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1 University of Oslo, Norway
2 RWTH Aachen University, Germany

3 University of Illinois at Urbana-Champaign, USA

Abstract. This paper presents a timed CTL model checker for Real-
Time Maude and its semantic foundations. In particular, we give a timed
CTL model checking procedure for that is sound and complete for closed-
bound formulas under a continuous semantics for a fairly large class of
systems. An important benefit of our model checker is that it also auto-
matically provides a timed CTL model checker for subsets of modeling
languages, like Ptolemy II and (Synchronous) AADL, which have Real-
Time Maude model checking integrated into their tool environments.

1 Introduction

Real-Time Maude [30] extends Maude [14] to support the formal modeling and
analysis of real-time systems in rewriting logic. Real-Time Maude is charac-
terized by its expressiveness and generality, natural model of object-based dis-
tributed real-time systems, the possibility to define any computable data type,
and a range of automated formal analysis such as simulation, reachability and
temporal logic model checking. This has made it possible to successfully apply
the tool to a wide range of real-time systems, including advanced state-of-the-art
wireless sensor network algorithms [17,32], multicast protocols [31,21], schedul-
ing algorithms requiring unbounded queues [26], and routing protocols [33].

Real-Time Maude’s expressiveness and generality also make it a suitable se-
mantic framework and analysis tool for modeling languages for real-time sys-
tems [24]. For example, the tool has been used to formalize (subsets of) the
industrial avionics modeling standard AADL [25], a synchronous version of
AADL [6], Ptolemy II discrete-event (DE) models [7], the web orchestration
language Orc [2], different EMF-based timed model transformation frameworks
[34,10], etc. Real-Time Maude formal analysis has been integrated into the tool
environment of some of these languages, enabling a model engineering process
that combines the convenience of an intuitive modeling language with formal
analysis.
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In Real-Time Maude, the data types of the system are defined by an algebraic
equational specification, and the system’s instantaneous transitions are modeled
by (instantaneous) rewrite rules. Time advance is modeled explicitly by so-called
tick (rewrite) rules of the form {t} => {t′} in time u if cond , where {_} is
an operator that encloses the entire global state, and the term u denotes the
duration of the rewrite. Real-Time Maude is parametric in the time domain,
which may be discrete or dense. For dense time (in particular), tick rules typically
have the form {t} => {t′} in time x if x <= d /\ cond , where x is a new
variable not occurring in t, d, or cond . This form of the tick rules ensures that
any moment in time (within time d) can be visited, also for a dense time domain.

Real-Time Maude extends Maude’s rewriting, search, and linear temporal
logic model checking features to the timed case. For dense time, it is of course
not possible to execute all possible rewrite sequences. The fairly restrictive timed
automaton formalism [3] trades expressiveness for decidability of key properties
for dense/continuous time, since the state space can be divided into a finite
number of “clock regions” so that any two states in the same region satisfy
the same properties. Such a quotient seems hard to achieve for the much more
expressive real-time rewrite theories. Instead, the general approach taken in Real-
Time Maude is to use time sampling strategies to instantiate the new variable x
in the tick rules, and to analyze the resulting specification instead of the original
one. One such strategy advances time by a fixed amount Δ in each application
of any tick rule. The maximal time sampling strategy advances time as much as
possible in each application of a tick rule. Although the fixed-increment strategy
can cover all possible behaviors in the original system when the time domain is
discrete, the maximal time sampling typically only analyzes a subset of all the
possible behaviors. However, in [28], it is shown that for a fairly large set of real-
time systems appearing in practice, the maximal time sampling strategy yields
sound and complete analyses for untimed LTL properties. For example, systems
where events are triggered by the arrival of messages or by the expiration of
some “timer,” and where time elapse does not change the valuation of the atomic
propositions (this requirement almost always holds, since time elapse typically
only changes timers and clocks, whose values are rarely relevant for temporal
logic properties) satisfy the requirements for maximal time sampling analyses to
be sound and complete.

Until recently, Real-Time Maude could only analyze untimed temporal logic
properties, but not quantitative properties such as “the airbag must deploy
within 5 ms of a crash,” or “the ventilator machine cannot be turned off more
than once every 10 minutes.” This paper presents a model checker for Real-
Time Maude for the timed temporal logic TCTL [5], which is an extension of
the branching time logic CTL in which the temporal operators are annotated
with a time interval, so that, for example, the formula E ϕ1 U[2,4] ϕ2 holds if
there is a path in which ϕ2 holds after some time 2 ≤ r ≤ 4 and where ϕ1 holds
in all states until then.

Going from untimed temporal logic to a timed temporal logic presents at least
two significant challenges for Real-Time Maude:
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1. What is the intended semantics of a Real-Time Maude specification with the
above tick rule w.r.t. timed temporal logic properties? For example, given
a tick rule {f(y)} => {f(y + x)} in time x if x <= 3 − y, should the
property AF[1,2] true (in all paths, a state satisfying true will be reached in
some time between 1 and 2) hold for initial state {f(0)}? There are paths
(e.g., jumping directly from {f(0)} to {f(3)}) where no state is visited in
the desired time interval. On the other hand, the above rule could be seen
as a natural way to specify a continuous process from {f(0)} to {f(3)} in
Real-Time Maude, so that the intended semantics should satisfy the above
property. We address this problem by presenting two different semantics
for the satisfaction of a TCTL formula in Real-Time Maude: the pointwise
semantics takes all paths into account, including the one where we jump
directly from time 0 to time 3, whereas the continuous semantics allows us
to break up longer ticks in smaller steps.

2. The previous soundness and completeness results for maximal time sampling
analyses no longer hold. In the example above, maximal time sampling would
not satisfy the existential formula E F[1,2] true, although the original model
satisfies it in both the continuous and the pointwise semantics. To achieve
sound and complete time sampling analyses for the continuous semantics
and dense time, we always advance time by a time value r̄

2 , where r̄ is the
“greatest common divisor” (as axiomatized in Section 4) of all the (non-zero)
time values appearing in the annotations in the TCTL formula, as well as
all the time values of the maximal tick steps reached from the initial state.
We have only implemented our model checker and proved its completeness
for the continuous semantics; however, we conjecture that for the pointwise
semantics, we should use this time increment, as well as any multiple of it.

This paper describes our model checker, its semantic foundations, and its im-
plementation in Maude. Most importantly, we prove that our model checker
provides sound and complete model checking under the continuous semantics
for TCTL formulas where the intervals are closed intervals; i.e., have the forms
[r1, r2] and [r1,∞).

An important benefit of our work is that a TCTL model checker for Real-
Time Maude also gives us a TCTL model checker for free for Ptolemy II DE
models, synchronous AADL models, and other modeling languages for which
Real-Time Maude models can be generated. As shown in Section 6, our model
checker has already been integrated into the Ptolemy II tool, allowing the user
to model check TCTL properties of Ptolemy II models from within Ptolemy II.

Related Work. The tools Kronos [38], Redlib [36], and TSMV [22] implement
TCTL model checkers for, respectively, timed automata, linear hybrid automata,
and timed Kripke structures. The tool Uppaal [9] provides an efficient sym-
bolic model checking procedure for timed automata for a subset of non-nested
TCTL properties. The Roméo tool [16,11], based on a timed extension of Petri
nets [1,23], has an integrated timed model checker for some non-nested TCTL
modalities, with the addition of bounded response properties. These formalisms
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are significantly less expressive than real-time rewrite theories [27], which makes
their model checking problems decidable. The first approaches to model check-
ing timed temporal properties for Real-Time Maude are described in [20,37]
and analyze important specific classes of timed temporal logic formulas (time-
bounded response, time-bounded safety, and minimum separation), but only for
flat object-based specifications. Unlike in [20,37], our new model checker is not
limited to specific classes of temporal logic properties, but offers the full TCTL.
The new model checker is also not limited to flat object-oriented systems, but
can analyze any (sensible) Real-Time Maude model.

Paper Structure. Section 2 introduces real-time rewrite theories and Real-Time
Maude. Section 3 describes our model checker and its semantics. Section 4
presents our soundness and completeness results. We discuss our model checker
implementation in Section 5, and demonstrate its applicability on a Ptolemy II
DE model in Section 6. Finally, concluding remarks are given in Section 7.

2 Real-Time Rewrite Theories and Real-Time Maude

A rewrite theory is a tuple (Σ,E,R), where (Σ,E) is a membership equational
logic theory [14] that defines the state space of a system as an algebraic data type,
with Σ a signature declaring sorts, subsorts, and function symbols, and E a set of
conditional equations andmembership axioms, and whereR is a set of labeled con-
ditional rewrite rules of the form [l] : t −→ t′ if cond, where l is a label, t, t′ are
Σ-terms, and cond is a conjunction of rewrite conditions u −→ u′, equational con-
ditions v = v′, and membership conditions w : s, where u, u′, v, v′, w are Σ-terms
and s is a sort in Σ. A rule is implicitly universally quantified by the variables
appearing in t, t′ and cond, and specifies a set of local one-step transitions in the
system. Rules are applied modulo the equations E. The set TΣ/E,s of states of
sort s is defined by the E-equivalence classes of ground terms of sort s.

Real-time rewrite theories [27] are used to specify real-time systems in rewrit-
ing logic. Rules are divided into tick rules, that model time elapse in a system,
and instantaneous rules, that model instantaneous change. Formally a real-time
rewrite theory R is a tuple (Σ,E,R, φ, τ) such that

– (Σ,E,R) is a rewrite theory, with a sort System and a sort GlobalSystem
with no subsorts or supersorts and with only one operator {_} : System →
GlobalSystem which satisfies no non-trivial equations; furthermore, for any
f : s1 . . . sn → s in Σ, the sort GlobalSystem does not appear in s1 . . . sn.

– φ : TIME → (Σ,E) is an equational theory morphism which interprets
TIME inR; the theory TIME [27] defines time abstractly as an ordered com-
mutative monoid (Time, 0,+, <). We write 0,+, . . . instead of φ(0), φ(+), . . .
and use Time for φ(Time).

– τ is an assignment of a term τl of sort Time to each rewrite rule in R of the
form [l] : {t} −→ {t′} if cond. Such a rule is called a tick rule if τl �= 0; in
this case τl denotes the duration of the step. Rules that are not tick rules
are called instantaneous rules and are assumed to take zero time. Since the
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initial state has the form {t}, the form of the tick rules ensures that time
advances uniformly in the whole system.

We write t
r−→ t′ when t can be rewritten into t′ in time r by a one-step rewrite,

and also write t
inst−→ t′ for one-step rewrites applying an instantaneous rule.

A tick step t
r−→ t′ is maximal if there is no r′ > r with t

r′−→ t′′ for some t′′.
A timed path in R is an infinite sequence π = t0

r0−→ t1
r1−→ t2

r2−→ · · · such that

– for all i ∈ N, ti
ri−→ ti+1 is a one-step rewrite in R; or

– there exists a k ∈ N such that ti
ri−→ ti+1 is a one-step rewrite in R for all

0 ≤ i < k, there is no one-step rewrite from tk in R, and tj = tk and rj = 0
for each j ≥ k.

For paths π of the above form we define dπm =
∑m−1

i=0 ri, t
π
m = tm and rπm = rm.

We call the timed path π = t0
r0−→ t1

r1−→ t2
r2−→ · · · a timed fair path if

– for any ground term Δ of sort Time, if there is a k such that for each j > k
there is a one-step tick rewrite tj

r−→ t with Δ ≤ dπj + r then there is an l
with Δ ≤ dπl , and

– for each k, if for each j > k both a maximal tick step with duration 0 and an

instantaneous rule can be applied in tj then tl
inst−→ tl+1 is a one-step rewrite

applying an instantaneous rule for some l > k.

We denote the set of all timed fair paths of R starting in t0 by tfPathsR(t0). A
term t is reachable from t0 in R in time r iff there is a path π ∈ tfPathsR(t0)
with tπk = t and dπk = r for some k. A path π is time-divergent iff for each time
value r ∈ Time there is an i ∈ N such that dπi > r.

The Real-Time Maude tool [29] extends the Maude system [14] to support the
specification, simulation, and analysis of real-time rewrite theories. Real-Time
Maude is parametric in the time domain, which may be discrete or dense, and
defines a supersort TimeInf of Timewhich adds the infinity element INF. To cover
all time instances in a dense time domain, tick rules often have one of the forms

crl [tick] : {t} => {t′} in time x if x <= u /\ cond [nonexec] . (†),
crl [tick] : {t} => {t′} in time x if cond [nonexec] . (∗), or
rl [tick] : {t} => {t′} in time x [nonexec] . (§).

where x is a new variable of sort Time not occurring in {t} and cond. This
ensures that the tick rules can advance time by any amount in rules of the form
(∗) or (§) and any amount less than or equal to u in rules of the form (†). Rules
of these forms are called time-nondeterministic and are not directly executable
in general, since many choices are possible for instantiating the new variable x.

In contrast to, e.g., timed automata, where the restrictions in the formal-
ism allow the abstraction of the dense time domain by “clock regions” contain-
ing bisimilar states [3], for the more complex systems expressible in Real-Time
Maude there is not such a discrete “quotient”. Instead, Real-Time Maude exe-
cutes time-nondeterministic tick rules by offering a choice of different time sam-
pling strategies [29], so that only some moments in the time domain are visited.
For example, the maximal time sampling strategy advances time by the maxi-
mum possible time elapse u in rules of the form (†) (unless u equals INF), and
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tries to advance time by a user-given time value r in tick rules having other
forms. In the default mode each application of a time-nondeterministic tick rule
will try to advance time by a given time value r.

The paper [29] explains the semantics of Real-Time Maude in more detail.
In particular, given a real-time rewrite theory R and a time sampling strat-
egy σ, there is a real-time rewrite theory Rσ that has been obtained from R
by applying a theory transformation corresponding to using the time sampling
strategy σ when executing the tick rules. In particular, the real-time rewrite
theory RmaxDef (r) denotes the real-time rewrite theory R where the tick rules
are applied according to the maximal time sampling strategy, while Rdef(r) de-
notes R where the tick rules are applied according to the default time sampling
strategy (tick steps which advance time by 0 are not applied).

A real-time rewrite theory R is time-robust if the following hold for all ground
terms t, t′, t′′ of sort GlobalSystem and all ground terms r, r′, of sort Time:

– t = t′ holds in the underlying equational theory for any 0-time tick step

t
0−→ t′.

– t
r+r′−→ t′′ if and only if there is a t′ of sort Time such that t

r−→ t′ and

t′
r′−→ t′′.

– If t
r−→ t′ is a tick step with r > 0, and t′

inst−→ t′′ is an instantaneous one-step
rewrite, then t

r−→ t′′ is a maximal tick step.
– for M = {r | ∃t′. t r−→ t′} we have that either there is a maximal element in

M or M is the whole domain of Time.

Real-Time Maude extends Maude’s linear temporal logic model checker to check
whether each behavior, possibly up to a certain time bound, satisfies an (untimed)
LTL formula. State propositions are terms of sort Prop. The labeling of states with
propositions can be specified by (possibly conditional) equations of the form

{statePattern} |= prop = b

for b a term of sort Bool, which defines the state proposition prop to evaluate to b
in all states matching the given pattern. We say that a set of atomic propositions
is tick-invariant in R if tick rules do not change their values.

Since the model checking commands execute time-nondeterministic tick rules
according to a time sampling strategy, only a subset of all possible behaviors
is analyzed. Therefore, Real-Time Maude analysis is in general not sound and
complete. However, the reference [28] gives easily checkable sufficient conditions
for soundness and completeness, which are satisfied by many large Real-Time
Maude applications.

3 Timed CTL Model Checking for Real-Time Maude

In untimed temporal logics it is not possible to reason about the duration
of/between events. There are many timed extensions of temporal logics [4,35,12].
In this paper we consider TCTL [5] with interval time constraints on temporal
operators.
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3.1 Timed CTL

In computation tree logic (CTL) [5], a state formula specifies a property over the
computation tree corresponding to the system behavior rooted in a given state.
State formulae are constructed by adding universal (A) and existential (E) path
quantifiers in front of path formulae to specify whether the path formula must
hold, respectively, on each path starting in the given state, or just on some
path. Path formulae are built from state formulae using the temporal operators
X (“next”) and U (“until”), from which F (“finally”) and G (“globally”) can
be derived.

Timed CTL (TCTL) is a quantitative extension of CTL [5], where the scope
of the temporal operators can be limited in time by subscripting them with time
constraints. In this paper we consider an interval-bound version of TCTL where
the temporal operators are subscripted with a time interval. A time interval I
is an interval of the form [a, b], (a, b], [a, b∞) or (a, b∞), where a and b are values
of sort Time and b∞ is a value of sort TimeInf.

Definition 1. Given a set Π of atomic propositions, TCTL formulae are built
using the following abstract syntax:

ϕ ::= true | p | ¬ϕ | ϕ ∧ ϕ | E ϕ UI ϕ | A ϕ UI ϕ

where p ∈ Π and I is a time interval.

We omit the bound [0,∞) as subscript and we write ≤ b, < b, ≥ a and > a for
[0, b], [0, b), [a,∞) and (a,∞), respectively. We denote by TCTLcb the fragment
of TCTL where all time bounds are of the form [a, b] with a < b, or [a,∞).

3.2 Timed Kripke Structures and TCTL Semantics

The semantics of TCTL formulae is defined on Kripke structures. A Kripke
structure is a transition system with an associated labeling function, which maps
each state in the transition system to the set of atomic propositions that hold
in that state.

A timed Kripke structure is a Kripke structure where each transition has the
form s

r−→ s′, where r denotes the duration of the transition step.

Definition 2. Given a set of atomic propositions Π and a time domain T , a

timed Kripke structure is a triple TK = (S,
T−→, L) where S is a set of states,

T−→⊆ S×T ×S is a transition relation with duration, and L is a labeling function

L : S → P(Π). The transition relation
T−→ is total,1 i.e., for each s ∈ S there

exist r ∈ T , s′ ∈ S such that (s, r, s′) ∈ T−→. We write s
r−→ s′ if (s, r, s′) ∈ T−→.

1 A transition relation
T−→ can be made total by defining (

T−→)• =
T−→ ∪{(s, 0, s) ∈

S × T × S | ¬∃ s′ ∈ S, r ∈ T s.t. (s, r, s′) ∈ T−→}.
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We use a similar notation for timed paths in a timed Kripke structure T K as for
real-time rewrite theories. Thus, a timed path is written π = t0

r0−→ t1
r1−→ . . .,

we define dπm =
∑m−1

i=0 ri, t
π
m = tm and rπm = rm, and the set of all timed fair

paths originating in state t is denoted by tfPathsT K(t).
The semantics of TCTL formulae is defined as follows:

Definition 3. For timed Kripke structures T K = (S,
T−→, L), states t ∈ S, and

TCTL formulae ϕ, the pointwise satisfaction relation T K, t |=p ϕ is defined
inductively as follows:

T K, t |=p true always.
T K, t |=p p iff p ∈ L(t).
T K, t |=p ¬ϕ1 iff T K, t �|=p ϕ1.
T K, t |=p ϕ1 ∧ ϕ2 iff T K, t |=p ϕ1 and T K, t |=p ϕ2.
T K, t |=p E ϕ1 UI ϕ2 iff there exists π ∈ tfPathsT K(t) and an index k s.t.

dπk ∈ I, T K, tπk |=p ϕ2, and
T K, tπl |=p ϕ1 for all 0 ≤ l < k.

T K, t |=p A ϕ1 UI ϕ2 iff for each π ∈ tfPathsT K(t) there is an index k s.t.
dπk ∈ I, T K, tπk |=p ϕ2, and
T K, tπl |=p ϕ1 for all 0 ≤ l < k.

For a timed Kripke structure T K = (S,
T−→, L), a state t ∈ S and paths π, π′ ∈

tfPathsT K(t) we say that π′ is a simple time refinement of π if either π = π′

or π′ can be obtained from π by replacing a transition tk
rk−→ tk+1, rk > 0,

by a sequence tk
r′k−→ t

r′′k−→ tk+1 of transitions for some t ∈ S and time values
r′k, r

′′
k > 0 with r′k + r′′k = rk. A path π′ is a time refinement of another path π

if π′ can be obtained from π by applying a (possibly infinite) number of time
refinements. We also say that π is a time abstraction of π′.

Definition 4. The continuous-time satisfaction relation T K, t |=c ϕ is defined
as the pointwise one for the first four cases; for the last two cases we have:

T K, t |=c E ϕ1 UI ϕ2 iff there is a path π ∈ tfPathsT K(t) such that for each
time refinement π′ ∈ tfPathsT K(t) of π there is an

index k s.t. dπ
′

k ∈ I, T K, tπ
′

k |=c ϕ2, and

T K, tπ
′

l |=c ϕ1 for all 0 ≤ l < k.
T K, t |=c A ϕ1 UI ϕ2 iff for each path π ∈ tfPathsT K(t) there is a time

refinement π′ ∈ tfPathsT K(t) of π and an index k

s.t. dπ
′

k ∈ I, T K, tπ
′

k |=c ϕ2, and

T K, tπ
′

l |=c ϕ1 for all 0 ≤ l < k.

3.3 Associating Timed Kripke Structures to Real-Time Rewrite
Theories

To each real-time rewrite theory we associate a timed Kripke structure as follows:

Definition 5. Given a real-time rewrite theory R = (Σ,E,R, φ, τ), a set of
atomic propositions Π and a protecting extension (Σ ∪Π,E ∪D) ⊇ (Σ,E), we
define the associated timed Kripke structure
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T K(R)Π = (TΣ/E,GlobalSystem, (
T−→R)•, LΠ),

where (
T−→R)• ⊆ TΣ/E,GlobalSystem × TΣ/E,φ(Time) × TΣ/E,GlobalSystem contains

all transitions of the kind t
r−→ t′ which are also one-step rewrites in R and

all transitions of the kind t
0−→ t for all those states t that cannot be further

rewritten in R, and for LΠ : TΣ/E,GlobalSystem → P(Π) we have that p ∈ LΠ(t)
if and only if E ∪D � (t |= p) = true.

We use this transformation to define R, LΠ , t0 |=c ϕ as T K(R)Π , t0 |=c ϕ, and
similarly for the pointwise semantics. The model checking problems T K(R)Π , t0 |=p

ϕ and T K(R)Π , t0 |=c ϕ are decidable if

– the equational specification in R is Church-Rosser and terminating,
– the set of states reachable from t0 in the rewrite theory R is finite, and
– given a pair of reachable states t and t′, the number of one-step rewrites of

the kind t
r−→ t′ in R is finite.

As mentioned above, real-time rewrite theories generally contain a time-non-
deterministic tick rule, but since Real-Time Maude executes such theories by
applying a time sampling strategy σ, our model checker does not analyze R but
the executable theory Rσ in which the time sampling strategy transformation
has been applied. Thus, we associate a timed Kripke structure not to R, but
to Rσ, and hence the third requirement is satisfied by all but the most esoteric
cases; indeed, the tick rules in all Real-Time Maude applications we have seen
are deterministic, in the sense that there is at most one one-step tick rewrite
t

r−→ t′ from any state, when the time sampling strategy is taken into account.
We denote by T K(R, t0)Π the timed Kripke structure associated to R which

is restricted to states reachable from t0, and for states t reachable from t0 we
write R, LΠ , t |= ϕ for T K(R, t0)Π , t |= ϕ.

4 Sound and Complete TCTL Model Checking for
Real-Time Maude

As mentioned above, for dense time domains, Real-Time Maude only analyzes
those behaviors obtained by applying the tick rules according to a selected
time sampling strategy. The paper [28] specifies some conditions on a real-time
rewrite theory R and on the atomic propositions that ensure that model check-
ing RmaxDef (r), i.e., using the maximal time sampling strategy, is a sound and
complete model checking procedure to check whether all behaviors in the original
model R satisfy an untimed LTL formula without the next operator.

For example, if no application of a tick rule changes the valuation of the atomic
propositions in a formula and instantaneous rewrite rules can only be applied
after maximal tick steps or after applying an instantaneous rule, then model
checking RmaxDef (r) gives a sound and complete model checking procedure for



Timed CTL Model Checking in Real-Time Maude 191

R.2 This result yields a feasible sound and complete model checking procedure
for many useful (dense-time) systems, that include many systems that cannot
be modeled as, e.g., timed automata.

As explained in the introduction, this completeness result does not carry over
to timed temporal logic properties. In the following we focus on dense time, since
we can achieve sound and complete model checking for discrete time by exploring
all possible tick steps in the pointwise semantics, and by advancing time by the
smallest possible non-zero duration in the continuous semantics. Furthermore, as
already mentioned, in this paper we restrict our treatment to TCTLcb formulas
under the continuous semantics.3

Our goal is therefore to find a discrete abstraction of a real-time rewrite theory
R, so that model checking the abstraction (under the pointwise semantics) is
equivalent to model checking R under the continuous semantics. One part of
our solution is to make sure that time progress “stops” at any time point when
a time bound in the formula could be reached. This can be achieved if we split any
tick step by an amount that divides all possible maximal tick durations and all
possible finite non-zero time bounds in the formula. Let r̄ be the greatest common
divisor of the durations of all maximal tick steps inRmaxDef (r) reachable from the
initial state and each finite non-zero time bound in the formula; then “stopping”
at each interesting time point should be acheieved if we divide each maximal
tick step into smaller steps of duration r̄.

However, the following example shows that it is not sufficient to always ad-
vance time by this greatest common divisor r̄ to obtain a sound and complete
abstraction under the continuous semantics. Consider a (dense-time) theory R
that has only one behavior in terms of maximal tick steps, which we show here
in terms of validity of the atomic proposition p in the corresponding states:

π = ¬p 1−→ ¬p inst−→ p
inst−→ ¬p 1−→ · · · (¬p forever)

That is, a p-state is reachable in exactly time 1, and ticks do not change the
valuations of the atomic propositions. In this model all maximal tick steps have
duration 1. Let’s consider the formula ϕ = E ϕ1 U[1,1] true, where ϕ1 is the
formula E F[1,1] p. The formula ϕ says that ϕ1 must hold all the way until we
reach time 1. The greatest common divisor of all maximal time increments and
all time values in ϕ is still 1, so the “greatest common divisor” abstraction is
equivalent toRmaxDef (r). In particular, this abstraction (i.e., the above behavior)
satisfies ϕ w.r.t. the initial state π(0). However,R, L{p}, π(0) |=c ϕ does not hold,
since ϕ does not hold in the timed refinement (where the first tick has been split
into two smaller ones)

π′ = ¬p
1/2−→ ¬p

1/2−→ ¬p inst−→ p
inst−→ ¬p 1−→ · · · (¬p forever)

because ϕ1 does not hold in the second state in the refinement.

2 The requirements in [28] are weaker than described here.
3 We are currently working on releasing the restriction to closed bounds. However,
our proof for the completeness result cannot be directly extended to TCTL formulas
with open bounds.
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Our approach is therefore to capture all these “intermediate” states by further
splitting the “gcd” tick steps into two smaller tick steps. In essence, we advance
time not by r̄, but by “half” the gcd r̄ in each tick step.

To formalize this notion, let us first consider the time domain. Real-time
rewrite theories are parametric in their time domain; the time domain must only
satisfy some abstract properties given in some functional theory defined in [27]
that defines the time domain abstractly as a commutative monoid (0,≤, T ime)
with some additional operators. The following theory states that there exist
functions gcd and half on the non-zero time values with the expected properties.

fth GCD-TIME-DOMAIN is including LTIME-INF .

sort NzTime . subsort NzTime < Time . cmb T:Time : NzTime if T:Time =/= 0 .

op gcd : NzTime NzTime -> NzTime [assoc comm] .

op _divides_ : NzTime NzTime -> Bool .

op half : NzTime -> NzTime .

vars T1 T2 T3 : NzTime . vars T T’ : Time .

eq T1 divides T1 = true .

ceq T1 divides T2 = false if T2 < T1 .

eq T1 divides (T1 + T2) = T1 divides T2 .

eq gcd(T1, T2) divides T1 = true .

ceq gcd(T1, T2) >= T3 if T3 divides T1 /\ T3 divides T2 .

eq half(NZT) + half(NZT) = NZT .

endfth

In the following we assume that all considered time domains satisfy the theory
GCD-TIME-DOMAIN, and write gcd and half for the interpretation of gcd and half,
respectively.

The real-time rewrite theory Rgcd(t0,r,ϕ) is obtained from the tick-robust real-
time rewrite theory R, a state t0 in R, and a TCTL formula ϕ, by advancing
time by “half” the greatest common divisor of all the following values:

– all tick step durations appearing in paths from tfPathsRmaxDef (r)(t0) and
– all finite non-zero lower and upper bounds of all temporal operators in ϕ.

Definition 6. For a real-time rewrite theory R whose time domain satisfies the
theory GCD-TIME-DOMAIN, a non-zero time value r, a TCTL formula ϕ and a
state t0 of R we define

T1(R, t0, r) = {r′ ∈ NzTime | ∃π ∈ tfPathsRmaxDef (r)(t0). ∃i ≥ 0. r′ = rπi }
T2(ϕ) = {r ∈ NzTime | there exists a subformula E ϕ1 UI ϕ2 or

A ϕ1 UI ϕ2 of ϕ with r a non-zero finite

lower or upper bound in I}
GCD(R, r, ϕ, t0) = gcd(T1(R, t0, r) ∪ T2(ϕ)).

If T1(R, t0, r) and T2(ϕ) are finite then the GCD value is well-defined and we
can define the real-time rewrite theory Rgcd(t0,r,ϕ) as follows:

Definition 7. Given a real-time rewrite theory R whose time domain satisfies
the theory GCD-TIME-DOMAIN, a non-zero time value r, a TCTL formula ϕ, a
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state t0 of R, and assume that r̄ = GCD(R, t0, r, ϕ) is a defined non-zero time
value. Then Rgcd(t0,r,ϕ) is defined as R but where each tick rule of the forms (†),
(∗), and (§) is replaced by the respective tick rule:

crl [tick] : {t} => {t′} in time x if x := half (r̄) /\ cond [nonexec] .

crl [tick] : {t} => {t′} in time x if x := half (r̄) /\ cond [nonexec] .

crl [tick] : {t} => {t′} in time x if x := half (r̄) [nonexec] .

The following lemma states that the evaluation of the formula ϕ and its subfor-
mulas does not change inside tick steps of Rgcd(t0,r,ϕ).

Lemma 1. Assume a time-robust real-time rewrite theory R whose time domain
satisfies the theory GCD-TIME-DOMAIN. Let Π be a set of tick-invariant atomic
propositions, and assume a protecting extension of R defining the atomic propo-
sitions in Π and inducing a labeling function LΠ . Let t0 be a state of R, r a
non-zero time value of sort Time, ϕ a TCTLcb formula over Π, and assume that
r̄ = GCD(R, t0, r, ϕ) is a defined non-zero time value.

Then for each subformula ϕ′ of ϕ, each time-divergent path π ∈ tfPathsR(t0)

and for all tick step sequences tπi
rπi−→ . . .

rπj−1−→ tπj in π satisfying n · r̄ < dπi < dπj <
(n+ 1) · r̄ for some n we have that

R, LΠ , tπi |=c ϕ
′ iff R, LΠ , tπj |=c ϕ

′ .

Proof. The proof by induction on the structure of ϕ′ can be found in our technical
report [19].

Based on the above lemma we gain our completeness result:

Theorem 1. Let R, LΠ , t0, r, ϕ and r̄ be as in Lemma 1. Then

R, LΠ , t |=c ϕ ⇐⇒ Rgcd(t0,r,ϕ), LΠ , t |=p ϕ

for all states t reachable in Rgcd(t0,r,ϕ) from t0.

Proof. Again, the proof is given in [19].

5 Implementation

Our model checker makes the natural and reasonable assumption that given a
real-time rewrite theory R, and an initial state t0 on which we would like to
check some TCTL formula ϕ, all behaviors starting from t0 are time-diverging
w.r.t. the selected time sampling strategy σ. This assumption also implies that

the transition relation
T−→Rσ in the timed Kripke structure T K(Rσ, t0)Π is total.

The current implementation of the model checker assumes that time values
are either in NAT-TIME-DOMAIN-WITH-INF or POSRAT-TIME-DOMAIN-WITH-INF,
and provides the user with two possible model-checking strategies:

(i) The basic strategy, which performs the model checking on the model obtained
by applying the user-defined time sampling strategy on the original model.
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(ii) The gcd strategy, which extends the maximal time sampling strategy with
the “gcd” transformation to perform the model checking for the satisfaction
problem Rgcd(t0,r,ϕ), LΠ , t0 |=p ϕ.

Soundness and completeness of the gcd strategy might come at the cost of a
larger state space due to the application of the gcd transformation. When the
gcd strategy is impractical, the user can still perform model checking with the
generally faster basic strategy, which does not increase the system state space
and can still be very useful to discover potential bugs, as illustrated below.

Real-Time Maude, and hence our model checker, is implemented in Maude,
making extensive use of Maude’s meta-programming capabilities. The model
checker first constructs the timed Kripke structure, according to the selected
model checking strategy, by collecting all the reachable states and transitions.
When the gcd strategy is selected, the timed Kripke structure is refined by “split-
ting” the transitions into smaller ones of duration equal to half the computed
greatest common divisor. Then, the satisfaction sets of each subformula are re-
cursively computed. Since the meta-representation of the states can be fairly
large4, performing the rest of the model checking procedure on the generated
timed Kripke structure is fairly inefficient. In our current implementation, we as-
sign a unique natural number to each (meta-represented) state in the generated
timed Kripke structure, and construct a more compact timed Kripke structure,
where all the occurrences of these meta-represented states are replaced by their
respective identifiers. We then perform the recursive computation of the satis-
faction set of ϕ on this compact representation. This optimization led to a large
performance improvement and made it feasible to apply our model checker to
a number of case studies in reasonable time, whereas working directly on meta-
represented terms made model checking unfeasible even for simple case studies.

Our implementation of the TCTL model checker is based on the explicit-state
CTL model checking approach [8] that, starting with the atomic propositions,
recursively computes for each subformula of the desired TCTL formula the set
of satisfying reachable states. We implemented specific procedures for a basic set
of temporal modal operators and we expressed other formulas into this canonical
form. The basic set consists of the CTL modal operators E ϕ1 U ϕ2, E G ϕ,
the TCTL≤≥

5 modal operators E ϕ1 U∼r ϕ2 with ∼∈ {>,≥}, E ϕ1 U∼r ϕ2

with ∼∈ {<,≤}, A ϕ1 U>0 ϕ2 and the TCTLcb modal operator E ϕ1 U[a,b] ϕ2.
The procedures for CTL modalities follow the standard explicit algorithm [8].
For TCTL≤≥ modalities, our implementation adapts the TCTL≤≥ model check-
ing procedure defined in [18] for time-interval structures and to timed Kripke
structures with time-diverging paths.

The ease and flexibility of the Maude meta-level allowed us to implement
the model checker reasonably quickly and easily. However, the convenience of
operating at the meta-level comes at a certain cost in terms of computational

4 For example, each state in the Maude representation of the Ptolemy II model in
Section 6 “contains” the entire Ptolemy II model.

5 We denote by TCTL≤≥ the restricted TCTL logic with time constraints on the
temporal modalities of the form ∼ r, where ∼∈ {<,≤,≥, >},



Timed CTL Model Checking in Real-Time Maude 195

efficiency, even with our optimizations. Therefore, the current Real-Time Maude
model checker should be regarded as a working prototype for a C++ implemen-
tation that we plan to implement in the future.

Our model checker is available at http://folk.uio.no/leprid/TCTL-RTM/
together with the technical report [19], the specifications and analysis commands
of the case studies in this paper.

5.1 Using the Model Checker

In Real-Time Maude, the user is provided with two TCTL model checking com-
mands, corresponding respectively to the basic and the gcd strategy, with syntax

(mc-tctl t |= ϕ .) and (mc-tctl-gcd t |= ϕ .)

for t the initial state and ϕ a TCTL formula. The syntax of TCTL formulas
is fairly intuitive, with syntactic sugar for (untimed) CTL formulas, common
abbreviations and boolean connectors such as AF, EF, AG, EG, iff and implies,
etc. For example, E true U≤r(¬ϕ ∧ A G (E F[a,b]ϕ

′)) is written6

E tt U[<= than r](not ϕ and AG (EF[c a, b c] ϕ′))

We do not support counter-example generation, since, in contrast to linear
temporal logics, where counter-examples are just paths, it is generally more
complex to generate counter-examples in branching-time temporal logics, where
counterexamples are parts of computation trees (see, e.g. [13]). For example, a
counter-example to the validity of the formula E F p, for p an atomic proposi-
tion, is the entire computation tree (where each state is a ¬p-state).

6 Model Checking a Ptolemy II Discrete-Event Model

Real-Time Maude provides a formal analysis tool for a set of modeling lan-
guages for embedded systems, including Ptolemy II discrete-event (DE) models
that cannot be formalized by, say, timed automata. Ptolemy II [15] is a well-
established modeling and simulation tool used in industry that provides a pow-
erful yet intuitive graphical modeling language. Our model checker has been
integrated into Ptolemy II by Kyungmin Bae, so that we can now model check
TCTL properties of Ptolemy II DE models from within Ptolemy7. We show the
TCTL analysis of a Ptolemy II model of a hierarchical traffic light system, in
which our model checker has uncovered a previously unknown flaw. Notice that
Ptolemy II DE models satisfy the requirements for having a sound and complete
analysis when using the gcd strategy. The analysis has been performed on a
2.4GHz Intel R© Core 2 Duo processor with 4 GB of RAM.

6 The model checker syntax for TCTL formulas supports also open bounds, e.g.
the user could write [c 0, b o] for [0, b), which would be internally reduced to
[< than b].

7 Real-Time Maude verification commands can be entered into the dialog box that
pops up when the blue button in Fig. 1 is clicked.

http://folk.uio.no/leprid/TCTL-RTM/
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TrafficLight
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Decision

HierarchicalTrafficLight

Fig. 1. A hierarchical fault-tolerant traffic light system in Ptolemy II

Figure 1 shows a hierarchical Ptolemy II model of a fault-tolerant traffic light
system at a pedestrian crossing, consisting of one car light and one pedestrian
light. Each light is represented by a set of set variable actors (Pred and Pgrn rep-
resent the pedestrian light, and Cred, Cyel and Cgrn represent the car light). A
light is on iff the corresponding variable equals 1. The FSM actor Decision “gen-
erates” failures and repairs by alternating between staying in location Normal

for 15 time units and staying in location Abnormal for 5 time units. Whenever
the model operates in error mode, all lights are turned off, except for the yellow
light of the car light, which is blinking. We refer to [7] for a thorough explanation
of the model.

An important fault tolerance property is that the car light will turn yellow,
and only yellow, within 1 time unit of a failure. We can model check this bounded
response property with the command:

Maude> (mc-tctl {init} |=

AG((’HierarchicalTrafficLight . ’Decision | (port ’Error is present))

implies AF[<= than 1] (’HierarchicalTrafficLight |

(’Cyel = # 1, ’Cgrn = # 0, ’Cred = # 0)))) .)

In about 15 secs, the command returns that the property is not satisfied. This
model checking uncovered a previously unknown scenario, which shows that,
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Fig. 2. Dialog window for the hierarchical traffic light code generation

after a failure, the car light may show red or green in addition to blinking yel-
low. Eleven of the 15 seconds used by the timed CTL model checker were used to
generate the timed Kripke structure. Because of the large size of the system states
in this case study, it was impossible to run the same analysis before implement-
ing the optimization that mapped each state to an unique identifier. The same
property can be model checked with the gcd strategy command mc-tks-gcd in
about 22 secs.

Using the gcd strategy we can also determine a “minimal” time interval such
that the above bounded response is satisfied in the system. In particular, we
discovered that this interval is [5, 12] by trying different values for a and b in the
interval-bounded command

Maude> (mc-tctl {init} |=

AG((’HierarchicalTrafficLight . ’Decision | (port ’Error is present))

implies AF[c a, b c] (’HierarchicalTrafficLight |

(’Cyel = # 1, ’Cgrn = # 0, ’Cred = # 0)))) .)

Figure 2 shows the dialog window for the Real-Time Maude code generation of
the hierarchical traffic light model: after entering the error handling property, a
simple click on the Generate button will display the result of the model checking
command execution in the “Code Generator Commands” box.
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7 Conclusions and Future Work

We have described the semantic foundations of our TCTL model checker for
Real-Time Maude. Our modeling formalism is more expressive than those of
other timed model checkers, allowing us to analyze real-time systems which
are beyond the scope of other verification tools. In particular, we have proved
soundness and completeness of our model checker for a class of dense-time Real
Time Maude specifications that contain many systems outside the scope of other
real-time model checkers. Furthermore, the introduced TCTL model checker also
provides for free a timed temporal logic model checker for interesting subsets of
modeling languages widely used in industry, such as Ptolemy II and the avionics
standard AADL.

So far, we have only proved soundness and completeness for formulas with
closed intervals under the continuous semantics. We should also cover formulas
with open time intervals and the pointwise semantics. The model checker should
also provide counter-examples in a user-friendly way, when possible. We should
also extend our model checker to time-bounded TCTL model checking to support
the model checking of systems with infinite reachable state space. Finally, the
current version of the tool is implemented at the Maude meta-level; for efficiency
purposes, it should be implemented in C++ in the Maude engine.
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20. Lepri, D., Ölveczky, P.C., Ábrahám, E.: Model checking classes of metric LTL
properties of object-oriented Real-Time Maude specifications. In: Proc. RTRTS
2010. EPTCS, vol. 36, pp. 117–136 (2010)

21. Lien, E., Ölveczky, P.C.: Formal modeling and analysis of an IETF multicast pro-
tocol. In: Proc. SEFM 2009. IEEE Computer Society (2009)

22. Markey, N., Schnoebelen, P.: TSMV: A Symbolic Model Checker for Quantitative
Analysis of Systems. In: QEST. IEEE Computer Society (2004)
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