, use of strategies and how they would like to improve the 
visitor experience in the sites. (What is the purpose of your tour? / What is the main 
exhibit in the site you are guiding? / Do you notice differences between groups? How 
do you deal with that? / Is guiding children different form guiding adults? If yes, in 
what way? / How do you get and keep attention of the visitors? / What do you want to 
change to improve the visitor experience?).  

All tours were videotaped to later look back at the actions of the guides and take 
notes of more specific actions and behaviors. Next to the global analysis, from all 
guides two film fragments (approx. 2-4 minutes) were taken to analyze in detail. As-
pects that were analyzed were: the orientation of the guide, the story guides were 
telling, the movement and gestures the guides made, to what the guides were looking 
and how they ended at exhibits.  

3.5 Data Analysis 

The data gathered from the different researches was combined in the analysis using an 
affinity diagram. This method is based on Grounded Theory method; themes and 
results of the research emerged from the data. Using an affinity diagram is very useful 
when large amounts of qualitative data has to be analyzed, from which the results are 
complex and not easy to grab [12]. The affinity diagram helps to order the informa-
tion and to find logic and natural relationships between the parts of the data. 

Globally the method follows a few steps. First statements have to be written on 
cards (post-its or index-cards). These statements are remarkable in a certain way and 
are taken from all parts of the research. When writing down these statements, no at-
tention should be given to duplications of text or solitary cards. For interpretation of 
the data color coding of the statements could be useful. 

Second, all statements will be shuffled and pasted on a wall. Cards with similar 
statements will pasted close to each other, but also other relations between statements 
can be made clear. In this phase clusters of similar subjects and relations between 
subjects appear. Important is that a statement can be in more clusters (by duplicating 
the card) and relations can be of all kind (e.g. cause, opposite, similar).  

In the third step the clusters will be named and the relations between the clusters 
will get meaning. Some extra cards with the main findings per cluster will be placed 
to make the affinity diagram more easily readable. When the number of clusters is 
high, some can be combined in one larger cluster having some sub clusters. But also 
the other way around, when the clusters are very large, some sub-clusters can be 
made. 
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For the research on human tour guide behavior, from all research methods (obser-
vation, interview, video analysis and literature) statements and observations were 
taken and written on small cards. The statements were color coded by resource (e.g. 
all statements taken from the first observation were written in blue and statements 
taken from the interviews were written in purple). 

When all cards were completed, the researcher started to cluster the statements on a 
large wall. During this clustering the placement of the cards was not fixed and cards 
were removed and replaced if necessary. Finally, all cards were pasted on the wall 
and names for the clusters were invented, some clusters with sub-clusters were in-
vented. The main statements per cluster were added on yellow notes. 

The final affinity diagram was quite large and to make it easier to read, a connec-
tion diagram based on the affinity diagram was made in which the clusters and sub-
clusters and the relations between them are visible. These connections were counted. 
And five collections of clusters and sub clusters were found. In the result section the 
results for the analysis are given, and more explanations about results are presented in 
the connection diagram. 

Please note that the statement cards and the affinity diagram were made by one of 
the researchers. However, the researchers were discussing the notes on the observa-
tions and the video analysis before writing the statement cards. After making the af-
finity diagram and the connection diagram the researchers discussed the results and 
added relations, connections and changed names for the clusters to get the best over-
view of the results. 

4 Results 

In the connection diagram (Fig. 1) the names of all found clusters are given and the 
clusters are connected with lines when there was some relation between them (e.g. the 
connection between distraction and taking pictures is that when visitors get distracted 
during the tour, they often start to take pictures or, vice versa, they get distracted be-
cause they take pictures). The clusters and sub-clusters with the most connections are 
highlighted in yellow. These are main aspects during a tour and the guides tried to do 
everything to influence these factors positively. 

4.1 Clusters 

Ten clusters with sub-clusters appeared, which are briefly described (detailed descrip-
tion and explanation of non-verbal communication cues follow in the next paragraph): 

Attention. Without getting and keeping the visitors’ attention a tour guide cannot give 
a tour. Guides used lots of strategies to get and keep the visitor’s attention, such as 
interacting with the visitors and breaking eye-contact and starting to move in the next 
direction at the end of an exhibit. 

Interaction is usual in tours these days compared with the past. All guides knew that 
a tour of two hours was too long for visitors to just listen to a guide. Therefore, the 
guides tried to interact with the visitors by addressing them in different ways, such as 
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asking and answering questions, showing visuals, letting visitors experience (touch, 
smell) the site, pointing at objects, searching for differences together and by asking 
for personal interests and referring to that later and having a chat with the visitors 
during the walk. 

Information about the site is conveyed by the guide. The guide usually can tell flexi-
bly about everything they encounter in the site, and answer all the questions of the 
visitors. Particularly, visitors like to hear curiosities. 

Adaptation of the tour is always done to fit the tour to the different type of visitors. 
But also during the tour to keep visitors interested guides adjust the tour to the group. 
The guides try to shape the tour around the visitors interests, because when adding 
something new to a subject visitors were already interested in, it was easy for the 
guide to keep the attention. Adaptation can be in content, speed or route. 

Taking pictures was something lots of visitors did when they were in an attractive 
place. Taking pictures either meant they were really interested, taking pictures of the 
subject of interest. Or it meant the visitors were distracted and they started walking 
around and taking pictures of everything. The visitors that were taking pictures during 
the tour were often lost and missed much of the story the guide was telling.  

 

Fig. 1. Connection diagram of Human Tour Guide Behavior 
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The procedure of the tour is determined by the tour guide, following a tight schedule. 
The guides were not using authority for adults, because they could choose themselves 
whether they wanted to listen. The content was based on the visitor interests. 

Orientation is the way guides orientated towards visitors and to the exhibit; always in 
a way visitors were able to see both the exhibit and the guide.  
Gestures made by the guide might have helped the guide telling the story or helped 
the visitor understand the story. All guides made a lot of arm gestures, varying from 
supporting or depicting the story and pointing.  

Gaze-behavior is quite intuitive, but guides used gaze to keep attention by alternating 
their gaze between visitors, and they were able to see from the visitors’ gaze if they 
were interested. The guides adjusted the story to the ones they were looking at. 

At the exhibits guides did start and finish with less important sentences, so all visitors 
were attended. To keep the tour going, the guides did not wait until the group was 
complete. They started to talk to the nearby visitors.  

4.2 Effective non-Verbal Behavior 

Given the page limit and the scope of the workshop this paper only describes non-
verbal behavior, because this will give meaningful insights in the possibilities for the 
FROG-robot. The behaviors were classified as explicit behavior, or strategies the 
guides used, and implicit behavior. Explicit behavior is behavior the guides employed 
consciously to attract and keep the visitors attention. The guides were very different 
people, however, the strategies they adopted showed several commonalities. Howev-
er, humans are sometimes not aware of non-verbal communication cues, still these 
cues could be very helpful for the communication. These cues used implicitly by the 
guides are also described below. Using strategies perfectly fitted in the guides’ normal 
behaviors. Acting natural and naturally modify the tour in a positive way is what the 
guides wanted to achieve.  

Starting and Closing the Story 

At the new exhibit the guide never started with the main story. To get the attention of 
the visitors at the start of an exhibit the guide started the story with some less relevant 
words or sentences. These can be “ok,” or “so,” or “this is a very beautiful view.” 
When the group of visitors was not complete yet, the guides did start anyway to keep 
pace in the tour. When the guides wanted to tell something important and not all visi-
tors were close, the guides raised their voices. The guides concluded with a short 
summary, telling where to go next or with words like “ok” “so” “let’s go” to indicate 
they were finished at an exhibit.  
 
Gaze-Behavior 
Gaze-behavior of the guide is important for the visitors’ understanding of the story, 
but also the other way around. The guide obtains feedback from the gaze behavior of 
the visitors. 
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The guides reported in the interviews they alternated their eye-contact evenly between 
the visitors, as a strategy to keep their attention. The guides indeed were alternating 
their gaze, but in our analysis of the video material, the guides seemed to choose one 
visitor at each exhibit to talk to. Most of the time this visitor got the attention and the 
guide sometimes shifted attention to other visitors, but always got back to the chosen 
one. However, for different exhibits, the guides seemed to choose different visitors to 
address. The visitor the guide was looking at was often nodding, turning its head to-
wards the exhibit and back and looked to the guide. This provided the guide with 
information about engagement of the group.  

When pointing at an object of interest, the guides also looked at the exhibit for a 
while. For the guide, this was to check where to direct the group attention, but some-
times visitors reacted to it with looking into the same direction, following in mutual 
gaze. When the guides made the visitors look at an exhibit or visual, the guides de-
cided when to go on with the story. Most of the time, the guides waited for most visi-
tors to indicate they had seen it (by nodding or gazing at the guide again). To keep the 
story going, the guides did not wait for all visitors to look back. On the other hand, 
the guides sometimes provided extra time to look at something for a particular visitor, 
by adding non-important sentences to fill the time. 

When the guides wanted to go to the next exhibit, they broke eye-contact with the 
group of visitors or focused their attention to another object or to the visitors in a 
social way and made a move towards the next exhibit. For visitors that made clear the 
story was over. And because the guide had moved slightly into the new direction dur-
ing the last sentence, the visitors knew where to go for the next exhibit. 

Gestures and Movements 

All guides used a lot of gestures, which can be categorized in pointing, depicting the 
story and supporting the story. While telling the story all guides used their arms to 
depict and point to the subject. The depicting of the story and pointing at objects is 
explicit behavior, the guide knows how, why and at which moment to perform the 
action in support of the story. 

The visual support could be in the site itself, and the guide pointing and touching 
it, the guide could show visuals, and the guide was able to depict the story if the sub-
ject they were telling about was not visible at the moment. 

Depicting the story and pointing to exhibits helps the visitor to understand the story 
the guide is telling. The guide will only depict parts of the story if the subject is not 
visible at the moment. Otherwise the guide will point to the exhibit to make clear 
what he/she is talking about.  

When the guides walked away from an exhibit, they slightly moved in the next di-
rection during the last sentence of the story. This made clear for the visitors the story 
was finished and which direction to go next. Sometimes the guides made a follow-me 
sign, and always the visitors followed like a chain reaction, the nearby visitors starting 
to walk first and the furthest visitors following last. 

When looking at the pace of the gestures and the movements the guides made, ex-
cept for using arm gestures there are no commonalities. These gestures and  
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movements were made unconsciously and might help the guide telling the story, at 
the moment is still not determined what influence they have on the transfer of know-
ledge. These gestures and movements were personal for each guide and fitted with the 
overall personality of the guides. 

5 Discussion 

The robot for the FROG-project is not envisioned to look very human-like, and simp-
ly copying the human communication cues and applying them on the robot may not 
be effective. However, using anthropomorphic aspects of appearance and behavior 
will be effective. How to design these anthropomorphic aspects, and what communi-
cation cues the robot will use depends on the human understanding of the appearance 
and adopted cues.  

The FROG-robot will be approximately 1.20-1.50 meters high, smaller than an av-
erage adult to not scare the visitors. The robot will probably not have arms, because 
for a large not human-like robot unexpected moving parts can scare visitors or even 
worse, harm them. The next series of researches will give insight in the possibilities in 
pointing for a robot without arms. Now our intention is to abstract the different com-
munication cues as much as possible, but still keep them intuitively understandable 
for humans interacting with the robot.  

Explicit behavior and strategies the human tour guides showed, such as telling cu-
riosities, addressing the visitors, breaking eye contact and moving in next direction 
during the last sentence, should be adopted for the robot. These strong cues in human-
human interaction have to be translated and abstracted to fit the robot appearance and 
personality. So the strategies of a human tour guide might not have to be copied one-
on-one to the robot, but the results in visitor behavior should be comparable. 

From the implicit behavior it is important to look at the gaze behavior; the guides 
were alternating their gaze between the visitors, but tend to choose one visitor per 
exhibit to talk most to. When alternating their gaze, they always turned back to that 
one visitor, who gave the most (implicit) feedback. The visitors chosen were different 
per exhibit. Further tests should prove if this is important for communication.  

The robot behavior when starting or closing a story will be similar to human beha-
vior. The FROG-robot should get the attention at the new exhibit again, and therefore 
will not start with the most important information, but with a less important sentence. 
In the end the robot will break “eye-contact” to indicate the story at the exhibit is 
finished. Also starting to move to the next destination during the last sentence at an 
exhibit will be of importance for the robot to communicate to the group of visitors 
where to go next.  

Also gaze is very important because humans use a lot of making and breaking eye-
contact in human-human interaction. In human-robot interaction human communica-
tion cues applied to robotic guides help visitors to understand and recall the story [5, 
6]. In the design of the robot gaze behaviors, examining the effective human gaze 
behaviors and translating them to effective robot guide behavior will probably help 
the robot conveying information.  
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Similar like human tour guides the FROG-robot will choose one of the visitors to 
get the main feedback from. Probably this will be the closest visitor, because the face 
would be easiest to track. This visitor will give information on the level of interest, by 
the robot examining the gaze direction, nodding and laughing. Further research will 
give insight in the necessity of alternating the robot gaze. For different exhibits, the 
robot will focus on different visitors, as not always the same visitor will be closest.  

Looking into the exhibit when talking about a point of interest will be of big im-
portance for the robot than for human. Because the robot will probably not be able to 
point with arms, other options will be considered. Looking at the exhibit is one of 
them (next to laser/projecting on the wall). Other than humans, the robot can look to 
the exhibit for longer period of time, because the “eyes” are not necessary the cameras 
that are examining the faces of the visitors. 

Human tour guides use a lot of gestures, but the robot will not be able to do so. The 
function of these supporting gestures is not determined from the video-analysis. De-
picting a story is important, but the robot will also not be able to depict the story with 
arms. The robot will have different applications to depict the story, by showing a film 
on a (touch-) screen, or projecting information on a wall. Also the visuals a human 
tour guide use, can be showed on screen or projected on the wall by the robot. 

The FROG-robot will use some strong anthropomorphic appearance and commu-
nication cues to make the interaction with humans intuitive. To achieve this, effective 
human communication cues should be translated to fit the robot appearance. The non-
verbal communication cues used for the robot will be the gaze behavior when talking 
about a point of interest, breaking eye-contact in the end, starting to move during the 
last sentence at and exhibit and showing visuals on screen or projection on the wall. 
Using these human communication cues in abstracted form should have the same 
result on visitor behavior and attention as the cues a human tour guide is using. 

6 Conclusions and Future Work 

Robots are more and more successfully used in human social environments. FROG 
aims to develop a Fun Robotic Tour Guide to guide visitors in indoor and outdoor 
museums and touristic sites. 

This paper presents an analysis of non-verbal human tour guide behavior. The af-
finity diagram used was very appropriate to use for the analysis of the large amount of 
qualitative data from varying sources. The method led to a connection diagram, which 
presented the main aspects of a guided tour and the guide behaviors. To have insight 
in the behaviors collections were made. This paper focused on non-verbal behavior. 

Strategies (explicit behavior) a human tour guide uses can be copied to a robot. 
Comparison with literature and own tests will give insight in how to use these strate-
gies to achieve the same effect on the visitor behavior. 

Implicit behavior of human tour guides includes behavior that helps the guide to 
tell the story, but it contains also behavior that helps the interaction with visitors. This 
behavior, like breaking eye contact and already moving in the new direction of the 
next exhibit will be very useful for the robotic guide. 
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To conclude, the observed human tour guide behavior such as gaze, showing visu-
als and movements will be translated to robot behavior and applied on a robot. In 
controlled lab-experiments, possible robot gaze, movements and orientation will be 
tested and evaluated on effectiveness, efficiency, understanding and experience of 
humans. 
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Abstract. Two factors that been suggested to influence the ways in which 
people interact with robots, namely users' initial expectations on the one hand 
and their increasing acquaintance with their robotic partner due to repeated 
interaction over time on the other. In the current study, eight participants 
interacted with a humanoid robot in five different sessions. Between the 
sessions, the robot was trained on the linguistic material presented to it by its 
human tutor in the preceding session, and thus the robot exhibits increasingly 
more knowledge of the domain. The results uncover the interaction between 
users’ preconceptions and feedback-driven interactional effects that shape 
human-robot interactions. While considerable differences between users can be 
observed, all users respond to the robot’s feedback and increasing linguistic 
capabilities in comparable ways. 

1 Introduction and Previous Work 

In this paper, we investigate how people interact with a developing robot. In order to 
study the role of increasing acquaintance, we analyze users’ linguistic strategies by 
means of which they teach the robot over time. This will show us in how far the 
robot’s behavior and increasing capabilities influence the way people interact with it 
and thus which impact social communication over time and, in particular, 
acquaintance with the robot may have.  

Studies in cognitive psychology have shown that acquaintance plays a crucial role 
in the way in which people make use of common ground (see Clark [2]). 
Acquaintance has also been found to be a factor in studies of human-computer 
interaction; for instance, Amalberti et al. [1] compare participants' linguistic behaviors 
when they believe that their communication partner is either another human or a 
computer; they find that the considerable linguistic differences between speech 
directed at a computer and speech directed at another human, which can initially be 
observed in participants' speech, disappear gradually over several sessions. Thus, 
there is evidence that acquaintance plays a crucial role in interaction. However, it is 
so far unclear how such interactional effects are related to the preconceptions and 
expectations people bring into the interaction; several studies have shown that users’ 
expectations also play a crucial role in the ways in which they interact with a 
communication partner (e.g. Fischer [6], Turkle [19]). This holds for interactions with 
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communication partners with slightly different capabilities than one’s own, such as 
foreigners (e.g. Zuengler [20]), as well as for interactions between younger and 
elderly people [11], but has also been shown for interactions with robots. For 
example, Turkle [19] argues that people’s personal needs shape the ways they interact 
with relational artifacts, such as social robots. Fischer [6] shows that people’s 
preconceptions about the degree of socialness of the human-robot interaction situation 
are an important factor in determining the way these people talk to a robot. Paepke 
and Takayama [13] manipulated users’ expectations about the robot ‘Pleo’ by means 
of different introductory leaflets and find significantly different evaluations of the 
same robot after the interaction. Thus, preconceptions and users’ expectations may 
have a considerable impact on HRI, yet it is unclear in how far these preconceptions 
are related to, and influenced by, what is happening in the course of the interactions 
between humans and robots.  

The current study therefore aims to identify the effects of repeated interaction 
while taking people’s initial expectations into account. We address this problem by 
investigating interactions between humans and a humanoid robot over time. In the 
current study, eight participants interacted with a humanoid robot in five different 
sessions. Between the sessions, the robot was trained on the linguistic material 
presented to it by its human tutor in the preceding session, and thus the robot exhibits 
increasingly more knowledge of the domain. 

2 Data Elicitation 

Eight adult participants took part in the study. Participants were between 27 and 58 
years old (five female and three male). The backgrounds of the participants were 
either administrative (6) or research related (2), the latter not connected with robotic 
language research. Each of the eight participants took part in five interaction sessions 
of approximately two minutes with the robot (in total 40 robotic interaction sessions), 
and all of the sessions were videotaped for later analysis. The experiment was carried 
out over a three month period between March and June 2009 based on the availability 
of the participants. Participants were paid a small stipend of £20 if they completed all 
sessions (which all participants did). 

In the experiment we asked the participants to teach the humanoid robot Kaspar 
(Dautenhahn et al. [4]) a series of shapes pasted on boxes. The robot was pre-
programmed to track and habituate for a given period on these shapes. There was no 
constraint on participants’ language. How to talk to the robot and what teaching 
strategies to use, was thus entirely up to the respective participant. 

Following each interaction, the speech stream of the human was converted into 
phoneme strings marked with word boundaries. These phoneme strings were 
subsequently aligned with the sensorimotor modalities experienced by the robot 
during the interaction session. The aligned speech and sensory modalities were then 
processed to highlight words of long duration and words that appeared at the end of 
utterances. This processed modality stream became the basis for the robot’s learnt 
experiences for the next interaction session with the human. In other words, the robot 
learned to associate the stressed words in a particular participant’s speech stream with 
its visual perception of the shape presented to it during the sessions. 
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Fig. 1. A participant teaching Kaspar about shapes 

In subsequent sessions (from session 2 onwards) the robot then matched its current 
sensorimotor input (that it was experiencing during the interaction) against that learnt 
in the previous session(s) with the particular tutor. This allowed the robot to react to 
the human by expressing (via its own speech) what it had learnt during the previous 
session(s). Thus, the robot produced feedback to the respective teacher by repeating 
words it had previously learned from associations of sounds to sensorimotor data. Full 
details of the experimental procedure can be found in Saunders et al. [16, 17]. 

3 Method 

The method for analysis makes use of the principle of recipient design [15], which 
holds that people choose the linguistic features of their utterances to be suited best for 
their particular communication partners; for instance, people design their speech 
differently when speaking to children than when speaking to other adults (e.g. Snow 
[18]). In the current investigation, we make use of this principle by analyzing the 
participants’ speech to the robot in order to identify who the participants think they 
are talking to. Thus, in the same way as we can identify speech to children by the 
shorter utterances, lower type-token ratio, lower complexity, more interactivity and 
more attention getting devices, we can study the properties of speech to a robot as a 
window into participants’ concepts about their artificial communication partner and 
their ideas about what it will be good at and what it will have problems with. Thus, 
participants’ linguistic choices reveal their concepts of their communication partner. 
The procedure thus consists in analyzing those linguistic features that may be 
revealing regarding participants’ concepts of the robot and in identifying which of 
these features are affected by the variables investigated, here: the acquaintance with 
the robot. In some sense, this method is exploratory, as the main aim of the statistical 
analysis is to identify the nature of the adjustments participants make, rather than 
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testing specific hypotheses. On the other hand, the linguistic features analyzed have 
certain functions, and thus certain predictions can be made with respect to the areas in 
which changes take place. 

4 Data Encoding 

The data were orthographically transcribed and analyzed semi-automatically using 
shell scripts, whose results were manually controlled for correctness. The features 
investigated concern different linguistic features that may safely be assumed to be 
indicators of certain communicative functions and of people’s conceptualizations and 
understandings of the robot and of the human-robot interaction situation. In particular, 
unambiguous linguistic features were automatically extracted from the transcripts if 
these are revealing with respect to participants' preconceptions and expectations about 
the robot, the task and the human-robot interaction. Since the linguistic features were 
extracted automatically, human contribution to this step is minimal, so that there is no 
manual encoding that would need to be checked by a second encoder. The only 
qualitative judgments made concern the selection of linguistic features investigated, 
which are therefore explained in detail below. 

First, we looked for indicators that provide useful measures for the level of 
competence ascribed to the robot. These comprise structuring functions, for instance, 
items like now, next, but also another. These structuring cues presuppose that the 
interaction partner keeps track of the interaction and builds up a coherent 
representation of what he/she/it encounters. Another indicator of ascribed competence 
in the current scenario are ascriptions of memory and learning. For instance, if the 
robot is asked whether it memorizes something it had previously been told, this shows 
that participants expect that the robot learns and remembers what they teach it. Uses 
of past tense that refer to previous teaching sessions are indicators of such beliefs. 

Second, in order to determine the social effects of the interaction, we investigated 
in how far users involve the robot directly. For instance, we counted instances of the 
personal pronoun you, instances of feedback signals, such as good, well, excellent, as 
well as instances of yes and no. Furthermore, we analyzed how often participants ask 
the robot questions, such as probing questions like what's this? and tag questions like 
isn't it?. Moreover, we looked at how often users call for the robot’s attention by 
means of look or the robot’s name. 

We furthermore calculated the number of different words and, on the basis of the 
total number of words, the type-token ratio. The number of turns and the number of 
words are used to inform us on the one hand on how much effort the user put into the 
interaction, on the other, these numbers are used to calculate normalized numbers of 
the other features investigated, so that the numbers presented are always relative to 
the total number of turns or words used. The total numbers of turns and of the words 
used, as well as the type-token ratio, provide good indicators for how easy or difficult 
users make their utterances for their robotic partner. In speech to children, for 
instance, the number of different words and the type-token ratio are usually much 
lower than in speech to other adults (e.g. Snow [18]). Especially the diversity 
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measure, i.e. the type-token ratio, thus tells us whether users simplify their speech for 
the robot. These features thus function as indicators of suspected competence. They 
are common measures in readability tests, and speech adjusted to linguistically 
somewhat limited communication partners, such as children, is generally simplified in 
these terms. The same holds for the mean length of utterance (MLU), which is 
reliably reduced in speech to children (cf. Snow [18]; Roy et al. [14]). 

We finally encoded whether participants greeted the robot at the beginning of each 
session. Whether a user greets a robot or not has been found to be a reliable indicator of 
the degree of socialness attributed to the robot, and as a useful predictor of the way this 
user will interact with the robot throughout the dialogs (Fischer [5, 6]; Lee et al. [12]).  

5 Results 

In order to assess the amount by means of which participants adjust their speech to the 
robot's behaviors over time, we compared the different sessions with each other, thus 
determining the likelihood that the interactions all stem from the same session. The 
results show that participants adjust their speech to the robot over time such that 
general tendencies in users' behaviors over time can be observed (see Table 1).  

Table 1. Changes over time 

 F(4,35) p
turns 3.759235 0.012026 
hello 0.261682 0.900508 
words 1.150642 0.349159 
diff_words 0.639448 0.637883 
robot 1.000000 0.420651 
now 0.770968 0.551458 
another 1.607017 0.194327 
interest 0.761221 0.557603 
past 1.566045 0.204993 
robot’s name 0.764929 0.555259 
look 3.204979 0.024169 
lets 0.233275 0.917758 
tag question 1.942775 0.125081 
probing 1.822449 0.146530 
expository 1.434195 0.243253 
you 0.888735 0.480868 
we 0.449707 0.771871 
I 0.363485 0.832902 
feedback 3.269179 0.022272 
yes 1.406362 0.252151 
no 0.891855 0.479093 
MLU 5.429102 0.001651 
typetoken 0.713872 0.588075 
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The analysis of the linguistic features shows that some significant changes occur 
over the five sessions. In particular, participants adjust the amounts of speaking such 
that the initial interactions are significantly shorter than especially the second 
interactions, and then interactions stabilize at a relatively high level. Thus, users 
spend different amounts of effort in the teaching sessions. Second, in the initial 
sessions, participants use significantly more devices by means of which they try to get 
the robot’s attention; the number of instances of look is two-to-four times higher in 
the first session than in later sessions. In contrast, the number of feedback signals 
increases significantly over time, and most likely in correspondence to the robot’s 
increasing linguistic capabilities. Finally, the mean length of utterance changes 
significantly after the first session and is adapted to the robot’s linguistic capabilities 
in the later sessions. 

As Table 1 shows, there are however no statistically significant differences in the 
amounts of structuring cues and references to the past, the use of the robot’s name and 
other indicators of social relationship, tag questions and probing questions, pronouns, 
teaching strategies and linguistic diversity. Table 2 presents the means and standard 
deviations for the four features that change significantly during the five sessions. 

So people adjust their speech according to the developing capabilities of the robot, 
in particular with respect to the amount of effort put into the interaction (number of 
turns), their perception of the need to keep the robot’s attention, the amount of 
feedback given, and a central complexity measure, namely the mean length of 
utterances. At the same time, other linguistic features, which are generally subject to 
adjustments in child-directed speech, for instance, are not affected by the robot’s 
increasing linguistic capabilities. Thus, participants do not structure the task more, do 
not reduce the number of different words, do not conceptualize themselves and the 
robot more as a team (as indicated by uses of ‘let’s’ and ‘we’), nor do they show 
differences in interpersonal relationships, such as by calling the robot’s name, 
greeting it more, or referring less to themselves (by means of ‘I’) and more to the 
robot (by means of ‘you’). While these features have been found to be affected by 
other aspects of robot behavior and embodiment, such as contingency of feedback and 
degrees of freedom (cf. Fischer, Lohan and Foth [9]; Fischer and Lohan [10]), they 
are obviously not affected by the robot’s word learning. 

Table 2. The four features 'number of turns', 'look', 'feedback' and 'MLU' across the five 
sessions 

sessions turns  look  feedback  MLU  

1 33.125 (5.16) 0.138 (0.14) 0.008 (0.016) 7.261 (1.528) 

2 46.250 (8.28) 0.033 (0.03) 0.013 (0.020) 4.786 (1.137) 

3 42.375 (8.57) 0.076 (0.08) 0.042 (0.063) 5.235 (1.393) 

4 44.750 (5.39) 0.031 (0.03) 0.058 (0.051) 4.773 (1.409) 

5 43.750 (9.41) 0.021 (0.04) 0.082 (0.066) 4.295 (1.546) 

 
However, besides for functional reasons, the failure to find more statistically 

significant differences between sessions may be due to high interpersonal variation. In 
a next step, we therefore investigated interpersonal differences in the interactions. 
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In order to assess the interpersonal differences between the eight different 
participants, we compared their linguistic behaviors in the five sessions with each 
other.  

The investigation of differences in the linguistic features between participants 
shows that there are considerable differences between users throughout. In fact, only 
tag questions, number of turns, instances of ‘look’ and instances of ‘yes’ are not 
significantly different between participants. 

Thus, the analysis shows extreme interpersonal differences between speakers, 
basically concerning all linguistic choices. This suggests that participants differ 
considerably in their understanding of the situation (cf. Fischer [6]). However, while 
people differ in almost all linguistic behaviors, with respect to two of the four features 
that were found to be adjusted to the robot over time people converge in their 
linguistic choices; in fact, we can also understand the lack of differences in the use of 
‘yes’ from the same perspective since the most important function of ‘yes’ is to 
provide feedback. The robot’s developing capabilities can consequently be taken to 
guide people subtly into similar behaviors. 

Table 3. Interpersonal Differences 

 F(7,32) p
turns 0.70765 0.665664 
hello 2.92517 0.017482 

words 4.47183 0.001450 
diff_words 12.30139 0.000000 

now 4.76811 0.000929 
another 4.20360 0.002190 
interest 2.56840 0.032148 

past 3.97814 0.003117 
robot’s name 3.12951 0.012395 

look 1.95766 0.092588 
lets 4.37695 0.001676 

tag questions 1.00065 0.448921 
checking 2.54773 0.033312 

expository 3.03480 0.014529 
you 3.92834 0.003372 
we 16.42579 0.000000 
I 4.53277 0.001322 

feedback 2.83286 0.020446 
yes 1.56765 0.180879 
no 6.10001 0.000142 

MLU 2.62818 0.029008 
typetoken 11.17388 0.000000 
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6 Discussion 

The linguistic analyses presented show that the human tutors adjust their instructions 
to the robot’s linguistic behavior over time. The linguistic features changed are 
functionally related to the different communicative tasks that users encountered in the 
five sessions. In particular, in the first session, users’ communicative efforts largely 
concerned getting the robot’s attention, which corresponds to the fact that the robot’s 
only means of feedback was to display its attention nonverbally. So users’ 
communicative focus in the first session is consistent with users’ orientation at the 
robot’s behavior (Fischer et al. [8]). These communicative efforts change already in 
the second session when the robot starts producing verbal output. 

The other changes made by the participants over the course of the sessions concern 
the mean length of utterance, the amount of speaking and the amount of linguistic 
feedback. These changes can be related to different tutoring behaviors on the one 
hand and the robot’s increasing linguistic capabilities on the other. The changes 
observed are thus in accordance with a model of human-robot interaction that 
assumes high amounts of cooperation from the side of the users (cf. Fischer [5]) and 
considerable attention to the robot’s capabilities (Fischer [7]; Fischer et al. [8]).  

The results concerning interpersonal variation have shown that users’ expectations 
and preconceptions play a considerable role in interaction. However, irrespective of 
their different preconceptions, all users converge on the same behaviors in response to 
the robot’s behavior. 

7 Conclusion and Future Work 

We can conclude that both users’ preconceptions and feedback-driven interactional 
effects shape human-robot interactions. While the initial differences between users 
persist over time, all users respond to the robot’s feedback and increasing linguistic 
capabilities in comparable ways. Thus, the good news for robot developers is that the 
kinds of behaviors the robot produces subtly guide users into similar kinds of 
responses, irrespective of their initial expectations. Future work will have to identify 
the factors that lead to the high interpersonal variation identified – what makes 
participants understand the same human-robot interaction situation so differently that 
they make significantly different linguistic choices for their partners that persist over 
time? Furthermore, besides understanding interpersonal variation, it will also be 
useful if people’s differing behaviors can be predicted; on the other hand, the current 
results suggest that the robot’s behavior can guide people into particular behaviors; 
future work should thus explore in more depth how participants’ ideas of the HRI 
situation and the robot’s capabilities can be shaped. 
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Abstract. In many applications, such as virtual agents or humanoid
robots, it is difficult to represent complex human behaviors and the full
range of skills necessary to achieve them. Real life human behaviors are
often the combination of several parts and never reproduced in the ex-
act same way. In this work we introduce a new algorithm that is able
to learn behaviors by assuming that the observed complex motions can
be represented in a smaller dictionary of concurrent tasks. We present
an optimization formalism and show how we can learn simultaneously
the dictionary and the mixture coefficients that represent each demon-
stration. We present results on a idealized model where a set of potential
functions represents human objectives or preferences for achieving a task.

1 Introduction

Robots are expected to have promising applications in fields such as domestic
assistance, health care or education. However bringing robots to our everyday
environment and improving their interaction capabilities requires that they are
capable of understanding natural human behaviors.

Human activities are numerous and highly diverse, and feature large vari-
ability between individuals, situations, and times. Making robots or intelligent
systems capable to recognize or even understand or reproduce such behaviors,
thus requires a high level of adaptivity which makes learning algorithms promis-
ing candidates for this task.

It is however still a difficult problem to design or adapt learning algorithms
so that they can deal well with essential properties of natural human behaviors.
In fact natural human behaviors are complex and one won’t generally observe
something as “fill a glass of water” but rather “grasp a glass, walk to the tap,
open the tap while keeping the glass straight”. Being able to cope with the
combinatorial structure of behaviors is thus necessary for their understanding.

In both examples each primitive behavior must be separated from the other
behaviors composing the general activity and the relevant features must be iden-
tified as the glass being filled, not as the exact trajectory of the elbow or the
position of the glass. These two difficulties are actually related to wider top-
ics of research from which efficient algorithms and representations can benefit
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human behavior understanding by leveraging compositional structure of human
activities and represent tasks or objectives that drive the activities.

First separating complex behaviors into simpler parts is very close to both the
decomposition of complex motions into simpler motor primitives and dictionary
learning techniques from machine learning.

Then, focusing on representations of behaviors in terms of the cost function
they are optimizing rather than the specific way to solve it is closely related
to inverse feedback control and inverse reinforcement learning approaches which
can lead to better generalization properties, as for example when learning to
imitate.

In this article we address aspects of the issues of representing, learning and
reproducing human behaviors and their compositional structure. We introduce a
dictionary learning approach for representing and reproducing the combinatorial
structure of motor behaviors that are only observed through demonstrations of
several concurrent motor behaviors. We focus on motor behavior representations
that directly model the objective of the user underlying demonstrations. We
illustrate the presented algorithm on a simple toy example.

2 Background and Related Work

2.1 Decomposition of Motor Skills: Motor Primitives

Motor primitives have been introduced as a form of re-usable motor skills
that may be used as elementary building blocks for more complex motor control
and skills. The concept of motor primitives that can be combined together has
the appealing property to enable combinatorial growth of the skill repertoire.
As detailed by Konczak [1], examples of motor primitives can be found both in
biological and robotic systems, and can be either innate or acquired.

The notion of combination of motor primitives can take different forms. One
could consider a behavior composed of a sequence of simple actions, like moving
one’s hand to a glass, grasping it, bringing it back to one’s mouth, etc.

The structure of some behaviors however does not fit well in this sequential
representation. Many behaviors or tasks are better described in terms of elemen-
tary movements executed simultaneously (e.g. on different parts of the body)
or concurrently, like speaking while smiling and shaking someone’s hand. Con-
current combinations of behaviors is particularly studied in this article.

2.2 Using HMMs to Learn Motor Primitives

Hidden Markov models (HMM), often coupled with clustering techniques or
mixture models, have been largely used to learn sequences of primitives. For
example, Kulic and Nakamura have proposed in [2] a method that first performs
an unsupervised segmentation of the motion signal into small successive blocks
(the segmentation technique itself is based on HMMs), and then performs clus-
tering over HMM representations of each segmented block. Each group of similar
motions is interpreted as a motor primitive.
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In a different setting, Kruger et al. [3], have focused on a notion of motor
primitive based on the effect of actions on objects from the environment. They
have proposed to first discover primitives by clustering action effects on manip-
ulated objects and then use the found clusters, composed of actions that have
similar effects, to segment the stream of motions into coherent actions. Then
parametrized hidden Markov models are trained to represent the actions and
enable both their recognition and reproduction.

Finally Calinon et al. [4] and Butterfield et al. [5] use Gaussian mixture models
to represent motion primitives and HMMs to discover and represent the transi-
tions and sequential combinations of primitives. All the approaches presented in
this paragraph are capable of recognizing and reproducing the learned motions.

2.3 Using Dictionary Learning to Learn Motor Primitives

Dictionary learning approaches by matrix factorization are machine learning
techniques widely used to solve problems where an input signal has to be de-
composed into a linear combination of atoms. They target the learning of both
the dictionary of atoms and the coefficients used in their combinations.

The possibility to enforce structural constraints on the dictionary and coef-
ficient matrices enables better modeling of many problems and participates in
the versatility of dictionary learning techniques. Such constraints include for ex-
ample non-negativity [6,7], sparsity or group sparsity [8], constraining atoms to
be convex combinations of the demonstrations, which can be seen as a general-
ization of clustering [9], constraining atoms to be stochastic vectors, etc.

In the field of motion decomposition, Li et al. [10] have used orthogonal match-
ing pursuit to decompose complex motions into simple motion patterns activated
shortly along time. The decomposition is used to perform both compression, clas-
sification and reproduction of visualizations of the movement (but is not tested
on real reproduction). The article uses constraints such as sparse activation co-
efficients and sparse motion patterns in Fourier domain.

Hellbach et al. [11] have also used non-negative matrix factorization to per-
form a decomposition of globally unstructured motions in low level components.
They use time invariance and sparsity of dictionary atoms to guide the learn-
ing toward discovering short sequences of positions that can be concatenated
into the observed trajectory. These capabilities are tested on a dataset of real
movements for prediction but not to produce motion on a real robot.

Time sequences of motor primitives learnt by methods from Li et al. [10]
and Hellbach et al. [11] may include overlap, and can therefore be considered
as hybrid methods enabling the learning of motor primitives combined both in
sequence and parallel. They are however mainly focused on representing trajec-
tories by superposition of time shifted simple local patterns and do not explore
how the structure of complex behaviors composed of simultaneous primitive ges-
tures can be leveraged towards better understanding of the observed activity.

In our previous work [12] we demonstrated how non-negative matrix factor-
ization can be used to decompose complex behaviors into simultaneous com-
binations of primitive gestures. We presented an experiment in which dance
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choreographies are demonstrated by a human. Each choreography is composed
of several simultaneous gestures. For example, one leg gesture and one gesture
on each arm. A set of symbolic linguistic labels corresponding to the gestures
occurring in the choreography are also provided with the demonstrations, which
is a form of linguistic guidance. A learning system is trained by observing both
demonstrations of the choreography and the associated labels. The system then
observes new dances and has to reconstruct the associated set of labels, that is
to say, tell which gestures were combined to form the choreography. It is shown
in the article that the system performs well even if the demonstrated choreog-
raphy is a combination of gestures that have never been demonstrated together
during training. This setting emphasizes the ability of the system to capture the
compositional structure of the choreographies.

[12] presents a technique that permits classification of complex behaviors, but
it cannot reproduce them since the motion representation is only discriminative.
This article presents a dictionary learning approach based on inverse feedback
control, which as a generative representation enables motion reproduction.

2.4 Inverse Feedback Control

Approaches which consist in direct representation and reproduction of the policy
(state to action mapping) observed through trajectories of the demonstrator’s
(or imitator’s) body are often denoted as policy learning. Most techniques
presented in Sections 2.2 and 2.3 belongs to this category. The policy can either
be a direct representation of the trajectory [13] or a probabilistic model of the
policy [4].

In opposition, inverse optimal control [14] and inverse reinforcement
learning [15] are approaches based on the idea that, in some situations, it can
lead to better generalization to model aspects of the task that the demonstrator
is trying to solve instead of modeling the particular solution in the demonstrated
context. The capacity of inverse optimal control to achieve better generalization
has been demonstrated in the experiment performed by Abbeel et al. [16], in
which an helicopter performs acrobatic motions after observing demonstrations
from a human expert remotely controlling the helicopter. In that example the
learned trajectories even overtake the skills of the demonstrating expert.

Jetchev and Toussaint [17] have adapted inverse optimal control techniques
to a single grasping task on a real robot. Furthermore they have shown how the
inverse optimal control approach, coupled with a sparsity constraint on the task
representation can be used to discover relevant features in the task space.

Finally Brillinger [18] has developed an algorithm based on least square re-
gression to learn potential functions modeling the motion of wild animals in
natural parks.

In this article we extend Brillinger’s technique to address a different problem:
instead of learning a flat representation of a single task, the learner must infer
several primitives cost functions/skills that can be composed to explain the mix-
ing of concurrent tasks that are demonstrated. We use a very similar behavior
representation, but introduce dictionary learning for solving the new problem.



138 O. Mangin and P.-Y. Oudeyer

3 Problem Definition and Algorithm

We introduce a simple synthetic imitation learning experiment in which an imi-
tator learns to reproduce behaviors observed from a demonstrator.

More precisely we model the task underlying each behavior as a cost function
on states of the agent (either the demonstrator or the imitator), which can be
seen as representing the preferences of the demonstrator. For example the task
of filling a glass of water will be represented by a cost function giving increasing
values to increasing levels of water in the glass. In the case where the “filling
the glass” behavior is mixed with the “smiling to someone” behavior, the mixed
behavior will be represented by a mixed cost function valuing both full glass and
smiling position of the lips.

Each demonstration consists in a trajectory in the demonstrator state space,
from a specific initial position. The objective of the imitator is to produce a tra-
jectory (either from the same initial position than the demonstration, or another)
that fits the demonstrator preferences (i.e. minimize the cost function).

This setup introduces two important difficulties for the imitator. On the one
hand each demonstration only presents aspects of the cost function locally,
around the trajectory. Each demonstration is thus not sufficient to fully un-
derstand the underlying task. On the other hand, each demonstration presents
a mixture of several tasks. Thus, while the primitive tasks are observed many
times, they are never observed alone and each particular mixture is generally
only observed once. It is thus necessary to leverage the compositional structure
of the behaviors to be able to understand them, and reproduce them with new
initial positions.

3.1 Agent and Demonstrator Models

We will assume that both the demonstrator and imitator are identical. This
corresponds for example to the case where demonstrations are performed on
the imitator body (kinesthetic demonstrations). Following Jetchev et al. [17], we
consider a robotic agent which configurations q belong to a state space Q ∈ R

S .
Each trajectory is denoted by a sequence (qt)t∈[|1,T |].

We assume that there exists a cost function f : Q −→ R such that each
task is modeled as the demonstrating agent trying to minimize the cost f(q) to
which is added a penalization on the square norm of ∂q

∂t , which can be seen as a
penalization of the energy consumed while moving to optimize f(q).

We will focus on very simple agents which actions are motions in the state

space and are governed by the local optimization of f(q)+α
∥∥∥∂q

∂t

∥∥∥2 which means

that each action, at each time step, is chosen such that:

qt+1 = argmin
q

f(q) + α
∥∥q − qt

δt

∥∥2
,

where δt is the time elapsed between samples t and t+ 1.
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The solution of this equation, without additional constraints, and assuming
that the cost function f is differentiable, is well known to be proportional to the
gradient of f , as − 1

α∇f(q).
It can be noticed that since the agent we have defined only follows policies

driven by local optimization it will only achieve local optimization of the cost
function. While this is a simplification of the agent, it also features an important
property of real demonstrators: real demonstrators are in general imperfect and
do not always succeed in reaching the optimal solution of the task. It is thus
important for a imitator to be able to also learn from imperfect demonstrations
of behaviors.

In this article we focus on complex tasks: each demonstration corresponds to
the minimization of a separate cost function f which is only observed through
one demonstration. However f is composed of parts that also occur in other
demonstrations and are thus observed several time mixed in various way and in
various contexts.

Lets consider N demonstrations, observed as trajectories (qit)t, i ∈ [|1, N |]
in the agent state space. We assume that each demonstration corresponds to
a given f i. To model complex demonstrations we assume that there exists a
dictionary of primitive tasks, composed of K cost functions (gk)k∈[|1,K|], such
that, for all demonstration i, there exist coefficients (aik)k∈[|1,K|] such that, for

all state q, f i(q) =
K∑

k=1

aikg
k(q).

We present a learning algorithm which observes one demonstration associated
with each function f i and learns a dictionary of primitive cost functions gk, and
the coefficients of their combinations into demonstrated tasks f i.

3.2 Inferring a Task from a Demonstration

The problem of inferring a single task from a demonstration is studied in
Brillinger’s article [18]. The cost function is represented by a linear parame-
ter β ∈ R

F on a space of potentially non-linear features ϕ : Q −→ R
F . Its

minimization is modeled by an agent policy such that:

∂q

∂t
= −λJ(q)Tβ (1)

where J is the Jacobian of ϕ (lines of J are gradients of coordinates of ϕ).
When discrete trajectories are considered, equation (1) approximates into

qt+1 − qt
δt

= −λJ(qt)
Tβ for all t ∈ [|1, T − 1|]. By denoting yt+1 = qt+1−qt

δt
,

Y ∈ RS×(T−1) the vector obtained by vertically stacking all yt for t ∈ [|2, T |],
and Φ the S× (T −1) by F matrix obtained by vertically stacking all −λJ(qt)

T ,
we get:

Y = Φβ (2)
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Equation (2) transforms the problem of inferring one task from one demonstra-
tion into a linear regression problem, which constitutes an essential contribution
of Brillinger’s article.

In the case where the Euclidean distance between the vector Y , computed from
observations, and its reconstruction through the task model Φβ is considered,
we get the classical least square regression problem. It is solved, assuming ΦTΦ
is non-singular, by:

β = (ΦTΦ)−1ΦTY (3)

More details on the associated derivations can be found in [18]. The algorithm
presented above is capable, from one demonstration, to infer the cost function
modeling a behavior of the demonstrator. Once the cost function is inferred, the
imitator can in turn produce trajectories that minimize it. Such an agent that
directly infers all the parameters of the cost function is denoted flat imitator
in the following.

3.3 Learning a Dictionary of Primitive Tasks from Mixed
Demonstrations

The algorithm presented in Section 3.2 only applies to a single demonstration
generated from a single task model. In this section we introduce a matrix fac-
torization algorithm to learn a dictionary of primitive tasks and associated co-
efficients from several demonstrations.

Each demonstration corresponds to a mixing of primitive tasks which is mod-
eled by a βi in the feature space. To model the concurrent mixing of primitive
tasks, we introduce a dictionary represented by a F by K matrix D such that
each column of D is the parameter representing the primitive tasks gk in the
feature space. The concurrency between the primitive tasks in a mixing is repre-
sented through a weighting coefficient. Coefficients of the ith demonstrated task
are given by a vector ai ∈ R

K , βi = Dai.
For each demonstration we define the vector Y i and the matrix Φi associated

with the observed trajectory, by following the method described in Section 3.2.
It follows that for each demonstration:

Y i = ΦiDai (4)

Learning a factored model of the demonstrated tasks that minimize Euclidean
distance to demonstration is equivalent to solving equation (5).

argmin
D,A

L(D,A) with L(D, a) =

N∑
i=1

‖Y i −ΦiDai
∥∥2
2

(5)

We propose an algorithm based on alternate minimization with respect to D
and A to solve this problem.
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Minimization with respect to A This sub-problem assumes that the dictionary
is known and thus consist, from a demonstration, in inferring the task decom-
position on the dictionary. It is similar to the algorithm presented in previous
section, but the K decomposition coefficients (the vector a) are inferred instead
of all the F coefficients of the cost function.

This problem is separable in one sub-problem for each demonstration i which
are all equivalent to the regression problem presented in Section 3.2 where the
matrix Φ is now replaced by the product ΦiD. Thus the solution of the opti-
mization with respect to A is given, for Euclidean distance, by equation (6).
Other norms or penalization could as well be used to solve the regression (e.g.
methods enforcing non-negativity or sparseness of coefficients).

ai = (DTΦiTΦiD)−1DTΦiTY i (6)

Minimization with respect to D The second sub-problem assumes that the de-
composition coefficients of the demonstrated task are known but not the dictio-
nary D. We use a gradient descent approach to learn D. The differential of the
loss with respect to each of the coefficients of D is given by equation (7).

∇DL(D,A) = −2

N∑
i=1

ΦiT
[
Y i −ΦiDai

]
ai

T
(7)

Global algorithm The global algorithm simultaneously learns the dictionary D
and the coefficients A by alternation of the two procedures from previous para-
graphs. Matrices D and A are initiated randomly or according to any heuristic.
Then D is learnt, assuming A contains the correct decomposition coefficients,
after which A is inferred assuming D is the correct dictionary, and so on. This
approach to matrix factorization problems has often proved to be efficient ([7,8]).

4 Experiments

To illustrate the algorithm introduced in Section 3 we consider a simple toy
experiment. We define an agent which state q belongs to Q = [0, 1]2. Cost
functions are parametrized on a 5 by 5 grid of Gaussian radial basis functions ,

which means φ(q)T = (. . . , 1
2πσ exp(− ‖x−μf‖2

2σ2 ), . . . ) where μf are points from a
regular 5 by 5 grid on Q and σ is fixed such that the task parameter space is of
dimension F = 25.

We use in this experiment a dictionary of 6 primitive tasks that is represented
in Figure 1 (first row). Combinations of 2 or 3 concurrent primitive tasks are
generated randomly for training and testing. For a given mixed tasks, a start-
ing point is randomly chosen inside Q and trajectories are generated by the
demonstrator or imitator from the initial position, according to equation (1). In
the remaining of this section we will describe two separate experiments where a
dictionary is learnt by a agent observing mixed combinations of tasks.
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Fig. 1.Dictionary of primitive tasks represented as cost functions overQ = [0, 1]2. First
row corresponds to original primitive tasks (as used by the demonstrator), second row
to the one reconstructed by the learner described in Section 4.1 and third row to the
learner described in Section 4.2. Dark areas correspond to high positive costs and light
areas to negative costs. (Best viewed in color).

4.1 Recovering the Dictionary from Given Coefficients

In this section we consider an experiment in which during training the learner
both observes demonstrations of mixed tasks and the associated mixing coeffi-
cients. This hypothesis models the situation where some labels associated with
the task that are mixed together in the demonstration are given to the learner
(e.g. inferred from spoken language). This experiment enables the evaluation of
the second part of the algorithm we introduced.

Since the mixing coefficients are known by the learner during training, only
the second part of the algorithm presented in Section 3.3 is used to learn the
dictionary D̂. We train such a learner on 200 trajectories generated from a dictio-
nary D. Both the original dictionary of primitive tasks D and its reconstruction
D̂ are represented in Figure 1.

Once the imitator has built a dictionary of tasks from observations, it is evalu-
ated in the following way: for a set of coefficients, corresponding to mixed tasks,
and a random starting position, the imitator and demonstrator yield trajecto-
ries. The demonstrator and imitator trajectories are then compared. Examples
of trajectories from both the learner and the imitator are given in figure 2.

The relative L2 error between the trajectories generated by the demonstrator
and the imitator is used to evaluate the quality of the reconstruction. An average
error of 0.001127 is obtained on the train set (tasks observed while learning the
dictionary) and 0.002675 is obtained on the test set (unobserved tasks).
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Fig. 2. Examples of demonstration trajectories generated from mixed concurrent prim-
itives tasks (first row) and their reproduction by the learner from experiment one. Initial
positions are marked by stars, others position are marked by circles. The associated
cost functions (the one inferred in the case of the imitator) are also represented. Dark
areas correspond to high positive costs and light areas to negative costs. (Best viewed
in color).

4.2 Learning Both Primitive Tasks and Mixing Coefficients from
Concurrent Demonstrations

We illustrate the full algorithm presented in Section 3.3 on an experiment where
the learner only observes demonstrated trajectories without knowing the coeffi-
cients. The learner’s reconstructed dictionary is given in Figure 1, bottom row.

Once the dictionary has been learnt, we use the following imitation protocol
to test the imitator. A new unobserved combination of primitive tasks is chosen
together with an initial position. Then the demonstrator provides a trajectory
corresponding to the task. From the observation of the demonstrated trajectory
and the learnt dictionary of primitive tasks, the learner infers the task’s decom-
position on the learnt dictionary (using the first part of the algorithm presented
in Section 3.3). Finally the imitator is asked to produce trajectories correspond-
ing to the same task, both from the demonstrator’s initial position and randomly
chosen initial positions. Changing the initial position from the demonstrated one
is a way to evaluate how well the imitator’s model of the task generalizes from
the demonstration context to new ones.

In order to evaluate the impact of learning the dictionary, that is to say the
combinatorial structure of the demonstrated data, we compare reproductions
of the task by an agent that has learnt the dictionary denoted as full dictio-
nary learner, to ones by an agent, denoted as flat imitator, that directly infers
the parameters of the tasks without using a dictionary (algorithm presented in
Section 3.2). We also compare the agent described in the previous section that
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has learnt the dictionary from both demonstrated trajectories and mixed coeffi-
cients, denoted dictionary from coefficients learner. Examples of demonstrated
and imitated trajectories are provided in Figure 3.

Fig. 3. Examples of imitated trajectories. First row presents the demonstrated trajec-
tory (first column) and its imitation by the flat learner, the dictionary learner from first
experiment (coefficients observed while learning the dictionary) and the full dictionary
learner. Second row correspond to imitations of the same task from initial positions
that were not observed (the demonstrator trajectories for those positions are given for
comparison purpose). (Best viewed in color).

5 Discussion

The first agent presented in Section 4.1, is able, by observing motions solving
composed tasks and the mixing coefficients, to learn the dictionary of primitive
tasks. The acquired dictionary is evaluated in different ways: visually from the
plots of the associated cost functions, from trajectories solving a mixed task
whose mixing coefficients are given, and from imitation, in random contexts,
of a mixed task that is inferred from a single demonstration (this last result is
presented together with second experiment).

In our previous work [12], we present an algorithm that learns from mixed
behaviors presented together with labels similar to the mixing coefficients. The
learner is able to yield the labels from test demonstrations of the motions. Ac-
tually the experiment evaluates the algorithm directly on the quality of the esti-
mation of the coefficients, since the system is not able to reproduce the demon-
strated gestures. The first agent presented in this article learns in a similar setting
than the algorithm from [12] but extends its capabilities to the reproduction of
the demonstrated behaviors.
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The second agent described in Section 4.2 is capable of learning a dictionary
that enables the factorial representation of demonstrated tasks, without directly
observing the dictionary or the mixing coefficients. The factorial representation
enables imitation of tasks that are observed through a single demonstration.
However the performance of the imitator is not evaluated due to the illustrative
nature of the experimental setup. In particular the least square regression from
[18] (described in Section 3.2) is not performing well on the particular form of
mixing of cost functions we have chosen for the illustrative toy example. How-
ever our algorithm is compatible with any regression method. Thus, interesting
further work could use the comparison of performances between various regres-
sion methods, on real human data, to get better insight on the combinatorial
properties of human activities.

The dictionary learnt by the agent is very different from the one of the demon-
strator. Actually the problem of representing a set of demonstrated mixed tasks
as linear combinations of primitive tasks is ill posed and does not have a unique
solution. For example one can scale the primitive cost function by some factor
and associated coefficients by its inverse or change the order of the primitive and
coefficients without changing the linear combination. Mathematically these diffi-
culties could be solved by adding constraints to the form of the learnt dictionary
(e.g. normalize primitive costs) or by adapting the way to compare dictionaries
(e.g. to make it invariant to re-ordering).

To overcome this difficulty, several ways of making some possible decomposi-
tions more salient than others can guide the learning, in the same way humans
easily identify salient behaviors even when mixed with others. First, saliency
can come from one’s history: if one already knows all but one primitive behavior
present in the scene, it is possible to identify the unexplained parts of the be-
havior and learn it as a new primitive. Investigating this part would require to
extend the learning model to an incremental learner. The algorithm we presented
can be extend to become online following a similar method than [19] although
this is not investigated in this article.

Then, a particular form of factorization could also be shaped by information
coming from another modality or social interaction. This aspect is demonstrated
both in our previous work [12] and in the first experiment (Section 4.1), where
observing the mixing coefficients, that can be seen as linguistic labels, enables
the learner to adapt its internal model (i.e. the dictionary) to a communication
channel. Aspects of social learning have already been shown to improve motor
learning by Massera et al. [20]. Solving the ambiguity in the decomposition of
human activities thus constitutes a new application for social learning.

Finally intrinsic constraints can be applied to the learnt dictionary to prefer
some solutions . Two examples of such constraints for which many machine
learning algorithms have been developed are non-negativity and sparsity. Non-
negativity of the coefficients will for example focus on representations that allow
primitive behaviors to be added to but not subtracted from an activity in which
they do not appear. Jetchev et al. [17] have shown how enforcing sparsity of a
task representation can make this task focus only on a few salient features, thus
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performing task space inference. Other examples are given by Li et al. [10] and
Hellbach et al. [11].

Extending the algorithm we presented to include constraints or evaluating it
on an online learning experiment would help investigating these questions and
thus constitute very interesting future work. For the result to be relevant, the
setup would however have to include more realistic aspects, such as non-trivial
action to state change mapping or more sophisticated agent models (e.g. capable
of planification).

6 Conclusion

In this article we studied aspects of the combinatorial structure of human be-
haviors and of their representation as tasks or objectives. We introduced an
algorithm to learn a dictionary of primitive tasks from demonstrations of con-
currently mixed behaviors. We demonstrated on an illustrative experiment how
the dictionary can be used to represent and generalize new demonstrations. Fi-
nally we discussed how dealing with ambiguities in factorial representation of
behaviors might involve social interactions, multimodality of the sensory expe-
rience or intrinsic saliency mechanisms.
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Abstract. In this paper, we present internal simulations as a method-
ology for human behaviour recognition and understanding. The internal
simulations consist of pairs of inverse forward models representing senso-
rimotor actions. The main advantage of this method is that it both serves
for action selection and prediction as well as recognition. We present sev-
eral human-robot interaction experiments where the robot can recognize
the behaviour of the human reaching for objects.

Keywords: behaviour recognition, internal simulation, human-robot in-
teraction, internal models.

1 Introduction

Understanding human behaviour is crucial for humans that are inherently social
creatures. There has been a strong evolutionary pressure to quickly recognise
and understand the actions of others and ideally to be able to map these actions
on the own body scheme and experience. The skill of understanding others’
behaviour, desires and intentions is closely related to the development of a theory
of mind in children around the age of 3.5 years and can be impaired in conditions
such as autism [2].

All forms of human behaviour understanding rely on or are based on informa-
tion that is gained through the observation of others’ actions through sensory
perception and can be extended with further interaction (sensorimotor and so-
cial). In order to build artificial systems that are capable of understanding human
behaviour, we aim at understanding the principles of function in humans so they
can be transferred to artificial systems.

There is a vast range of potential applications. Human-Robot interaction is
an area that would naturally benefit from robots that can understand human
behaviour and thus allow for a more intuitive interaction [17]. But also other
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application areas such as service and surveillance benefit from an automatic de-
tection and recognition of normal and abnormal behaviour. Most systems are
based on visual information from cameras that can infer from these the under-
lying desire, need, mood and intention of a human. Other systems are based on
additional sensors, such as acceleration sensors attached to a person, and rely
on the particular motion associated with a certain behaviour.

A particular interesting example of behaviour recognition are the experiments
with point light walkers by N. Troje and colleagues [20]. They showed that a
person can be easily recognized just by observing a small number of light points
attached to the joints of the person. Not only the behaviour, but also high-level
information such as gender, mood and weight can be extracted.

In previous work [10], we showed that the information can be reduced to
the 3-axis acceleration of these points by using an experimental setup where
acceleration sensors had been attached to a person. It was possible to recognize
different persons and different gaits by analyzing the data from the acceleration
sensors. The gaits consisted of walking normally, backwards, upstairs, downstairs
and running.

If we want to not only recognize but also to understand human behaviour, we
need to be able to map it on our own body scheme and experience. This is closely
related to imitation learning where an observed behaviour has to be executed
by ourselves. In the next sections, we introduce the concept of internal models
which set, we believe, an important ground for performing complex behaviour
understanding and imitation.

2 Internal Models

The idea of understanding and studying cognition based on the sensorimotor
capabilities of agents is becoming gradually accepted as a research framework
[3,15]. In this context, forward and inverse models become central players, as they
naturally fuse together sensory and motor information, providing agents with
multimodal representations [23,25]. Due to its functioning, these models allot
agents with internal simulations, anticipation and predictions, a fundamental
basis of cognitive systems.

Forward models were first proposed in the control literature as means to
overcome problems such as the delay of feedback on standard control strategies
and the presence of noise, a characteristic of natural systems [12]. A forward
model is an internal model which incorporates knowledge about sensory changes
produced by self-generated actions of an agent. Given a sensory situation St and
a motor command Mt (intended or actual action) the forward model predicts
the next sensory situation St+1. While forward models (or predictors) present
the causal relation between actions and their consequences, inverse models (or
controllers) perform the opposite transformation providing a system with the
necessary motor command (Mt) to go from a current sensory situation (St) to
a desired one (St+1).
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In the cognitive sciences, these processes have been found to be capable of
modeling several behaviours, ranging from the cancellation of the tickling sen-
sation [4] to the accounting for schizophrenia [8]. The importance of this type
of models stems from the relevance of the prediction of the consequences of
our actions for seemingly trivial tasks such as planning or avoiding undesired
situations [5].

The recent discovery of mirror neurons in the central nervous system supports
the general idea of internal simulations. The mirror neuron system (MNS) is
thought to be involved in internal simulations of the sensorimotor loop in learning
and planning, as it has been found that neurons in this area show activation both
when an individual performs a specific action and when the individual observes
the same action performed by a demonstrator (for a recent review, see [9]).

It seems that an observer understands a demonstrated behaviour comparing
a simulated execution of it with a set of primitives stored in its memory. Here,
Simulation is seen as the re-enactment of perceptual, motor and introspective
states acquired during experience with the world, body and mind [22,3].

Van der Wel et al. [21] view internal models as a mechanism for allowing a
faster and more precise interaction with the environment and other agents than
would be possible on feedback alone. This is mainly due to the models’ prediction
capabilities of the perceptual consequences of an action. If people simulate others’
actions, then how accurately an observer can predict an observer action should
depend on how closely the action maps onto the observer’s own motor repertoire.

Much research has been done on computational internal models for action
preparation and movement [26], with highly functional models that account,
for example, for hand trajectory planning taking into account different contexts
[11,24]. These models are also used to set the ground for action recognition and
action imitation.

In cognitive robotics, internal models have been used for the execution and
recognition of actions [6] and to plan navigation strategies avoiding undesired
situations [14,13].

Several architectures have been suggested which are based on the ideas of
internal models such as MOSAIC [23], HAMMER [7] or the system presented
by Akgun in [1]. The system we report here is based on the ideas reported in [18]
and presents in our view a significant difference, namely, the low level control of
the agents’ movements is based on learning the models through motor babbling.
A main advantage is that it requires and works using small displacements of
the arm, instead of whole trajectories which would complicate the use for online
recognition.

These models have been successfully implemented on a humanoid robot. We
are concerned with exploiting and investigating the full potential that inverse-
forward models present. First we have conducted experiments on the most basic
behaviour, namely action execution, then we use the models to distinguish be-
tween two apparently similar actions while reaching a position on space. This
behaviour requires two pairs of these inverse-forward models. The next obvious
step is now the recognition of actions when not executed by the agent itself. The
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arrangement of forward-inverse models presented here for action recognition is
the next building block in what we believe to be the scaffolding for cognition.

3 Experiments

In [18], we implemented a mechanism for behaviour selection using internal simu-
lations. A humanoid robot learned a repertoire of behaviours by self-exploration.
Each of these sensorimotor schemes was coded as an inverse (controller) - for-
ward (predictor) model pair. The simulated outcomes of each know sensorimotor
action have been used for selecting the best strategy from the repertoire to reach
a desired goal.

Simulating the outcome of a sensorimotor behaviour consists of two steps.
First, an inverse model predicts the motor command necessary to reach a desired
sensory situation, according to the sensorimotor behaviour it is coding. Then,
an efferent copy of this command is sent to the coupled forward model, for
anticipating the sensory situation which would have resulted from the application
of that motor command.

In the following subsections, we will show how the same mechanisms can be
applied in behaviour and target recognition.

3.1 Behaviour Recognition

Adopting the internal simulation paradigm can solve the task of understanding a
human behaviour. During an action demonstration, the actual sensory situation
can be compared with the ones predicted by simulating each known sensorimotor
scheme stored in the action repertoire. Errors in prediction can be used for
classifying the behaviour.

In [18], we reported the use of a computational model for a behaviour recog-
nition experiment. To show the performance of the system, we trained three
inverse-forward model pairs. Each of these pairs coded for a different action (see
Fig. 7), namely: reach an object; displace the object; withdraw the hand from the
object. This set has been chosen because such actions can be described by the
variation of the relationships between the position of the hand and the position
of the object.

In particular, they have been described with the following characteristics:

– d: distance between hand and object (their 3D positions are estimated using
fiducial markers);

– δ: derivative of the distance between hand and object;
– orientation of the object with respect to the hand. This characteristic is

coded as two angles, θ and φ, which represent the latitude and the longitude
of the object position in a frame of reference centered on the hand position.

Each of the three actions is characterised as a different tendency in the variations
of such features. For example, the reach action is characterised by a decrease of
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Fig. 1. Sequences of three actions (approach, displace and withdraw) performed by a
human subject towards an object

the hand-object distance, thus a negative derivative of the distance. The with-
draw action follows the opposite tendency: increase of the hand-object distance,
thus positive derivative of the distance. The displace action is characterised by
a constant value of the hand-object distance.

In this experiment, the sensory situation St is coded as an instance of the
previous characteristics: dt, δt, θt and φt. For each time step, the characteristics
encoding such a sensory situation are calculated from the positions of the hand
and the object. The motor command Mt is coded as the three components of
the velocity vector describing the movement of the hand: vx, vy and vz. Table
1 illustrates the input and the output of each internal model in the behaviour
recognition experiment.

Table 1. Input and output of the internal models

Inverse Model
Input St−1 : dt−1, δt−1, θt−1, φt−1

St : dt, δt, θt, φt

Output Mt−1 : vxt−1, v
y
t−1, v

z
t−1

Forward Model
Input St−1 : dt−1, δt−1, θt−1, φt−1

Mt−1 : vxt−1, v
y
t−1, v

z
t−1

Output St : dt, δt, θt, φt

Supervised learning sessions were performed offline by using recorded videos.
The robot observed demonstrations of each action, manually segmented by the
user. For each video, data represented by the characteristics specified before,
were collected in a knowledge base. Each component of the knowledge base,
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Fig. 2. Inverse (controller) - forward (predictor) model pairs, one pair for each of the
three actions

collected at time t, contains the following information: [St−1;Mt−1;St], which
means that at each time step the previous sensory situation St−1, the current
sensory situation St and the motor command Mt that caused St−1 to become
St have been saved as an element of the knowledge base.

In [18], a k-Nearest Neighbours based algorithm was used as inference tool for
the inverse and forward predictions. For inverse model predictions, the motor
command Mt (that is, the derivative of the hand displacement) which changes
the sensory situation from St−1 to St is calculated as follows: Given the hand
and object positions at time t − 2 and t − 1, the features which compose the
sensory situation St−1, i.e. dt−1, δt−1, θt−1 and φt−1, are calculated

1. In a similar
way, given the hand and object positions at time t− 1 and t, the features which
compose the sensory situation St, i.e. dt, δt, θt and φt, are calculated. A k-NN
search in the knowledge base is then performed, where the query is composed by
St−1 and St. Finally, theMt−1 components, i.e. vxt−1, v

y
t−1 and vzt−1, are extracted

from the k found vectors and their mean is the output of the inverse model
prediction. Figure 3 illustrates the algorithm for performing inverse predictions
using k-NN.

Similarly, the forward model predictions are calculated as follows: Given the
hand and object positions at time t − 2 and t − 1, the features which compose
the sensory situation St−1, i.e. dt−1, δt−1, θt−1 and φt−1, are calculated. Then,
given the hand positions at time t − 2 and t − 1, the motor command Mt−1

is calculated as the derivative of the displacements in each direction, i.e. vxt−1,
vyt−1 and vzt−1. A k-NN search is performed, but now the query is composed by
St−1 and Mt−1. The final step consists in extracting from the k found vectors the

1 Hand and object positions at time t−2 are needed for estimating the sensory situation
St−1 (for example the variation of the hand-object distance between the current
instant and the previous one).
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Fig. 3. Illustration of the inverse model prediction with k-NN
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Fig. 4. Illustration of the forward model prediction with k-NN

St components, i.e. dt, δt, θt and φt, and returning their mean as the forward
model prediction. Figure 4 illustrates the algorithm for performing forward pre-
dictions using k-NN.

In the action recognition experiment, the robot is facing towards an action
demonstration and is expected to recognise the observed action in real time.
Frame by frame, it estimates hand and object positions and it computes both
sensory states St−1 and St. Internal simulations of the sensorimotor loop are
performed for each action, that is for each controller-predictor pair. First, St−1

and St are fed into the inverse model which predicts the motor command M∗
t−1;

then, St−1 and M∗
t−1 are sent to the corresponding forward model to generate

the simulated outcome S∗
t . Each of these predictions is then compared with the

actual sensory situation St. The action corresponding to the pair with the least
error is chosen as the most probably observed one2.

Preliminary results of the behaviour recognition experiment using the k-NN
based inference algorithm have been partially presented in [19].

In this work we present the performance of the behaviour recognition system
with a different inference tool. Here, each inverse and forward model has been
coded as a multi-layer perceptron which has been trained with a backpropagation
algorithm using the data collected during the supervised learning sessions. The
number of inputs, outputs and hidden nodes varied according to the trained
model: for the forward model, the input neurons get the values for St−1, i.e.
dt−1, δt−1, θt−1 and φt−1, and for Mt−1, i.e. v

x
t−1, v

y
t−1 and vzt−1, and the output

neurons code St, i.e. dt, δt, θt and φt; for the inverse model, the input neurons
get the values for St−1, i.e. dt−1, δt−1, θt−1 and φt−1, and for St, i.e. dt, δt, θt
and φt, and the output neurons code Mt−1, i.e. v

x
t−1, v

y
t−1 and vzt−1.

2 Mahalanobis distance has been used for the comparisons.
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3.2 Target Recognition

In the behaviour recognition experiment, we performed internal simulations in
order to understand which inverse-forward model pair was more closely coding
for the observed demonstration. In this section, we show how this system can
be used to recognize not only the action performed on an object, but also the
target object of the action, in case there are several objects in the scene.

As described before, the sensory states St−1 and St of the internal mod-
els correspond to certain relationships between the position of the hand of the
demonstrator and the one of the target object. During the demonstration, St−1

and St are extracted from such positions and sent into the inverse and forward
model to generate motor and state predictions. Each state prediction S∗

t (that
is, the outcome of each controller-predictor pair) is then compared to the actual
one, St. The observed behaviour is then classified as the one corresponding to
the pair which results in the lowest prediction error.

When there is more than one object in the scene, simulations can be performed
for each object. The same internal models can be fed with the states computed
using the relationship between the position of the hand and each one of the
objects, for example S1

t−1 (i.e. d1t−1, δ
1
t−1, θ

1
t−1 and φ1

t−1) and S1
t (i.e. d1t , δ

1
t , θ

1
t

and φ1
t ) as the states computed with the position of object 1, S2

t−1 and S2
t as

the states computed with the position of object 2, etc. Thus, we can feed each
inverse-forward model pair with each of these couples of states and compute the
prediction errors with their corresponding desired states, in such a way that we
can infer the target object of the ongoing action as the one which corresponds
to the best inverse-forward model pair fed with the states computed with its
position.

Assume that we have two objects, 1 and 2, and two inverse-forward model
pairs (the first coding for the approach action and the second coding for the
displace action). The system computes the states S1

t−1 and S1
t (using the position

of the hand and the one of object 1) and the states S2
t−1 and S2

t (using the
position of the hand and the one of object 2). S1

t−1 and S1
t are sent to the

pair approach, a prediction S1∗
t is calculated and compared with the state S1

t ,
resulting in the prediction error ERR1

approach. In the same way, S2
t−1 and S2

t are

sent to the pair approach, resulting in the prediction error ERR2
approach. The

same process is done with the pair displace, resulting in two more prediction
errors, so that in total we have: ERR1

approach, ERR2
approach, ERR1

displace and

ERR2
displace. The smallest error corresponds to the best pair which is fed with

the data of the most probable target of the action.
In the next section, we will show quantitative results of the performance of

the behaviour recognition system together with the target recognition one, using
two different inference tools (k-NN and Multi-Layer Perceptron).

4 Results

In this section, we present the results of the behaviour and target recognition
system using internal simulations.
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Fig. 5. Illustration of the inverse model prediction with MLP

We trained two inverse-forward models pairs with data collected from the
observation of two actions directed to an object: approach and displace. For the
first one, we recorded 1004 samples taken from 83 demonstrations; for the second
one, we collected 3245 samples from 108 demonstrations. Each sample contains
[St−1;Mt−1;St], where the state S is a 4-dimensional vector containing the same
features described in section 3.1: d, δ, θ and φ. As before, the motor command
M is a 3-dimensional vector representing the x,y,z velocities of the hand.

Two tools have been used for training the models and performing predic-
tions: k-Nearest Neighbours and Multi-Layer Perceptrons. The former has been
described in [16] and [18]. Regarding the multi-layer perceptrons, we trained a
neural network for each internal model in each pair. The training parameters
were the same for all of them3. The forward models have been coded as MLPs
with 7 input neurons, 12 neurons in the hidden layer, and 4 output neurons.
The inverse models have been represented as MLPs with 8 input neurons, 16
neurons in one hidden layer and 3 output neurons4. In training the internal
models for the approach behaviour, the epsilon threshold term criteria has been
reached after 437 iterations for the forward model and after 2136 iterations for
the inverse one. In the displace case, the epsilon threshold term criteria has been
reached after 333 iterations for the forward model and after 1891 iterations for
the inverse one. Figure 5 and 6 illustrate the algorithms for inverse and forward
predictions using MLPs.

The following tables show the confusion matrices using four inference tools:
MLP (Multi-Layer Perceptron), 5-NN (k-Nearest Neighbours with k = 5), 11-
NN and 55-NN. A confusion matrix indicates how much (in percentiles of the

3 Term criteria: MaxIteration=500000; Epsilon= 0.000001; Activation function =
Symmetrical Sigmoid; Training algorithm = BackPropagation; dw-scale (the co-
efficient to multiply the computed weight gradient by) = 0.05; moment-scale (the
coefficient to multiply the difference between weights on the 2 previous iterations.
This parameter provides some inertia to smooth the random fluctuations of the
weights) = 0.05

4 4 input neurons to code for St−1 plus 4 input neurons for St and 3 output neurons
for Mt−1.
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Fig. 6. Illustration of the forward model prediction with MLP
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Fig. 7. Demonstration of the behaviour and target recognition using MLP. The bottom
graph shows the probabilities of each action to each object.

Table 2. Confusion Matrix. MLP.

Actual Outcome

approach-obj1 displace-obj1 approach-obj2 displace-obj2

Prediction
Outcome

approach-obj1 100.00% 0.00% 24.45% 7.25%

displace-obj1 0.00% 95.52% 0.00% 0.00%

approach-obj2 0.00% 4.48% 73.33% 0.00%

displace-obj2 0.00% 0.00% 2.22% 92.75%

actual outcome) every demonstrated action has been recognised as approach or
displace with target object 1 or 2. The correct classification rates were: 89.45%
for the MLP, 61.81% for the 5-NN, 63.82% for the 11-NN and 64.82% for the
55-NN, claiming MLP as the best performing tool.
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Table 3. Confusion Matrix. k-NN (k = 5).

Actual Outcome

approach-obj1 displace-obj1 approach-obj2 displace-obj2

Prediction
Outcome

approach-obj1 70.59% 0.00% 57.78% 39.13%

displace-obj1 0.00% 97.01% 4.44% 0.00%

approach-obj2 29.41% 2.99% 8.89% 0.00%

displace-obj2 0.00% 0.00% 28.89% 60.87%

Table 4. Confusion Matrix. k-NN (k = 11).

Actual Outcome

approach-obj1 displace-obj1 approach-obj2 displace-obj2

Prediction
Outcome

approach-obj1 70.59% 0.00% 55.56% 33.33%

displace-obj1 0.00% 95.52% 2.22% 0.00%

approach-obj2 29.41% 4.48% 11.11% 0.00%

displace-obj2 0.00% 0.00% 31.11% 66.67%

Table 5. Confusion Matrix. k-NN (k = 55).

Actual Outcome

approach-obj1 displace-obj1 approach-obj2 displace-obj2

Prediction
Outcome

approach-obj1 70.59% 0.00% 51.11% 31.88%

displace-obj1 0.00% 97.01% 2.22% 0.00%

approach-obj2 29.41% 2.99% 11.11% 0.00%

displace-obj2 0.00% 0.00% 35.56% 68.12%

5 Conclusions

Grounded theories of cognition support the idea that knowledge relies on the con-
nections between modal representations of action, perception and introspection.
Simulation, intended as the process of re-enactement of previously experienced
motor, perceptual or introspective situations, has become a central capability
and requirement for cognition.

We showed how internal simulations of the sensorimotor loop can be used in
understanding a human motor behaviour and highlighted the internal models
representation as a good candidate for encoding sensorimotor schemes and for
performing simulations.

We believe that the paradigm of internal simulations as a mechanisms for
understanding (if we consider understanding as that process of linking abstract
symbols with real or simulated modal representations) can be applied in different
contexts and levels of abstraction.
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As mentioned in Section 2 we are concerned with the study of inverse-forward
models and their potential as the grounding of cognition in agents. We would
like to focus our efforts and future work on using these models for addressing
more low level behaviours such as the recognition of self when executing an action
versus someone else’s execution, even when these observations are performed off-
line. Although apparently much has been done and reported with many different
and interesting architectures we believe that many questions remain open with
regards to the full capabilities these models allot agents on their dealing with
the environment.
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Abstract. Detecting social events such as imitation is identified as key
step for the development of socially aware robots. In this paper, we
present an unsupervised approach to measure immediate synchronous
and asynchronous imitations between two partners. The proposed model
is based on two steps: detection of interest points in images and eval-
uation of similarity between actions. Firstly, spatio-temporal points are
detected for an accurate selection of the important information contained
in videos. Then bag-of-words models are constructed, describing the vi-
sual content of videos. Finally similarity between bag-of-words models
is measured with dynamic-time-warping, giving an accurate measure of
imitation between partners. Experimental results obtained show that the
model is able to discriminate between imitation and non-imitation phases
of interactions.

Keywords: Imitation, DTW, unsupervised learning.

1 Introduction

Face-to-face interactions are considered as highly dynamic processes [1,2] based
on multimodal exchanges such as turn-taking, backchannels (e.g., head nod, filled
pauses. . . ). Sensing, characterizing and modeling interactions are challenging.
Various natures of human communication dynamics have to be taken into ac-
count: individual (e.g., gesture completion), interpersonal (e.g., mimicking). . . In
recent years, there has been a growing interest for human communication dy-
namics in several domains such as Social Signal Processing and Social Robotics.
In [3,4], backchannels are investigated firstly by modeling human-human com-
munication and then the model is employed to generate multimodal feedbacks by
an agent (Embodied Communicative Agents/ Robots) during dialogs. Thanks to
these dynamical models, agents are able to provide relevant communicative re-
sponses and consequently to sustain interactions. Continuously monitoring social
exchanges between partners is a fundamental step of social robotics [5].

� These authors contributed equally.

A.A. Salah et al. (Eds.): HBU 2012, LNCS 7559, pp. 161–173, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.isir.upmc.fr/


162 S. Michelet et al.

Interpersonal dynamics, usually termed interpersonal synchrony [1] is a very
complex phenomenon including various concepts such as imitation, mimicking,
turn-taking. . . In this paper, we focus on immediate imitation characterization,
which include synchronous and asynchronous reproductions of a demonstrated
action within few seconds. Here, imitation is considered as a communicative act
allowing to sustain interaction [1]. Being able to automatically assess imitation
between social partners (including agents) is required for developing socially
intelligent robots [6,1]. Given this framework, the proposed method is seen to be
different to traditional approaches for learning from demonstration in human-
robot interaction [7], where imitation metrics usually assess kinematic, dynamic
and timing dimensions.

The paper is organized as follows: Section 2 reports recent works on interper-
sonal synchrony characterization formulated as an action recognition problem.
Section 3 briefly describes the approach proposed for imitation assessment. Sec-
tions 4 and 5 describe the different steps of our model based on 1) characteriza-
tion of actions (spatio-temporal interest points, bag-of-words) and 2) similarity
metrics (correlation, dynamic time warping). Section 6 presents results on a
gesture imitation task. Finally, a conclusion provides a summary of the model
discussed throughout the paper and proposes future works.

2 Related Work

Currently, few models have been proposed to capture mimicry in dyadic in-
teractions. Mimicry is usually considered in the larger framework of assessing
interactional synchrony, the coordination of movement between individuals in
both timing and form during interpersonal communication [8]. Actual state-of-
the-art methods to assess synchrony rely on two steps: feature extraction and a
measure of similarity.

The first step in computing synchrony is to extract the relevant features of the
dyad’s motion. We can distinguish between studies focusing on the movement of
a single body part and those capturing the overall movement of the dyad. Numer-
ous studies focus on head motion, which can convey emotion, acknowledgement
or active participation in an interaction. Head motion is captured using either
a motion-tracking device [9] or a video-based tracking algorithm [10,11]. Many
studies capture the global movements of the participants with Motion Energy
Images [12,13] or derivatives [14,15].

Then, a measure of similarity is applied between the two time series. Correla-
tion is certainly the most commonly used method to evaluate interactional syn-
chrony. After extracting the movement time series of the partners, a time-lagged
cross-correlation is applied between the two time series using short windows of
interaction. Several studies also use a peak picking algorithm to estimate the
time-lag between the partners [9,16,12]. Recurrence analysis is an alternative to
correlation [11]. It was inspired by the theory of coupled dynamical systems, pro-
viding graphical representations of the dynamics of coupled systems. Recurrence
analysis assesses the points in time that two systems show similar patterns of
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change or movement, called “recurrence points”. These models are often poorly
selective for mimicry detection. Indeed, the features (e.g. motion energy) de-
scribe rather the amount of movement than the form of the gestures performed.
Capturing mimicry entails to have a finer description of the gestures. That can
be reached using action recognition techniques.

In the last few years, many researches have emerged in this domain as de-
scribed in numerous reviews [17], [18], [19]. The first approaches consist to char-
acterize the sequences globally. Davis and Bobick [20] introduced the Motion
History Images (MHI) and the Motion Energy Images (MEI) that summarize in
a single image all the motions performed during the sequence. Then, simple mo-
ments on these images characterize the sequence. In order to preserve movement
kinetic, Mokhber et al. [21] proposed to directly characterize the spatio-temporal
volume by geometric moments. Efros et al. [22] characterized individually each
image thanks to an optical flow based feature, and then compared the sequences
with a measure similar to correlation. Laptev et al. [23] explored the combina-
tion of local space-time features histograms and SVM. First, spatio-temporal
interest points are detected by extending the Harris detector to the space-time
domain. These points are then characterized using several motion representa-
tions in terms of spatio-temporal jets, position dependent histograms, position
independent histograms, and principal component analysis computed for either
spatio-temporal gradients or optic flow. Dollár et al. [24] introduced a new spatio-
temporal interest points detector explicitly designed to detect more points and
to be more robust. They are then described with spatio-temporal cuboids.

Less works have been made on unsupervised action recognition. Niebles et
al. [25] represent a video as a collection of spatial-temporal words by extracting
space-time interest points. The algorithm automatically learns the probability
distributions of the spatial-temporal words and the intermediate topics corre-
sponding to human action categories. This is achieved by using latent topic
models such as the probabilistic Latent Semantic Analysis (pLSA). Rao et al.
[26] describe a representation of human action that captures changes in speed
and direction of the trajectory using spatio-temporal curvature of 2-D trajec-
tory. Starting without a model, they use this representation for recognition and
incremental learning of human actions. Zelnik-Manor and Irani [27] design a
simple statistical distance measure between video sequences (possibly of differ-
ent lengths) based on their behavioral content. It is used to isolate and cluster
events within long continuous video sequences, without prior knowledge of the
types of events, their models, or their temporal extent.

3 Overview of Our Approach

In this paper, we propose an innovative approach to measure imitation between
two partners, through the use of unsupervised action recognition. Indeed, instead
of characterizing a video with global measures by only quantifying movement,
we are considering imitation as the similar execution of actions, in which the
semantic of actions is not needed. In order to create an imitation rate, as shown
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in Fig. 1, the first step is to detect regions of interest, called Spatio-Temporal
Interest Points (STIPs) which will be described in section 4.1. They are then
described using local histograms, leading to bag-of-words models. Section 5 will
give details on the similarity measure which is applied on these models to com-
pare two videos. Finally, as shown in section 6.2 an imitation rate is fitted from
the similarity obtained.

Fig. 1. Video analysis process

4 Modeling Videos with Bag-of-Words

As it is usually not feasible and impractical to measure correlations between all
regions of two videos due to computation limitations, we are using methods that
will detect significant areas in the video that are rich in information, also known
as Spatio-Temporal Interest Points (STIPs).

4.1 Detection

Detection of the STIPs is based on Dollár’s work in [24], where detection of low-
level features is performed using 1D Gabor filters. Even though Gabor filters were
designed to return high response for periodic motions such as a bird flapping its
wings, it has proven to evoke strong response for non-periodic elements such
as motion of spatio-temporal corners. It has been preferred to other detectors
because of its robustness and for its quantity of correctly detected points (around
12 per frame), allowing a good characterization of the video.

4.2 Description

After obtaining local maxima points from Dollár’s response function, each point’s
spatio-temporal neighborhood (patch) is characterized. However, Dollár’s de-
scriptor is based on cuboids, which are expensive both in terms of computation
and memory. Indeed, the descriptor uses 19-by-19-by-11 cuboids (9 pixels on each
sides and 5 frames before and 5 after), which gives a descriptor with dimension
3971 for each point.
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Each point has thus been described by HOG/HOF (Histogram of Oriented
Gradients/Histogram of Optical Flow) descriptor as introduced by Laptev in
[28]. While HOG has strong similarity to the well known SIFT descriptor, HOF
is based on occurrences of orientations of optical flow. Each patch is divided into
a grid of cells and for each cell 4-bin HOG and 5-bin HOF histograms are then
computed and concatenated into a single feature vector. HOG/HOF descriptors
return vectors with 162 elements (72 for HOG and 90 for HOF). HOG/HOF
dimensionality is more compact and therefore more convenient than Dollar’s
cuboid for this application.

4.3 Construction of a Vocabulary and Bag-of-Words Model

Similarly to natural language processing, the next step clusters the collection of
points in a vocabulary describing the videos. In natural language processing, a
cluster would be called a lexical field, thus putting together words like “drive,
driving, driver”. STIPs are clustered using a k-means technique, forming a k
video-words dictionary. The dictionary is formed using training videos.

Then, bag-of-words models are created for each of the two videos. In order to
do so, each STIP detected is assigned to the nearest video-word with Euclidean
distance. Following representation of each observation as a word in a vocabulary,
the entire video is represented as occurrences of words using the bag-of-words
model. Every frame is characterized by a histogram of words. This results in a
sparse matrix BOW (w, f) of high dimensions : number-of-words by number-of-
frames. The bag-of-words models describe the temporal structure of the video,
but looses the spatial one. Indeed, the spatial coordinates of a word does not
appear in this model, thus the spatial position of a video-word in a frame does
not have any impact.

5 Similarity Measures

After describing the videos by bag-of-words models, a similarity measure can
then be applied to compare them. The first approach coming to mind is to
use correlation. However, due to a delay between the imitation initiator and
the imitator and to the very sparse nature of bag-of-words, direct correlation
is a poor measure. The first idea we present here is to take enlarged analysis
windows on which correlation is computed. But since taking the dynamic of the
imitation into account is important in interaction, we applied a modified version
of Dynamic Time Warping in which similarity is measured.

5.1 Correlation

To allow small variations in time, we represent each instance as a vector and
measure sum of words inside a corresponding window as presented in equation
1, where win is the size of the window, w is a word, and BOWA is the bag-
of-words of video A, af(w) is the summed vector that defines video A in each
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instance indexed by the number f of the frame it starts from. Given the fact
that a gesture that occurs after more than three seconds can not be considered
as imitation, a sliding window of 75 frames has been chosen like shown in Fig. 5
(since the video frame rate is 25 frames per second).

af (w) =

f+win∑
i=f

BOWA(w, i) (1)

After having the corresponding summed vector for each video, the two time series
af and bf are compared using normalized correlation coefficient, as recalled in
equation 2.

normcorr(af , bf) =
aTf (w).bf (w)

||af (w)||2 ∗ ||bf (w)||2 (2)

5.2 Dynamic Time Warping

In natural interaction the time-lag of imitation between partners varies all the
time and partners continuously change roles. Thus, a straight similarity measure-
ment like correlation is not able to take into account the variations in the time-
delay between partners. Thus a dynamic comparison of the imitation between
the partners is needed. In this matter, Dynamic Time Warping is a reference to
compare two non aligned time series. However, as we are going to present here,
we are not using DTW to measure a distance, but to measure similarity.

Whereas the original method from Levenshtein [29] measures a distance be-
tween two series, the one developed by Needleman [30] permits to measure sim-
ilarity and has been widely used with DNA-strand for genome comparison, or
sequence alignment. In this last method, the computation of the cumulated sim-
ilarity matrix follows equation 3, where normcorr refers to the normalized cor-
relation defined in equation 2. Detailed explanations on Dynamic Time Warping
can be found in Chapter 4 of [31].

D(i, j) = max

⎧⎨
⎩

D(i− 1, j)− (1 − normcorr[x(i − 1), x(i)])
D(i, j − 1)− (1 − normcorr[y(j − 1), y(j)])
D(i− 1, j − 1) + normcorr[x(i), y(j)]

(3)

Once the cumulated similarity matrix is computed, the shorter path is searched
for. Usually, as one wants to warp two time series together, the matrix is com-
puted such by warping the whole sequence A with the whole sequence B, as
shown in Fig. 2.

But, as illustrated in Fig. 3, the Overlap Detection variant permits to ignore
the beginning of one time series and the end of the other one. This is important
for imitation measurement as it permits to have gestures from different lengths,
surrounded by gestures which does not fulfill imitation. The only modification to
the original algorithm is that the first line and the first column of the cumulated
similarity matrix are set to zero, and the maximum score is searched in the whole
last column and last line.
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The second interesting variation, called Local Alignment, permits to ignore a
part of the start and the end for each time series. It is called the Smith-Waterman
algorithm (refer [32]). This is illustrated in Fig. 4. It permits to compare short
gestures in two parts of videos. This algorithm is now modified by adding a fourth
option to equation 3, so that D(i,j) is the maximum of either those three options
or 0. Then if all the numbers are negative, it “resets” the path, permitting to
have a new starting point, and leading to results as shown in Fig. 4. Moreover,
the maximum score is now researched in the whole matrix.

During this whole paper, the Local Alignment method has been used.

Fig. 2. Classic DTW Fig. 3. Overlap DTW Fig. 4. Local DTW

In order to allow some time-lag between partners, the two analysis windows
can have different lengths. From video A, BOWA is made with a 75-frames
window and is compared with BOWB made by 125-frames windows (75 plus
two times 25 frames), thus allowing a time-lag of one second. The two versions
of DTW (75-75 and 75-125) will be compared in the Results section, and are
shown in Fig. 5.

Fig. 5. Windows analysis and research

6 Experiments

6.1 Data

Current databases often enhance the gesture recognition, or give multiple videos
of the same action, done in different contexts. However, few data with
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synchronized videos are available for interpersonal studies, with annotation. A
database of synchronized gestures for two partners has been presented in [33].
Table 1 gives the characteristics of this database, and figures 6 and 7 are illus-
trations of it.

Table 1. Stimuli and conditions. We denote for each sequence its length l in seconds
and the number of gestures n in the sequence l[n].

Frequency Synchrony and Synchrony and
(in BPM) No Imitation Imitation

(S NBM) (S BM)

20 137[44] 62[19]

25 166[67] 71[28]

30 153[71] 59[27]

Fig. 6. Imitation dual video Fig. 7. Non imitation dual video

6.2 Results

Validation of the Protocol: To be sure that the methods actually permits to
separate imitation from non-imitation, a first test has been performed with cor-
relation between 75-frames windows. Correlation score is computed at each time
for both imitation and non-imitation videos. The results are shown on Fig. 8 for
the two classes, non-imitation videos being longer than imitation videos. Dis-
tributions of the two series are shown in Fig. 9, and a t-test permits to verify
that as seen on this figure, the two statistical series are separable (h=1 with p
< 0.05). The method is thus suitable for unsupervised imitation measurement.
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Fig. 8. Correlation score for two imitation videos (solid line) and two non-imitation
videos (dotted line)
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Fig. 9. Distribution of the correlation score

Comparison of Methods: The protocol has been applied to three methods :
correlation, DTW 75-75 and DTW 75-125. In order to compare and evaluate the
efficiency, Receiver Operating Characteristic (ROC curves) are used. They are
estimated using all correlation measures obtained for each time and each video.
Results for the three methods are shown in Fig. 10, where the True Positive
Rate (TPR) is plotted as a function of the False Positive Rate (FPR). The Area
Under Curve (AUC) is often referred as an efficiency measurement of classifiers.
However, as it can be seen in the Fig. 10, even if correlation and DTW 75-125
have the same AUC, the curves show better results for DTW 75-125 in the
part near the optimal point. This is confirmed by the d′ measure, computed
by d′ = maxi [TPR(i)− FPR(i)]. The d′ measure gives the optimal working
point, which is significantly higher for DTW 75-125 (Fig. 12). Moreover, one
could note that the results for DTW are not highly superior to correlation. This
is explained by the structure of the dataset, which has been created in almost
perfect synchrony, and thus where dynamic variations are absent, leading to
comparable results for correlation and DTW.
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DTW 75−75, AUC = 0.920, d’ = 0.707
DTW 75−125, AUC = 0.909, d’ = 0.695

Fig. 10. ROC curves for the three methods
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Robustness: As this protocol is aimed to be used in natural interactions, it has
to be robust to shifting. In order to evaluate its robustness, tests have been done
by shifting one of the sequences temporally (between -1s and 1s, equivalent to
+/- 25 frames). A delay of more than one second has not been envisaged as it
cannot be seen as a real imitation. Comparisons were made using ROC, but to
summarize results, only AUC and d′ measures are presented in figures 11 and
12. Even if DTW 75-75 and correlation seem to have similar results on AUC
curves for negative delay, DTW 75-75 outperforms correlation with d′ measures,
which better represents the real use of the system (near the operating point).
The third method DTW 75-125 is robust to delay between sequences, which
has very little influence on the results. Indeed, as shown in Figs. 11 and 12, the
results are very stable for shiftings between -25 frames and +25 frames.
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7 Conclusion

We have proposed in this paper an efficient process to measure imitation rate
during an interaction between partners using unsupervised action recognition.
However, the database presented here is strongly synchronized, thus giving more
advantage to correlation than to DTW. Moreover, no dynamic appears in the
data, such as turn-taking, reducing the interest in terms of interpretation of
DTW results. The next step will be to test this method on more natural gestures
and interactions in which dynamics will play a large role.

However correlation and DTW each have their interest. Correlation, by its
fast computation, permits to have good results as long as data is not too much
shifted. On the other hand, even if DTW is a bit more computationally expensive,
it permits to take into account the dynamics of interaction, and it will be used
in further developments.

Moreover, HOG/HOF descriptor does not take into account the spatial local-
ization of the video-words. Adding information on the relative position of the
detected points has been envisaged for the future in order to increase accuracy.

Some further tuning of DTW can be done to improve results, which have
not been covered here. The Local Alignment method gave slightly better results
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than the Overlap Detection, but the influence of the two methods has not been
studied here. However, in real interaction videos, some first tests have permitted
to see differences between the two algorithms, which will be studied in further
developments.
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