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Preface

This volume contains the proceedings of the 9th International Workshop on
Rewriting Logic and Its Applications (WRLA 2012) that was held in Tallinn,
Estonia, during March 24–25, 2012, as a satellite event of the European Joint
Conferences on Theory and Practice of Software (ETAPS 2012).

Previous WRLA workshops were held in places all around the world, namely,
at Asilomar (1996), Pont-à-Mousson (1998), Kanazawa (2000), Pisa (2002),
Barcelona (2004), Vienna (2006), Budapest (2008), and Paphos (2010). Proceed-
ings of these previous editions of the workshop have been published in Elsevier’s
Electronic Notes in Theoretical Computer Science series since its inception in
1996 until 2010, moving to Springer’s Lecture Notes in Computer Science for
that edition. In addition, extended versions of selected papers from WRLA 1996
were published in a special issue of Theoretical Computer Science (volume 285,
2002), extended versions of selected papers from WRLA 2004 appeared in a spe-
cial issue of Higher-Order and Symbolic Computation (volume 21, 2008), and
a special issue in the Journal of Logic and Algebraic Programming is currently
under preparation for extended versions of selected papers of WRLA 2010.

The aim of the WRLA workshop series is to bring together researchers with
a common interest in rewriting logic and its applications, and to give them the
opportunity to present their recent works, to discuss future research directions,
and to exchange ideas. Rewriting logic is a natural semantic framework for rep-
resenting concurrency, parallelism, communication and interaction, as well as
being an expressive (meta)logical framework for representing logics. It can then
be used for specifying a wide range of systems and programming languages in
various application fields.

WRLA 2012 had five invited speakers, namely, Saddek Bensalem, Santiago
Escobar, Mark Hills, Grigore Rosu, and Martin Wirsing. The program was com-
pleted with regular papers and papers presenting work in progress, each of which
was reviewed by four reviewers. Twelve papers were submitted, out of which eight
were selected as regular papers. These regular papers are the ones included in
these proceedings, together with papers from four of the five invited speakers.

I thank the authors who submitted their work to WRLA 2012 and who,
through their contributions, made this workshop a high-quality event. I would
also like to thank the Program Committee members and the external reviewers
for their timely and insightful reviews as well as for their involvement in the post-
reviewing discussions. I am also grateful to those who provided me with all kinds
of help and useful advice, and to the invited speakers and the WRLA Steering
Committee. I also thank A. Voronkov for the excellent EasyChair conference
system, and the organizers of the ETAPS Conference in Tallinn, who provided
an excellent environment for the development of the event.

July 2012 Francisco Durán
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Rigorous Component-Based System Design

(Invited Paper)

Ananda Basu, Saddek Bensalem, Marius Bozga, and Joseph Sifakis

VERIMAG Laboratory, Université Joseph Fourier Grenoble, CNRS

Abstract. Rigorous system design requires the use of a single powerful
component framework allowing the representation of the designed system
at different levels of detail, from application software to its implementa-
tion. This is essential for ensuring the overall coherency and correctness.
The paper introduces a rigorous design flow based on the BIP (Behavior,
Interaction, Priority) component framework [1]. This design flow relies
on several, tool-supported, source-to-source transformations allowing to
progressively and correctly transform high level application software to-
wards efficient implementations for specific platforms.

1 Introduction

Traditional engineering disciplines such as civil or mechanical engineering are
based on solid theory for building artefacts with predictable behaviour over
their life-time. These follow laws established by simple Newtonian physics and
recognized building codes and regulations. Their complexity is limited by these
physical and normative factors.

In contrast, for systems engineering, we do not have an equivalent theoret-
ical basis allowing to infer system properties from the properties of its com-
ponents. Computer science provides only partial answers to particular system
design problems. With few exceptions, in this domain predictability is impos-
sible to guarantee at design time and therefore, a posteriori validation remains
the only means for ensuring their correct operation over time.

The complexity of systems currently being built, the fast pace of technolog-
ical innovation, and the harsh market conditions to which they are subjected,
including in particular time-to-market, create many difficulties for system de-
sign. These difficulties can be traced in large part to our inability to predict the
behaviour of an application s oftware running on a given platform. Usually, such
systems are built by reusing and assembling components: simpler sub-systems.
This is the only way to master the complexity and to ensure the correctness
of the overall design, while maintaining or increasing productivity. However,
system-level integration becomes extremely hard because components are usu-
ally highly heterogeneous: and have different characteristics, are often developed
using different technologies, and highlight different features from different view-
points. Other difficulties stem from current design approaches, often empirical
and based on expertise and experience of design teams. Naturally, designers

F. Durán (Ed.): WRLA 2012, LNCS 7571, pp. 1–9, 2012.
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2 A. Basu et al.

attempt to solve new problems by reusing, extending and improving past solu-
tions proven to be efficient and robust. This favors component reuse and avoids
re-inventing and re-discovering design solutions every time. Nevertheless, on a
longer term perspective, it may also be counter-productive: people are not al-
ways able to adapt in a satisfactory manner to new requirements and moreover,
they tend to reject better solutions simply because they do not fit their design
know-how. In this paper, we present the system design, the rigorous design flow
and the BIP component framework.

2 System Design

System design is facing several difficulties, mainly due to our inability to predict
the behavior of an application software running on a given platform.

System design is the process leading to a mixed software/hardware system
meeting given specifications. It involves the development of application software
taking into account features of an execution platform. The latter is defined by
its architecture involving a set of processors equipped with hardware-dependent
software such as operating systems as well as primitives for coordination of the
computation and interaction with the external environment.

System design radically differs from pure software design in that it should
take into account not only functional but also extra-functional specifications
regarding the use of resources of the execution platform such as time, memory
and energy. Meeting extra-functional specifications is essential for the design
of embedded systems. It requires evaluation of the impact of design choices on
the overall behavior of the system. It also implies a deep understanding of the
interaction between application software and the underlying execution platform.
We currently lack approaches for modelling mixed hardware/software systems.
There are no rigorous techniques for deriving global models of a given system
from models of its application software and its execution platform.

A system design flow consists of steps starting from specifications and leading
to an implementation on a given execution platform. It involves the use of meth-
ods and tools for progressively deriving the implementation by making adequate
design choices.

We consider that a system design flow must meet the following essential re-
quirements:

– Correctness: This means that the designed system meets its specifications.
Ensuring correctness requires that the design flow relies on models with well-
defined semantics. The models should consistently encompass system description
at different levels of abstraction from application software to its implementation.
Correctness can be achieved by application of verification techniques. It is de-
sirable that if some specifications are met at some step of the design flow, they
are preserved in all the subsequent steps.

– Productivity: This can be achieved by system design flows.

– providing high level domain-specific languages for ease of expression.
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– allowing reuse of components and the development of component-based
solutions.

– integrating tools for programming, validation and code generation.

– Performance: The design flow must allow the satisfaction of extra-functional
properties regarding optimal resource management. This means that resources
such as memory, time and energy are first class concepts encompassed by formal
models. Moreover, it should be possible to analyze and evaluate efficiency in using
resources as early as possible along the design flow. Unfortunately, most of the
widely used modeling formalisms offer only syntactic sugar for expressing timing
constraints and scheduling policies. Lack of adequate semantic models does not
allow consistency checking for timing requirements, or meaningful composition
of features.
– Parcimony: The design flow should not enforce any particular programming
or execution model. Very often system designers privilege specific programming
models or implementation principles that a priori exclude efficient solutions.
They program in low level languages that do not help discover parallelism or
non determinism and enforce strictly sequential execution. For instance, pro-
gramming multimedia applications in plain C may lead to designs obscuring
the inherent functional parallelism and involving built-in scheduling mechanisms
that are not optimal. It is essential that designers use adequate programming
models. Furthermore, design choices should be driven only by system specifica-
tions to obtain the best possible implementation.

3 Rigorous Design Flow

We call rigorous a design flow which allows guaranteeing essential properties of
the specifications. Most of the rigorous design flows privilege a unique program-
ming model together with an associated compilation chain adapted for a given
execution model. For example, synchronous system design relies on synchronous
programming models and usually targets hardware or sequential implementa-
tions on single processors [2]. Alternatively, real-time programming based on
scheduling theory for periodic tasks, targets dedicated real-time multitasking
platforms [3].

A rigorous design flow should be characterized by the following:

– It should be model-based, that is all the software and system descriptions
used along the design flow should be based on a single semantic model. This
is essential for maintaining the overall coherency of the flow by guaranteeing
that a description at step n meets essential properties of a description at step
n − 1. This means in particular that the semantic model is expressive enough
to directly encompasses various types of component heterogeneity arising along
the design flow [4]:

– Heterogeneity of computation: The semantic model should encompass both
synchronous and asynchronous computation by using adequate coordina-
tion mechanisms. This should allow in particular, modeling mixed hard-
ware/software systems.
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– Heterogeneity of interaction: The semantic model should enable natural and
direct description of various mechanisms used to coordinate execution of
components including semaphores, rendezvous, broadcast, method call, etc.

– Heterogeneity of abstraction: The semantic model should support the descrip-
tion of a system at different abstraction levels from its application software to
its implementation. This makes possible the definition of a clear correspon-
dence between the description of an untimed platform-independent behavior
and the corresponding timed and platform-dependent implementation.

– It should be component-based, that is it provides primitives for building com-
posite components as the composition of simpler components. Existing theoret-
ical frameworks for composition are based on a single operator e.g., product of
automata, function call. Poor expressiveness of these frameworks may lead to
complicated designs: achieving a given coordination between components often
requires additional components to manage their interaction.

For instance, if the composition is by strong synchronization (rendezvous)
modelling broadcast requires an extra component to choose amongst the possi-
ble strong synchronizations a maximal one. We need frameworks providing fam-
ilies of composition operators for natural and direct description of coordination
mechanisms such as protocols, schedulers and buses.

– It should rely on tractable theory for guaranteeing correctness by construction
to avoid as much as possible monolithic a posteriori verification. Such a theory
is based on two types of rules:

– Compositionality rules for inferring global properties of composite compo-
nents from the properties of composed components e.g. if a set of components
are deadlock-free then for a certain type of composition the obtained com-
posite components is deadlock-free too. A special and very useful case of
compositionality is when a behavioral equivalence relation between compo-
nents is a congruence [5]. In that case, substituting a component in a system
model by a behaviorally equivalent component leads to an equivalent model.

– Composability rules ensuring that essential properties of a component are
preserved when it is used to build composite components.

4 The BIP Design Flow

BIP [1] (Behavior, Interaction, Priority) is a general framework encompassing
rigorous design. It uses the BIP language and an associated toolset supporting
the design flow. The BIP language is a notation which allows building complex
systems by coordinating the behaviour of a set of atomic components. Behavior
is described as a Petri net extended with data and functions described in C. The
transitions of the Petri are labelled with guards (conditions on the state of a
component and its environment) as well as functions that describe computations
on local data. The description of coordination between components is layered.
The first layer describes the interactions between components. The second layer
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describes dynamic priorities between the interactions and is used to express
scheduling policies. The combination of interactions and priorities characterizes
the overall architecture of a component. It confers BIP strong expressiveness that
cannot be matched by other languages [6]. BIP has clean operational semantics
that describe the behaviour of a composite component as the composition of the
behaviors of its atomic components. This allows a direct relation between the
underlying semantic model (transition systems) and its implementation.

������������������

Software
Application

Model BIPD−Finder

execution &
calibration

Simulation, Statistical
Model Checking

Functional Code Glue Code

Platform (MPARM)

Runtime

translation
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BIP

Concrete

Fig. 1. BIP Design Flow for Manycore

The BIP design flow uses a single language to ensure consistency between the
different design steps. This is mainly achieved by applying source-to-source trans-
formations between refined system models. These transformations are proven
correct-by-construction, that means, they preserve observational equivalence and
consequently essential safety properties. The design flow involves several distinct
steps, as illustrated in figure 1:

1. The translation of the application software into a BIP model. This allows
its representation in a rigorous semantic framework. Translations for several
programming models (including synchronous, data-flow and event-driven)
into BIP are already implemented.

2. Correctness checking of the functional aspects of the application software.
Functional verification needs to be done only at high level models since safety
properties and deadlock-freedom are preserved by different transformations
applied along the design flow. To avoid inherent complexity limitations, the
verification method rely on compositionality and incremental techniques.
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3. The generation of an abstract system model from the BIP model representing
the application software, a model of the target execution platform as well as
a mapping of the atomic components of the application software model into
processing elements of the platform. The obtained model takes into account
hardware architecture constraints and execution times of atomic actions. Ar-
chitecture constraints include mutual exclusion induced from sharing phys-
ical resources such as buses, memories and processors as well as scheduling
policies seeking optimal use of these resources.

4. Performance analysis on the system model using simulation-based models
combined with statistical model checking.

5. The generation of a concrete system model obtained from the abstract model
by expressing high level coordination mechanisms e.g., interactions and pri-
orities by using primitives of the execution platform. This transformation
involves the replacement of atomic multiparty interactions and/or dynamic
priorities by protocols using asynchronous message passing (send/receive
primitives) and arbiters ensuring. These transformations are proved correct-
by-construction as well.

6. The generation of platform dependent code, inluding both functional and
glue code needed to deploy and run the application on the target multi-
core. In particular, components mapped on the same core can be statically
composed thus avoiding extra overhead for (local) coordination at runtime.

5 The BIP Framework

The BIP framework allows building complex systems by coordinating the be-
havior of a set of atomic components. Coordination in BIP uses connectors,
to specify possible interaction patterns between components, and priorities, to
select amongst possible interactions.

Atomic components are finite-state automata or Petri nets that are extended
with arbitrary data and ports. Ports are action names, and may be associated
with data. They are used for interaction with other components. States denote
control locations at which the components await for interaction.

A transition is an execution step, labeled by a port, from a control location
to another. It has associated a guard and an action, that are respectively a
boolean condition and a function defined on local data. In BIP complex data
and their transformations are written in C/C++. A transition can be executed if
its guard evaluates to true and some interaction involving its port is enabled. The
execution is an atomic sequence of two microsteps: (i) execution of the interaction
involving the port, which is a synchronization between several components, with
possible exchange of data, followed by (ii) execution of the action associated
with the transition.

In the design flow, BIP is used as a unifying semantic model to ensure consis-
tency between the different design steps. The design flow involves four distinct
steps. They consist in translating the application software into a BIP model and
deriving progressively an implementation by application of source-to-source trans-
formations. These transformations are correct-by-construction as the obtained
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BIP models are observationally equivalent. In particular, they preserve safety
properties of the application software. Furthermore, the D- Finder verification
tool is used to check essential safety properties of the application software.

Fig. 2. BIP Components: a service of the DALA Robot

Example 1. Figure 2 shows two atomic components, Service-Controller and Ac-
tivity of a larger application named DALA robot controller. Activity wraps the
long-time computation of some specific applicative function. Service-Controller
provides execution control (i.e., triggering, canceling, error control, etc) over the
associated Activity component. For sake of simplicity, the figure presents only
the skeleton control behavior (i.e., ports and transitions) whereas the data and
associated code is omitted. For example, Activity is initialized (start transition)
and then it executes its associated functions (exec, internal exec transitions).
The execution may finish normally (finish transition), may fail (fail transition)
or may be interrupted (inter transition).

Composite components are defined by assembling constituent components
(atomic or composite) using connectors. Connectors relate ports of interacting
components. They represent sets of interactions, that is, non-empty sets of ports
that have to be jointly executed. Within a connector, an interaction can take
place in two situations: either all involved ports are ready to participate (strong
synchronization), or some subset of ports triggers the interaction without waiting
for other ports (broadcast). The set of valid interactions within connectors are
formally defined using algebraic expressions on ports using a binary fusion oper-
ator and a unary typing operator. Typing associates with connector-ends (ports
or connectors) synchronization types: trigger (active port, initiates broadcast) or
synchron (passive port). Moreover, with every interaction of a connector there is
associated a guard and a data transfer function. An interaction may be executed
only when its guard is true. Its execution consists in computing the data transfer
function and notifying the components involved in the interaction.
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Finally, priorities are used to arbiter between simultaneously enabled inter-
actions within a BIP component. These are rules, each consisting of an ordered
pair of interactions associated with a condition. When the condition holds and
both interactions of the corresponding pair are enabled, only the one with higher-
priority can be executed.

Example 2. Figure 2 also presents the Service composite component obtained
by the composition of Activity and Service-Controller through six connectors.
They enforce strong synchronizations of several actions and allow the Service-
Controller to initiate and follow the computation performed within the Activity.
Priorities are used to privilege the execution of fail interaction that is error
handling, over finish and exec interactions, which correspond to normal behavior.
The example also illustrates the principle of encapsulation used in BIP: the
Service component is further composed with the Service-Proxy component by
using the ports available on its interface, which are explicitely re-directed either
to ports of subcomponents or to inner connectors. The trigger request connector
between the ServiceProxy and the Service illustrates a broadcast initiated by the
trigger port, that is, trigger actions are either executed alone, or synchronized
with request actions, whenever enabled.

The design flow is entirely supported by the BIP language and an extensible
toolset, see Figure 3. This includes translators from various programming mod-
els, verification tools, source- to-source transformers as well as a compiler for
generating code executable by a dedicated engine.

Fig. 3. The BIP Toolset
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6 Conclusion

In this work the key motivations are facilitation of the design of advanced het-
erogeneous embedded systems with distributed SW. At the same time it can
provide a secure design flow with performance analysis and validation for mul-
tiple programming models to target hardware architectures including multiple
heterogeneous smart subsystems and components. The contribution of the paper
is twofold.

– First, we developed the BIP (Behavior, Interaction, Priority) component
framework that encompasses an expressive notion of composition for hetero-
geneous components by combining interactions and priorities. This allows
description at different levels of abstraction from application software to
mixed hardware/software systems.

– Second, we developed a rigorous design flow that uses BIP as a unifying
semantic model to derive from application software, a model of the target
architecture and a mapping, a correct implementation. Correctness of im-
plementation is ensured by application of source-to-source transformations
in BIP, which preserve correctness of essential design properties. The design
is fully automated and supported by a toolset including a compiler, code
generators, the D-Finder verification tool and model transformers.
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Program Analysis Scenarios in Rascal

Mark Hills1, Paul Klint1,2, and Jurgen J. Vinju1,2

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 INRIA Lille Nord Europe, France

Abstract. Rascal is a meta programming language focused on the implemen-
tation of domain-specific languages and on the rapid construction of tools for
software analysis and software transformation. In this paper we focus on the use
of Rascal for software analysis. We illustrate a range of scenarios for building
new software analysis tools through a number of examples, including one show-
ing integration with an existing Maude-based analysis. We then focus on ongoing
work on alias analysis and type inference for PHP, showing how Rascal is be-
ing used, and sketching a hypothetical solution in Maude. We conclude with a
high-level discussion on the commonalities and differences between Rascal and
Maude when applied to program analysis.

1 Introduction

Rascal [32,33] is a meta programming language focused on the implementation
of domain-specific languages and on the rapid construction of tools for software
analysis and software transformation. Rascal is the successor to both ASF [4] and
ASF+SDF [48,46], providing features for defining grammars, parsing programs, analyz-
ing program code, generating new programs, interacting with external tools (through
Java), and visualizing the results of these operations.

In this paper we focus on software analysis, exploring the design space of Rascal
analysis solutions. We begin this in Section 2 by providing a brief introduction to Ras-
cal, focusing on the design of the language and how this design is realized by Rascal’s
language features. We also show several small examples of Rascal code. We continue
this in Section 3, presenting several analyses developed using Rascal: a hybrid Rascal/-
Maude [11] analysis for finding type and units of measurement errors; a Rascal analysis
of Java code that uses information extracted from the Eclipse Java Development Tools;
and the Rascal name resolver and type checker, which works as part of the Rascal
development environment and is implemented completely in Rascal. These examples
highlight different solution scenarios in the design space, including (at one extreme)
using Rascal as a coordination language for existing analysis tools and (at the other)
building an analysis solely in Rascal.

In Section 4 we then describe ongoing work, written mostly in Rascal but with some
integration of external tools, on defining a set of analyses for the PHP language. We
focus here on two specific analyses: alias analysis and type inference. We start this de-
scription by setting out a number of tasks that need to be performed for these analyses
– for instance, parsing the source program, or defining an internal representation for
storing analysis facts. We then show how Rascal is used to provide support for each
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Fig. 1. Meta-programming domain: 3 layers of software representation with transitions

of these tasks. Another possibility for defining these analyses would be to use rewrit-
ing logic [34], specifically techniques developed as part of the rewriting logic seman-
tics [35] project. Therefore, to end the section, we also show how these analysis tasks
could be supported with a rewriting logic semantics-based analysis in Maude.

This paper touches on several areas with extensive related work. Section 5 focuses on
existing research related directly to Rascal, the analysis of PHP programs, and program
analysis using Maude. Section 6 then offers observations and discussion, highlighting
what we believe to be the advantages and disadvantages of Rascal and Maude for devel-
oping program analysis tools.

2 Rascal

Rascal was designed to cover the entire domain of meta-programming, shown pictori-
ally in Figure 1. The language itself is designed with unofficial “language layers”. This
allows Rascal developers to start with just the core language features, adding more ad-
vanced features as they become more comfortable with the language. This language
core contains basic data-types (booleans, integers, reals, source locations, date-time,
lists, sets, tuples, maps, relations), structured control flow (if, while, switch, for), and
exception handling (try, catch). The syntax of these constructs is designed to be familiar
to programmers: for instance, if statements and try/catch blocks look like those found in
C and Java, respectively. All data in Rascal is immutable (i.e., no references are ever cre-
ated or taken), and all code is statically typed. At this level, Rascal looks like a standard
general purpose programming language with immutable data structures.

Rascal’s type system is organized as a lattice, with bottom (void) and top (value)
elements. The Rascal node type is the parent of all user-defined datatypes, including
the types of concrete syntax elements (Stmt, Expr, etc). Numeric types also have a
parent type, num, but are not themselves in a subtype relation: i.e., real is not a parent
of int. The basic types available in Rascal, including examples, are shown in Table 1.

Beyond the type system and the language core, Rascal also includes a number of
more advanced features. These features can be progressively added to create more com-
plex programs, and are needed in Rascal to enable the full range of meta-programming
capabilities. These more advanced features include:

– Algebraic data type definitions, with optional type parameters, allow the user to
define new data types for use in the analysis. These data types are similar to sum
types in functional languages like ML or (possibly parameterized) sort and operator
definitions in algebraic systems like Maude.
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Table 1. Basic Rascal Types

Type Example literal
bool true, false
int 1, 0, -1, 123456789
real 1.0, 1.0232e20, -25.5
rat 1r4, 22r7, -3r8
str ”abc”, ”first\nnext”
loc |file:///etc/passwd|
datetime $2012-05-08T22:09:04.120+0200
tuple[t1, . . . , tn] 〈1, 2〉, 〈”john”, 43, true〉
list[t] [], [1], [1,2,3], [true, 2, ”abc”]
set[t] {}, {1, 2, 3, 5, 7}, {”john”, 4.0}
rel[t1, . . . , tn] {〈1, 2〉, 〈2, 3〉, 〈1, 3〉}, {〈1, 10, 100〉, 〈2, 20, 200〉}
map[t, u] (), (1 : true, 2 : true), (6 : {1, 2, 3, 6}, 7 : {1, 7})
node f, add(x, y), g(”abc”, [2, 3, 4])

– A built-in grammar formalism allows the definition of context-free grammars.
These grammars are used to generate a scannerless generalized parser, which allows
for modular syntax definitions (i.e., unions of defined grammars) and the parsing
of programs in real programming languages. The syntax formalism is EBNF-like
and includes disambiguation facilities, such as the ability to indicate associativity
and precedence, add follow restrictions, and even provide arbitrary code to disallow
specific parses.

– Pattern matching is provided over all Rascal data types: matches can be performed
against numbers, strings, nodes, etc. A number of advanced pattern matching oper-
ators, such as deep match (/, matching values nested at an arbitrary depth inside
other values), negative match (!), set matching, and list matching are also provided.
Given the importance of concrete syntax for some meta-programming tasks, it is
also possible to match against concrete syntax fragments, e.g., matching a while
loop and binding variables to syntax fragments representing the loop condition and
the loop body.

– Additionally, pattern matching is used in the formal parameters of functions, allow-
ing function dispatch to be based on the pattern matching mechanism. This provides
for more extensible code, since new constructors of a user-defined datatype can be
handled by using new variants of an existing function, instead of requiring a single
function with a large switch/case statement. As an equivalent to the switch/case
default case, a default function provides the default behavior for the function
when none of the other cases match.

– In cases where there are multiple matches for a pattern, backtracking happens from
right to left in a pattern, enforcing lexical scope (names bind starting at the left, and
can be used in the pattern to the right of the binding site) and providing a natural
order on matches. A successful match can be explicitly discarded by the user with
the fail keyword.
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– List, set, and map comprehensions, in combination with pattern matching and other
Rascal expressions, allow new lists, sets, and maps to be constructed based on com-
plex conditions. For instance, one could use a deep match to find all while loops
in a set of program files that contain a condition with a less than comparison. Also
provided is the <- element generation operator, which can enumerate the elements
of all container data-types, e.g. lists, sets, maps, and trees, and can be used inside
comprehensions and in for loops.

– String templates with margins and an auto-indent feature provide a straightforward
way to generate formatted code in multi-line source code templates.

– visit statements, with a syntax similar to that of switch statements, perform
structure-shy traversals of Rascal data types, allowing one to match only those cases
of interest. Visit cases can execute arbitrary code, for instance to keep track of
statistics or analysis information, or can directly replace the matched node with one
of the same type. Visits are parameterized by a traversal strategy (e.g., top-down)
to allow different traversal orders.

– solve statements allow fixed-point computations to be expressed directly as a
language construct. The statement continues to iterate as long as the result of the
condition expression continues to change.

A number of Rascal features focus on the safety and modularity of Rascal code. While
local variable types can be inferred, parameter and return types in functions must be
provided. This allows better error messages to be generated, since errors detected by
the inferencer can be localized within a function, and also provides documentation
(through type annotations) on function signatures. Also, the only casting mechanism is
pattern matching, which prevents the problems with casts found in C (lack of safety)
and Java (runtime casting exceptions). Finally, the use of persistent data structures
eliminates a number of standard problems with using references which can leak out of
the current scope or be captured by other variables.

Example: As a simple example, imagine that we want to work with the Peano repre-
sentation of natural numbers. In Maude, these could be defined as follows:

fmod PEANO is
sort Nat .
op z : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .

vars N M : Nat .

op plus : Nat Nat -> Nat .
eq plus(s(N),M) = s(plus(N,M)) .
eq plus(z,M) = M .

endfm
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In Rascal, this same functionality would be defined as follows:

module Nat

data Nat = z() | s(Nat);

Nat plus(s(Nat n), Nat m) = s(plus(n,m));
Nat plus(z(), Nat m) = m;

Function plus could also be defined using a switch/case statement, as follows:

Nat plussc(Nat n, Nat m) {
switch(n) {

case s(j) : return s(plussc(j,m)) ;
case z() : return m;

}
}

As a more complex example, take the case where we have colored binary trees: trees
with an integer in the leaves, but with a color (given as a string) defined at each com-
posite node. This would be defined as follows:

data ColoredTree
= leaf(int n)
| composite(str color, ColoredTree left, ColoredTree right);

Suppose we want to analyze a ColoredTree, computing how often each color ap-
pears at each node. The Rascal code is shown in Listing 1. In this code, we use a map,
held in a local variable counts with inferred type map[str, int], to maintain the
counts. A visit statement is used to traverse the binary tree, matching only the compos-
ite nodes, and binding the color stored in the node to the string variable color. The
statement counts[color]?0 += 1 then increments the current frequency count
for the given color if it exists, or it initializes this count to 0 first and then increments,
assigning the result back into the map entry for the color.

Listing 1. Counting frequencies of colors in a ColoredTree.
public map[str, int] colorDistribution(ColoredTree t) {

counts = ();
visit(t) {

case composite(str color, , ): counts[color] ? 0 += 1;
}
return counts;

}

3 Scenarios for Program Analysis in Rascal

Scenarios for program analysis using Rascal can be viewed as a spectrum: at one end,
Rascal acts just as a coordination language, with all the analysis work done using ex-
ternal tools; at the other, all work needed for the analysis, from parsing, through all
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the analysis tasks, to the display of the results, is done within Rascal. Many solutions
are somewhere in between, with Rascal providing significant functionality while also
interacting with existing tools. This section presents three examples exemplifying these
alternatives.

3.1 Integrating Rascal with RLS-Based Analysis Tools

One approach to program analysis in Rascal, near the “coordination language” end of
the spectrum, is to use a program analysis tool based on rewriting logic semantics (RLS)
and Maude while leveraging the support for parsing and IDE integration provided by
Rascal. This is supported in Rascal through the RLSRunner library [22].

RLSRunner provides components in both Rascal and Maude for linking Rascal lan-
guage definitions with RLS analysis semantics. In Rascal, functions and data types are
provided both to perform the analysis in Maude using the analysis semantics and to
process the results to yield information about the error and warning messages to display
in Eclipse. In Maude, sorts and operations are defined to model and use Rascal source
locations, allowing the locations of errors to be tracked by the analysis and reported
accurately to the user in Eclipse. These locations are added to an analysis semantics
by extending abstract syntax sorts with new operations to represent located versions of
terms, with additional equations provided to keep track of the locations in the configu-
ration and to give back the original (unlocated) terms.

Figure 2 provides an overview of the RLSRunner process. The two initial in-
puts are a grammar for the language being analyzed, created using the Rascal
grammar formalism, and a source program. The grammar is processed using the
Rascal parser generator, generating a parser for the language under analysis. This
parser is then used to parse the source program, as well as to provide features
used by the Eclipse-based program user interface such as code folding, code outlin-
ing, etc. Using the parse tree emitted by the parser, a Rascal program dubbed the
“Maude-ifier” is then run. In conjunction with the analysis task generator, this gen-
erates individual Maude terms from the parsed program, with one term per analy-
sis task – in some cases a task represents the entire program, while in others tasks
may be generated for smaller units, such as for individual functions. Each analy-
sis task is then evaluated in the analysis semantics, yielding the analysis results,
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Fig. 3. Type Errors in SILF Programs shown in Rascal’s Eclipse-based IDE

which are processed by the result processor to yield analysis information shown to the
user in the IDE (e.g., error messages).

An example of the result of this process is shown in Figure 3, which shows type
errors identified in a SILF [20] program. The type errors are identified using the types
policy in the SILF Policy Framework [24], a rewriting logic semantics-based framework
for defining program analyses. The SILF units policy generates similar messages, but
based instead on annotations provided for units of measurement.

3.2 Refactoring Analysis with the Eclipse JDT

As an experiment in measuring the maintainability of large software systems, we de-
cided to investigate the difference in maintenance complexity for an interpreter written
using either the Visitor [17, page 331] or the Interpreter [17, page 243] design patterns.
We did this by creating a refactoring [38,37,16], dubbed V2I [23], which transforms an
interpreter written using the Visitor pattern into one written using the Interpreter pat-
tern, holding all else constant. We then measured the difficulty of performing various
maintenance scenarios on the two systems [21].

As part of the work in developing V2I, we had to develop an analysis that would
identify the code to be refactored. Normally, this would require creating a grammar
for Java, parsing the Java code used in the interpreter, and performing analyses to bind
name and type declaration information to entities in the code (while also taking account
of information provided by external libraries, which could be in binary form), all be-
fore developing the analysis needed to perform the refactoring. Instead of doing this in
Rascal, we opted to instead reuse the information computed by the Eclipse Java Devel-
opment Tools (JDT), which computes all of these facts as part of its IDE support for
Java development. These facts are extracted from the JDT using the Rascal JDT library,
which communicates with Eclipse to build Rascal representations of a number of Java
program facts. Some of the facts used by the V2I analysis are shown in Table 2, with
both entities (types, classes, fields, methods) and relationships between entities (the
remaining four items) shown.

Using these entities, the analysis performs a number of computations to find all
methods that must be refactored. This is done by computing a number of intermedi-
ary relations – for instance, from visitor interfaces to implementing classes – with the
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Table 2. Rascal JDT Interface: Extracted Entities and Relationships

Extracted Fact Description
types classes, interfaces, enums
classes classes
fields fields
methods methods
modifiers modifiers on definitions (e.g., public, final)
implements interface × implementer
extends class or interface × extender
declaredMethods class or interface × method declaration

final relation containing all identified methods, the method locations, and the method
source code. Additional relations indicate any dependencies of the refactored methods
that must also be modified. For example, in cases where method code is relocated to
a different class, uses of private fields in this code are changed first to uses of public
getter and setter methods. As in the prior example, Rascal acts partly as a coordination
language, but here also performs all the V2I-specific analysis using Rascal code.

3.3 Type-Checking Rascal in Rascal

The Rascal type checker (referred to hereafter as the RTC for conciseness) enforces the
static typing rules of the Rascal language. It is fully implemented in Rascal and uses no
external tools.

The parsing of Rascal code precedes RTC, naturally. Rascal includes a syntax
definition formalism which is bootstrapped, and supports embedded concrete syntax
fragments. When parsing Rascal modules with concrete syntax, such as in the imple-
mentation of RTC, an automatically generated parser for Rascal embedded in Rascal is
used. The input for RTC are parse trees of any Rascal modules, which are also processed
by similarly generated parsers.

Several key principles are used in the RTC:

– Checking occurs at the level of individual modules. Imported modules are assumed
to be correct, and supply a module signature with type information for all declara-
tions.

– Checking with a module is performed by checking each function individually. Func-
tion signatures must be given explicitly for each declared function, and are not in-
ferred.

– Function bodies are checked by statically evaluating the code in the function body
using a recursive interpreter which implements the type semantics. Values in the
interpreter represent types and abstract entities, such as variables, functions, etc.

– Local inference is handled by checking for stabilization across multiple (static)
evaluations of iterating constructs. For instance, loops that assign new values to
variables are evaluated twice. Types that fail to stabilize are assumed to be value,
the top of the type lattice.
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The result of running the checker is an assignment of types (including error types) to all
names and expressions in a Rascal module. This information is then used by the Rascal
IDE to provide type documentation (visible by hovering over a name or expression in
the IDE), type error annotations, and documentation links allowing the user to jump to
the definition of a name, including definitions of variables, constructors, functions, and
user-defined data types.

3.4 Discussion

These three tools exemplify the diversity of solution strategies when using Rascal. In
some cases we use external tools, while in others we do not. The RTC is self-contained
and bootstrapped, the refactoring emphasizes reuse of the Eclipse JDT and the SILF
checker reuses a version of K in Maude. These examples also use different intermediate
data-structures and different types of analysis algorithms.

The design of Rascal is intended to leave many choices to the meta programmer.
It provides a kaleidoscopic set of solution scenarios. Users are not forced to use the
language for all components, and are actively helped by the system to connect to other
systems. This is one reason Rascal has been designed as a programming language rather
than as a specification formalism [45].

4 Analyzing PHP

In this section we describe analyses of PHP code using Rascal. We also describe the
same analyses as they could be implemented in Maude. Our goal is to give the reader
insight into how these two systems compare in terms of functionality and style.

PHP1 is a dynamically-typed server-side scripting language. According to the
TIOBE Index2, as of May 2012 PHP is the 6th most popular programming language.
PHP53 is an object-oriented language with an imperative core. The object system is
based around a single-inheritance model with multiple inheritance of interfaces. The vis-
ibility mechanism uses the familiar keywords public, private, and protected,
and works in conjunction with the inheritance mechanism (e.g., protected methods are
visible in subclasses). As in C++, namespaces provide a mechanism for grouping user-
defined names. Newer features include closures and traits [44]. PHP also includes ex-
tensive libraries, including standard functions for working with arrays, manipulating
strings, and interacting with databases, and a number of third-party application frame-
works and utility libraries are available.

We are interested in analyzing PHP code for several reasons. Since PHP has a weak
typing model (“duck typing”) it allows many common errors to go undetected. One
question this raises is: even with this weak typing model, how many of these errors
can be detected, and with what accuracy? Another goal of this research is to detect
possible errors caused by changes in the PHP semantics, especially in cases where
syntactically updated PHP4 code is running on a PHP5 engine. Tools which analyze

1 http://www.php.net
2 http://www.tiobe.com/index.php/content/paperinfo/tpci/
3 As of May 2012, the current version is 5.4.3.

http://www.php.net
http://www.tiobe.com/index.php/content/paperinfo/tpci/
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PHP and detect such problems are typically in the application domain of Rascal, as
well as in the application domain of Maude.

First we describe some of the challenges, with possible solutions, in analyzing PHP.
These include resolving includes, alias analysis and type inference.

4.1 Analyzing Includes, Aliases and Types for PHP

As part of our work on creating analysis tools for PHP, we are creating two analyses
that will be used in many of the other tools: an alias analysis, and a type inferencer.
These both work on individual PHP scripts, which can include other scripts as well as
references to PHP library functions.

Includes. The first challenge in our analysis is to actually get a script’s complete
source. Unlike in languages such as C, includes in PHP are resolved at runtime, with
include paths that can be based on arbitrary expressions. In a worst-case scenario, this
means that an include could refer to any other PHP file in the system. In practice,
it is possible in many cases to statically resolve the include path using a number of
techniques (constant propagation, algebraic simplification, path matching). Thus, for
these analyses we assume we have a “fully inlined” script in which all includes have
been merged in.

Type Inference. The type inferencer is based on the Cartesian product algorithm [1].
This algorithm assigns a set of types from the universe of all possible program types
(classes, interfaces, and built-in types) to the expressions and access paths (paths
made up of names, field accesses, and array element accesses) in the script. This
type assignment is initially seeded with those cases where an invariant type can be
determined. For instance, the expression new T always yields type {T}, and the literal
5 is always given type {int}. Using this seed, other types are derived using typing
rules. The algorithm gets its name through its treatment of method calls: given the type
sets assigned to the invocation target and the actual parameters, the Cartesian product
of these sets is formed. For each element of this Cartesian product, the proper method
(based on the target type) is selected, types are bound to the formal parameters, and the
method body is then typed. Overloaded expressions, such as the arithmetic expressions,
can be treated as special versions of methods and typed similarly.

Alias Analysis. The alias analysis is based on an interprocedural alias analysis algo-
rithm that can handle function pointers, recursive calls, and references [25]. The alias
analysis yields a relation between names at each program point, where the relation con-
tains pairs of names which are may-aliases (i.e., which may refer to the same memory
location). Aliases in PHP are created directly through reference assignments, the use
of reference arguments and reference returns in functions and methods, and potentially
through the use of the global statement. Aliases can also be created indirectly through
the use of variable-variables, where (for instance) the name of a variable to access is
stored as a string in another variable and “dereferenced” using a double dollar sign. Fi-
nally, indirect aliases are created through object references, which act as pointers to the
referenced objects. Several of these cases are shown in Figure 4.
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1 $g = 10;
2 function f1(&$p1) { $p1++; } // $p1 is a reference argument
3 function &f2() { global $g; return $g; } // reference return
4 class C1 { public $v1 = 5; }
5

6 $a = 3;
7 f1($a); // $a is now 4, $p1 aliases $a in f1
8 $b =& f2(); // $b now aliases $g
9 $c = new C1();

10 $d = $c; // $d and $c are not aliases, $c->v1 and $d->v1 are
11 $d =& $c; // $d and $c now are aliases
12 $vv = "a";
13 $$vv = 6; // $$vv aliases $a

Fig. 4. Creating Aliases in PHP

In order to get the correct results, the analyses need to be run in tandem, first running
one, then the other, until a fixpoint is reached. This is because each analysis provides
new information that can be used in the other. For instance, discovering that two names
are aliased can add to the set of types assigned to a name, which could then add addi-
tional elements to the Cartesian products calculated for method calls. Also, expanding
the set of types of an invocation target can expand the set of methods invoked at a
specific call site, which can then lead to the generation of more alias pairs. While con-
vergence of this process can be slow, the type inference and alias analysis algorithms
work over finite sets of values and are monotonic, guaranteeing that they will terminate.

4.2 Required Analysis Tasks

A number of standard tasks are required for creating any PHP analysis. We discuss four
of these below: parsing, maintaining internal representations needed in the analysis,
writing the rules for the analysis, and reporting the analysis results. After this we show
how we implemented these four tasks in Rascal and then we sketch out how we would
implement them in Maude.

Parsing PHP Scripts. The purpose of executing a server-side PHP script (the standard
mode of execution) is to generate an HTML page to send to a client. To make this
easier for developers, PHP scripts are often a mixture of PHP code and fragments of
HTML. Because of this, the parser needs to be capable of parsing intermingled PHP
code and HTML markup. Whether to keep the HTML fragments is a decision based on
the analysis – some analyses try to ensure that sensible HTML code is generated, while
for other analyses it may be possible to discard the HTML. Since the analysis also
needs to be able to handle includes properly (discussed above), parsing and later steps
may also work in tandem, with new scripts parsed as new information on includes is
discovered. The end result of parsing should be an internal representation of the parsed
script(s) that can be used in the analysis.
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Developing Internal Representations. Each analysis uses a (potentially large) number
of intermediate representations. Some of these can be shared between different analy-
ses, such as the representation of the script to analyze, while some are unique to each
analysis. For the analyses here, this would include the representations of the results:
sets of types assigned to expressions and access paths for the type inference analysis,
and sets of alias pairs assigned to program points for the alias analysis. This would also
include the intermediate representations, used during computation of the results, but
often containing information that is not needed once the analysis is complete.

Writing Analysis Rules. The analysis rules interact with the internal program represen-
tation and the various supporting data structures to analyze the various language con-
structs, computing (for instance) the inferred type of a concatenation expression, the
aliases created in a reference assignment, or the set of all alias pairs at a given program
point.

Reporting Analysis Results. The analysis needs to provide a way to report the final
analysis results. Based on the needs of the analysis clients, results could be provided
using internal data structures (e.g., sets of alias pairs associated with a specific program
point), external messages (visual indicators to show which types have been inferred for
an expression), or some combination of the two.

4.3 Analyzing PHP in Rascal

Here we describe, in terms of the analysis tasks listed above, the current implementation
of the PHP type and alias analyses we have developed in Rascal.

Parsing PHP Scripts. We are currently parsing PHP using a fork of an open-source
PHP parser4. Our parsing script pretty-prints the parse tree as a term conforming to the
AST representation we have in Rascal for PHP, with location information provided as
Rascal annotations. This PHP script is called directly from Rascal using a library for
interacting with the command shell. Parsing the abstract syntax tree representation to
Rascal’s internal algebraic data-types is also a standard library function.

We are also converting an SDF parser for PHP, written as part of the PHP-front
project5, which will allow us to parse PHP code directly in Rascal. This will also create
terms conforming to the Rascal PHP AST definition so we will not have to change
existing code.

Developing Internal Representations. The PHP AST is defined as a mutually recursive
collection of Rascal datatype declarations, with base types and collection types used
to represent strings, integers, lists of parameters, etc. The internal configuration of the
analysis is represented as an element of a Rascal algebraic datatype, with different fields
holding different pieces of analysis information. Relations are used to represent interme-
diate results (e.g., the relation between an access path and possible types); final results
are often instead given in maps, since these provide for quicker lookup performance,
and can be stored directly on the abstract syntax tree using Rascal annotations.

4 https://github.com/nikic/PHP-Parser/
5 http://www.program-transformation.org/PHP/PhpFront

https://github.com/nikic/PHP-Parser/
http://www.program-transformation.org/PHP/PhpFront
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Writing Analysis Rules. Analysis rules are written as Rascal functions using a combina-
tion of switch statements and parameter-based dispatch. Each function takes at least the
current configuration and a piece of abstract syntax, returning the updated configuration
and (often) a partial analysis result, such as the type set computed for an expression.

The functions that use dynamic dispatch look like rewrite rules from a certain per-
spective, while the code that uses switch has a more procedural style. For example:

Infer plus(Cfg c, int(), int()) = <c, {int()}>;
Infer plus(Cfg c, int(), float()) { return <c, {float()}>; }
Infer plus(Cfg c, int(), str()) = <warn(c, msg),{int(),float()}>;
default Infer plus(Cfg c, Type l, Type r)

= <err(c,...),{int(),float()}>

This code defines the plus function in four independent declarations. Each definition
is overloaded —mutually exclusively— using pattern matching. The second definition
is written using a block of statements to demonstrate the two different styles of func-
tion definition. The last definition has the default keyword, which indicates that it
will be tried only after the others have failed to match the parameters passed into the
call. The definitions use different kinds of data-types, namely algebraic data types (the
updated configuration returned from a call to warn(c, msg)), tuples (<a,b>), and
sets (using the {...} brackets).

The current implementation of the analysis rules has several limitations:

– The handling of “variable” constructs (variable-variables, variable functions, ac-
cesses to variable properties, etc) is currently too conservative, weakening the pre-
cision of the analysis. For instance, assigning a new type to a variable accessed
through a variable-variable assigns this type to all variables currently in scope.

– The analysis can be overwhelmed as PHP scripts get larger, with both memory us-
age and processor usage growing to make the analysis infeasible. The imprecision
in the handling of the variable constructs makes this worse, since this dramatically
increases the size and number of type sets and alias pairs.

– Since the initial focus was on checking for upgrade problems between PHP4 and
PHP5, some PHP5 features are not yet analyzed. This includes interfaces, traits,
closures, and gotos, although some similar constructs (break and continue
statements, essentially structured gotos) are currently supported.

Because of these limitations, we are currently reimplementing the analyses with a focus
on performance. We are also working towards supporting the newer features of PHP that
we do not yet support.

Reporting Analysis Results. As mentioned above, analysis results are recorded in an-
notations on the AST, and are also given back as part of the final configuration. The
current model of sharing the results is to use annotations, since this allows arbitrary
information to be added to each node in the AST.

We do not yet show types for PHP expressions and access paths in a graphical fash-
ion (e.g., as hovers within the Eclipse IDE), but that would be the next step if we were
constructing an IDE for PHP. To display errors and warnings, the easiest way is to regis-
ter them via the Rascal standard library module that gives access to the Eclipse Problem
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View. A typical low-brow way of producing readable results from the annotated AST
would be to use Rascal’s string templates to produce a readable list of error messages
and warnings.

4.4 Analyzing PHP in Maude

Here we describe what would be needed to build rewriting logic semantics versions of
the type and alias analyses described above. We assume that these analyses would be
run using Maude.

Parsing PHP Scripts. Since the Maude parser is not capable of parsing normal PHP
scripts, we instead would need to use an external parser. We may use the same external
parser that Rascal used before: the parser would generate terms, in prefix form, using
an algebraic signature defined to represent the abstract syntax of PHP. Some of these
terms would be “located”, as described in Section 3 with the RLSRunner tool, allowing
source location information to be reflected in any generated error messages. Connecting
the PHP front-end with Maude is done most straightforwardly by creating a shell script
wrapping a call to the parser and sending the result over a pipe to Maude.

Developing Internal Representations. Using Maude, all internal representations are
based around terms formed over an algebraic signature. The abstract syntax for PHP
would most likely be given in mixfix, allowing rules6 to be written over an abstract
syntax that looks similar to the concrete syntax. Intermediate results and the final results
would also be defined as terms, representing (for instance) sets of types or maps from
program points to alias pairs.

In a computation-based rewriting logic semantics [35], the current configuration –
i.e., the current state of the analysis, including all intermediate results – would also be
defined algebraically, as a multiset of nested cells. These cells can contain information
such as the current computation (i.e., the remaining steps of the analysis), the current
map of program names to values or storage locations, or the set of available class defi-
nitions.

Writing Analysis Rules. Using a computation-based RLS, analysis rules are written
as transformations of the configuration, generally involving the computation. Most lan-
guage features are handled by several rules: one rule breaks apart the language construct
to evaluate its pieces, while the others use the evaluation results to compute a result for
the entire construct. As an example, a type inferencer may include rules such as:

eq k(exp(E + E’) -> K) = k(exp(E,E’) -> + -> K) .
eq k(val(int,int) -> + -> K) = k(val(int) -> K) .
eq k(val(int,float) -> + -> K) = k(val(float) -> K) .
eq k(val(int,str)-> + -> K) = k(warn(...)-> val(int float)-> K) .

The first rule indicates that we need to evaluate expressions E and E’ before we can
compute the result of E + E’; E and E’ are put at the front of the computation (k) to

6 We speak here of rules in the generic sense, including both equations and rewriting logic rules.
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indicate they should be evaluated next, while + is put in the computation as a marker
to indicate the operation being performed. The second, third, and fourth rules then give
several possible behaviors, based on the results of evaluating the operands. The second
rule says that, if both operands are of type int, so is the result. The third rule says that,
if the first is int and the second is float, the overall result is float. Finally, the
last rule shown says that, if we are trying to add an int to a string (as occurs in
examples in Figure 4), we should issue a warning (the text is elided as ...), because
this may not be the operation we were intending to perform. We should also then return
a set (represented by juxtaposition) containing both int and float, since, based on
the contents of the string, both are possible result types.

Reporting Analysis Results. There are several options for reporting the results of the
analysis. The most basic is to just examine the final configuration, which will have the
type assignments, alias pairs, etc. inside it. We could also use the semantics to perform
a final “pretty printing” step to provide the results in string form. Other options include
the use of external tools to view the results, such as was done with the RLSRunner
tool in Section 3. Finally, we could return just a term with the results, not the entire
configuration. This term could be used as input into another RLS-based tool which
needed the computed results.

5 Related Work

In earlier work [45] we discussed the evolution of Rascal from its origins in the
ASF+SDF and RSCRIPT systems. Some of the material in this paper, especially in
Section 2, is based on this work, including the Rascal examples shown for illustration.
Below we list other related work for Rascal, for PHP program analysis, and for analysis
using rewriting logic.

Rascal: The design of Rascal is based on inspiration from many earlier languages and
systems. The syntax features (grammar definition and parsing) are directly based on
SDF [18], but the notation has changed and the expressivity has been increased. The
features related to analysis are mostly based on relational calculus, relational algebra
and logic programming systems such as Crocopat [5], Grok [26] and RSCRIPT [31],
with some influence from CodeSurfer [2]. Rascal has strongly simplified backtracking
and fixed point computation features reminiscent of constraint programming and logic
programming systems like Moreau’s Choice Point Library[36], Prolog and Datalog [8].
Rascal’s program transformation and manipulation features are most directly inspired
by term rewriting/functional languages such as ASF+SDF [48], Stratego [6], TOM [3],
and TXL [12]. The ATerm library [47] inspired Rascal’s immutable values, while the
ANTLR tool-set [39], Eclipse IMP [9] and TOM [3] have been an inspiration because
of their integration with mainstream programming environments.

PHP Analysis: Most research on PHP analysis has focused on detecting security
vulnerabilities, including SQL injection attacks, cross-site scripting, and the use of
tainted data (data that comes from outside the program, such as from a user form,
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and that is not checked before being used in file writes, database queries, etc). This is
the main focus of both the WebSSARI [27,28] and the Pixy [30,29] systems and of a
number of individual analyses [41]. The PHP-sat7 and PHP-tools8 projects extend this
security validation research by also adding support for additional analyses, including
detecting a variety of common bug patterns (e.g., assigning the result of a function
call where the body of the called function does not include a return statement), and by
finding some PHP4 to PHP5 migration errors (e.g., functions with names that match
new PHP5 functions). Another tool, the prototype PHP Validator [7], uses a type
inferencer as part of a number of possible analyses. For instance, one example given
is an analysis to detect the accidental use of + instead of . in string concatenation.
However, not all of the analyses listed are actually implemented, and the PHP Validator
tool does not support the object-oriented features of PHP.

Analysis in Rewriting Logic: Rewriting logic has been used extensively for program
analysis. The work most similar to that discussed here is the work on policy frameworks
for C [19] and SILF [24]. This work, in turn, was based on earlier work on detecting
units of measurement errors in C [42] and BC [10] programs. Taking another approach,
JavaFAN [15] uses Maude’s state space search and LTL model checking facilities [13]
to find program errors, including possible deadlocks in concurrent programs. A seman-
tics of C [14], developed using K [43], uses standard Maude rewriting to run C programs
and look for undefined behavior; state space search and model checking are used to ex-
plore the nondeterminism introduced by constructs with undefined evaluation orders.

6 Summary and Discussion

We have shown a range of scenarios for building new software analysis tools in Ras-
cal: from a purely Rascal-based solution to solutions that make use of external tools.
This has been illustrated through a number of examples, including one showing the in-
tegration of Rascal with an existing rewriting logic-based analysis. The most substantial
example has been the analysis of PHP code, in which we outlined the necessary steps
for such an analysis, their implementation in Rascal, and a speculative implementation
in Maude. We now summarize our observations and conclusions.

6.1 Observations Regarding Rascal

Rascal is a programming language that provides all the features and libraries needed to
create end-to-end software analysis tools. Although it has its roots in algebraic specifica-
tion [4] and can be used to write programs that strictly follow the rewriting paradigm, it
shows its major strengths in developing Rascal-based or hybrid solutions that cooperate
with an IDE or with external tools.

7 http://www.program-transformation.org/PHP/PhpSat
8 http://www.program-transformation.org/PHP/PhpTools

http://www.program-transformation.org/PHP/PhpSat
http://www.program-transformation.org/PHP/PhpTools
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Table 3. Comparison of Maude and Rascal

Aspect Maude Rascal

Computational Model Simpler More complex
Semantics Formal Informal
Extensibility (language level) Yes No
Integration external tools Only sockets, pipes Java & Eclipse
Grammar definition & parsing Limited Fully integrated
Data types Limited Rich
Libraries Limited Rich
Maturity Mature framework Young language
Efficiency Optimized Not yet optimized

6.2 Comparing Maude and Rascal: General Observations

Our global experience with the two languages makes clear that both Maude and Rascal
have competing benefits and shortcomings, which we summarize in Table 3.

Maude is closer to semantic foundations, with a formal semantics and a rewriting-
based computational model. This makes the analysis itself amenable to formal tech-
niques and provides a simpler conceptual core. Maude provides flexible extensibility
mechanisms and (by treating computations as first class entities) powerful ways to ma-
nipulate partial computations. This can be especially useful when analyzing features
that “jump”, such as gotos, exceptions, and loop break and continue statements. Maude
is a mature framework, with an optimized implementation, but it can still be challenging
to write and maintain large specifications. Debugging tools for Maude [40] have made
great progress but still have trouble scaling to large specifications, which often leads to
debugging by reading through rewriting traces.

Rascal is more pragmatic, with a more complex, unformalized computational model.
The Rascal language definition framework provides very strong integrated grammar
definition and parsing facilities, rich data types that provide element generation, and
traversal and pattern matching constructs. For integration, Rascal also provides rich
libraries (e.g., supporting visualization, statistics, and data formats like HTML, XML,
CSV, and SVN) and seamless extension and integration facilities with Java, Eclipse
and external tools. Since Rascal is a young language, its design is not yet completely
finalized and its implementation is not yet optimized, leading to potential performance
problems when tackling large analysis problems.

6.3 Comparing Maude and Rascal: Observations for PHP Analysis

More specific differences can be identified on the basis of the PHP analysis.

Parsing PHP Scripts. Here Rascal is clearly superior since both a completely Rascal-
based parser and an externally implemented parser can be used. Also, more control is
possible over the shape of the resulting trees.
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Developing Internal Representations. Rascal provides many more constructs, like
maps, trees, and n-ary tuples and relations, “out of the box”, making it easier to quickly
develop the needed internal representations and to treat them as black boxes.

Writing Analysis Rules. One perspective is that the same term and rule-based style
can be used for writing specifications in both approaches. Specifications written in this
style (this would be a functional style of programming in Rascal) are more amenable
to formal analysis. This could be useful if, for instance, one wanted to prove that the
type inference algorithm does not infer incorrect types. However, given the informal
nature of PHP, it is not clear how possible it would be to conduct such proofs. Another
perspective is that, if this level of rigor isn’t needed, Rascal provides a number of pro-
gramming language features that enable a richer variety of programming styles. Jumps
can be modeled in Maude using K-style computations and in Rascal using either edges
in graph-like program representations or using higher-order functions.

Reporting Analysis Results. Maude and Rascal can both return an annotated term or
string representing the analysis results. Rascal also includes facilities for error reporting
and IDE integration built directly into the language.

6.4 Final Observations

We can draw several conclusions from this comparison. The bottom-line is that Maude
is focused on formal specification while Rascal is focused on programming.

Maude is a better choice when the formal properties of the implemented tools are also
important. Maude may be a better choice when a language has a number of jump-like
constructs; these can be handled in Rascal, but require making the control context more
explicit. Rascal is a better choice for end to end solutions, for instance real language
environments, where parsing, integration with IDEs, and integration with external tools
becomes important. With more standard control flow mechanisms, richer built-in data
types, and a provided unit test definition and execution mechanism, large Rascal pro-
grams should also be easier to debug than large rewriting logic specifications for the
same analysis. Finally, as shown with the RLSRunner tool, in some cases it may make
sense to write analyses partly in Rascal and partly in Maude, such as when an analysis
semantics already exists, or can be derived as an extension of an existing semantics, and
can then be used as part of a Rascal-developed language environment.
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10. Chen, F., Roşu, G., Venkatesan, R.P.: Rule-Based Analysis of Dimensional Safety. In:
Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 197–207. Springer, Heidelberg
(2003)

11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.:
All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer,
Heidelberg (2007)

12. Cordy, J.R.: The TXL source transformation language. Science of Computer Program-
ming 61(3), 190–210 (2006)

13. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL Model Checker. In: Proceed-
ings of WRLA 2002. ENTCS, vol. 71. Elsevier (2002)
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Abstract. K is a rewrite-based executable semantic framework in which
programming languages, type systems, and formal analysis tools can be
defined using configurations, computations and rules. Configurations or-
ganize the state in units called cells, which are labeled and can be nested.
Computations are special nested list structures sequentializing compu-
tational tasks, such as fragments of program. K (rewrite) rules make it
explicit which parts of the term they read-only, write-only, read-write, or
do not care about. This makes K suitable for defining truly concurrent
languages even in the presence of sharing. Computations are like any
other terms in a rewriting environment: they can be matched, moved
from one place to another, modified, or deleted. This makes K suitable
for defining control-intensive features such as abrupt termination, excep-
tions or call/cc. This paper presents an overview of K Framework and
the K tool, focusing on the interaction between the K tool and Maude.

1 Introduction

Introduced by the second author in 2003 for teaching programming languages [1],
and continuously refined and developed ever since (see, e.g., [2,3]), K is a pro-
gramming language definitional framework which aims to bring together the
collective strengths of existing frameworks (expressiveness, modularity, concur-
rency, and simplicity) while avoiding their weaknesses. The K framework has
already been used to define real-life programming languages, such as C, Java,
Scheme, and several program analysis tools (see Section 7 for references). K is
representable in rewriting logic, and this representation has been automated in
the K tool for execution, testing and analysis purposes using Maude [4].

This paper gives a brief overview of the K framework and its current im-
plementation, focusing on: (1) its place in the rewriting logic semantics [5,6,7]
project; (2) its main features; (3) how easy it is to define programming language
features in K; (4) how to use the K tool to compile K definitions into Maude,
and to execute and analyze programs against these definitions.
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The remainder of this paper is organized as follows. Section 2 motivates K

and places it in the general programming language semantics research context,
and in particular within the rewriting logic semantics project. Section 3 gives
an overview of the main features of K. Section 4 shows K at work, by giving a
compact semantics for a combination of the call-by-value and call-by-reference
parameter passing styles. Section 5 discusses the transition semantics associated
to a K definition and its relation to our current embedding of K into rewriting
logic. Section 6 shows how the embedding of K into Maude through the K tool
can be used to execute, explore, and model check programs. Section 7 concludes.

The didactic language CinK [8] is used as a running example.

2 Rewriting Logic Semantics, Related Work, Motivation

The research presented in this paper is part of the rewriting logic semantics
project [5,6,7], an international collaborative effort to advance the use of rewrit-
ing logic for defining programming languages and for analyzing programs.

Rewriting is an intuitive and simple mathematical paradigm which specifies
the evolution of a system by matching and replacing parts of the system state
according to rewrite rules. Besides being formal, rewriting is also executable, by
simply repeating the process of rewriting the state. Additionally, an initial state
together with a set of rules yields not only a formal execution of the system,
but also a transition system comprising all the system behaviors, which can be
thus formally analyzed. Moreover, a rewriting semantic definition of a language
can also be used to (semi-)automate the verification of programs written in
that language, by using the semantic rules to perform symbolic execution of the
program and hereby discharging (some of) the proof obligations.

Rewriting logic [9] combines term rewriting and equational logic in a for-
malism suitable to define truly concurrent systems. Equations typically define
structural identities between states, and rewrite rules apply modulo equational
rearrangements of the state. The benefits of using rewriting logic in defining the
behavior of systems are multiple. First, one directly gains executability, and thus
the ability to directly use formal definitions as interpreters. Second, it allows to
capture the intended concurrency of the defined system directly in the defini-
tion, rather than relying on subsequent abstractions. Furthermore, by encoding
the deterministic rules of a rewrite system as equations [10], the state-space of
the resulting transition systems is drastically reduced, thus making its explo-
ration more feasible and practical. The Maude rewrite system [4] offers a suite
of tools for rewrite theories: debugger, execution tracer, state-space explorer,
explicit-state LTL model checker, inductive theorem prover, etc. For example,
model checking Java programs in Maude using a definition of Java, following
the K technique presented here, was shown to compare favorably [11] with Java
PathFinder, the state-of-art explicit-state model checker for Java [12].

When defining a language semantics in rewriting logic, the program state is
typically represented as a configuration term. Equations represent structural re-
arrangements of the configuration or behaviorally irrelevant computational steps.
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Fig. 1. Rewriting logic as a meta-logical framework for defining programming languages

Rewrite rules capture the relevant computational steps, namely those which we
want to count as actual transitions between states. This way, a program execution
is captured as a sequence of transitions between equivalence classes of configura-
tion terms, and the state-space of executions is captured as the transition system
defined by the rewrite rules. Several paradigmatic languages have been given a
faithful rewriting logic semantics this way [9,13,14], and even some small program-
ming languages, following different styles and methodologies. In fact, [15] shows
how various operational semantics approaches can be framed as methodological
fragments of rewriting logic, including big-step (or natural) semantics [16], (small-
step) structural operational semantics (SOS) [17], Modular SOS (MSOS) [18],
reduction semantics (with evaluation contexts) [19], continuation-based seman-
tics [20], and the chemical abstract machine (CHAM) [21].

Thus, we can regard rewriting logic as a meta-framework for defining pro-
gramming language semantics, as illustrated in Figure 1. Once a language is
defined in rewriting logic, the arsenal of generic tools of the latter can then be
used to formally analyze both the programming language itself as well as its
programs. An advantage that rewriting logic offers over other similar powerful
meta-frameworks, such as e.g., higher-order logic, is that it allows us to tune
the computational granularity of the defined language, both in depth (when we
want several small steps to count as one step) and in breadth (when we want
several non-overlapping steps to proceed concurrency), with little or no effort.

Unfortunately, one pragmatic problem that all meta-frameworks share is that
they do not tell us how to define a language. They only give us powerful means to
faithfully and uniformly represent any semantics, following any approach, using
the same formalism. This desirable faithfulness actually also implies that a meta-
framework, no matter how powerful it is, cannot magically eliminate the inherent
limitations of the chosen semantic approach. For example, existing approaches
have problems with control-intensive features (except for evaluation contexts),
with modularity (except for MSOS, and except for evaluation contexts in some
cases), with true concurrency (except for the CHAM), and so on.
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Ideally, we would like a semantic approach, or framework, which has at least
the union of all the strengths of the existing approaches, and which at the same
time avoids all their weaknesses. Such a framework would also likely be rep-
resentable in powerful meta-frameworks such as rewriting logic or higher-order
logic, but that is not the point here. The point is that it is not clear whether
such a framework is possible. In particular, such a framework should be at least
as expressive as reduction semantics with evaluation contexts, but should also
allow non-syntactic, environment/store style definitions; it should be at least as
modular as MSOS, but should also give us access to the execution/evaluation
context; it should be at least as concurrent as the CHAM, but should not force
us artificially encode everything in molecules and solutions; and so on. Whether
K has all these desirable features is and probably will always be open for de-
bate. Nevertheless, K has been from the very beginning designed in a bottom-up
fashion, striving to incorporate the positive aspects of the existing approaches
and to avoid their negative aspects, at the same time being based on a rigorous
mathematical foundation and offering an intuitive notation to its users.

3 The K Framework

In a nutshell, the K framework consists of computations, configurations, and
rules. Computations are special sequences of tasks, where a task can be, e.g., a
fragment of program that needs to be processed. Configurations are organized
as nested soups of cells that hold syntactic and semantic information. K rules
distinguish themselves by specifying only what is needed from a configuration,
and by clearly identifying what changes, and thus, being more concise, more
modular, and more concurrent than regular rewrite rules.

The running example of this paper is CinK [8], an overly-simplified kernel of
the C++ language including integer and boolean expressions, functions, and basic
imperative statements. Without modifying anything but the configuration, the
language is extended with the following concurrency constructs: thread creation,
lock-based synchronization and thread join.

Configurations. The initial running configuration of CinK is presented in Fig-
ure 2. The configuration is a nested multiset of labeled cells, in which each cell
can contain either a list, a set, a bag, a map, or a computation. The initial CinK
configuration consists of a top cell, labeled “T”, holding a bag of cells, among
which a map cell, labeled “store”, to map locations to values, a list cell, labeled
“ in”, to hold input values, and a bag cell, labeled “threads”, which can hold any
number of “thread” cells (signaled by the star “∗” attached to the label of the
cell). The thread cell is itself a bag of cells, among which the “k” cell holds a
computation structure, which plays the role of directing the execution.
Syntax and Computations. Computations extend the user-defined language syn-
tax with a task sequentialization operation, “�”. The basic unit of computation
is a task, which can be either a fragment of syntax, possibly with holes in it, or a
semantic task, such as an environment recovery. Most of the manipulation of the
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Fig. 2. The initial configuration of the CinK language

computation is abstracted away from the language designer via intuitive PL syn-
tax annotations like strictness constraints which, when declaring the syntax of a
construct also specify the order of evaluation for its arguments. Similar decom-
positions of computations happen in abstract machines by means of stacks [20],
and also in the refocusing techniques for implementing reduction semantics with
evaluation contexts [22]. However, what is different here is that K achieves the
same thing formally, by means of rules (there are special rules behind the strict-
ness annotations, as explained below), not as an implementation means.

The K BNF syntax specified below suffices to parse the program fragment
“t = * x; * x = * y; * y = t;” specifying a sequence of statements for swapping
the values at two memory locations:

syntax Exp ::= Id
| * Exp [strict]
| Exp = Exp [strict(2)]

syntax Stmt ::= Exp ; [strict]
| Stmt Stmt [seqstrict]

Strictness annotations add semantic information to syntax by specifying the or-
der of evaluation of arguments. The special rules corresponding to these strict-
ness annotations are a special case of structural rules, metaphorically called
heating/cooling rules like in the CHAM with the one going from left to right
called a heating rule and the one from right to left called a cooling rule, are:
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* ERed � ERed � * �
E = ERed � ERed � E = �

ERed ; � ERed � � ;
SRed S � SRed � � S

Val SRed � SRed � Val �

The heating/cooling rules specify that the arguments mentioned in the strictness
constraint can be taken out for evaluation at any time and plugged back into their
original context. Note that statement composition generates two such rules (as,
by default, strictness applies to each argument); however, since the constraint
specifies sequential strictness, the second statement can be evaluated only once
the first statement was completely evaluated (specified by the Val variable which
should match a value) and its side effects were propagated.

By successively applying the heating/cooling rules above on the statement
sequence above, we obtain the following (structurally equivalent) computations:

t = * x; * x = * y; * y = t; �
t = * x; � � * x = * y; * y = t; �

t = * x � �; � � * x = * y; * y = t; �
* x � t = � � �; � � * x = * y; * y = t; �

x � * � � t = � � �; � � * x = * y; * y = t;

The heating rules thus pull redexes out from their context for evaluation accord-
ing to the desired evaluation strategy of the corresponding constructs, leaving
holes as placemarkers for where to plug their results or intermediate computa-
tions back using the cooling rules. Above, the heating rules eventually singled
out the variable x at the top of the computation. As seen shortly, other rules
can now match it and replace it with its corresponding value from the store. The
cooling rules can then plug that value back into its place in context.

Implementations can choose to keep computations heated as an optimization,
and only cool by need and only as much as necessary. Nevertheless, from a
theoretical perspective, heating/cooling rules can be applied at any time and
as many times as they match, thus yielding a potentially exponential number
of structurally equivalent computations. As seen in Section 6, these can lead to
non-deterministic behaviors of programs.

K rules. As discussed above, K has a particular kind of rules, called structural
rules, which allow us to rearrange the configuration. Heating/cooling rules are a
special kind of structural rules, which are typically bidirectional. K also allows
standalone structural rules, for example a rule desugaring a “for” loop into a
“while”, which need not be reversible. The distinction between heating/cooling
rules and other structural rules is purely methodological, with no semantic im-
plications. Because of that, one should feel free to call other pairs of structural
rules, which do not necessarily capture evaluation strategies, also heating/cool-
ing. For example, pairs of structural rules corresponding to intended equations
(“heat” A∗ (B +C) into A∗B +A∗C, and “cool” A∗B +A∗C into A∗ (B +C)).
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In addition to structural rules, K also has computational rules. The distinc-
tion between structural and computational rules is purely semantic, and will be
clarified in Section 5. Intuitively, only the computational rules yield transitions
in the transition system associated to a program. The role of the structural rules
is to only rearrange the configuration so that computational rules can match.

The computational rule below succinctly describes the intuitive semantics for
reading the value of a variable: if variable X is the next thing to be evaluated and
if X is mapped to a location L in the environment, and that location is mapped
to a value V in the store, then replace that occurrence of X by V . Moreover,
note that the rule only specifies what is needed from the configuration, which
is essential for obtaining modular definitions, and by precisely identifying what
changes, which significantly enhances modularity and concurrency.

rule mem-lookup-r-value

X

V

k

X �→ L

env

L �→ V

store

There are several ways in which K rules differ from regular rewrite rules. First,
in-place rewriting allows one to specify small changes into a bigger context, by
underlining the part that needs to change and writing its replacement under
the line, instead of repeating the context in both sides of a rewrite rule. This
additionally gives us the ability of using anonymous variables for the unused
variables in the context, and, furthermore, the use of cell comprehension for
focusing only on the parts of the cells which are relevant for this rule. Our
metaphorical notation for cell comprehension is the jagged cell edge, which thus
specifies that there could be more items in the cell, in the corresponding side,
in addition to what is explicitly specified. Finally, the process of configuration
abstraction allows for only the relevant cells to be mentioned in a rule, relying
on the static structure of the declared configuration to infer the rest.

Modularity. Configuration abstraction is crucial for modularity. Relying on the
initial configuration to be specified by the designer, and on the fact that usually
the structure of such a configuration does not change during the execution of
a program, the K rules are essentially invariant under change of configuration
structure. This effectively means that the same rule can be re-used in different
definitions as long as the required cells are present, regardless of the additional
context, which can be automatically inferred from the initial configuration.

Expressiveness. The particular structure of K computations, and the fact that
the current task is always at the top of the computation, greatly enhances the
expressiveness of the K framework. Next paragraphs show how easy it is to use
K to define constructs which are known to be hard to define in other frameworks.

Abrupt returning from a function is hard to define in many frameworks (except
for reduction semantics with evaluation contexts), due to the lack of explicit
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access to the execution context. Having the entire remainder of computation
always following the current redex allows the K definition of CinK to capture
this construct in a simple and succinct manner by the following two rules:

rule function-call⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(λXl • Sts)(Vl) � K

bind Vl to Xl ;� Sts �return void ;

k

GEnv

genv

Env

GEnv

env

Stack

bstack
•

([Env ] Stack ,K )

fstack

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
rule return⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

return V ; � —

V � K

k

—

Env

env

—

Stack

bstack

(([Env ] Stack , K ))

•

fstack

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The function name is evaluated to its value, which is a lambda abstraction:

Xl is the list of parameters, Sts is body of the function. The function-call
rule pushes the calling context, i.e., the remainder of the computation K and
environment stack (including the current environment) on top of the function
stack, while the return rule uses the information there to restore the environ-
ment and computation of the caller. The evaluation of the arguments Vl and
their binding to the formal parameters is described in Section 4.

Another feature which is hard to represent in other frameworks is handling
multiple tasks at the same time, as when defining synchronous communication,
for example. Although SOS-based frameworks can capture specific versions of
this feature for languages like CCS or the π-calculus, they can only do it there
because the communication commands are always at the top of their processes.
K computation’s structure is again instrumental here, as it allows to easily match
two redexes at the same time, as shown by the following rule, defining the se-
mantics of a rendezvous expression used for synchronizing two threads:

rule rendezvous

rendezvous V

V

k

rendezvous V

V

k
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Reading this rule one can easily get the intended semantics: a thread requesting
a rendezvous has to wait until another thread makes a request with the same
value V ; once that happens, both threads can continue with V as their result.

K has a reflective view of syntax. Although it allows us to use concrete syntax
in definitions as a convenience, it regards all syntactic terms as abstract syntax
trees (AST). Thus, language constructs are regarded as AST labels. For example,
a + 3 is represented in K as _+_(a(•List{K}), 3(•List{K})). This abstract view
of syntax allows reducing the computation constructs to the following core:

syntax K ::= KLabel(List{K})
| •K

| K � K

syntax List{K} ::= K
| •List{K}
| List{K},List{K}

We won’t go into details here, but the ability of referring to the K AST in a
definition allows K to define powerful reflective rules for AST manipulation such
as generic AST visitor patterns, code generation, or generic substitution [23].

Concurrency. An aspect that makes K appropriate for defining programming
languages is its natural way to capture concurrency. Besides being truly concur-
rent (like CHAM), K also allows capturing concurrency with resource sharing.

Let us exemplify this concurrency power. The two rules below specify the
semantics for accessing/updating the value at a memory location:

rule mem-lookup-r-value

X

V

k

X �→ L

env

L �→ V

store

rule assignment

X = V

V

k

X �→ L

env

L �→ —

V

store

As the semantics of the K rules specify that the parts of the configuration
which are only read by the rule can be shared by concurrent applications, the
read rule can match simultaneously for two threads attempting to read from
the same location, and they can both advance one step concurrently. A similar
thing happens for concurrent updates. As long as the threads attempt to update
distinct locations, the update rules can match at the same time and the threads
can advance concurrently. Moreover, by disallowing rule instances to overlap on
the parts they change, the K semantics enforces sequentialization of data-races.
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4 Case Study: Parameter Passing Styles in CinK

In this section we exhibit the definitional power of K, by using it to compactly
and naturally define a non-trivial language feature, namely the combination
between call-by-value and call-by-reference as mechanisms for binding the formal
parameters of a function to the arguments passed during a function call.

For call-by-value, the arguments passed to a function call are first evaluated in
the context of the caller, then their values are stored into fresh memory locations,
which are then bound to the corresponding formal parameters of the function.
The lifetime of these fresh memory locations is limited to the execution of the
called function’s body, which guarantees that they are not accessible by the caller
function after the callee’s return.

For call-by-reference, the arguments must evaluate to l-values, and the formal
parameters are directly bound to the locations designated by the resulting l-
values. Therefore, any updates to the formal parameters during the execution of
the function body is reflected onto the arguments passed to the call.

In this section we show how the two mechanisms are being combined in the K

definition of CinK. CinK uses a C++-like notation for the two mechanisms. For
instance, the code below declares a function f with two parameters x and y, x
being called-by-value, while y being called-by-reference:

int f(int x, int &y) {
y = ++x;
return x;

}

L-value and R-value Expressions. CinK expressions can be evaluated to either
l-values or r-values. Historically, the names of these two categories come from
the fact that an l-value can be used in the left hand side of an assignment,
i.e., it can be assigned to, while an r-value corresponds to the right hand side
of an assignment (it can be assigned). Semantically, an l-value expression is
evaluated to a location, while an r-value expression is evaluated to a value that
can be stored into a location. Locations in our K definition of CinK are modeled
by non-negative integers; we write loc (L) whenever the value L designates a
location. This is achieved with the following syntax declaration:

syntax Val ::= loc(Int)

To distinguish expressions which must evaluate to l-values we introduce a special
wrapper for them (the other expressions are considered r-values by default):

syntax Exp ::= l-value(K)

The rule evaluating a program variable to an r-value is given on page 39. It
replaces a variable (at the top of the computation) with the value stored in the
location associated to that variable. In contrast, the rule that evaluates a pro-
gram variable to its l-value replaces the variable with the location associated to it:
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rule mem-lookup-l-value

l-value(X )

loc(L)

k

X �→ L

env

Function call. The rule defining the evaluation of a function call expression is
described on page 38. It assumes that the arguments have already been evalu-
ated, binds their values to the formal parameters, and schedules the body for
execution, while saving the calling context to be restored when returning from
the call. This rule is rather plain, similar to languages with a single evaluation
strategy; therefore, it does not explain how the actual parameters are evaluated.
If the language included only the call-by-value mechanism, then it would be
enough to declare the function call expression strict in both arguments. How-
ever, since the evaluation strategy for the second argument is depending on the
binding specification in the function signature, the function call expression is
declared strict only in its first argument:

syntax Exp ::= Exp ( Exps ) [strict(1)]

and a more complex mechanism for evaluating the parameters is required.

Parameter passing styles. To evaluate the arguments of a function call according
to the strategy specified by the function parameters, we use K’s special support
for evaluation contexts. A context declaration for the function call specifies that
the evaluation of arguments needs to consider their declared strategy:

context: (λXl • Sts)( �
evaluate � following Xl ;

)

This context says not only that the actual parameters must be evaluated when
passed to a function value, but also that they need to be evaluated using the
evaluate construct and following the list of formal parameters.

syntax Exps ::= evaluate Exps following Decls ;

For a call-by-value formal parameter, the corresponding argument must be eval-
uated normally, to an r-value:

context: evaluate �,— following int X ,— ;

For a call-by-reference formal parameter, the corresponding argument must be
evaluated as an l-value expression:

context: evaluate �
l-value (�)

,— following int & X ,— ;
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This second context uses again the special type of context used above for evaluate,
by requesting that the expression on position � be evaluated as an l-value.

The following two rules, together with the strict evaluation strategy for lists
of expressions complete the semantics of evaluate by recursing into the lists:

rule
evaluate V ,El following —,Xl ;

V , evaluate El following Xl ;

rule
evaluate • following • ;

•

Binding mechanisms. Similarly to the evaluation rules, the binding rules are also
different for the two parameter passing styles. The binding is performed using
an auxiliary construction:

syntax K ::= bind Vals to Decls ;

For call-by-value, the passed value V is stored into a new memory location which
is bound to the formal parameter:

rule bind-call-by-value

bind V ,Vs

Vs

to int X ,Xl

Xl

;

k
Env

Env [L / X ]

env
•

L �→ V

store
L

L +Int 1

nextLoc

For call-by-reference, the location pointed to by the l-value is directly bound to
the formal parameter:

rule bind-call-by-reference

bind loc (L),Vs

Vs

to int & X ,Xl

Xl

;

k

Env

Env [L / X ]

env

Finally, once all parameters have been bound, the binding construct dissolves:

rule
bind • to • ;

•

5 On the Semantics of a K Definition

This section briefly presents the transition semantics of a K definition. Under-
standing this semantics is essential for understanding the differences between K

and rewriting logic and thus making correct use of the Maude tools to analyze
the behavior of programs against the executable semantics of a language.

As pointed out in the previous section, a K definition consists of several com-
ponents: a language syntax (which is a set of KLabel constants) possibly anno-
tated with strictness and other attributes and possibly extended with additional
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syntactic constructs needed for semantic reasons, an initial configuration, and a
set of rewrite rules. As seen, several of K’s features are in fact just notations,
allowing users to define more compact or more modular semantics. For example,
the strictness annotations can be desugared in pairs of special heating/cooling
rules, the configuration abstraction can complete the cell structure of rules to
match that of the initial configurations, and so on. Then a natural question is
what is K, after all, from a theoretical, minimalistic perspective, and what is its
semantics. In this section we address this question at an informal level, referring
the interested reader to [2,23] for more technical details.

A K definition (or K rewrite theory, or K rewrite system, or even just a K

system) is a triple (Σ, S, C), where Σ is an algebraic signature and where S and
C are sets of K rewrite rules, the former called structural rules and the latter
called computational rules. Σ includes operation symbols for all the desired
language constructs, builtin data types and values, auxiliary operations needed
for the semantics (e.g., bind_to_), operations corresponding to cells, operations
corresponding to K-tool-provided data-structures such as lists, sets, maps, etc.

The formal definition of a K rule is rather technical [2,23]. Intuitively, a K rule
consists of a shared pattern, which is a multi-context with a distinguished hole
for each underlined sub-term in the rule (i.e., sub-term that rewrites), together
with two mappings of these special holes: one corresponding to the sub-terms
above the line, and another to the sub-terms underneath the line. Any regular
rewrite rule is a particular K rule with an empty pattern (i.e., just a hole). As
shown in [2,23], a set R of K rules yields a concurrent rewrite relation ≡�R on
Σ-terms. As expected, ≡�R can be serialized into sequences of ordinary rewrite
steps obtained by turning each K rule into a regular rewrite rule by forgetting the
shared pattern information, that is, by infusing the pattern into both the left-
hand-side and the right-hand-side terms. Thus, ≡�R can and should be regarded
as a more concurrent variant of rewriting, one which takes into account the
specifics of the K-rules, namely their capability to share resources.

The split of rules into structural S and computational C in a K definition
(Σ, S, C) is purely methodological; there are no hard requirements on what
should be structural and what should be computational. In general, we think
of structural rules as rearranging the configuration before or after a computa-
tional rule applies. Besides heating/cooling rules and language-specific syntax
desugarings, S typically also includes rules telling how the underlying mathe-
matical domains or builtin libraries operate; since an equation can be regarded as
two opposite rules, usual algebraic data types can also be captured by means of
structural rules, and usual equational deduction can be mimicked with structural
rewrites using S. As their name indicates, computational rules are the ones that
count as computations. In terms of the generated transition system, the struc-
tural rules are not observable while the computational rules are observable.

Formally, given a K definition (Σ, S, C), we let ≡� denote the relation ≡�∗
S ◦

≡�C ◦≡�∗
S . In other words, γ≡�γ′ if and only if γ can be structurally rearranged

into a term which is computationally transformed into a term which can be struc-
turally rearranged into γ′. Or even simpler, γ rewrites to γ′ using precisely one
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Fig. 3. The K transition system for the execution of a program P

computational rule. The relation ≡� associates a transition system to any term
γ, which we can think of as the behavior of γ under the given K definition. Con-
sider, for example, the initial configuration of CinK, say cfg[$PGM] (assume
$IN instantiated to some arbitrary input), and some CinK program P . Then the
K semantics of P is the transition system associated to the configuration term
cfg[P], depicted in Figure 3: boxes enclose the structural rearrangements via
≡�∗

S , which appear as dashed arrows in the figure, and full arrows between boxes
depict the relation ≡�C . We can even let �P � denote this transition system.

Therefore, in addition to allowing rules that explicitly specify what can be
concurrently shared with other rules, another major difference between K and
rewriting logic is that K has no equations. Equations can be expressed in K as
two opposite structural K rules with zero sharing. A question then is how to
develop K tools that can effectively execute and formally analyze K definitions.
Ideally, an implementation would statically analyze the rules in S and C, and
make use of efficient decision procedures for common fragments of S (e.g., when
it contains rules corresponding to equations such as associativity, commutativity,
identity, etc.) and of specialized data-structures and even decision procedures for
heating/cooling rules, and so on. Unfortunately, these seem hard. Our current
approach in our K tool prototype is to (automatically) compile K definitions to
Maude, allowing the user to intervene in the process. Specifically, the current
version of the K tool compiles a K definition (Σ, S, C) into a Maude system
module (ΣMaude, A, E, R), following the following rules:

– Each ground Σ-configuration is represented by a ground ΣMaude-term;
– Each structural rule in S is compiled either into an axiom in A (e.g., asso-

ciativity, commutativity, identity) or into a Maude equation in E;
– Each computational rule in C is compiled either into a Maude equation in

E or into a Maude rewrite rule in R.

The K tool provides an annotation system by which the user can instruct the
tool which computational rules are to be compiled into Maude equations and
which into Maude rewrite rules (see Section 6 for examples).

An immediate advantage of compiling K definitions into Maude rewrite theo-
ries is that the K tool can be used as an interpreter, i.e., given a program P it can
execute it according to the semantics of its language; the execution describes a
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path from the initial configuration to a normal form (irreducible configuration).
Such an execution is intuitively represented by the thick arrows in Figure 3.

6 Executing and Analyzing K Definitions in Maude

In this section we describe how the K tool, taking advantage of the generic
Maude tool suite, can be used to execute programs against the K definition of
their language and to analyze their behavior.

The following command asks the K tool to compile the definition of CinK
into a Maude module; we assume that the command is executed in a directory
containing the definition of CinK in the cink.k file:

$ kompile cink
$ ls *.maude
cink-compiled.maude

6.1 Executing Programs

Consider the following program:
int r;
int f(int x) {
return (r = x);

}

int main() {
r = 5;
return f(1) + f(2), r;

}
Assuming this program is contained into a file nondet.cink in the programs
directory, its execution can be obtained with the following command:

$ krun programs/nondet.cink
<T>
<k> 1; </k>
...
<genv> ... r |-> 0 </genv>
<store> 0 |-> 1 ... </store>

</T>

The tool displays the final configuration reached on one of the execution paths,
which contains the result of the computation. The information stored in cells is
very useful when, e.g., the normal form is a dead-lock configuration. However,
krun can be also used as an interpreter. For example, if we replace the last
line from main with “cout << f(1) + f(2) << r << "\n";” and execute the
program with the no-config option, we obtain:

$ krun --no-config programs/nondet.cink
3 1

The mechanism that connects a cell (here the out cell) to the standard input/out-
put is described in [24].

6.2 Analyzing Executions

The transition system associated to a K definition can be explored using two
Maude tools: the search command and the LTL model checker.
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Search. krun provides the search option to explore all execution paths starting
from the initial configuration and display the final configurations obtained along
these paths. The implementation of this options uses Maude’s search engine. The
command below displays all possible outcomes for the nondet program above:

$ krun nondet.cink --search
Search results:
Solution 1, state 0:
<T>
<k> 1; </k>
...
<genv>... r |-> 0 </genv>
<store> 0 |-> 1 ...</store>

</T>

Although the behavior of this program is non-deterministic, only one solution is
reported. This is a consequence of how the Maude module is generated from the
K definition. To obtain the full behavior of the above program, the tool must
be instructed to compile the K rules that are the source of non-determinism
into Maude rewrite rules. Here the non-determinism is given by the evaluation
order of the addition operator. We can use the annotation superheat for the addi-
tion operator to specify that its heating rules must generate Maude rewrite rules:

syntax Exp ::= Exp + Exp [superheat strict]

Now the above command displays all executions paths:

$ krun nondet.cink --search
Search results:
Solution 1, state 1:
<T>
<k> 1; </k>
...
<genv>... r |-> 0 </genv>
<store> 0 |-> 1 ...</store>

</T>
Solution 2, state 2:
<T>
<k> 2; </k>
...
<genv>... r |-> 0 </genv>
<store> 0 |-> 2 ...</store>

</T>

This example shows that members of the same structural class can generate
distinct, non-joinable transitions.

The cooling rules could have a similar effect. Using the K tool to explore the
behaviors of program

int print(int n) {
cout << n;
return n;

}

int main() {
(print(1) + print(2) + print(3));
return 0;

}
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only displays four solutions. The cause is that, by default, cooling rules (e.g.,
those for the operands of +) are only applied when their arguments are reduced
to values. However, if we annotate the rule for return on page 38 with the tag
supercool, then the cooling rules will apply eagerly after the application of this
rule, cooling the entire computation before attempting to heat it again, and thus
allowing all 6 possible solutions to be observed.

The superheat and supercool tags described above are compiled to Maude so
that they offer the K tool user the following intuition: when a superheat operation
is reached during the execution of the program, an “exhaustive non-determinism”
mode is entered; when a supercool rule is applied, the next non-deterministic be-
havior is explored. This way, superheat/supercool act as user-defined begin/end
brackets within the non-deterministic state-space of the program where exhaus-
tive non-determinism is desired to be explored.

Another way to specify that certain rules should generate transitions into the
transition system generated by Maude is to annotate them with the transition
tag. If the definition of CinK is compiled without any transition tags, then the
tool will explore only one execution for the following multi-threaded program:

int r;
int f(int x) {
return (r = x);

}

int main() {
std::thread t1(f, 1);
std::thread t1(f, 2);
return r;

}
However, if we annotate the rules for memory lookup and memory update with
the transition tag, the tool will display all 8 possible execution outcomes.

At this stage, the reader may wonder why don’t we automatically tag all the
operations with superheat and all the rules, both structural and computational,
with supercool, and all the computational rules also with transition. While this
would indeed guarantee that no behaviors are lost in compilation, in our experi-
ence doing so typically yields impractical Maude definitions, whose state-space
is too large to search. In general, most of the users of K are interested in fast
execution first place, and only then, potentially, in searching. Thus, we decided
that the default compilation of the K tool optimizes execution. Searching is con-
sidered expert use of the tool. Even experts typically start conservatively, by
adding only one or two tags, and then increase their number depending on the
complexity of the tested program, too, and only if performance is acceptable.
It would be interesting to develop automatic criteria or techniques that provide
guarantees of exhaustive behavior exploration with a limited number of tags, but
this is beyond our scope here. The K tool currently provides no such criteria.

Model Checking. The K tool also includes a hook to Maude’s LTL model-checker,
where the latter’s sorts and operations are renamed to avoid name clashes and
to follow the K tool’s convention for naming builtin items. For instance, the
sort name for the transition system states is #ModelCheckerState and that
for the atomic propositions is #Prop. For similar reasons, the operators for
LTL formulas are prefixed with "LTL". As any builtin sort is subsorted to K,
#ModelCheckerState is also a subsort of K.
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The Maude module obtained by compiling a K definition is based on the
abstract syntax tree (AST) representation of both the language constructs and
the K constructs. Hence the direct use of Maude to define properties and to call
the model-checker for a given initial configuration and a given LTL formula is
not quite user-friendly. We created an interface to facilitate the use of the model-
checker. We describe the use of this interface by means of a program describing
the Dekker’s algorithm (see Figure 4). Let us assume that we want to show that
this program satisfies the LTL formula

LTL[]( eqTo(critical1, 1) LTL-> eqTo(critical2, 0)),

where LTL[] denotes the always modal operator, LTL-> the implication, and the
atomic proposition eqTo(X , I ) is satisfied by the current configuration if and only
if the value of the variable X is equal to I . This property says that for each con-
figuration reachable from the initial one the value of global variable critical2
is equal to 0 whenever the value of critical1 is equal to 1, representing half of
the mutual exclusion property (the other half is symmetrical).

int flag1 = 0, flag2 = 0;
int critical1 = 0, critical2 = 0;
int turn = 1;
int dekker1() {
while (true) {

flag1 = 1; turn = 2;
while((flag2 == 1) &&

(turn == 2)) { }
// Enter critical section
critical1 = 1;
// Critical stuff ...
// Leave critical section
critical1 = 0;
flag1 = 0;

}
}

int dekker2() {
while (true) {
flag2 = 1; turn = 1;
while((flag1 == 1) &&

(turn == 1)) { }
// Enter critical section
critical2 = 1;
// Critical stuff ...
// Leave critical section
critical2 = 0; flag2 = 0;

}
}
int main() {
std::thread t1(dekker1);
std::thread t2(dekker2);

}

Fig. 4. Dekker’s algorithm in CinK

We propose the following solution for model-checking this property. The LTL
formulas are similar to programming languages: they have syntax and semantics.
Therefore we define the syntax and the semantics in separate modules. For this
example, the syntax module defines the atomic proposition eqTo:

module CINK-PROP-SYNTAX

imports CINK-SYNTAX

imports LTL-HOOKS

syntax #Prop ::= eqTo(Id,Val)

end module
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Note the simplicity of this module. Generally, such a module should define the
languages for properties to be checked for the defined language. The module
LTL-HOOKS provides a K interface to the Maude module defining the syntax
of LTL formulas.

The module for semantics has a simple structure, too:

module CINK-PROP-SEMANTICS

imports MODEL-CHECKER-HOOKS

imports CINK-PROP-SYNTAX

imports CINK-SEMANTICS

syntax #ModelCheckerState ::= KItem(Bag)

syntax Int ::= val(Bag, Id)

rule

val( X �→ L

genv

L �→ I

store

T

,X )

I

rule

KItem(B) LTL|= #eqTo(X , I )

true
when val(B ,X ) ==K I

end module

The module MODEL-CHECKER-HOOKS provides a K interface to the Maude
module implementing the model-checker algorithm. The sort for configurations
is Bag and therefore it is injected as a subsort of #ModelCheckerState. The
auxiliary function val (C ,X ) returns the value of the variable X in the config-
uration C . Note that its definition is given by just one rule. The last rule in the
module gives the LTL semantics to the atomic proposition eqTo.

The definition of CinK together with these new modules is compiled, and then
the krun command with the --check option is executed:

$ krun dekker.cink --check LTL[] (eqTo(critical1, 1) LTL->
eqTo(critical2, 0))

Remark 1. The full implementation of this command is in progress. For instance,
when the formula is false the counter-example is huge. Currently, the output
obtained from the corresponding Maude model checking command is displayed
unformatted—we are working on finding a nicer way to represent it.

The above command works fine if the following two conditions are fulfilled:

1. the definition includes enough annotations to generate a transition system
representing a faithful abstraction of the intended K semantics;
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2. the set of configurations reachable from the initial configuration is finite.

Unfortunately, the second condition is not satisfied by the initial configuration
of the program describing the Dekker’s algorithm. Since in CinK we may have
variable declarations inside of blocks, each time the execution enters a block, the
environment is saved in the cell bstack. Hence the two infinite while loops will
infinitely increase the size of this cell during the exploration process. A small
change of this rule re-establishes the needed property. The while loop does not
include declarations of variables, so saving the environment is useless. We modify
the semantics of the block statement such that the environment is saved only if
it differs from the one stored in the top of the cell:

rule block

{ Sts }

Sts � popb

k

Env

env
•

[Env ]

[Env1 ]

bstack

when Env =/=Map Env1

rule block

{ Sts }

Sts

k

Env

env

[Env1 ]

bstack

when Env ==Map Env1

Remark 2. The search command and the model checker must be carefully used
since, as we already mentioned, the Maude modules produced by the K tool are
not always faithfully representing the intended K transition system. The main
motivation for this choice is given by efficiency. The user can use the annotations
(tags) to guide the compilation process into obtaining good abstraction of the
K transition system. However, even if the Maude transition system is a good
abstraction of the K one, it often is a (strict) subsystem of that giving the
transition semantics to the original K definition.

7 Conclusions

This paper gave a high-level overview of the K framework: its motivation
and objective, what it is and how it works, and its relationship to rewriting logic
and Maude. The K framework and the K tool have by now reached maturity,
and are currently being actively used for defining real programming languages
and experimenting with various language features. Besides didactic and proto-
typical languages (such as lambda calculus, System F, and Agents), the K tool
was used to formalize C [25] (and to analyze C programs [26]) and Scheme [27];
additionally, definitions of Haskell, Javascript, X10, a framework for domain
specific languages [28,29] or P-Systems [30], a RISC assembly language [31], and
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LLVM are underway. With respect to analysis tools, the K tool was used for
tools like type checkers and type inferencers [32], and in the development of
a new deductive program verification tool using program assertions based on
matching logic [33,34], model checking tools [35,36], symbolic execution [37,38],
computing worst case execution times [39], or researching runtime verification
techniques [40,23]. All these definitions and analysis tools can be found on the
K framework website at http://k-framework.org.
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1 LMU Munich
2 Technical University of Munich

3 University of Illinois at Urbana-Champaign
4 IMDEA Software

Abstract. Cloud computing is a modern paradigm for offering and uti-
lizing distributed infrastructure resources in a dynamic way. Cloud-based
systems are safety- and security-critical; they need to satisfy time-critical
performance-based quality of service properties and to dynamically adapt
to changes in the potentially hostile and uncertain environment they op-
erate in. In this paper we propose the coordination language KLAIM
and a composite actor approach for modelling Cloud-based architectures
whereas for formally analyzing such architectures we use a rewriting-
based approach. We specify the operational semantics of KLAIM in
Maude, show how to realize KLAIM programs in a distributed imple-
mentation of Maude, and simulate and analyze three simple Cloud ar-
chitectures with Maude and the Maude LTL model checker. Moreover,
we report shortly on the Maude specification and analysis of three larger
Cloud case studies using the composite actor model, where statistical
model checking with the Maude-based tool PVeStA is successfully used
for detecting bugs and performance issues and for analyzing a defense
mechanism against distributed denial-of-service attacks.

Keywords: rewriting logic, distributed systems, cloud computing, for-
mal analysis, coordination languages, composite actor model.

1 Introduction

In 1961 at the MIT Centennial, John McCarthy predicted that ”Computing
may someday be organized as a public utility just as the telephone system is
a public utility [...] The computer utility could become the basis of a new and
important industry” [13]. Fifty years later this dream is becoming a reality. Cloud
Computing provides global access to data, software services and infrastructure
through the internet, typically utilizing a pay for use model. Main characteristics
of Cloud Computing are virtualization, enabling elasticity and the illusion of
infinite capacity, multiple customers consuming the same software service, and
service-level agreements ensuring concrete levels of quality of service. Examples
for Cloud services are mail, calender, credit card services or any kind of data
storage. According to Gartner [19], by 2012, 20 percent of businesses will have
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no ownership of IT assets; similarly, US federal agencies are told “to default to
Cloud-based solutions whenever a secure, reliable, cost-effective Cloud option
exists” [30].

However, for current Cloud solutions security and reliability are still major
concerns [26]. E.g., the open foundation project Cloutage (see cloutage.org)
enumerates more than 60 Cloud incidents in 2011; the Berkeley view on Cloud
Computing lists ten main obstacles for the growth and adoption of Cloud Com-
puting, among them: availability of service, data transfer bottlenecks, perfor-
mance unpredictability, and bugs in large distributed systems. As thus, Cloud
Computing-based systems (i) are safety- and security-critical systems which have
strong qualitative and quantitative formal requirements, (ii) have equally impor-
tant time-critical performance-based quality of service properties (e.g., availabil-
ity), and (iii) need to dynamically adapt to changes in the potentially hostile
(e.g., distributed denial of service attacks) and often probabilistic environment
they operate in.

To tackle these challenges, we propose in this work1 the coordination language
KLAIM and a composite actor approach for modelling Cloud-based architectures
and a rewriting-based approach [21] for formally analyzing such architectures.
KLAIM [8] is a process algebra-based formalism for designing distributed ap-
plications. It supports explicit localities and multiple tuple spaces and permits
exchanging data and processes and retrieving information over the net. As ex-
amples for the design of Cloud-based architectures in KLAIM we study a sim-
ple (Fibonacci-) server consumer application, a load balancing algorithm, and
a mutual exclusion algorithm. For analyzing KLAIM specifications we specify
KLAIM in object-oriented Maude and show how to realize distributed KLAIM
programs by providing multiple instances of Maude which communicate via sock-
ets. We use the Maude system and the Maude LTL model checker for simulating
the Cloud Computing examples and for verifying appropriate safety properties.
These examples show that it is possible to formally specify and analyze Cloud-
based architectures based on KLAIM and Maude, but also that we face a state
space explosion which makes it hard to deal with more complex scenarios.

To tackle this scalability issue we propose a composite actor model as an
alternative approach. An actor is a concurrent object that encapsulates a state
and can be addressed using a unique name. Actors communicate with each other
using asynchronous messages. The composite actor model reflects the so-called
“Russian Dolls” model [23] and supports an arbitrary hierarchical composition
of entities. This approach is well-suited for statistical model checking with the
Maude-based tool PVeStA and can be used to overcome some of the above-
mentioned obstacles to the growth of Cloud Computing. To illustrate this we
report on three case studies: (i) the detection of bugs in the design of a key
distribution mechanism based on the Zookeeper distributed coordination, (ii)
performance prediction of a distributed broker-based a publish/subscribe service
for stock exchange events, and (iii) improving the availability of services using a
Cloud-based denial-of-service prevention mechanism.

1 A full description of the technical results can be found in [9,27].
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Outline. The paper is structured as follows: Sect. 2 shortly presents the KLAIM
language and its structured operational semantics. In Sect. 3 we present three
Maude-based formal executable specifications of KLAIM:M-KLAIM, whichmaps
the SOS style semantics to a rewriting logic-based semantics; OO-KLAIM, which
slightly modifies the semantics of KLAIM by defining inter-node communication
as asynchronous message passing; and finally D-KLAIM, which extends
OO-KLAIMand allows specifications to be executed in a distributed environment.
Sect. 4 shows how the Maude tools can be used for formally analyzing KLAIM de-
signs of three simple Cloud-based systems; in particular, we show how to model
check distributed D-KLAIM specifications by using an appropriate socket abstrac-
tion. In Sect. 5 we shortly present the composite actor approach as an alternative
for specifying Cloud-based architectures and use statistical model checking for for-
mally analyzing the three case studies mentioned above. We conclude by summa-
rizing our results and discussing the scalability of formal analysis.

2 The KLAIM Coordination Language

KLAIM (Kernel Language for Agents Interaction and Mobility) [8] is a kernel
programming language for mobile computing. The language offers the aspects of
a computation as well as a coordination language. The language’s basic opera-
tors were influenced by process algebras like CSP, CCS [24] and the π-calculus
[25]. Additionally, Linda’s tuple space primitives [14,5] provide a coordination
mechanism. These primitives are enriched with explicit localities which allow to
distinguish between multiple computing sites and the distribution of the tuple
spaces across such sites. A locality can be either a physical or a logical locality.
This separation allows a program to be defined independently from the underly-
ing network’s physical setup. Again, the network structure, the mapping between
logical and physical localities, and the distribution of processes, can be rear-
ranged without any changes to the program. The specification of KLAIM also
includes a type system that statically checks security properties, i.e., whether
the intended operations of a process comply with its access rights.2 In the follow-
ing, we give a brief overview of the syntactic elements as well as the operational
semantics of KLAIM. For an in-depth description of KLAIM and its syntax and
semantics we refer to [8].

2.1 Syntactic Elements of KLAIM

At the highest level of abstraction, the KLAIM model specifies a soup of nodes,
called a net. A net can be either a single node or a composition of nets N1 andN2,
N1 ‖ N2. A node is a triple s ::ρ P where s is a site, P is a process, and ρ defines an
allocation environment. A site can be thought of as a globally valid identifier for a
node. Logical localities, i.e., symbolic names for a site, allow programs to reference
nodes while ignoring the precise allocation between these names and actual sites.

2 For the sake of brevity, we omit the type system in the following Maude-based
specifications of KLAIM.
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The distinguished logical locality self refers to the current execution site. These
localities are considered to be first-order data which can be created dynamically
and shared using the tuple space. Each node has a specific allocation environ-
ment, which is a (partial) function from logical localities to sites. [s/l] denotes
the environment that maps the logical locality l to the site s. ρ1 • ρ2 denotes the
allocation environment that combines the environments ρ1 and ρ2 and is defined
by:

ρ1 • ρ2(l) =
{
ρ1(l) if ρ1(l) is defined

ρ2(l) otherwise

In KLAIM, sites are also considered to be logical localities for which the alloca-
tion environment acts as the identity function. Additionally, it is assumed that
for an allocation environment ρs at site s the equation ρs(self ) = s holds. Nodes
that fulfil this property are said to be well-formed. A KLAIM net is said to be
legal if each node is well-formed and is assigned a distinct site in the net.

KLAIM processes are built using operators borrowed from Milner’s CCS
[24]. Additionally, a process can be a process variable or a process invocation
A〈P̃ , l̃, ẽ〉, where P̃ is a sequence of processes, l̃ a sequence of localities, and ẽ a
sequence of expressions. KLAIM assumes that a process identifier A has a unique
defining equation A(X̃, ũ, x̃) =def P , with X̃ a sequence of process variables, ũ
a sequence of locality variables, x̃ a sequence of expression variables, and P be-
ing a process. The KLAIM actions out(t)@l, eval(P )@l, read(t)@l, and in(t)@l
correspond to the Linda operations to generate tuples (out), spawn processes
(eval), read tuples (rd), and consume tuples (in). In KLAIM, the operations
have logical localities as a postfix, which denote the sites the actions address. t
stands for a tuple, which is a list of expressions, processes, localities (including
locality variables) and formal fields. Formal fields are of the form !v, where v
is either an expression variable, a process variable, or a locality variable. In ad-
dition to the operations borrowed from Linda, the newloc(u) action is used to
create fresh sites. The locality variable u refers to that fresh site in the prefixed
process.

Example 1 (A Cloud-based architecture specification based on KLAIM). In the
following, we consider the example: a service developer builds a Fibonacci service.
The service should provide high scalability and availability and is started in
the Cloud. A consumer calls the service in the Cloud and stores the incoming
Fibonacci numbers in a local storage.

In KLAIM, each participating entity, the developer, the consumer, and the
server in the Cloud can be modeled as KLAIM nodes and their behavior as
KLAIM processes. The KLAIM net

sc ::ρc Pc ‖ sd ::ρd
Pd ‖ ss ::ρs Ps

specifies the example setup, where sc, sd, ss are the sites, ρc, ρd, ρs are the al-
location environments, and Pc, Pd, Ps are the processes of the consumer, the
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CloudFibonacci-Consumer

sc ::ρc Pc

Fibonacci-Developer

sd ::ρd Pd

Fibonacci-Server

ss ::ρs Ps

2

3

1

4

1: Start Fibonacci service on a server in the Cloud
2: Create storage node
3: Request Fibonacci number
4: Send Fibonacci number

Fig. 1. Overview of the Fibonacci Cloud service architecture

developer, and the server of the Fibonacci service, respectively. For example, the
process of the Fibonacci server, Ps, can be specified as

in(start)@self.out(0)@c.out(0, 1)@self.F ibRec〈∅, ∅, ∅〉

where start is the tuple that is sent from the developer to start the service,
ρs(c) = sc and FibRec is defined by

FibRec〈∅,∅, ∅〉 =def

in(f1, f2)@self.out(f1 + f2)@c.out(f2, f1 + f2)@self.F ibRec〈∅, ∅, ∅〉

The FibRec process definition blocks until it receives two previous Fibonacci
numbers, calculates and sends the new Fibonacci number to the consumer, and
finally sends the two last Fibonacci numbers to itself and invokes FibRec again.

Figure 1 illustrates the example. For the complete specification we refer to
[9,27].

2.2 KLAIM’s Operational Semantics

KLAIM’s operational semantics is given in the structural operational seman-
tics (SOS) style and differentiates between two semantics: the symbolic seman-
tics and the reduction relation. The semantics proceeds in two steps. First, the
symbolic semantics specifies the effects of actions on the tuple space which, in
KLAIM, is reflected at the process level and defines the process commitments re-
lated to localities and the allocation environment. In a second step, the reduction
relation fully describes the process behavior in a net.

The structural rules of the the symbolic semantics specify the possible tran-
sitions of KLAIM processes. The resulting labeled transition system does not
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take the physical location of processes and the tuple space into account. In the
transition system, the labeled transition

P
μ−→
ρ

P ′

describes how process P evolves to process P ′. The label μ gives an abstract
description of what activity is performed and the label ρ stands for the allocation
environment that records the local bindings that must be taken into account to
evaluate μ. For example, the rules to send and consume a tuple

out(t)@l.P
s(t)@l−−−−→

φ
P

in(t)@l.P
i(t)@l−−−−→

φ
P

specify that a process P with the prefix out(t)@l or in(t)@l is able to evaluate
to process P with the side effect of sending the tuple t to l (μ = s(t)@l) or con-
suming the tuple t from l (μ = i(t)@l). Both rules also state that the allocation
environment does not have to be taken into account to evaluate the activities,
i.e., the empty allocation environment has to be taken into account (ρ = φ).

KLAIM reflects the tuple space at the process level, where tuples are modeled
as processes. The auxiliary process out(et), whose symbolic semantics is given
by the structural rule

out(et)
o(et)@self−−−−−−−→

φ
nil

denotes the presence of the evaluated tuple et in the tuple space. Tuples are
evaluated using the tuple evaluation function T [[.]]ρ, which exploits the allocation
environment to resolve locality names. The evaluation of a process P , T [[P ]]ρ
introduces the concept of the process closure P{ρ}, which combines the process
P with the allocation environment ρ.

Nets are identified up to the smallest congruence such that the net composition
‖ is associative and commutative. The reduction relation describes the process
behavior in a net and provides rules for actions that affect the local node and
rules for actions that affect a remote node. Syntactically, the reduction transition

N � N ′

describes the evolution of net N to N ′. The local and remote rules for the out
operation

(1)

P
s(t)@l−−−−→

ρ′
P ′ s = ρ′ • ρ(l) et = T [[t]]ρ′•ρ

s ::ρ P � s ::ρ P ′ | out(et)

(2)

P1
s(t)@l−−−−→

ρ
P ′
1 s2 = ρ • ρ1(l) et = T [[t]]ρ•ρ1

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 � s1 ::ρ1 P ′
1 ‖ s2 ::ρ2 P2 | out(et)
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add a new auxiliary process to the local (rule (1)) or to a remote (rule (2))
process and thereby put a new tuple into the tuple space. In rule (2), the tuple
t is evaluated using the allocation environment ρ • ρ1, which means that if the
process has a closure P{ρ}, its closure is used in conjunction with the local al-
location environment ρ1 to evaluate the tuple. If the process has no closure, the
equation ρ = φ holds, and the tuple is evaluated using only the local allocation
environment ρ1 = φ • ρ1. Finally, if a tuple is sent to a remote node, the send-
ing process’ closure and the sending node’s allocation environment are used to
evaluate the tuple.

Pattern matching is used to identify appropriate tuples for an in or read
operation. For example, the rule to consume a tuple from a remote node

(6)

P1
i(t)@l−−−−→

ρ
P ′
1 s2 = ρ • ρ1(l) P2

o(et)@self−−−−−−−→
φ

P ′
2 match(T [[t]]ρ•ρ1 , et)

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 � s1 ::ρ1 P ′
1[et/T [[t]]ρ•ρ1 ] ‖ s2 ::ρ2 P ′

2

uses pattern matching to match the remotely available evaluated tuple with the
evaluation of the tuple that is the argument of the in operation.

Example 2 (Communication between nodes in KLAIM). Let us conclude this
overview of the KLAIM language with an example that shows how nodes com-
municate in KLAIM: a net consists of three nodes that are located at the sites
s1, s2 and s3. The nodes are all well-formed, since their allocation environments
ρi, i ∈ {1, 2, 3} are well-defined (ρi(self) = si). Furthermore, the logical local-
ity l2 is mapped to s2 in ρ1 and ρ3. An out operation at site s1 first triggers a
transition as described in the symbolic semantics :

s1 ::ρ1 out(7)@l2.nil ‖ s2 ::ρ2 nil ‖ s3 ::ρ3 in(!x)@l2.P

nil

s(7)@l2

Now the corresponding rule of the reduction relation adds the evaluated tuple 7
to the process at s2, which is the site that the logical locality l2 maps to in the
allocation environment at site s1. Simultaneously, the symbolic semantics allows
for transitions to be made by the action at site s3 and the auxiliary process at
site s2:

s1 ::ρ1 nil ‖ s2 ::ρ2 out(7).nil ‖ s3 ::ρ3 in(!x)@l2.P

nil P

o(7)@self i(!x)@l2

In a last step, the rule for a remote consumption of a tuple allows the tuple 7
of site s2 to be consumed by the in operation at site s3 since the expression
variable !x matches with any value:

s2 ::ρ2 nil‖s1 ::ρ1 nil ‖ s3 ::ρ3 P [7/!x]
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3 Maude-Based Implementations of KLAIM (*-KLAIM)

Rewriting logic [21] supports the executable specification of KLAIM’s syntax
and structural operational semantics. This can be done in several definitional
styles [29], which can exactly mirror any desired SOS style. In this work, we aim
at an efficient executable specification of KLAIM and therefore do not follow
the SOS style of KLAIM’s semantics au pied de la lettre. That is, the inference
rules of the structural operational semantics are not specified as given, but are
transformed to rewrite rules that allow for better executability. In the follow-
ing, we present three Maude-based formal executable specifications of KLAIM:
M-KLAIM, which maps the SOS style semantics to a rewriting logic-based se-
mantics in a straightforward fashion; OO-KLAIM, which slightly modifies the
semantics of KLAIM by defining inter-node communication as asynchronous
message passing; and finally D-KLAIM, which extends OO-KLAIM and allows
specifications to be executed in a distributed environment.

3.1 M-KLAIM

In terms of syntax, the Maude-based specification KLAIM, M-KLAIM, was de-
signed to be as close as possible to KLAIM’s notation. For example, the KLAIM
net

s1 ::[s1/self]•[s2/l2 ] out(1)@l2.nil ‖ s2 ::[s2/self] in(1)@self.nil

is represented as the following Maude term:

(site(’1)::{[site(’1)/self]*[site(’2)/’l2]} out(1)@’l2.nil) ||

(site(’2)::{[site(’2)/self]} in(1)@self.nil)

For the sake of brevity we do not show an additional counter that is part of the M-
KLAIM syntax in the examples in this work. This counter represents the number
of child nodes that the node created and is used to process newloc operations.
A full description of the syntactic elements of the M-KLAIM specification can
be found in [27,9].

Works by Braga and Meseguer [4], Verdejo et al. [34], and Serbanuta et al.
[29] have shown that SOS rules can naturally be mapped to rewrite rules with
different styles. Basically, inference rules of the form

P1 → Q1 . . . Pn → Qn

P0 → Q0

become conditional rewrite rules of the form

P0 → Q0 if P1 → Q1 ∧ . . . ∧ Pn → Qn

where the condition may include rewrite conditions. Some technical details may
be added to capture the one-step semantics of some SOS rules. In our approach
defining the rewrite semantics of KLAIM, RKLAIM, we combine the rules of the
symbolic semantics and the reduction relation. Transitions in RKLAIM only hap-
pen at the net level. The structural rules for action prefixes are not reflected by
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the rewriting semantics. Inference rules of the reduction relation with premises
that require a process to perform a transition according to the symbolic seman-
tics are mapped to inference rules with no such condition. The symbolic seman-
tics transition for the action prefix is built-in into the rewrite rule. Using this
approach, the conditional rewrite rules obtained by the transformation of the re-
duction relation’s rules include no rewrite conditions as the remaining premises
of these inference rules are expressed by equational and matching conditions.
One advantage of this approach is that the specification can be executed with
higher performance, because equational and matching conditions are evaluated
faster than rewrite conditions and therefore avoid expensive non-deterministic
rewrite searches in conditions. As examples, we show the corresponding rewrit-
ing logic rules for the local and remote rules for the out operation (rule (1) and
(2)) and the in operation (rule (6)). In these Maude rules the variables RHO,
RHO1, and RHO2 represent allocation environments; T a tuple; S, S1, and S2 sites;
L a locality; and finally SP and PP processes.

The rules

crl [out-self] :

(S::{RHO} (out(T) @ L) . SP | PP )

=>

(S::{RHO} SP | PP | out(T[| T |]RHO) )

if S := RHO(L) .

and

crl [out-remote] :

(S1::{RHO1} (out(T) @ L) . SP | PP) || (S2::{RHO2} P)

=>

(S1::{RHO1} SP | PP) || (S2::{RHO2} P | out(T[| T |]RHO1) )

if S2 := RHO1(L) .

correspond to rule (1) and rule (2) of KLAIM’s reduction relation. out-self

specifies that if the process of the node at site S contains a process which can
perform an out action and the action’s locality evaluates to S, then a new aux-
iliary process is added to the process at that node. Otherwise, if the action’s
locality evaluates to a different site than the node’s site and the remote node
at that site exists, the rule out-remote adds the auxiliary process to the process
at that node. In both rules, the process PP reflects the possible existence of a
parallel process to the process that is prefixed with the out action.

The rule

crl [in-remote] :

(S1::{RHO1} (in(T) @ L) .SP | PP) || (S2::{RHO2} P | out(ET1) )

=>

(S1::{RHO1} (SP [ ET1 / ET2 ]) | PP) || (S2::{RHO2} P )

if ET2 := T[| T |]RHO1 /\ S2 := RHO1(L) /\ match(ET1, ET2) .

corresponds to rule (6) of KLAIM’s reduction relation. in-remote specifies that
if the process of the node at site S1 contains a process which can perfom an in
action and the action’s locality evaluates to S2 and the node at site S2 contains an
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auxiliary process which matches with the requested tuple, then, the evaluated
tuple ET1 is replaced by the evaluated tuple ET2 and the auxiliary process is
removed.

The complete set of rules of the specification of the semantics of M-KLAIM
can be found in [27,9].

3.2 OO-KLAIM

Maude supports modeling of distributed object-based systems in which objects
communicate via message passing. In the following, we extend M-KLAIM by
adding the object-oriented paradigm to the specification. This extensions allows
a more natural specification of Cloud-based architectures.

The predefined Maude module CONFIGURATION supports modelling of
object-based systems in Core Maude. Terms of sort Configuration consist of a
multitude of objects and messages, which can be thought of as a soup. More
specifically, a configuration is a multiset of objects (defined by the sort Object)
and messages (defined by the sort Msg) that describe a possible system state. To
address objects, an object’s first argument is usually an object identifier that
is unique in the system. Object identifiers are terms of the sort Oid. Messages
usually contain such an identifier to address specific objects. An object’s state is
described by terms of the sort Attribute. These attributes are usually, as a set
of attributes (defined by the sort AttributeSet), part of an object and determine
the object’s current state.

In OO-KLAIM, we decide to introduce a slightly modified syntax for objects
and configurations. To better demonstrate that KLAIM nodes describe the enti-
ties of a distributed system, we extend the notion of a site to be an IPv4 address
together with a port.

The OO-KLAIM specification uses messages for the communication between
nodes. These messages are syntactically reflected by terms of the sort Msg, which
are made up of an object identifier which represents the addressed object and
a message content of sort MsgContent. In OO-KLAIM, the configuration that
forms a KLAIM net does not only contain KLAIM nodes but also the mes-
sages that nodes use to communicate with each other. As mentioned above, this
configuration can be thought of as a soup of objects (the nodes) and messages.

sort MsgContent .

op msg(_,_) : Oid MsgContent -> Msg [ctor message] .

Message contents exist for the out, eval, read, and in actions, respectively. The
message contents to request a tuple using a read or in action include the eval-
uated tuple to match with and an object identifier to send the response to.
The response contains a matched tuple in addition to the object identifier the
response is from.

op remote-out(_) : EvaluatedTuple -> MsgContent [ctor] .

op remote-eval(_) : SyntacticProcess -> MsgContent [ctor] .

op readRequest(_,_) : Oid EvaluatedTuple -> MsgContent [ctor] .

op readResponse(_,_) : Oid EvaluatedTuple -> MsgContent [ctor] .
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op inRequest (_,_) : Oid EvaluatedTuple -> MsgContent [ctor] .

op inResponse (_,_) : Oid EvaluatedTuple -> MsgContent [ctor] .

At the process level, the OO-KLAIM specification adds two auxiliary actions,
blockRead and blockIn. These actions are placeholders to block the continuation
of a process that is waiting for a response from read or in actions that address
remote KLAIM nodes. Both auxiliary actions carry the tuple the process is
waiting for, and an object identifier, which represents the object the response is
expected to arrive from.

In the following we show the corresponding rewriting rules for the local and
remote rules for the out operation (rule (1) and (2)) and the in operation (rule
(6)). It is of note that the process behavior of M-KLAIM and OO-KLAIM pro-
cesses differs in the way inter-node communication is handled. In M-KLAIM, if
a remote out or eval action address a node which is not in the KLAIM net, the
process that is prefixed by this action cannot proceed. In OO-KLAIM, however,
the definition of the rules for the remote out and eval actions allow a process to
proceed even in the case when the action prefixing the process addresses a node
that does not exist in the net. This semantic variation is not due to technical
limitations, since an object-oriented specification that exactly captures the orig-
inal semantics could be given. However, we decided to introduce this semantic
variation from the original specification to achieve greater flexibility with regard
to the design of distributed systems.

Since we now use asynchronous message passing, rules from the M-KLAIM
specification are translated to pairs of rules; one rule that produces a message
and adds it to the soup, and another rule that actually consumes the message
and performs the action.

The semantic rule for an out action which addresses a remote node consumes
the out action and puts a new message into the configuration. The message
contains the receiving node’s site and the tuple of the out action.3

crl [out-remote-produce] :

(S1::{RHO} (out(T) @ L) . SP | PP)

=>

(S1::{RHO} SP | PP) || msg(S2, remote-out(T[| T |]RHO))

if S2 := RHO(L) /\ S2 =/= S1 .

A node consumes a message that is addressed to it and has the remote-out

message content in it by putting the evaluated tuple that comes with the message
in its tuple space.

rl [out-remote-consume] :

(S::{RHO} PP) || msg(S, remote-out(ET))

=>

(S::{RHO} PP | out(ET)) .

3 In the OO-KLAIM specification, it is no longer necessary to differentiate between
remote and local rules, since messages are created and addressed to the appropriate
node.
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KLAIM’s in and read actions are blocking actions, i.e., a process which is pre-
fixed by such an action can only proceed if a tuple that matches the tuple of the
in or read action is found. In the following we discuss OO-KLAIM’s semantics
rules only for a remote in action, and omit the other rules here. A remote in
action is consumed by a KLAIM node by putting a request message which ad-
dresses the remote node into the configuration. The message contains the tuple
of the in action and the node’s site that processed the in action. To simulate
the blocking behavior, the node’s process is prefixed by a blockIn action that
contains the nodes site the message is sent to and the tuple of the in action.

crl [in-remote-request] :

(S1::{RHO} (in(T) @ L) . SP | PP)

=>

(S1::{RHO} blockIn(ET, S2) . SP | PP)

|| msg(S2, inRequest(S1, ET))

if ET := T[| T |]RHO /\ S2 := RHO(L) /\ S2 =/= S1 .

A node consumes a message that is addressed to it and contains an inRequest

if a tuple that matches the tuple of the message is present in its tuple space by
putting a response message that contains the found tuple into the configuration.
The message also contains the node’s site that processed the message and is
addressed to the node where the request came from.

crl [in-remote-response] :

(S2::{RHO} SP | PP | out(ET1)) || msg(S2, inRequest(S1, ET2))

=>

(S2::{RHO} SP | PP) || msg(S1, inResponse(S2, ET1))

if match(ET1, ET2) .

A node consumes a message that is addressed to it and contains an inResponse

by matching the information of the sender and the tuple that come with the
response with the information of a blockIn action in its process. If the tuples
match, the received tuple is substituted for the tuple of the blockIn action in the
process that the blockIn action prefixes. It is necessary for the receiving node
to match the tuples, because a node can send two requests with non-matching
tuples to the same remote node.

crl [in-remote-consume] :

(S1::{RHO} blockIn(ET1, S2) . SP | PP)

|| msg(S1, inResponse(S2, ET2))

=>

(S1::{RHO} SP [ ET2 / ET1 ] | PP)

if match(ET1, ET2) .

3.3 D-KLAIM

D-KLAIM is an extension of OO-KLAIM that allows specifications to be ex-
ecuted in a distributed environment. This means that D-KLAIM provides a
correct-by-construction distributed implementation of OO-KLAIM. In essence,
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the D-KLAIM extension allows for multiple instances of Maude to execute speci-
fications based on OO-KLAIM. The OO-KLAIM specification instances commu-
nicate with each other through sockets which are handled by objects introduced
in D-KLAIM. We use Maude’s support for rewriting with external objects and
the predefined implementation of sockets.

For a configuration to communicate with external objects in Maude, the con-
figuration must contain a so-called portal configuration. The default portal is
part of the predefined module CONFIGURATION. An example for external ob-
jects are sockets. Currently, Maude supports IPv4 TCP sockets. The predefined
module SOCKET of the Maude distribution includes the definition of messages
to create, close, and interact with sockets. The messages are consumed by the
portal configuration which internally then handles the socket communication.

To support communication through sockets, D-KLAIM adds methods to con-
vert messages to strings which can be sent through sockets and to convert strings
back to messages. Additionally, a communicator object is introduced and is part
of a KLAIM net. Each Maude instance that executes a D-KLAIM specifica-
tion has one communicator in the D-KLAIM net term. This communicator then
handles the buffered communication between the Maude instances.

Example 3 (A Cloud-based architecture specification based on D-KLAIM). In
the D-KLAIM-based specification of the Fibonacci service from Example 1, each
participating entity, the developer, the consumer, and the server in the Cloud are
modeled as D-KLAIM nets and are executed on distributed machines. Initially,
each net contains a KLAIM node, a communicator object, and a portal. Figure 2
provides an overview of the Fibonacci Cloud service architecture. The behavior
of the consumer, server, and developer nodes are specified as KLAIM processes.

As an example4, the equation

ceq initState =

(IPS :: {[IPS / self]} Fib<nilProcessSeq, nilLocalitySeq,

nilExpressionSeq> )

if IPS := ’192.168.123.50 : 8000

specifies the initial configuration of the Fibonacci-Server where Fib<nilProcessSeq
,nilLocalitySeq,nilExpressionSeq> is a process invocation and nilProcessSeq,

nilLocalitySeq, and nilExpressionSeq are the constructors for empty process,
locality, and expression sequences. The process definition of Fib is specified in
the default context, which is specified by the equation

eq [cloud-context] : Context =

’Fib (nilProcessVarNameSeq, nilLocalityVarNameSeq, nilVarNameSeq)

=def in(!u ’Client)@ self . out([0])@ u ’Client{0}

. out([0], [1])@ self

. ’FibRec <nilProcessSeq, nilLocalitySeq, nilExpressionSeq> &

’FibRec (nilProcessVarNameSeq, nilLocalityVarNameSeq,

nilVarNameSeq)

=def in(! u ’Client)@ self

4 For the complete specification we refer to [27,9].
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Fig. 2. Overview of the Fibonacci Cloud service architecture

. in(! x ’f1, ! x ’f2)@ self

. out(x ’f1{0} +e x ’f2{0})@ u ’Client{0}

. out(x ’f1{0} +e x ’f2{0}, x ’f1{0})@ self

. ’FibRec < nilProcessSeq, nilLocalitySeq, nilExpressionSeq > .

The specification can be executed on distributed machines using three Maude
instances and the erew command. The example of the Cloud-based Fibonacci
service shows that a Cloud-based architecture can easily be specified at a high
level based on D-KLAIM. Furthermore, the specification can be executed in
a distributed environment. In addition to providing the possibility for formal
analysis which we will show in the following, this example shows that D-KLAIM
and the Maude system can also be used as a rapid prototyping environment for
Cloud-based architectures.

4 Formal Design and Analysis of Cloud-Based Systems
Using *-KLAIM

As Maude’s built-in socket capabilities do not allow for distributed specifications
to be model checked, we developed a socket abstraction that captures the behav-
ior of Maude’s socket capabilities inside a Maude specification. Using the socket
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abstraction, distributed specifications of systems that rely on D-KLAIM’s socket
communication can be specified in a unified specification. The unified specifica-
tion can then also be LTL model checked.

4.1 D-KLAIM Socket Abstraction

At a high level of abstraction, a D-KLAIM net is composed of a set of D-
KLAIM nodes, which are distributed across possibly different physical machines
and which communicate via Maude’s built-in socket capabilities. The socket
abstraction adds one level of abstraction: the nodes a D-KLAIM net is composed
of are put in one single soup (called a network configuration) being executed
in one Maude instance. Additionally, the socket abstraction models the socket
communication by rewrite rules that capture the behavior of the built-in socket
mechanism of Maude. In this way, the built-in sockets are abstracted by rewrite
rules so that we are able to perform model checking in D-KLAIM nets by using
the socket abstraction.

[
Portal1 || Communicator1 || Node1.1 || . . . || Node1.N

]

||
. . .

||[
PortalK || CommunicatorK || NodeK.1 || . . . || NodeK.N

]

Fig. 3. Overview of a network configuration in the D-KLAIM socket abstraction

Example 4 (Unifying a D-KLAIM specification using the socket abstraction). Let
a D-KLAIM specification consist of K configurations. Besides KLAIM nodes,
each of these K configurations contains a portal and a communicator. To unify
the configurations, we put all these configurations into a single network config-
uration. A network configuration for a single D-KLAIM net is constructed by
the [_] : Configuration -> NetworkConfiguration operator. Additionally,
the network configurations for the single D-KLAIM nets are concatenated using
a _||_ operator to form the unified network configuration. Figure 3 gives an
overview of the unified network configuration for the K D-KLAIM nets using
the socket abstraction.

The major difference using the socket abstraction is that instead of a normal
portal, an abstract portal is used. The syntax of the abstract portal resembles
the syntax of the portal in the predefined CONFIGURATION module. It adds a
set of attributes which include the IP address and port of the physical location.
The object identifier of the abstract portal is the socketManager object identi-
fier, which is defined in Maude’s SOCKET module. The external object with
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that identifier that usually handles the creation of sockets is thereby replaced
by an internal object in the socket abstraction. In the socket abstraction, sock-
ets are modeled as internal objects that are part of the network configuration.
Socket objects are identified by socket identifiers which are constructed by the
identifiers of the socket’s endpoints. The socket abstraction assumes that only
one socket between two endpoints exists. Hence the socket identifier is unique.
Socket objects store the content that is sent through the socket, i.e., the content
that is just being transferred, keep track of the server and client endpoints and
the object that created the socket. States are used by the socket objects and the
abstract portal. The abstract portal can be in the states: initialized, listening,
or accepting. Sockets can be in the states: initialized, receiving, or idle.

External rewrites in Maude happen only if no internal rewrites are possible.
To reflect this in the specification of the socket abstraction, the meta-level is
used to define the operator noInternalTransitions, which checks if rewrites in-
ternal to one of the configurations in a network configuration are possible. For
each configuration in the network configuration, the operator calls the operator
metaSearch that takes the meta-representation of the D-KLAIM socket com-
munication semantics module and the meta-representation of the configuration
term as arguments. The additional parameters define the search pattern. In our
example, metaSearch searches if the configuration can be rewritten to another
configuration in at least one rewriting step.

As an example, we show one rule of the socket abstraction to illustrate the
simulation of the Maude’s built-in sockets by the socket abstraction. The follow-
ing rule is only applicable if no internal rewrites are possible.

The following rule states, that when a configuration sends data to a socket
and the socket is in the receiving state, the socket adds this data to its content.

crl [send] :

[C || send(socket(ID), O, DATA)]

|| [socket(ID) :: state : receiving, content : CONTENT, ATTS]

=>

[C || sent(O, socket(ID))]

|| [socket(ID) :: state : receiving, content : (CONTENT + DATA),

ATTS]

if noInternalTransitions([C]) .

4.2 Maude-Based Formal Analysis of *-KLAIM

In the following we explain how specifications based on *-KLAIM (M-KLAIM,
OO-KLAIM, and D-KLAIM) can be formally analyzed using the Maude LTL
model checker and the Maude search command.

Maude LTL Model Checking. Maude supports on-the-fly explicit state lin-
ear temporal logic (LTL) model checking of concurrent systems [11,7]. Both,
the system specification and the property specification are given in Maude. The
Maude LTL model checker can be used to prove properties such as safety proper-
ties (something bad never happens) and liveness properties (something good will
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eventually happen) when the set of states that are reachable from the initial state
of a system module is finite. The operators needed for the specification of model
checking in Maude are specified in the predefined module MODEL-CHECKER.

A *-KLAIM-Based Token-Based Mutual Exclusion Algorithm. This
example demonstrates how a token-based mutual exclusion algorithm using a
tuple space can be specified and analyzed in *-KLAIM. The goal is to give an
executable specification of the algorithm and to model-check if the algorithm
fulfills the mutual exclusion property and provides strong liveness guarantees.

Tuple Space

“token”

P1 P2
in(“token”)

Tuple SpaceP1 P2

in(“token”)

(blocks)

Tuple Space

“token”

P1 P2

in(“token”)

(blocks)out(“token”)

Tuple Space

“token”

P1 P2
in(“token”)

Fig. 4. Example of process synchronization using the Linda model

Figure 4 shows the set-up for this example. The KLAIM net consists of three
KLAIM nodes: one token server and two consumers. A token exists in the net
and is represented by the value [0]. It is, if available for consumption, present
as a tuple in the tuple space of the token server. The consumers can bid for the
token by requesting it from the token server. In case the token is available in the
tuple space of a consumer, i.e., the token was transferred from the token server
to the consumer, the consumer enters its critical section by changing the value
of the token. A consumer is defined to be in a critical section if it holds the tuple
[1] in its tuple space. A consumer leaves the critical section when it consumes
the tuple [1] and puts back the token tuple [0] into the tuple space of the token
server.
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Defining mutual exclusion and strong liveness. Mutual exclusion and strong
liveness are two desirable properties of a mutual exclusion algorithm. In our
example, mutual exclusion means that the two consumers are not in their critical
sections simultaneously. Strong liveness means that if a consumer requests the
token at certain point in time, the consumer eventually gets the token in order
to enter its critical section. We first define two auxiliary properties, critical
and requesting, which, for a given site, state if the node at the specified site is
in its critical section or is requesting the token from the token server. Mutual
exclusion is then defined by the LTL formula

[] ~(critical(consumer1) /\ critical(consumer2))

and strong liveness of the consumers is defined by the LTL formulas

([]<> requesting(consumer1)) -> ([]<> critical(consumer1))

and

([]<> requesting(consumer2)) -> ([]<> critical(consumer2)) .

*-KLAIM-based model checking. In order to perform model checking, we first
specify the properties critical and requesting for each of the KLAIM specifi-
cations. As an example, the following listing shows the specification of the two
properties based on M-KLAIM.

ops critical requesting : Site -> Prop .

var S : Site .

var N : Net .

var AE : AllocationEnvironment .

var P : Process .

var PR : Prop .

eq (S {0}::{AE} out([1]) | P) || N

|= critical(S) = true .

eq (S {0}::{AE}

’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >)

|| N

|= requesting(S) = true .

eq N |= PR = false [owise] .

Next, we specify the initial state for the model checking of the mutual exclusion
algorithm based on each of the KLAIM specifications. Again, for reasons of
brevity, only the initial state of the M-KLAIM specification is shown.

eq tokenServer = site ’TokenServer .

eq consumer1 = site ’Consumer1 .

eq consumer2 = site ’Consumer2 .

op initial : -> Net .

eq initial =
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(tokenServer {0}::{[tokenServer / self]} out([0])) ||

(consumer1 {0}::{[consumer1 / self] * [tokenServer / ’

TokenServer]}

’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >)

||

(consumer2 {0}::{[consumer1 / self] * [tokenServer / ’

TokenServer]}

’Request < nilProcessSeq, nilLocalitySeq, nilExpressionSeq >)

.

Finally, model checking can be performed. For example, model checking of the
mutual exclusion property of the algorithm based on M-KLAIM is achieved by
the command

Maude> red

modelCheck(initial, []~ (critical(consumer1) /\ critical(

consumer2))) .

reduce in KLAIM-MUTEX-CHECK :

modelCheck(initial, []~ (critical(consumer1) /\ critical(

consumer2))) .

rewrites: 1016 in 0ms cpu (3ms real) (1395604 rewrites/second)

result Bool: true

which shows that the property holds. Model checking of the strong liveness
properties is achieved by giving the commands

Maude> red

modelCheck(initial, []<> requesting(consumer1) -> []<> critical(

consumer1)) .

reduce in KLAIM-MUTEX-CHECK :

modelCheck(initial, []<> requesting(consumer1) -> []<> critical(

consumer1)) .

rewrites: 723 in 2ms cpu (2ms real) (263100 rewrites/second)

result [ModelCheckResult]: counterexample(...)

and

Maude> red

modelCheck(initial, []<> requesting(consumer2) -> []<> critical(

consumer2)) .

reduce in KLAIM-MUTEX-CHECK :

modelCheck(initial, []<> requesting(consumer2) -> []<> critical(

consumer2)) .

rewrites: 896 in 3ms cpu (4ms real) (288566 rewrites/second)

result [ModelCheckResult]: counterexample(...)

which show that the liveness properties do not hold. The counterexamples, which
are omitted for reasons of brevity, show that each one of the consumers can
starve, i.e., for each consumer a looping path of transitions exists where in each
intermediate state the property critical does not hold for the consumer.

Model Checking Using the Maude Search Command. Maude’s search
command explores the reachable state space from an initial state for a pattern
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that has to be reached, possibly subjected to a user-specified semantic condition.
The search can be further restricted by the form of the rewriting proof from the
initial to the final term. Possible forms are,

– =>*, which means that a proof of zero, one, or more steps is searched for.
– =>!, which indicates that only canonical final states, i.e., states were no

further rewrites are possible, are searched for.

To model check invariants, i.e., predicates that define a set of states that contain
all the states reachable from an initial state, with the search command, the
optional semantic condition, corresponding to the violation of the invariant,
is specified. Under some assumptions, which are omitted here for reasons of
simplicity, for any invariant I(x : k) and an initial state init, I holds if and only
if the command

search init =>* x:k such that not I(x : k) .

returns no solutions (k is the kind of the term init). For an in-depth description
of the search command we refer to [7].

A D-KLAIM-Based Load Balancer. In this example we show how a simple
load balancer based on D-KLAIM can be specified. We then analyze the load
balancer using the Maude search command.

Four nodes, a producer, a load balancer, and two consumers, form a KLAIM
net. Initially, the producer has four tuples in its tuple space. These tuples can be
seen as abstractions of work tasks. The producer then puts each tuple into the
tuple space of the load balancer. The load balancer consumes tuples in its tuple
space and distributes the tuples across the tuple spaces of the consumers in an
alternating order. The expected outcome of the scenario is that each consumer is
assigned two work tasks, i.e., each consumer ends up with two tuples in its tuple
space. Figure 5 provides a schematic overview of the load balancer example.

We first define the initial configuration of the simple load balancer example
based on D-KLAIM and the socket abstraction.

ops producer loadBalancer consumer1 consumer2 : -> Site .

eq producer = "192.168.0.100" : 6000 # ’0 .

eq loadBalancer = "192.168.0.1" : 8080 # ’0 .

eq consumer1 = "192.168.123.1" : 9000 # ’0 .

eq consumer2 = "192.168.123.2" : 9000 # ’0 .

op loadBalancerExample : -> NetworkConfiguration .

eq loadBalancerExample =

[startCommunicator("192.168.0.100", 6000, none) ||

(producer {0}::{[producer / self] * [loadBalancer / ’

WorkBalancer]}

out([0]) | out([1]) | out([2]) | out([3]) |

in(! x ’X)@ self . out(x ’X {0})@ ’WorkBalancer .

in(! x ’X)@ self . out(x ’X {0})@ ’WorkBalancer .

in(! x ’X)@ self . out(x ’X {0})@ ’WorkBalancer .
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Producer

“192.168.0.100” : 6000 # ’0

[0] [1] [2] [3]

Load Balancer

“192.168.0.1” : 8080 # ’0

Consumer1

“192.168.123.1” : 9000 # ’0

Consumer2

“192.168.123.2” : 9000 # ’0

Fig. 5. Schematic overview of the load balancer example

in(! x ’X)@ self . out(x ’X {0})@ ’WorkBalancer . nil)] ||

[startCommunicator("192.168.0.1", 8080, none) ||

(loadBalancer {0}::{[loadBalancer / self] *

[consumer1 / ’Consumer1] * [consumer2 / ’Consumer2]}

in(! x ’X)@ self . out(x ’X {0})@ ’Consumer1 .

in(! x ’X)@ self . out(x ’X {0})@ ’Consumer2 .

in(! x ’X)@ self . out(x ’X {0})@ ’Consumer1 .

in(! x ’X)@ self . out(x ’X {0})@ ’Consumer2 . nil)] ||

[startCommunicator("192.168.123.1", 9000, none) ||

(consumer1 {0}::{[consumer1 / self]} nil)] ||

[startCommunicator("192.168.123.2", 9000, none) ||

(consumer2 {0}::{[consumer2 / self]} nil)] .

Searching for possible final states. To determine all possible final states, i.e.,
all states in which no more rewrites are possible, the following Maude search
command is used:

search in D-KLAIM-ABSTRACTION :

loadBalancerExample =>! NC:NetworkConfiguration .

The search yields six possible final states, which correspond to the possible dis-
tribution of tuples across the consumers’ tuple spaces. The following table shows
the possible final configurations of the tuple spaces. Note that a tuple space is
a commutative collection of tuples. E.g., out([0])| out([1]) and out([1])| out
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([0]) describe the same tuple space. In all cases each consumer ends up with
two tuples in its tuple space, as conjectured.

Consumer 1’s tuple space Consumer 2’s tuple space

out([0]) | out([1]) out([2]) | out([3])

out([0]) | out([2]) out([1]) | out([3])

out([0]) | out([3]) out([1]) | out([2])

out([1]) | out([2]) out([0]) | out([3])

out([1]) | out([3]) out([0]) | out([2])

out([2]) | out([3]) out([0]) | out([1])

Model checking of an invariant. An invariant that our simple load balancer
example should fulfill is that at no point in time a consumer has more than two
tuples in its tuple space. In the following, the variables

var NC : NetworkConfiguration .

var C : Configuration .

var A : Site .

var AE : AllocationEnvironment .

var P : Process .

var AP : AuxiliaryProcess .

var SP : SyntacticProcess .

are used.
We first define the auxiliary property

op lessEqThanTwo : NetworkConfiguration -> Bool .

which takes a network configuration as an argument and determines if the two
consumers in the network configuration each have less or equal than two tuples
in their tuple spaces.

op count : Process -> Nat .

eq lessEqThanTwo([C || (A {0}::{AE} P)])

= if A == consumer1 or A == consumer2 then

count(P) <= 2

else false fi .

eq lessEqThanTwo([C] || NC) =

lessEqThanTwo([C]) or lessEqThanTwo(NC) .

eq count(SP) = 0 .

eq count(AP | P) = s(count(P)) .

We then use the command

Maude> search loadBalancerExample =>* NC:NetworkConfiguration

such that not lessEqThanTwo(NC) .

to model check the invariant. The result is, that the invariant holds as no solu-
tions are found.
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4.3 Formal Design and Analysis of Cloud-Based Systems Using
*-KLAIM

As we have seen, Cloud-based architectures based on KLAIM can be formally
specified and analyzed based on Maude and the *-KLAIM specifications.
However, we face the state space explosion problem relatively fast. This is a
common issue in model-checking. For example, in the example we performed
model-checking, which is a relatively small example, the model checking of the
individual properties based on M-KLAIM and OO-KLAIM only took seconds,
while the model checking based on D-KLAIM took up to 13 hours on the same
machine.

To overcome this scalability restriction, we propose an alternative approach
based on a composite actor model together with statistical model-checking. This
approach is presented in the next section.

5 Case Studies: Design and Analysis of Cloud-Based
Architectures Using the Composite Actor Model

The specification of Cloud-based architectures as composite actor-based models
and the formal analysis using statistical model checking is an alternative to the
KLAIM-based approach described earlier in this work. This alternative approach
promises a more scalable way to analyze quantitative as well as qualitative prop-
erties of large Cloud-based architectures.

Modular, distributed, and concurrent systems such as Cloud-based archi-
tectures can naturally be modeled as actors. The actor model of computation
[18,17,1] is a mathematical model of concurrent computation in distributed sys-
tems. The main building blocks of a distributed system in the actor model are, as
its name suggests, actors. Similar to the object-oriented programming paradigm,
in which the philosophy that everything is on object is adopted, the actor model
follows the paradigm that everything is an actor. An actor is a concurrent object
that encapsulates a state and can be addressed using a unique name. Actors can
communicate with each other using asynchronous messages. Upon receiving a
message, an actor can change its state and can send messages to other actors.

Temporal logic properties of such actor-based models are model checked ei-
ther by exact model checking algorithms or, in an approximate but more scalable
way, by statistical model checking. The idea of statistical model checking is to
verify the satisfaction of a temporal logic property by statistical methods up
to a user-specified level of statistical confidence. For this, a large enough num-
ber of Monte-Carlo simulations of the system are performed, and the formula
is evaluated on each of the simulations. PVeStA [3] is an extension and par-
allelized version of the VeStA model checking tool. It supports the statistical
model checking analysis of probabilistic rewrite theories in Maude. Properties
are thereby expressed as QuaTEx [2] formulas.

We use a PMaude-based [2] specification of the composite actor model which
reflects the so-called “Russian Dolls” model [23] to support an arbitrary hi-
erarchical composition of entities. To guarantee the absence of un-quantified
non-determinism, an important prerequisite for statistical model checking, we
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developed a top-level scheduling approach for composite actor models. To pro-
vide a modular way of specifying these models and to encourage reusability we
introduced the notion of formal patterns [10]. Formal patterns enhance pattern
descriptions with formal executable specifications that can support the mathe-
matical analysis of qualitative and quantitative properties. Just as “normal pat-
terns”, a formal pattern is structured in context, problem, solution, advantages
and shortcomings (cf. e.g. [28,12]). Instead of using UML or Java we describe
these patterns formally as a parametrized Maude module M [S] with a parameter
theory S in Maude. The context of the pattern typically includes a description
of the assumptions of the parameter theory S. Composing these patterns allows
the specification of a composite actor systems in a modular and reusable way.

Our methodology to verify Cloud-based architectures proceeds as follows:

1. Specification of an executable formal model of a Cloud-based architecture as
a composite actor system in PMaude using a formal pattern-based approach.

2. Definition of appropriate standard probabilistic temporal logic properties
and quantitative temporal logic properties for describing the required quality
of service properties.

3. Specification of an initial state which contains our top-level scheduler that
prevents un-quantified non-determinism.

4. Formal analysis of the properties defined in 2. over the initial state defined
in 3. using the statistical model checker PVeStA.

In the following we present three case studies that follow this methodology: the
formal specifications and analyses of (i) a key distribution mechanism based
on Zookeeper, (ii) a Cloud- and broker-tree-based publish/subscribe system for
stock exchange events, and (iii) a Cloud-based DoS prevention mechanism.

5.1 A Key Distribution Mechanism Based on Zookeeper

The Berkeley view on Cloud Computing lists ten main obstacles for the growth
and adoption of Cloud Computing; among them is “Bugs in Large Distributed
Systems”. This obstacle can be negotiated by early formal analyses. In this case
study we modelled a key distribution service and performed formal analysis of
basic properties. Based on our results, we detected a serious issue in the design
of the service.

Based on the composite actor model, we model a group key management
service (GKMS) that was under development at the time of modeling [16]. The

GKMS makes use of the notification mechanism of ZooKeeper
TM

, a centralized
open-source server that provides highly reliable distributed coordination; the
service is internally distributed and provides high reliability [31,32].

We performed formal analyses, e.g., we formally analyzed the “success ratio”,
i.e., how many of the total key updates actually do arrive at the members of
the GKMS in time? A key property of a group-key management system is the
freshness of the keys, i.e., key updates need to arrive in time at the members
of the group. The results show that the freshness property of the group-key
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management system is only poorly satisfied. In a system with 420 clients just
about 21% of the key updates arrive at the clients. This is a serious design issue
of the GKMS. We analyzed the system and highlighted two main shortcomings
of the approach. Furthermore, we suggested as future work an adaption of the
GKMS to overcome the shortcomings.

5.2 A Publish/Subscribe System for Stock Exchange Events

Broker-based Publish/Subscribe is an asynchronous message exchange pattern,
in which producers and consumers of messages are loosely coupled and commu-
nicate via brokers. Brokers are intermediaries that can select and forward the
published information relevant to each consumer. Quality of service (QoS) prop-
erties such as an on-time delivery of messages are crucial. It is the task of the
service management to determine the performance of the system so that quality
of service gurantees can be given. However, several parameters and the unrelia-
bility of best-effort networks, especially when deployed in a worldwide setting,
make it difficult to analyze such systems.

We defined a Maude-based concrete model of a stock exchange information
system that provides current trading information similar to Google finance [15].
The model is based on the composite actor model with publishers, subscribers,
and brokers being actors communicating via message passing. Subscribers in
this model can subscribe to trading events that show specific characteristics,
such as being related to a certain listing or being a high-volume trade. In our
setting, several brokers are located at sites across the world where initially there
is only a single broker at a site. Each trading event has a specific lifetime, and
the event information is only useful to subscribers if they receive it within its
lifetime. In our model, we assume an average frequency (one event per producer
per second) and low lifetime duration (as low as one second) event dissemination.
This represents a challenging setting, as communication latencies in a best-effort
worldwide network already consume a big fraction, if not all, of the lifetime.
Additionally, the system is flooded with events which may lead to high workloads
at the brokers. We asked three questions regarding this kind of stock exchange
information system:

1. Can a QoS guarantee be made regarding the timely delivery of events?
2. Does the system scale, i.e., how many subscribers can the system handle

without violating the aforementioned QoS guarantee?
3. How many resources should the service provider provision, and what are the

expected operating costs?

In a first step, we formally analyzed the model of the stock exchange information
system regarding these questions using statistical model checking. The statistical
model checking analysis of the model suggested that with event lifetime durations
of 1s, 30s, and 60s, it is hard to guarantee a timely delivery of events in a system
that is distributed across the globe; and that the reliability of such a system can
be improved by reducing the processing delays of intermediaries in the message
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forwarding mechanism. In a second step, we added a simple Cloud-based broker
replication mechanism to the model which allows each broker in the network
to replicate itself at its current site. The analysis of the Cloud-based model
has shown that the reliability of the system could be greatly increased using the
replication mechanism. However, the local replication strategy does not, without
overprovisioning, provide strong industry-grade quality of service guarantees.
Again, even with broker replication, event lifetime durations of under 60s are a
challenging assumption for a global-scale system.

5.3 A Cloud-Based DoS Prevention Mechanism

Availability is an important security property for Internet services and a key in-
gredient of most service level agreements. It can be compromised by distributed
Denial of Service (DoS) attacks. DoS defense mechanisms help maintaining avail-
ability; nevertheless even when equipped with defense mechanisms, systems will
typically show performance degradation. Thus, one of the goals of security mea-
sures is to achieve stable availability, which means that with very high probability
service quality remains very close to a constant quantity, which does not change
over time, regardless of how bad the DoS attack can get [10].

We used our composite actor-based approach and formal patterns to study
defense mechanisms against DoS attacks in a model-based setting. Two formal
patterns which can serve as defenses against DoS attacks have been studied: (i)
the Adaptive Selective Verification (ASV) [20] pattern defending against DoS
attacks and (ii) the Server Replicator (SR) pattern in a cloud setting.

The ASV protocol is a well-known cost-based defense mechanism against DoS
attacks in the typical situation that clients and attackers use a shared channel
where neither the attacker nor the client have full control over the communica-
tion channel [20]. The ASV protocol adapts to increasingly severe DoS attacks
and provides improved availability. However, it cannot provide stable availability.
The SR patter utilizes the Cloud’s ability to dynamically allocate new resources
on demand to adapt to high demand situations and achieve stable availability.
However the cost of provisioned servers drastically increases in a DoS attack sit-
uation. As thus, we proposed the pattern composition of ASV and SR, ASV+SR,
as a third defense mechanism.

We formally specified the ASV, SR, and ASV+SR DoS defense mechanisms
as formal patterns in Maude and applied them on a Cloud-based client-server
request response service. Figure 6 shows the application of the ASV+SR meta-
object pattern composition on such a service. By formally analyzing the quan-
tiative properties of the ASV+SR pattern in this setting using the statistical
model checker PVeStA[3], we were able to show that, unlike the two original
patterns, ASV+SR achieves stable availability in presence of a large number of
attackers at reasonable cost, which can be predictably controlled by the choice
of an overloading parameter. This overloading factor describes how much load
in form of requests is put on each server before a new server is allocated and
reflects how much the ASV mechanism is used compared to the SR mechanism.
In particular, we were checking the following availability properties: the client
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Fig. 6. Application of the ASV+SR meta-object composition on a Cloud-based client-
server request-response service

success ratio, which defines the ratio of clients that receive an ACK from the
server (i.e., the ratio of real clients that were able to successfully receive a re-
sponse); and the average time to service (TTS), which defines the average time it
takes for a successful client to receive an ACK from the server. In addition to the
these availability properties, we also checked the number of provisioned servers.
Each of the properties was defined as a QuaTEx formula[2]. The results show
that in our scenario for 200 attackers and an overloading factor of 4, pure ASV
provides a success ratio of 76% and an average TTS of 2.4s using 1 server; pure
SR provides a success ratio of 100%, an average TTS of 0.25s, and provisions
135 servers; finally, ASV+SR provides a 97% success ratio, an average TTS of
0.70s and provisions only 43 servers. A full description of the specification and
the formal analysis is given in [10,27,9].

6 Conclusion

In this paper we have studied the coordination language KLAIM and a mod-
ularized actor approach with the aim of formally modelling Cloud-based archi-
tectures. We have presented an executable rewriting semantics of KLAIM and
its distributed implementation in Maude, where multiple instances of Maude
communicate via sockets. By simulating and analyzing three simple Cloud ar-
chitectures with Maude and the Maude LTL modelchecker we have shown that
it is possible to formally specify and analyze Cloud-based architectures using
KLAIM and Maude, but that state space explosion makes it hard to deal with
complex scenarios. To tackle this scalability issue we have proposed a composite
actor model as an alternative approach. We report on three Cloud case studies
which we have formally specified and analyzed using Maude and the Maude-
based statistical model checker PVeStA, and argue that this model is also well-
suited for modeling Cloud architectures and, in addition, scales even better for
the purpose of qualitative and quantitative analysis.

These are encouraging results. Formal models, and, in particular, the rewriting
logic approach with its Maude tools are well-suited for the design of Cloud-based
system architectures. Checking for formal guarantees can help to tackle and to
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overcome some of the main obstacles for the growth and adoption of Cloud
Computing. Executable formal methods can help to make John McCarthy’s
dream a reality.

Of course, the approach and the case studies we have presented are just a
proof of concept. We need to carry out more case studies; scalability is and
will remain an issue for automated formal analysis. To make progress we have
to exploit compositionality properties and to develop even better abstraction,
refinement, and model transformation techniques. The tools for making progress
are to exploit compositionality properties and to develop even better abstraction,
refinement, and model transformation techniques. For example, in [6] it is shown
that adding cookies to a client-server system preserves all safety properties, and
in [22] it is proven that the Physically Asynchronous Logically Synchronous
(PALS) architectural pattern reduces the design and verification of a distributed
real-time system with asynchronous communication to that of its much simpler
synchronous version. In the realm of process algebra, fluid-flow approximation
using computationally inexpensive ordinary differential equations provides an
excellent complementary tool for performance evaluation of Cloud systems [33].
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Abstract. This paper presents an interface for achieving interactive ex-
ecutions of Maude terms by allowing console and file input/output (I/O)
operations. This interface consists of a Maude API for I/O operations,
a Java-based server offering I/O capabilities, and a communication pro-
tocol between the two implemented using the external objects concept
and Maude’s TCP sockets. This interface was evaluated as part of the
K framework, providing interactive interpreter capabilities for executing
and testing programs for multiple language definitions.

Keywords: Maude, interactive, input/output, API.

1 Introduction

Formal specifications are often used when designing complex systems. The exe-
cutability aspect of rewriting logic [11], and Maude’s ability to efficiently execute,
explore, and analyze rewrite theories [5] offers an additional level of support when
designing a new system, as it allows the designer to experiment, test, and revise
a specification before deciding to implement it. In certain cases, it even allows for
the specification to become the implementation, eliminating the need of building
another executable model. However, many systems include a human component,
who is allowed/required to provide input to the system for directing its evolution.

To handle interaction, Maude provides the read-eval-print loop in the LOOP-
MODE standard module, but this allows only for very limited user interaction.
Furthermore, according to the Maude manual [4], it “may not be maintained
in future versions, because the support for communication with external ob-
jects makes it possible to develop more general and flexible solutions for dealing
with input/output in future releases.” While Maude’s external objects do al-
low interaction in principle, they are low-level and cannot be used for generic
input/output (I/O) without significant infrastructure external to Maude. Our
contribution is to provide this infrastructure and to develop an easy to use
interface for it within Maude.

Figure 1 presents a high-level view of the I/O interface. It includes a Maude
API for I/O, a Java-based server for handling requests, and a protocol for de-
livering queries and transmitting the responses. Using this interface, potentially
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Java I/O ServerSOCKETMaude + I/O

Java Maude wrapper

Fig. 1. The architecture of the Maude I/O interface

any Maude definition can be enhanced with I/O capabilities. A Java wrapper
which runs on top of both Maude and the Java server allows for the user to ex-
perience interpreter-like behavior: the console in which the program is started is
the one interactively displaying the output of the program and requesting input.
In addition to console I/O, this new framework also provides support for file I/O,
including both sequential and random-access. Moreover, all of these actions are
allowed to take place potentially anywhere in the term.

The Maude I/O interface and the examples presented in this paper, as well
as the Java I/O server are available online [3,2]. Additionally, this interface has
been used as part of the K framework tool [1] to obtain interpreter-like behavior
for a number of language definitions, including a definition of the C language [8].

The remainder of this paper is structured as follows. Section 2 describes the
I/O interface from a user point-of-view and illustrates some usage patterns
through examples. Section 3 details the implementation, both for the Maude
I/O client and the Java I/O server components. Section 4 reviews related work
and Section 5 concludes.

2 The I/O Interface

The basic standard I/O interface exposes several I/O commands for the standard
input and standard output streams defined in the STANDARD-IO module:
op #printString : String → IOResult .
op #readInt() : → IOResult .
op #eof() : → IOResult .

op #printChar : Char → IOResult .
op #readChar() : → IOResult .
op #readToken() : → IOResult .

The resulting sort for these directives is “IOResult” which is defined in the “IO-
INTERFACE” together with several constructors for it:
op #success : → IOResult .
op #string : [ String ] → IOResult .
op #int : Int → IOResult .
op #char : [Char] → IOResult .

op #ioError : String → IOResult .
op #flag : [Bool] → IOResult .
op #eof : → IOResult .

#printString sends an entire string, character by character, to the standard out-
put stream and returns #success. #readInt reads a token and returns an #int con-
taining the number read. #eof() tests the standard input stream for the end of file
and returns a #flag result with the argument set appropriately. #printChar sends
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one character to the standard output stream and returns #success. #readChar
reads a character from the standard input stream and returns a #char or #eof.
Finally, #readToken skips the whitespace from the standard input and then re-
turns a #string containing all characters read until the next whitespace or the
end of file is encountered, or #eof if the end of file is reached while skipping over
whitespace. In case of an I/O error or a communication error, an #ioError term
detailing the error is produced. We will present their formal definition in the
next section, but in the meanwhile, let us start with some examples.

2.1 Example 1: A Straightforward Usage of the I/O Interface

Let us begin with an example showing how our I/O interface can be used in a
Maude definition. For this we have chosen a very simple expression language,
called EXP. The following module defines its syntax:
mod EXP−SYNTAX is

including INT .
including STRING .
sort Exp .
subsort Int < Exp .
op _+_ : Exp Exp →Exp [ditto ] .
op _∗_ : Exp Exp →Exp [ditto ] .

endm

op _ifnz_ : Exp Exp → Exp [strat(2 0)] .
op nzloop : Exp → Exp [strat (0)] .
op input : String → Exp .
op print : String Exp → Exp .

EXP has integers as basic values and extends two of the integer operations:
addition and multiplication. Moreover, it provides a guarded expression, ifnz,
which evaluates its first argument only if the evaluation of the second one pro-
duces a non-zero value, and a fix-point operator, nzloop, which evaluates its
argument as long as its value is not zero. Note that in the absence of any side
effects, the nzloop construct is rather non-sensical, as its argument would al-
ways evaluate to the same value. However, adding I/O constructs to the lan-
guage allows for some interesting (albeit simple) programs to be written in
this language, like, for example:

nzloop(print("3∗x=",3 ∗ input("x= (0 to stop)? " )))

The intended meaning of input construct is somehow similar to the INPUT in-
struction of the BASIC language [6], in that it prompts the string in its argument
to the user and expects an integer to be entered, returning that integer. The
meaning of print is that it prints the string in the first argument, then prints
the string representation of the second argument (which is expected to be evalu-
ated to an integer), and then advances the line feed. With this intuition in mind,
the semantics of the program above is that reads a number “x” from the console
and computes and displays “3*x” until the number entered is 0 (included).

The module in Figure 2 formally defines the semantics described above. Assum-
ing this module is included in a file named io-test.maude (which also loads the
io-interface.maude file) and that the Maude command for rewriting (with ex-
ternal objects) the above program is written in a file named io-test-cmd.maude,
the following command “executes” the program interactively:
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mod EXP−SEMANTICS is
including EXP−SYNTAX . including STANDARD−IO .
op read : → Exp .

eq input(S)
= #printString(S);

#readInt();
read .

eq nzloop(E) = nzloop(E) ifnz E .
eq E ifnz 0 = 0 .
eq E ifnz NzI = E .

eq print(S,I)
= #printString(S + string(I,10) + "\n");

I .

op _;_ : IOResult Exp → Exp
[strat (1 0)] .

eq #success ; E = E .
eq #int(I) ; read = I .

var I : Int . var S : String . var NzI : NzInt . var E : Exp .
endm

Fig. 2. A Straight-forward semantics for the EXP language

java -jar MaudeIO.jar \
--maudeFile io-test.maude \
--moduleName EXP-SEMANTICS \
--commandFile io-test-cmd.maude

Here is a possible interaction sequence between the user and the tool:
x= (0 to stop)? 5
3*x=15
x= (0 to stop)? 10
3*x=30
x= (0 to stop)? 7
3*x=21
x= (0 to stop)? 0
3*x=0
Maude> ==========================================
erewrite in KRUNNER : nzloop(print("3*x=", 3 * input("x= (0 to stop)? "))) .
rewrites: 8452 in 59ms cpu (5345ms real) (141321 rewrites/second)
result Zero: 0
Maude> Bye.

Allowing I/O operations anywhere in the term/program provides a high degree
of flexibility, but at a price. As running multiple I/O commands at the same
time creates race conditions, the user has to provide mechanisms to avoid these
races. One such example is the “_;_” command defined in the semantics above
whose only purpose is to ensure that the printing command completes before the
next command is executed (enforced by the strategy annotation), resembling the
_>>_ sequentialization operator of the Haskell I/O monad [13].

However, parallel I/O commands are still possible in our language, producing
potentially undesirable effects. For example, when executing the program
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print("Hello " ,1) + print("World!",2)

a possible result would be the following:
HWoerllldo! 2
1
Maude> ==========================================
erewrite in KRUNNER : print("Hello ", 1) + print("World!", 2) .
rewrites: 1525 in 9ms cpu (23ms real) (160374 rewrites/second)
result NzNat: 3

While this may be acceptable behavior, it is also possible to avoid it if not. This can
be done by sequentializing the two printing expressions programatically, e.g., by
relying on the strategy of ifnz, like “print("World!",2) ifnz print("Hello ",1)”.

2.2 Interaction with Maude’s Analysis Tools

The definition presented above is very simple, but it can also easily become quite
chaotic, due to its very direct use of I/O (through external objects). It is also
impossible to test it in the absence of the I/O server. However, it is quite easy
to add I/O as a natural extension to specifications which are already amenable
for testing, exploration, and analysis.

Figure 3 presents an SOS-style rewriting logic semantics [17,12] for the EXP
language. To simulate input and output it uses a configuration which, in addition
to the program to be evaluated, contains a list of integers for input and a string
buffer for output. The small-step semantics is given through the rules for the •_
operation which defines the application of a single computation step in an SOS
style. Also note that the semantics of input has changed, by creating separate
small steps for the prompt and read operations.

Given an input list, this semantics can be tested, explored, and even model-
checked using Maude. Moreover, using the proposed I/O interface, it is quite
easy to turn it into an I/O-enabled interpreter as shown in Figure 4.

One relatively simple way to achieve input capabilities is by adding a spe-
cial input constant requestInt and an equation for requesting an int when the
input list becomes empty (lines 8–9). This request will be propagated to the
top level of EXP SOS configuration.

To extend the semantics with standard I/O we encapsulate the existing state
of EXP within a new state. At each iteration this configuration will execute one
step using the old configuration and then it will flush the input/output buffers
(lines 11–17). The output is flushed using the equation shown in lines 19–20 by
sending the output string to the standard output stream, and then returning the
new configuration once the printing succeeded (line 25). The request for input
is translated into a read from the standard input stream which is then added
to the input list on success (line 26). Note that these operations are sequenced
using the same idea as in the previous definition.

Finally, when the execution has completed the result of the original compu-
tation is retrieved from the encapsulated state (lines 29–30).
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mod EXP−SEMANTICS is including EXP−SYNTAX .
including LIST{Int} . including CONVERSION .

sort State .
op {_,_,_} : Exp List{Int} String → State .
ops •_∗_ : State � State .
op read : → Exp .

var I : Int . var S : String . var NzI : NzInt . var E E1 E2 E' E1' E2' : Exp .
var In In' : List{Int} . var Out Out' : String . var State : State .

eq ∗ State = ∗ . State .
crl •{E1 ∗ E2,In,Out} ⇒ {E1' ∗ E2,In',Out'}

if •{E1,In,Out} ⇒ {E1',In ', Out'} .
crl •{E1 + E2,In,Out} ⇒{E1' + E2,In',Out'}

if •{E1,In,Out} ⇒ {E1',In ', Out'} .
crl •{print(S,E),In,Out} ⇒ {print(S,E'),In ', Out'}

if •{E,In,Out} ⇒ {E',In ', Out'} .
rl •{input(S),In,Out} ⇒ {read,In,Out + S} .
rl •{read,I In, Out} ⇒ {I , In, Out} .
rl •{print(S,I ), In,Out} ⇒ {I ,In,Out + S + string(I,10) + "\n"} .

crl •{E2 ifnz E1,In,Out} ⇒ {E2 ifnz E1',In ', Out'}
if •{E1,In,Out} ⇒ {E1',In ', Out'} .
rl •{E ifnz 0,In,Out} ⇒ {0,In,Out} .
rl •{E ifnz NzI,In,Out} ⇒ {E,In,Out} .
rl •{nzloop(E),In,Out} ⇒ {nzloop(E) ifnz E,In,Out} .

endm

Fig. 3. An SOS-like semantics for EXP in Maude

Since in this particular example the communication with the I/O server is
enforced to occur at the top of the term, this semantics guarantees the sequencing
of the print statements above, producing a reasonable output:
Hello 1
World!2
Maude> ==========================================
erewrite in KRUNNER : * {{print("Hello ", 1) + print("World!", 2),nil,""}} .
rewrites: 1055 in 9ms cpu (58ms real) (114624 rewrites/second)
result IOState: result(3)
Maude> Bye.

2.3 The File I/O Interface

As detailed in the next section, the simple I/O interface exhibited above is imple-
mented in terms of a file I/O interface, defined by the IO-INTERFACE module,
which provides file-handle-parameterized versions of its basic I/O commands:
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1 mod EXP−STANDARD−IO is
2 including EXP−SEMANTICS .
3 including STANDARD−IO .
4

5 var N : Nat . var I : Int . var E : Exp .
6 var In : List {Int} . var Out : String . var State : State .
7

8 op requestInt : → List {Int} .
9 rl •{read,nil ,Out} ⇒ {read,requestInt,Out} .

10

11 sort IOState .
12 op {_} : State → IOState .
13 op {_}flush : State → IOState .
14 op ∗_ : IOState � IOState .
15 eq ∗{State} = ∗{. State}flush .
16 ceq {{E, In, ""}}flush = {{E, In, ""}}
17 if In =/= requestInt .
18

19 ceq {{E, In, Out}}flush = {#printString(Out); {E, In, ""}}flush
20 if Out =/= "".
21

22 eq {{E, requestInt, ""}}flush = {#readInt(); {E, nil, ""}}flush .
23

24 op _;_ : IOResult State → State .
25 eq #success ; State = State .
26 eq #int(I) ; {E,In,Out} = {E,I In,Out} .
27

28 — Catching the result of computation
29 op result : Int → IOState .
30 eq ∗{. {I , nil , ""}}flush = result(I) .
31

32 endm

Fig. 4. Extending EXP-SEMANTICS with standard I/O capabilities

op #fPrintString : Nat String → IOResult .
op #fReadInt : Nat → IOResult .
op #fEof : Nat → IOResult .

op #fPrintChar : Nat Char → IOResult .
op #fReadChar : Nat →IOResult .
op #fReadToken : Nat →IOResult .

In addition to those, it also provides commands for opening and closing files,

op #open : String → IOResult . — opens a file , mapping it to a #handle
op #reopen : Nat String → IOResult . — maps a different file to the #handle
op #close : Nat → IOResult . — closes the file mapped to the #handle

as well as several lower-level commands for accessing the contents of a file:
op #fReadByte : Nat →IOResult .
op #fPutByte : Nat Nat →IOResult .
op #fPeekByte : Nat → IOResult .

op #flush : Nat → IOResult .
op #tell : Nat → IOResult .
op #seek : Nat Nat → IOResult .



90 A. Arusoaie et al.

As a simple example of how this more advanced interface could be used, can
be seen in Figure 5 which presents a generalization of the I/O semantics from
Figure 4, by replacing standard I/O with file I/O. To achieve that, the encap-
sulated configuration is extended with two parameters: the first for the input
stream handle, and the second for the output stream handle. Then the functions
for achieving standard I/O are replaced with the corresponding ones for the file
I/O, using these stream handles as parameters.

1 mod EXP−IO is including EXP−SEMANTICS . including IO−INTERFACE .
2

3 op requestInt : → List {Int} .
4 rl •{read,nil ,Out} ⇒ {read,requestInt,Out} .
5

6 sort IOState .
7 op {_,_,_} : State IOResult IOResult → IOState .
8 op {_,_,_}flush : State IOResult IOResult → IOState .
9 op ∗_ : IOState � IOState .

10 eq ∗{State, HIn, HOut} = ∗{. State, HIn, HOut}flush .
11 ceq {{E, In, ""}, HIn, HOut}flush = {{E, In, ""}, HIn, HOut}
12 if In =/= requestInt .
13

14 var N : Nat . var I : Int . var E : Exp . var HIn HOut : IOResult .
15 var In : List {Int} . var Out : String . var State : State .
16

17 ceq {{E, In, Out}, HIn, #handle(N)}flush
18 = {#fPrintString(N,Out); {E, In, ""}, HIn, #handle(N)}flush
19 if Out =/= "".
20

21 eq {{E, requestInt, ""}, #handle(N), HOut}flush
22 = {#fReadInt(N); {E, nil, ""}, #handle(N), HOut}flush .
23

24 op _;_ : IOResult State → State .
25 eq #success ; State = State .
26 eq #int(I) ; {E,In,Out} = {E,I In,Out} .
27

28 — Catching the result of computation
29 op result : Int → IOState .
30 eq ∗{. {I , nil , ""}, HIn, HOut}flush = result(I) .
31 endm

Fig. 5. Extending EXP-SEMANTICS with file I/O capabilities

For example, assuming the contents of the test.in file are “3 -5 0”, rewriting
with the following command:
erew * {{
nzloop(print("3*x=",3 * input("x= (0 to stop)? ")))
, nil, ""},
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#open("file:test.in#r"),
#open("file:test.out#w")} .

will produce the output:
Maude> ==========================================
erewrite in KRUNNER : * {{nzloop(print("3*x=",

3 * input("x= (0 to stop)? "))), nil, ""},
#open("file:test.in#r"),#open("file:test.out#w")} .

rewrites: 4539 in 33ms cpu (70ms real) (133767 rewrites/second)
result IOState: result(0)
Maude> Bye.

Upon the completion of the command the “test.out” file contains:
x= (0 to stop)? 3*x=9
x= (0 to stop)? 3*x=-15
x= (0 to stop)? 3*x=0

The argument of #open contains the usual URI description of a file location before
the “#” symbol, while the “r” after the symbol specifies that the file should be
opened for read-only access and “w” specifies that it should be opened for write-
only.

2.4 Separating the I/O Server from Maude

The common usage pattern for the I/O interface presented above is that both
Maude and the Java I/O Server are executed as subprocesses of the same Java
wrapper application. This way, users interact directly with the console they used
to start the execution of the program. Moreover, as this close integration uses a
fresh TCP port for communication, this allows multiple instances of Maude using
I/O to be running at the same time. Unfortunately this hides the Maude console
and inhibits the user from interacting with Maude directly. As sometimes it
might be useful to have both the I/O console and the Maude console available,
let us describe how this can be achieved.

First, one needs to fix the port on which communication takes place. To
do so, it needs to add an equation of the form “eq #TCPPORT = 8001 .” either
in the definition using the I/O interface, or right after the definition of the
#TCPPORT constant in the tcp-interface.maude file (if this behavior is desired
for all definitions). Then, the server must be started first in a console taking
as parameter the same port number:

java -jar ioserver.jar 8001

Once the server is running, the definition can be loaded into Maude in a separate
console. Now we have two consoles, communicating between them. The rewriting
commands can be given using the normal Maude console and the Maude result
will be displayed here, while the I/O messages will be displayed in the console
running the I/O server and I/O input will be requested from there.
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3 Implementation

This section comes to give additional details for the implementation of the I/O
interface described in the prior sections.

As hinted in the introduction and depicted in Figure 1, both the I/O Server
and Maude are wrapped by a Java process which is intended to offer to the user
the console he expects when a program is executed. The wrapper hides some
operations that a casual user would not care about. This wrapper is executed as
a normal Java jar, taking as arguments the file containing the Maude definition,
the name of the main module, and the file containing the rewrite command
to be executed, as exhibited in Section 2.1. The main purpose of this wrapper
is to automatically setup Maude and the I/O Server. An unused TCP port p
is identified and an equation:
eq #TCPPORT = p .

is added automatically in a module KRUNNER, which includes the main module
of the definition. The wrapper also sets up the port number for the I/O Server
which is then started before Maude is launched and the files containing the
modified definition and the rewriting command are loaded.

3.1 The Maude I/O Client

Figure 6 presents the architecture of the Maude component of the I/O interface
and briefly describes the interaction between its various sub-components. The
user interacts with it using either the basic, console-only interface provided by
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#fEof
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...

IO-INTERFACE

<
<
us

es
>

>

#tcpRequest
("readbyte#0#")
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Fig. 6. The architecture of the Maude component of the I/O interface
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the STANDARD-IO module (see Section 2.1 and 2.2), or the more comprehen-
sive, file-based one provided by the IO-INTERFACE module (see Section 2.3).
The constructs in the STANDARD-IO module desugar into their correspondents
from the IO-INTERFACE module. The IO-INTERFACE module reduces all op-
erations to simple, byte-based requests, and uses the TCP-INTERFACE function
#tcpRequest as an interface to the I/O Server. This result of communication is
further interpreted by the functions in the IO-INTERFACE module and is trans-
formed into a term of the IOResult sort which contains a series of constructors
for each specific type of answers, such as #success, #int, #string, and #eof.

As most of the I/O interface was exhibited in the previous section, we will
focus here on the implementation details: how the high-level constructs are ex-
pressed in terms of the lower level ones and how the communication takes place.

The STANDARD-IO module defines handles for the standard input, output,
and error streams:
ops #stdin #stdout #stderr : → Nat .
eq #stdin = 0 . eq #stdout = 1 . eq #stderr = 2 .

These handles are then used to express the STANDARD-IO constructs in terms
of those from the IO-INTERFACE:
eq #eof() = (#fEof(#stdin)) .
eq #readChar() = (#fReadChar(#stdin)) .
eq #printChar(C) = #fPrintChar(#stdout,C) .

eq #readToken() = (#fReadToken(#stdin)) .
eq #readInt() = #fReadInt(#stdin) .
eq #printString(S) = #fPrintString(#stdout,S) .

The IO-INTERFACE module provides functionality for lower level I/O con-
structs falling the following three categories. The first category consists of I/O
primitives whose semantics is simply a request to the server:
eq #open(S) = #handle(rat(#tcpRequest("open#" + S + "#"), 10)) .
eq #close(N) = #checkSuccess(#tcpRequest("close#" + string(N,10) + "#")) .
eq #fReadByte(N)
= #byte(rat(#tcpRequest("readbyte#" + string(N,10) + "#"),10)) .

ceq #fPutByte(N,B)
= #checkSuccess(#tcpRequest(

"writebyte#" + string(N,10) + "#" + string(B,10) + "#"))
if B < 256 .

These functions rely on functions like #checkSuccess to translate the string an-
swer provided by #tcpRequest into a term of the appropriate IOResult type. Note
that these TCP requests have a very regular form, of #-separated pieces of infor-
mation, among which the first is the command, and the following are additional
arguments to the command, like, e.g., “open#file:in.txt#r#”.

The second category includes functions that easily desugar into primitives,
e.g.:



94 A. Arusoaie et al.

eq #fPrintChar(N,C) = #fPutByte(N,ascii(C)) .
eq #fReadChar(N) = #char(#fReadByte(N)) .
eq #fReadInt(N) = #int(#fReadToken(N)) .

op #char : IOResult → IOResult .
eq #char(#byte(B)) = #char(char(B)) .
eq #char(#eof) = #eof .

op #int : IOResult → IOResult .
eq #int(#string(S)) = #int(rat(S,10)) .
eq #int(#eof) = #eof .

Finally, there are the more involved functions like #fPrintString which iterates
over the characters of a string one by one, waiting for the printing of a character
to succeed before printing the next and flushing the output buffer at the end,

eq #fPrintString(N,"") = #flush(N) .
eq #fPrintString(N,S)
= #fPrintString(N,S, #fPrintChar(N,substr(S,0,1))) [owise] .

op #fPrintString : Nat String IOResult → IOResult .
eq #fPrintString(N,S,#success) = #fPrintString(N,substr(S,1,length(S))) .

or like #fReadToken which reads character by character from the file specified
by the handle, skipping over the initial whitespace and then accumulating the
characters read until whitespace is again encountered.

The TCP-INTERFACE module provides functionality for initializing the com-
munication process and extracting the relevant data once the communication
process concludes with a result. The semantics of the #tcpRequest construct is:

eq #tcpRequest(S:String) = #tcpRequest(S:String, counter) .

op #tcpRequest : String [Nat] → String .
eq #tcpRequest(S:String, N:Nat)
= #checkResult(#containedRequest(#start(N:Nat) #toSend(S:String))) .

#tcpRequest creates a object configuration, wrapped by the #containedRequest
construct; this configuration includes a primitive to start the communication
with the server and the request to be sent. #checkResult expects the result to be
either of the form success#data### or of the form fail#reason### and returns
“data” in case of success or an #errorTCPSyntax term otherwise.

The TCP-CLIENT module provides rules for initiating the TCP communication
through a socket, sending a message, waiting for a response, and closing the con-
nection. First, a fresh id is generated using Maude’s builtin COUNTER module,
and is used to establish a connection with the I/O server using the TCP sockets
interface provided by Maude:
op #start : → Configuration .
op #start : Nat → Configuration .

eq #start = #start(counter) .
op cnum : Nat → Oid .

rl #start(N)
⇒ <> < cnum(N) : Client | state : connecting >

createClientTcpSocket(socketManager, cnum(N), "localhost", #TCPPORT) .
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The #TCPPORT constant is the one mentioned in Section 2.4, being either set
manually if running the I/O server separately from Maude, or automatically
by the Java wrapper.

Once the initial exchange of messages takes place between Maude and the
server, the #toSend message is transformed into a message addressed to the server
and the state of the system becomes sending:

rl < cnum(N) : Client | state : connected, connectedTo: Server, A > #toSend(S)
⇒ < cnum(N) : Client | state : sending, connectedTo: Server, A >

send(Server, cnum(N), (string(N:Nat,10) + "#" + S + "\r\n")) .

Note that the body of the message is prefixed with the number of the client (for
logging and debugging reasons) and is appended with the end-of-line markers
as a message separator. Thus, the complete message being sent to the server is
of the form “23#open#file:in.txt#r#\r\n”.

There are additional rules for continuing the dialogue with the server following
the TCP protocol, but once the communication has finished, the answer is ex-
tracted by the rule below and the header of the message (containing the number
identifying the communication) is removed by the #checkAnswer function:

rl #containedRequest(<> < Me : Client | state: finished, answer: S, A >)
⇒ #checkAnswer(Me, S) .

3.2 The Java I/O Server

In this section we discuss the I/O Server architecture and implementation details.
While describing the main components, we will motivate our choices regarding
their design. The purpose of the I/O Server is to implement a socket-based ser-
vice for simulating file operations over regular files, standard input, and standard
output. So far it has only been used with Maude as a client, but the implemen-
tation is rather client-independent.

The architecture and data flow of the I/O Server is depicted in Figure 7.
The server has two main components: the communication component, which is
responsible for receiving/sending messages, and the resource management com-
ponent, which manages resources (files, stdin, stdout, stderr) and operations on
them. In this section, we will refer to them as RequestManager and ResourceMan-
ager.

Before describing these components, we will briefly explain the behavior and
capabilities of the I/O Server. First, the complete list of operations currently
accepted by the server is the following:

– open - open a new file
– close - close a file or stream
– readbyte - read a byte
– writebyte - write a byte
– flush - flush the buffer

– reopen - reopen an existent file
– seek - seek a particular location
– position - go to a specific location
– peek - peek a byte
– eof - check end of file
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Fig. 7. The data-flow scheme of the I/O server

The server receives requests, each request carrying one of the commands above,
and it answers the requests upon executing the corresponding operation. The
requests and answers are formatted as a string which contains data separated by
“#”:

request: 315#writebyte#1#97#
response: 315#success#

The request contains the client id, the operation name followed by the resource
id and operation parameters, if any. For instance in the above request the client
having the id 315 asks the server to write at the standard out stream the byte
corresponding to character “a” (the stdin, stdout and stderr streams have fixed
ids 0, 1, and 2, respectively). The I/O Server generates a fresh id (identifying
the file handle) as response to the client which requests to “open” a new file.
The response usually contains the client id which stands for a weak kind of
authentication, the status of the operation and the result of its execution if exists.

The RequestManager component uses TCP sockets to provide a reliable point-
to-point communication with the client. To be able to handle multiple request
concurrently, we use the Thread Pool pattern. For each request, the associated
command is analyzed and, if found valid, a task is created and queued for ex-
ecution. Commands are executed in parallel, each thread being responsible for
executing a command and sending the response to the client. The thread pool ex-
ecutor (defined in the ThreadPoolExecutor class) registers commands as mem-
bers of the abstract class Command which implements the Java Runnable interface,
and assigns them to threads as these become available.

The second component of the I/O Server handles resources and operations on
them. Currently, the ResourceManager can store three types of resources: ran-
dom access files, standard input, and standard output. It provides operations
to add, retrieve, or delete a resource. Some operations, for instance peek, read-
byte, seek, and position cannot be applied on the standard output; in such cases,



Making Maude Definitions More Interactive 97

when operations are not applicable on a specific type of resource, the Resource-
Manager throws exceptions to the RequestManager, which in turn will send to
the client a meaningful failure message.

Regarding the implementation, for each resource we have a corresponding
class (ResourceInFile, ResourceOutFile, . . . ) which must extend the abstract
class Resource. This class contains abstract methods which correspond to com-
mands received by the I/O Server (readbyte(), writebyte(), . . . ). To store
the resources we use the ConcurrentHashMap class which has two highly con-
current properties: writing to it locks only a portion of the map and reads can
generally occur without locking.

4 Related Work

This paper uses a technology similar to that used for developing Mobile Maude [7],
but with a different aim: there sockets communication was used to communicate
between different instances of Maude; here we use a similar mechanism to com-
municate with an external I/O server.

The motivation for this work came from our research in programming lan-
guage design, namely in our efforts to make the implementation of the K seman-
tic framework [1,16] easier to use and experiment with. K [16] is a rewrite-based
executable semantic framework specialized for defining programming languages,
type systems and formal analysis tools. The K tool [1,18] transforms K defini-
tions into rewriting logic theories which can be executed, explored and analyzed
using Maude. So far the K tool has been used to give complete definitions to
real languages like C [8] and Scheme [10], along with many educational lan-
guages and a novel rewriting-based program verification logic named matching
logic [15,14]. The I/O interface described in this paper is an integral part of
the K tool and provides I/O capabilities for all K semantics defined using the
tool. Most notably, it has been used to extensively test the K definition of C [8]
against the gcc torture tests [9].

5 Conclusions and Future Work

We have described a methodology and a system for achieving interactive (file)
input/output from within the Maude system. This technology was designed for
modeling, in an executable way, runtime interaction needed in a system. It can
additionally be used for runtime logging or tracing, and provides an easy way
of getting output from a Maude execution. The I/O interface is generic and
can easily be used in potentially any Maude definition. The interface itself is
reasonably stable, as it has been implemented and extensively used as part
of the K framework.

This work could serve as a means for experimenting with I/O before the
technology is integrated in Maude directly as a special purpose external object.
As our interface uses URIs, it should be relatively easy to incorporate support
for accessing additional resources such as URLs. Moreover, adding primitives for
locking resources would offer a thread-safe mechanism of accessing the resources.
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Abstract. Many temporal logic properties of interest involve both state
and action predicates and only hold under suitable fairness assumptions.
Temporal logics supporting both state and action predicates such as the
Temporal Logic of Rewriting (TLR) can be used to express both the de-
sired properties and the fairness assumptions. However, model checking
such properties directly can easily become impossible for two reasons:
(i) the exponential blowup in generating the Büchi automaton for the
implication formula including the fairness assumptions in its condition
easily makes such generation unfeasible; and (ii) often the needed fair-
ness assumptions cannot even be expressed as propositional temporal
logic formulas because they are parametric, that is, they correspond to
universally quantified temporal logic formulas. Such universal quantifi-
cation is succinctly captured by the notion of localized fairness; for ex-
ample, fairness localized to the parameter o in object fairness conditions.
We summarize the foundations and present the language design and im-
plementation of the new Maude LTLR Model Checker under localized
fairness. This is the first tool we are aware of which can model check
temporal logic properties under parametric fairness assumptions.

1 Introduction

Many temporal logic properties of interest involve both state and action pred-
icates and only hold under suitable fairness assumptions. For example, the ef-
fective transmission of data by a fault-tolerant network protocol can only be
proved under the assumption that the receiving node will receive messages in-
finitely often if it is infinitely often enabled to receive them. Although in principle
temporal logics supporting both state and action predicates such as the Tempo-
ral Logic of Rewriting (TLR) can be used to express both the desired properties
and the fairness assumptions, in practice model checking directly such proper-
ties can easily become impossible for two reasons. First of all, the exponential
blowup in generating the Büchi automaton for the formula ψ → ϕ, where ϕ
is the desired property and ψ specifies the fairness assumptions, easily makes
such generation unfeasible. To address this problem, various techniques to build
in the fairness assumptions ψ into the model checking algorithm, so that only
ϕ has to be model checked, have been proposed as the basis of various model
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checkers [12,14,18]. However, a second serious difficulty not addressed by those
techniques and tools exists: often the needed fairness assumptions ψ cannot even
be expressed as propositional temporal logic formulas because they are paramet-
ric, that is, they correspond to universally quantified temporal logic formulas
which are outside the scope of current fairness-supporting model checkers.

A good example of parametric fairness is provided by object fairness assump-
tions such as “each object o infinitely often enabled to receive a message of the
form m(o, q) will receive it infinitely often,” which is universally quantified over
all the (possibly dynamically changing) objects o in the system. In rewriting
logic such message reception can be expressed by a rewrite rule of the form:

[rec] : [o | s] m(o, k) → [o | f(s, k)]

where f(s, k) denotes a new state after receiving a message. This object fairness
assumption can be described as the universally quantified LTLR formula:

(∀o) enabled .rec(o)→ rec(o)

where enabled .rec(o) is the obvious state predicate holding iff the rec rule is
enabled for object o. Such universal quantification can be succinctly captured
by the notion of localized fairness [15]. The idea is that a rewrite rule like the
one above is itself universally quantified over a finite set of variables; for ex-
ample, for the rec rule the set {o, s, k}. Then the above strong object fairness
condition corresponds to localizing the strong fairness requirement for rule rec
to the singleton subset {o}. In general, fairness assumptions for a given rule can
be localized to any chosen subset of its variables.

Is it possible at all to model check temporal logic properties under such para-
metric fairness assumptions? The question is nontrivial, because, even under the
finite-state assumption which can make the number of actual instances of the
universal quantification finite, it may be impossible to have a priori knowledge
about the actual number of such instances. For example, we may be dealing with
an object-based system where objects are dynamically created, so that the entire
state space may first have to be searched to determine which objects exist. We
have recently reported on the automata-theoretic and algorithmic foundations
of a novel model checking algorithm which solves the problem of model check-
ing LTL properties under parameterized fairness and has good performance in
practice [2]. However, the work in [2] dealt with this problem at an automata-
theoretic level and did not present a suitable property specification language in
which such parameterized fairness assumptions could be naturally expressed.

In this paper we show that the intrinsically parametric nature of rewrite rules
and the great flexibility of the Linear Temporal Logic of Rewriting (LTLR) to
express parametric action patterns based on such rules makes LTLR an ideal
property specification language for a model checker under parameterized fair-
ness assumptions. In this way, the algorithm presented in [2] becomes available
for rewriting logic specifications. Furthermore, we present and illustrate with
examples a new LTLR model checker under localized fairness assumptions for
Maude, which implements the algorithm in [2] at the C++ level as an extension
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of the Maude system. A nontrivial part of this model checker is its user inter-
face. First of all, a simple way for users to specify localized fairness assumptions
as rule annotations is provided. Secondly, since LTLR formulas involve spatial
action patterns which in turn involve rule labels, LTLR formulas go beyond
the syntax available to Maude from parsing the system module to be model
checked, or even such module syntax extended by the state predicates and the
temporal logic connectives. We explain how rule annotations can also be used
for this purpose. Of course, reflection techniques and the Full Maude infrastruc-
ture are used in an essential way to obtain this expressive and user-extensible
user interface. The new Maude LTLR model checker is the first tool we are
aware of which can model check temporal logic properties under parametric
fairness assumptions. The tool and a collection of examples can be accessed at
http://maude.cs.uiuc.edu/tools/tlr.

2 Preliminaries on Localized Fairness

This section recalls preliminary notions on rewrite theories, the linear temporal
logic of rewriting (LTLR), and localized fairness specifications. We also summa-
rize our previous works on the LTLR model checking algorithm [1] and the LTL
model checking algorithm under parameterized fairness assumptions [2], which
provide the basis for the new LTLR model checker described in this paper.

2.1 Rewrite Theories

A rewrite theory [4] is a triple R = (Σ,E,R) such that:

– (Σ,E) is a theory in membership equational logic with Σ a signature, E a
set of conditional equations and memberships, and

– R is a set of (possibly conditional) rewrite rules written l : q → r, where l is
a label, and q and r are Σ-terms.

The state space with a chosen type k is specified as the k-component of the initial
algebra TΣ/E,k, i.e., each state is an E-equivalence class [t]E of ground terms
with type k. Each rule l : q → r specifies the system’s concurrent transitions.
A one-step rewrite from a state [t[θq]]E containing a substitution instance θq to
the state [t[θr]]E in which θq has been replaced by θr is denoted by:

[t[l(θ)]]E : [t[θq]]E →R [t[θr]]E

where [t[l(θ)]]E is called a one-step proof term. A computation (π, γ) of R is a
path π(0) γ(0)−−→ π(1) γ(1)−−→ π(2) γ(2)−−→ · · · where π(i) = [ti]E with the state type k,
π(i) γ(i)−−→ π(i + 1) is a one-step rewrite with a one-step proof term γ(i) for each
i ∈ N. (π, α)i denotes the suffix of (π, α) beginning at position i ∈ N, i.e.,
(π, α)i = (π ◦ si, α ◦ si) with s the successor function. Any finite computation of
R can be extended into an infinite computation if R has no deadlock states.
Any rewrite theory whose rules have no rewrites in their conditions can be
transformed into a semantically an equivalent deadlock-free theory [17]. We will
assume from now on that a rewrite theory is deadlock free.

http://maude.cs.uiuc.edu/tools/tlr
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2.2 The Linear Temporal Logic of Rewriting

The linear temporal logic of rewriting (LTLR) is a state/event extension of linear
temporal logic with spatial action patterns that describe properties of one-step
rewrites [1]. The only syntactic difference between LTLR and LTL is that an
LTLR formula may include spatial action patterns δ1, . . . , δn as well as state
propositions p1, . . . , pm, and therefore can describe properties involving both
states and events, e.g., fairness conditions. Given a set of state propositions Π
and a set of spatial action patterns W , the syntax of LTLR formulas is as follows:

ϕ ::= p | δ | ¬ϕ | ϕ ∧ ϕ′ | ©ϕ | ϕUϕ′

where p ∈ Π and δ ∈ W . Other operators can be defined by equivalences, e.g.,
�ϕ ≡ trueUϕ, and �ϕ ≡ ¬�¬ϕ.

The semantics of LTLR over a set of state propositions Π and a set of spatial
action patterns W is defined on a rewrite theory R that contains a subtheory
for Π , W , boolean values, and one-step proof terms. A state proposition (resp.,
a spatial action pattern) is defined by a parametric function symbol of the form
p : s1 . . . sn → Prop (resp., δ : s1 . . . sm → Action). The satisfaction relations for
state propositions and spatial action patterns are defined by means of equations
using the following auxiliary operators:

|= : k Prop→ Bool |= : ProofTerm Action→ Bool

in which a state proposition p is satisfied on a state [t]E if and only if E  (t |=
p) = true, and a spatial action pattern δ is satisfied on a one-step proof term
[λ]E if and only if E  (λ |= δ) = true. An LTLR formula ϕ is satisfied on R
from an initial state [t]E , denoted by R, [t]E |= ϕ, if and only if for each infinite
computation (π, γ) starting from [t]E , the path satisfaction relationR, (π, γ) |= ϕ
holds, which is defined inductively as follows:

– R, (π, γ) |= p iff E  (π(0) |= p) = true
– R, (π, γ) |= δ iff E  (γ(0) |= δ) = true
– R, (π, γ) |= ¬ϕ iff R, (π, γ) �|= ϕ
– R, (π, γ) |= ϕ ∧ ϕ′ iff R, (π, γ) |= ϕ and R, (π, γ) |= ϕ′

– R, (π, γ) |=©ϕ iff R, (π, γ)1 |= ϕ
– R, (π, γ) |= ϕUϕ′ iff ∃j ≥ 0. R, (π, γ)j |= ϕ′, ∀0 ≤ i < j. R, (π, γ)i |= ϕ.

2.3 Localized Fairness

Fairness of a rewrite theory R is often expressed by patterns of rewrite events,
i.e., by spatial action patterns. A one-step rewrite event is usually too specific
to describe a general fairness requirement.

Definition 1. A basic action pattern of a rewrite theory R = (Σ,E,R) is a
simple parametric spatial action pattern of the form l(y) such that l is the label
of some rule l : q → r ∈ R and y ⊆ vars(q). A ground instance θ(l(y)) of a basic
action pattern l(y) is satisfied on each one-step proof term of the form [t[l(θ)]]E.
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A basic action pattern l(∅) with no variables is denoted by just a rule label l.
Also, a parametric state proposition enabled(l(y)) can be defined in R such that
a ground instance θ(enabled(l(y))) is satisfied on each state [t]E from which there
exists a one-step rewrite [t[l(θ)]]E . The satisfaction relations for both basic action
patterns and enabled propositions can be defined by equations and automatically
generated from R (see Section 4.3).

A localized fairness specification [15] is a pair of finite sets (J ,F) whose
elements are basic action patterns of the general form l(y). The set J stands
for weak fairness conditions1 and F stands for strong fairness conditions.2 This
localized fairness specification is quite general so that many different notions
of fairness, such as object/process fairness, can be expressed in a unified way
[15]. Intuitively, localized fairness given by l(y) ∈ J ∪ F means that for each
ground instance ϑ(l(y)) of l(y), the corresponding one-step rewrite satisfies the
desired weak or strong fairness requirements. Each localized fairness pattern can
be expressed by an equivalent universally quantified LTLR formula [2] of the
form ∀y ϕ, where ϕ is quantifier-free, vars(ϕ) ⊆ y, and:

R, (π, γ) |= ∀y ϕ ⇔ R, (π, γ) |= θϕ for each ground substitution θ

A weak (resp. strong) fairness condition with respect to a basic action pattern
l(y) is then expressed by the quantified LTLR formula ∀y ��enabled(l(y)) →
��l(y) (resp., ∀y ��enabled(l(y))→ ��l(y)).

A localized fairness specification (J ,F) defines a set of fair computation of a
rewrite theory R. An infinite computation (π, γ) of R is J ,F–fair if and only if
every localized fairness condition in J ∪ F is satisfied on (π, γ) in R. That is,

– R, (π, γ) |= ∀yj ��enabled(lj(yj))→ ��lj(yj), for each lj(yj) ∈ J , and
– R, (π, γ) |= ∀yf ��enabled(lf (yf ))→ ��lf(yf ), for each lf (yf ) ∈ F .

An LTLR formula ϕ is then fairly satisfied on R from an initial state [t]E under
(J ,F), denoted by R, [t]E |=J∪F ϕ, if and only if R, (π, γ) |= ϕ holds for each
J ,F -fair computation (π, γ) starting from the initial state [t]E .

2.4 Model Checking Algorithms

The model checking problem for an LTLR formula ϕ on a rewrite theory R
can be characterized by automata-theoretic techniques on the associated labeled
Kripke structure (LKS) using the Büchi automaton B¬ϕ [1,3].

Definition 2. An LKS K is a 6-tuple (S, S0, Π,L,W, T ), where S is a set of
states, S0 ⊆ S is a set of initial states, Π is a set of state propositions, L :
S → P(Π) is a state-labeling function, W is a set of events (i.e., spatial action
patterns), and T ⊆ S × P(W )× S is a labeled transition relation.

1 If an event is continuously enabled beyond a certain point, it is taken infinitely often.
2 If an event is enabled infinitely often, then it is taken infinitely often.
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A path (π, α) of K is an infinite sequence 〈π(0), α(0), π(1), α(1), . . .〉 such that
π(i) ∈ S, α(i) ⊆ W , and π(i) α(i)−−→ π(i + 1) for each i ≥ 0. If R is a computable
rewrite theory that satisfies additional decidability conditions [16], given an ini-
tial state [t]E , a set of state propositions Π , and a set of spatial action patterns
W , we can construct the corresponding LKS KΠ,W (R)t such that R, [t]E |= ϕ if
and only if KΠ,W (R)t |= ϕ for any LTLR formula ϕ over Π and W [1]. There-
fore, a formula ϕ has no counterexample on R from an initial state [t]E if and
only if the product automaton KΠ,W (R)t × B¬ϕ has no accepting path, which
can be easily checked using the nested depth first search algorithm [10].

On the other hand, the model checking algorithm for a universally quantified
LTLR formula ∀x ϕ on a rewrite theory R is nontrivial, since in general, such a
variable quantification ranges over an infinite set, e.g., a set of tuples of ground
terms having specified sorts in R. We cannot directly use the corresponding
LKS KΠ,W (R)t for model checking such universally quantified LTLR formulas.
However, the satisfaction relation for ∀x ϕ can be efficiently determined on a
finite LKS satisfying finite instantiation property (FIP) [2].

Definition 3. An LKS K = (S, S0, Π,L,W, T ) satisfies a finite instantiation
property (FIP) if and only if: (i) for each state s ∈ S, L(s) is finite, and (ii) for
each transition s A−→ s′ ∈ T , the set A is finite.3

The path-realized set R(π,α),ϕ is a set of substitutions that is guaranteed to be
finite if the underlying LKS K is finite and satisfies FIP (see [2] for a detailed
definition). Only such a finite path-realized set is necessary to decide the satis-
faction of a universally quantified formula ∀x ϕ on K as shown in the following
lemma [2], in which K⊥ = (S, S0, Π ∪ Π⊥,L,W ∪W⊥, T ) is an extension of K
such that K⊥ may have additional void state propositions Π⊥ and spatial action
patterns W⊥ which are never satisfied on K⊥.

Lemma 1. Given a finite LKS K satisfying FIP, a universally quantified LTLR
formula ∀x ϕ, and a path (π, α), for each ground substitution θ, there exists
ϑ ∈ R(π,α),ϕ such that K, (π, α) |= θϕ iff K⊥, (π, α) |= ϑϕ.

For a finite LKS K satisfying FIP, we can have an efficient algorithm to model
check an LTLR formula ϕ under fairness assumptions of the form ∀y ��Φ →
��Ψ or ∀y ��Φ→ ��Ψ , where Φ and Ψ are boolean formulas with no temporal
operators [2]. The model checking algorithm consists basically in finding a reach-
able strongly connected component (SCC) S from initial states in the product
automaton K × B¬ϕ such that: (i) S satisfies an acceptance condition of B¬ϕ,
and (ii) all realized substitution instances of fairness formulas hold in S. The
SCC S satisfies the universally quantified fairness formulas, thanks to Lemma 1.
Such an SCC S exists in K × B¬ϕ if and only if there is a fair counterexample
of ϕ in K. The complexity of the algorithm is O(k · f · |K| · 2|ϕ|), where k is the
number of fairness formulas and f is the number of realized substitutions [2].

3 More precisely, there are only finitely many ground instances for each parametric
proposition. But if the signature is finite as usual, the definitions are equivalent.
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3 The Maude LTLR Model Checker under Fairness

We have developed a new Maude LTLRmodel checker to support model checking
under localized fairness specifications using the algorithm in [2]. This tool ex-
tends the previous LTLR model checker [1] and the existing LTL model checker
[8] in Maude. The new LTLR model checker allows the user to specify localized
fairness conditions for each rule in a system module, and provides a simple user
interface to perform model checking under localized fairness assumptions. The
earlier version of the LTLR model checker [1] did not support localized fairness
assumptions, and before this work the model checking algorithm in [2] had not
been integrated with a suitable property specification language in which such
parameterized fairness assumptions could be naturally expressed. This section
presents rewrite theories and LTLR as an ideal property specification language
for a parameterized fairness assumptions with user-friendly tool support.

Throughout this section, we will use a simple fault-tolerant client-server com-
munication model borrowed from [16] to illustrate the new LTLR model checker
under localized fairness specifications. In this model, each client C sends a query
N to a server S to receive an answer, and the server returns the answer f(S,C,N)
of the query using a function f. The configuration of the system is a multiset
of clients, servers, and messages, with the empty multiset null. A client is rep-
resented as a term [C,S,N,W] with C the client’s name, S a server’s name, N a
number representing a query, and W either a number representing an answer or
nil if the answer has not yet been received. A server is represented as a term [S]

with the name S, and a message is represented as a term I <- {J,N} with I the
receiver’s name, J the sender’s name, and N a number. The following rewriting
rules define the behavior of the system:

rl [req] : [C,S,N,nil] => [C,S,N,nil] S <- {C,N} .

rl [reply]: S <- {C,N} [S] => [S] C <- {S,f(S,C,N)} .

rl [rec] : C <- {S,M} [C,S,N,W] => [C,S,N,M] .

rl [dupl] : I <- {C,N} => I <- {C,N} I <- {C,N} .

rl [loss] : I <- {C,N} => null .

This system has an infinite number of states, but we can apply the equational ab-
straction [17] to collapse the set of states into a finite set by adding the following
abstraction equation and coherent completion rule as described in [16]:

eq I <- {C,N} I <- {C,N} = I <- {C,N} .

rl [reply]: S <- {C,N} [S] => S <- {C,N} [S] C <- {S,f(S,C,N)} .

A liveness property we may wish to verify is the LTLR formula �rec with a
basic action pattern rec, which means that some client will eventually receive
an answer; however, �rec does not hold without fairness. The fairness assump-
tions needed to prove the formula �rec are: (i) weak fairness of the rule req for
each client C, (ii) strong fairness of the rule reply for each server S and client
C, and (iii) strong fairness of the rule rec for each client C. A general fairness
specification of this system is nontrivial, because the number of fairness con-
ditions depends on the number of servers and clients in initial configurations.
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Furthermore, if the number of clients and servers can be changed during exe-
cution, the number of fairness conditions depends on the maximum number of
clients and servers during execution. However, such fairness conditions can be
naturally expressed as the localized fairness specification:

J = {req(C)} F = {reply(S, C), rec(C)}

no matter how many clients and servers make up the system. It is then easy to
show that for any initial state init consisting of one or more servers, each with
one or more clients connected to it and having nil in their fourth component,
we have the desired satisfaction R, init |=J∪F �rec.

3.1 Specification of Localized Fairness

A localized fairness specification (J ,F) of a system module is given by a meta-
data attribute for each rule, which is a list of fairness items separated by the “;”
symbol. Each fairness item for a rule l : q → r has one of the following forms:

just(x1, . . . , xn) fair (x1, . . . , xn) l(x1, . . . , xn)

where x1, . . . , xn ∈ vars(q). A fairness item with no variables is expressed by just ,
fair , or l. A variable in the left side of a matching condition can also be used in a
fairness item. Whenever a fairness item just(x1, . . . , xn) (resp., fair (x1, . . . , xn))
is included in a metadata attribute of a rule with label l, the corresponding
basic action pattern l(x1, . . . , xn) is included in the weak fairness specification
J (resp., the strong fairness specification F). A fairness item l(x1, . . . , xn) in a
metadata rule attribute only declares the signature of the basic action pattern
l(x1, . . . , xn), which may be used in model checking formulas,4 but not in a
localized fairness specification (J ,F). Such a signature is required to parse LTLR
formulas containing the basic action pattern in model checking commands.

Each fairness item in metadata attributes determines the signature of the
corresponding basic action patterns, which is usually not a part of the original
rewrite theory. The user needs to define the necessary basic action pattern sig-
nature before executing any model checking command under localized fairness
assumptions. Although it is possible to automatically generate all the possible
basic action patterns from a rewrite theory, it easily causes confusion and ambi-
guity on the meanings of different basic action patterns. For example, a rewrite
rule l : f(x1, x2)→ g(x1) in which the variables x1 and x2 have the same sort S
has two ambiguous basic action patterns l(x1) and l(x2) that cannot be dis-
tinguished by their syntax when applied to a concrete instance, e.g., l(u) with
some ground term u of sort S. In order to avoid such ambiguities, our tool takes
the metadata rule attributes into account so that the user can specify the exact
basic action patterns they intended to use for model checking purposes.

4 l(x1, . . . , xn) gives us a very expressive syntax for basic action patterns, since any
subset {x1, . . . , xn} ⊆ X contained in the set of variables X of the rule labeled l can
then be used as a basic action pattern if l(x1, . . . , xn) has been declared this way.
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In the following client-server communication example introduced above, the
metadata attributes of the rules define the localized fairness specification (J =
{req(C)}, F = {reply(S, C), rec(C)}). The fairness item rec of the rule rec is
written in order to declare the basic action pattern, so that the formula �rec

can be used in the model checking command later. The metadata attributes
define the signature of the basic action patterns req(C), reply(S, C), rec, and
rec(C), and their corresponding enabled propositions such as enabled(req(C)).

rl [req] : [C,S,N,nil] => [C,S,N,nil] S <- {C,N}
[metadata "just(C)"] .

rl [reply]: S <- {C,N} [S] => [S] C <- {S,f(S,C,N)}
[metadata "fair(S,C)"] .

rl [rec] : C <- {S,M} [C,S,N,W] => [C,S,N,M]

[metadata "rec; fair(C)"] .

rl [dupl] : I <- {C,N} => I <- {C,N} I <- {C,N} .

rl [loss] : I <- {C,N} => null .

Some ambiguous basic action patterns can still be mistakenly introduced, and
should be manually resolved by the user. For example, the ambiguity between
req(C) and req(S) could be removed by making C and S have different kinds.

3.2 The Fair LTLR Model Checker Interface

The interface of the new Maude LTLR model checker under localized fairness
specifications is developed as an extension of Full Maude. Contrary to our pre-
vious LTLR model checker [1], in which each spatial action pattern should be
manually defined in a similar way to the case of state propositions, the new
interface automatically generates the necessary declarations for the basic action
patterns from rule attributes (see Section 4.3). If the formulas to be verified
only contain basic action patterns written in metadata attributes, then no ad-
ditional declarations are required. As in [1], the tool also supports more general
user-defined spatial action patterns (see Section 3.3), for example, a pattern
l(u1, . . . , un) with some of the ui non-variable terms.

First of all, there is a command pfmc t |= ϕ for model checking an LTLR
formula ϕ with an initial state t under a given localized fairness specification
(J ,F). For example, the following is the fair model checking result of the formula
�rec for the client-server communication example:

Maude> (pfmc [a] [b,a,1,nil] [c,a,0,nil] |= <> rec .)

ltlr model check under localized fairness in CLIENT-SERVER-CHECK :

[a][b,a,1,nil][c,a,0,nil] |= <> rec

result Bool :

true

The other command mc t |= ϕ is a usual LTLR model checking command without
localized fairness. However, unlike the previous Maude LTLR model checker,
basic action patterns are automatically declared for input formulas if the patterns
were declared in the rule attribute. For example, the following mc command
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returns a counterexample, where the server a keeps replying to the client b, but
the client b receives no message because rec(b) does not satisfy the fairness
assumptions (parts of the counterexample are replaced by . . . ):

Maude> (mc [a] [b,a,1,nil] [c,a,0,nil] |= <> rec .)

ltlr model check in CLIENT-SERVER-CHECK :

[a][b,a,1,nil][c,a,0,nil] |= <> rec

result ModelCheckResult :

counterexample(

{[a][b,a,1,nil][c,a,0,nil], {’req : ’C \ b ; ’S \ a}}
{[a](a <-b,1)[b,a,1,nil][c,a,0,nil], {’reply : ’C \ b ; ’S \ a}}
...,

{[a](a <-{b,1})(a <-{c,0})(b <-{a,f(a,b,1)})[b,a,1,nil][c,a,0,nil],
{’reply : ’C \ b ; ’S \ a}})

A counterexample of an LTLR formula consists of a finite prefix and an infinite
cycle in which each item is a pair of a state and a simplified one-step proof term.

Furthermore, each model checking command allows the user to specify addi-
tional ground fairness conditions, which can be used when some fairness condi-
tions cannot be expressed by a localized fairness specification.5 A ground fairness
specification is a finite set of ground weak fairness (just : Φ => Ψ) and ground
strong fairness (fair : Φ => Ψ), where just : Φ => Ψ (resp., fair : Φ => Ψ)
is a shorthand for a fairness formula ��Φ → ��Ψ (resp., ��Φ → ��Ψ). In
this case, the formulas Φ and Ψ can be any boolean formulas involving state
propositions and spatial action patterns. The following model checking result is
for the same example with enough ground fairness conditions to prove �rec:

Maude> (mc [a] [b,a,1,nil] [c,a,0,nil] |= <> rec under

(just : enabled(req(b)) => req(b)) ;

(fair : enabled(rec(b)) => rec(b)) ;

(fair : enabled(reply(a,b)) => reply(a,b)) .)

ltlr model check in CLIENT-SERVER-CHECK :

[a][b,a,1,nil][c,a,0,nil] |= <> rec

under fairness :

(just : enabled(req(b))=> req(b));

(fair : enabled(rec(b))=> rec(b));

fair : enabled(reply(a,b))=> reply(a,b)

result Bool :

true

In contrast, the model checking command with only ground weak fairness condi-
tions gives the following counterexample in which no client receives any message
since all of them are taken away by the loss rule:

5 For example, we may have objects a, b, c, d, and e, but we may only want to specify
fairness requirements for a, c, and e, but not for b and d. Or we may have fairness
requirements ��Φ → ��Ψ or ��Φ → ��Ψ where the formulas Φ and Ψ do not
correspond to the fairness requirements for a rule application.



Model Checking LTLR Formulas under Localized Fairness 109

Maude> (mc [a] [b,a,1,nil] [c,a,0,nil] |= <> rec under

(just : enabled(req(b)) => req(b));

(just : enabled(req(c)) => req(c));

(just : enabled(reply(a,b)) => reply(a,b));

(just : enabled(reply(a,c)) => reply(a,c));

(just : enabled(rec(b)) => rec(b));

just : enabled(rec(c)) => rec(c) .)

ltlr model check in CLIENT-SERVER-CHECK :

[a][b,a,1,nil][c,a,0,nil] |= <> rec

under fairness :

(just : enabled(req(b))=> req(b)); (just : enabled(req(c))=> req(c));

(just : enabled(reply(a,b))=> reply(a,b));

(just : enabled(reply(a,c))=> reply(a,c));

(just : enabled(rec(b))=> rec(b)); just : enabled(rec(c))=> rec(c)

result ModelCheckResult :

counterexample(nil,

{[a][b,a,1,nil][c,a,0,nil], {’req : ’C \ b ; ’S \ a}}
{[a](a <-{b,1})[b,a,1,nil][c,a,0,nil], {’reply : ’C \ b ; ’S \ a}}
{[a](b <-{a,f(a,b,1)})[b,a,1,nil][c,a,0,nil], {’req : ’C \ c ; ’S \ a}}
{[a](a <-{c,0})(b <-{a,f(a,b,1)})[b,a,1,nil][c,a,0,nil], {’loss : ’I \ a}}
{[a](b <-{a,f(a,b,1)})[b,a,1,nil][c,a,0,nil], {’loss : ’I \ b}})

Note that, since all the objects in the initial state have been given weak fairness
requirements corresponding to rule applications, we can simplify the above com-
plex model checking command using the pfmc command and metadata attributes
in the style shown above.

3.3 More General Spatial Action Patterns

The Maude LTLR model checker under localized fairness provides capabilities
for the user to define spatial action patterns, in a way similar to the equational
definition of state propositions, as well as basic action patterns. Recall that the
syntax of a spatial action pattern is defined by a parametric function symbol
of sort Action, and the satisfaction relation of a spatial action pattern is given
by equations using the auxiliary operator |= : ProofTerm Action → Bool

involving one-step proof terms and spatial action patterns. As a matter of fact,
the syntax and the semantics of the basic action patterns given in metadata
attributes are also defined in the exact same way, but such definitions are auto-
matically generated by the tool.

The basic signature for model checking is specified in the system module
LTLR-MODEL-CHECKER, which is inherited from the earlier version of the LTLR
model checker [1] but has been extended to support localized fairness specifica-
tions. First, sort BasicActionPattern for basic action patterns is introduced as
a subsort of a spatial action pattern sort Action. A one-step proof term [t[l(θ)]]E
is represented as a triple of a context term t[�] that has a hole [] inside, a rule
label l, and a substitution θ as an assignment set of the form x1\u1;...;xn\un,
enclosed by the triple operator:
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op {_|_:_} : StateContext RuleName Substitution -> ProofTerm [ctor ...] .

Each spatial action pattern is then declared using the above constructs. For
instance, a basic action pattern l(x1, . . . , xn) can be defined by:

op l : S1 ... Sn -> BasicActionPattern [ctor] .

eq {CONTEXT | ’l : ’x1 \x1 ; ... ; ’xn \ xn ; SUBST} |= l(x1,...,xn) = true .

where ′l, ′x1, . . . ,
′xn are quoted identifier constants of sort Qid, which are used

for explicitly expressing variable names.
This mechanism enables the user to define much more general form of spatial

action patterns. The following declarations show some predefined spatial action
patterns in the module LTLR-MODEL-CHECKER whose satisfaction depends on the
rewriting positions [1,16] in addition to the rule labels and the substitutions:

op top : BasicActionPattern -> ActionPattern .

op {_|_} : StateContext BasicActionPattern -> ActionPattern .

var C : StateContext . var S : Substitution . var BSP : BasicActionPattern .

eq {[] | R:RuleName : S} |= top(BSP) = {[] | R:RuleName : S} |= BSP .

eq {C | R:RuleName : S} |= {C | BSP} = {C | R:RuleName : S} |= BSP .

As defined by the above satisfaction equations, a ground spatial action pattern
top(l(u1, . . . , un)) holds on a one-step rewrite that happens at the top position
and satisfies the basic action pattern l(u1, . . . , un). Similarly, a ground spatial
action pattern {t[�] | l(u1, . . . , un)} holds on a one-step rewrite that happens
at the position represented by the context term t[�] and satisfies the basic ac-
tion pattern l(u1, . . . , un). Such spatial action patterns with context terms are
meaningful only if the signature of context terms is given [1]. In the new Full
Maude interface, the signature of context terms can be generated by the module
expression CONTEXT[M] from a system module M.

4 The Maude LTLR Model Checker Implementation

The Maude LTLR model checker has been implemented at both the Core Maude
and Full Maude levels for the sake of gaining efficiency while keeping expressive-
ness and user-friendliness. The new LTLR model checker under localized fairness
consists of three components: (i) the graph traversal engine that constructs the
corresponding LKS from a rewrite theory, (ii) the model checking algorithms un-
der parameterized fairness assumptions using the LKS, and (iii) the user inter-
face of the model checker. For efficiency reasons, the first and second components
are implemented at the C++ level within the Maude system. In particular, the
model checking algorithm under parameterized fairness requires that the under-
lying LKS satisfies FIP. But for basic action patterns, the corresponding LKS
of a rewrite theory satisfies FIP for free as we show below. Finally, the user
interface of the model checker has been implemented by extending Full Maude,
since it involves several theory transformations that automate the user interface.
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4.1 Localized Fair Model Checking of Rewrite Theories

Basically, model checking an LTLR formula ϕ under a localized fairness spec-
ification (J ,F) is to find an J ,F -fair counterexample that satisfies ¬ϕ. By
definition, given a rewrite theory R and an LTLR formula ϕ, a J ,F -fair coun-
terexample (π, γ) invalidating ϕ should satisfy:

– R, (π, γ) |= ¬ϕ,
– for each lj(yj) ∈ J , R, (π, γ) |= ∀yj ��enabled(lj(yj))→ ��lj(yj), and
– for each lf (yf ) ∈ F , R, (π, γ) |= ∀yf ��enabled(lf (yf ))→ ��lf(yf ).

In order to apply the model checking algorithm for parameterized fairness [2]
to find such a counterexample, the corresponding LKS K of R should be finite
and satisfy FIP. Given a computable rewrite theory R with a finite number
of reachable states from an initial state [t]E , we can construct the finite LKS
KΠ,W (R)t with respect to state propositions Π and spatial action patterns W .

Definition 4. A rewrite theory R = (Σ,E,R) is finite-state if and only if E
and R are finite, and for each initial state [t0]E ∈ TΣ/E,k, the set of reachable
states ReachR([t0]E) = {[t∗]E ∈ TΣ/E,k | [t0]E →∗

R [t∗]E} is always finite.

The only remaining requirement is that the LKS K satisfies FIP with respect
to the state propositions and the spatial action patterns appearing in (J ,F),
which have the form of either enabled(l(y)) or l(y). By definition, each ground
instance θ(enabled (l(y))) is satisfied on a state [t]E if and only if there exists
a one-step rewrite [t[l(θ)]]E . Since a finite-state rewrite theory has only finitely
many one-step rewrites for each state, each state [t]E of R satisfies only finitely
many ground instances of enabled(l(y)). Similarly, since each ground instance
[θ(l(y))]E is satisfied on a one-step proof term [t[l(θ)]]E , each one-step rewrite
of R satisfies only one ground instance of l(y). Therefore, the associated LKS of
a finite-state rewrite theory R always satisfies FIP with respect to a localized
fairness specification (J ,F).

4.2 The Model Checking Algorithm Implementation

The new LTLR model checker under localized fairness implements the paramet-
ric generalized fairness algorithm [2] in C++ on top of the previous LTLR model
checking algorithm, which constructs state/event-based product automaton be-
tween a system LKS and a formula Büchi automaton [1]. For generating a Büchi
automaton, it reuses the existing LTL model checker implementation [8]. Besides
dealing with fairness, the new model checker also generates shorter counterex-
amples than the previous model checkers in Maude. When a counterexample is
found, we perform a breadth-first search from loop states to the initial states
using only already visited states to find the shortest prefix in the explored state
space. The performance of the new Maude LTLR model checker is comparable
to other explicit-state model checkers such as Spin [11] and Pat [18] as shown in
[2], and it is currently the only tool we know supporting parameterized fairness.
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Different model checking algorithms are used by the tool for handling different
cases of input fairness, because the general algorithms are more computationally
expensive. For usual LTLR model checking with no fairness requirements, we
use the nested depth first search algorithm of [10] as the previous LTLR model
checker. If only weak fairness conditions are specified, we use the SCC-based
algorithm [5] for generalized Büchi automata, in which weak fairness conditions
are directly incorporated as an acceptance condition. In the case of strong fair-
ness conditions, the Streett automata emptiness checking algorithm is employed
as explained in [2]. If some of the fairness conditions are given by a localized
fairness specification, such a fairness model checking algorithm is combined with
the parametric fairness algorithm that computes realized substitutions.

4.3 Theory Extension for Localized Fairness

In order to simplify the user interface, the model checker uses theory transfor-
mations to automatically generate each basic action pattern l(y) and its corre-
sponding state proposition enabled(l(y)) in the metadata rule attribute. Such
theory transformations are incorporated into the Maude LTLR model checker
as part of the model checking interface extending Full-Maude.

Given a system module M, the module expression ACTION[M] builds a module
that contains a signature for the basic action patterns B = {l1(y1), . . . , ln(yn)}
given by the metadata attributes of the rules in M. For each basic action pattern
l(x1, . . . , xn) in B, where each variable xi has sort Si in the corresponding rule
in M, the module ACTION[M] includes the following operators and equations:

– a constructor for the basic action pattern l(x1, . . . , xn)

op l : S1 ... Sn -> BasicActionPattern [ctor] .

– assignment operators for each sort Si of the variable xi in l(x1, . . . , xn)

op _\_ : Qid Si -> Assignment [ctor ...] .

– an equation to define the satisfaction relation with respect to proof terms

eq {C | ’l : ’x1 \ x1 ; ... ; ’xn \ xn ; SUBST} |= l(x1,...,xn) = true .

Together with the theory transformation CONTEXT[_] to generate a context sig-
nature, the theory transformation ACTION[_] replaces a previous theory trans-
formation [1] that was defined in the old version of the LTLR model checker to
generate a signature for context terms and assignment operators.

Next, the module expression FAIR[M] creates a declaration of the state propo-
sition enabled(l(y)) for each l(y) ∈ B. Basically, such enabled propositions are
defined by operators _enables_: K Action -> Bool for each relevant kind K,
where E  t enables δ = true means that the one-step rewrite associated to the
one-step proof term δ can happen inside the term t.
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ceq S:State |= enabled(BSP) = true if S:State enables BSP .

For each l(x1, . . . , xn) ∈ B and its associated rule l : t → t′ if cond , where the
kind of t is Kl, the basic declarations of enables operators are given as follows:

op _enables_ : Kl Action -> Bool .

ceq t enables l(x1, . . . , xn) = true if cond .

For each free constructor operator f : K1 . . .Kn → K, where enables operators
are defined for a nonempty set of kinds {Ki1 , . . . ,Kik} ⊆ {K1, . . . ,Kn}, the
following declarations of enables operators are given in FAIR[M]:

op _enables_ : K Action -> Bool .

ceq f(X1:K1,...,Xn:Kn) enables BSP

if Xi1 enables BSP or-else ... or-else Xik enables BSP .

Finally, for each associative constructor operator g : K K → K, and for each
equation ceq t enables δ = true if cond for a kindK, the extended declarations
of enables operators are given in FAIR[M] as follows, where X1 : K and X2 : K
are fresh variables not appearing in the original equation:

op _enables_ : K Action -> Bool .

ceq g(X1:K, t,X2:K) enables δ = true if cond .

ceq g(X1:K, t) enables δ = true if cond .

ceq g(t,X2:K) enables δ = true if cond .

If the associative constructor satisfies another axiom such as commutative or
identity, only some of the above equations will be required. Note that the above
extended declarations are essentially the generalization of equations for extension
matching modulo equational axioms [4].

The enables declarations for free and associative constructors can be com-
puted iteratively until reaching a fixed point. Since the right side of each enables
equation is true, we can easily prove the following proposition by induction on
the height of the conditional proof tree.

Proposition 1. Given a rewrite theory R = (Σ,E ∪ B,R) with signature of
constructors Ω that are free modulo the axiom of B,6 for a basic action pattern
l(y) of R, a term [t]E, and a substitution ϑ, if E  t enables ϑ(l(y)) = true,
then there exists a one-step rewrite from [t]E with a one-step proof term λ such
that E  (λ |= l(ϑy)) = true.

5 An Example

This section illustrates a rewriting logic specification of the Evolving Dining
Philosophers problem [13] with a localized fairness specification. This problem is
similar to the famous Dining Philosophers problem, but a philosopher can join
or leave the table, so that the number of philosophers can change dynamically.
In this example, it is very hard to specify exact fairness conditions even if an

6 That is, TΣ/E∪B|Ω � TΩ/B .
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initial state of the system is already given, because we cannot know how many
philosophers can be in the model without exploring the entire state space, but
the fairness conditions of this system depend on each philosopher in the system.

Each philosopher is represented by a term ph(I,S, C), where I is the philoso-
pher’s id, S is the philosopher’s status, and C is the number of chopsticks held.
Likewise, a chopstick with id I is represented by a term stk(I). The configura-
tion of the system is described by a set of philosophers and chopsticks, built by
an associative-commutative set union operator _;_. The signature is defined in
the Maude language as follows:

sorts Philo Status Chopstick Conf . op ph : Nat Status Nat -> Philo .

subsort Philo Chopstick < Conf . ops think hungry : -> Status .

op none : -> Conf . op stk : Nat -> Chopstick .

op _;_ : Conf Conf -> Conf [comm assoc id: none] .

The state is a triple < P, N, CF > with sort Top, where P is a global counter, N is
the number of philosophers, and CF is a set of philosophers and chopsticks. The
behavior of philosophers is then described by the following rewrite rules with a
necessary localized fairness specification:

rl [wake ] : ph(I, think, 0) => ph(I, hungry, 0)

[metadata "just(I)"] .

crl [grab ] : < P, N, ph(I, hungry, C) ; stk(J) ; CF >

=> < P, N, ph(I, hungry, C + 1) ; CF >

if J == left(I) or J == right(I, N)

[metadata "fair(I)"] .

rl [stop ] : < P, N, ph(I, hungry, 2) ; CF >

=> < P, N, ph(I, think, 0) ; stk(left(I)) ; stk(right(I, N)) ; CF > .

The functions left(I) = I and right(I,N) = (I + 1) rem N return the chop-
stick’s id on the left (resp., right) of philosopher I, where _rem_: Nat Nat ->

Nat is the reminder operator.
We now specify the dynamic behavior of philosophers in the Evolving Dining

Philosopher problem. Although there is no limit to the number of philosophers
in the original problem, we can give an unpredictable bound using the Collatz
conjecture [6]. There is a global counter P that symbolizes a philosophical prob-
lem, and philosophers keep thinking the problem by changing the number n to:
(i) 3n+ 1 for n odd, or (ii) n/2 for n even.

crl [solve ]: < P, N, ph(I, think, 0) ; CF > => < Q, N, ph(I, think, 0) ; CF >

if P > 1 /\ Q := collatz(P) .

New philosophers can join the group only if the global number is a multiple of the
current number of philosophers. No more philosophers can join after the number
eventually goes to 1. We assume that only the last philosopher can leave the
group for simplicity. To keep consistency, whenever a philosopher joins or leaves
the table, the related chopsticks should not be held by another philosopher.
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crl [join ] : < P, N, ph(N, think, 0) ; CF >

=> < P, N + 1, ph(N, think, 0) ; ph(N + 1, think, 0) ; stk(N + 1) ; CF >

if P rem N == 0 .

crl [leave ]: < P, N, CF ; ph(N, think, 0) ; stk(N) > => < P, N - 1, CF >

if N > 2 .

In order to perform model checking, we define the following module after loading
the LTLR model checker interface in Full Maude.

(mod PHILO-CHECK is

including PHILO .

including LTLR-MODEL-CHECKER .

subsort Top < State .

op eating : Nat -> Prop [ctor] .

op init : -> State .

vars P N : Nat . var I : NzNat . var CF : Conf .

eq < P, N, ph(I, hungry, 2) ; CF > |= eating(I) = true .

eq init = < 12, 2, ph(1,think,0); stk(1); ph(2,think,0); stk(2) > .

endm)

The state proposition eating(I) is satisfied if the philosopher I is eating. The
initial state is the case of 2 philosophers with the global counter 12, expressed
by < 12, 2, ph(1,think,0); stk(1); ph(2, think,0); stk(2) >.

We are interested in verifying the liveness property []~ deadlock

-> <> eating(1), where deadlock is a spatial action pattern satisfied on dead-
lock states [1]. Without fairness assumptions, the model checker generates the
following counterexample for this formula, in which only the philosopher 2 per-
forms actions while the order philosophers keep idle and no new philosopher
joins:

Maude> (mc init |= [] ~ deadlock -> <> eating(1) .)

ltlr model check in PHILO-CHECK :

init |= []~ deadlock -> <> eating(1)

result ModelCheckResult :

counterexample(

{< 12,2,stk(1); stk(2); ph(1,think,0); ph(2,think,0)>, {’solve : ’I \ 1}}
{< 6,2,stk(1); stk(2); ph(1,think,0); ph(2,think,0)>, {’solve : ’I \ 1}}
...,

{< 1,2,stk(1); stk(2); ph(1,hungry,0); ph(2,think,0)>, {’wake : ’I \ 2}}
{< 1,2,stk(1); stk(2); ph(1,hungry,0); ph(2,hungry,0)>,

{’grab : ’I \ 2 ; ’J \ 1}}
{< 1,2,stk(2); ph(1,hungry,0); ph(2,hungry,1)>, {’grab : ’I \ 2 ; ’J \ 2}}
{< 1,2,ph(1,hungry,0); ph(2,hungry,2)>, {’stop : ’I \ 2} })

When we assume localized fairness conditions, the model checker can verify the
formula []~ deadlock -> <> eating(1) as follows:

Maude> (pfmc init |= [] ~ deadlock -> <> eating(1) .)
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ltlr model check under localized fairness in PHILO-CHECK :

init |= []~ deadlock -> <> eating(1)

result Bool :

true

Note that the reachable state space from the initial state has 12 ground fairness
conditions instantiated by realized substitutions. The previous LTL and LTLR
model checkers cannot verify the formula with those 12 fairness conditions in
a reasonable time. Furthermore, using the previous model checker, we could
not know how many ground fairness conditions would be required to prove the
formula before exploring the entire state space .

6 Related Work and Conclusions

The usual model checking method to verify a property ϕ under parameterized
fairness assumptions, is to construct the conjunction of corresponding instances
of fairness, and to apply either: (i) a standard LTL model checking algorithm
for the reformulated property fair → ϕ, or (ii) a specialized model checking
algorithmwhich handles fairness, based on either explicit graph search [7,9,14], or
a symbolic algorithm [12]. Approach (i) is inadequate for fairness, since the time
complexity is exponential in the number of strong fairness conditions, while the
other is linear. Furthermore, compiling such a formula, expressing a conjunction
of fairness conditions, into Büchi automata is usually not feasible in reasonable
time [19]. There are several tools to support the specialized algorithms such as
PAT [18] and Maria [14]. Our tool is related to the second approach to deal with
fairness, but it does not require pre-translation of parameterized fairness, and
can handle dynamic fairness instances.

In conclusion, we have addressed the real need of verifying temporal logic
properties under parametric fairness assumptions. Such parametric assumptions
occur very often in practice, but up to now have not been supported by exist-
ing model checking techniques and tools. To address this need three things are
required: (i) expressive system specification languages; (ii) expressive temporal
logics; and (iii) novel model checking techniques and tools. This paper has argued
and demonstrated with examples that rewriting logic answers very well need (i)
and that TLR, and in particular LTLR, are very expressive to deal with need
(ii). It has also presented a novel Maude LTLR model checker under localized
fairness which directly addresses need (iii) in an efficient way.
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Checker. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 208–225.
Springer, Heidelberg (2010)



Model Checking LTLR Formulas under Localized Fairness 117

2. Bae, K., Meseguer, J.: State/Event-Based LTL Model Checking under Parametric
Generalized Fairness. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 132–148. Springer, Heidelberg (2011)

3. Chaki, S., Clarke, E., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-Based
Software Model Checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM
2004. LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

5. Couvreur, J.-M., Duret-Lutz, A., Poitrenaud, D.: On-the-Fly Emptiness Checks for
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Abstract. Building adaptive systems with predictable emergent behav-
ior is a challenging task and it is becoming a critical need. The research
community has accepted the challenge by introducing approaches of var-
ious nature: from software architectures, to programming paradigms, to
analysis techniques. We recently proposed a conceptual framework for
adaptation centered around the role of control data. In this paper we
show that it can be naturally realized in a reflective logical language like
Maude by using the Reflective Russian Dolls model. Moreover, we ex-
ploit this model to specify and analyse a prominent example of adaptive
system: robot swarms equipped with obstacle-avoidance self-assembly
strategies. The analysis exploits the statistical model checker PVesta.

Keywords: Adaptation, self-assembly, swarms, ensembles, Maude.

1 Introduction

How to engineer autonomic system components so to guarantee that certain goals
will be achieved is one of todays’ grand challenges in Computer Science. First,
autonomic components run in unpredictable environments, hence they must be
engineered by relying on the smallest possible amount of assumptions, i.e. as
adaptive components. Second, no general formal framework for adaptive systems
exists that is widely accepted. Instead, several adaptation models and guidelines
are presented in the literature that offer ad hoc solutions, often tailored to a
specific application domain or programming language. Roughly, there is not even
a general agreement about what “adaptation” is. Third, it is not possible to mark
a b/w distinction between failure and success, because the randomized behaviour
of the system prevents an absolute winning strategy to exist. Fourth, efforts spent
in the accurate analysis of handcrafted adaptive components are unlikely to pay
back, because the results are scarcely reusable when the components software is
frequently updated or extended with new features.

We address here some of the above concerns, presenting the methodology
we have devised for prototyping well-engineered self-adaptive components. Our
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case study consists of modeling and analyzing self-assembly strategies of robots
whose goal is crossing a hole while navigating towards a light source. We specified
such robots with Maude, exploiting on one hand the Reflective Russian Dolls
(RRD) model [21] and on the other hand the conceptual framework we proposed
in [6], which provides simple but precise guidelines for a clean structuring of
self-adaptive systems. We report also on the results of the analysis of our model
using PVesta [2].

When is a software system adaptive? Self-adaptation is a fundamental feature
of autonomic systems, that can specialize to several other so-called self-* prop-
erties (like self-configuration, self-optimization, self-protection and self-healing,
as discussed e.g. in [10]). Self-adaptive systems have become a hot topic in the
last decade: an interesting taxonomy of the concepts related to self-adaptation is
presented in [18]. Several contributions have proposed reference models for the
specification and structuring of self-adaptive software systems, ranging from ar-
chitectural approaches (including the well-known MAPE-K [9,10,12], FORMS
[23], the adaptation patterns of [7], and the already mentioned RRD [21]),
to approaches based on model-based development [24] or model transforma-
tion [11], to theoretical frameworks based on category theory [17] or stream-based
systems [5].

Even if most of those models have been fruitfully adopted for the design
and specification of interesting case studies of self-adaptive systems, in our view
they missed the problem of characterizing what is adaptivity in a way that is
independent of a specific approach. We have addressed this problem in [6], where
we have proposed a very simple criterion: a software system is adaptive if its
behaviour depends on a precisely identified collection of control data, and such
control data can be modified at run time. We discuss further this topic in §3.
Is Maude a convenient setting to study self-adaptation? A “convenient” frame-
work must provide a reusable methodology for modelling self-adaptive systems in-
dependently of their application domain together with a flexible analysis toolset
to investigate formal properties of the semantics of such systems. There are
several reasons why we think that Maude [8] is a good candidate. First, the
versatility of rewrite theories can offer us the right level of abstraction for ad-
dressing the specification, modelling and analysis of self-adaptive systems and
their environments within one single coherent framework. Second, since Maude
is a rule-based approach, the control-data can be expressed naturally as a sub-set
of the available rules and the reflection capability of Maude can be exploited to
express control-data manipulation via ordinary rewrite rules, along the so-called
tower of reflection and its modular realization as the RRD approach [14]. Third,
the conceptual framework for adaptation described in [6], to be further elabo-
rated in §4, facilitates early and rapid prototyping of self-adaptive systems, to be
simulated. Fourth, the formal analysis toolset of Maude can support simulations
and analysis over the prototypes. In particular, given the probabilistic nature of
adaptive systems, where absolute guarantees cannot be proved, we think that the
statistical model checker PVesta [2] can be useful, because it allows to conduct
analysis that are parametric w.r.t. the desired level of statistical confidence.



120 R. Bruni et al.

Pragmatically, the possibility to rapidly develop and simulate self-adaptive
systems and to compare the behaviour emerging from different adaptation strate-
gies at the early stages of software development is very important for case studies
like the robotic scenario described in the next paragraphs. Indeed, such physical
devices require specialized programming skills and their experimentation in real
world testing environments involves long time consumption (6 hours or more for
each run) and only a limited number of pieces is available (around 25 units) be-
cause their maintenance is expensive. Also, their hardware (both mechanic and
electronic parts) and software are frequently updated, making it harder to build,
to maintain and to rely on sophisticated simulators that can take as input exactly
the same code to be run on the robots. Even when this has been attempted, the
tests conducted on the real systems can differ substantially from the simulated
runs. Thus, early simulation on prototypes can at least speed-up debugging and
dispense the programmers from coding lowest-performance strategies.

Synopsis. In §2 we present the case study analysed in this paper. In §3 we
summarize the conceptual framework for adaptation proposed in [6], along which
we design adaptive systems in Maude. The general guidelines and principles to
be exploited in Maude for modelling self-adaptive systems are described in §4,
together with the software architecture used to realize our conceptual framework.
In §5 we illustrate the concrete implementation of the case study, while the
experimentations are described in §6; for the sake of presentation, we focus on
just one of the self-assembly strategies. Some concluding remarks and ongoing
research avenues are discussed in §7.

We assume the reader to have some familiarity with the Maude framework.

2 Case Study: Self-assembly Robot Swarms

Self-assembly robotic systems are formed by independent robots capable to con-
nect physically when the environment prevents them from reaching their goals
individually. Self-assembly is a contingency mechanism for environments where
versatility is a critical issue and the size and morphology of the assembly cannot
be known in advance. Thus, self-assembly units must be designed in a modular
way and their logic must be more sophisticated than, say, that of cheaper pre-
assembled units. Such features make the self-assembly robot swarm a challenging
scenario to engineer.

In [16], different self-assembly strategies are proposed to carry out tasks that
range from hill-crossing and hole-crossing to robot rescue: case by case, depending
e.g. on the steepness of the hill, the width of the hole, the location of the robot to
be rescued, the robots must self-assemble because incapable to complete the task
individually.We focus on the hole-crossing scenario as a running case study, where
“the robots in the swarm are required to cross a hole as they navigate to a light
source” and depending on the width of the hole “a single unit by itself will fall off
into the crevice, but if it is a connected body, falling can be prevented”.

The experiments in [16] were conducted on the SWARM-BOT robotic plat-
form [15], whose constituents are called s-bots (see Fig. 6, bottom right).



Adaptive Self-assembly Strategies with Maude 121

Fig. 1. Excerpt of the basic self-assembly response strategy (borrowed from [16])

Each s-bot has a traction system that combines tracks, wheels and a motorised
rotation system, has several sensors (including infra-red proximity sensors to
detect obstacles, ground facing proximity sensors to detect holes, and a 360
degrees view thanks to a camera turret), and is surrounded by a transparent
ring that contains eight RGB colored LEDs (Light Emitting Diodes) distributed
uniformly around the ring. The LEDs can provide some indications about the
internal state of the s-bot to (the omni-directional cameras of) nearby s-bots.
For example, the green color can be used to signal the willingness to connect
to an existing ensemble, and the red color can be used for the willingness to
create a new assembly. The ring can also be grasped by other s-bots thanks to
a gripper-based mechanism.

Roughly, the strategies described in [16] are: (i) the independent execution
strategy, where s-bots move independently one from the other and never self-
assemble; (ii) the basic self-assembly response strategy (see below), where each
s-bot moves independently (blue light) until an obstacle is found, in which case it
tries to aggregate (green light) to some nearby assembly, if any is available, or it
becomes the seed of a new assembly (red light); (iii) the preemptive self-assembly
strategy, where the s-bots self-assemble irrespectively of the environment and not
by emergency as in the basic self-assembly response; (iv) the connected coordina-
tion strategy, where the sensing and actuation of assembled robots is coordinated
according to a leader-follower architecture.

The experiments were conducted with different strategies in a few alternative
scenarios (with holes of various dimensions and random initial positions of the
s-bots) and repeated for each strategy within each scenario (from a minimum
of 20 times and 2 s-bots to a maximum of 60 times and 6 s-bots). Videos of
the experiments described in [16] are linked from the web page describing our
Maude implementation: http://sysma.lab.imtlucca.it/tools/ensembles.

Basic self-assembly response strategy. We describe here the basic self-assembly
strategy of [16], which is the strategy on which we will focus in the rest of the

http://sysma.lab.imtlucca.it/tools/ensembles
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paper. The finite state machine of the strategy is depicted in Fig. 1. Each state
contains its name and the color of the LEDs turned on in that state, while
transitions are labelled with their firing condition.

This controller is executed independently in each individual s-bot (a con-
crete one in [16], or a software abstraction in this work). In the starting state
(Independent Phototaxis) each s-bot turns on its blue LEDs, and navigates
towards the target light source, avoiding possible obstacles (e.g. walls or other
robots). If an s-bot detects a hole (through its infra-red ground sensors), or sees
a green or red s-bot, then it switches to state Anti Phototaxis, i.e. it turns on
its green LEDs and retreats away from the hole.

After the expiration of a timeout, the s-bot passes to state Aggregate: it
randomly moves searching for a red (preferably) or a green s-bot. In case it sees
a red s-bot, it switches to state Self Assemble, assembles (grabs) to the red s-
bot, turns on its red LEDs and switches to state Wait. If instead it sees a green
s-bot, with probability Prob(Become seed) it switches to state Assembly Seed,
turns on its red LEDs, and becomes the seed of a new ensemble. Once in state
Assembly Seed, the s-bot waits until a timeout expires and switches to state
Wait, unless it sees another red s-bot, in which case it reverts to state Aggregate.
Once no green s-bots are visible, assembled “waiting” s-bots switch to state
Connected Phototaxis and navigate to the light source.

3 A Framework for Adaptation

Before describing how we modeled and analysed the scenario we just presented,
let us explain some guidelines that we followed when designing the system. The
main goal was to develop a software system where the adaptive behaviour of
the robots is explicitly represented in the system architecture. To this aim, we
found it necessary to first understand “when is a software system adaptive”,
by identifying the features distinguishing such systems from ordinary (“non-
adaptive”) ones.

We addressed this problem in [6], proposing a simple structural criterion to
characterize adaptivity. Oversimplifying a bit, according to a common black-box
perspective, a software system is “self-adaptive” if it can modify its behaviour as
a reaction to a change in its context of execution. Unfortunately this definition
is hardly usable: accordingly to it, almost any software system can be consid-
ered self-adaptive. Indeed, any system can modify its behaviour (e.g. executing
different instructions, depending on conditional statements) as a reaction to a
change in the context of execution (like the input of a data from the user).

We argue that to distinguish situations where the modification of behaviour
is part of the application logic from those where they realize the adaptation
logic, we must follow a white-box approach, where the internal structure of a
system is exposed. Our framework requires to make explicit that the behavior of
a component depends on some well identified control data. We define adaptation
as the run-time modification of the control data. From this definition we derive
that a component is called adaptable if it has a clearly identified collection of
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control data that can be modified at run-time. Further, a component is adaptive
if it is adaptable and its control data are modified at run-time, at least in some
of its executions; and it is self-adaptive if it can modify its own control data.

Under this perspective, and not surprisingly, any computational model or
programming language can be used to implement an adaptive system, just by
identifying the part of the data governing the behavior. Consequently, the nature
of control data can greatly vary depending on the degree of adaptivity of the
system and on the computational formalisms used to implement it. Examples of
control data include configuration variables, rules (in rule-based programming),
contexts (in context-oriented programming), interactions (in connector-centered
approaches), policies (in policy-driven languages), aspects (in aspect-oriented
languages), monads and effects (in functional languages), and even entire pro-
grams (in models of computation exhibiting higher-order or reflective features).

Fig. 2. Control data in MAPE-K

Fig. 3. Tower of adaptation

In [6] we discussed how our simple crite-
rion for adaptivity can be applied to several
of the reference models we mentioned in the
introduction, identifying what would be a rea-
sonable choice of control data in each case.
Interestingly, in most situations the explicit
identification of control data has the effect
of revealing a precise interface between a
managed component (mainly responsible for
the application logic) and a control compo-
nent (encharged of the adaptation logic). As a
paradigmatical example, consider the MAPE-
K architecture [9], according to which a self-
adaptive system is made of a component
implementing the application logic, equipped
with a control loop that monitors the execu-
tion through sensors, analyses the collected
data, plans an adaptation strategy, and finally
executes the adaptation of the managed com-
ponent through effectors; all the phases of the
control loop access a shared knowledge reposi-
tory. Applying our criterion to this model sug-
gests a natural choice for the control data:
these must include the data of the managed
component that are modified by the execute
phase of the control loop. Clearly, by our def-
initions the managed component is adaptive,
and the system made of both component and
control loop is self-adaptive.

The construction can be iterated, as the
control loop itself could be adaptive. Think
e.g. of an adaptive component which follows a plan to perform some tasks.
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This component might have a manager which devises new plans according to
changes in the context or in the component’s goals. But this planning compo-
nent might itself be adaptive, where some component controls and adapts its
planning strategy, for instance determining the new strategy on the basis of a
tradeoff between optimality of the plans and computational cost. In this case
the manager itself (the control loop) should expose its control data (conceptu-
ally part of its knowledge repository) in its interface. In this way, the approach
becomes compositional in a layered way, which allows one to build towers of
adaptive components (Fig. 3) as we do in §5 and §6 for robot prototypes.

4 Adaptivity in Maude

We argue here the suitability of Maude and rewriting logic as a language and
a model for adaptivity (§4.1), we describe a generic architecture for developing
adaptive components in Maude (§4.2) and we show that it conforms to well-
assessed conceptual models for adaptivity, including our framework (§4.3).

4.1 Maude, Logical Reflection and Adaptivity

As argued in [14], Rewriting Logic (RL) is well-suited for the specification of
adaptive systems, thanks to its reflective capabilities. The reflection mechanism
yields what is called the tower of reflection. At the ground level, a rewrite theory
R (e.g. a software module) allows to infer a computation step R  t → t′ from
a term t (e.g. a program state) to a term t′. A universal theory U lets infer the
computation U  (R, t)→ (R, t′) at the “meta-level” where theories and terms
are meta-represented as terms. The process can be repeated as U itself is a rewrite
theory. This mechanism is efficiently supported by Maude and fostered many
meta-programming applications like analysis and transformation tools. Since a
theory can be represented by a term, it is also possible to specify adaptation rules
that change the (meta-representation of the) theory, as in r  (R, t) → (R′, t′),
so that the reduction continues with a different set of rules R′.

The reflection mechanism of RL has been exploited in [14] to formalize a
model for distributed object reflection, suitable for the specification of adaptive
systems. Such model, called Reflective Russian Dolls (RRD), has a structure of
layered configurations of objects, where each layer can control the execution of
objects in the lower layer by accessing and executing the rules in their theories,
possibly after modifying them, e.g. by injecting some specific adaptation logic
in the wrapped components. It is worth stressing that logical reflection is only
one possible way in which a layer can control the execution of objects of the
lower level: objects within a layer interact via message passing, thus objects of
the higher layer might intercept messages of the lower level, influencing their
behaviour. But even if the resulting model is still very expressive, some form of
reflection seems to be very convenient, if not necessary, to implement adaptivity.
This is clearly stated in [14] and at a more general level in [3], where (com-
putational) reflection is promoted as a necessary criterion for any self-adaptive
software system.
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The RRDmodel has been exploited for modeling policy-based coordination [21]
and for the design of PAGODA, a modular architecture for specifying autonomous
systems [22].

4.2 Generic Architecture

This section describes how we specialize the RRD architecture for modeling adap-
tive components. We focus on the structure of the layers and on the interactions
among them, abstracting from the details of our case study, discussed in §5.

Fig. 4. Intra-layer

Intra-layer Architecture. Each layer is a compo-
nent having the structure illustrated in Fig. 4. Its main
constituents are: knowledge (K), effects (E), rules (R)
and managed component (M). Some of them are in-
tentionally on the boundary of the component, since
they are part of its interface: knowledge and effects
act respectively as input and output interfaces, while
rules correspond to the component’s control interface.
Therefore we will consider the rules R as the control data of a layer.

The managed component is a lower-level layer having the same structure:
clearly, this part is absent in the innermost layer. The knowledge represents the
information available in the layer. It can contain data that represent the internal
state or assumptions about the component’s surrounding environment. The
effects are the actions that the component is willing to perform on its enclosing
context. The rules determine which effects are generated on the basis of the
knowledge and of the interaction with the managed component. Typical rules
update the knowledge of the managed component, execute it and collect its
effects. In this case the layer acts as a sort of interpreter. In other cases rules
can act upon the rules of the managed component, modifying them: since such
rules are control data, the rules modifying them are adaptation rules according
to §3.

Inter-layer Architecture. Layers are organized hierarchically: each one con-
tains its knowledge, effects, rules and, in addition, the managed underlying layer
(see the leftmost diagram of Fig. 5). The outermost layer interacts with the
environment: its knowledge represents the perception that the adaptive com-
ponent has of the environment, while its effects represent the actions actually
performed by the component. Each layer elaborates its knowledge and propa-
gates it to the lower one, if any. In general, while descending the hierarchy, the
knowledge becomes simpler, and the generated effects more basilar. Similarly
to layered operating systems, each layer builds on simpler functionalities of the
lower one to compute more complex operations.

The diagram in the middle of Fig. 5 shows the control and data flow of ordinary
behavior (without adaptations). Knowledge is propagated down to the core (layer
0) and the effects are collected up to the skin (layer 2). This flow of information
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Fig. 5. Inter-layer architecture (left), ordinary flow (center), adaptation flow (right)

is governed by the rules. Knowledge and effects are subject to modifications
before each propagation. For example, layer 2 may decide to propagate to layer
1 only part of the knowledge perceived from the environment, possibly after
pre-processing it. Symmetrically, layer 1 may decide to filter part of the effects
generated by layer 0 before the propagation to layer 2, for example discarding
all those violating some given constraints.

The rightmost diagram of Fig. 5 corresponds to a phase of adaptation. Here
the outermost layer triggers an adaptation at layer 1. This can be due to some
conditions on the knowledge of layer 2 or to the status of the managed component
(layer 1). The result is that the rules of layer 2 change (among other things) the
rules of layer 1 (as shown by the arrow crossing the corresponding R attribute).

4.3 Generic Architecture and Adaptation Frameworks

Let us relate the generic architecture just presented with some general frameworks
used formodeling adaptive systems. As suggested in §3, we identified explicitly the
control data of each layer, i.e., its set of rules: this will allow us to distinguish the
adaptation behaviour from the standard computations of the system.

Our architecture is a simplified version of the RRD of [14], because each layer
is a single object rather than a proper configuration. The interaction between
a layer and its managed component is realized both with logical reflection and
with access to shared data (knowledge and effects). Further, there is a clear cor-
respondence between the reflective tower of the RRD model and the adaptation
tower discussed in §3, as depicted in Fig. 6, showing that the rules of each layer
implement the MAPE control loop on the lower layer. Moreover, the generic ar-
chitecture imposes the encapsulation of all components of the tower, apart from
the robot itself. This offers several advantages: (i) management is hierarchical
(e.g. self- or mutually-managing layers are excluded); and (ii) at each level in
the hierarchy the adaptation logic of the underlying layer is designed separately
from the execution of basic functionalities, delegated to lower layers.

5 Concrete Architecture and Case Study Implementation

This section instantiates the generic architecture shown in §4.2 to our case study
(§5.1), and presents some relevant details of its implementation (§5.2). We will
call s-bots simply robots in the following.
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Fig. 6. Architecture as an instance of the framework

5.1 Architecture of the Case Study

The three layers of the concrete architecture of the case study (cf. Fig. 6, top-
right) essentially capture the informal description of [16], in the following sense.

Layer 0 (kernel). This layer models the core functionalities of a robot (see [16,
§3]). The rules implement basic movements and actioning of the gripper. Layer 0
corresponds to what some authors call hardware abstraction layer (see e.g. [22]).

Layer 1 (basic control). This layer represents the basic controller managing the
core functionalities of the robot according to the context. The controllermay allow
to move only in some directions (e.g. towards a light source) or to search for a robot
to grab. This layer corresponds to the individual states of state machines modeling
the self-assembly strategies, like the one of Fig. 1 (see [16, §5 and §7]).

Layer 2 (adaptation). This is the layer of the adaptation manager, which reacts
to changes in the environment activating the proper basic controller. In our
case study, this layer corresponds to the entire state machine modelling the self-
assembly strategy of Fig. 1 and, in particular, it takes care of the transitions
between its states. This is done by constantly monitoring the environment and
the managed componentM , and by executing an adaptation phase when needed,
which means changing the rules of M . A few other self-assembly strategies are
discussed in [16]: they can be implemented by changing the rules of this layer.

The three layers differ in their sets of rules and, of course, in the managed
component, but they share part of the signature for knowledge and effects. In
particular, knowledge includes predicates about properties of the ground (wall,
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hole, free), the presence of robots in the surrounding (their LED emissions), and
the direction of the light source (the goal). Effects include moving or emitting a
color towards a direction, and trying to grab a robot located in an adjacent cell.

Knowledge and effects are currently implemented as plain sets of predicates.
More sophisticated forms of knowledge representation based on some inference
mechanism (like prolog specifications, epistemic logics, ontologies or constraints)
may be possible but are not necessary in the case study we present.

Simulator. The execution environment of the robots is realized by a simulator
which consists of three parts: the orchestrator, the scheduler and the arena.

The orchestrator takes care of the actual execution of the actions required to
manage the effects generated by (the outermost layer of) a robot. For instance,
it decides if a robot can actually move in the direction it is willing to move.

The scheduler, implemented as an ordinary discrete-event scheduler, activates
the scheduled events, allowing a robot or the orchestrator to perform its next ac-
tion. Intuitively, the emission of an effect e by the outermost layer of a component
c causes the scheduling of the event “execute effect e on c” for the orchestrator.
Symmetrically, the handling by the orchestrator of an effect previously generated
by a component c induces the scheduling of an event “generate next effect” for c.

Finally, the arena defines the scenario where robots run. We abstracted arenas
in discrete grids, very much like a chessboard. Each grid’s cell has different
attributes regarding for example the presence of holes or light sources. A cell
may also contain in its attributes (at most) one robot, meaning that the robot
is in that position of the arena. Each robot can move or perform an action in
eight possible directions (up, down, left, right and the four diagonals).

5.2 Implementation Details

On the Structure of Adaptive Components. Our implementation, similarly
to the systems described in [14], relies on Maude’s object-like signature (see [8,
Chapter 8]). Such signature allows to model concurrent systems as configurations
(collections) of objects, where each object has an identifier, a class and a set of
attributes. Intuitively, < oid : cid | attr1, attr2 > is an object with identifier
oid, class cid and two attributes attr1, attr2.

Each layer is implemented as an object with attributes for knowledge (K),
effects (E), rules (R) and managed component (M): the first two are plain sets
of predicates, the third one is a meta-representation of a Maude module, and
the fourth one is an object. Three classes are introduced for the different layers,
namely AC0, AC1 and AC2. For design choice, the objects implementing the layers
of a robot have the same identifier: in terms of [14] we use homunculus objects.

Therefore a sample robot can have the following overall structure

< c(0) : AC2 | K: gripper(open) on(right,none) towards(right,light) ...,

E: emitt(up,Green) go(right) ...,

R: mod_is_sorts_._____endm,

M: < c(0) : AC1 | K: ..., E: ..., R: ...,

M: < c(0):AC0 | K:..., E:..., R:...> > >
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On the Structure of the Simulator. The arena is implemented as a multi-
set of objects of class Cell. A cell may contain in the attributes an object of
class AC2 representing a robot, and the orchestrator implements the move of a
robot by changing the cell in which it is stored. This way the robots have no
information about the global environment or their current position, but only
about the contiguous cells and the direction to take to reach the goal.

The cell encapsulating a robot actually acts as a fourth layer over the object
of class AC2. In fact, it is responsible of updating its knowledge, of taking care of
its effects (e.g. the cell must expose the status of robot’s LEDs), and of handling
the interactions between the robot and the scheduler.

Rules of Adaptive Components. The behaviour of each layer is specified by
the rules contained in its attribute R: a term of sort Module consisting of a meta-
representation of a Maude module. This solution facilitates the implementation
of the behaviour of components as ordinary Maude specifications and their treat-
ment for execution (by resorting to meta-level’s rewriting features), monitoring
and adaptation (by examining andmodifying themeta-representationofmodules).
In fact, on the one hand a generic meta-rule can be used to self-execute an object:
the object with rules R proceeds by executing R in its meta-representation. On
the other hand, rules are exposed to the outer component, which can execute or
manipulate the inner one, and analyse the obtained outcome.

In order to give an idea on how the flows of execution and information of Fig. 5
are actually implemented, we present one sample rule for each of the three layers.
For the sake of presentation we abstract from irrelevant details.

Layer 0. This layer implements the core functionalities of robots. For example,
the following rule computes the set of directions towards which a robot can move

rl [admissibleMovements] :

< oid : AC0 | K: oneStep k0, E: e0 , A0 >

=> < oid : AC0 | K: k0, E: e0 canMoveTo(freeDirs(k0)), A0 > .

A rule, like admissibleMovements, can be applied to a Maude term t if its left-
hand side (LHS) (here the object < oid : AC0 | ... > preceding =>) matches a
subterm of t with some matching substitution σ, and in this case the application
consists of replacing the matched sub-term with the term obtained by applying
σ to the right-hand side, i.e. the object following =>. We shall also use Maude
equations: they have higher priority than rules, meaning that rules are applied
only to terms in normal form w.r.t. the equations.

Rule admissibleMovements rewrites an AC0 object to itself, enriching its effects
with the term obtained by simplifying equationally canMoveTo(freeDirs(k0)).
Notice that the constant oneStep is consumed by the application of the rule: in-
tuitively, it is a token used to inhibit further applications of the rule, obtaining
a one step rewriting. The equations will reduce freeDirs(k0) to the set of direc-
tions containing each dir appearing in a fact on(dir,content) of k0 such that
content does not contain obstacles. Operator canMoveTo instead is a constructor,
hence it cannot be further reduced.
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Layer 1. Objects of class AC1 correspond to components of layer 1, implementing
individual states of the state machine of Fig. 1. Rules of this layer can execute the
component of the lower level providing additional knowledge, and can elaborate
the resulting effects. The following rule implements (part of) the logic of state
Independent Phototaxis, computing the desired direction towards which to move

crl [IP-main]: < oid:AC1 | K: oneStep k1, E: e1 ,

M: < oid:AC0 | K: k0 , E: e0, R: m0, A0 >, A1 >

=> < oid:AC1 | K: k1, E: e1 go(dir),

M: < oid:AC0 | K: k0b, E: e0, R: m0, A0b >, A1 >

if < oid : AC0 | K: k0b, E: e0 canMoveTo(freeDirs), A0b > :=

execute(< oid : AC0 | K: oneStep update1To0(k1,k0), E: e0, A0 >, m0)

/\ preferredDirs := intersection(freeDirs, dirsToLight(k1))

/\ dir := uniformlyChooseDir(preferredDirs, freeDirs) .

This is a conditional rule, as evident from the keyword crl and the if clause
following the RHS. Thus, it can be applied to a matched sub-term only if its
(firing) condition is satisfied under the matching. In this case the condition is the
conjunction (/\) of three sub-conditions, each consisting of a sort of assignment.
The sub-conditions are evaluated sequentially, and the LHS of symbol := will be
bound in the rest of the rule to the term obtained by reducing its RHS.

The first sub-condition exploits reflection, since execute(obj,m) makes use
of Maude’s meta-level functionalities to execute object obj via the rules meta-
represented in m. More precisely, in rule IP-main the operator execute will apply a
single rule of module m0 to the managed component < oid : AC0 ... >, after hav-
ing updated its knowledge. In fact, the operation update1To0(k1,k0) implements
a (controlled) propagation of the knowledge from layer 1 to layer 0, filtering k1

before updating k0 (e.g. information about the surrounding cells is propagated,
but information about the goal is discarded).

The assignment of the first sub-condition also binds freeDirs to the directions
towards which the managed component can move. This is used in the second sub-
condition to compute the intersection between the directions in freeDirs and
those towards the light, evaluated reducing dirsToLight(k1). The resulting set
of directions is bound to preferredDirs. Finally, in the third sub-condition dir

is bound to a direction randomly chosen from preferredDirs, or from freeDirs

if the first set is empty. Comparing the LHS and the RHS, one sees that the
overall effect of rule IP-main is the production of a new effect at layer 1, go(dir),
and the update of the knowledge of the managed component of layer 0.

Notice that the rules of layer 0 (m0) are not affected by the rule: in fact in
our implementation rules of layer 1 never trigger an adaptation phase on layer
0. This is just a design choice, as clearly our architecture does not forbid it.

Layer 2. A component of this layer corresponds to the entire state machine of
Fig. 1. It monitors the environment, and at each step it triggers a reduction of
the managed component of layer 1; if necessary, it also enforces a transition from
the current state to a new one of the state machine by performing an adaptation
phase, i.e. by changing the rules of the managed component.
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The following rule is the main one governing this layer

crl [adaptAndExecute]:

< oid : AC2 | K: nextEffect k2 , E: e2 ,

M: < oid : AC1 | K: k1 , E: e1 , R: m1 , A1 >, A2 >

=> < oid : AC2 | K: k2A, E: e2A schedule(event(oid,effect)),

M: < oid : AC1 | K: k1b, E: e1A, R: m1A, A1b >, A2A >

if < oid : AC2 | K: k2A, E: e2A,

M: < oid : AC1 | K: k1A, E: e1A, R: m1A, A1A >, A2A > :=

computeAdaptationPhase( < oid : AC2 | K: k2 , E: e2 ,

M: < oid : AC1 | K: k1 , E: e1 , R: m1 , A1 >, A2 > )

/\ < oid : AC1 | K: k1b, E: e1A effect, A1b > := execute(

< oid : AC1 | K: oneStep update2To1(k2A,k1A), E: e1A, A1A >, m1A ) .

The rule is triggered by the token nextEffect, generated by the orchestrator, and
propagated by the cell containing the robot. The execution of the rule consists
of an adaptation phase followed by an execution phase, both on the managed
component. The two phases are triggered by the two sub-conditions of the rule.

The adaptation phase is computed by the operation computeAdaptationPhase,
using the knowledge of layer 2 (k2) to enact a state transition, if necessary.
Among those defining the operation, the equation below encodes the transition
of Fig. 1 from state Aggregate to state Self Assemble, labeled with Close to red

ceq [AggToSA]: computeAdaptationPhase(

< oid2 : AC2 | K: state(Aggregate) k2, E: e2 ,

M: < oid1 : AC1 | R: m1 , E: e1 , A1 > , A2 >)

= < oid2 : AC2 | K: state(SelfAssemble) k2, E: emitt(green),

M: < oid1 : AC1 | R: m1b, E: none, A1 > , A2 >

if seeEffect(led(red),k2)

/\ m1b := upModule(’AC1-SELF_ASSEMBLE,false) .

The conditional equation states that if a robot in state Aggregate sees in its
neighborhood a robot with red LEDs on, then it must pass to state Self Assemble

and turn on its green LEDs. Also the rules of the managed component are
changed: the new module m1b is obtained with the operation upModule, producing
the meta-representation of the Maude module passed as first parameter.

We specified one equation for each transition of Fig. 1, plus the following one
where owise is a special attribute that tells the interpreter to apply the equation
only if none of the others is applicable

eq [idle]: computeAdaptationPhase(obj) = obj [ owise ] .

Once the adaptation phase is concluded, the second sub-condition of rule
adaptAndExecute takes care of the one step execution of the (possibly adapted)
managed component, using operation execute. Finally, the effects generated by
layer 1 are wrapped in the constructors event and schedule, and are added to the
effects of layer 2, so that the cell containing it will propagate it to the scheduler.
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Fig. 7. Three states of a simulation: initial (left), assembly (middle), final (right)

6 Analysis of Adaptation Strategies

This section describes some of the analysis activities carried out with our im-
plementation, available at http://sysma.lab.imtlucca.it/tools/ensembles
together with some additional material such as animated simulations.

The analysis has been carried out in two phases: (§6.1) discrete event simula-
tion; and (§6.2) statistical model checking. The rationale is the following.

In the early development phases we have mainly concentrated on performing
single simulations that have been informally analyzed by observing the behav-
ior of the assemblies in the automatically generated animations. A couple of
trial-and-error iterations (where the model was fixed whenever some anomalous
behavior was spotted) were enough for the model to acquire sufficient maturity
to undergo a more rigorous analysis in terms of model checking.

Ordinary model checking is possible in the Maude framework (via Maude’s
reachability analysis capabilities, or LTL model checker) but suffers from the
state explosion problem and is limited to small scenarios and to qualitative prop-
erties. To tackle larger scenarios, and to gain more insight into the probabilistic
model by reasoning about probabilities and quantities rather than possibilities,
we resorted to statistical model checking techniques.

We now provide the details of these analysis phases, centered around one
crucial question: How many robots reach the goal by crossing the hole?

6.1 Simulations

Simulations are performed thanks to the discrete-event simulator mentioned in
§5.2 along the lines of the ones reported in [1,2,20]. Valuable help has been
obtained implementing an exporter from Maude Configuration terms to DOT
graphs1, offering the automatic generation of images from states: they have
greatly facilitated the debugging of our code.

Fig. 7 illustrates three states of a simulation in which robots execute the basic
self-assembly response strategy. The initial state (left) consists of three robots
(grey circles with small dots on their perimeter) in their initial state (emitting
blue light), a wide hole (the black rectangle) and the goal of the robots, i.e.
a source of light (the orange circle on the right). After some steps, where the
robots execute the self-assembly strategy, two get assembled (middle of Fig. 7).

1 DOT is a well-established graph description language (http://www.graphviz.org/).

http://sysma.lab.imtlucca.it/tools/ensembles
http://www.graphviz.org/
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The assembled robots can then safely cross the hole and reach the goal (right of
Fig. 7), while the unassembled one is abandoned in the left part of the arena.

While performing such simulations with different scenarios, varying the loca-
tion of the goal and number and distribution of the robots, and with different
parameters for duration of timeouts and actions, we observed several bizarre
behaviors. For instance, in various simulations we observed some unassembled
robots erroneously believing to be part of an assembly, moving into the hole
and disappearing. In other simulations we instead noticed pairs of robots grab-
bing each other. These observations triggered the following questions: Is there an
error in our implementation? Is there an error in the strategies defined in [16]?

Examining carefully the description of the strategy, we discovered that the
two behaviors are indeed not explicitly disallowed in [16] and originated by the
two transitions (see Fig. 1 in §2) outgoing from the state Assembly Seed (willing
to be grabbed). The first transition leads to state Wait, triggered by the expi-
ration of a timeout, while the second one leads to state Aggregate (willing to
grab), triggered by the event See red (i.e. another robot willing to be grabbed).
Considering the first behavior, a robot can change from state Assembly Seed to
state Wait even if no other robot is attached to it. The robot then evolves to
state Connected phototaxis believing to be assembled with other robots. Consid-
ering instead the second behaviour, once a robot i grabs a robot j, i becomes
itself “willing to be grabbed” (turning on its red LEDs) to allow other robots to
connect to the assembly. Now, it is clear that if j is grabbed while being in state
Assembly Seed, then its transition towards state Aggregate is allowed, leading to
the second bizarre behaviour. Interestingly enough, we hence notice that the two
bizarre behaviors strongly depend on the duration of the timeout: a short one
favors the first behaviour, while a long one favors the second one.

Are these behaviors actually possible in real robots or are they forbidden by
real life constraints (e.g. due to the physical structure of the robots or to some
real-time aspects)? The answer to this question is being investigated within the
ASCENS project [4]. However, our experience makes it evident that the self-
assembly strategies described in [16] might be adequate for s-bots but not in
general for self-assembly settings where other constraints might apply. Fortu-
nately, both bizarre behaviors can be fixed easily by adding further conditions
to the two mentioned transitions of the adaptation strategy. In particular, the
transition from Assembly Seed to Aggregate requires a further condition to ensure
that the robot has been gripped. Conversely, the transition from Assembly Seed to
state Aggregate requires exactly the contrary, i.e. the robot must not be gripped.

6.2 Statistical Model Checking

A qualitative analysis can prove that an assembly strategy can result in different
degrees of success, from full success (all robots reach the goal) to full failure (no
robot reaches the goal). However, in the kind of scenario under study different
levels of success are typically of interest. The really interesting question is how
likely are they? Moreover, another interesting measure could be the expected
number of robots reaching the goal.
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An analysis based on statistical model checking (see e.g. [19,20,2]) is more
appropriate in these cases. Such techniques do not yield the absolute confidence
of qualitative model checking but allow to analyze (up to some statistical er-
rors and at different levels of confidence) larger scenarios and to deal with the
stochastic nature of probabilistic systems.

We consider the following properties: (P0) What is the probability that no robot
reaches the goal? ; (P1) What is the probability that at least one robot reaches it? ;
and (P2) What is the expected number of robots reaching the goal?.

We have used PVesta [2], a parallel statistical model checker, to perform some
comparative analysis. The tool performs a statistical evaluation (Monte Carlo
based) of properties expressed in the transient fragments of PCTL and CSL,
and of quantitative temporal expressions (QuaTEx)[1], allowing to query about
expected values of real-typed expressions of a probabilistic model.

We have performed a comparative analysis (w.r.t. the above properties) be-
tween two different strategies: namely the original basic self-assembly response
and the variant that fixes the bizarre behaviors discussed above. For each ex-
periment, where we fixed 120 as maximum number of sytem steps, all robots
execute the same strategy. The aim of this preliminary assessment was neither
to compare different strategies, nor to derive exact statistical measures, but to
gain some intuition of the success and performance impact of the absence of the
bizarre behaviors. The arena was configured as follows (cf. Fig. 8): an 11×7 grid
containing 3 robots, the goal (a source of light) and a hole dividing the robots
from the goal. We remind that a robot alone is not able to cross the hole, and
hence needs to cooperate (assemble) with other robots to cross it.

Fig. 8. An initial state

Roughly, our variant of the strategy exhibits a
better success rate. More precisely, the analysis
of P0 on the original strategy provides 0.48 (i.e.
about half of the cases ends up without any robot
reaching the goal), while for our variant we obtain
0.36. Regarding P1, our variant exhibits again a
better rate (0.64) than the original one (0.52). Fi-
nally, the expected number of successful robots
(P2) is 1.07 in the original case, while in our vari-
ant case it is 1.38.

These preliminary data of the statistical analysis seem to confirm our intuition.
Forthcoming experiments will consider other robot features and strategies, and
will validate our results against the ones reported in [16].

A Sample QuaTEx Expression. We conclude this section discussing the
quantitative temporal expression we defined to estimate the expected number of
robots reaching the goal.

QuaTEx is a language to query quantitative aspects of probabilistic systems.
Exactly as temporal logics allows to express temporal formulae, QuaTEx allows
to write quantitative temporal expressions.
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PVesta statistically evaluates quantitative temporal expressions w.r.t. two pa-
rameters: α and δ. Specifically, expected values are computed from n independent
simulations, with n large enough to grant that if a QuaTEx expression is esti-
mated as x, then, with probability (1−α), its actual value belongs to the interval
[(1− δ)x, (1 + δ)x]. For the experiments in §6.2 we fixed α = δ = 0.05.

In the rest of this section we see how the mentioned QuaTEx expression has
been defined, and how its value is actually computed for single simulations. We
do not detail how PVesta performs one-step executions, since this is out of the
scope of this paper. Details can be found in [1].

Before defining our expression it is necessary to define real-typed Maude op-
erations representing the states predicates we are interested in. We defined the
state predicate completed : Configuration -> Float, reducing to 1.0 for termi-
nal states, and to 0.0 otherwise. A terminal state is a state with no more robots,
a state with all the robots in goal, or the state obtained after a given maxi-
mum number of steps. We also defined the state predicate countRobotInGoal :

Configuration -> Float, counting the number of succesful robots.
Then we defined the equations necessary to PVesta to access such predicates

(where C is a variable with sort Configuration): eq val(0,C) = completed(C),
and eq val(1,C) = countRobotInGoal(C). Actually, QuaTEx syntax requires to
indicate the term “val(n,s)” with “s.rval(n)”, where n and s are respectively
terms with sort Natural and Configuration.

Finally, the QuaTEx expression to estimate the expected number of robots
reaching the goal is easily expressed as

count_s-bots_in_goal() = if { s.rval(0) == 1.0 } then s.rval(1)

else #count_s-bots_in_goal() fi;

eval E[ count_s-bots_in_goal() ] ;

Informally, a QuaTEx expression consists in a list of definitions of recursive tem-
poral operators, followed by a query of the expected value of a path expression
obtained (arithmetically) combining the temporal operators. Our formula de-
fines the temporal operator count s-bots in goal(), which also corresponds to
the estimated path expression eval E[ count s-bots in goal() ].

The path expression is evaluated by PVesta in the initial state (s) of the
system (e.g. the state depicted in Fig. 8). The tool first evaluates the guard
of the if then else statement, i.e. s.rval(0) == 1.0. The condition reads as
“is the state predicate rval(0) equal to 1.0 if evaluated in the state s?”, and
corresponds to “is the current state a final state?”. If the guard is evaluated to
true, then the path expression is evaluated as s.rval(1), that is in the number
of robots that reached the goal in the state s. If the guard is evaluated to false,
then the path expression is evaluated as #count s-bots in goal(), read “evaluate
count s-bots in goal() in the state obtained after one step of execution”. The
symbol #, named “next”, is in fact a primitive temporal operator.

To conclude, the evaluation of the QuaTEx expression consists in performing
step-wise system simulations, and is evaluated as the (mean of the) number of
robots that reached the goal in the terminal states of each simulation.
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7 Conclusion

The contributions of our paper are: (i) a description (§4, §5) of how to realize in
Maude our recently proposed approach to adaptive systems [6] in a simple and
natural way; and (ii) a description (§6) of how to exploit the Maude toolset for
the analysis of our models, and PVesta [2] in particular.

Our work is inspired by early approaches to coordination and adaptation
based on distributed object reflection [14,21] and research efforts to apply formal
analysis onto such kind of systems (e.g. [13]), with a particular focus on adaptive
systems (e.g. [22,4]). Among those, the PAGODA project [22] is the closest in
spirit and shape. Our work is original in its clear and neat representation and
role of control data in the architecture, and in the fact that this is, as far as
we know, the first analysis of self-assembly strategies based on statistical model
checking.

The case study of self-assembly strategies for robot swarms [16] has con-
tributed to assess our approach. Overall, the conducted experimentation demon-
strates that Maude is well-suited for prototyping self-assembly systems in early
development phases, and that the associated simulation can be useful to discover
and resolve small ambiguities and bugs in self-assembly strategies. Furthermore,
statistical model checking can provide preliminary estimations of success rate,
that can be used to compare different strategies and also to validate/confute/re-
fine analogous measures provided by other tools or in real world experiments.

We plan to further develop our work by considering other case studies, more
realistic abstractions and more modular implementations. However, the key chal-
lenging question we want to tackle is: can we exploit the proposed architecture to
design smarter adaptation strategies or to facilitate their analysis? We envision
several interesting paths in this regard. First, we are investigating how logical
reflection can be exploited at each layer of the architecture, for instance to equip
components with dynamic planning capabilities based on symbolic reachability
techniques. Second, we are developing a compositional reasoning technique that
exploits the hierarchical structure of the layered architecture.

All in all, we believe that our work is a promising step towards the non-trivial
challenges of building predictive adaptive systems, and to analyze them.

Acknowledgements. We are grateful to the anonymous reviewers for their
fruitful criticisms and to the organizers of the AWASS 2012 summer school for
the opportunity to mentor a case study based on the experience of this paper.
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Abstract. In this paper we use HI-Maude to model and analyze the
human thermoregulatory system and the effect of extreme heat exposure
on the human body. This work is motivated by the 2010 Sauna World
Championships, which ended in a tragedy when the last two finalists
were severely burnt in surprisingly short time (one of them died the next
day). HI-Maude is a recent rewriting-logic-based formal modeling lan-
guage and analysis tool for complex hybrid systems whose components
influence each others’ continuous dynamics. One distinguishing feature of
HI-Maude is that the user only needs to describe the continuous dynam-
ics of single components and interactions, instead of having to explicitly
define the continuous dynamics of the entire system. HI-Maude analyses
are based on numerical approximations of the system’s continuous be-
haviors. Our detailed models of human thermoregulation and the sauna
used in the world championships allow us to use HI-Maude to formally
analyze how long the human body can survive when experiencing ex-
treme conditions, as well as analyzing possible explanations for the still
unsolved tragedy at the 2010 Sauna World Championships.

1 Introduction

Experimentation on humans might be the best way to understand the human
body and mind, and can provide enormously important medical, scientific, and
psychological knowledge for the good of society. However, experimentation on
humans is typically quite costly, does (hopefully) not allow studying the body’s
reaction to extreme stress, is ethically fraught, and has a history with some very
dark episodes. Although animals can sometimes replace humans in such experi-
ments, they often function quite differently than humans, and experimentation
on animals must take the growing animal rights sentiment into account.

Computer-based simulation and analysis can be a cheap and useful way to
study the human body’s reaction to stimuli – even fairly extreme stress that
would be unethical to perform on a human. The human thermoregulatory sys-
tem is an important part of the human body, as it tries to keep the person at
a comfortable temperature even in difficult environments. Understanding the
human thermoregulatory system is crucial to understand how our body will
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respond to hostile and extreme environments, such as when firefighting, mining,
deep-sea diving, traveling in space, or just practicing sports.1

Defining useful computer models of the human thermoregulatory system is a
challenging task. We need to model as closely as possible the complex continu-
ous dynamics of the various parts (skin, core, blood, etc.) as well as the complex
continuous interactions between these parts, and between the body and its envi-
ronment. We may also want to model behavioral, and therefore nondeterministic,
aspects of the thermoregulatory system. Finally, we must be able to account for
changing configurations, such as when a human jumps from an oppressively hot
sauna into the cold snow; in this case, the thermal interactions change instantly,
and the continuous dynamics of the entire system must be recomputed.

In this paper we use the rewriting-logic-based HI-Maude language and tool [8]
to model the human thermoregulatory system according to established medi-
cal/physiological models and to analyze it under extreme conditions. In partic-
ular, our investigation is motivated by the 2010 Sauna World Championships,
where both finalists collapsed after surprisingly short time. We therefore also
present a fairly detailed model of the thermodynamics of a sauna, and use the
HI-Maude tool to analyze how long people in different states of fitness can sur-
vive in different kinds of saunas and to analyze possible explanations for the
tragedy in 2010 (the cause of which is still unknown).

HI-Maude is a recent extension of Real-Time Maude [13] to support the object-
oriented formal modeling, simulation, and model checking of hybrid systems with
combined discrete and continuous behaviors. The tool targets large and complex
hybrid systems that typically have multiple physical entities that interact and
influence each other’s continuous behavior. For a thermal systems example, con-
sider a cup of hot coffee which interacts with the surrounding room through
different kinds of heat transfer, leading to a decrease in the coffee temperature
and to a slight increase in the room temperature. One distinguishing feature of
HI-Maude is the modularity and compositionality of the specification of the sys-
tem’s continuous dynamics. Non-compositional specification of the whole system
is very hard, as it involves combining the ordinary differential equations (ODEs)
that specify the dynamics of its components; it also requires redefining the sys-
tem’s continuous dynamics for each new configuration of interacting physical
components. To achieve the desired modularity and compositionality, HI-Maude
offers an object-oriented modeling methodology [5] that allows us to specify the
continuous dynamics of single physical entities (such as the cup of coffee and
the room) and of single physical interactions (such as thermal conduction and
convection). Not only does this make it easier to specify the continuous dynam-
ics of a system of interacting physical components, but it also means that the
specification does not need to be redefined for each new configuration of physical
entities. If we want to add a cup of coffee to the room, we just add a new coffee
object and appropriate physical interaction objects to the state.

To analyze the system, whose continuous dynamics is usually defined by or-
dinary differential equations that are not analytically solvable, HI-Maude uses

1 Heat stroke is the third leading cause of deaths among athletes in the U. S. [18].
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adaptations of different numerical methods (the Euler method and Runge-Kutta
methods of different order) to give fairly precise approximate solutions to coupled
ordinary differential equations. These approximations are then used in HI-Maude
simulation, reachability analysis, and linear temporal logic model checking.

In this paper we follow as much as possible established medical facts and
models when defining our own model. The reference [11] gives an overview of
some approaches to model the human thermoregulatory system. We choose the
two-node Gagge model [9] as the basic model of the human body, since much
scientific and engineering research on human thermoregulation is based on this
model. For the formulas used to model the physiological aspects of the human
thermoregulatory system, our main sources are [14,1]. We use [12] as the main
source for some physics-related equations for modeling aspects of the interaction
between the human body and its environment, and use [1,10] as main sources for
modeling the behavioral aspect of human thermoregulatory system. Our main
sources on how to model experimental subjects in different physiological condi-
tions and degrees of preparedness for this competition are [16,2,15,14].

We have tried to model the sauna as closely as possible to the one used in the
Sauna World Championships. Since we have not found any official description
about the sauna used in that event, we rely on information gathered from stories,
photographs, and videos available on the web, and from technical specifications
of the equipment (e.g, the heater) and physical properties of the material used
(e.g., the heat capacity of the rocks used for the heating). We use information
from [4] for some physical properties of the environment.

In [8] we introduce the HI-Maude tool and illustrate its use on a fairly sim-
ple “proof-of-concept” model of a few aspects of the human thermoregulatory
system. The model presented in this paper is completely different, and aims at
being a fairly detailed model of the human thermoregulatory system and its in-
teractions with equally faithfully modeled environments, including sophisticated
models of the thermodynamics of different kinds of saunas. Just to mention a
few differences: the model in [8] only considers the temperature of the body
core (and hence only problems of hypothermia and hyperthermia), whereas this
paper also takes into account the effect on the skin of exposure to heat (burn
injuries) and the hydration state of the body (dehydration), which also needs
a more refined model of the sweating rate; in [8], the blood vessels are mod-
eled by three discrete states, whereas in this paper their dynamics is continuous;
in [8], the dynamics of the heat flow by convection and radiation only consid-
ers the temperature difference between the body skin and the air temperature,
whereas in this paper, the heat flow dynamics also considers the humidity factor
of the surrounding environment, which also changes continuously because water
poured periodically on the heating rocks during the sauna event will increase the
humidity of the environment (and significantly increase the stress on the body,
and is a crucial parameter that must be taken into account to seriously analyze
the sauna accident); the model in [8] does not include heat exchange through
respiration, whereas this paper includes the heat exchange through the air in-
haled and exhaled during respiration; in [8] we only consider the physiological
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aspects of the human thermoregulatory system, whereas the model presented in
this paper considers both physiological and behavioral aspects; the model in [8]
considered the body to have the form of a cylinder when computing the area
of the skin, whereas we now use the Dubois equation to approximate the size
of the area of the body; and so on. As for the environment, in [8] the model is
very simple and only considers that the room is filled with air (with a controlled
heater to keep the maximum temperature), whereas in the current case study
we model the sauna room with realistic parameters used in the event: our model
of the sauna includes the heater, the heating rocks, and the periodic pouring
of water onto the heating rocks, which increases heat to the skin and decreases
the ability of the body to lose heat by evaporation. In this paper we also model
three kinds of persons: a normal person, a person who has practiced in such
conditions (like the contestants in the Sauna World Championships), and an
unhealthy person. In short, the current model is incomparably more faithful and
detailed and includes many more aspects needed to be able to analyze the sauna
accident with a reasonable degree of accuracy.

We can only provide a sampler of our model in a short paper. The entire exe-
cutable formal HI-Maude model, the analysis commands, a long report, and the
HI-Maude tool itself, are available at http://folk.uio.no/mohamf/HI-Maude.

Section 2 briefly introduces the HI-Maude tool and the effort/flow-based mod-
eling methodology upon which it is based. Section 3 gives an overview of the
human thermoregulatory system. Section 4 presents some parts of our model of
the human thermoregulatory system. Finally, Section 5 uses HI-Maude to ana-
lyze how long humans can stay safely in saunas and tries to understand what
happened at the 2010 Sauna World Championships.

2 Modeling and Analysis of Hybrid Systems in HI-Maude

This section gives a brief overview of the HI-Maude tool and the modeling
methodology in [5], upon which the tool is based, which adapts the effort/flow
method [17] to model a physical system as a network of physical entities and
physical interactions between the entities.

2.1 Effort/Flow Modeling of Interacting Hybrid Systems

In effort/flow modeling of a physical system, a physical entity is described by
a real-valued effort value, a set of attribute values, and the entity’s continuous
dynamics (see Fig. 1, top left). The effort variable represents a dynamic physical
quantity, such as temperature, that evolves over time as given by the continuous
dynamics in the form of an ordinary differential equation (ODE), where its time
derivative is a function of both the entity’s attribute values and the flows of
connected interactions (i.e., the time derivative ė of the effort e can be described
by an equation of the form ė = f(

∑
flows , atts)).

A two-sided interaction between two physical entities is described by a real-
valued flow, a set of attribute values, and a continuous dynamics. The flow value

http://folk.uio.no/mohamf/HI-Maude
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Fig. 1. A simple effort/flow model of the thermodynamics of a person in a gym

describes the dynamic interaction between two entities, whose evolution over
time is specified by the continuous dynamics as an equation with the flow vari-
able on the left-hand side and an expression referring to the interaction’s at-
tributes and the efforts of the connected entities on the right-hand side (i.e.,
flow = g(effort1, effort2, atts)). A one-sided interaction represents an interac-
tion of a physical entity with its environment. The system may also exhibit
discrete dynamics, for representing, e.g., the changes of physical states of the
system components, explicit control behaviors, communication, etc.

Figure 1 illustrates our modeling methodology on a simplified thermal system
consisting of a woman working out at a gym. There are two physical entities
of interest for thermal reasoning: the human body and the training room, both
with the temperature T as their effort variable. The body produces heat, and
the heat production increases as the exercise gets harder. The body releases heat
to the room through the skin (e.g., by convection), and through sweating (heat
is released from the body as the sweat evaporates). These heat transfers are rep-
resented as two-sided interactions where the flow variable (Q̇) denotes the heat
flow rate of the interactions. The one-sided interaction is used to model the heat
production inside the human body through metabolism, and also to model the
system which handles heating and cooling of the gym. Beside continuous dynam-
ics, there are some physical phenomena which are suitably modeled as discrete
dynamics, e.g., the changes of activity during the training (from running, to
walking, to resting), activation and deactivation of sweating, and so on.
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2.2 The HI-Maude Tool

The HI-Maude tool [8] supports the object-oriented effort/flow modeling and
approximation-based formal analysis of interacting hybrid systems. Since we tar-
get complex systems and therefore do not restrict to linear ODEs for describing
the continuous dynamics of a component/interaction, the continuous dynamics
of a system is in general not analytically solvable. HI-Maude therefore uses nu-
merical techniques to approximate the continuous behaviors by advancing time
in small discrete time increments, and approximating the values of the contin-
uous variables at each “visited” point in time. We have adapted the Euler [5],
the Runge-Kutta 2nd order (RK2), and the Runge-Kutta 4th order (RK4) meth-
ods [7] to the effort/flow framework. Once the dynamics of the single physical
components has been defined, HI-Maude

1. automatically defines the continuous dynamics of the entire systems, and
2. provides the usual Real-Time Maude formal analysis commands, but where

the desired built-in approximation algorithm and the desired time increments
used by the approximations are additional parameters of the commands.

Modeling. Since HI-Maude is an extension of Maude [3], a membership equa-
tional logic [3] theory (Σ,E), with Σ a signature2 and E a set of conditional equa-
tions and memberships, specifies the system’s state space as an algebraic data
type. The system’s instantaneous transitions are specified by a set R of (possi-
bly conditional) labeled instantaneous rewrite rules crl [l] : t => t′ if cond ,
where l is a label, t and t′ are two Σ-terms, and the condition cond is a conjunc-
tion of equations, memberships, and rewrites. We refer to [3] for more details on
the syntax of Maude.

A declaration class C | att1 : s1, ..., attn : sn declares a class
C with attributes att1 to attn of sorts s1 to sn. An object of class C is represented
as a term < O : C | att1 : val1, ..., attn : valn > of sort Object, where O, of sort
Oid, is the object’s identifier, and where val1 to valn are the current values of
the attributes att1 to attn. The state is a term of sort Configuration, and has
the structure of a multiset of objects and messages, with multiset union denoted
by a juxtaposition operator that is declared associative and commutative, so
that rewriting is multiset rewriting supported in Maude.

The dynamic behavior of concurrent object systems is axiomatized by speci-
fying each of its transition patterns by a rewrite rule. For example, the rule

rl [l] : < O : C | a1 : 0, a2 : y, a3 : w, a4 : z > =>

< O : C | a1 : T, a2 : y, a3 : y + w, a4 : z >

defines a parametrized family of transitions which can be applied whenever
the attribute a1 of an object O of class C has the value 0, with the effect of
altering the attributes a1 and a3 of the object. “Irrelevant” attributes (such as
a4, and the right-hand side occurrence of a2) need not be mentioned in a rule
(or equation).

2 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols.
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A subclass inherits all the attributes and rules of its superclasses.
HI-Maude provides built-in classes for specifying physical entities and interac-

tions. Concrete physical entities and interactions must then be defined as object
instances of user-defined subclasses of these built-in classes. For modeling phys-
ical entities, the class PhysicalEntity is used:

class PhysicalEntity | effort : Float .

Sometimes we need additional continuous variables whose dynamics are time-
derivative functions. The tool therefore provides the classes PhysicalEntityACk,
where k denotes the number of additional continuous variables:3

class PhysicalEntityACk | contvar1 : Float , ... , contvark : Float .

subclass PhysicalEntityAC1 ... PhysicalEntityACn < PhysicalEntity .

The attributes contvari denote the additional continuous variables.
Objects of the classes TwoSidedInteraction and OneSidedInteraction are

used to model two-sided and one-sided physical interactions, respectively:

class PhysicalInteraction | flow : Float, contdyntype : ContDynType .

class TwoSidedInteraction | entity1 : Oid, entity2 : Oid .

class OneSidedInteraction | entity : Oid .

subclass TwoSidedInteraction OneSidedInteraction < PhysicalInteraction .

The contdyntype attribute denotes the type of continuous dynamics specified
for the interaction. The entity1 and entity2 attributes denote the two physical
entities involved in the two-sided interaction. The entity attribute of the class
OneSidedInteraction denotes the entity interacting with the environment.

HI-Maude requires the user to define the continuous dynamics by defining the
function effortDyn for each physical entity:

op effortDyn : Object Float -> Float .

The first argument of effortDyn is the entity object itself; the second argument
is the sum of the values of the flows to/from the entity, and is provided by
the tool. effortDyn(object,

∑
Q̇) therefore defines the time derivative of the

effort variable of the object. That is, if ė = f(
∑

flows , atts), then we define
effortDyn(< O : C | atts >, X) = f(X,atts).

For physical entities with additional continuous variable(s), the functions
contvariDyn define the continuous dynamics of those variables:

ops contvar1Dyn ... contvarnDyn : Object Configuration -> Float .

The first argument of the function is the entity object itself; the second argument
is the entire multiset of objects in the system.

The function flowDyn defines the continuous dynamics of the physical interac-
tions. To define the continuous dynamics of, respectively, two-sided interactions
and one-sided interactions, the following formats are used:

3 The tool currently provides the entity class with two additional continuous variables.
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op flowDyn : Object Float Float -> Float .

op flowDyn : Object Float -> Float .

The first argument of the function is the interaction object itself. The second
(and third) arguments are the effort variable values of the interacting physical
entity/entities. Sometimes attribute values from objects that are not directly
related to the interaction must be used to define the continuous dynamics of an
interaction, in which case the following function is used:

op flowDyn : Object Configuration -> Float .

The second argument is the entire multiset of objects in the system.
Discrete transitions are modeled as rewrite rules. To ensure that such a rule

is applied in a timely manner, HI-Maude provides the function

op timeCanAdvance : Configuration -> Bool .

so that if the user does not want time to advance when an object is in a certain
state, (s)he must define timeCanAdvance to be false for those object states.

Formal Analysis. HI-Maude extends Real-Time Maude’s analysis commands
by allowing the user to select: (i) the numerical approximation technique used
to approximate the continuous behaviors, (ii) the time increment used in the ap-
proximation, and (iii) discrete-switch-detection-based adaptive time increments.
If we use a fixed time increment in the approximations, we may “miss” the
time when the (approximated) effort value is such that a discrete event should
take place (e.g., the body should go to state hyperthermia when its temper-
ature reaches 38.9◦C). We can therefore also use adaptive time increments in
connection with the Euler method to stop time advance exactly when a given
continuous attribute has a desired value.

HI-Maude’s hybrid rewrite command is used to simulate one behavior of the
system from an initial state initState up to a certain duration timeLimit :

(hrew initState in time ∼ timeLimit using numMethod stepsize stepSize

discreteswitch dswitchType .)

∼ is either ‘<=’ or ‘<’; numMethod ∈ {euler, rk2, rk4} is the numerical method
used to approximate the continuous behaviors; stepSize is the time increment
used in the approximation of the continuous behaviors; and (if numMethod is
euler) dswitchType is accurate if adaptive step size should be used to stop time
exactly when a discrete event must take place, and is nonaccurate otherwise.

HI-Maude’s search command searches for up to n states that are matched by
a search pattern with a substitution that satisfies an (optional) condition and
that can be reached from an initial state in a given time interval:

(hsearch [n ] initState =>* searchPattern [such that cond ] in time ∼ timeLimit

using numMethod stepsize stepSize discreteswitch dswitchType .)
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Fig. 2. The human thermoregulatory system

where ∼∈ {<, <=, >, >=}, and cond is a condition on the variables in the search
pattern. The following command finds the shortest time needed to reach a state:

(hfind earliest init =>* pattern [such that cond ] using numMethod stepsize sSize

discreteswitch dswitchType .)

Finally, HI-Maude’s model checker extends Real-Time Maude’s explicit-state
time-bounded linear temporal logic model checker in the same way. The time-
bounded hybrid model checking command is written with syntax

(hmc initState |=t formula in time ∼ timeLimit using numMethod stepsize sSize

discreteswitch dswitchType .)

3 The Human Thermoregulatory System

The human body needs to maintain a body temperature of around 37◦C to
function normally. The metabolic heat production within the body is the only
internal factor affecting body temperature of a healthy person. The environment
surrounding the body affects the body temperature by heat loss or gain through
physical processes such as radiation, evaporation, convection, and conduction.
Hyperthermia and hypothermia occur, respectively, when the body temperature
increases, resp. decreases, significantly beyond normal.

Physiological and behavioral thermoregulation respond to changing environ-
ments in an attempt to ensure human survival and comfort. The primary control
center of physiological thermoregulation is located in a part of the brain called
the hypothalamus. The hypothalamus enables mechanisms to support heat loss



148 M. Fadlisyah, P.C. Ölveczky, and E. Ábrahám

from the body when the body temperature is increasing above normal levels that
include: increasing the diameter of blood vessels to let more blood flow under-
neath the skin (vasodilation), which promotes heat loss by radiation, convection,
and conduction; and increasing sweat production, which promotes heat loss by
evaporation. When the body temperature is decreasing, the hypothalamus en-
ables the following mechanisms to reduce heat loss and increase heat production:
decreasing the diameter of blood vessels to let less blood flow underneath the
skin (vasoconstriction), and stimulating the skeletal muscles to cause shivering,
which increases heat production by the body. Behavioral response to heat or
cold stress include taking off clothes or switch on a fan when the temperature is
felt to be too hot, and putting on more clothes or moving closer to the fireplace
when it feels too cold. Behavioral thermoregulation is related to a part of the
brain called the cerebral cortex.

The Two-Node Modeling Approach. In the two-node Gagge model [9] the human
body is considered as consisting of two concentric layers where the inner layer
is the central core, and the outer layer is the skin shell. Heat exchange between
the body and the environment takes place continuously at the skin surface. Heat
generated inside the body is transfered to the skin surface through blood flow.
From the skin, heat is transferred to the environment by convection, conduction,
radiation, and sweat evaporation. Heat in excess of that which can be dissipated
is stored in the tissue, resulting in a rise of body temperature. As mentioned
below, we extend this basic Gagge model to also take heat exchange between
the body and the environment through respiration into account.

4 Modeling the Human Thermoregulatory System

Using the two-node modeling approach, we model the body core, the body skin,
and the surroundings as thermal entities, and the heat flow among these entities
as thermal interactions, as shown in Fig 3. Heat flows between the core and the
skin through blood vessels, and between the body and the environment through
respiration. Heat flows between the skin and the environment through convec-
tion, radiation, and evaporation. The heat production inside the body through
metabolic processes and the heat production by muscles through shivering are
represented as one-sided thermal interactions.

4.1 Thermal Entities of the Human Body

The change of temperature of a thermal entity with mass m and specific heat

capacity c is given by Ṫ =
∑

Q̇
m·c , where

∑
Q̇ is the amount of heat transferred

per time unit. We therefore model a thermal entity by extending the built-in
class PhysicalEntity with the entity’s heat capacity and mass:

class ThermalEntity | mass : Float, heatCap : Float .

subclass ThermalEntity < PhysicalEntity .
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The continuous dynamics of the effort variable of the entity is defined as4

eq effortDyn(< TE : ThermalEntity | mass : MASS, heatCap : HC >, SF) = SF / (MASS * HC) .

Since we want to add another continuous variable (the amount of water in
a person) to the body core, we define the body core as a subclass of both
ThermalEntity and PhysicalEntityAC1, where the new continuous attribute
contvar1 denotes the amount of water in the person. The body core compo-
nent is defined by extending these classes with the entity’s core state, body
water state, the initial amount of water in the body, and some factor values for
sweating, blood flow, and respiration:

class CoreHumanBody | coreState : CoreState, bWaterState : BWaterState,

bWaterInit : Float, sweatRateFactor : Float,

bloodFlowRateFactor : Float, respiRateFactor : Float .

subclass CoreHumanBody < ThermalEntity PhysicalEntityAC1 .

We define the temperature-related and body-water-related states of the core:

sort CoreState .

ops normal mildHyperthermia modHyperthermia sevHyperthermia mildHypothermia

modHypothermia sevHypothermia death : -> CoreState [ctor] .

sort BWaterState .

ops normal modDehydration sevDehydration death : -> BWaterState [ctor] .

The continuous dynamics of the body water of the component is defined as

4 In this paper we follow the Maude convention that variables are written with (only)
capital letters, and do not show the variable declarations.
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eq contVar1Dyn(< CORE : CoreHumanBody | >,

< BLF : BloodFlow | entity1 : CORE, entity2 : SKIN >

< SKIN : SkinHumanBody | >

< EVAP : Evaporation | entity1 : SKIN, sweatRate : SWTR, area : A >

REST) = SWTR * -1.0 * A .

A thermal interaction between two thermal entities is a two-sided interaction,
with an additional attribute that denotes the area of the flow. Similarly, the
source of heat flow to a thermal entity is a one-sided interaction:

class ThermalInteraction | area : Float .

subclass ThermalInteraction < TwoSidedInteraction .

class ThermalFlowSource | area : Float .

subclass ThermalFlowSource < OneSidedInteraction .

The skin component is defined by extending the class ThermalEntity with an
attribute for different degrees of burn injuries:

class SkinHumanBody | skinState : SkinState .

subclass SkinHumanBody < ThermalEntity .

sort SkinState .

ops normal firstDBurn secondDBurn thirdDBurn : -> SkinState [ctor] .

Changes in the body condition caused by temperature changes are represented
as discrete events. For example, the core experiences severe hyperthermia if the
core temperature exceeds 40.6◦C; this causes the sweating process to stop:

crl [modhyperthermia-to-sevhyperthermia] :

< CORE : CoreHumanBody | effort : TEMP, coreState : modHyperthermia >

< BLF : BloodFlow | entity1 : CORE, entity2 : SKIN >

< SKIN : SkinHumanBody | >

< EVAP : Evaporation | entity1 : SKIN >

=>

< CORE : CoreHumanBody | coreState : sevHyperthermia > < BLF : BloodFlow | >

< SKIN : SkinHumanBody | > < EVAP : Evaporation | state : off >

if TEMP > 40.6 .
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To ensure that these rules are applied in a timely manner, we use the built-in
timeCanAdvance function to define, for each core state, when time can advance
without a rule having to be taken. For example:

eq timeCanAdvance(< CORE : CoreHumanBody | effort : TEMP, coreState : sevHyperthermia >)

= TEMP > 40.6 and TEMP <= 44.0 .

Changes in the volume of water in the body may cause discrete changes in the
body core (see Fig. 4). For example, the body water state changes to severe
dehydration if the body has lost more than 10% of its initial amount of water:

crl [moddehydration-to-sevhydration] :

< CORE : CoreHumanBody | contVar1 : BWATERCUR, bWaterInit : BWATERINIT >

=>

< CORE : CoreHumanBody | bWaterState : sevDehydration >

if bWaterLoss(BWATERCUR, BWATERINIT) >= 0.1 .

Change in skin temperature may change the state of the skin, e.g., to second
degree burn if the skin temperature exceeds 55.0◦C; this causes the evaporation
to stop (the skin experiences third degree burn if its temperature exceeds 62.0◦C):

crl [1st-degree-burn-to-2nd-degree] :

< SKIN : SkinHumanBody | effort : TEMP, skinState : firstDBurn >

< SWEAT : Evaporation | entity1 : SKIN >

=>

< SKIN : SkinHumanBody | skinState : secondDBurn >

< SWEAT : Evaporation | state : off > if TEMP >= 55.0 .

4.2 Thermal Interactions of the Human Body

Due to lack of space, we only explain the modeling of one of the thermal inter-
actions in the system, and refer to [6] for an overview of the other interactions.

The heat flow rate between the core and the skin through the blood vessels
per square meter of body area can be computed using the equation Q̇bf =
(K+ṁbl ·cbl)(Tcr−Tsk), where K is the thermal conductivity between core and
skin, ṁbl is the blood flow rate and cbl is the specific heat capacity of blood [14].
The model of heat exchange through blood flow is shown in Fig 5. Two discrete
states represent whether the blood flow is active or not, since blood stops flowing
when a person is dead (since the heart cannot pump blood anymore). Increasing
or decreasing blood flow through vasodilation or vasoconstriction is managed by
the hypothalamus which determines the value of the blood flow rate.

The blood flow component is defined by extending the ThermalInteraction
class with attributes for the blood flow rate, the blood thermal conductivity, and
the blood heat capacity:

class BloodFlow | state : onOffStatusType, conduct : Float, heatCap : Float,

bloodFlowRate : Float .

subclass BloodFlow < ThermalInteraction .

The continuous dynamics of the flow variable is defined in the usual way:
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eq flowDyn(< BF : BloodFlow | state : on, conduct : COND, heatCap : HC,

bloodFlowRate : BFR, area : A >,

TEMPCR, TEMPSK) = (COND + HC * BFR) * (TEMPCR - TEMPSK) * A .

eq flowDyn(< BF : BloodFlow | state : off, conduct : COND, area : A >, TEMPCR, TEMPSK)

= COND * (TEMPCR - TEMPSK) * A .

The following rule defines the behavior of the blood flow component when it
receives a signal (message) from the hypothalamus containing the value of the
desired blood flow rate:

rl [vaso] :

signalVaso(BF, HYPOTHAL, BFR)

< BF : BloodFlow | entity1 : CORE >

< CORE : CoreHumanBody | coreState : CRST, bWaterState : BWST,

bloodFlowRateFactor : BFRF >

=>

< BF : BloodFlow | bloodFlowRate : if CRST =/= dead and BWST =/= death

then BFRF * BFR else 0.0 fi >

< CORE : CoreHumanBody | > fromActuator(HYPOTHAL, BF) .

4.3 The Controllers

To model the regulatory process in the human body, we have defined a con-
trol system with controllers, sensors, and actuators. A sensor is connected to
a component in a physical system to monitor the value of some variable and
to periodically send the value to one or more controllers. A controller receives
information from one or more sensors, and performs the controlling actions by
sending messages/signals to one or more actuators. We again refer to the longer
report [6] for details about this control system infrastructure and the cortex.

The hypothalamus component is defined by extending the controller class with
attributes for temperature set points for the core and the skin. The hypothalamus
component is triggered when it receives the core and skin temperature values. If
the hypothalamus is not inactive, it uses these values to compute the appropriate
messages/signals to send to the sweating, shivering, and blood flow components,
and to send the core temperature value to the cortex.
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class Hypothalamus | setPointCore : Float, setPointSkin : Float .

subclass Hypothalamus < Controller .

rl [hypo-manages-involuntary-thermoreg] :

tempValCore(HYPOTHAL, RECEPTCR, TEMPCR)

tempValSkin(HYPOTHAL, RECEPTSK, TEMPSK)

< HYPOTHAL : Hypothalamus | status : waiting, setPointCore : SPCR,

setPointSkin : SPSK >

< SWEAT : EvapSkinSweating | controller : HYPOTHAL >

< SHIVER : Shivering | controller : HYPOTHAL >

< BF : BloodFlow | controller : HYPOTHAL >

< CORTEX : Cortex | dataProvider : HYPOTHAL >

=>

< HYPOTHAL : Hypothalamus | status : running, sensors : RECEPTCR ; RECEPTSK,

actuators : BF ; SWEAT ; SHIVER >

< SWEAT : EvapSkinSweating | > < SHIVER : Shivering | >

< BF : BloodFlow | > < CORTEX : Cortex | >

signalVaso(BF, HYPOTHAL, bloodFlowRate(TEMPCR, TEMPSK, SPCR, SPSK))

makeSignalSweating(SWEAT, HYPOTHAL, TEMPCR, TEMPSK, SPCR, SPSK)

makeSignalShivering(SHIVER, HYPOTHAL, TEMPCR, TEMPSK, SPCR, SPSK)

tempValCoreFromHypothalamus(CORTEX, HYPOTHAL, TEMPCR) .

Some of the “messages” above are functions which generate the appropriate
message. For example, when the body temperature is considered too hot, a
signal containing the on value and the sweat rate value is sent to the sweating
component. If the body temperature is considered fine, only the off value is
sent. The treatment is similar for messages to the shivering component:

op makeSignalSweating : Oid Oid Float Float Float Float -> Msg .

op makeSignalShivering : Oid Oid Float Float Float Float -> Msg .

msg signalVaso : Oid Oid Float -> Msg .

msgs signalSweating signalShivering : Oid Oid OnOffStatusType Float -> Msg .

msg hypothalamusInactive : Oid Oid -> Msg .

ceq makeSignalSweating(SWEAT, HYPOTHAL, TEMPCR, TEMPSK, SPCR, SPSK) =

signalSweating(SWEAT, HYPOTHAL, if SWTR =/= 0.0 then on else off fi, SWTR)

if SWTR := sweatRate(TEMPCR, TEMPSK, SPCR, SPSK) .

ceq makeSignalShivering(SHIVER, HYPOTHAL, TEMPCR, TEMPSK, SPCR, SPSK) =

signalShivering(SHIVER, HYPOTHAL, if SHVR =/= 0.0 then on else off fi, SHVR)

if SHVR := shiverRate(TEMPCR, TEMPSK, SPCR, SPSK) .

The function bloodFlowRate, governing vasodilation and vasoconstriction, is
defined according to the equation for the blood flow rate for two-node models
as ṁbl =

1
3600 [6.3 + 200·WSIGcr

1+0.5·CSIGsk
], where WSIGcr and CSIGsk are the effector

controlling signals for, respectively, vasodilation and vasoconstriction [14].
The equation for the shivering heat production rate for the two-node model

is Q̇′′
sh = 19.4 · CSIGsk · CSIGcr (in W/m2; we multiply by 10−3 since we use

kiloWatts):

op shiverRate : Float Float Float Float -> Float .

eq shiverRate(TEMPCR, TEMPSK, SPCR, SPSK) =

19.4 * cSigSK(TEMPSK, SPSK) * cSigCR(TEMPCR, SPCR) * 0.001 .
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Fig. 6. The Sauna World Championships in Heinola, Finland

The function computing the sweat rate is based on [14] where it is defined as
ṁsw = 4.7 · 10−5 ·WSIGbody · exp(WSIGsk

10.7 ):

op sweatRate : Float Float Float Float -> Float .

eq sweatRate(TEMPCR, TEMPSK, SPCR, SPSK) =

4.7 * 0.00001 * wSigBody(TEMPCR, TEMPSK, SPCR, SPSK) * exp(wSigSK(TEMPSK, SPSK)).

5 Extreme Exposure: The Sauna World Championships

The Sauna World Championships were an annual event held in Heinola, Fin-
land. The winner is the contestant who can stay the longest in an oppressively
hot sauna. Before the torturing game starts, the sauna is pre-heated to 110◦C
(warmer than the boiling point for blood). To make the conditions even worse,
every thirty seconds half a liter of water is poured onto the hot sauna rocks which
are the heat source of the sauna. The intense vapor from this water increases
the humidity of the sauna, which makes it more difficult for the participants’
sweat to evaporate. The world record of 18 minutes and 15 seconds was set in
the 2008 championships. The championships in 2010 ended in a tragedy. The two
last finalists collapsed with severe burn injuries after about six minutes. One of
them died a day later, and the other, a five-time champion, survived after two
months in coma, with serious damage to his skin, lungs and kidneys. They were
both conscious but were unable to get out of the sauna on their own. The cause
of this tragedy is still under investigation. The temperature in the sauna was
similar to those in previous years and the times of the competitors were about
the same, until this terrible final round.

This section shows how we can use HI-Maude and our model to formally ana-
lyze the ability of an unhealthy, a normal, and a trained human body to survive
extreme conditions similar to those in the sauna world championships. We also
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try to find out what may have happened that fateful day in 2010. In particular,
Section 5.1 gives an overview of our model of the thermodynamics of the sauna.
We do not have any official information about the sauna environment used in
the world championships, but after researching literature, product descriptions,
etc., we have obtained information that we use to define the parameter values
(see [6]). Section 5.2 then presents some snippets of our HI-Maude analyses.

5.1 Modeling the Sauna

The sauna is modeled as a room which uses special rocks to provide heat to the
room, as shown in Fig. 7. The rocks are heated by a heater, which is connected
to a control system that manages the temperature of the room. Some amount
of water is periodically poured on the rocks.

Thermal Entities. The thermal entity for the sauna room is modeled in a
different way than the other thermal entity components. For example, there are
two attributes for the mass: for the dry air and the water vapor, since we have
to model the effect of pouring water on the rocks.

class SaunaRoom | massDryAir : Float, spHeatAir : Float, massWaterVap : Float,

spHeatWater : Float, relHumid : Float, timer : Int, period : Int,

vol : Float, gcDryAir : Float, gcWaterVap : Float .

subclass SaunaRoom < PhysicalEntity .

The attributes massDryAir and massWaterVap specify the mass of dry air and of
water vapor, respectively; spHeatAir and spHeatWater specify the specific heat
of air and water, respectively; relHumid keeps the value of relative humidity of
the room; timer is used for triggering periodical events; vol denotes the volume
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of the sauna room; and gcDryAir and gcWaterVap are the gas constants of dry
air and water vapor, respectively.

The continuous dynamics of the effort variable of the sauna is defined by

ceq effortDyn(< ROOM : SaunaRoom | massDryAir : MASSDA, spHeatAir : SHDA,

massWaterVap : MASSWV, spHeatWater : SHWV >, SF)

= SF / ((MASSDA + MASSWV) * specHeatHumid(SHDA, SHWV, HUMSPEC))

if HUMSPEC := humidRatio2(MASSDA, MASSWV) .

This equation is the basic equation for thermal entities, taking into account that
the mass of the room is a combination of the mass of the dry air and of the water
vapor. The function specHeatHumid computes the specific heat of a mix of dry
air and water vapor, and humidRatio computes the humidity ratio of the mix.

The sauna rocks component is defined as a simple thermal entity:

class SaunaRocks . subclass SaunaRocks < ThermalEntity .

Heat transfer from the rocks occurs through convection and radiation. We use
the basic forms of these heat transfers:

class ConvectionBasic | convectCoeff : Float .

class RadiationBasic | emmissiv : Float .

subclass ConvectionBasic RadiationBasic < ThermalInteraction .

eq flowDyn(< CONV : ConvectionBasic | convectCoeff : COEFF, area : A >, TEMP1, TEMP2)

= COEFF * (TEMP1 - TEMP2) * A .

eq flowDyn(< RAD : RadiationBasic | emmissiv : EMMI, area : A >, TEMP1, TEMP2)

= EMMI * stefBoltzConst * A * ((TEMP1 ^ 4.0) - (TEMP2 ^ 4.0)) .

Pouring Water. We make some simplifying assumptions when considering the
thermal effect of pouring water on the rocks: the effect of pouring water is a
heat loss for the heating rocks and a heat gain for the sauna; all the water is
vaporized; and the vaporization is instantaneous. The water pouring component
is defined as a thermal interaction between the rocks and the sauna room:

class WaterPouringHeatLoss | mass : Float, temp : Float, heatCap : Float,

heatEvap : Float, timer : Int, period : Int .

subclass WaterPouringHeatLoss < PhysicalInteraction .

The attribute mass specifies the amount of water poured; temp defines the tem-
perature of the poured water; heatCap and heatEvap represent the heat capacity
and the latent heat evaporation of the water, respectively; and timer and the
period are used to trigger the water pouring event periodically.

The flow variable of the water pouring component represents the rate of heat
flow from the rocks to the sauna room. We separate between the case when the
water is poured, and when nothing happens between two water pouring events:

eq flowDyn(< WPHL : WaterPouringHeatLoss | mass : MASS, temp : TEMP, heatCap : HC,

heatEvap : HEVAP, timer : TMR >,

EFF1, EFF2)

= if TMR =/= 0 then 0.0

else MASS * HC * (100.0 - TEMP) + MASS * HEVAP * factorPourWater(EFF1, TEMP) fi .
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When the water is poured, assuming that the water is vaporized at once, the
heat transfered from the rocks to the room is the sum of the heat needed to
increase the water to the boiling point and the heat needed to change the water
from the liquid to vapor.

The water is poured periodically. When the associated timer expires (i.e.,
becomes 0), water is poured on the rocks, and the vapor content of the sauna
room increases by the amount of water poured (half a litre):

rl [add-watervap-to-sauna] :

< ROOM : SaunaRoom | timer : 0, massWaterVap : MASSWV, period : PER >

=>

< ROOM : SaunaRoom | timer : PER, massWaterVap : MASSWV + 0.5 > .

The function timeCanAdvance must be used to ensure that the rule is applied
at the moment when the timer expires:

eq timeCanAdvance(< ROOM : SaunaRoom | timer : TMR >) = TMR > 0 .

The other effect of pouring water on the heating rocks is an increase in the rela-
tive humidity of the sauna room. The function computeAfterEF is used to update
the value of relative humidity, and also the timer (which should be synchronized
with the timer of the pouring water component):

ceq computeAfterEF(< ROOM : SaunaRoom | timer : TMR, effort : TEMPAM, vol : VOL,

massWaterVap : MASSWV, gcWaterVap : GCWV,

massDryAir : MASSDA, gcDryAir : GCDA > REST)

= < ROOM : SaunaRoom | timer : TMR - 1,

relHumid : relativeHumidity(PRESTOT, PRESSAT, HUMSPEC) >

computeAfterEF(REST)

if TMR > 0 /\ PRESWV := gasPressure(MASSWV, GCWV, TEMPAM, VOL)

/\ PRESDA := gasPressure(MASSDA, GCDA, TEMPAM, VOL)

/\ PRESTOT := PRESWV + PRESDA

/\ PRESSAT := waterVaporPressure(TEMPAM)

/\ HUMSPEC := humidRatio(MASSDA, MASSWV) .

The Sauna Heating System. The heating system considered here is an au-
tomatic control system which manages to keep the temperature of the sauna
room at a specified value. The room temperature read by a sensor determines
the activation and deactivation of the heater. The specification is fairly standard
(in the context of this paper!) and is not further explained.

5.2 HI-Maude Analysis

We are now ready to use HI-Maude to analyze how long people in different
states of fitness for the event can endure in different kinds of saunas, as well as
to analyze some of our own hypotheses for what may have happened at the 2010
championships. As described in [6], we model the persons according to known
medical facts/assumptions and models. We use physical parameter values for
the sauna heating system based on real values found in product descriptions of
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Fig. 8. Simulation results for the dry sauna: temperatures of the human body and the
sauna environment thermal entities (left), and heat flow rates of the human body (top
right) and of the sauna (bottom right) thermal interactions

commercial sauna heating systems (see [6]). The experiments were performed
on a computer with an Intel Pentium 4 CPU 3.00 GHz and 3 GB of RAM.
All analyses are carried out using Euler’s numerical method with fixed time
increment size one.

We model three kinds of saunas:

– a dry sauna, where no water is poured on the heating rocks;
– a moderate wet sauna, where half a liter of water is poured every 5 minutes;
– an extreme wet sauna, where half a liter of water is poured every 30 seconds.

To analyze what happens to our virtual experimental subject after 30 minutes
in the sauna, we can use the HI-Maude simulation command

(hrew cs1 in time <= 1800 using euler stepsize 1.0 discreteswitch nonaccurate .)

where cs1 is an initial state consisting of all appropriate physical entity objects
and physical interaction objects with their respective initial values (see again [6]).
Figure 8 shows the simulation results for the dry sauna for the average person
up to 30 minutes. In the beginning the skin can handle the heat from the sauna
room well, while the core temperature increases slowly. However at some point
between minute 20 and 23, the skin temperature increases drastically. As we
see in the graph on the right, at that point the sweating stops, possibly due to
severe hyperthermia or second degree skin burn. At the same point, the heat flow
from the blood vessels transfers heat from the skin to the core at an increasing
rate. We next use the hybrid find earliest command to find out when a person
encounters severe hyperthermia:

(hfind earliest cs1 =>*

{REST:Configuration < personCore : CoreHumanBody | coreState : CRST >}

such that (CRST == sevHyperthermia)

using euler stepsize 1.0 discreteswitch nonaccurate .)
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The following table shows the results of the analysis command above for dif-
ferent sauna environments and different persons, for severe hyperthermia, severe
dehydration, and second degree skin burn:

Person Body condition Sauna
dry moderate wet extreme wet

Normal

sev.hyperthermia 1177 s 1104 s 719 s
CPU: 497756ms CPU: 472856ms CPU: 316259ms

sev.dehydration no result no result no result
CPU: – CPU: – CPU: –

skin 2nd burn 1366 1258 s 770 s
CPU: 651181ms CPU: 606713ms CPU: 394679ms

Trained

sev.hyperthermia 2436 s 2160 s 1266 s
CPU: 1404685ms CPU: 1221302ms CPU: 712206ms

sev.dehydration no result no result no result
CPU: – CPU: – CPU: –

skin 2nd burn 2792 s 2457 s 1392 s
CPU: 1753605ms CPU: 1790829ms CPU: 821230ms

Unhealthy

sev.hyperthermia 780 s 728 s 466 s
CPU: 330182ms CPU: 316502ms CPU: 298229ms

sev.dehydration no result no result no result
CPU: – CPU: – CPU: –

skin 2nd burn 784 s 597 s 340 s
CPU: 335146ms CPU: 250891ms CPU: 159359ms

Our analyses show that even the average person should endure 12 minutes in
the wet sauna before the onset of major injuries (and that all persons die from
hyperthermia before becoming severely dehydrated). We next propose and ana-
lyze some possible explanations for the still unsolved tragedy that could cause
major injuries to a five-time world champion in around 6 minutes:

– The initial sauna room temperature is, as expected, 110◦C. But the temper-
ature of the heating rocks is 250◦C. We understand from the manual of the
heating system of the product used in Heinola that the temperature sensor
only monitors the air temperature of sauna room and not the heating rocks.

– The temperature sensor is wrong and the temperature is higher. It turns
out that even at 150◦C, they should be fine for more than 10 minutes. A
temperature of around 210◦C is needed to explain the outcome.

– The humidity of the sauna is extremely high from the start. We start with
39 liters of water vapor instead of the expected 10 liters.

The results of our HI-Maude analyses of these hypothesis are:

Person Body condition Possible problems
Heating rocks 250◦C Room air 210◦C Very high humidity

Trained
sev.hyperthermia 349 s 328 s 785 s
sev.dehydration no result no result no result
skin 2nd burn 414 s 393 s 311 s



160 M. Fadlisyah, P.C. Ölveczky, and E. Ábrahám

Additional analyses are given in [6], including an analysis of whether a person
with high tolerance level will be badly burnt or dehydrated before thinking about
exiting the sauna.

6 Concluding Remarks

We have presented a detailed and realistic formal model, with all assumptions
based on scientific/medical knowledge, of the human thermoregulatory system
and its interactions with different kinds of environments, including oppressive
saunas, and have simulated and further formally analyzed the reaction of differ-
ent kinds of people to various saunas. The results of our analyses are decently
close to what we know about how long both professionals and amateurs (sports
writers, rock stars, etc.) can endure in the sauna.

We have also used HI-Maude to analyze some possible explanations for the
still unresolved tragedy at the 2010 Sauna World Championships.
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Abstract. Built-in equality and inequality predicates based on com-
parison of canonical forms in algebraic specifications are frequently used
because they are handy and efficient. However, their use places algebraic
specifications with initial algebra semantics beyond the pale of theorem
proving tools based, for example, on explicit or inductionless induction
techniques, and of other formal tools for checking key properties such as
confluence, termination, and sufficient completeness. Such specifications
would instead be amenable to formal analysis if an equationally-defined
equality predicate enriching the algebraic data types were to be added
to them. Furthermore, having an equationally-defined equality predicate
is very useful in its own right, particularly in inductive theorem prov-
ing. Is it possible to effectively define a theory transformation E �→ E �

that extends an algebraic specification E to a specification E � having an
equationally-defined equality predicate? This paper answers this question
in the affirmative for a broad class of order-sorted conditional specifica-
tions E that are sort-decreasing, ground confluent, and operationally ter-
minating modulo axioms B and have a subsignature of constructors. The
axioms B can consist of associativity, or commutativity, or associativity-
commutativity axioms, so that the constructors are free modulo B. We
prove that the transformation E �→ E � preserves all the just-mentioned
properties of E . The transformation has been automated in Maude using
reflection and is used in several Maude formal tools.

1 Introduction

It can be extremely useful, when reasoning about equational specifications with
initial semantics, to have an explicit equational specification of the equality pred-
icate as a binary Boolean-valued operator ‘�’. For example, in theorem proving
where the logic of universal quantifier-free formulas is automatically reduced to
unconditional equational logic so that the formula (u �= v ∨ w = r) ∧ q = t
becomes equivalent to the equation (not(u � v) or w � r) and q � t = true,
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and in inductionless induction where inductive proofs are reduced to proofs by
consistency because any equation not holding inductively makes true = false.

An equationally-defined predicate can as well be useful in the elimination of
built-in equalities and inequalities that often are introduced in algebraic specifica-
tions through built-in operators. Such built-in equalities and inequalities are not
defined logically but operationally, for both expressiveness and efficiency reasons,
by comparison of canonical forms. However, their non-logical character renders
any formal reasoning about specifications using them impossible. In particular,
the use of formal tools such as those checking termination, local confluence, or
sufficient completeness of an algebraic specification is impossible with built-in
equalities and inequalities, but becomes possible when they are replaced by an
equationally axiomatized equality predicate ‘�’. That is, the equality between t
and t′ is now expressed as t � t′ = true, and their inequality as t � t′ = false .
Furthermore, the equality t � t′ will still be correct when t and t′ are terms with
variables, whereas a built-in equality predicate will often give a false negative
answer for such terms, even when the equations are confluent and terminating.
For example, for natural number addition ‘+’, defined by equations x + 0 = x
and x + s(y) = s(x + y), the terms x + y and y + x are already in canonical
form and a built-in equality predicate ‘≡’ will evaluate x + y ≡ y + x to false .
Instead, x+ y � y+x will remain in canonical form with ‘�’ and one can then
inductively prove x+ y � y+ x = true using the equations defining ‘+’ and ‘�’.

In principle, the meta-theorem of Bergstra and Tucker [2] ensures that any
computable data type can be axiomatized as an initial algebra defined by a finite
number of Church-Rosser and terminating equations. This also means that such a
computable data type plus its equality predicate is also finitely axiomatizable by
a finite set of Church-Rosser and terminating equations. However, the Bergstra-
Tucker result is non-constructive in the sense that it does not give an algorithm
to actually obtain the equational specification of the data type with its equality
predicate. Therefore, what would be highly desirable in practice is a general
constructive theory transformation E �→ E � that adds equationally-axiomatized
equality predicates to an algebraic data type specification E .

Such a transformation should be as general as possible for it to be useful
in practice. For example, a transformation applicable only to “vanilla-flavored”
specifications without support for types and subtypes, or that excludes condi-
tional equations and rewriting modulo axioms would be extremely limited. The
transformation should also come with strong preservation properties. For exam-
ple, if E is ground confluent, ground operationally terminating, and sufficiently
complete, then E � should also enjoy these same properties that are often es-
sential both for executability and for a variety of formal reasoning forms.

These generality and property-preservation requirements on the transforma-
tion E �→ E � are a tall order. For instance, if f is a free constructor symbol, then
the equations f(x1, . . . , xn) � f(y1, . . . , yn) = x1 � y1 and . . . and xn � yn and
f(x1, . . . , xn) � g(y1, . . . , ym) = false , for each constructor g �= f of same type,
give a perfectly good and straightforward axiomatization of equality for f . But
how can the equality predicate be defined when f satisfies, e.g., associativity and
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commutativity axioms? Also, how should sorts and subsorts be dealt with? An
even harder issue is the preservation of properties such as ground confluence, op-
erational termination, and sufficient completeness. The difficulty is that for any
given specification there are tools that can be used to prove such properties, but
we need a proof that will work for all specifications in a very wide class. What
we actually need are metatheorems ensuring that these properties are preserved
under the transformation for any equational specification in the input class.

We present in this paper an effective theory transformation E �→ E � that
satisfies the above-mentioned preservation properties. The class of equational
theories E accepted as inputs to the transformation is quite general. Modulo
mild syntactic requirements, it consists of all order-sorted theories E of the form
(Σ,E�B) having a subsignatureΩ of constructors and such that: (i) B is a set of
associativity, or commutativity, or associativity-commutativity axioms1; (ii) the
equations E can be conditional and are sort-decreasing, ground confluent, and
ground operationally terminating; and (iii) the constructors Ω are free modulo
B, i.e., there is an isomorphism TΣ/E	B|Ω ∼= TΩ/B of initial algebras.

Outline. Preliminaries on order-sorted equational specifications are presented
in Section 2. Section 3 contains the definition and fundamental properties of an
equality enrichment. Sections 4 and 5 present the transformation E �→ E � and
state its basic metatheorems. The implementation of the transformation, some of
its practical consequences, and a case study are presented in Section 6. The ex-
tended version of this paper [9] contains the details and proofs of the mathemat-
ical development. The implementation of the transformation, the case study, and
more examples are available at http://maude.cs.uiuc.edu/tools/eq-enrich/.

2 Preliminaries

We assume basic knowledge on term rewriting [1] and order-sorted algebra [7].

Order-Sorted Signatures and Terms. We assume an order-sorted signature
Σ = (S,≤, F ) with a finite poset of sorts (S,≤) and a finite set of function sym-
bols F . We also assume that the function symbols in F can be subsort overloaded
and satisfy that if f ∈ Fw,s∩Fw′,s′ then w ≡≤ w′ implies s ≡≤ s′, where ≡≤ de-
notes the equivalence relation generated by ≤ on S and (w, s), (w′, s′) ∈ S∗×S.
We say that f : s1 · · · sn → s ∈ F is a maximal typing of f in Σ if there is no
other f : s′1 · · · s′n → s′ ∈ F such that si ≤ s′i, 1 ≤ i ≤ n, and s ≤ s′. We let
X = {Xs}s∈S be an S-sorted family of disjoint sets of variables with each Xs

countably infinite. The set of Σ-terms of sort s is denoted by TΣ(X)s and the
set of ground terms of sort s is denoted by TΣ,s, which we assume nonempty
for each s. We let TΣ(X) and TΣ denote the corresponding order-sorted term
algebras. The set of variables of a term t is written Var(t) and is extended to

1 Identity axioms are excluded from our transformation. However, by using the trans-
formation described in [5] and subsort-overloaded operators, one can often extend
our transformation to specifications that also include identity axioms.

http://maude.cs.uiuc.edu/tools/eq-enrich/
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sets of terms in the natural way. A substitution θ is a sorted mapping from a
finite subset Dom(θ) ⊆ X to TΣ(X) and extends homomorphically in the nat-
ural way; Ran(θ) denotes the set of variables introduced by θ. The application
of a substitution θ to a term t is denoted by tθ and the composition of two
substitutions θ1 and θ2 is denoted by θ1θ2. A substitution θ is called ground iff
Ran(θ) = ∅. We assume that all order-sorted signatures are preregular [7], so
that each Σ-term t has a least sort ls(t) ∈ S such that t ∈ TΣ(X)ls(t).

Order-Sorted Equational Theories. A Σ-equation is an expression t = t′

with t ∈ TΣ(X)s, t
′ ∈ TΣ(X)s′ , and s ≡≤ s′. A conditional Σ-equation is a

Horn clause t = t′ if C with t = t′ a Σ-equation and C =
∧

i ui = vi a finite
conjunction of Σ-equations. An equational theory is a tuple (Σ,E) with Σ an
order-sorted signature and E a finite set of conditional Σ-equations. For ϕ a
conditional Σ-equation, (Σ,E)  ϕ iff ϕ can be proved from (Σ,E) by the
deduction rules in [13] iff ϕ is valid in all models of (Σ,E) [13]. An equational
theory (Σ,E) induces the congruence relation =E on TΣ(X) defined for any
t, u ∈ TΣ(X) by t =E u iff (Σ,E)  (∀X) t = u. We let TΣ/E(X) and TΣ/E

denote the quotient algebras induced by =E on the algebras TΣ(X) and TΣ ,
respectively. We call TΣ/E the initial algebra of (Σ,E) and call a conditional
Σ-equation ϕ an inductive consequence of (Σ,E) iff TΣ/E |= ϕ, i.e., iff (∀θ :
X −→ TΣ)(Σ,E)  ϕθ. A theory inclusion (Σ,E) ⊆ (Σ′, E′), with Σ ⊆ Σ′ and
E ⊆ E′, is called protecting iff the unique Σ-homomorphism TΣ/E −→ TΣ′/E′ |Σ
to the Σ-reduct of the initial algebra TΣ′/E′ is a Σ-isomorphism.

Executability Conditions. We assume that the set of equations of an equa-
tional theory can be decomposed into a disjoint union E � B, with B a collec-
tion of axioms (such as associativity, and/or commutativity, and/or identity) for
which there exists a matching algorithm modulo B producing a finite number of
B-matching substitutions, or failing otherwise. Furthermore, we assume that all
axioms in B are sort-preserving, i.e., for each u = v ∈ B and substitution θ we
have ls(uθ) = ls(vθ). The conditional equations E can be oriented into a set of
(possibly conditional) (ground) sort-decreasing, (ground) operationally terminat-

ing [12], and (ground) confluent conditional rewrite rules
−→
E modulo B. We let

→E/B denote the one-step rewrite relation induced by
−→
E modulo B on TΣ(X),

and let →∗
E/B denote its reflexive and transitive closure. A set of rewrite rules

−→
E modulo B is: (i) sort-decreasing iff for each t = t′ if C ∈ E and substitution
θ we have ls(tθ) ≥ ls(t′θ) if (Σ,E � B)  Cθ; (ii) operationally terminating iff

there is no infinite well-formed proof tree modulo B in
−→
E [5]; and (iii) confluent

if for all t, t′, t′′ ∈ TΣ(X), if t→∗
E/B t′ and t→∗

E/B t′′, then there is u ∈ TΣ(X)

such that t′ →∗
E/B u and t′′ →∗

E/B u. A set of rewrite rules
−→
E modulo B is

ground sort-decreasing, ground operationally terminating, and ground confluent
iff it is, respectively, sort-decreasing, operationally terminating, and confluent
for ground terms. We let t↓E/B ∈ TΣ,s(X) denote the E-canonical form of t
modulo B, i.e., t→∗

E/B t↓E/B and t↓E/B cannot be further rewritten. Under the
above assumptions t↓E/B is unique up to B-equality.
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Free Constructors Modulo. Given E = (Σ,E � B) ground sort-decreasing,
ground confluent, and ground operationally terminating modulo B, we say that
Ω ⊆ Σ is a subsignature of free constructors modulo B iff Ω has the same poset
of sorts as Σ and for each sort s in Σ and ground term t ∈ TΣ,s there is a
u ∈ TΩ,s satisfying t =E	B u and, moreover, v↓E/B =B v for each v ∈ TΩ,s.

3 Equality Enrichments

An equality enrichment [14] of an equational theory E is an equational theory E �

extending E that defines equality in TE as a Boolean-valued function, as stated
in Definition 1. In this section we fix an order-sorted signature Σ = (S,≤, F )
and an order-sorted equational theory E = (Σ,E) with initial algebra TE .
Definition 1 (Equality Enrichment) (generalizes [14, Definition 68]).
An equational theory E � = (Σ� , E �) is called an equality enrichment of E,
with Σ � = (S � ,≤� , F � ) and Σ = (S,≤, F ), iff

– E � is a protecting extension of E;
– the poset of sorts of Σ � extends (S,≤) by adding a new sort Bool that

belongs to a new connected component, with constants � and ⊥ such that
TE � ,Bool = {[�], [⊥]}, with � �=E � ⊥; and

– for each connected component in (S,≤) there is a top sort k ∈ S � and a
binary commutative operator � : k k −→ Bool in Σ � , such that the
following holds for any ground terms t, u ∈ TΣ,k:

E  t = u ⇐⇒ E �  (t� u) = �, (1)

E � t = u ⇐⇒ E �  (t� u) = ⊥. (2)

An equality enrichment E � of E is called Boolean iff it contains all the func-
tion symbols and equations making the elements of TE � ,Bool a two-element
Boolean algebra.

The equality predicate � in E � is sound for inferring equalities and inequali-
ties in the initial algebra TE , even for terms with variables. The precise meaning
of this claim is given by Proposition 1.

Proposition 1 (Equality Enrichment Properties). Let E � = (Σ � , E � )
be an equality enrichment of E. Then, for any Σ-equation t = u with X =
Var(t) ∪ Var(u):

TE |= (∀X) t = u ⇐⇒ TE � |= (∀X) (t� u) = �, (3)

TE |= (∃X) ¬(t = u) ⇐⇒ TE � |= (∃X) (t� u) = ⊥, (4)

TE |= (∀X) ¬(t = u) ⇐⇒ TE � |= (∀X) (t� u) = ⊥. (5)

Note that by using an equality enrichment E � of E , the problem of reasoning
in TE about a universally quantified inequality ¬(t = u) (abbreviated t �= u)
can be reduced to reasoning in TE � about the universally quantified equality
(t� u) = ⊥. A considerably more general reduction, not just for inequalities but
for arbitrary quantifier-free first-order formulae, can be obtained with Boolean
equality enrichments, as stated in Corollary 1.
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Corollary 1. Let E � = (Σ � , E � ) be a Boolean equality enrichment of E. Let
ϕ = ϕ(t1 = u1, . . . , tn = un) be a quantifier-free Boolean formula whose atoms
are the Σ-equations ti = ui with variables in X, for 1 ≤ i ≤ n, and with Boolean
connectives in {¬,∨,∧}. Then, the following holds

TE |= (∀X)ϕ ⇐⇒ TE � |= (∀X) ϕ̂(t1 � u1, . . . , tn � un) = �, (6)

where ϕ̂(t1 � u1, . . . , tn � un) is the Σ � -term of sort Bool obtained from ϕ by
replacing every occurrence of the logical connectives ¬, ∨, and ∧ by, respectively,
the function symbols ¬ , ! , and " in EBool (making TE,Bool a Boolean algebra)
and every occurrence of an atom ti = ui by the Bool term ti � ui, for 1 ≤ i ≤ n.

A key property of an equality enrichment E � of E is that, if E � is extended
with any set E′ of Σ-equations that are not satisfiable in TE , then the result-
ing extension is inconsistent so that one can derive the contradiction � = ⊥.
Conversely, if the set E′ of Σ-equations extending E � is satisfiable in TE , then
the resulting extension is consistent and therefore cannot yield a proof of con-
tradiction. Statements (7) and (8) in Corollary 2 account for these two facts.

Corollary 2 (generalizes [14, Theorem 74]). Let E � = (Σ � , E � ) be an
equality enrichment of E and let E′ be a collection of Σ-equations. Then the
following holds

TE �|= E′ ⇐⇒ (Σ � , E � ∪E′)  � = ⊥, (7)

TE |= E′ ⇐⇒ (Σ � , E � ∪E′) � � = ⊥. (8)

4 Equality Enrichments of Theories with Free
Constructors Modulo

In this section we present the effective theory transformation E �→ E � for enrich-
ing order-sorted equational theories having free constructors modulo structural
axioms with an equality predicate. We fix an order-sorted equational theory
E = (Σ,E �B), with Σ = (S,≤, F ), and assume that Ω ⊆ Σ is a subsignature
of free constructors modulo B, where B is a union of associative (A), commuta-
tive (C), and associative-commutative (AC) axioms. Furthermore, the following
convention is adopted: for x a variable and s a sort, the expression xs indicates
that x has sort s, i.e., x ∈ Xs.

The theory transformation performed by E �→ E � consists of two main tasks
or subtransformations. On input E , it first extends E by adding new sorts, the
equational theory EBool of Booleans with constructors � and ⊥ (and with the
other usual Boolean connectives equationally defined), some auxiliary functions,
and the predicate � for each top sort in the input theory E . Then, it generates
a set of equations defining � that depend on the structural axioms of the
symbols in Ω. More precisely,
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Transformation 1: extends the input theory E by:
1. generating a fresh top sort for each connected component in Σ that does

not have it,
2. adding the theory EBool with fresh new sort Bool ,
3. adding a Boolean-valued (binary) commutative operator � for the top

sort of each connected component of E , and
4. adding for each f ∈ Ω with A or AC structural axioms the Boolean-

valued unary operator rootkf , and if f is AC adding also the Boolean-

valued binary operator ink
f .

Transformation 2: for each f ∈ Ω, and depending on the structural axioms
of f , generates a suitable set of equations defining � , rootkf , and ink

f .

Auxiliary Boolean-valued operators rootkf and ink
f are useful for respectively

checking if a term t is rooted by the constructor symbol f , or if a term t is an
alien subterm of an f -rooted term t′. In this paper we use the Boolean theory
EBool specified in [3, Subsection 9.1]. The theory EBool has free constructors
modulo BBool , it is sort-decreasing, confluent, and operationally terminating
modulo AC, and hence provides a Boolean decision procedure. It has signature
of free constructors ΩBool = {�,⊥}, set of defined symbols ΣBool \ ΩBool =
{ ¬ , " , ! , � , ⊃ }, and satisfies TEBool |= � �= ⊥. The choice of EBool is some-
what arbitrary: any equational theory implementing a Boolean decision proce-
dure should suffice for our purpose (for instance, see [17] for other equational
Boolean decision procedures).

Definition 2 spells out in detail Transformation 1 and prepares the ground for
Transformation 2.

Definition 2 (Enrich). Given E, the transformation E �→ E � generates the
smallest equational theory E � = (Σ � , E � �B � ) satisfying:

– E ∪ EBool ⊆ E � ;
– the poset of sorts of E � extends that of E by adding a new connected com-

ponent {Bool}, and by adding a fresh top sort to any connected component
of the poset of sorts of E lacking a top sort;

– for each top sort k in Σ � of a connected component of Σ, Σ � contains a
commutative operator:

( � ) : k k → Bool ,

B � contains the commutative structural axiom:

xk � yk = yk � xk,

and E � contains the equation:

xk � xk = �;

– for each top sort k in Σ � of a connected component of Σ and for each
function symbol f : s s′ → s′′ ∈ Ω, with s ≤ k, s′ ≤ k, and s′′ ≤ k:
• if f has axioms A or AC, then Σ � contains the symbol:

rootkf : k → Bool ,
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• if f has axioms AC, then Σ � contains the symbol:

ink
f : k k → Bool ;

– for each function symbol f ∈ Ω, E � contains the equations enrichE(f) (see
the upcoming definitions in this section).

Function enrichE in Definition 2 formally specifies Transformation 2 and is de-
fined by cases for each constructor symbol, depending on its structural axioms.
We start with the definition of enrichE for the case in which the constructor
symbol has no structural axioms; we call such a symbol absolutely free.

Definition 3 (Absolutely Free Enrich). Assume f ∈ Ω is an absolutely free
symbol. Then, for each maximal typing f : s1 . . . sn → s of f ∈ Ω, enrichE(f)
adds the following equations:

– for each g : s′1 . . . s
′
m → s′ ∈ Ω a maximal typing of g such that s ≡≤ s′ and

f �= g:
f(x1

s1 , . . . , x
1
sn)� g(y1s′1 , . . . , y

m
s′m

) = ⊥,
– for f itself:

f(x1
s1 , . . . , x

n
sn)� f(y1s1 , . . . , y

n
sn) =

�

1≤i≤n

xi
si � yisi ,

– for each 1 ≤ i ≤ n such that si ≡≤ s:

f(x1
s1 , . . . , x

n
sn)� xi

si = ⊥.

In Definition 3, some equations use the Boolean operator " in EBool to obtain a
recursive definition of � . Example 1 shows the results of applying Definition 2
and Definition 3 to a concrete specification.

Example 1. Consider the equational theory ENATURAL in Figure 1 (left) that repre-
sents the natural numbers in Peano notation. An equality enrichment consists of
ENATURAL extended with the equational theory EBool and an equational definition
of � . The equational theory in Figure 1 (right) is an equality enrichment of
ENATURAL. The last equation is not essential, but it is useful for detecting a greater
number of inequalities between terms with variables.

Definition 4 presents the definition or enrichE for the case in which the input
symbol is commutative. For the definition of enrichE in the case of an commu-
tative function symbol f with maximal typing of sort s′, it is assumed that its
two arguments have the same sort s.

Definition 4 (C-Enrich). Assume f ∈ Ω is commutative and non-associative.
Then, for each maximal typing f : s s → s′ of f ∈ Ω, enrichE(f) adds the
following equations:

– for each g : s′1 . . . s
′
m → s′′ ∈ Ω a maximal typing of g such that s′ ≡≤ s′′

and f �= g:
f(x1

s, x
2
s)� g(y1s′1 , . . . , y

m
s′m

) = ⊥,
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fmod NATURAL is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

endfm

fmod EQ-NATURAL is

protecting NATURAL .

protecting BOOL .

op ~ : Nat Nat

-> Bool [comm] .

vars N M : Nat .

eq N ~ N = true .

eq 0 ~ s(N) = false .

eq s(N) ~ s(M) = N ~ M .

eq s(N) ~ N = false .

endfm

Fig. 1. Equality Enrichment for ENATURAL

– for f itself:

f(x1
s, x

2
s)� f(y1s , y

2
s) = (x1

s � y1s " x2
s � y2s) !

(x1
s � y2s " x2

s � y1s),

– if s ≡≤ s′ we add the equation:

f(x1
s, x

2
s)� x1

s = ⊥.

For the definition of enrichE in the case of an associative function symbol f
with maximal typing of sort s, it is assumed that its two arguments have also
sort s. Furthermore, a top typing for such an f is also assumed, i.e., a typing
f : s′ s′ → s′ satisfying that if f : s s → s is another typing with s ≡< s′, then
s′ ≥ s (note that a top typing of f may not belong to Ω, as in Example 2 below).

Definition 5 (A-Enrich). Assume f ∈ Ω is associative but not commutative.
Then for each maximal typing f : s s→ s of f ∈ Ω, enrichE(f) adds the following
equations:

– for each g : s′1 . . . s
′
m → s′ a maximal typing of g ∈ Ω such that s ≡≤ s′ and

f �= g:
f(x1

s, x
2
s)� g(ys′1 , . . . , y

m
s′m

) = ⊥,
rootkf (g(x

1
s′1
, . . . , xm

s′m
)) = ⊥,

– for f itself:

rootkf (f(x
1
s, x

2
s)) = �,

f(x1
s, x

2
s)� f(x1

s, y
2
s) = x2

s � y2s ,
f(x1

s, x
2
s)� f(y1s , x

2
s) = x1

s � y1s ,
f(x1

s, x
2
s)� f(y1s , y

2
s) = ⊥ if ¬ (rootkf (x

1
s)) "¬ (rootkf (y
1
s)) "¬ (x1

s � y1s) = �,
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fmod LIST is

protecting NATURAL .

sorts NeNatList NatList .

subsorts Nat < NeNatList

< NatList .

op nil : -> NatList [ctor] .

op ; : NeNatList NeNatList

-> NeNatList [ctor assoc] .

op ; : NatList NatList

-> NatList [assoc] .

var L : NatList .

eq L ; nil = L .

eq nil ; L = L .

endfm

fmod EQ-LIST is

protecting LIST .

protecting BOOL .

protecting EQ-NATURAL .

op ;-NeNL-root : NatList

-> Bool .

op ~ : NatList NatList

-> Bool [comm] .

vars P Q R S : NeNatList .

var N : Nat .

eq ;-NeNL-root(0) = false .

eq ;-NeNL-root(s(N))

= false .

eq ;-NeNL-root(nil) = false .

eq ;-NeNL-root(P ; Q)

= true .

eq P ~ P = true .

eq 0 ~ nil = false .

eq s(N) ~ nil = false .

eq (P ; Q) ~ 0 = false .

eq (P ; Q) ~ s(N) = false .

eq (P ; Q) ~ nil = false .

eq (P ; Q) ~ P = false .

eq (P ; Q) ~ Q = false .

eq (P ; Q) ~ (P ; R) = Q ~ R .

eq (P ; Q) ~ (R ; Q) = P ~ R .

ceq (P ; Q) ~ (R ; S) = false

if (not(;-NeNL-root(P)) and

not(;-NeNL-root(R)) and

not(P ~ R)) = true .

endfm

Fig. 2. Equality Enrichment for ELIST

– for each 1 ≤ i ≤ 2:

f(x1
s, x

2
s)� xi

s = ⊥.

Example 2. Consider the equational theory ELIST in Figure 2 that specifies lists
of natural numbers in Peano notation. Note that ; is a constructor symbol
only when its arguments are non-empty lists. Therefore, the signature of free
constructors modulo B of the theory ELIST is:

{nil :→ NatList , ; : NeNatList NeNatList → NeNatList}.

In order to have a recursive definition of equality for lists, enrichE(f) uses the
auxiliary function rootkf that checks if a term of sort k is rooted by the construc-

tor symbol f . Figure 2 presents EEQ-LIST, an equality enrichment for ELIST. We
illustrate the use of EEQ-LIST with the following two cases:

– for ((0; 0); 0) � ((0; 0); 0), the only applicable equations are P � P = �,
(P ;Q) � (P ;R) = Q;R, and (P ;Q) � (R;Q) = P ;R by proper associative
commutations, and the result is always � independently of their application
order; and
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– for ((0; s(0)); 0) � (s(0); 0) the last equation defined for EEQ-LIST is applicable
under substitution σ(P ) = σ(S) = 0, σ(R) = s(0), and σ(Q) = s(0); 0 by
proper associative commutations since it is the only equation that satisfies
¬ rootNeNatList

; (0)" ¬ rootNeNatList
; (s(0)) " ¬ 0 � s(0) = �, thus obtaining

((0; s(0)); 0) � (s(0); 0) = ⊥.

In the case in which the input symbol of enrichE with maximal typing of sort s
is associative-commutative, it is assumed that its two arguments also have sort
s and there is a top typing for f , as in the associative case.

Definition 6 (AC-Enrich). Assume f ∈ Ω is associative-commutative. Then
for each maximal typing f : s s → s of f ∈ Ω, enrichE(f) adds the following
equations:

– for each g : s′1 . . . s
′
m → s′ a maximal typing of g ∈ Ω such that s ≡≤ s′ and

f �= g:
f(x1

s, x
2
s)� g(y1s′1

, . . . , yms′m) = ⊥,
rootkf (g(x

1
s′1
, . . . , xm

s′m
)) = ⊥,

– for f itself:

rootkf (f(x
1
s, x

2
s)) = �,

ink
f (xs, yk) = ⊥ if rootkf (xs) = �,

ink
f (xs, f(xs, ys)) = � if ¬ (rootkf (xs)) = �,

ink
f (xk, f(y

1
s , y

2
s)) = (xk � y1s) !

ink
f (xk, y

2
s) if ¬ (rootkf (xk)) "¬ (rootkf (y

1
s)) = �,

ink
f (xk, yk) = xk � yk if ¬ (rootkf (xk)) "¬ (rootkf (yk)) = �,

f(xs, ys)� f(xs, zs) = ys � zs,
f(x1

s, x
2
s)� f(y1s , y

2
s) = ⊥ if ¬ (rootkf (x

1
s))) "¬ (ink

f (x
1
s, f(y

1
s , y

2
s))) = �,

f(x1
s, x

2
s)� x1

s = ⊥.

Intuitively, if a term of sort k rooted by an associative-commutative symbol f
is viewed as a multiset with union operator f , then function ink

f in Definition 6
helps in identifying the cases in which an element (a term not rooted by f)
belongs to the multiset.

Example 3. Consider the equational theory EMSET in Figure 3 defining multisets
of natural numbers in Peano notation. Theory EEQ-MSET in Figure 3 is an equality
enrichment for EMSET, where auxiliary functions rootkf and ink

f are used to give a
recursive comparison of equality for constructor terms rooted by AC-symbols.

Consider the following two cases:

– for ((0 0) 1) � ((0 1) 0), the only applicable equations are P � P = � and
(P Q) � (P R) = Q R by proper associative-commutative commutations,
and the result is always � independently of their application order; and
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fmod MSET is

protecting NATURAL .

sorts NeNatMSet NatMSet .

subsort Nat < NeNatMSet

< NatMSet .

op empty : -> NatMSet [ctor] .

op : NeNatMSet NeNatMSet ->

NeNatMSet [ctor assoc comm] .

op : NatMSet NatMSet

-> NatMSet [assoc comm] .

var T : NatMSet .

eq empty T = T .

endfm

fmod EQ-MSET is

protecting MSET .

protecting BOOL .

protecting EQ-NATURAL .

op -NeNMS-root : NatMSet

-> Bool .

op in--NeNMS : NatMSet NatMSet

-> Bool .

op ~ : NatMSet NatMSet

-> Bool [comm] .

vars P Q R S : NeNatMSet .

var N : Nat .

vars T U : NatMSet .

eq -NeNMS-root(0) = false .

eq -NeNMS-root(s(N)) = false .

eq -NeNMS-root(empty) = false .

eq -NeNMS-root(P Q) = true .

ceq in--NeNMS(P,Q) = false

if -NeNMS-root(P) = true .

ceq in--NeNMS(P, (P Q)) = true

if not(-NeNMS-root(P)) =

true .

ceq in--NeNMS(T, (Q R)) =

(T ~ Q) or in--NeNMS(T,R)

if (not(-NeNMS-root(T)) and

not(-NeNMS-root(Q))) =

true .

ceq in--NeNMS(T,U) = T ~ U

if (not(-NeNMS-root(T)) and

not(-NeNMS-root(U))) =

true .

eq P ~ P = true .

eq 0 ~ empty = false .

eq s(N) ~ empty = false .

eq (P Q) ~ 0 = false .

eq (P Q) ~ empty = false .

eq (P Q) ~ s(N) = false .

eq (P Q) ~ P = false .

eq (P Q) ~ (P R) = Q ~ R .

ceq (P Q) ~ (R S) = false

if (not(-NeNMS-root(P)) and

not(in--NeNMS(P, R S))) =

true .

endfm

Fig. 3. Equality Enrichment for EMSET

– for ((0 s(0)) 0) � (s(0) 0), we can apply the following equations:

• (P Q) � P = ⊥ under substitution σ(P ) = 0 s(0) and σ(Q) = 0 by
proper associative-commutative commutations;
• (P Q) � (P R) = Q R under substitutions:

∗ σ(P ) = 0, σ(Q) = 0 s(0), and σ(R) = s(0), obtaining s(0) 0 � s(0),
and hence the only applicable equations now are:
· P Q � s(N) = ⊥ using the substitution σ(P ) = s(0), σ(Q) = 0
(or vice versa), and σ(N) = 0
· P Q � P = ⊥ under substitution σ(P ) = s(0) and σ(Q) = 0,

∗ σ(P ) = s(0), σ(Q) = 0 0, and σ(R) = 0, obtaining 0 0 � 0, and
hence the only applicable equations now are:
· P Q � 0 = ⊥ using the substitution σ(P ) = 0 and σ(Q) = 0,
· P Q � P = ⊥ under substitution σ(P ) = 0 and σ(Q) = 0.
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5 Executability Properties of E �

It would be enormously useful, both from theoretical and practical points of
view, that if a theory E satisfies some executability properties, then the equal-
ity enrichment E � of E obtained from the transformation in Section 4 could
inherit these properties. In particular, if the original theory E is sort-decreasing
(resp., ground sort-decreasing), confluent (resp., ground confluent), and opera-
tionally terminating (resp., ground operationally terminating), then E � should
be so. Also, the subsignature of free constructors of E � must be an extension
of the subsignature of free constructors of E (modulo the structural axioms).
In this way, full agreement between mathematical and operational semantics is
preserved in the equality enrichment E � of E .

Note that the domain of the transformation E �→ E � includes exactly those
equational theories whose structural axioms are any combination of A and/or C
axioms for some of its symbols. However, if the input theory E has symbols with
identity axioms, one could use the results in [5] to remove them and instead
add them as equations, provided that the constructors remain free after the
transformation. Note that, as illustrated by the LIST and MSET examples, where
identities for lists and multisets are specified as oriented equations and not as
axioms, this is often possible in practice.

In what follows, E = (Σ,E �B) is an order-sorted equational theory with
signature of free constructors Ω ⊆ Σ modulo B and E� = (Σ�, E� � B�) is
the Boolean equality enrichment E � obtained by the transformation E �→ E � .
Moreover, the axioms B are any combination of A and/or C axioms for some of
the function symbols in Σ.

5.1 Preservation of Executability Properties and Free Constructors

Recall from Section 2 that the equational theory E = (Σ,E�B) is sort-decreasing
(resp., ground sort-decreasing) iff for each t = t′ if C ∈ E, and substitution
(resp., ground substitution) θ with (Σ,E�B)  Cθ, we have ls(tθ) ≥ ls(t′θ). The
key observation is that since Bool is a fresh sort in a new connected component

of E � and all equations in
⋃
f∈Ω

enrichE(f) are of sort Bool , it is impossible that

the equations in EBool or in
⋃
f∈Ω

enrichE(f) can be applied to terms in TΣ .

Theorem 1. If E is sort-decreasing (resp., ground sort-decreasing), then E � is
sort-decreasing (resp., ground sort-decreasing).

The notion of reductive theory is used in proving E � operationally terminating.

Definition 7 (Reductive Theory Modulo Axioms). Let � be the strict
subterm relation on terms. An equational theory E = (Σ,E � B) is reductive
modulo B iff there exists a reduction ordering % and a symmetric, stable, and
monotonic relation ∼ such that:
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1. l /∈ X for each equation l = r if
∧

i=1..n ti = ui ∈ E.
2. l % r for each equation l = r if

∧
i=1..n ti = ui ∈ E.

3. l(% ∪�)+ti and l(% ∪�)+ui for each equation l = r if
∧

i=1..n ti = ui ∈ E.
4. u ∼ v for each equation u = v ∈ B
5. ∼ ;%⊆%.

Lemma 1. If an equational theory E = (Σ,E�B) is reductive modulo B, then
it is operationally terminating modulo B.

In general, the union of two operationally terminating theories may not be op-
erationally terminating. Furthermore, the fact of dealing with arbitrary theories
whose rules are unknown makes the task of proving operational termination of
the union more involved. However, sort information can be used to obtain a
proof of operational termination in the following way:

1. first, we prove that (Σ � , E � B � ) is operationally terminating (resp.,
ground operationally terminating) and confluent (resp., ground confluent)2,

2. then, we prove that (Σ � , (E � \ E) � B � ) is operationally terminating
(resp., ground operationally terminating),

3. finally, we prove that the union of both theories is operationally terminating
(resp., ground operationally terminating).

Theorem 2. If E is sort-decreasing (resp., ground sort-decreasing), confluent
(resp., ground confluent), and operationally terminating (resp., ground opera-
tionally terminating) in a Σ-extensible way, then E � is operationally terminat-
ing (resp., ground operationally terminating).

Since E � is sort-decreasing by Theorem 1 and operationally terminating by
Theorem 2, the confluence of E � follows from its local confluence. Similarly,
ground local confluence follows in the ground case.

Theorem 3. If E is sort-decreasing (resp., ground sort-decreasing), operationally
terminating (resp., ground operationally terminating) in a Σ-extensible way, and
confluent (resp., ground confluent), then E � is confluent (resp., ground conflu-
ent).

The proof of Theorem 3 is obtained by case analysis. It considers the conditional
critical pairs of E that are joinable by assumption, the critical pairs of EBool that
are also joinable by the choice of EBool , and the conditional critical pairs of E � \
(E ∪ EBool). Note that, since we may have B � containing associative axioms,
B � -unification is infinitary in general. In this case, we reason inductively about
the possible form of any B � -unifier that can involve a critical pair between two
oriented equations with A symbols to conclude the local confluence of E � .

Lemma 2 is used for reasoning about the signature of constructors of E � .

2 We assume that operational termination (resp., ground operational termination) of
(Σ,E 	 B) is Σ-extensible, i.e., if (Σ,E 	 B) is operationally terminating (resp.,
ground operationally terminating) then (Σ∪Δ,E	B) is so too. This is not a strong
restriction in practice, since all the actual existing tools for proving termination
properties on rewriting theories generate Σ-extensible orderings.



176 R. Gutiérrez, J. Meseguer, and C. Rocha

Lemma 2. Let E � be obtained by using the transformation E �→ E � , where E is
ground sort-decreasing, ground confluent, and ground operationally terminating
in a Σ-extensible way, and Ω is the signature of free constructors modulo B of
E. Then, if t, t′ ∈ TΩ, then t� t′ →+

E � /B � � iff t =B t′.

Intuitively, Lemma 2 states that E � is a conservative extension of E for ground
terms in Σ and the equationally defined equality predicate in E � is well-defined.

We identify Ω � = Ω � {�,⊥} ⊆ Σ � as a signature of constructors for E �

and prove that the constructors in Ω � are free modulo B � .

Theorem 4. If E is ground sort-decreasing, ground confluent, and ground op-
erationally terminating in a Σ-extensible way, and Ω is the signature of free
constructors modulo B of E, then E � has Ω � = Ω � {�,⊥} ⊆ Σ � as a
signature of free constructors modulo B � .

5.2 E � Is an Equality Enrichment

The properties inherited from E are sufficient for proving that E � is indeed an
equality enrichment of E � .

Theorem 5. If E is ground sort-decreasing, ground operationally terminating
in a Σ-extensible way, and ground confluent modulo B, then E � is a Boolean
equality enrichment of E.

6 Automation and Applications of E �→ E �

The transformation E �→ E � is obviously constructive and has been automated
in Maude using its reflective features: it takes the meta-representation of E in
Maude as input and constructs a meta-representation of E � as output. The
transformation itself has already been incorporated into Maude formal tools,
including the Maude Church-Rosser and Coherence Checker [6] (CRC-ChC),
and the Maude Invariant Analyzer tool [18].

6.1 A Case Study

We present a case study in which the transformation E �→ E � is used in the
Maude Invariant Analyzer (InvA) tool [18]. The InvA tool mechanizes an inference
system for deductively proving safety properties of rewrite theories: it transforms
all formal temporal reasoning about safety properties of concurrent transitions
to purely equational inductive reasoning. The InvA tool provides a substantial
degree of mechanization and can automatically discharge many proof obligations
without user intervention. In this section, we illustrate how equality enrichments
can be used to support the deductive verification task in the InvA tool for a
mutual exclusion property of processes in the QLOCK protocol.

The mutual exclusion protocol QLOCK uses a global queue as follows:

– each process that participates in the protocol does the following:
• if the process wants to use the critical resource and its name is not in
the global queue, it places its name in the queue;
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• if the process wants to use the critical resource and its name is in the
global queue, if its name is at the top of the queue then the process gains
access to the critical resource; otherwise it waits; and
• if the process finishes the critical resource, it removes its name from the
top of the global queue;

– the protocol should start from a state where the queue is empty; and
– it is assumed that each process can use the critical resource any number of

times.

Consider the following equational theory EQLOCK-STATE, which represents the states
of QLOCK with terms of sort State. It protects the equational theory EMSET pre-
sented in Section 4. Processes and names of processes are modeled with natural
numbers of sort Nat in Peano notation. A term Pi | Pw | Pc | Q of sort State
describes the state in which Pi is the collection of processes whose name is not
in the global queue (or idle processes), Pw is the collection of processes whose
names that are waiting to gain access to the critical resource (or waiting pro-
cesses), Pc is the collection of processes that are using the critical resource (or
critical processes), and Q is the global queue of the system. Sorts MSet and
Queue are used to represent collections of processes and queues of processes’
names, respectively.

fmod QLOCK-STATE is

protecting MSET .

sort Queue .

op nil : -> Queue [ctor] .

op _@_ : Nat Queue -> Queue [ctor] .

op _;_ : Queue Queue -> Queue .

eq nil ; Q:Queue = Q:Queue .

eq (N:Nat @ Q1:Queue) ; Q2:Queue = N:Nat @ (Q1:Queue ; Q2:Queue) .

sort State .

op _|_|_|_ : MSet MSet MSet Queue -> State [ctor] .

endfm

The behavior of a concurrent system in rewriting logic is specified by rewrite
rules that define how the individual transitions change the state of the system.
The specification of all transitions of QLOCK is described by six rewrite rules in
the rewrite theory RQLOCK as follows.

mod QLOCK is

protecting QLOCK-STATE .

vars Pi Pw Pc : MSet . var Q : Queue . vars N N’ N’’ : Nat .

rl [to-wait-1] : N | Pw | Pc | Q => empty | Pw N | Pc

| Q ; (N @ nil ) .

rl [to-wait-2] : N Pi | Pw | Pc | Q => Pi | Pw N | Pc

| Q ; (N @ nil ) .

rl [to-crit-1] : Pi | N | Pc | N @ Q => Pi | empty | Pc N | N @ Q .

rl [to-crit-2] : Pi | Pw N | Pc | N @ Q => Pi | Pw | Pc N | N @ Q .

rl [to-idle-1] : Pi | Pw | N | N’ @ Q => Pi N | Pw | empty | Q .

rl [to-idle-2] : Pi | Pw | Pc N | N’ @ Q => Pi N | Pw | Pc | Q .

endm
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Rewrite rules to-idle-1 and to-idle-2 specify the behavior of a process that
finishes using the critical resource: it goes to state idle and the name on top of
the global queue is removed. Similarly, rewrite rules to-wait-1 and to-wait-2,
and to-crit-1 and to-crit-2, specify the behavior of a process that wants to
use the critical resource and of a process that is granted access to the critical
resource, respectively.

We want to verify that the QLOCK system satisfies the following safety proper-
ties. It is key that: (i) it satisfies the mutual exclusion property, namely, that at
any point of execution there is at most one process using the critical resource. We
also want to verify that: (ii) the name on top of the global queue coincides with
the name of the process using the critical resource, if any. Finally, we want to
verify that: (iii) the global queue only contains the names of all waiting and crit-
ical processes. State predicates mutex , priority , and cqueue, respectively, specify
properties (i), (ii), and (iii) in the following equational theory EQLOCK-PREDS. State
predicate init specifies the set of initial states of QLOCK, with auxiliary function
set? that characterizes multisets having no repeated elements. State predicate
unique is a strengthening of mutex and priority . Auxiliary function to-soup on
input Q of sort Queue computes the multiset representation of Q .

fmod QLOCK-PREDS is

protecting QLOCK-STATE . protecting EQ-MSET .

vars N N’ : Nat . var Q : Queue .

vars Pi Pw Pc : MSet . var NeS : NeMSet .

ops init mutex unique priority cqueue : State -> [Bool] .

eq init( Pi | empty | empty | nil ) = set?(Pi) .

eq mutex( Pi | Pw | empty | Q ) = true .

eq mutex( Pi | Pw | N | Q ) = true .

eq mutex( Pi | Pw | N NeS | Q ) = false .

eq unique( Pi | Pw | empty | Q ) = set?(Pi Pw) .

eq unique( Pi | Pw | N | N @ Q ) = set?(Pi Pw N) .

eq unique( Pi | Pw | N NeS | Q ) = false .

eq priority( Pi | Pw | empty | Q ) = true .

eq priority( Pi | Pw | N | N’ @ Q ) = N ~ N’ .

eq priority( Pi | Pw | N Pc | N’ @ Q ) = (N ~ N’) and (Pc ~ empty) .

eq cqueue( Pi | Pw | Pc | Q ) = Pw Pc ~ to-soup(Q) .

....

endfm

Observe that EQLOCK-PREDS protects the equality enrichment EEQ-MSET, in Section 4,
for the connected component of sort MSet that defines the equality enrichment
for sorts Nat , MSet , and NeMSet . The equality enrichments for these sorts are
key in the specification of the state predicates. For instance, predicates priority
and cqueue are directly defined in terms of the equality predicate for sorts Nat
and MSet , and also use the Boolean connective for conjunction and that comes
with the Boolean equality enrichment. Auxiliary function set? also makes use
of the equality enrichment for sort Nat . Note that, in general, defining from
scratch the equality enrichment for an AC-symbol such as the multiset union in
EMSET, can be a daunting task. Instead, in EQLOCK-PREDS, the definition of the state
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predicate cqueue was straightforward with the help of the equality enrichment
for multisets of natural numbers.

By using the InvA tool we are able to automatically prove that predicates
mutex and priority are invariants of RQLOCK for any initial state that satisfies
predicate init . For predicate cqueue some proof obligations cannot be automati-
cally discharged. In general terms, 22 out of 26 proof obligations were automat-
ically discharged. However, this is an encouraging result, given that the current
version of the InvA tool does not yet have dedicated inference support for Boolean
equality enrichments, which could further improve the degree of automation.

7 Related Work and Conclusion

In [8], Goguen generalized and simplified the technique given by Musser in [15]
for proving induction hypothesis without induction (so-called inductionless in-
duction) using enriched theories with equality. The notion of s-taut related to a
sort s can be seen as a initial approximation of what we called in this paper an
equality enrichment. The technique described in the paper is based in the result
stated in Corollary 2.

In [14], the authors define the notion of equality enrichment (without axioms)
as an explicit subrepresentation of an equational equality presentation. Our work
extends this notion of equality enrichment with subsorts and axioms and also
presents an automatic way to generate this equality enrichment modulo axioms.
As the authors of [14] also remark, an equality enrichment can be used for
inductionless induction theorem proving.

In [16], the authors propose an equality predicate for algebraic specifications.
Unlike our work, the authors do not consider axioms and sufficient completeness
in their theories, hence they have to manage terms with defined symbols. In the
positive cases, their equality predicate is equivalent to ours, but in the negative
cases, a false answer in [16] does not mean that both terms are distinct for any
possible instantiation (as we state in our work), because the negative rules are
based on a check of convergence between terms. The goal of this behavior is to
avoid false positives instead of capturing negative cases.

In conclusion, this paper solves an important open problem: how to make
the addition of equationally defined equality predicates effective and automatic
for a very wide class of equational specifications with initial algebra semantics.
That such a transformation should exists is suggested by the Bergstra-Tucker
meta-theorem [2], but such a meta-result is not constructive and gives no insight
as to how the transformation could be defined. We have shown that it can be
defined for a very wide class of algebraic specifications with highly expressive
features such as order-sorted types, conditional equations, and rewriting modulo
commonly occurring axioms. We have also shown that all the expected good
properties of the input theory E are preserved by the transformation E �→ E � .

Using reflection, the transformation has been implemented in Maude and has
already been integrated into the Maude Church-Rosser and Coherence Checker [6]
(CRC-ChC), and the Maude Invariant Analyzer tool [18]. In the near future it
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should be added to other tools such as the Maude Termination Tool [4] (MTT)
and the Maude Sufficient Completeness Checker [11] (SCC). One obvious ad-
vantage of these additions is the possibility of systematically transforming spec-
ifications making use of built-in equalities and inequalities, which cannot be
handled by formal tools, into specifications where such built-in equalities and in-
equalities are systematically replaced by equationally-defined equalities, so that
formal tools can be applied. But this is not the only possible application by
any means. For example, the case study in Subsection 6.1 shows how the addi-
tion of equationally-defined equality predicates also makes the specification and
verification of safety properties in the InvA tool considerably easier.

It is also clear that adding an equationally-defined equality to Maude’s In-
ductive Theorem Prover [10] (ITP) would make this tool more effective in many
ways, and would also greatly reduce the complexities of dealing with arbitrary
universal formulas as goals, since all such formulas could be reduced to un-
conditional equality goals. It would also be very useful to explore the use of the
E �→ E � transformation in inductionless induction theorem proving. Yet another
very useful field of application would be early failure detection in narrowing-
based unification. The idea is that E � B-unification goals can be viewed as
equality goals, which can be detected to have already failed if they can be rewrit-
ten to false with E� modulo B�.

In general, the contribution presented in this work opens many useful appli-
cations to improve the state of the art in formal verification of algebraic specifi-
cations using, in particular, the Maude formal environment.
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Abstract. This paper presents a timed CTL model checker for Real-
Time Maude and its semantic foundations. In particular, we give a timed
CTL model checking procedure for that is sound and complete for closed-
bound formulas under a continuous semantics for a fairly large class of
systems. An important benefit of our model checker is that it also auto-
matically provides a timed CTL model checker for subsets of modeling
languages, like Ptolemy II and (Synchronous) AADL, which have Real-
Time Maude model checking integrated into their tool environments.

1 Introduction

Real-Time Maude [30] extends Maude [14] to support the formal modeling and
analysis of real-time systems in rewriting logic. Real-Time Maude is charac-
terized by its expressiveness and generality, natural model of object-based dis-
tributed real-time systems, the possibility to define any computable data type,
and a range of automated formal analysis such as simulation, reachability and
temporal logic model checking. This has made it possible to successfully apply
the tool to a wide range of real-time systems, including advanced state-of-the-art
wireless sensor network algorithms [17,32], multicast protocols [31,21], schedul-
ing algorithms requiring unbounded queues [26], and routing protocols [33].

Real-Time Maude’s expressiveness and generality also make it a suitable se-
mantic framework and analysis tool for modeling languages for real-time sys-
tems [24]. For example, the tool has been used to formalize (subsets of) the
industrial avionics modeling standard AADL [25], a synchronous version of
AADL [6], Ptolemy II discrete-event (DE) models [7], the web orchestration
language Orc [2], different EMF-based timed model transformation frameworks
[34,10], etc. Real-Time Maude formal analysis has been integrated into the tool
environment of some of these languages, enabling a model engineering process
that combines the convenience of an intuitive modeling language with formal
analysis.
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In Real-Time Maude, the data types of the system are defined by an algebraic
equational specification, and the system’s instantaneous transitions are modeled
by (instantaneous) rewrite rules. Time advance is modeled explicitly by so-called
tick (rewrite) rules of the form {t} => {t′} in time u if cond , where {_} is
an operator that encloses the entire global state, and the term u denotes the
duration of the rewrite. Real-Time Maude is parametric in the time domain,
which may be discrete or dense. For dense time (in particular), tick rules typically
have the form {t} => {t′} in time x if x <= d /\ cond , where x is a new
variable not occurring in t, d, or cond . This form of the tick rules ensures that
any moment in time (within time d) can be visited, also for a dense time domain.

Real-Time Maude extends Maude’s rewriting, search, and linear temporal
logic model checking features to the timed case. For dense time, it is of course
not possible to execute all possible rewrite sequences. The fairly restrictive timed
automaton formalism [3] trades expressiveness for decidability of key properties
for dense/continuous time, since the state space can be divided into a finite
number of “clock regions” so that any two states in the same region satisfy
the same properties. Such a quotient seems hard to achieve for the much more
expressive real-time rewrite theories. Instead, the general approach taken in Real-
Time Maude is to use time sampling strategies to instantiate the new variable x
in the tick rules, and to analyze the resulting specification instead of the original
one. One such strategy advances time by a fixed amount Δ in each application
of any tick rule. The maximal time sampling strategy advances time as much as
possible in each application of a tick rule. Although the fixed-increment strategy
can cover all possible behaviors in the original system when the time domain is
discrete, the maximal time sampling typically only analyzes a subset of all the
possible behaviors. However, in [28], it is shown that for a fairly large set of real-
time systems appearing in practice, the maximal time sampling strategy yields
sound and complete analyses for untimed LTL properties. For example, systems
where events are triggered by the arrival of messages or by the expiration of
some “timer,” and where time elapse does not change the valuation of the atomic
propositions (this requirement almost always holds, since time elapse typically
only changes timers and clocks, whose values are rarely relevant for temporal
logic properties) satisfy the requirements for maximal time sampling analyses to
be sound and complete.

Until recently, Real-Time Maude could only analyze untimed temporal logic
properties, but not quantitative properties such as “the airbag must deploy
within 5 ms of a crash,” or “the ventilator machine cannot be turned off more
than once every 10 minutes.” This paper presents a model checker for Real-
Time Maude for the timed temporal logic TCTL [5], which is an extension of
the branching time logic CTL in which the temporal operators are annotated
with a time interval, so that, for example, the formula E ϕ1 U[2,4] ϕ2 holds if
there is a path in which ϕ2 holds after some time 2 ≤ r ≤ 4 and where ϕ1 holds
in all states until then.

Going from untimed temporal logic to a timed temporal logic presents at least
two significant challenges for Real-Time Maude:
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1. What is the intended semantics of a Real-Time Maude specification with the
above tick rule w.r.t. timed temporal logic properties? For example, given
a tick rule {f(y)} => {f(y + x)} in time x if x <= 3 − y, should the
property AF[1,2] true (in all paths, a state satisfying true will be reached in
some time between 1 and 2) hold for initial state {f(0)}? There are paths
(e.g., jumping directly from {f(0)} to {f(3)}) where no state is visited in
the desired time interval. On the other hand, the above rule could be seen
as a natural way to specify a continuous process from {f(0)} to {f(3)} in
Real-Time Maude, so that the intended semantics should satisfy the above
property. We address this problem by presenting two different semantics
for the satisfaction of a TCTL formula in Real-Time Maude: the pointwise
semantics takes all paths into account, including the one where we jump
directly from time 0 to time 3, whereas the continuous semantics allows us
to break up longer ticks in smaller steps.

2. The previous soundness and completeness results for maximal time sampling
analyses no longer hold. In the example above, maximal time sampling would
not satisfy the existential formula E F[1,2] true, although the original model
satisfies it in both the continuous and the pointwise semantics. To achieve
sound and complete time sampling analyses for the continuous semantics
and dense time, we always advance time by a time value r̄

2 , where r̄ is the
“greatest common divisor” (as axiomatized in Section 4) of all the (non-zero)
time values appearing in the annotations in the TCTL formula, as well as
all the time values of the maximal tick steps reached from the initial state.
We have only implemented our model checker and proved its completeness
for the continuous semantics; however, we conjecture that for the pointwise
semantics, we should use this time increment, as well as any multiple of it.

This paper describes our model checker, its semantic foundations, and its im-
plementation in Maude. Most importantly, we prove that our model checker
provides sound and complete model checking under the continuous semantics
for TCTL formulas where the intervals are closed intervals; i.e., have the forms
[r1, r2] and [r1,∞).

An important benefit of our work is that a TCTL model checker for Real-
Time Maude also gives us a TCTL model checker for free for Ptolemy II DE
models, synchronous AADL models, and other modeling languages for which
Real-Time Maude models can be generated. As shown in Section 6, our model
checker has already been integrated into the Ptolemy II tool, allowing the user
to model check TCTL properties of Ptolemy II models from within Ptolemy II.

Related Work. The tools Kronos [38], Redlib [36], and TSMV [22] implement
TCTL model checkers for, respectively, timed automata, linear hybrid automata,
and timed Kripke structures. The tool Uppaal [9] provides an efficient sym-
bolic model checking procedure for timed automata for a subset of non-nested
TCTL properties. The Roméo tool [16,11], based on a timed extension of Petri
nets [1,23], has an integrated timed model checker for some non-nested TCTL
modalities, with the addition of bounded response properties. These formalisms
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are significantly less expressive than real-time rewrite theories [27], which makes
their model checking problems decidable. The first approaches to model check-
ing timed temporal properties for Real-Time Maude are described in [20,37]
and analyze important specific classes of timed temporal logic formulas (time-
bounded response, time-bounded safety, and minimum separation), but only for
flat object-based specifications. Unlike in [20,37], our new model checker is not
limited to specific classes of temporal logic properties, but offers the full TCTL.
The new model checker is also not limited to flat object-oriented systems, but
can analyze any (sensible) Real-Time Maude model.

Paper Structure. Section 2 introduces real-time rewrite theories and Real-Time
Maude. Section 3 describes our model checker and its semantics. Section 4
presents our soundness and completeness results. We discuss our model checker
implementation in Section 5, and demonstrate its applicability on a Ptolemy II
DE model in Section 6. Finally, concluding remarks are given in Section 7.

2 Real-Time Rewrite Theories and Real-Time Maude

A rewrite theory is a tuple (Σ,E,R), where (Σ,E) is a membership equational
logic theory [14] that defines the state space of a system as an algebraic data type,
with Σ a signature declaring sorts, subsorts, and function symbols, and E a set of
conditional equations andmembership axioms, and whereR is a set of labeled con-
ditional rewrite rules of the form [l] : t −→ t′ if cond, where l is a label, t, t′ are
Σ-terms, and cond is a conjunction of rewrite conditions u −→ u′, equational con-
ditions v = v′, and membership conditions w : s, where u, u′, v, v′, w are Σ-terms
and s is a sort in Σ. A rule is implicitly universally quantified by the variables
appearing in t, t′ and cond, and specifies a set of local one-step transitions in the
system. Rules are applied modulo the equations E. The set TΣ/E,s of states of
sort s is defined by the E-equivalence classes of ground terms of sort s.

Real-time rewrite theories [27] are used to specify real-time systems in rewrit-
ing logic. Rules are divided into tick rules, that model time elapse in a system,
and instantaneous rules, that model instantaneous change. Formally a real-time
rewrite theory R is a tuple (Σ,E,R, φ, τ) such that

– (Σ,E,R) is a rewrite theory, with a sort System and a sort GlobalSystem
with no subsorts or supersorts and with only one operator {_} : System→
GlobalSystem which satisfies no non-trivial equations; furthermore, for any
f : s1 . . . sn → s in Σ, the sort GlobalSystem does not appear in s1 . . . sn.

– φ : TIME → (Σ,E) is an equational theory morphism which interprets
TIME inR; the theory TIME [27] defines time abstractly as an ordered com-
mutative monoid (Time, 0,+, <). We write 0,+, . . . instead of φ(0), φ(+), . . .
and use Time for φ(Time).

– τ is an assignment of a term τl of sort Time to each rewrite rule in R of the
form [l] : {t} −→ {t′} if cond. Such a rule is called a tick rule if τl �= 0; in
this case τl denotes the duration of the step. Rules that are not tick rules
are called instantaneous rules and are assumed to take zero time. Since the
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initial state has the form {t}, the form of the tick rules ensures that time
advances uniformly in the whole system.

We write t
r−→ t′ when t can be rewritten into t′ in time r by a one-step rewrite,

and also write t
inst−→ t′ for one-step rewrites applying an instantaneous rule.

A tick step t
r−→ t′ is maximal if there is no r′ > r with t

r′−→ t′′ for some t′′.
A timed path in R is an infinite sequence π = t0

r0−→ t1
r1−→ t2

r2−→ · · · such that

– for all i ∈ N, ti
ri−→ ti+1 is a one-step rewrite in R; or

– there exists a k ∈ N such that ti
ri−→ ti+1 is a one-step rewrite in R for all

0 ≤ i < k, there is no one-step rewrite from tk in R, and tj = tk and rj = 0
for each j ≥ k.

For paths π of the above form we define dπm =
∑m−1

i=0 ri, t
π
m = tm and rπm = rm.

We call the timed path π = t0
r0−→ t1

r1−→ t2
r2−→ · · · a timed fair path if

– for any ground term Δ of sort Time, if there is a k such that for each j > k
there is a one-step tick rewrite tj

r−→ t with Δ ≤ dπj + r then there is an l
with Δ ≤ dπl , and

– for each k, if for each j > k both a maximal tick step with duration 0 and an

instantaneous rule can be applied in tj then tl
inst−→ tl+1 is a one-step rewrite

applying an instantaneous rule for some l > k.

We denote the set of all timed fair paths of R starting in t0 by tfPathsR(t0). A
term t is reachable from t0 in R in time r iff there is a path π ∈ tfPathsR(t0)
with tπk = t and dπk = r for some k. A path π is time-divergent iff for each time
value r ∈ Time there is an i ∈ N such that dπi > r.

The Real-Time Maude tool [29] extends the Maude system [14] to support the
specification, simulation, and analysis of real-time rewrite theories. Real-Time
Maude is parametric in the time domain, which may be discrete or dense, and
defines a supersort TimeInf of Timewhich adds the infinity element INF. To cover
all time instances in a dense time domain, tick rules often have one of the forms

crl [tick] : {t} => {t′} in time x if x <= u /\ cond [nonexec] . (†),
crl [tick] : {t} => {t′} in time x if cond [nonexec] . (∗), or
rl [tick] : {t} => {t′} in time x [nonexec] . (§).

where x is a new variable of sort Time not occurring in {t} and cond. This
ensures that the tick rules can advance time by any amount in rules of the form
(∗) or (§) and any amount less than or equal to u in rules of the form (†). Rules
of these forms are called time-nondeterministic and are not directly executable
in general, since many choices are possible for instantiating the new variable x.

In contrast to, e.g., timed automata, where the restrictions in the formal-
ism allow the abstraction of the dense time domain by “clock regions” contain-
ing bisimilar states [3], for the more complex systems expressible in Real-Time
Maude there is not such a discrete “quotient”. Instead, Real-Time Maude exe-
cutes time-nondeterministic tick rules by offering a choice of different time sam-
pling strategies [29], so that only some moments in the time domain are visited.
For example, the maximal time sampling strategy advances time by the maxi-
mum possible time elapse u in rules of the form (†) (unless u equals INF), and
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tries to advance time by a user-given time value r in tick rules having other
forms. In the default mode each application of a time-nondeterministic tick rule
will try to advance time by a given time value r.

The paper [29] explains the semantics of Real-Time Maude in more detail.
In particular, given a real-time rewrite theory R and a time sampling strat-
egy σ, there is a real-time rewrite theory Rσ that has been obtained from R
by applying a theory transformation corresponding to using the time sampling
strategy σ when executing the tick rules. In particular, the real-time rewrite
theory RmaxDef (r) denotes the real-time rewrite theory R where the tick rules
are applied according to the maximal time sampling strategy, while Rdef(r) de-
notes R where the tick rules are applied according to the default time sampling
strategy (tick steps which advance time by 0 are not applied).

A real-time rewrite theory R is time-robust if the following hold for all ground
terms t, t′, t′′ of sort GlobalSystem and all ground terms r, r′, of sort Time:

– t = t′ holds in the underlying equational theory for any 0-time tick step

t
0−→ t′.

– t
r+r′−→ t′′ if and only if there is a t′ of sort Time such that t

r−→ t′ and

t′
r′−→ t′′.

– If t
r−→ t′ is a tick step with r > 0, and t′

inst−→ t′′ is an instantaneous one-step
rewrite, then t

r−→ t′′ is a maximal tick step.
– for M = {r | ∃t′. t r−→ t′} we have that either there is a maximal element in

M or M is the whole domain of Time.

Real-Time Maude extends Maude’s linear temporal logic model checker to check
whether each behavior, possibly up to a certain time bound, satisfies an (untimed)
LTL formula. State propositions are terms of sort Prop. The labeling of states with
propositions can be specified by (possibly conditional) equations of the form

{statePattern} |= prop = b

for b a term of sort Bool, which defines the state proposition prop to evaluate to b
in all states matching the given pattern. We say that a set of atomic propositions
is tick-invariant in R if tick rules do not change their values.

Since the model checking commands execute time-nondeterministic tick rules
according to a time sampling strategy, only a subset of all possible behaviors
is analyzed. Therefore, Real-Time Maude analysis is in general not sound and
complete. However, the reference [28] gives easily checkable sufficient conditions
for soundness and completeness, which are satisfied by many large Real-Time
Maude applications.

3 Timed CTL Model Checking for Real-Time Maude

In untimed temporal logics it is not possible to reason about the duration
of/between events. There are many timed extensions of temporal logics [4,35,12].
In this paper we consider TCTL [5] with interval time constraints on temporal
operators.
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3.1 Timed CTL

In computation tree logic (CTL) [5], a state formula specifies a property over the
computation tree corresponding to the system behavior rooted in a given state.
State formulae are constructed by adding universal (A) and existential (E) path
quantifiers in front of path formulae to specify whether the path formula must
hold, respectively, on each path starting in the given state, or just on some
path. Path formulae are built from state formulae using the temporal operators
X (“next”) and U (“until”), from which F (“finally”) and G (“globally”) can
be derived.

Timed CTL (TCTL) is a quantitative extension of CTL [5], where the scope
of the temporal operators can be limited in time by subscripting them with time
constraints. In this paper we consider an interval-bound version of TCTL where
the temporal operators are subscripted with a time interval. A time interval I
is an interval of the form [a, b], (a, b], [a, b∞) or (a, b∞), where a and b are values
of sort Time and b∞ is a value of sort TimeInf.

Definition 1. Given a set Π of atomic propositions, TCTL formulae are built
using the following abstract syntax:

ϕ ::= true | p | ¬ϕ | ϕ ∧ ϕ | E ϕ UI ϕ | A ϕ UI ϕ

where p ∈ Π and I is a time interval.

We omit the bound [0,∞) as subscript and we write ≤ b, < b, ≥ a and > a for
[0, b], [0, b), [a,∞) and (a,∞), respectively. We denote by TCTLcb the fragment
of TCTL where all time bounds are of the form [a, b] with a < b, or [a,∞).

3.2 Timed Kripke Structures and TCTL Semantics

The semantics of TCTL formulae is defined on Kripke structures. A Kripke
structure is a transition system with an associated labeling function, which maps
each state in the transition system to the set of atomic propositions that hold
in that state.

A timed Kripke structure is a Kripke structure where each transition has the
form s

r−→ s′, where r denotes the duration of the transition step.

Definition 2. Given a set of atomic propositions Π and a time domain T , a
timed Kripke structure is a triple TK = (S,

T−→, L) where S is a set of states,
T−→⊆ S×T ×S is a transition relation with duration, and L is a labeling function

L : S → P(Π). The transition relation
T−→ is total,1 i.e., for each s ∈ S there

exist r ∈ T , s′ ∈ S such that (s, r, s′) ∈ T−→. We write s
r−→ s′ if (s, r, s′) ∈ T−→.

1 A transition relation
T−→ can be made total by defining (

T−→)• =
T−→ ∪{(s, 0, s) ∈

S × T × S | ¬∃ s′ ∈ S, r ∈ T s.t. (s, r, s′) ∈ T−→}.
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We use a similar notation for timed paths in a timed Kripke structure T K as for
real-time rewrite theories. Thus, a timed path is written π = t0

r0−→ t1
r1−→ . . .,

we define dπm =
∑m−1

i=0 ri, t
π
m = tm and rπm = rm, and the set of all timed fair

paths originating in state t is denoted by tfPathsT K(t).
The semantics of TCTL formulae is defined as follows:

Definition 3. For timed Kripke structures T K = (S,
T−→, L), states t ∈ S, and

TCTL formulae ϕ, the pointwise satisfaction relation T K, t |=p ϕ is defined
inductively as follows:

T K, t |=p true always.
T K, t |=p p iff p ∈ L(t).
T K, t |=p ¬ϕ1 iff T K, t �|=p ϕ1.
T K, t |=p ϕ1 ∧ ϕ2 iff T K, t |=p ϕ1 and T K, t |=p ϕ2.
T K, t |=p E ϕ1 UI ϕ2 iff there exists π ∈ tfPathsT K(t) and an index k s.t.

dπk ∈ I, T K, tπk |=p ϕ2, and
T K, tπl |=p ϕ1 for all 0 ≤ l < k.

T K, t |=p A ϕ1 UI ϕ2 iff for each π ∈ tfPathsT K(t) there is an index k s.t.
dπk ∈ I, T K, tπk |=p ϕ2, and
T K, tπl |=p ϕ1 for all 0 ≤ l < k.

For a timed Kripke structure T K = (S,
T−→, L), a state t ∈ S and paths π, π′ ∈

tfPathsT K(t) we say that π′ is a simple time refinement of π if either π = π′

or π′ can be obtained from π by replacing a transition tk
rk−→ tk+1, rk > 0,

by a sequence tk
r′k−→ t

r′′k−→ tk+1 of transitions for some t ∈ S and time values
r′k, r

′′
k > 0 with r′k + r′′k = rk. A path π′ is a time refinement of another path π

if π′ can be obtained from π by applying a (possibly infinite) number of time
refinements. We also say that π is a time abstraction of π′.

Definition 4. The continuous-time satisfaction relation T K, t |=c ϕ is defined
as the pointwise one for the first four cases; for the last two cases we have:

T K, t |=c E ϕ1 UI ϕ2 iff there is a path π ∈ tfPathsT K(t) such that for each
time refinement π′ ∈ tfPathsT K(t) of π there is an

index k s.t. dπ
′

k ∈ I, T K, tπ′
k |=c ϕ2, and

T K, tπ′
l |=c ϕ1 for all 0 ≤ l < k.

T K, t |=c A ϕ1 UI ϕ2 iff for each path π ∈ tfPathsT K(t) there is a time
refinement π′ ∈ tfPathsT K(t) of π and an index k

s.t. dπ
′

k ∈ I, T K, tπ′
k |=c ϕ2, and

T K, tπ′
l |=c ϕ1 for all 0 ≤ l < k.

3.3 Associating Timed Kripke Structures to Real-Time Rewrite
Theories

To each real-time rewrite theory we associate a timed Kripke structure as follows:

Definition 5. Given a real-time rewrite theory R = (Σ,E,R, φ, τ), a set of
atomic propositions Π and a protecting extension (Σ ∪Π,E ∪D) ⊇ (Σ,E), we
define the associated timed Kripke structure
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T K(R)Π = (TΣ/E,GlobalSystem, (
T−→R)•, LΠ),

where (
T−→R)• ⊆ TΣ/E,GlobalSystem × TΣ/E,φ(Time) × TΣ/E,GlobalSystem contains

all transitions of the kind t
r−→ t′ which are also one-step rewrites in R and

all transitions of the kind t
0−→ t for all those states t that cannot be further

rewritten in R, and for LΠ : TΣ/E,GlobalSystem → P(Π) we have that p ∈ LΠ(t)
if and only if E ∪D  (t |= p) = true.

We use this transformation to define R, LΠ , t0 |=c ϕ as T K(R)Π , t0 |=c ϕ, and
similarly for the pointwise semantics. The model checking problems T K(R)Π , t0 |=p

ϕ and T K(R)Π , t0 |=c ϕ are decidable if

– the equational specification in R is Church-Rosser and terminating,
– the set of states reachable from t0 in the rewrite theory R is finite, and
– given a pair of reachable states t and t′, the number of one-step rewrites of

the kind t
r−→ t′ in R is finite.

As mentioned above, real-time rewrite theories generally contain a time-non-
deterministic tick rule, but since Real-Time Maude executes such theories by
applying a time sampling strategy σ, our model checker does not analyze R but
the executable theory Rσ in which the time sampling strategy transformation
has been applied. Thus, we associate a timed Kripke structure not to R, but
to Rσ, and hence the third requirement is satisfied by all but the most esoteric
cases; indeed, the tick rules in all Real-Time Maude applications we have seen
are deterministic, in the sense that there is at most one one-step tick rewrite
t

r−→ t′ from any state, when the time sampling strategy is taken into account.
We denote by T K(R, t0)Π the timed Kripke structure associated to R which

is restricted to states reachable from t0, and for states t reachable from t0 we
write R, LΠ , t |= ϕ for T K(R, t0)Π , t |= ϕ.

4 Sound and Complete TCTL Model Checking for
Real-Time Maude

As mentioned above, for dense time domains, Real-Time Maude only analyzes
those behaviors obtained by applying the tick rules according to a selected
time sampling strategy. The paper [28] specifies some conditions on a real-time
rewrite theory R and on the atomic propositions that ensure that model check-
ing RmaxDef (r), i.e., using the maximal time sampling strategy, is a sound and
complete model checking procedure to check whether all behaviors in the original
model R satisfy an untimed LTL formula without the next operator.

For example, if no application of a tick rule changes the valuation of the atomic
propositions in a formula and instantaneous rewrite rules can only be applied
after maximal tick steps or after applying an instantaneous rule, then model
checking RmaxDef (r) gives a sound and complete model checking procedure for



Timed CTL Model Checking in Real-Time Maude 191

R.2 This result yields a feasible sound and complete model checking procedure
for many useful (dense-time) systems, that include many systems that cannot
be modeled as, e.g., timed automata.

As explained in the introduction, this completeness result does not carry over
to timed temporal logic properties. In the following we focus on dense time, since
we can achieve sound and complete model checking for discrete time by exploring
all possible tick steps in the pointwise semantics, and by advancing time by the
smallest possible non-zero duration in the continuous semantics. Furthermore, as
already mentioned, in this paper we restrict our treatment to TCTLcb formulas
under the continuous semantics.3

Our goal is therefore to find a discrete abstraction of a real-time rewrite theory
R, so that model checking the abstraction (under the pointwise semantics) is
equivalent to model checking R under the continuous semantics. One part of
our solution is to make sure that time progress “stops” at any time point when
a time bound in the formula could be reached. This can be achieved if we split any
tick step by an amount that divides all possible maximal tick durations and all
possible finite non-zero time bounds in the formula. Let r̄ be the greatest common
divisor of the durations of all maximal tick steps inRmaxDef (r) reachable from the
initial state and each finite non-zero time bound in the formula; then “stopping”
at each interesting time point should be acheieved if we divide each maximal
tick step into smaller steps of duration r̄.

However, the following example shows that it is not sufficient to always ad-
vance time by this greatest common divisor r̄ to obtain a sound and complete
abstraction under the continuous semantics. Consider a (dense-time) theory R
that has only one behavior in terms of maximal tick steps, which we show here
in terms of validity of the atomic proposition p in the corresponding states:

π = ¬p 1−→ ¬p inst−→ p
inst−→ ¬p 1−→ · · · (¬p forever)

That is, a p-state is reachable in exactly time 1, and ticks do not change the
valuations of the atomic propositions. In this model all maximal tick steps have
duration 1. Let’s consider the formula ϕ = E ϕ1 U[1,1] true, where ϕ1 is the
formula E F[1,1] p. The formula ϕ says that ϕ1 must hold all the way until we
reach time 1. The greatest common divisor of all maximal time increments and
all time values in ϕ is still 1, so the “greatest common divisor” abstraction is
equivalent toRmaxDef (r). In particular, this abstraction (i.e., the above behavior)
satisfies ϕ w.r.t. the initial state π(0). However,R, L{p}, π(0) |=c ϕ does not hold,
since ϕ does not hold in the timed refinement (where the first tick has been split
into two smaller ones)

π′ = ¬p
1/2−→ ¬p

1/2−→ ¬p inst−→ p
inst−→ ¬p 1−→ · · · (¬p forever)

because ϕ1 does not hold in the second state in the refinement.

2 The requirements in [28] are weaker than described here.
3 We are currently working on releasing the restriction to closed bounds. However,
our proof for the completeness result cannot be directly extended to TCTL formulas
with open bounds.
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Our approach is therefore to capture all these “intermediate” states by further
splitting the “gcd” tick steps into two smaller tick steps. In essence, we advance
time not by r̄, but by “half” the gcd r̄ in each tick step.

To formalize this notion, let us first consider the time domain. Real-time
rewrite theories are parametric in their time domain; the time domain must only
satisfy some abstract properties given in some functional theory defined in [27]
that defines the time domain abstractly as a commutative monoid (0,≤, T ime)
with some additional operators. The following theory states that there exist
functions gcd and half on the non-zero time values with the expected properties.

fth GCD-TIME-DOMAIN is including LTIME-INF .

sort NzTime . subsort NzTime < Time . cmb T:Time : NzTime if T:Time =/= 0 .

op gcd : NzTime NzTime -> NzTime [assoc comm] .

op _divides_ : NzTime NzTime -> Bool .

op half : NzTime -> NzTime .

vars T1 T2 T3 : NzTime . vars T T’ : Time .

eq T1 divides T1 = true .

ceq T1 divides T2 = false if T2 < T1 .

eq T1 divides (T1 + T2) = T1 divides T2 .

eq gcd(T1, T2) divides T1 = true .

ceq gcd(T1, T2) >= T3 if T3 divides T1 /\ T3 divides T2 .

eq half(NZT) + half(NZT) = NZT .

endfth

In the following we assume that all considered time domains satisfy the theory
GCD-TIME-DOMAIN, and write gcd and half for the interpretation of gcd and half,
respectively.

The real-time rewrite theory Rgcd(t0,r,ϕ) is obtained from the tick-robust real-
time rewrite theory R, a state t0 in R, and a TCTL formula ϕ, by advancing
time by “half” the greatest common divisor of all the following values:

– all tick step durations appearing in paths from tfPathsRmaxDef (r)(t0) and
– all finite non-zero lower and upper bounds of all temporal operators in ϕ.

Definition 6. For a real-time rewrite theory R whose time domain satisfies the
theory GCD-TIME-DOMAIN, a non-zero time value r, a TCTL formula ϕ and a
state t0 of R we define

T1(R, t0, r) = {r′ ∈ NzTime | ∃π ∈ tfPathsRmaxDef (r)(t0). ∃i ≥ 0. r′ = rπi }
T2(ϕ) = {r ∈ NzTime | there exists a subformula E ϕ1 UI ϕ2 or

A ϕ1 UI ϕ2 of ϕ with r a non-zero finite

lower or upper bound in I}
GCD(R, r, ϕ, t0) = gcd(T1(R, t0, r) ∪ T2(ϕ)).

If T1(R, t0, r) and T2(ϕ) are finite then the GCD value is well-defined and we
can define the real-time rewrite theory Rgcd(t0,r,ϕ) as follows:

Definition 7. Given a real-time rewrite theory R whose time domain satisfies
the theory GCD-TIME-DOMAIN, a non-zero time value r, a TCTL formula ϕ, a
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state t0 of R, and assume that r̄ = GCD(R, t0, r, ϕ) is a defined non-zero time
value. Then Rgcd(t0,r,ϕ) is defined as R but where each tick rule of the forms (†),
(∗), and (§) is replaced by the respective tick rule:

crl [tick] : {t} => {t′} in time x if x := half (r̄) /\ cond [nonexec] .

crl [tick] : {t} => {t′} in time x if x := half (r̄) /\ cond [nonexec] .

crl [tick] : {t} => {t′} in time x if x := half (r̄) [nonexec] .

The following lemma states that the evaluation of the formula ϕ and its subfor-
mulas does not change inside tick steps of Rgcd(t0,r,ϕ).

Lemma 1. Assume a time-robust real-time rewrite theory R whose time domain
satisfies the theory GCD-TIME-DOMAIN. Let Π be a set of tick-invariant atomic
propositions, and assume a protecting extension of R defining the atomic propo-
sitions in Π and inducing a labeling function LΠ . Let t0 be a state of R, r a
non-zero time value of sort Time, ϕ a TCTLcb formula over Π, and assume that
r̄ = GCD(R, t0, r, ϕ) is a defined non-zero time value.

Then for each subformula ϕ′ of ϕ, each time-divergent path π ∈ tfPathsR(t0)

and for all tick step sequences tπi
rπi−→ . . .

rπj−1−→ tπj in π satisfying n · r̄ < dπi < dπj <
(n+ 1) · r̄ for some n we have that

R, LΠ , tπi |=c ϕ
′ iff R, LΠ , tπj |=c ϕ

′ .

Proof. The proof by induction on the structure of ϕ′ can be found in our technical
report [19].

Based on the above lemma we gain our completeness result:

Theorem 1. Let R, LΠ , t0, r, ϕ and r̄ be as in Lemma 1. Then

R, LΠ , t |=c ϕ ⇐⇒ Rgcd(t0,r,ϕ), LΠ , t |=p ϕ

for all states t reachable in Rgcd(t0,r,ϕ) from t0.

Proof. Again, the proof is given in [19].

5 Implementation

Our model checker makes the natural and reasonable assumption that given a
real-time rewrite theory R, and an initial state t0 on which we would like to
check some TCTL formula ϕ, all behaviors starting from t0 are time-diverging
w.r.t. the selected time sampling strategy σ. This assumption also implies that

the transition relation
T−→Rσ in the timed Kripke structure T K(Rσ, t0)Π is total.

The current implementation of the model checker assumes that time values
are either in NAT-TIME-DOMAIN-WITH-INF or POSRAT-TIME-DOMAIN-WITH-INF,
and provides the user with two possible model-checking strategies:

(i) The basic strategy, which performs the model checking on the model obtained
by applying the user-defined time sampling strategy on the original model.
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(ii) The gcd strategy, which extends the maximal time sampling strategy with
the “gcd” transformation to perform the model checking for the satisfaction
problem Rgcd(t0,r,ϕ), LΠ , t0 |=p ϕ.

Soundness and completeness of the gcd strategy might come at the cost of a
larger state space due to the application of the gcd transformation. When the
gcd strategy is impractical, the user can still perform model checking with the
generally faster basic strategy, which does not increase the system state space
and can still be very useful to discover potential bugs, as illustrated below.

Real-Time Maude, and hence our model checker, is implemented in Maude,
making extensive use of Maude’s meta-programming capabilities. The model
checker first constructs the timed Kripke structure, according to the selected
model checking strategy, by collecting all the reachable states and transitions.
When the gcd strategy is selected, the timed Kripke structure is refined by “split-
ting” the transitions into smaller ones of duration equal to half the computed
greatest common divisor. Then, the satisfaction sets of each subformula are re-
cursively computed. Since the meta-representation of the states can be fairly
large4, performing the rest of the model checking procedure on the generated
timed Kripke structure is fairly inefficient. In our current implementation, we as-
sign a unique natural number to each (meta-represented) state in the generated
timed Kripke structure, and construct a more compact timed Kripke structure,
where all the occurrences of these meta-represented states are replaced by their
respective identifiers. We then perform the recursive computation of the satis-
faction set of ϕ on this compact representation. This optimization led to a large
performance improvement and made it feasible to apply our model checker to
a number of case studies in reasonable time, whereas working directly on meta-
represented terms made model checking unfeasible even for simple case studies.

Our implementation of the TCTL model checker is based on the explicit-state
CTL model checking approach [8] that, starting with the atomic propositions,
recursively computes for each subformula of the desired TCTL formula the set
of satisfying reachable states. We implemented specific procedures for a basic set
of temporal modal operators and we expressed other formulas into this canonical
form. The basic set consists of the CTL modal operators E ϕ1 U ϕ2, E G ϕ,
the TCTL≤≥

5 modal operators E ϕ1 U∼r ϕ2 with ∼∈ {>,≥}, E ϕ1 U∼r ϕ2

with ∼∈ {<,≤}, A ϕ1 U>0 ϕ2 and the TCTLcb modal operator E ϕ1 U[a,b] ϕ2.
The procedures for CTL modalities follow the standard explicit algorithm [8].
For TCTL≤≥ modalities, our implementation adapts the TCTL≤≥ model check-
ing procedure defined in [18] for time-interval structures and to timed Kripke
structures with time-diverging paths.

The ease and flexibility of the Maude meta-level allowed us to implement
the model checker reasonably quickly and easily. However, the convenience of
operating at the meta-level comes at a certain cost in terms of computational

4 For example, each state in the Maude representation of the Ptolemy II model in
Section 6 “contains” the entire Ptolemy II model.

5 We denote by TCTL≤≥ the restricted TCTL logic with time constraints on the
temporal modalities of the form ∼ r, where ∼∈ {<,≤,≥, >},
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efficiency, even with our optimizations. Therefore, the current Real-Time Maude
model checker should be regarded as a working prototype for a C++ implemen-
tation that we plan to implement in the future.

Our model checker is available at http://folk.uio.no/leprid/TCTL-RTM/
together with the technical report [19], the specifications and analysis commands
of the case studies in this paper.

5.1 Using the Model Checker

In Real-Time Maude, the user is provided with two TCTL model checking com-
mands, corresponding respectively to the basic and the gcd strategy, with syntax

(mc-tctl t |= ϕ .) and (mc-tctl-gcd t |= ϕ .)

for t the initial state and ϕ a TCTL formula. The syntax of TCTL formulas
is fairly intuitive, with syntactic sugar for (untimed) CTL formulas, common
abbreviations and boolean connectors such as AF, EF, AG, EG, iff and implies,
etc. For example, E true U≤r(¬ϕ ∧ A G (E F[a,b]ϕ

′)) is written6

E tt U[<= than r](not ϕ and AG (EF[c a, b c] ϕ′))

We do not support counter-example generation, since, in contrast to linear
temporal logics, where counter-examples are just paths, it is generally more
complex to generate counter-examples in branching-time temporal logics, where
counterexamples are parts of computation trees (see, e.g. [13]). For example, a
counter-example to the validity of the formula E F p, for p an atomic proposi-
tion, is the entire computation tree (where each state is a ¬p-state).

6 Model Checking a Ptolemy II Discrete-Event Model

Real-Time Maude provides a formal analysis tool for a set of modeling lan-
guages for embedded systems, including Ptolemy II discrete-event (DE) models
that cannot be formalized by, say, timed automata. Ptolemy II [15] is a well-
established modeling and simulation tool used in industry that provides a pow-
erful yet intuitive graphical modeling language. Our model checker has been
integrated into Ptolemy II by Kyungmin Bae, so that we can now model check
TCTL properties of Ptolemy II DE models from within Ptolemy7. We show the
TCTL analysis of a Ptolemy II model of a hierarchical traffic light system, in
which our model checker has uncovered a previously unknown flaw. Notice that
Ptolemy II DE models satisfy the requirements for having a sound and complete
analysis when using the gcd strategy. The analysis has been performed on a
2.4GHz Intel R© Core 2 Duo processor with 4 GB of RAM.

6 The model checker syntax for TCTL formulas supports also open bounds, e.g.
the user could write [c 0, b o] for [0, b), which would be internally reduced to
[< than b].

7 Real-Time Maude verification commands can be entered into the dialog box that
pops up when the blue button in Fig. 1 is clicked.

http://folk.uio.no/leprid/TCTL-RTM/
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TrafficLight

TrafficLight

Error

Normal

Decision

HierarchicalTrafficLight

Fig. 1. A hierarchical fault-tolerant traffic light system in Ptolemy II

Figure 1 shows a hierarchical Ptolemy II model of a fault-tolerant traffic light
system at a pedestrian crossing, consisting of one car light and one pedestrian
light. Each light is represented by a set of set variable actors (Pred and Pgrn rep-
resent the pedestrian light, and Cred, Cyel and Cgrn represent the car light). A
light is on iff the corresponding variable equals 1. The FSM actor Decision “gen-
erates” failures and repairs by alternating between staying in location Normal

for 15 time units and staying in location Abnormal for 5 time units. Whenever
the model operates in error mode, all lights are turned off, except for the yellow
light of the car light, which is blinking. We refer to [7] for a thorough explanation
of the model.

An important fault tolerance property is that the car light will turn yellow,
and only yellow, within 1 time unit of a failure. We can model check this bounded
response property with the command:

Maude> (mc-tctl {init} |=

AG((’HierarchicalTrafficLight . ’Decision | (port ’Error is present))

implies AF[<= than 1] (’HierarchicalTrafficLight |

(’Cyel = # 1, ’Cgrn = # 0, ’Cred = # 0)))) .)

In about 15 secs, the command returns that the property is not satisfied. This
model checking uncovered a previously unknown scenario, which shows that,
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Fig. 2. Dialog window for the hierarchical traffic light code generation

after a failure, the car light may show red or green in addition to blinking yel-
low. Eleven of the 15 seconds used by the timed CTL model checker were used to
generate the timed Kripke structure. Because of the large size of the system states
in this case study, it was impossible to run the same analysis before implement-
ing the optimization that mapped each state to an unique identifier. The same
property can be model checked with the gcd strategy command mc-tks-gcd in
about 22 secs.

Using the gcd strategy we can also determine a “minimal” time interval such
that the above bounded response is satisfied in the system. In particular, we
discovered that this interval is [5, 12] by trying different values for a and b in the
interval-bounded command

Maude> (mc-tctl {init} |=

AG((’HierarchicalTrafficLight . ’Decision | (port ’Error is present))

implies AF[c a, b c] (’HierarchicalTrafficLight |

(’Cyel = # 1, ’Cgrn = # 0, ’Cred = # 0)))) .)

Figure 2 shows the dialog window for the Real-Time Maude code generation of
the hierarchical traffic light model: after entering the error handling property, a
simple click on the Generate button will display the result of the model checking
command execution in the “Code Generator Commands” box.
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7 Conclusions and Future Work

We have described the semantic foundations of our TCTL model checker for
Real-Time Maude. Our modeling formalism is more expressive than those of
other timed model checkers, allowing us to analyze real-time systems which
are beyond the scope of other verification tools. In particular, we have proved
soundness and completeness of our model checker for a class of dense-time Real
Time Maude specifications that contain many systems outside the scope of other
real-time model checkers. Furthermore, the introduced TCTL model checker also
provides for free a timed temporal logic model checker for interesting subsets of
modeling languages widely used in industry, such as Ptolemy II and the avionics
standard AADL.

So far, we have only proved soundness and completeness for formulas with
closed intervals under the continuous semantics. We should also cover formulas
with open time intervals and the pointwise semantics. The model checker should
also provide counter-examples in a user-friendly way, when possible. We should
also extend our model checker to time-bounded TCTL model checking to support
the model checking of systems with infinite reachable state space. Finally, the
current version of the tool is implemented at the Maude meta-level; for efficiency
purposes, it should be implemented in C++ in the Maude engine.
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Abstract. Testing is one of the most important and most time-consuming
tasks in the software developing process and thus techniques and systems
to automatically generate and check test cases have become crucial. In pre-
vious work we have presented techniques to test membership
equational logic specifications; these techniques consist of two steps: first
several ground terms are generated by using all the available construc-
tor symbols in a breadth-first search, and then these terms are processed
to check whether they fulfill some properties. This approach presents the
drawback of separating two related processes, thus examining several terms
that are indistinguishable from the point of view of testing. We present
here a narrowing-based test-case generator that improves the performance
of the tool and extends its use to rewriting logic specifications. First, we
present two mechanisms to improve the narrowing commands currently
available in Maude to use conditional statements and equational mod-
ules. Then, we show how to use these new narrowing commands to per-
form three different approaches to testing for any Maude specification:
code coverage, property-based testing, and conformance testing. Finally,
we present trusting mechanisms to improve the performance of the tool.
We illustrate the tool by means of an example.

Keywords: testing, Maude, narrowing, coverage, property, conformance.

1 Introduction

Testing is a technique for checking the correctness of programs by means of
executing several inputs and studying the obtained results. Testing is one of
the most important stages of the software-development process, but it also is a
very time-consuming and tedious task, and for this reason several efforts have
been devoted to automate it [2,1]. Basically, we can distinguish two different
approaches to testing: glass-box testing [13,24], that uses the specific statements
of the system to generate the most appropriate test cases, and black-box test-
ing [32,14,5], that considers the system as a black box with an unknown structure
and where a specification of the system is used to generate the test cases and
check their correctness. We can also distinguish different kinds of testing de-
pending on how the test cases are obtained: they can either be ground terms
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that are later executed to check the obtained results or terms with variables that
are symbolically executed [20] to find the most appropriate values to test the
program. While the former generates in general more test cases (because it just
combines constructors to build terms) they can be illegal (input that can never
be used in real executions) and equivalent (different test cases check the same
statements), the latter generates less but more accurate test cases.

Maude [8] is a high-level language and high-performance system supporting
both equational and rewriting logic computation for a wide range of applica-
tions. Maude modules correspond to specifications in rewriting logic [22]. This
logic is an extension of equational logic; in particular, Maude functional modules
correspond to specifications in membership equational logic [3], which, in addi-
tion to equations, allows the statement of membership axioms characterizing
the elements of a sort. Rewriting logic extends membership equational logic by
adding rewrite rules, that represent transitions in a concurrent system. Maude
system modules are used to define specifications in this logic. The current ver-
sion of Maude supports a limited version of narrowing [31], a generalization of
term rewriting that allows to execute terms with variables by replacing pattern
matching by unification, for some unconditional rewriting logic theories with-
out memberships. This limitation is dropped in this work by using a program
transformation and by checking separately the conditions.

As part of an ongoing project to test and debug Maude specifications, we have
implemented a declarative debugger for Maude specifications [28], that allows
the user to debug both wrong (incorrect results obtained from a valid input) and
missing (incomplete results obtained from a valid input) answers in any Maude
specification, and a test case generator for functional modules [27]. The testing
approach used in that paper consists of different phases: first, the module is
preprocessed to obtain the statements used by the functions being tested; then,
terms are generated by using a breadth-first search that takes into account the
constructor information provided by the user, and then each of these terms
is executed step-by-step to check the used statements. However, this approach
uses ground terms and, as explained above, presents an important drawback:
since the test cases are not generated following the structure of the program but
just the available constructors, most of them apply the same statements, hence
consuming most of the time and preventing more complex terms from being
checked due to the time and space constraints. This problem is solved here by
symbolically executing terms with variables with narrowing.

We present in this paper a program transformation to test Maude functional
modules by using narrowing, a strategy to use membership axioms and condi-
tional statements in the narrowing process,1 and the adaptation of three test-
ing techniques to Maude: two white-box approaches (one selects a set of test
cases whose correctness must be checked by the user, while the other one checks

1 This strategy allows all kinds of conditions: rewrite and equational conditions, solved
by narrowing (the latter, which includes equational and matching conditions, re-
quires a previous transformation), and membership conditions, solved by using uni-
fication.
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whether a property holds in the specification) and one black-box mechanism
(conformance testing). In the first case, in addition to other criteria described
in [27], we have adapted a new criterion to select the set of test cases to be
checked by the user in system modules, which is based on modified condition
decision coverage [19] and checks the negative information (the rules that are not
applied). Finally, we enhance the performance of the tool by providing trusting
techniques that prevent the system from taking into account some statements.
The transformation, the extension of the narrowing process, and the testing
strategies have been implemented in a Maude prototype by using its meta-level
capabilities, that allow to manipulate Maude modules and statements as usual
data. Moreover, it also provides support for some predefined modules and at-
tributes, such as owise, that indicates that the current equation is only used
when the rest of equations cannot be applied.

The rest of the paper is organized as follows: Section 2 presents some re-
lated work and its relation with our system. Section 3 introduces Maude and
narrowing, Section 4 describes a module transformation that allows us to use
narrowing on Maude functional modules, while Section 5 presents how to use
conditional rules in the narrowing process. Section 6 illustrates how the tech-
niques described in the previous sections are used to generate test cases, while
Section 7 presents some trusting techniques to improve the performance of the
system. Finally, Section 8 concludes and outlines some future work. The source
code of the tool, examples, related papers, and much more information is avail-
able at http://maude.sip.ucm.es/testing/.

2 Related Work

Different approaches to testing for declarative languages have been proposed in
the literature. As explained in the introduction, test cases can be checked in
different ways: executing ground test cases or symbolically executing terms with
variables.

The first approach is followed by Smallcheck [30], a property-driven Haskell
tool that considers that most of the errors can be found by using only a few
constructors, and thus it generates all the possible combinations of constructors
given a (usually small) bound on the size of the test cases. Another tool fol-
lowing this ground approach is Quickcheck [7], a test-case generator developed
for Haskell specifications where the programmer writes assertions about logi-
cal properties that a function should fulfill; test cases are randomly generated
by using the constructors of the data type (in contrast to the complete search
performed by Smallcheck) to test and attempt to falsify these assertions. The
project, started in 2000, has been extended to generate test cases for several
languages such as Java, C++, Erlang, and several others. Finally, Easycheck [6]
is a test-case generator for Curry that takes advantage of the non-determinism
of functional-logic programs to generate a tree of potential test cases, that is
later traversed to list only the most interesting ones.

The second approach has been applied by Lazy Smallcheck [30] (an improve-
ment of a previous system called SparseCheck), a library for Haskell to test

http://maude.sip.ucm.es/testing/
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partially-defined values that uses a mechanism similar to narrowing to test
whether the system fulfills some requirements. Another way of achieving sym-
bolic execution is by considering that the statements in the program under test
introduce constraints on the variables, an approach followed by PET [15], that
uses Constraint Logic Programming to generate test cases satisfying some cov-
erages on object-oriented languages. Finally, narrowing has been used to verify
security protocols [21,18], symbolically exploring the state space trying to find
a flow in the protocol.

The previous version of our approach is quite similar to Smallcheck: we gen-
erate the complete search space given the constructors and a bound, but we
use them for both white-box and black-box testing, while Smallcheck only tries
to disprove some properties. Note that, on the one hand, the strategies in our
previous system could possibly be improved by following an approach similar to
Easycheck, while on the other hand we can consider that the current narrowing
approach is another way of pruning the tree of possible terms, making our ap-
proach similar to it. Regarding Quickcheck, it is an industrial tool with several
heuristics and a lot of experience in testing, and hence it presents a better perfor-
mance than our tool, that we try to improve by providing trusting mechanisms
to the user. On the other hand, an advantage of our tool is the computation
of test cases fulfilling different coverage criteria, which allows the user to test
the specification by checking test cases “by hand” even when no properties over
the specification are stated, and the usage of Maude as both a specification and
implementation language, which allows to perform conformance testing using
a previously tested Maude module as specification. Moreover, both Quickcheck
and our tool implement the shrinking mechanism, that consists of returning the
simplest form of a term that detects a bug in the program; in our case it is imple-
mented by performing a breadth-first search using narrowing steps, that will find
the simplest term (w.r.t. the number of steps) reproducing the buggy behavior.
The more similar approach to ours is Lazy Smallcheck; both are narrowing-based
experimental tools that focus on research rather than in efficiency, and thus they
present a similar performance; however, Smallcheck is only applied to property-
based testing. PET provides a coverage of the statements in Java-like programs,
but it does not allow the user to state properties or check the correctness of
the system against a specification. Finally, the verification of security protocols
focus on a specific problem and cannot be compared with the rest of tools.

Note that, in general, each system only focus in one testing approach: cover-
age, properties, or conformance. Maude features allow us to implement a wide
range of testing techniques: we can manipulate its modules to perform white-box
testing by using its meta-level capabilities; its analysis tools (such as the search
command) ease the testing of properties; and Maude programs can be used as
specification of others.

3 Preliminaries

This section introduces Maude and its narrowing mechanisms [9].



Using Narrowing to Test Maude Specifications 205

3.1 Maude

Maude functional modules [8, Chap. 4], with syntax fmod ... endfm, are exe-
cutable membership equational specifications that allow the definition of sorts
(by means of keyword sort(s)); subsort relations between sorts (subsort); op-
erators (op) for building values of these sorts, giving the sorts of their arguments
and result, and which may have attributes such as being associative (assoc) or
commutative (comm), for example; memberships (mb) asserting that a term has
a sort; and equations (eq) identifying terms. Both memberships and equations
can be conditional (cmb and ceq). Maude system modules [8, Chap. 6], intro-
duced with syntax mod ... endm, are executable rewrite theories [22]. A system
module can contain all the declarations of a functional module and, in addition,
declarations for rules (rl) and conditional rules (crl).

An important characteristic of Maude functional modules is that sorts are
grouped into equivalence classes called kinds ; that is, all the sorts related by
a subsort relation belong to the same kind [8]. Intuitively, terms with a kind
but without a sort represent undefined or error elements. We will make exten-
sive use of kinds to indicate that variables may have any sort when performing
unification; the proper sorts of the variables will be later checked by means of
membership axioms.

We introduce Maude modules with an example; variable declarations are not
shown because of space constraints, but assume they are defined at the sort level.
We specify ordered lists of natural numbers in the following module:

(fmod SORTED-NAT-LIST is

pr NAT .

We use the sort NatList, with constructors nil and _._, for generic lists and
SortedList for sorted lists, which are a subsort of NatList:

sorts SortedList NatList . subsorts SortedList < NatList .

op nil : -> SortedList [ctor] . op _._ : Nat NatList -> NatList [ctor] .

We use membership axioms to characterize nonempty sorted lists. They indicate
that the singleton list is ordered (ol1) and that a larger list is ordered if the first
element is equal to or smaller than the second one and the rest of the list is also
ordered (ol2):

mb [ol1] : N . nil : SortedList .

cmb [ol2] : N . N’ . L : SortedList if N <= N’ /\ N’ . L : SortedList .

We also specify a function ins-sort that sorts a list by inserting the elements
in an ordered fashion by using the auxiliary function ins-list:

op ins-sort : NatList -> SortedList .

eq [is1] : ins-sort(nil) = nil .

eq [is2] : ins-sort(N . L) = ins-list(ins-sort(L), N) .

This function returns the singleton list when inserting an element into the empty
list, and otherwise it distinguishes whether the first element in the list is smaller
or not:
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op ins-list : SortedList Nat -> SortedList .

eq [il1] : ins-list(nil, N) = N . nil .

ceq [il2] : ins-list(N . SL, N’) = N’ . (N . SL) if N’ <= N .

ceq [il3] : ins-list(N . SL, N’) = N . ins-list(SL, N’) if N < N’ .

Since we are also interested on testing system modules, we use this module to
specify how processes enter into a critical section in the following system module
CS. We consider that processes are represented by their priority (the smaller the
number the higher the priority), and hence lists of natural numbers stand for
lists of processes:

(mod CS is

pr SORTED-NAT-LIST .

We define the sort NatSoup for an associative and commutative multiset built
with the operators mtSoup and _,_; the sort NatWithEmpty for a supersort of
the natural numbers with an extra element empty; and System for the system,
that receives as arguments a multiset of natural numbers (the idle processes), a
sorted list of numbers (the processes waiting to enter the critical section), a value
of sort NatWithEmpty (the process in the critical section), and another multiset
of numbers (the processes that have already entered the critical section):

sort System NatSoup NatWithEmpty . subsort Nat < NatSoup NatWithEmpty .

op empty : -> NatWithEmpty [ctor] . op mtSoup : -> NatSoup [ctor] .

op _,_ : NatSoup NatSoup -> NatSoup [ctor assoc comm id: mtSoup] .

op _[_][_]_ : NatSoup NatList NatWithEmpty NatSoup -> System [ctor] .

We use the rule ticket to introduce a new process into the list of waiting
processes:

rl [ticket] : (N, NS) [NL] [NWE] NS’ => NS [ins-list(NL, N)] [NWE] NS’ .

If at least one process is waiting to enter the critical section and it contains
the value empty, then the first process in the list is introduced into the critical
section:

rl [cs-in] : NS [N . NL] [empty] NS’ => NS [NL] [N] NS’ .

The rule cs-out moves the process from the critical section to the finished
section:

rl [cs-out] : NS [NL] [N] NS’ => NS [NL] [empty] (N, NS’) .

Finally, the rule reset moves the elements in the fourth component of the system
to the first one to start the process again:

rl [reset] : mtSoup [nil] [empty] NS => NS [nil] [empty] mtSoup .

endm)

3.2 Narrowing

Narrowing [31,12,23] is a generalization of term rewriting that allows free vari-
ables in terms and replaces pattern matching by unification in order to reduce
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these terms. It was first used for solving equational unification problems [29]
and then generalized to deal with problems of symbolic reachability. Similarly
to rewriting, where at each rewriting step one must choose which subterm of the
subject term and which rule of the specification are going to be considered, at
each narrowing step one must choose which subterm of the subject term, which
rule of the specification, and which instantiation on the variables of the sub-
ject term and the rule’s lefthand side are going to be considered. The difference
between a rewriting step and a narrowing step is that in both cases we use a
rewrite rule l ⇒ r to rewrite t at a position p, but narrowing unifies the lefthand
side l and the chosen subject term t before actually performing the rewriting
step, while in rewriting this term must be an instance of l (i.e., only matching
is required). Using this narrowing approach, we can obtain a substitution that,
applied to an initial term that only contains variables (except for the function
symbol at the top), generates the most general term that can apply the traversed
rules.

We denote by t �σ t′, with σ = q1; . . . ; qn a sequence of labels, the succession
of narrowing steps applying (in the given order) the statements q1; . . . ; qn that
leads from the initial term t (possibly with variables) to the term t′, and by θσ

the substitution used by this sequence, which results from the composition of
the substitutions obtained in each narrowing step. We will overload the notation
t �q t′ by using conditions in q to illustrate narrowing steps due to conditions.

In the example above, we could start from the term NS1 [NL] [NWE] NS2,
with NS1 and NS2 variables of sort NatSoup, NL a variable of sort NatList, and
NWE a variable of sort NatWithEmpty, and apply one step of narrowing to obtain
a set of four terms, each of them corresponding to the application of one of the
rules for System. For example,

NS1 [NL] [NWE] NS2 �ticket NS3 [ins-list(NL, N1)] [NWE] NS2

where NS1 has been replaced by N1, NS3 (with N1 and NS3 fresh variables of sorts
Nat and NatSoup, respectively) and then the rule ticket has been applied.

The latest version of Maude includes an implementation of narrowing for free,
C, AC, or ACU theories in Full Maude [9]. More specifically, we are interested
in the metaNarrowSearchPath function that, given a term and a bound on the
number of narrowing steps, returns all the possible paths starting from this term,
the used substitutions, and the applied rules. We use this command to perform
a breadth-first search of the state space. Note that the current implementation
of narrowing only works for non-conditional rules and specifications without
membership axioms; we will show in Section 5 how to check separately the
conditions, including membership conditions.

4 A Module Transformation for Narrowing

We present in this section a simple module transformation that will be applied
to the modules in order to use narrowing with the equational part of Maude.
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This transformation has two objectives: on the one hand it transforms equations
into rules (and thus it requires to transform equational conditions into rewrite
conditions), which allows us to use narrowing with the equational part of Maude
system modules. On the other hand, and since the current implementation of
narrowing in Maude does not support memberships, we transform all the terms
where membership inferences may be needed into equivalent terms with the
variables declared at the kind level, while extra membership conditions stating
the correct sort, that will be separately checked with the mechanisms in the next
section, are added for each variable whose type has changed. More specifically,
the transformation takes an equation of the form

l = r if
n∧

i=1

ti = t′i ∧
m∧

j=1

pj := uj ∧
l∧

k=1

vk : sk

and returns a rule

kind(l) ⇒ kind(r) if mbs(l) ∧∧n
i=1(kind(ti) ⇒ wi ∧ kind(t′i) ⇒ wi) ∧∧m
j=1(kind(uj) ⇒ kind(pj ) ∧ mbs(pj )) ∧∧l
k=1 kind(vk) : sk

where

– The terms wi are fresh variables of the same kind as the corresponding term.
– The function kind replaces the sort of all the variables in the term given as

argument by the corresponding kind (we follow here the Maude approach
that represents each variable as a pair of an identifier and a type, that can
be either a sort or a kind; thus, we can modify these pairs when the second
component is a sort by the appropriate kind).

– The function mbs generates a conjunction of conditions stating that the
variables, whose type has been changed by its kind, have in fact the sort
previously required, that is:

mbs(f(t1, . . . , tn)) = mbs(t1) ∧ · · · ∧ mbs(tn)
mbs(c) = nil
mbs(v) = kind(v) : sort(v)

where f is a function symbol, the ti are terms, c is a constant, v is a variable,
and sort(v) returns the sort of v.

We have to transform similarly all the membership axioms and rules in the
module in order to apply them. In the membership case we obtain another mem-
bership axiom with the lefthand side and the condition transformed as shown
above,2 while rules are transformed into rules, being the equational part trans-
formed as in the previous cases while the rewriting conditions remain unchanged.
2 Note that this transformation may generate invalid membership axioms, because

they may contain rewrite conditions. However, in practice all the equations and rules
in the module are unconditional and the membership axioms have been removed in
order to use narrowing; these conditions and membership axioms are kept apart and
checked separately by using the techniques described in Section 5.
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Note that, since Maude equational modules are assumed to be confluent and
terminating, the equations may be understood as oriented from left to right,
which is what we are explicitly doing when transforming them into rules. More-
over, the kind transformation only postpones (but not prevents from) the check-
ing of the specific sorts of the variables to the condition of the rule. For these
reasons, it is straightforward to see that this transformation is correct, even
though it can only be executed by using narrowing as explained in the next
section.

If we transform the critical section example above, the membership axiom ol2
is modified as follows (assume that the variables are now declared at the kind
level):

cmb [ol2] : N . N’ . L : SortedList

if N : Nat /\ N’ : Nat /\ L : NatList /\

N <= N’ => B /\ true => B /\

N’ . L : SortedList .

The first three conditions indicate that the variables, that are now declared at
the kind level, have in fact the appropriate sort. The next two conditions deal
with the first condition of the original axiom, N <= N’, which is an abbreviation
for N <= N’ = true; in this case both sides of the equality must be rewritten
to the same variable B, defined in the kind of Bool. Finally, the membership
condition remains unchanged.

In a similar way, the equation il2 is transformed into the following rule:

crl [il2] : ins-list(N . SL, N’) => N’ . N . SL

if N : Nat /\ SL : SortedList /\ N’:Nat /\

N’ <= N => B /\ true => B .

where the first three conditions indicate that the variables have the appropriate
sort. The next two conditions deal with the condition of the original axiom,
N’ <= N’’, which is an abbreviation for N <= N’ = true; in this case both
sides of the equality must be rewritten to the same variable B, defined in the
kind of Bool.

5 Narrowing of Conditional Rules

We present in this section a methodology to take into account the conditions in
the narrowing process because, as explained in the introduction, they are not
supported by the current implementation of the Maude system. Note that other
systems deal with rewrite conditions (see e.g. [23,16]) with a similar approach to
ours: they must be solved before applying the body of the rule. The novelty of
our technique, beyond describing and implementing this narrowing of conditional
rules in Maude, lies on the resolution of membership conditions by means of
unification.

Basically, when a rule is applied the conditions must be evaluated separately
by using narrowing (remember that equational conditions become rewrite condi-
tions) to find a substitution (that must be the composition of the substitutions
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obtained for each single condition) that fulfills them. If the set of substitutions
fulfilling the conditions is nonempty, all of them extend the set of substitutions
obtained for the unconditional rule; otherwise, the rule cannot be applied.

However, in addition to rewrite conditions we must also take into account
membership conditions. The current implementation of narrowing does not sup-
port membership axioms, and thus we must independently check whether a
membership condition holds. The first step to achieve it was presented in the
previous section: we transform the lefthand of the statements to deal with kinds
instead of sorts in order to move the membership information to the conditions.
The next step consists of checking the memberships (those introduced by the
transformation, as well as those stated by the user); if the sort is defined by using
membership axioms (and possibly by operators), then we unify the current term
with the lefthand side of each membership axiom inferring this sort or any of
its subsorts and then we proceed to prove the conditions in the corresponding
axioms as explained before, applying the substitution obtained in the unification
(moreover, it also updates the type of the variables, if they are at the kind level,
to the required sorts in order to use the operator definitions, see the example
below for details). Otherwise (the sort is not defined by using memberships) we
update the type of the variables and the rest of the condition is processed.

In our example, we can apply conditional narrowing to ins-list(NL, N1).
The narrowing process would start by unifying this term with the lefthand side
of il2,3 whose transformed version was presented at the end of the previous
section:

ins-list(NL, N1) �unif-lhs(il2) ins-list(N2 . SL1, N1)

This first step requires the initial list of natural numbers NL to be of the form
N2 . SL1, being N2 and SL1 fresh variables at the kind level. Thus, the unifica-
tion generates the substitution NL �→ N2 . SL1. However, it must be extended by
using the conditions of the applied rule. The first condition, N : Nat, is a mem-
bership condition for a sort that is not defined with membership axioms, and
thus it forces the variable N24 to have sort Nat; we change the sort of the variable
and proceed with the next condition. The second condition, SL : SortedList,
is trickier because this sort is defined by means of membership axioms. We must
use a transformed version of the membership axiom ol2 to obtain:

ins-list(N2 . SL1, N1) �unif-lhs(ol2) ins-list(N2 . N3 . NL2, N1)

where the unification of the term with the lefthand side of the membership ax-
iom gives the substitution SL1 �→ N3 . NL2. Note that the transformation of ol2
generates three initial conditions (N : Nat /\ N’ : Nat /\ L : NatList) that

3 Note that other rules, such as il1 or il3, could be also used. In the same way, some
other steps in this example could apply different membership axioms and rules.

4 Note that, after the unification, the rule is being symbolically applied by using the
substitution N �→ N2 ; SL �→ SL1 ; N’ �→ N1. In the following, we will not show the
substitution required to apply each rule.
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just update the sorts of the variables, two rewrite conditions, N <= N’ => B and
true => B, which require narrowing again to be solved, and keeps the member-
ship condition unmodified. As we will explain below, since our implementation
supports some predefined operators such as <=, that returns true when its first
argument is 0, we can use narrowing to solve the rewrite conditions:

ins-list(N2 . N3 . NL2, N1) �N <= N’ => B ins-list(0 . N3 . NL2, N1)

and the current substitution is extended with N2 �→ 0 ; B �→ true. With this
substitution the next condition of ol2 (B => true) trivially holds and only
the membership condition, N’ . L : SortedList, remains. It can be satis-
fied by using the membership axiom ol1, which extends the substitution with
NL2 �→ nil. Summarizing the narrowing process thus far, starting from the
term ins-list(NL, N1) and applying the rule il2 and its two first condi-
tions (which includes applying the membership axiom ol2 and all its con-
ditions, the rule for <=, and the membership axiom ol1), we have reached
ins-list(0 . N3 . nil, N1) with the substitution NL �→ 0 . N3 . nil. We
proceed now with the third condition of il2, N’ : Nat, that simply updates the
sort of N1. The next condition, N’ <= N => B, is solved as explained above by
using the substitution N1 �→ 0 ; B �→ true:

ins-list(0 . N3 . nil, N1) �N1 <= 0 => B ins-list(0 . N3 . nil, 0)

Finally, the last condition for il2 holds because true is rewritten to itself, and
the rule is applied by using the obtained substitution in the righthand side,
obtaining the following complete narrowing step with the substitution NL �→
0 . N3 . nil ; N1 �→ 0:

ins-list(NL, N1) �il2 0 . 0 . N3 . nil

5.1 A Brief Note on Predefined Functions

As we have shown in the example above, we use some predefined functions on
the narrowing process. We basically add some rules to deal with the most used
functions for boolean values and natural numbers. For example, we add the rules
rl [let1] : 0 <= s(N) => true .

rl [let2] : s(N1) <= s(N2) => N1 <= N2 .

rl [let3] : s(N) <= 0 => false .

to deal with the _<=_ function. In this way we introduce rules are easily man-
aged by the narrowing mechanisms and greatly increase the number of Maude
specifications that can be tested with the tool.

6 Using Narrowing to Generate Test Cases

Different testing techniques can be used to test Maude specifications, and for
each of these techniques a different narrowing strategy will be used. We show
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in this section how to compute a coverage, how to check whether a specification
fulfills an invariant, and how to examine if, given a correct specification, another
module performs the required actions, which is called conformance testing.

6.1 Coverage Criteria

Code coverage techniques [19,25] consist of selecting a set of test cases that,
when executed, apply all the statements required by the coverage criterion. In
our case we use global branch coverage [13], a strategy that tries to find test cases
that use all the statements potentially used by the function under test (which,
of course, includes the functions and membership axioms in the conditions) and
has been already described for functional modules in [27], and system coverage,
an adaptation of modified condition decision coverage [19] that tries to obtain
information by making the conditions to fail.

Narrowing can be naturally used to compute global branch coverage by start-
ing with a term with variables and performing a breadth-first search, where after
each narrowing step, that computes the set of reachable terms by applying one
rule, we check that the conditions of each rule are fulfilled by using the mecha-
nism presented in the previous section, thus removing some of the obtained terms
and extending the substitutions when required (e.g., in the example of the pre-
vious section, the substitution was extended to NL �→ 0 . N3 . nil ; N1 �→ 0).
This search finishes when all the statements required by the coverage have been
used, a bound in the number of steps has been reached, or all the possible states
have been reached (this last point is checked by trying to unify the terms ob-
tained in each step with any of the previous terms; that is, we build a graph
instead of a tree). Moreover, our system provides two different options to select
the set of test cases: the smallest one, composed of the minimum number of
terms whose execution leads to the execution of all the statements in the cover-
age and thus may contain complex test cases; and the simplest one, in the sense
that it may present more but simpler test cases. The user can switch between
these two modes to decide which one is more appropriate for each specification.

More formally, we look for a set of sequences σi and terms ti, 0 ≤ i ≤ l, such
that, given the set of labels Q defining the coverage and a term f(v1, . . . , vn),
with f the function under test and vi variables of the appropriate sorts,
∀q ∈ Q ∃l

i=0 . f(v1, . . . , vn) �σi ti ∧ q ∈ σi. The test cases will be⋃l
i=0 θσi(f(v1, . . . , vn)). Since there are several different possibilities to select

the σi, the different strategies to display the set of test cases will choose between
a small number of large sequences, that will generate less test cases applying
more rules, and a big number of short sequences, that will generate simpler test
cases. Note that the extension to testing of system modules is straightforward
by starting from c(v1, . . . , vn), with c any constructor for the sort being tested.

In our lists example, we may be interested in testing the function ins-sort
using the global branch coverage criterion. This function is defined by two equa-
tions (is1 and is2); one of these equations uses the function ins-list, and
thus its three equations (il1, il2, and il3) must also be added to the needed
coverage; finally, this function uses the functions _<_ and _<=_, imported from
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ins-sort(L) �is2

ins-list(ins-sort(L1), N1) �is2

ins-list(ins-list(ins-sort(L2), N2), N1) �is2

ins-list(ins-list(ins-list(ins-sort(L3), N3), N2), N1) �is2

ins-list(ins-list(ins-list(ins-list(ins-sort(L4), N4), N3), N2), N1) �is1

ins-list(ins-list(ins-list(ins-list(nil, N4), N3), N2), N1) �il1

ins-list(ins-list(ins-list(N4 . nil, N3), N2), N1) �il3

ins-list(ins-list(0 . ins-list(nil, s(N5)), N2), N1) �il1

ins-list(ins-list(0 . s(N5) . nil, N2), N1) �il2,ol1

ins-list(0 . 0 . s(N5) . nil, N1) �il2,ol2,ol1

0 . 0 . 0 . s(N5) . nil

Fig. 1. Narrowing path for global branch coverage

NAT and a variable of sort SortedList, which is defined with two membership
axioms (ol1 and ol2). All these statements must be executed at least once by
the test cases to fulfill global branch coverage. We can use our tool to auto-
matically generate the test cases, following the default strategy that selects the
smaller set of test cases:
Maude> (test ins-sort .)

1. ins-sort(1 . 0 . 0 . 0 . nil) has been reduced to 0 . 0 . 0 . 1 . nil

All the statements were covered.

Note that the tool shows the initial term, the result of reducing it in the module,
and whether some reachable statements could not be used. The term shown by
the tool may be obtained as shown in Figure 1, where s stands for the successor
function over natural number (note that this is one branch of a search tree of
depth 10).

Since all the possible instantiations of this term generate test cases traversing
all the required statements, the tool generates the simplest one by replacing the
variables with constants of the given sort (or the simplest built term if the sort
does not have constants). If we find that any reduction is wrong, we could debug
it with:
Maude> (invoke debugger with user test case 1 .)

Declarative debugging of wrong answers started.

This command starts the declarative debugging process [28] that, by asking
questions to the user about the computations that took place will find the specific
statement that generated the wrong behavior. This command is available for all
the testing options.

Note that the extension to testing of system modules is straightforward; in
this case we want to test the transitions of the terms with a given sort instead of
a specific function, and thus the narrowing process starts with a term with vari-
ables of the given sort, and tries to apply all the reachable rules, equations, and
memberships, proceeding in the same way as the testing for functional modules.
That is, we start the narrowing process from c(v1, . . . , vn), with c any constructor
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for the sort and vi variables of the appropriate sorts, and continue as indicated
above.

Moreover, we propose another coverage criterion, related to modified condi-
tion decision coverage (MCDC) [19,10]. Basically, MCDC requires that all the
conditions in a program are evaluated with the given set of test cases to both
true and false. In a non-deterministic framework as the one of system modules it
is important to know, as explained in [28], the applied statements that make the
program reach certain states, the positive information, but also the statements
that were not applied and thus prevented the program from reaching some other
values, the negative information. While we obtain the positive information with
the global branch coverage shown above, it does not provide any of the negative
information. For this reason, we have implemented the so-called system coverage
criterion, which requires a set of test cases to apply all the rules in the trans-
formed module (which corresponds to global branch coverage) but also to fail
for at least one condition for each rule in the original module.

6.2 Checking Invariants

Checking of invariants has already been studied for Maude specifications in [8,
Chapter 12]. It takes advantage of the command search, that performs a breadth-
first search from an initial term, given a bound in the number of steps and a
condition to be fulfilled; by searching for the negation of the invariant we can
check that no illegal states are reached. We apply a similar idea in our testing
framework by using symbolic search; this search will traverse all the possible
states and, each time a rule is applied, it tries to find a path to fulfill the nega-
tion of the invariant. If such a path is found, then the specification does not fulfill
the invariant. Note that the invariant is usually specified by using equations, and
thus it is important to use equations in the narrowing process, since it allows
the tool to fix the values of the initial state required to fulfill the condition.

More formally, we consider a new rule inv(pat) ⇒ pat if Cond , where inv
is a new operator defined over the sort of states, pat is the pattern given for
the invariant, and Cond a condition (we assume the invariant is composed of
a pattern and a condition, see below for details). Thus, for every narrowing
sequence t �q1 t1 �q2 . . . �qn tn, the invariant is fulfilled if, for every ti
obtained by using a narrowing step with the rule qi we cannot find a term t′

such that ti �inv t′ (we look for the negation of the invariant). If such a term
exists, then the term θinv (θq1;...;qi(t)) can be used as initial term for debugging;
otherwise, the invariant holds.

The transformation presented in Section 4 allows us to check invariants in
both functional and system modules. We could e.g. set an invariant on our
critical section example stating some correct property over lists or systems, but
it is worth examining how an initial term proving the specification wrong is
obtained. In our critical section example we can specify a function empty?, that
checks whether a NatSoup is empty, defined as follows:
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op empty? : NatSoup -> Bool .

eq [mt1] : empty?(mtSoup) = true .

eq [mt2] : empty?(NS) = false [owise] .

and then search for a system that never has its first argument empty (remember
that we look for the negation of the invariant) with:

Maude> (test [10] System =>+ NS1 [NL] [NWE] NS2 s.t. empty?(NS1) .)

The term mtSoup [nil] [0] 0 reaches the state

mtSoup [nil] [empty] (0,0), which does not fulfill the invariant.

This command looks for terms of sort System that, in at least one step (indicated
by the search arrow =>+; the tool also provides searches in zero or more steps with
=>* and searches for final forms with =>!) and at most 10, match the pattern
and fulfill the condition (the negation of the invariant). In this case, the tool has
found (as expected) an initial state that, after applying one rule (in this specific
case it is cs-out although it would be possible to apply other rules), reaches a
state that does not fulfill the invariant. In this case the narrowing process has
fixed the value of the first NatSoup to mtSoup to fulfill the condition and has
forced an element to be in the critical section to apply the rule, while the nil list
and the singleton soup are just possible instances of the variables left by the nar-
rowing step NS1 [NL] [NWE] NS2 �cs-out NS1 [NL] [empty] (N1, NS2) and
then checking the property by instantiating NS1 with mtSoup when applying the
equations for empty?.

6.3 Conformance Testing

Conformance testing [32,14,5] involves testing a system with respect to its speci-
fication. The goal of this approach is to check that the system presents the same
behavior as the specification, that has already been tested. To check whether an
implementation conforms to a specification we must formalize the conformance
notion by means of an implementation relation that relates the two systems.
In our case, and taking into account that a rewrite system can be understood
as a labeled transition system, where terms stand for states and rewrites for
transitions, we apply to Maude specifications the conformance testing strategies
for such systems [32]. In particular, we use the relation conf [4], that requires
the implementation to perform the same actions as the specification, although
it allows the implementation to execute some other actions not included in the
specification, that is, conf requires that an implementation does what it should
do, not that it does not do what it is not allowed to do.

In our framework we consider that only the rules in the original specification
must be executed in the implementation, and thus narrowing steps using equa-
tions are considered auxiliary and it is not required to reproduce them in the
implementation. In this way, we compute all the possible paths by using nar-
rowing in the specification and then that all these paths are also possible in the
implementation. More formally, if we denote by σ |R the restriction of σ to the
rules in R, that is, remove from σ all those statements that are not in the set,
then we require that for every narrowing sequence t �σs ts in the specification
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there exists a narrowing sequence t �σi ti in the implementation such that σs |R
is a prefix of σi |R. Note that, although the reached states may be different in
the specification and the implementation (only the applied rules matter), we
consider that both the correct specification and the system being tested share
the same signature for the initial terms and the same rule labels; this can be
achieved by means of a renaming.

For the sake of example, we could create a new module RED-CS that has the
same rules as CS except for the rule cs-out. We can state CS as the specification
with:

Maude> (correct test module CS .)

CS selected as correct module for testing.

Now, we can check the behavior of RED-CS with respect to this module with:

Maude> (test in RED-CS : System .)

Starting from the term 0 [nil] [0] 0 the rule

cs-out could not be applied to the implementation.

That is, the tool shows the simplest term (in fact, only the 0 in the critical section
is instantiated during the process) that is required to find the disconformity
between the specification and the implementation due to the cs-out rule.

7 Trusting

Our tool provides some trusting techniques to enhance its performance. Basi-
cally, it only takes into account labeled statements when computing coverages
and checking the implementation relation. Moreover, the user can also select a
subset of these statements by using the different commands available in the tool
(trusting of all the statements of a given module, trusting of a complete kind of
statements—e.g. all the equations, memberships, or rules—and trusting of sin-
gle statements). Using these commands we can use different trusting strategies:
assuming that our specifications are structured, we can test first easier specifi-
cations, and then trust them when testing larger specifications including them;
and we can trust all the equations (except for the ones defining the property
when checking invariants) and memberships when testing system modules. Of
course, trusting mechanisms are correct assuming the user points out as trusted
only rules that are not relevant for the testing process.

Trusting works in a different way depending on the testing strategy: if we
are computing a coverage then the trusted statements are removed from the
needed coverage, and thus we may reduce both the number and the complexity
of the test cases. When using conformance testing, the trusted statements are
related to the specification and indicate that the behavior specified by the rule
is not required to be performed in the system being tested (e.g. because it is an
auxiliary rule). That is, the sequences of statements σ required for coverage are
not required to contain the trusted statements,5 while the restriction to rules
5 Note that using trusting when using system coverage will remove the statements

from both the positive and negative information.
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ins-sort(L) �is2

ins-list(ins-sort(L1), N1) �is2

ins-list(ins-list(ins-sort(L2), N2), N1) �is2

ins-list(ins-list(ins-list(ins-sort(L3), N3), N2), N1) �is1

ins-list(ins-list(ins-list(nil, N3), N2), N1) �il1

ins-list(ins-list(N3 . nil, N2), N1) �il2

ins-list(0 . N3 . nil, N1) �il2,is1

0 . 0 . N3 . nil

Fig. 2. Narrowing path for global branch coverage with trusting

in the specification given in conformance testing is now applied to non-trusted
rules in the specification.

For example, we can trust the statements il3 and ol2 (which required the
longest computations in Figure 1) if we are sure of its correctness to improve the
performance of the computation of the global branch coverage in Section 6.1 by
using the commands:
Maude> (test include SORTED-NAT-LIST .)

Labels hd il1 il2 il3 is1 is2 ol1 ol2 have been added to the coverage.

Maude> (test deselect il3 ol2 .)

Labels il3 ol2 have been excluded from the coverage.

Maude> (test in SORTED-NAT-LIST : ins-sort .)

1. ins-sort(0 . 0 . 0 . nil) has been reduced to 0 . 0 . 0 . nil

All the statements were covered.

Obtaining in this case a simpler test case that covers all the statements. It
is interesting to see that trusting a rule when using conformance provides more
flexibility, because it allows to perform some analyses by removing auxiliary rules
that are not supposed to be applied in the final implementation. However, if the
user trusts a statement that should not be trusted he may obtain an incorrect
answer, hence the assumption presented above about the correctness of trusting,
that may produce incorrect results. Similarly, we can trust the rule cs-out when
using conformance testing and check that in this case the specification and the
implementation perform the same actions:
Maude> (test deselect cs-out .)

Labels cs-out have been excluded from the coverage.

Maude> (test in RED-CS : System .)

The implementation conforms to the specification.

The improvement in the performance when using trusting is highly dependent
on the selected set of statements: while in some cases trusting may reduce the
number of steps more than a 50%, in other cases they are not reduced at all. For
example, the global branch coverage obtained in Section 6.1 was highly reduced
by trusting the statements shown above, reducing the depth of the search tree
from 10 to 7, as illustrated in Figure 2.6 However, selecting other statements
6 Remember that this is one branch of the search tree, that is, trusting has reduced

the depth of the search tree from 10 to 7, which results in a huge improvement of
the performance.
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such as is1 or is2, that must be always executed in order to reach a state
where other statements can be used, would not reduce the size of the search at
all. All the examples in this paper, and much more information is available at
http://maude.sip.ucm.es/testing/.

8 Concluding Remarks and Ongoing Work

We have presented in this paper how to use narrowing to generate test cases
for Maude specifications. To achieve this we use a module transformation that
allows us to use the equational part of Maude modules in the narrowing process
and a method to check whether the conditions of the applied statements are
fulfilled, including those conditions that require membership axioms. Using these
techniques we have implemented a tool that is able to compute a set of test
cases fulfilling two different coverage criteria, to check whether an invariant is
fulfilled by the specification, and to examine whether an implementation of the
system fulfills the behavior indicated by its specification. Moreover, two different
sets of test cases can be computed: a smaller set that contains more complex
terms or a larger set that contains less complex terms; the user is in charge of
selecting the most appropriate depending on the complexity of the specification
and his knowledge of it. Trusting mechanisms are also provided to improve the
performance of both coverage criteria and conformance testing. Finally, some
predefined modules can be also used to generate the test cases. We are currently
working on a comparison between our current approach using narrowing and
(i) the previous one using ground terms, and (ii) similar approaches in other
languages, either using narrowing, like Lazy Smallcheck, or random testing, like
QuickCheck.

As future work, we plan to extend the tool by introducing symbolic model
checking [11], that would allow the user to check linear temporal logic formu-
las over the specification starting from a term with variables, thus proving the
formula on, potentially, all the possible inputs of the system. Moreover, we are
studying new coverage criteria and implementation relations to allow the user
to choose the most appropriate technique for each application. Finally, we also
intend to develop a distributed implementation of the tool to deal with narrow-
ing; in this way, we can start the symbolic search of the system in one Maude
instance and then send the different paths to different Maude processes, that
must share some information (the coverage and the reached states) to finish the
search as soon as possible.

Acknowledgements. I thank Santiago Escobar for his kind help with narrow-
ing.
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Abstract. This paper deals with decision procedures specified as in-
ference systems. Among them we focus on superposition-based decision
procedures. The superposition calculus is a refutation-complete infer-
ence system at the core of all equational theorem provers. In general this
calculus provides a semi-decision procedure that halts on unsatisfiable
inputs but may diverge on satisfiable ones. Fortunately, it may also ter-
minate for some theories of interest in verification, and thus it becomes a
decision procedure. To reason on the superposition calculus, a schematic
superposition calculus has been studied, for instance to automatically
prove termination. This paper presents an implementation in Maude of
these two inference systems. Thanks to this implementation we auto-
matically derive termination of superposition for a couple of theories of
interest in verification.

1 Introduction

Satisfiability procedures modulo background theories such as classical data struc-
tures (e.g., lists, records, arrays, . . .) are at the core of many state-of-the-art
verification tools. Designing and implementing satisfiability procedures is a very
complex task, where one of the main difficulties consists in proving their sound-
ness.

To overcome this problem, the rewriting approach [2] allows us to build sat-
isfiability procedures in a flexible way, by using a superposition calculus [14]
(also called Paramodulation Calculus in [10]). In general, a fair and exhaustive
application of the rules of this calculus leads to a semi-decision procedure that
halts on unsatisfiable inputs (the empty clause is generated) but may diverge on
satisfiable ones. Therefore, the superposition calculus provides a decision proce-
dure for the theory of interest if one can show that it terminates on every input
made of the (finitely many) axioms and any set of ground literals. The needed
termination proof can be done by hand, by analysing the (finitely many) forms
of clauses generated by saturation, but the process is tedious and error-prone. To
simplify this process, a schematic superposition calculus has been developed [10]
to build the schematic form of the saturations. This schematic superposition
calculus is very useful to analyse the behavior of the superposition calculus on a
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given input theory, as shown in [9] to prove automatically the termination and
the combinability of the related decision procedure.

This paper explains how to prototype the schematic superposition calculus
to provide a toolkit for further experiments. The main idea is to implement
the calculus so that the user can easily modify the code corresponding to an
executable specification. Implementing this schematic calculus in an off-the-shelf
equational theorem prover like the E prover [15] or SPASS [16] would be a
difficult and less interesting task, since the developer and the user would have
to understand a complex piece of code which is the result of years of engineering
and debugging. To make the task easier another quite natural solution would be
to use a logical framework since this calculus is defined by an inference system.
This is why we propose to prototype the schematic superposition calculus by
using a rule-based logical framework. Our goal is to get a rule-based program
which is as close as possible to the formal specification. To achieve this goal,
we propose to use Maude because Maude includes support for unification and
narrowing, which are key operations of the calculus of interest, and the Maude
meta-level provides a flexible way to control the application of rules and powerful
search mechanisms.

Our implementation of schematic superposition is very useful to get an auto-
matic validation of saturations described in previous papers. Hence, our experi-
mentations allow us to find a flaw in an example of [9].

The paper is structured as follows. After introducing preliminary notions and
presenting superposition calculi in Section 2, Section 3 explains how we imple-
ment these calculi using the Maude system. Then Section 4 reports our experi-
mentations with our implementation to prove the termination of superposition
for theories corresponding to classical data structures such as lists and records.
Section 5 concludes and presents future work.

2 Background

2.1 First-Order Logic

We assume the usual first-order syntactic notions of signature, term, position,
and substitution, as defined, e.g., in [5]. We use the following notations: l, r, u, t
are terms, v, w, x, y, z are variables, all other lower case letters are constant or
function symbols. Given a function symbol f , a f -rooted term is a term whose
top-symbol is f . A compound term is a f -rooted term for a function symbol f of
arity different from 0. Given a term t and a position p, t|p denotes the subterm of
t at position p, and t[l]p denotes the term t in which l appears as the subterm at
position p. When the position p is clear from the context, we may simply write
t[l]. The depth of a term is defined inductively as follows: depth(t) = 0, if t is a
constant or a variable, and depth(f(t1, . . . , tn)) = 1+max{depth(ti) | 1 ≤ i ≤ n}.
A term is flat if its depth is 0 or 1. Application of a substitution σ to a term t
(resp. a formula ψ) is written σ(t) (resp. σ(ψ)).

A literal is either an equality l = r or a disequality l �= r. A positive literal is
an equality and a negative literal is a disequality. We use the symbol �� to denote
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either = or �=. The depth of a literal l �� r is defined as follows: depth(l �� r) =
depth(l) + depth(r). A positive literal is flat if its depth is 0 or 1. A negative
literal is flat if its depth is 0.

A first-order formula is built in the usual way over the universal and existential
quantifiers, Boolean connectives, and symbols in a given first-order signature.
We call a formula ground if it has no variables. A clause is a disjunction of
literals. A unit clause is a clause with only one disjunct, equivalently a literal.
The empty clause, denoted ⊥, is the clause with no disjunct, corresponding to
an unsatisfiable formula.

We also consider the usual first-order notions of model, satisfiability, validity,
logical consequence. A first-order theory (over a finite signature) is a set of first-
order formulae with no free variables. When T is a finitely axiomatized theory,
Ax(T ) denotes the set of axioms of T . We consider first-order theories with
equality, for which the equality symbol = is always interpreted as the equality
relation. A formula is satisfiable in a theory T if it is satisfiable in a model of T .
The satisfiability problem modulo a theory T amounts to establishing whether
any given finite conjunction of literals (or equivalently, any given finite set of
literals) is T -satisfiable or not. In this paper, we study decision procedures for
the satisfiability problem modulo T , where Ax(T ) is a finite set of literals.

We consider inference systems using well-founded orderings on terms/literals
that are total on ground terms/literals. An ordering< on terms is a simplification
ordering [5] if it is stable (l < r implies lσ < rσ for every substitution σ),
monotonic (l < r implies t[l]p < t[r]p for every term t and position p), and
has the subterm property (i.e., it contains the subterm ordering: if l is a strict
subterm of r, then l < r). Simplification orderings are well-founded. A term t
is maximal in a multiset S of terms if there is no u ∈ S such that t < u,
equivalently t �< u for every u ∈ S. Hence, if t �≤ u, then t and u are different
terms and t is maximal in {t, u}. An ordering on terms is extended to literals by
using its multiset extension on literals viewed as multisets of terms. Any positive
literal l = r (resp. negative literal l �= r) is viewed as the multiset {l, r} (resp.
{l, l, r, r}). Also, a term is maximal in a literal whenever it is maximal in the
corresponding multiset.

2.2 Paramodulation Calculus

In this paper we consider unit clauses, i.e. clauses composed of at most one
literal. We present the restriction UPC (for Unit Paramodulation Calculus) of
the inference system PC.

Our presentation of this calculus takes the best (to our sense) from the pre-
sentations in [2], [10] and [9]. The inference system UPC consists of the rules in
Figs. 1 and 2. Expansion rules (Fig. 1) aim at generating new (deduced) clauses.
For brevity left and right paramodulation rules are grouped into a single rule,
called Superposition, that uses an equality to perform a replacement of equal
by equal into a literal. Reflection rule generates the empty clause when the two
sides of a disequality are unifiable. Contraction rules (Fig. 2) aim at simplifying
the set of literals. Using Subsumption, a literal is removed when it is an instance
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of another one. Simplification rewrites a literal into a simpler one by using an
equality that can be considered as a rewrite rule. Trivial equalities are removed
by Deletion. A fundamental feature of PC and UPC is the usage of a simplifi-
cation ordering < to control the application of Superposition and Simplification
rules by orienting equalities. Hence, the Superposition rule is applied by using
terms that are maximal in their literals with respect to <. This ordering is total
on ground terms. We use a lexicographic path ordering [5] such that terms of
positive depth are greater than constants.

Let us recall the usual definitions of redundancy, saturation, derivation and
fairness. A clause C is redundant with respect to a set S of clauses if either C ∈ S
or S can be obtained from S ∪ {C} by a sequence of applications of contraction
rules (cf. Fig. 2). An inference is redundant with respect to a set S of clauses if its
conclusion is redundant with respect to S. A set S of clauses is saturated if every
inference with a premise in S is redundant with respect to S. A derivation is a
sequence S0, S1, . . . , Si, . . . of sets of clauses where each Si+1 is obtained from
Si by applying an inference to add a clause (by expansion rules in Fig. 1) or to
delete a clause (by contraction rules in Fig. 2). For the Simplification rule, one
can remark that its application corresponds to two steps in the derivation: the
first step adds a new literal, whilst the second one deletes a literal. A derivation
is characterized by its limit, defined as the set of persistent clauses

⋃
j≥0

⋂
i>j Si,

that is, the union for each j ≥ 0 of the set of clauses occurring in all future steps
starting from Sj. A derivation S0, S1, ..., Si, ... is fair if for every inference with
premises in the limit, there is some j ≥ 0 such that the inference is redundant
with respect to Sj . The set of persistent literals obtained by a fair derivation is
called the saturation of the derivation.

Superposition
l[u′] 	
 r u = t

σ(l[t] 	
 r)

if i) σ(u) �≤ σ(t), ii) σ(l[u′]) �≤ σ(r), and iii) u′ is not a variable.

Reflection u′ �= u
⊥

Above, u and u′ are unifiable and σ is the most general unifier of u and u′.

Fig. 1. Expansion inference rules of UPC

2.3 Schematic Paramodulation Calculus

The Schematic Unit Paramodulation Calculus SUPC is an abstraction of UPC.
Indeed, any concrete saturation computed by UPC can be viewed as an instance
of an abstract saturation computed by SUPC, as shown by Theorem 2 in [9].
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Subsumption
S ∪ {L, L′}
S ∪ {L} if L′ = σ(L).

Simplification
S ∪ {C[l′], l = r}

S ∪ {C[σ(r)], l = r}

if i) l′ = σ(l), ii) σ(l) > σ(r), and iii) C[l′] > (σ(l) = σ(r)).

Deletion
S ∪ {u = u}

S

Fig. 2. Contraction inference rules of UPC

Hence, if SUPC halts on one given abstract input, then UPC halts for all the
corresponding concrete inputs. More generally, SUPC is an automated tool to
check properties of UPC such as termination, stable infiniteness and deduction
completeness [9]. This paper focuses on termination.
SUPC is almost identical to UPC, except that literals are constrained by

conjunctions of atomic constraints of the form const(x) where x is a variable.
For sake of brevity, const(x1, . . . , xn) denotes the conjunction const(x1) ∧ · · · ∧
const(xn). SUPC consists of the rules in Figs. 3 and 4.

With respect to [9], we have slightly adapted the subsumption rule so that
the instantiation is not only a renaming but also a substitution instantiating
constrained variables by constrained variables. This allows us to have a more
compact form of saturations even for simple cases, as shown in Sect. 4. For a
given theory T with signature Σ, SUPC is executed with the input Ax(T )∪GT

0

where GT
0 is defined by

GT
0 = {⊥, x = y ‖ const(x, y), x �= y ‖ const(x, y)}
∪
⋃

f∈Σ{f(x1, . . . , xn) = x0 ‖ const(x0, x1, . . . , xn)}

and schematizes any set of ground flat equalities and disequalities built over Σ,
along with the empty clause.

2.4 Maude Language

Maude [4] is a rule-based language well-suited to implement the above inference
systems. Maude’s basic programming statements are equations and rules. Its se-
mantics is based on rewriting logic where terms are reduced by applying rewrite
rules. Maude has many important features such as reflection, pattern-matching,
unification and narrowing. Reflection is a very desirable property of a computa-
tional system, because a reflective system can access its own meta-level and this
way can be much more powerful, flexible and adaptable than a nonreflective one.
Maude’s language design and implementation make systematic use of the fact
that rewriting logic is reflective. Narrowing [3] is a generalization of term rewrit-
ing that allows free variables in terms (as in logic programming) and replaces
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Superposition
l[u′] 	
 r‖ϕ u = t‖ψ

σ(l[t] 	
 r‖ϕ ∧ ψ)

if i) σ(u) �≤ σ(t), ii) σ(l[u′]) �≤ σ(r), and iii) u′ is not an
unconstrained variable.

Reflection
u′ �= u‖ψ

⊥ if σ(ψ) is satisfiable.

Above, u and u′ are unifiable and σ is the most general unifier of u and u′.

Fig. 3. Constrained expansion inference rules of SUPC

Subsumption
S ∪ {L‖ψ, L′‖ψ′}

S ∪ {L‖ψ}

if either a) L ∈ Ax(T ), ψ is empty and for some substitution
σ, L′ = σ(L); or b) L′ = σ(L) and ψ′ = σ(ψ), where σ
is a renaming or a mapping from constrained variables to
constrained variables.

Simplification
S ∪ {C[l′]‖ϕ, l = r}

S ∪ {C[σ(r)]‖ϕ, l = r}

if i) l = r ∈ Ax(T ), ii) l′ = σ(l), iii) σ(l) > σ(r), and iv)
C[l′] > (σ(l) = σ(r)).

Tautology
S ∪ {u = u‖ϕ}

S

Deletion
S ∪ {L‖ϕ}

S
if ϕ is unsatisfiable.

Fig. 4. Contraction inference rules of SUPC

pattern-matching by unification in order to (non-deterministically) instantiate
and reduce a term. The narrowing feature is provided in an extension of Maude
named Full Maude. It is clearly of great interest to implement the superposition
rules of our calculi.

3 Implementation

This section describes the main ideas and principles of our implementation of
UPC and SUPC in Maude.
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3.1 Data Representation

Let us consider how we represent terms and literals. Maude symbols are reflected
in Maude as elements of the sort Qid (quoted identifier). Maude terms are re-
flected as elements of the sorts Constant, Variable and Term. We exploit the
Maude reflection feature by using the sort Term to define the new sort Literal
for literals, as follows:

fmod LITERAL is

pr META-TERM .

sort Literal .

op _equals_ : Term Term -> Literal [comm] .

op _!=_ : Term Term -> Literal [comm] .

endfm

The attribute [comm] declares that the infix binary symbols equals and != for
equality and disequality are commutative. For sets of literals we define the sort
SetLit by instantiating the polymorphic sort Set{X} defined in the parameter-
ized module SET{X :: TRIV} of the prelude of Maude, as follows:

view Literal from TRIV to LITERAL is

sort Elt to Literal .

endv

fmod SETLIT is

pr LITERAL .

pr SET{Literal} * (sort Set{Literal} to SetLit) .

endfm

The first three lines declare that the sort Literal can be viewed as the sort of
elements provided by the theory TRIV. This Maude view is named Literal. It is
used in the module SETLIT to instantiate Set{X} as Set{Literal}. Finally, the
sort SetLit is a renaming of the sort Set{Literal}. Consequently, the sets in
this sort can be built by using the constant empty, and by using an associative,
commutative, and idempotent union operator, written , . A singleton set is
identified with its element (Literal is a subsort of Set{Literal}).

A schematic literal is the empty clause, an axiom, or a constrained literal.
The sort AConstr of atomic constraints is defined by the operator

op const : Term -> AConstr .

and the sort Constr of constraints is a renaming of the sort Set{AConstr} of sets
of atomic constraints. Then, the sort SLiteral of schematic literals is declared
by

fmod SLITERAL is

sort SLiteral .

op emptyClause : -> SLiteral .

op ax : Literal -> SLiteral .
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op _ || _ : Literal Constr -> SLiteral .

endfm

where the infix operator || constructs a constrained literal from a literal and a
constraint. Similarly, for sets of schematic literals a sort SetSLit is defined in a
module SETSLIT.

3.2 Inference Rules

This section presents the encoding of SUPC, the encoding of UPC being sim-
ilar. Let us emphasize two main ideas of this encoding: 1) inference rules are
translated into rewrite rules, and 2) rule application is controlled thanks to spe-
cially designed states. More precisely, the encoding description starts with the
translation of some contraction rules into rewrite rules (the simplification rule is
omitted). Afterwards, it continues with the expansion rules, whose fair applica-
tion strategy is encoded by using a notion of state together with rules to specify
the transitions between states.

Contraction Rules. The following Maude conditional rewrite rule encodes the
first case of Subsumption inference rule in SUPC:
crl [subsum1] : (ax(L1), (L2 || Phi2)) => ax(L1)

if LiteralMatch(L1, L2) =/= noMatch .

The function call LiteralMatch(L1, L2) checks if the second literal L2 is
matched by the first one (L1), by calling the Maude function metaMatch.

The following two Maude conditional rewrite rules encode the second case of
Subsumption inference rule, decomposed into two cases:

crl [subsum2] : L1 || Phi1, L2 || Phi2 => L1 || Phi1

if isRename(L1 || Phi1, L2 || Phi2) .

crl [subsum3] : L1 || Phi1, L2 || Phi2 => L1 || Phi1

if filter(L1 || Phi1, L2 || Phi2) .

The function isRename checks if one constrained literal is the renaming of an-
other one by checking the existence of a substitution mapping the first literal into
the second one, and the constraint of the first literal into the constraint of the
second one. Moreover, this substitution should replace variables by variables and
the correspondence between the replaced variables and the replacing ones should
be one to one. The function call filter(L1 || Phi1, L2 || Phi2) checks if
the constrained literal L1 || Phi1 is more general than the constrained literal
L2 || Phi2 by determining the existence of a substitution mapping the first lit-
eral into the second one, and the constraint of the first literal into the constraint
of the second one.

The Simplification inference rule rewrites a literal into a simpler one by
using an axiom as a rewrite rule. This is performed by the Maude function
metaFrewrite that rewrites the metarepresentation of a term with the rules
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defined in the metarepresentation of a module. In our implementation, a function
addRl adds an axiom to the metarepresentation of a module INITIAL-MODULE

where all the functional symbols are defined.

op addRl : Term Term -> Module .

eq addRl(L, R) = addRules(

(rl (L) => (R) [none] .), upModule(’INITIAL-MODULE, false)) .

This function uses the Full Maude function addRules that takes a set of rules and
a module as parameters. The axiom ax(L equals R) is added by the function
call addRl(L,R).

The inference rule Tautology is simply encoded by the rewrite rule

rl [tautology] : U equals U || Phi => empty .

The inference rule Deletion is encoded by the conditional rewrite rule

crl [del] : L || Phi => empty if isSatisfiable(Phi) == false .

where the function isSatisfiable checks if a given constraint holds, i.e. none
of the terms it constraints is compound.

Expansion Rules. The order of rule applications has to be controlled. In par-
ticular, contraction rules should be given a higher priority than expansion ones.
An expected solution could be to control rule applications with the strategy lan-
guage described in [11, 8], but unfortunately it appeared not to be compatible
with the Full Maude version 2.5b required for narrowing (see details below).

To circumvent this technical problem we propose to control rules with states.
We consider three distinct states, for the sets of literals derived by SUPC. These
states and the sort of states are defined as follows:

mod STATE is

pr SETSLIT .

sort State .

op state : SetSLit -> State .

op _selectOneLitFromGenSet_ : SetSLit SetSLit -> State .

op _redundancy_ : SetSLit SLiteral -> State .

endm

The input state of the expansion rules of SUPC is expected to be of the form
state(S) where S is a set of schematic literals.

The Reflection rule checks whether a given set of schematic literals contains
a constrained disequality whose two sides are unifiable by a substitution that
also satisfies the constraint. In this case the empty clause is added to the set of
literals. The Reflection rule is encoded by the following conditional rewrite rule:

crl [reflection] :

state((S, U’ != U || Phi)) =>

state((S, U’ != U || Phi, emptyClause))

if isSatisf(U’ != U || Phi) .

where the function isSatisf performs the above mentioned checking.
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The Superposition rule

l[u′] �� r‖ϕ u = t‖ψ
σ(l[t] �� r‖ϕ ∧ ψ)

produces a new literal of the form σ(l[t] �� r‖ϕ ∧ ψ) from any set containing
two schematic literals (axioms or constrained literals) of the form l[u′] �� r‖ϕ
and u = t‖ψ, if the side conditions given in Fig. 3 are satisfied with the most
general unifier σ of u and u′. This notion of superposition is close to the notion
of narrowing. The idea is to use the second literal u = t as a rewriting rule u→ t,
to narrow the left-hand side l[u′] of the first literal. If the narrowing succeeds it
produces a term σ(l[t]) where σ is a most general unifier of u and u′. It remains
to apply σ to the right-hand side r of the first literal and to the conjunction of
the two constraints ϕ and ψ.

To narrow we use a function metaENarrowShowAll already implemented in
Full Maude version 2.5. In this version the narrowing was restricted to non-
variable positions, along its standard definition. But the Superposition rule of
SUPC requires the unusual feature: narrowing should also be applied at the posi-
tions of the variables schematizing constants. Therefore we have asked Santiago
Escobar, the developer of narrowing in Full Maude, to implement this feature.
As an answer to this request, he has introduced a flag alsoAtVarPosition to
the narrowing function for disabling the standard restriction.

A second difficulty is that the metaENarrowShowAll function called on the
term l(u′) and the rule u → t generates all the possible narrowings at all the
positions, whereas one application of the Superposition rule produces only one
literal. To solve this problem two additional states S selectOneLitFromGenSet

S′ and S redundancyL have been introduced, where S is a given set of schematic
literals, S′ is the set of schematic literals produced by the narrowing function
applied to two schematic literals from S, and L is one schematic literal. Then
Superposition is encoded by four Maude rewriting rules named sup, select,
no-sup and pick. The sup rule is defined by

rl [sup] : state((S, L1, L2)) =>

(S, L1, L2) selectOneLitFromGenSet applySup(L1, L2) .

where the function applySup generates from L1 and L2 a set of new schematic
literals by calling the narrowing function and checking the ordering conditions of
the Superposition rule. The ordering conditions invoke a function implementing
the orderings detailed in Section 3.4. When the set of new schematic literals is
empty, the rule

rl [no-sup] : S selectOneLitFromGenSet empty => state(S) .

returns the input set in a state ready for another expansion. Otherwise, the rule

rl [select] : S selectOneLitFromGenSet (L, S’) =>

if checkConstr(L) then S redundancy L

else S selectOneLitFromGenSet S’ fi .
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considers one by one the schematic literals in the new set until the set is empty or
a schematic literal L with a satisfiable constraint is found. Satisfiability is checked
by invoking the function checkConstr. If the constraint of L is satisfiable then
a state S redundancy L is constructed. It is an input state for the rule

rl [pick] : S redundancy L =>

if L isRedundant S == false

then state((S, L))

else state(S)

fi .

which checks if a generated schematic literal L is redundant with respect to a
given set S of schematic literals. The redundancy is checked by the function
isRedundant that uses the Maude function metaSearch. This function tries to
reach the set S from the union (S, L) of S and {L} by applying contraction
rules. If the new schematic literal is not redundant then it is added to the state,
otherwise, the state is unchanged.

3.3 Saturation

A forward search for generated sets of schematic literals is performed by a func-
tion searchState defined by

op searchState : State Nat -> State .

eq searchState(S’, N) = downTerm(getTerm(metaSearch(

upModule(’SP, false), upTerm(S’), ’state[’S:SetSLit],

nil, ’*, unbounded, N)), error1) .

where SP is a module where all the expansion rules are defined. The function
call searchState(S,N) tries to reach the Nth state from an initial state S by
applying the expansion rules. It uses a breadth-first exploration of the reachable
state space, which is a fundamental graph traversal strategy implemented by the
Maude metaSearch function with the ’* parameter. When the Maude function
downTerm fails in moving down the meta-represented term given as its first ar-
gument, it returns its second argument, namely error1, which is declared as a
constant of sort State (op error1 : -> [State] .).

Then the principle of saturation is implemented by the function saturate

defined by

op saturate : State -> State .

eq saturate(St) =

if searchState(St, 1) == error1 then St else

if searchState(St, 1) =/= St then saturate(searchState(St, 1))

else St fi fi .

which implements a fixpoint algorithm in order to get the state of a saturated set
of schematic literals. If the initial state is already saturated, then the function
returns it unchanged.
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A saturated set of schematic literals could alternatively be computed from an
initial state by the Maude metaSearch function with a ’! parameter (searching
for a state that cannot be further rewritten), but the function searchState

computing intermediary states is also interesting for debugging purposes. Note
that the Maude metaSearch function is already used with the parameter ’! to
apply contraction rules.

3.4 Orderings

A fundamental feature of our superposition calculi is the usage of a simplification
ordering which is total on ground terms. This section presents all the orderings
used in the side conditions of the inference rules and describes their implementa-
tion. In our calculi, we assume that compound terms are greater than constants.
To satisfy this assumption, it is sufficient to use an LPO ordering with a prece-
dence on function symbols such that non-constant function symbols are greater
than constants.

Definition 1. Given a precedence >F on function symbols, the lexicographic
path ordering (LPO) >lpo [5] is defined as follows:

LPO1
(s1, . . . , sn) >

lex
lpo (t1, . . . , tm) f(s1, . . . , sn) >lpo t1, . . . , tm
f(s1, . . . , sn) >lpo f(t1, . . . , tm)

LPO2
f >F g f(s1, . . . , sn) >lpo t1, . . . , tm

f(s1, . . . , sn) >lpo g(t1, . . . , tm)

LPO3
uk >lpo t

f(u1, . . . , uk, . . . , up) >lpo t

LPO4
f(u1, . . . , uk, . . . , up) >lpo uk

where f and g are two functional symbols, n ≥ 0 and m ≥ 0 are two non-
negative integers, p ≥ 1 is a positive integer, and s1, . . . , sn, t1, . . . , tm, u1,
. . . , up, t are terms. We write s >lpo t1, . . . , tm when s >lpo tk for any positive
integer k ∈ [1,m]. The ordering >lex

lpo denotes the lexicographic extension of >lpo.
The lexicographic extension can be specified as an inference system that can be
directly encoded in Maude.

The LPO ordering is implemented as a Boolean function gtLPO() such that
gtLPO(s, SC, t) = true if and only if s >lpo t. One can remark the additional
parameter SC. It collects the constrained variables that are viewed as constants
in the precedence ordering: constrained variables are smaller than non-constant
function symbols.
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Let us briefly present the four main rules implementing gtLPO(s, SC, t).

1. When n ≥ 1 and m ≥ 1, the rule LPO1 is encoded by

ceq gtLPO(F[NeSL], SC, F[NeTL]) = true

if gtLexLPO(NeSL, SC, NeTL) == true

and termGtList(F[NeSL], SC, NeTL) == true .

where NeSL and NeTL are non-empty lists of terms. Here the head symbols
of s and t are equal. Then the list of subterms NeSL of s = F[NeSL] should be
greater than the list of subterms NeTL of t and the term s should be greater
than all the elements in the list of subterms of t.

2. When n ≥ 1 and m ≥ 1, the rule LPO2 is encoded by

ceq gtLPO(F[NeSL], SC, G[NeTL]) = true

if (gtSymb(F, SC, G) == true) and

termGtList(F[NeSL], SC, NeTL) == true .

Here the heads of s and t are not equal. Then the head of s should be greater
than the head of t and s should be greater than all the direct subterms of t.

3. The rule LPO3 is encoded by

ceq gtLPO(F[UL1, Uk, UL2], SC, t) = true

if gtLPO(Uk, SC, t) == true .

whose condition checks whether a direct subterm of s = F[UL1, Uk, UL2] is
greater than t.

4. The rule

eq gtLPO(F[UL1, Uk, UL2], SC, Uk) = true .

encodes LPO4, when a direct subterm of s = F[UL1, Uk, UL2] is equal to t.

The ordering >lpo on terms is extended to literals thanks to the multiset ex-
tension of >lpo. An equality l = r is represented as a multiset {l, r} while a
disequality l �= r is represented as a multiset {l, l, r, r}. As for the lexicographic
extension, the multiset extension can be specified as an inference system that
can be directly encoded in Maude.

4 Experimentations

We have done some experiments to compare the (schematic) saturations com-
puted by our tool with corresponding results we can find in the literature. For
the theory of lists without extensionality, our tool generates the same saturation
as the one given in [10]. More surprisingly, for the theory of lists with exten-
sionality, our implementation reveals that the description given in [9] for the
saturation is incomplete. We also consider the case of records of length 3 for
which superposition is known to terminate on ground literals [1].
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4.1 Theories of Lists

We experiment with two theories of lists à la Shostak, either without or with
extensionality.

Let ΣList = {cons, car, cdr} be the signature of the theory of lists. The set
GList

0 consists of the empty clause ⊥ and the following schemas of ground flat
literals over the signature ΣList:

x = y ‖ const(x, y) (1)

x �= y ‖ const(x, y) (2)

car(x) = y ‖ const(x, y) (3)

cdr(x) = y ‖ const(x, y) (4)

cons(x, y) = z ‖ const(x, y, z) (5)

where x, y and z are constrained variables.

Theory of Lists without Extensionality. The theory of lists without exten-
sionality is axiomatized by the following two axioms:

car(cons(X,Y )) = X (6)

cdr(cons(X,Y )) = Y (7)

where X and Y are universally quantified variables.

Lemma 1. The set GList
0 ∪ {(6), (7)} is saturated by SUPC.

This result is given in [10]. The interested reader can find our proof in Ap-
pendix A.

From an encoding of GList
0 ∪ {(6), (7)} our tool generates no new schematic

literal. Notice that on this example the abstraction by schematization is exact, in
the following sense: the saturated set computed by SUPC is the schematization
of any saturated set computed by UPC.

Theory of Lists with Extensionality. This theory is axiomatized by the two
axioms (6) and (7), plus the axiom (called the extensionality axiom)

cons(car(X), cdr(X)) = X (8)

where X is a universally quantified variable.

Lemma 2. The saturation of GList
0 ∪ {(6), (7), (8)} by SUPC consists of GList

0 ,
(6), (7), (8) and the following constrained literals:

cons(x, cdr(y)) = z ‖ const(x, y, z) (9)

cons(car(x), y) = z ‖ const(x, y, z) (10)

car(x) = car(y) ‖ const(x, y) (11)

cdr(x) = cdr(y) ‖ const(x, y) (12)

cons(car(x), cdr(y)) = z ‖ const(x, y, z) (13)
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Proof. The set of axioms {(6), (7), (8)} is saturated. The set GList
0 is also satu-

rated. It remains to show the same property for the union of both.
Superposition between (6) and (5) and between (7) and (5) respectively yields

renamings of (3) and (4), which are immediately removed by the subsumption
rule. Superposition between (8) and (3) yields the new constrained literal

cons(x, cdr(y)) = y ‖ const(x, y). (14)

Then, Superposition between (14) and (1) gives the constrained literal (9), which
subsumes (14). Similarly, Superposition between (8) and (4) yields the new con-
strained literal

cons(car(x), y) = x ‖ const(x, y) (15)

and Superposition between (15) and (1) gives the constrained literal (10), which
subsumes (15). Superposition between (6) and (10) and between (7) and (9) re-
spectively gives the constrained literals (11) and (12). Superposition between (8)
and (11) gives the new constrained literal

cons(car(x), cdr(y)) = y ‖ const(x, y) (16)

and Superposition between (16) and (12) gives the constrained literal (13),
which subsumes (16). Superposition between any axiom and (1) yields con-
strained literals that are immediately removed by the subsumption rule. Any
other application of Superposition rule between an axiom and a constrained lit-
eral yields a constrained literal that is already in the set GList

0 ∪ {(6), (7), (8)} ∪
{(9), (10), (11), (12), (13)}. Since no other rule can be applied to this set of
schematic literals, we conclude that it is saturated. "!

The example given in [9] is not complete. In that paper, it is said that the
saturation by SUPC of GList

0 ∪ {(6), (7), (8)}, consists of the constrained liter-
als (9) and (10), while it also contains (11), (12) and (13). From an encoding
of GList

0 ∪ {(6), (7), (8)} our tool generates these five new constrained literals.
On this example we can see that the abstraction by schematization is a over-
approximation: the abstract saturation computed by SUPC is larger than any
concrete saturation computed by UPC.

4.2 Theory of Records

A record can be considered as a special form of array where the number of
elements is fixed. Contrary to the theory of arrays, the theory of records can
be specified by unit clauses. The termination of superposition for the theories
of records with and without extensionality is shown in [1]. We consider here
the theory of records of length 3 without extensionality given by the signature
ΣRec =

⋃3
i=1{rstorei, rselecti} and axiomatized by the following set of axioms

Ax(Rec):
rselecti(rstorei(X,Y )) = Y for all i ∈ {1, 2, 3}
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and

rselecti(rstorej(X,Y )) = rselecti(X,Y ) for all i, j ∈ {1, 2, 3}, i �= j,

where X and Y are universally quantified variables. Let GRec
0 be defined as in

Section 2.3.

Lemma 3. The saturation of GRec
0 ∪ Ax(Rec) by SUPC consists of GRec

0 ,
Ax(Rec) and the constrained literals

rselecti(x) = rselecti(y) ‖ const(x, y)

for i = 1, 2, 3.

A proof of this lemma can be found in Appendix B. From an encoding of GRec
0 ∪

Ax(Rec) our tool generates the schematic saturation given in Lemma 3 which
corresponds to the form of saturations described in [1].

5 Conclusion

This paper reported on a prototyping environment for designing and verifying
decision procedures. This environment, based on the theoretical studies in [10, 9],
is the first implementation including both superposition and schematic superpo-
sition calculi. It has been implemented from scratch on the firm basis provided
by Maude. Some automated deduction tools are already implemented in Maude,
for instance a Church-Rosser checker [6], a coherence checker [7], etc. Our tool
is a new contribution to this collection of tools. This environment will help test-
ing new saturation strategies and experimenting new extensions of the original
(schematic) superposition calculus. A short term future work is to consider non-
unit clauses. Since schematic superposition is interesting beyond the property of
termination, we also want to extend the implementation so that we can check
deduction completeness and stably infiniteness [9] which are key properties for
the combination of decision procedures. We are also interested in developing
new schematic calculi for superposition modulo fragments of arithmetic such as
Integer Offsets [13] and Abelian Groups [12]. The reported implementation is a
firm basis for all these future developments.
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A Schematic Saturation of Lists

Lemma 1. Let

GList
0 = {⊥} ∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x = y ‖ const(x, y) (1)
x �= y ‖ const(x, y) (2)
car(x) = y ‖ const(x, y) (3)
cdr(x) = y ‖ const(x, y) (4)
cons(x, y) = z ‖ const(x, y, z) (5)

and let

Ax(List) =

{
car(cons(X,Y )) = X (6)
cdr(cons(X,Y )) = Y (7)

The set GList
0 ∪ Ax(List) is saturated by SUPC.

Proof. The set of axioms {(6), (7)} is saturated. The set GList
0 is also saturated.

It remains to show the same property for the union of both.
Superposition between (6) and (5) yields a renaming of (3), which is imme-

diately removed by the subsumption rule. Similarly, Superposition between (7)
and (5) yields a renaming of (4), which is removed by the subsumption rule
as well. Superposition between any axiom and (1) yields a schematic literals
that are immediately removed by the subsumption rule. Since no other rule can
be applied between an axiom and a schematic literal, we conclude that the set
GList

0 ∪ {(6), (7)} is saturated. "!

B Schematic Saturation of Records

Lemma 3. Let GRec
0 be the set that consists of the empty clause ⊥ and the

constrained literals

x = y ‖ const(x, y) (17)

x �= y ‖ const(x, y) (18)

rstore1(x, y) = z ‖ const(x, y, z) (19)

rstore2(x, y) = z ‖ const(x, y, z) (20)

rstore3(x, y) = z ‖ const(x, y, z) (21)

rselect1(x) = y ‖ const(x, y) (22)

rselect2(x) = y ‖ const(x, y) (23)

rselect3(x) = y ‖ const(x, y) (24)

Let Ax(Rec) be the set of axioms

rselect1(rstore1(X,Y )) = Y (25)

rselect2(rstore2(X,Y )) = Y (26)
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rselect3(rstore3(X,Y )) = Y (27)

rselect1(rstore2(X,Y )) = rselect1(X) (28)

rselect1(rstore3(X,Y )) = rselect1(X) (29)

rselect2(rstore1(X,Y )) = rselect2(X) (30)

rselect2(rstore3(X,Y )) = rselect2(X) (31)

rselect3(rstore1(X,Y )) = rselect3(X) (32)

rselect3(rstore2(X,Y )) = rselect3(X) (33)

The saturation of GRec
0 ∪Ax(Rec) by SUPC consists of GRec

0 , Ax(Rec) and the
following constrained literals:

rselect1(x) = rselect1(y) ‖ const(x, y) (34)

rselect2(x) = rselect2(y) ‖ const(x, y) (35)

rselect3(x) = rselect3(y) ‖ const(x, y) (36)

Proof. The set of axioms Ax(Rec) is saturated. The set of schematic literals
GRec

0 is also saturated. It remains to show the same property for the union of
both.

Superposition between (25) and (19) yields a renaming of (22), which is im-
mediately removed by the subsumption rule. It is similar for the indices 2 and
3, between (26) and (20) and between (27) and (21).

Superposition between (28) and (20) yields the constrained literal (34). Af-
terwards, Superposition between (29) and (21) yields a renaming of (34), which
is immediately removed by the subsumption rule. It is similar for the indices 2
and 3, between (30) and (19) and between (32) and (19).

Superposition between any axiom and (17) yields schematic literals that are
immediately removed by the subsumption rule. Since no other rule can be applied
between an axiom and a schematic literal, we conclude that the set GRec

0 ∪
Ax(Rec) ∪ {(34), (35), (36)} is saturated for SUPC. "!
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