
Ontology of Dynamic Entities�

Lior Limonad1,��, Pieter De Leenheer2,3, Mark Linehan4,
Rick Hull4, and Roman Vacuĺın4

1 IBM Haifa Research Lab, Haifa 31905, Israel
liorli@il.ibm.com

2 Collibra nv/sa, Ransbeekstraat 230, 1120 Brussels 12, Belgium
pieter@collibra.com

3 VU University Amsterdam, De Boelelaan 1081a, 1081HV Amsterdam,
The Netherlands

4 IBM T.J. Watson Research Lab, Hawthorne, New York, USA
{mlinehan,vaculin,hull}@us.ibm.com

Abstract. This paper describes “dynamic business entities”, ontological
classes that dynamically acquire and lose properties and relationships as
a function of other aspects of the entities. Specifically, we propose how
acquisition and loss instructions for such transient properties may be
inherent in the definition of the entities possessing them. We use SBVR
to demonstrate the specification of dynamic business entities showing
how our idea could be applied in practice. We illustrate with an example
drawn from the Flanders Research Information Space.

Keywords: Ontology, Conceptual Modeling, Business Entity, Data
Integration.

1 Introduction

Enterprise Application Integration (EAI) and Service Interoperability are aimed
at the realization of cross-party operations through the establishment of software
architecture and computer service links between originally independent units. In
business, these types of cross-party operations often implement supply channels.
A significant practical difficulty among service channel partners is semantic-
mismatch due to different understandings of the data communicated among
them. The design of such technological ties typically relies on the construction
of a semantic layer, serving as an underlying conceptualization to help design
concrete data and service adapters for overcoming the mismatch. Associated
with the business units that take part in the integration, the main product
typically being produced at the core of the semantic layer is a corresponding
ontology, typically expressed using a concrete knowledge representation language
(e.g., formal using OWL [12,7] or in controlled natural language expressed in

� The research leading to these results has received funding from the European
Community’s 7th Framework Programme under grant agreement no. 257593.

�� All authors have equally contributed to this work.

P. Atzeni, D. Cheung, and R. Sudha (Eds.): ER 2012, LNCS 7532, pp. 345–358, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



346 L. Limonad et al.

SBVR [11] or visual such as UML class diagrams), providing a shared and formal
specification of key business artifacts [6]. Such business artifacts reflect mutually
agreed upon conceptualized entities that are conceived by the parties as being
central to the mutual domain of integration. The better aligned the specification
of the semantic layer with the mutual glossary of the partners, the easier it
becomes to attain interoperability. Hence, effectively and timely synchronizing
data and operations across the enterprise [9,4]. Ensuring such an alignment is
anchored in the ontological expressiveness of the language that is used to describe
the semantic layer. That is, its capacity to accurately and faithfully describe the
mutual domain. As previously theorized in [16,17] and adapted to the purpose
of this work, such capacity is inherent in the adherence of the concrete grammar
to the following requirements:

1. Ontological Clarity and Completeness - refers to the capacity of the grammar
to faithfully and comprehensively describe all the business entities and their
properties (intrinsic and mutual) as generally perceived by the corresponding
community of users. This kind of representation has been traditionally the
focus of ontologies, realized by the usage of conceptual modeling such as ER
as the specification language to specify entities, attributes, relationships and
governing rules.

2. State tracking - refers to the capability of the grammar to keep track with
domain changes. In the context of the aforementioned business artifact, state
tracking entails a unique need to attain lifecycle-congruency, which means
coherently and unambiguously represent all business entities in different con-
texts and applications, synchronized with the timely perception of the en-
tities’ properties by the partners. For example, it is possible that a manu-
factured product (e.g., a car) is considered as possessing the property price

only after having it passed all quality assurance tests during its manufac-
turing. Before that point in its lifetime, the property price has no meaning
when associated with the car being produced.

The main problem with existing grammars that are used for the specification
of the semantic layer is their lack of capability to handle lifecycle-congruency.
Simply put, there is no existing ontological apparatus that can account for this
need in the design grammars that should adequately describe dynamic entities.
The latter are entities whose possession of some properties (i.e., transient) may
be valid at different circumstances within the overall lifetime of the entities.

Therefore, as a solution for the need to account for the external validity of
ontological specifications, in this paper, we motivate (in Sect. 2) and propose
(in Sect. 3) the conceptual apparatus of an ontology that is designed to handle
not only the conceptualization of dynamic entities and the notion of a transient
property, but more importantly illustrates the design of a property possession al-
gebra for conceptualizing the behavior of transient properties across the lifecycle
of corresponding entities.

Next, in Sect. 4, we show how a concrete modeling language (i.e., IBM’s
Business Artifacts) that is equipped to express business domains that comprise
artifacts possessing transient properties can provide the semantic foundation for



Ontology of Dynamic Entities 347

a concrete grammar (i.e., SBVR) to improve its lifecycle congruency. The illus-
tration is drawn from a realistic case study in the Flanders Research Information
Space, and the implementation is shown in an SBVR-based collaborative ontol-
ogy management tool, i.e., Collibra’s Business Semantics Glossary. Finally, in
Sect. 5 we reflect on our work and outline future directions.

2 Motivation and Related Work

In this paper, we introduce the conceptual apparatus that is necessary to pre-
cisely describe the dynamics of transient properties being part of an ontology of
dynamic entities. An ontology of dynamic entities is a business ontology whose
conceptualized elements are formed by a combination of persistent and transient
properties.

1. A persistent property is a property whose possession is fixed across the life-
cycle of the entity or thing possessing it.

2. A transient property is a property whose possession is transient across the
lifecycle of the entity or thing possessing it.

Consequently, the specification of the latter type is inherently equipped to de-
termine possession validity at any point in the lifetime of its possessing thing.
Possession or “expression” is used here to mean that a property is a quality or
trait of an entity or a thing. An entity is equivalent to the notion of an ontolog-
ical kind (e.g. an SBVR [11] noun concept or an OWL class), determined by a
set of (possessed) properties such that the members of a kind are all those and
only those things that share all the properties in the given set [3]. Hence, a thing
means an instance or a member of an entity.

2.1 State of the Art

The goal of this work is to describe all grammar elements being required to spec-
ify property transience in dynamic entities, while in prior work its has been solely
its conceptualization being addressed. For example, previous literature refers
to the need for ontological views that are suited for expressing and reasoning
about domains that comprise perdurant entities [18] i.e., entities for which their
possession of properties and relationships may change in time. Such transient
properties have been termed fluents in this prior work. Furthermore, a plethora
of realization approaches has been accumulated throughout the years, proposing
various concrete ways for expressing the existence of transient properties. This
prior work includes distinction between optional and mandatory properties in
general [5], property negation (i.e., non-possession) [1], the conceptualization of
relationships between entities [15], the roles assigned to entities [2], all which
may be considered as various forms for the specification of transient properties.

More recently, property transience has been further confirmed and clarified
by work in the area of classification [13], similarly distinguishing between base-
properties (i.e., persistent) in a class which determine the classification of a thing



348 L. Limonad et al.

(i.e., whether it is a member in a given class), and derived-properties which can
be inferred from its membership.

The most fundamental driver justifying the significance of transience is driven
by the philosophical paradigm underlying social ontologies according to which
there is a clear rational for expressing not only materialized and substantial
aspects of the domain, but also aspects being the mere outcome of social inten-
tionality [14]. For example, how would one associate between two individuals
(e.g., John, and Kelly) with the possession of the property in love(John,Kelly)

without acknowledging its possession may be transient?

2.2 Novelty of This Work

All of the previous work simply establishes that the existence of property tran-
sience is an essence in any linguistic form that is intended to facilitate faithful
domain representations. However, none of the previous work is focused on the
exact linguistic instrumentation that is necessary to express possession dynamics
- i.e., expressing property acquisition and loss in the context of the exact circum-
stances affecting it such as time, form, association etc. Hence, in this work, our
effort is to illustrate the most fundamental machinery that is required to exist
in any language that is expected to faithfully and accurately describe possession
dynamics. As mentioned above, we find such capability as being most desired
in the context of interoperability in which the capability to both describe and
interpret entity structures must be synchronized across independent silos.

Note that the possession of a property, whether persistent or transient, may
be perceived or viewed by an observer in a way that makes the perception itself
transient. We therefore distinguish between the ontological level in which the
notion of transience is a fundamental characteristic or trait of the entities being
expressed by the ontology regardless of any external view, and the perceptional
level in which the perception of property possession may be a function of various
contextual and spatial dimensions such as: calendar time, participant’s or role’s
perspective, geography and other. We acknowledge that the perceptional level
has been somewhat approached in prior work (e.g., expressed in the form of
access controls and views) while the focus of this paper is the ontological level.

Particularly, our proposed solution is designed to account for any case in which
possession of properties is a function of phases in the lifecycle of the entities
being conceptualized by the ontology. Despite the existing body of knowledge
aforementioned being focused on various possible conceptualizations for transient
properties, existing solutions are essentially different than the one proposed here
for either one (or a combination) of the following reasons:

1. Most existing solutions are focused only on a single factor as the potential
source for property possession. The most common factor considered is time.

2. Most existing solutions are missing the expressive power needed to explicitly
describe how property possession changes as a function of the factor(s) being
considered.



Ontology of Dynamic Entities 349

Our innovation lies in a solution that:

1. acknowledges the need to associate possession of properties with various fac-
tors (e.g., state, geography, perspective). Specifically, we account for situa-
tions in which possession should be determined by existential and contextual
knowledge about the mere object for which the possession itself has to be
determined.

2. suggests the exact processing instructions being required to describe how
possession may alternate as a function of the various triggering factors, and
specifically as a function of the target objects’ lifecycle contexts.

Note, we consider the possession of a property or the attribution of a property to
an entity in an inclusive form, uniformly considering the intrinsic traits of entities
and also their relationships to other entities as being expressed by properties
that one may attribute or predicate about the entity1. In case of a relationship,
the property is designated by an n-ary predicate being attributed to all entities
participating in it (namely, a mutual property). This way for example, “having
a red color” as an intrinsic property may be attributed to “my car” through
the predicate color(red, my car) while associating my car with “myself” as the
owner may be expressed as a mutual property through the owning(self, my car)

predicate. While the former property in this example is persistent across any
point during the lifecycle of my car, the latter may be transient, attributing it
to an owner only after the completion of its manufacturing.

Unlike traditional ontologies being merely aimed to express static entities i.e.,
entities comprising persistent properties only, ontologies of dynamic entities need
to express entities comprising combinations of persistent and transient proper-
ties. Currently there is no such apparatus. For the latter, the specification also
needs to clarify in which circumstances entities’ properties may be acquired and
dismissed. The dynamics of property acquisition and loss may be expressed as
a function of various changes throughout the lifecycle of the entity possessing
it. The underlying machinery that is required for such purposes is explained in
Sect. 3. In Sect. 4, we demonstrate the advantage of our solution and how the
proposed apparatus may be applied to the benefit of business integration and
the creation of corresponding shared vocabularies.

3 Description of the Ontology for Dynamic Entities

In this section we describe in detail the internal features of an ontology that
is aimed for clarifying the dynamics of property transience in dynamic entities.
As mentioned above, in its core, such an ontology distinguishes between the
conceptualization of static and dynamic entities and specifically includes a cor-
responding linguistic capability for describing the behavior that underlie changes

1 It is worth noting that although the focus in this work is on the dimension of
property transience, our findings may be developed further to consider its integration
with other previously theorized dimensions of properties (e.g., intrinsic vs. mutual,
hereditary vs. emergent etc.)



350 L. Limonad et al.

in the possession of transient properties in dynamic entities. An ontology of dy-
namic entities should implement the following features: property specifications,
possession formula for these properties, and a life cycle context.

Properties of entities are associated with a possession formula that is based on
values of other properties of entities or can be inferred from lifecycle traces that
include the application of a property possession algebra i.e., a set of atomic oper-
ations about the acquisition and loss of properties, each which may be structured
as follows:

– Property specification e.g., color(car), the specification of a property in
the ontological description of a domain applies to any property, persistent or
transient. In the case of the latter, the specification should also be associated
with a possession formula that can be used to evaluate property possession
at run-time. Such a formula may be realized as a set of acquisition and loss
statements, each comprising two components:

• A possession instruction i.e., an instruction to either acquire or lose the
corresponding property.

• A lifecycle context (e.g., “when”) i.e., a combination of certain property
values and certain lifecycle indicators being an antecedent condition to
the execution of the possession instruction.

For example, the property price(1000 e, car) may be associated with the fol-
lowing possession formula: {(acquire, on completion of manufacturing),
(lose, on total loss)}, i.e., price as a property of a car is determined as being
possessed only after the car is fully manufactured. Similarly, in case of extreme
damage, a car will no longer have a price.

It is worth stressing that the aforementioned machinery is stated on a rela-
tively abstract level, keeping it agnostic to possibly more concrete realizations
for entity lifecycle styles (e.g., a state-machine), in which the suggested termi-
nology may need to be further specialized. For example, when indeed specified
in a form of a state-machine, the concept of possession-formula may be inter-
preted as being part of functions that describe transition of states. Similarly,
other concrete styles may entail different interpretations.

3.1 Designing Possession as a Function of Context

Note that in this example the possession of price as a property cannot be ex-
pressed intuitively as a function of time: indeed the on total loss time point
is unknown at design time. Hence, from a designer’s perspective it is essential
(and one may argue also more useful) to provide a grammar (as we illustrate
here) that enables formulating the truth of possession as a function of various
contextual factors, including factors that stem from inherent information (e.g.,
materialized) about the possessing entities themselves. As an example, consider
the case of the property attractedTo(matter 1,matter 2) for which the corre-
sponding possession formula may be formulated as follows:
{(acquire,opposing(charge(matter 1,value 1),charge(matter 2,value 2))),
(lose, NOT opposing(charge(matter1,value 1),charge(matter2,value 2)))}.



Ontology of Dynamic Entities 351

In this case the possibility to determine whether the possession of the property
attractedTo holds may be inferred directly from the capability to determine the
charges value 1 and value 2 of both matters.

3.2 Run-Time Evaluation of Possession along the Entity Life Cycle

For convenience purposes, one may use a tagging mechanism at run-time to an-
notate each property with a possession indicator that is modified each time an
acquisition or a loss statement is triggered. This way, instead of needing to eval-
uate historical traces of acquisition and loss of properties at run-time, there will
be an immediate indication for whether the property is possessed or not. Further-
more, in a data-centric approach, lifecycle indicators may themselves be specified
as properties such that in the example above, on completion of manufacturing

(true/false, car) and on total loss(true/false, car) may both be specified
as persistent properties (e.g., as opposed to events). We will illustrate this pos-
sibility in SBVR.

Implied from the realization of the above features, the possession of any en-
tity’s property can be determined at runtime based on evaluation of the property
possession formula. In restricted cases, the possession of a property can be deter-
mined by a tool at design time. Given a set of “possession analysis” criteria, this
tool can determine (statically) that the expression specified by the possession
formula depends upon properties of the entity that have known values at specific
stages of the entity lifecycle (i.e., the lifecycle’s context). To make this possible,
the lifecycle has to be modeled explicitly, specifying notions such as stages and
milestones, and the relationships among them as in [10,8]. Static analysis is sim-
plified when lifecycles avoid cycles (i.e. where an entity can return from a later
stage to an earlier stage) but is possible in limited circumstances when there are
cycles.

Examples given below use the SBVR “Structured English” grammar for con-
venience. However, the underlying ideas of this paper are agnostic to the concrete
grammar that is used to specify an entity lifecycle model. When a property is
accessed at some point in the lifecycle, and if the possession formula refers to
either (a) persistent properties, or (b) transient properties that are themselves
possessed, and if the referenced properties have known values, then a tool can
determine that the accessed property is possessed at that point in the lifecycle.

3.3 Mutable Attributes

In addition to the above it is also acknowledged that in current state of the
art, a typical realization for the ontological notion of a property is attained
through the usage of valued attributes e.g., the persistent property color(red,

car) may be represented by an attribute color being associated with the value
“red”. Since it is not expected that a car will ever change (the value of) its
color (i.e., a persistent property), once represented as an attribute it may be
inferred that the attribute’s value is immutable. On the other hand, a transient
property such as owner(person, car) when represented as a valued attribute may



352 L. Limonad et al.

be determined as mutable, enabling the underlying need to replace the possession
of the property with another that indicates a different ownership. Henceforth,
the dichotomy of being either mutable or immutable is a direct outcome of using
valued attributes as the realization mechanism for properties. Therefore, in the
following example, we also indicate for each property whether it is immutable
or not.

4 Demonstration

Concluding the feasibility of the apparatus described above, in this section we
demonstrate how a concrete modeling grammar (i.e., SBVR) may be used to
represent dynamic entities with an example from the Flanders Research Infor-
mation Space. Finally, by implementing a prototype in the Business Semantics
Glossary, we show how the design of ontology for dynamic entities and the cre-
ation of shared vocabularies and rules in general may benefit each other.

4.1 Flanders Research Information Space

The Web is a catalyst for open innovation. Enterprises and research institu-
tions have come to realize that they no longer can rely on their own research
to innovate, but instead share or trade ideas and results to achieve a greater
benefit to themselves and others. The Flemish government has taken the lead at
driving European open innovation through Flanders Research Information Space
(FRIS2), an ambitious change program that publishes data on innovation-related
entities such as research institutes, researchers, and funded projects.

Many of these FRIS entities share the characteristics of dynamic entities.
E.g., take a research project: they usually have long life cycles (up to several
years), requiring FRIS data relating to properties (i.e., publications, deliverables,
consortium) of these entities to be updated regularly. Secondly, not all properties
are intended for publication (e.g., periodic review reports). Thirdly, the data
related to these properties have to be provided by different parties (such as
principle investigator, consortium members, project officer) and according to a
certain semantics (in the case of FRIS based on the Common European Research
Information Standard (CERIF3). Finally, they exhibit transient properties: e.g.,
the start date of a project is only valid if the project has been formally initiated.
Summarising: an ontology for the dynamic entity Project should declare and
enforce: “what are the attributes of an entity in which stage of the entity’s
lifecycle?” Currently CERIF is formalized using the ER grammar, which does
not allow to model transient properties or possession formula.

4.2 Two Associated Dynamic Entities: Proposals and Projects

We illustrate our approach in terms of two FRIS entities that acquire or lose
possession of properties and relationships in function of other aspects of the

2 http://www.researchportal.be
3 http://www.eurocris.org/

http://www.researchportal.be
http://www.eurocris.org/


Ontology of Dynamic Entities 353

entities. We follow the SBVR practice of underscoring nouns (SBVR noun con-
cepts), showing relationships (SBVR verb concepts or fact types) using italics,
and using bold face for keywords such as “if”. This approach does not require
any change to SBVR, which already provides for conditional necessity rules.

Consider an entity Proposal with the following properties (in terms of SBVR
binary verb concepts).

1. Persistent + immutable:
Proposal isownedby Principle Investigator / Principle Investigator owns Proposal

2. Persistent + mutable:
Proposal isdescribedby Discipline Code/ Discipline Code describes Proposal

3. Transient + immutable:
Proposal has Evaluation Score / Evaluation Score of Proposal

4. Transient + mutable:
Proposal defines Work Plan / Work Plan isdefinedby Proposal

Consider an entity Project with the following properties (in terms of SBVR
binary verb concepts):

1. Persistent + immutable: Project executes Proposal / Proposal is executed by
Project

2. Transient + mutable: Project has Start Date / Start Date of Project

For the persistent properties of Proposal and Project we define integrity con-
straints that are true independent of the stage in which the entity is:

1. It is necessary that eachProposal isownedby exactly one Principle Investigator
2. It is necessary that each Proposal isdescribedby at least one Discipline Code
3. It is necessary that each Project executes exactly one Proposal

Now for the transient properties we define the possession formula in terms of
the following assumed lifecycle stages.

– For Proposal: → Submitting → Evaluating → Notifying → Submitting

– For Project: Initating → Reviewing → Finishing

For our example, we define “milestones” (related to achieving the end of these
stages) as special types of characteristic in SBVR. A characteristic is a unary
verb concept with Boolean type. We have four milestone characteristic types for
Proposal:

1. Proposal has been submitted

2. Proposal has been evaluated

3. Proposal is accepted

4. Proposal is rejected



354 L. Limonad et al.

We have three “milestone” characteristic types for Project:

1. Project is initiated

2. Project has been reviewed

3. Project is finished

We can express for every transient property P of an entity E a (dis-)possession
formula that has to be true if one or more characteristics Mi is/are true. A
possession formula may use an SBVR “necessity” modality:

– It is necessary that each Proposal defines exactly one Work Plan if the
Proposal has been submitted.

A dispossession formula may use an SBVR “impossibility” statement:

– It is impossible that a Proposal defines Work Plan if the Proposal has
not been submitted.

A combination possession formula for entity-property Proposal has Work Plan
using “if and only if” allows a shorthand notation for the conjunction of the two
previous “if” statements. This version uses “always” as an alternative way to
express “necessity”:

– A Proposal always defines exactly one Work Plan if and only if the
Proposal has been submitted.

The following are some example combination formulae. Combination possession
formula for Proposal has Evaluation Score:

– It is necessary that each Proposal has at least one Evaluation Score if
and only if the Proposal has been submitted and the Proposal has been
evaluated.

Combination possession formula for Proposal is executed by Project:

– It is necessary that each Proposal is executed by exactly one Project if
and only if the Proposal is submitted and the Proposal has been evaluated
and the Proposal is accepted and the Proposal is not rejected and the
Project is initiated.

Combination possession formula for Project has Start Date:

– Each Project always has exactly one Start Date if and only if the
Project is initiated and the Proposal that is executed by Project is accepted.

The two above possession formula illustrate that the possession of properties
may also depend on aspects of another entity. E.g., in the latter example, the
validity of property Project has Start Date depends on an aspect of another
entity Proposal that is associated (through the verb concept “executed by’), this
aspect being the milestone: Proposal is accepted.



Ontology of Dynamic Entities 355

4.3 Transitivity of Possession

The above formula may be simplified if we define production rules for each se-
quence of two milestones. E.g., “Proposal has been evaluated” implies “Proposal
has been submitted”. This also assumes that Proposal is accepted and Proposal
is rejected are mutually exclusive, the latter which can be specified with SBVR’s
mutual exclusion contraints.

Therefore, from the following (repeated from above):

– It is necessary that each Proposal is executed by exactly one Project if
and only if the Proposal is submitted and the Proposal has been evaluated
and the Proposal is accepted and the Proposal is not rejected and the
Project is initiated.

We can infer automatically:

– It is necessary that each Proposal executed by exactly one Project if
and only if the Proposal is accepted and the Project is initiated.

4.4 Acyclic Lifecycles

As defined above, part of the lifecycle of a Proposal has no cycles, meaning that
a Proposal cannot “go back” from “has been accepted” to “is rejected”. Thus a
tool is able to statically determine that some transient properties of Project are
available once the “Proposal has been accepted” and “Project has been initiated”.

4.5 Implementation in Business Semantics Glossary

Figure 1 shows a screenshot of the noun concept Proposal within the “Pro-
posal” vocabulary managed by the “CERIF” speech community that is part of
the “FRIS” semantic community. The Business Semantics Glossary is a tool that
implements the business semantics management (BSM) methodology [4]; hence
for collaboratively managing the semantics of persistent properties of CERIF
entities. The screenshot shows the attributes we defined in Subsect. 4.2 for the
dynamic entity Proposal: fact types to express properties, characteristics de-
noting milestones, integrity constraints for persistent properties, and possession
formula for transient properties. The underscores define hyperlinks to other parts
in the glossary showing the embedding of our approach in the broader context
of creating shared vocabularies based on CERIF for service interoperation in
FRIS.

The right hand panel shows the governance settings: in the bottom-right cor-
ner is indicated which member in the community (here “Pieter De Leenheer”)
carries the role of “steward”, who bears final accountability. The status “can-
didate” indicates that the term is not yet fully articulated: in this case 37.5%.
This percentage is automatically calculated based on the articulation tasks that
have to be performed according to the BSM methodology. Tasks are related
to defining attributes and are distributed among stakeholders and orchestrated
using workflows.



356 L. Limonad et al.

Fig. 1. Collaborative designing dynamic entities in the Business Semantics Glossary

5 Discussion and Future Work

The fundamental contribution of this work is prescribing the essence of any lan-
guage that is aimed to adequately describe dynamic entities. Particularly this
includes the unique mechanism that is needed to handle transience through pos-
session and loss instructions being inherent in the language. Currently, no com-
mercial tool, aside from the prototype in Collibra’s Business Semantics Glossary
used to demonstrate the feasibility of our solution, exists. Hence, we find our
effort in this work as paving the road towards the development of improved
data-integration tools that are better equipped to facilitate inter-silos commu-
nication. This may include tools such as IBM Infosphere MDM, Oracle Master
Data Management, and SAP Enterprise Master Data Management.

In addition, our contribution has similar applicability to existing knowledge
representation standards (e.g., OWL) and software development languages which



Ontology of Dynamic Entities 357

may be extended with the proposed capabilities as well. Preliminary penetration
of the solution is starting to show its first signs in technologies such as Java JSR-
305, enabling basic annotation of “nullable” properties. Yet, more expressive
solutions as proposed here seem to further alleviate the need to mitigate both
the burden in handling reference availability mismatch at runtime, and also
enabling richer static analysis of code.

In order to accommodate for the exact features expected in the underlying
tools to adequately reason about property transience and inference about pos-
session validity, our most immediate intention is devoted towards further inves-
tigation of specification well-formedness and discovery of inconsistencies.

Aside from possible applications of the proposed solution, future research work
may be aimed to extend the proposed linguistic machinery with the capability
to express epistemic aspects of property possession. This may include the possi-
bility for example to attach roles to every possession formula indicating who is
responsible for what milestone. Such capability is essential in data governance.

When business partners exchange information in Enterprise Application Inte-
gration (EAI) and Service Interoperation scenarios, they should distinguish per-
sistent versus transient attributes of that information. Traditional modeling and
ontology standards do not enable these distinctions. The method we propose ex-
ploits existing capabilities of SBVR to explicitly identify which attributes are valid
under what circumstances. This removes doubt about exchanged information, and
should improve the success of interoperation scenarios.

References

1. Allen, G.A., March, S.T.: The Proper Role of Optionality and Negation in Con-
ceptual Modeling. In: Proceedings of the Eighth Annual Symposium on Research
in Systems Analysis and Design, Richmond, VA, May 21-23 (2009)

2. Bera, P., Burton-Jones, A., Wand, Y.: The effect of domain familiarity on modelling
roles: an empirical study. In: Proceedings of PACIS 2009, p. 110 (2009)

3. Bunge, M.: Treatise on basic philosoph. In: Ontology I: The Furniture of the World,
vol. 3. Reidel, Boston (1977)

4. De Leenheer, P., Christiaens, S., Meersman, R.: Business semantics management:
a case study for competency-centric HRM. Computers in Industry 61(8), 760–775
(2010)

5. Gemino, A., Wand, Y.: Complexity and clarity in conceptual modeling: Comparison
of mandatory and optional properties. Data and Knowledge Engineering 55(3),
301–326 (2005)

6. Gruber, T.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5(2), 199–220 (1993)

7. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language: Primer. W3C Recommendation (October 27,
2009), http://www.w3.org/TR/owl2-primer/

8. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, F(T.), Hobson, S.,
Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing the
Guard-Stage-Milestone Approach for Specifying Business Entity Lifecycles (Invited
Talk). In: Bravetti, M. (ed.) WS-FM 2010. LNCS, vol. 6551, pp. 1–24. Springer,
Heidelberg (2011)

http://www.w3.org/TR/owl2-primer/


358 L. Limonad et al.

9. de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A Meaning Evolu-
tion Support System for Interorganizational Ontology Engineering. In: Schärfe, H.,
Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 189–202.
Springer, Heidelberg (2006)

10. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specifi-
cation. IBM Systems Journal 42(3), 428–445 (2003)

11. OMG: Semantics of Business Vocabulary and Business Rules (2008),
http://www.omg.org/spec/SBVR

12. OWL Working Group: OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/owl2-overview/

13. Parsons, J., Wand, Y.: Using cognitive principles to guide classification in infor-
mation systems modeling. MIS Quarterly 32(4), 839–868 (2008)

14. Searle, J.R.: Social ontology. Anthropological Theory 6(1), 12–29 (2006)
15. Wand, Y., Storey, V.C., Weber, R.: An ontological analysis of the relationship con-

struct in conceptual modeling. ACM Trans. Database Syst. 24(4), 494–528 (1999)
16. Wand, Y., Weber, R.: On the ontological expressiveness of information systems

analysis and design grammars. Information Systems Journal 3(4), 217–237 (1993)
17. Wand, Y., Weber, R.: On the deep structure of information systems. Information

Systems Journal 5(3), 203–223 (1995)
18. Welty, C., Fikes, R.: A Reusable Ontology for Fluents in OWL. In: Proceedings of

FOIS, pp. 226–236. IOS Press (2006)

http://www.omg.org/spec/SBVR
http://www.w3.org/TR/owl2-overview/

	Ontology of Dynamic Entities
	Introduction
	Motivation and Related Work
	State of the Art
	Novelty of This Work

	Description of the Ontology for Dynamic Entities
	Designing Possession as a Function of Context
	Run-Time Evaluation of Possession along the Entity Life Cycle
	Mutable Attributes

	Demonstration
	Flanders Research Information Space
	Two Associated Dynamic Entities: Proposals and Projects
	Transitivity of Possession
	Acyclic Lifecycles
	Implementation in Business Semantics Glossary

	Discussion and Future Work
	References




