
Contracts + Goals = Roles?∗

Lam-Son Lê and Aditya Ghose

School of Computer Science and Software Engineering
Faculty of Informatics, University of Wollongong

New South Wales 2522, Australia
{lle,aditya}@uow.edu.au

Abstract. The concept of role has been investigated in various fields
of computer science as well as social sciences. While there is no clear
consensus on how roles should be represented, a survey of the literature
suggests that we should address both responsibilities and rights in the
modeling of roles [1]. Based on this, we argue that the responsibilities
and rights of roles can be captured by leveraging the notions of business
contract and goal (in the sense of the goals of an actor being constrained
by the rights associated with the role played by the actor) in the realm
of requirements engineering. We leverage existing work on the formal-
ization of business contracts [2] and the formulation of goals in the i*
modeling framework [3]. We devise formal techniques for reasoning about
the composition and substitutability of roles and illustrate them through
a running example.

Keywords: i*, Business Contracts, Role Modeling, Formal Methods.

1 Introduction

Role modeling is a mechanism to separate concerns in the early phases of systems
development (e.g. analysis) when developers have not actually built the system
of interest. At this stage, model elements (e.g. components, agents, actors) that
represent components of the system to be built do not yet exist. A role captures a
coherent piece of behavior in the system. Roles may interact with one another in
a process (in which case they are called process roles). A role could be regarded
as an interface through which one might access the system or its subsystems (in
which case it is called an interface role). In subsequent phases of the development
process, designers assign roles to components. The representation of roles in the
analysis and design phases thus provides critical input to the subsequent phases
of the development lifecycle. This rationale also applies to social settings such
as institutional design, where roles capture the expected behavior of positions
that need to be filled by specific individuals or business entities. Systems (or
institutions) can be designed/developed from scratch or can be obtained via the
composition of pre-existing components (or via the composition of socio-technical

∗ Funding of this research was provided by the Smart Services CRC Initiative
http://www.smartservicescrc.com.au/

P. Atzeni, D. Cheung, and R. Sudha (Eds.): ER 2012, LNCS 7532, pp. 252–266, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.smartservicescrc.com.au/


Contracts + Goals = Roles? 253

systems containing both system components and people, obtained through a
combination of outsourcing, crowd-sourcing and recruitment). Either way, the
components (or entities/people) must be capable of playing the roles that were
assigned to them.

The so-called principle of separation of concerns matters in the requirements
phase too. Unfortunately, the notion of role has received relatively little attention
in the literature on requirements engineering (RE). For example, in the literature
on the i* framework, roles are simply regarded as abstract actors [4]. We take
as a starting point the approach of Zhu et al [1] to role modeling where roles are
associated with both responsibilities and rights. Given that systems often involve
collaboration between roles, we need to understand the semantics of putting their
responsibilities and rights together. Specifically, we need to answer the following
two questions well before the system (or organization) of interest is built: (a) do
the component roles of a system conjointly deliver what the system is expected
to deliver? (b) how do we know if a role can safely substitute for another role
without affecting the requirements of the system it belongs to?

To address these questions, we propose a formal framework for modeling and
reasoning about process roles. We are inspired by the notion of socially-enhanced
actors in the early-phase requirements that was made popular by the i* frame-
work [3], as well as the contract-based enterprise specification defined in the Ref-
erence Model of Open Distributed Processing (RM-ODP) standard [5]. Modeling
roles in such a context involves representing (i) a contract a role is committed
to (i.e. role’s responsibility); (ii) the rights associated with a role that constrains
the space of goals that an actor assuming that role can pursue. We leverage our
previous work on semantic business processes, the work of Governatori et al [2]
on business contracts and the well-established field of goal-oriented modeling
in RE.

Paper Structure. Section 2 presents the background of our work. We discuss
the representation of roles in RE and provides a running example in Section
3. Section 4 formally describes the framework. Section 5 surveys related work.
Section 6 concludes the paper and outlines our future work.

2 Background

We base our work on semantic business processes, formalization of business con-
tracts and the notion of role in a broad sense such as information systems.

2.1 Semantically Annotated Business Processes

An semantically annotated business process model is a process in which every
task has been annotated with immediate effects. To determine the functional-
ity delivered up to a given point of time during the occurrence of an annotated
process, we reason about the cumulative effect. We suppose that analysts can as-
sociate context-independent effect to each step represented in the process. There



254 L.-S. Lê and A. Ghose

exists a technique that contextualizes these effects, i.e., to compute cumulative
effects. The technique, called ProcessSEER, involves doing two stages of com-
putation [6]. In the first stage, we derive a set of possible scenario label(s) for
the given point in the process view. Each scenario label is a precise lits of steps
that define a path leading from the start point to a the point being considered.
In the second stage, the contiguous sequence of steps in each scenario label is
taken into account to accumulate effects annotated to steps along this scenario
in a pair-wise fashion.

A functionality annotation states the effect of having functionality delivered
at a specified task. The effect can be textual. Alternatively, it could be writ-
ten in first-order logic (FOL) or some computer-interpretable form. The total
functionality delivered up to a certain task is the accumulation of all effects of
the precedent tasks. We assume that the delivery annotations have been rep-
resented in conjunctive normal form (CNF) where each clause is also a prime
implicate (this provides a non-redundant canonical form) [7]. The cumulative
effect of tasks can inductively be defined as follows. The cumulative effect of
the very first task is equal to its delivery annotation. Let 〈Tki, T kj〉 be an or-
dered pair of consecutive tasks such that Tki precedes Tkj; let ei be an effect
scenario associated with Tki and ej be the delivery annotation associated with
Tkj. Without loss of generality, we assume that ei and ej are sets of clauses.
The resulting cumulative effect, denoted by acc(ei, ej) is defined as follows.

– acc(ei, ej) = ei ∪ ej if ei ∪ ej is logically consistent
– Otherwise acc(ei, ej) = e′i∪ ej whereby e′i ⊆ ei such that e′i∪ ej is consistent

and we do not have any e′′i ⊆ e′i ⊆ ei such that e′′i ∪ ej is consistent

The task of accumulating functionality annotations is non-trivial since there
might be various paths that can be traversed during the occurrence of the process
up to the point of time being considered. We call the path leading to a certain
point of time a scenario label. A scenario label can either be a sequence, denoted
by the 〈〉 delimiters, or a set denoted by the {} delimiters or combinations of both.
The set delimiters are used to deal with parallel splits, and distinct elements in a
set can be performed in any order [6]. Elements in a scenario label could be tasks
(which have delivery annotations) or control elements (e.g. mutually exclusive
split, parallel split). In addition to pair-wise effect accumulation across scenario
labels, we need to make special provision for the following: (i) accumulation
across AND-joins, and (ii) accumulation of effects over input/output flows.

2.2 Business Contract Modeling

Business contracts specify obligations, permissions and prohibitions as mutual
agreements between business parties [8], as well as actions to be taken when a
contract is violated. Governatori et al [2] have proposed such a contract model-
ing language which includes a non-boolean connective, ⊗, to represent contrary-
to-duty obligations (i.e., what should be done if the terms of a contract are



Contracts + Goals = Roles? 255

violated). Deontic operators capture the contractual modality (i.e. obligations,
permissions and prohibitions) [9]. Governatori et al represent a contractual rule
as r : A1, A2 . . . An � C where each Ai is an antecdent of the rule and C is the
consequent. Each Ai and C may contain deontic operators but connectives can
only appear in C.

As an example, r : ¬p, q � Osellerα⊗Osellerβ is a contractual rule (identified
by r) stating that if antecedents ¬p and q hold, then a seller is obliged to make
sure that α is brought about. Failure to do so results in a violation, for which a
reparation can be made by bringing about β (the connective ⊗ can therefore be
informally read as “failing which”).

Definition 1. [2] Contractual rules r and r′ can be merged into rule r′′ as fol-
lows where X denotes either an obligation or a permission.

r : Γ � OsA⊗ (
⊗n

i=1 OsBi)⊗OsC r′ : Δ,¬B1,¬B2, . . . ,¬Bn � XsD

r′′ : Γ,Δ � OsA⊗ (
⊗n

i=1 OsBi)⊗XsD

The ⊗ operator is associative but not commutative. This property matters when
reasoning about the subsumption and merging of contractual rules. Definition
1 defines how contract rules might be merged. Governatori et al also devise a
machinery for determining if one contractual rule subsumes another as presented
in Definition 2.

Definition 2. [2] Let’s consider two rules r1 : Γ � A ⊗ B ⊗ C and r2 : Δ � D
where A =

⊗m
i=1 Ai, B =

⊗n
i=1 Bi and C =

⊗p
i=1 Ci. Then r1 subsumes r2 (i.e.

r2 can safely be discarded if we have r1) iff

1. Γ = Δ and D = A; or
2. Γ ∪ {¬A1, . . . ,¬Am} = Δ and D = B; or

3. Γ ∪ {¬B1, . . . ,¬Bn} = Δ and D = A⊗⊗k≤p
i=0 Ci

2.3 Roles in Information Systems

Zhu et al. [1] provide a comprehensive survey of role modeling in various fields
including object-oriented modeling, multi-agent systems, role-based access con-
trol, computer-supported cooperative work, social psychology and management.
They suggest that role modeling should address both the responsibilities and
rights of a role. They also define two categories of roles: interface roles and the
process roles. The former is used in systems analysis and design while the latter
in systems implementation.

Steimann [10] has studied role modeling mainly from the perspective of object-
oriented modeling and identified 15 features of roles in relation to object types
and relationships. He has also suggested merging the concepts of interface and
role since they both refer to externally-visible behavior of an object that plays
a certain role by realizing an interface [11]. In revisiting Bachman’s role concept



256 L.-S. Lê and A. Ghose

in data modeling [12], Steimann [13] observes that role expectations capture not
only behavior (e.g. a scientific reviewer is expected to comment on and evaluate
papers she was assigned to) but also “role qualities” (e.g. a scientific reviewer
should conduct her reviews thoroughly, constructively and objectively).

These views suggest that we should not be confined by the bounds of action-
oriented behavior modeling when it comes to role modeling.

3 Roles in the Requirements Phase

We make our standpoint based on the two modeling frameworks that recently
became international standards - the i* and the RM-ODP.

i* is a popular notation for capturing the rationale and intention in the early-
phase requirements engineering. It defines the concepts of actor, agent and role.
Being socially-motivated and inspired of multi-agent systems, i* adopts the no-
tion of autonomy and intentionality when it comes to the representation of actors
in systems analysis and design [3]. The authors of this framework argue that, to
capture the social aspects in RE, actors and roles should be represented as being
intentional and autonomous, as opposed to being programmable and mechanis-
tic1. This framework defines strategic rationale business models where we model
a role in an RE phase as something that has internal objectives and activities.

RM-ODP, a standardization effort that defines essential concepts for mod-
eling distributed enterprise systems, positions the concept of role in relation
with contract, objective and policy of an enterprise specification, which can be
thought of as the requirements for an ODP system [5]. In RM-ODP, we can
make the coarse-grained organizational representation of an enterprise system
using the enterprise concept of community. A community object is supposed to
have (component) enterprise objects. These component objects are said to play
roles described in the enterprise specification, in order to fulfill objectives of the
community in question. The contract specified for a community object states
how to assign the component enterprise objects to roles.

The analysis we make on these two standards would suggest that, in RE,
roles might better be described in terms of objectives and contracts instead of
plain action-oriented behavior. Contract-oriented behavior accounts for role’s
commitments (or role’s qualities by Steimann [13]). Goal-oriented behavior ad-
dresses the intentionality and the autonomy of roles. This vision also coincides
with those that have been around in the realms of Information Systems and
Conceptual Modeling presented in Subsection 2.3. To reason about role’s goal,
we leverage the well-established field of goal-oriented modeling. To reason about
role’s contract, we need to consider all processes in which the role in question
participates in order to fulfill the contracts it commits to.

1 Many object-oriented analysis & design methodologies share a vision whereby ob-
jects’ behavior is defined (by the designer) at design-time. At run-time, objects are
instantiated and their operations are invoked on a presumably single thread of con-
trol in ways they were designed [14].



Contracts + Goals = Roles? 257

3.1 Running Example

Let us consider the business model of a car rental company (as a service). It
has roles that are expected to provide the following services: identity check &
deposit, cars pickup & return and cars maintenance. We call them Receptionist

(or rl11 for short to be referred to formally later on), Fleet Manager (or rl12)
and Mechanics (or rl13) respectively. Note that the rental car company as a
whole also plays a role.

Figure 1 gives an overview of this business model using the i* notation. In
this diagram, i* actors whose text is in bold represent roles that are considered
in this example. Each role have their own goals and contracts. Their goals are
represented under the i* notation of hard goal inside their boundaries. Their

Fig. 1. Representation of roles in the car rental using the i* notation



258 L.-S. Lê and A. Ghose

Table 1. Informal description of roles participating in the car rental business

Role Role’s Goal Role’s Contract

Role
played
by the
car rental
company

To reserve the right not to serve
customers who don’t have a full
driver license; to avoid accept-
ing car return of 15+ minutes
late and early pickup; to hold
customers responsible for break-
downs caused by their negligence
in checking oil/coolant.

The customer expects to be handed in a car of which
class was specified in her reservation. If the rental car
company fails to do so, they are obliged to provide
her with an alternative car of a comparable class. If
this option is not available either, the company will
offer her some discount on her next rent.

Receptio-
nist (rl1)

To cancel bookings made by cus-
tomers who don’t have a valid
driver license.

We assume that Receptionist always delivers its
functionality as expected. No contractual rules are
specified for this role.

Fleet
Manager
(rl2)

To allow customers to return
their rental cars 30- minutes late;
to avoid accepting early pickup.

If Fleet Manager can’t provide the customer with a
car of the class she requested in her reservation, an al-
ternative car of a comparable class shall be provided.
If this obligation is violated, Fleet Manager will be
charged an amount of money.

Mechanics
(rl3)

To avoid taking responsibility for
breakdowns caused by customers
who ignored dashboard warnings
about the engine oil and coolant
during their prolonged renting.

If the car requested by the customer has not been
properly serviced, and it is impossible to provide an
alternative car of a comparable class, Mechanics is
obliged to do a quick service to the selected car. Fail-
ure to do so will result in Mechanics being charged.

contracts are also represented under the i* goal notation but have italicized
text2. Each contract features a dependency between a pair of roles that engage
in it. Table 1 informally describes these goals and contracts.

To formulate the contracts, let us consider a process that starts when a cus-
tomer shows up to pick up a rental car she has previously booked and ends
when she returns her rented car. At a stage of this process, each of these roles is
expected to deliver certain functionality. Figure 2 is a diagram (presented in side
view to be fit in a single page) that represents this process using the Business
Process Model and Notation (BPMN)3. Receptionist processes the registra-
tion for customers who have booked in advance and checks the customer’s driver
license. Fleet Manager deals with pick-up & return procedures (and checking
for any damages the customers might do to their rental cars). Mechanics takes
care of the rental cars and makes sure that any they are in sound condition
before the customers pick them up. In this diagram, each task4 has a name that
starts with a prefix telling which role conducts the task.

Receptionist, Fleet Manager and Mechanics each enter in a contract with
the role played by the car rental company. They are expected to deliver the
aforementioned functionality. In case they fail to deliver it, they are supposed to
deliver alternative functionality as a reparation for their violation.

2 i* does not support the modeling of business contracts. We use this visual trick to
make contracts and goals look differently in the diagram of Figure 1.

3 OMG Business Process Management Initiative http://www.bpmn.org/
4 We also annotate each task with functionality drawn under a rectangular callout,
which is formally represented and useful for reasoning about contracts in the next
section.

http://www.bpmn.org/


Contracts + Goals = Roles? 259

Fig. 2. Roles Receptionist, Fleet Manager and Mechanics in the process of renting a car



260 L.-S. Lê and A. Ghose

4 A Framework for Reasoning about Roles in RE

In this section, we provide a formal machinery for reasoning about the compo-
sition and extension of roles, which addresses the research statement presented
in the previous section.

4.1 Role Composition

Let SysBiz denote a system or a business that performs a function to deliver
value to external or internal actors. Let RLsb be the role played by SysBiz
as a whole. This role interacts with roles played by the external actors (hence,
external roles). We formally represent RLsb as a tuple 〈Rsb, Gsb〉 where Rsb

denotes a contractual rule that RLsb and the external roles have agreed upon;
Gsb denotes RLsb’s goal.

In the following, we will use r1 	 r2 to denote that r2 subsumes r1, for contrac-
tual rules r1 and r2. Let rl1, rl2 . . . rln be the component roles that collaborate
in order for SysBiz to deliver its function. These roles are assumed by actors
that are internal to SysBiz, and RLsb can be viewed as a role obtained via the
composition of the component roles. Each role rli is a tuple 〈ri, gi〉 where ri
denotes a contractual rule agreed upon by rli and RLsb; gi denotes rli’s goal.
Definition 3) formalizes role composition.

Definition 3. Role RLsb is the composition of roles rl1, rl2 . . . rln (and roles
rl1, rl2 . . . rln constitute role RLsb) if and only if the following hold.

– Rsb 	 q (i.e. rule q subsumes rule Rsb) where q is the result of merging
r1, r2, . . . rn according to Definition 1.

– RLsb’s goal entails all goals of roles rl1, rl2 . . . rln. Formally, we have Gsb |=
g1 ∧ g2 ∧ . . . ∧ gn and g1 ∧ g2 ∧ . . . ∧ gn �|=⊥.

The intuition of Definition 3 is that we relax goals while strengthening rules
when we compose roles. Example 1 illustrates this definition. To reason about
the contractual behavior of roles, we annotate tasks in Figure 2 with semantic
effect written in FOL. Each task has a delivery annotation that is drawn under a
rectangular callout. The delivery annotations are written in FOL. We will refer
to these annotations by 4-character nick names that appears next to their callout
pictograms. The start event and gateways are enumerated as S, G1, G2 and G3
as can be seen in the figure.

Example 1. Let us consider the moment in the rental process (see Figure 2) when
a customer is about to pick up a rental car. Roles rl1, rl2 and rl3 are expected
to deliver lics, pick and prec respectively. The contractual rule for delivering
pick of role rl2 (see Table 1) can be formally expressed as

r2 : ¬pick � O2AltCar ⊗O2Charged where pick is as depicted in Figure 2

and AltCar ≡ ∀c ∈ Car, r ∈ Customer : booked(r, c) ∧ licensed(r) ∧ ¬rented(r, c) →
(∃ac ∈ Car : comparableClass(ac, c) ∧mecSound(ac) ∧ rented(r, ac)).

The formal representation of the contractual rule for role rl3 is as follows.



Contracts + Goals = Roles? 261

r3 : ¬prec,¬AltCar � O2QuickServ ⊗ O3Charged

Given that role rl1 does not have a contractual role, merging r2, r3 will

yield r23 : ¬pick,¬prec � O2AltCar ⊗O3QuickServ ⊗O3Charged according

to Definition 1.
Now, let us formally represent the contractual rule for the role played by the

rental car company in the following.

rco : ¬delivery � OcoAltCar ⊗OcoDiscountNextRent where delivery de-

notes the cumulative effect of the rental process at the aforementioned moment.
According to the definition of function acc in Subsection 2.1, {¬prec,¬pick}∪

¬QuickServ = ¬delivery (see Appendix B for a proof). If the amount of money
charged to rl3 exceeds the mount of discount offered to the customer then ac-
cording to criterion 3 of Definition 2, r23 subsumes rco. To reason about the
entailment of goals, we formalize them in FOL. The goals of rl1, rl2, rl3 and the
role played the rental car company are formalized as follows.

g1 ≡ ∀r ∈ Customer : ¬hasV alidLicense(r) → serviceDenied(r)
g2 ≡ ∀c ∈ Car, r ∈ Customer : booked(r, c) →

(timelyP ickup(r, c)∧ returnWithin30(r, c))
g3 ≡ ∀c ∈ Car, r ∈ Customer : breakdownWithWarnings(r, c) →

heldResponsible(r)
gco ≡ ∀c ∈ Car, r ∈ Customer : (¬hasFullLicense(r) →

serviceDenied(r)) ∧ (booked(r, c) → (timelyP ickup(r, c) ∧
returnWithin15(r, c)) ∧
(breakdownWithoutCheck(r, c) → heldResponsible(r))

Using theorem proving techniques, we can conclude that goal gco entails g1,
g2 and g3. A proof for this can be found in Appendix A.

4.2 Role Subtyping

Subtyping is a binary relation on roles. A role is a subtype of another role if the
former has weaker goal but a stronger contractual rule than the latter. We call
the former the subtyping role. Definition 4 formally captures this point.

Definition 4. Let rla = 〈ra, ga〉 and rlb = 〈rb, gb〉 be two roles. Role rla is a
subtype of role rlb if rb 	 ra (i.e. rule ra subsumes rule rb) and gb |= ga (i.e.
goal gb entails goal ga).

Example 2. Let us consider an alternative fleet manager (denoted as rl2a) for
Fleet Manager that would allow customers to return their rental cars within 30
minutes after the end of their rent and accept slightly early pickup (e.g. within
10 minutes before the start of their rent). In case neither the car selected nor
an on-premise alternative car could be provided, this fleet manager may offer
an alternative car sourced from other car fleets under its management. If this
obligation is violated, it will be charged the same amount of money as specified
in the contract of the original fleet manager.



262 L.-S. Lê and A. Ghose

We formalize the contract of role rl2a = 〈r2a, g2a〉 as follows.
r2a : ¬pick � O2aAltCar ⊗O2aAltCarFromNetwork ⊗O2aCharged where

pick and AltCar are the same as in Example 1.
g2a = ∀c ∈ Car, r ∈ Customer : booked(r, c) → (timelyP ickup(r, c) ∨

earlyP ickup(r, c)) ∧ returnWithin30(r, c))
According to criterion 3 of Definition 2, g2a subsumes g2 (in a similar way

to Example 1). In addition, we can deduce that g2 |= g2a using the distribution
property of ∧ over ∨. Thus, according to Definition 4, role rl2a is a subtype of
role rl2.

Role subtyping is essential for reasoning about the substitutability of roles in
a role composition. The intuition is that a subtyping role can substitute for
another role (i.e. the former can safely replace the latter in processes where the
latter is expected) if it expresses more commitments but reserves less rights than
the other does.

Theorem 1. Let R = {rl1, rl2 . . . rln} be the component roles that con-
stitute role RLsb. If role rls is a subtype of role rlk ∈ R, then roles
rl1 . . . rlk−1, rls, rlk+1 . . . rln constitute a composite role that is a subtype of RLsb.

Proof. Let rli = 〈ri, gi〉, RLsb = 〈rsb, gsb〉. Let p and q be contractual rules such
that p is the result of merging r1, r2, . . . rn and q is is the result of merging
r1 . . . rk−1, rs, rk+1 . . . rn according to Definition 1

According to Definition 4, rk 	 rs and gk |= gs. Applying these to what
is stated in Definition 3, we have Rsb 	 p 	 q and Gsb |= g1 ∧ . . . ∧ gk ∧
. . . ∧ gn |= g1 ∧ . . . ∧ gk−1 ∧ gs . . . ∧ gk+1 . . . ∧ gn. According to Definition 4,
rl1 . . . rlk−1, rls, rlk+1 . . . rln constitute a subtype role of RLsb.

Theorem 1 is useful for checking whether a composite role can substitute for
another composite role from the perspective of roles that are external to both.
Example 3 illustrates this point.

Example 3. Let us consider another rental company that deals with an alter-
native fleet manager (rl2a) discussed in Example 2. It also deals with the very
receptionist and mechanics described in our running example (Subsection 3.1).
As such, this rental company is able to offer early pickup (10 minutes maximum),
late return (20 minutes maximum) and a wide range of alternative rental cars.
It is a subtype role of the one described in the running example according to
Definition 4. In other words, we have 〈rl1, rl2a, rl3〉 is a subtype of 〈rl1, rl2, rl3〉
because rl2a is a subtype of rl2.

5 Related Work

As discussed in Section 3, the RM-ODP standard defines the enterprise specifi-
cation, which could be regarded as requirements for the system to be built. Roles



Contracts + Goals = Roles? 263

are specified in this requirements specification. To reach international consensus
for becoming a standard, RM-ODP is sometimes exceedingly generic and avoids
providing patterns. Definitions of role in this standard range from an identifier of
behavior, a subset of the total behavior (of an object) to an abstraction of the be-
havior that belongs to collaborative behavior [15]. In our work, we come up with
a definition of roles that is separated from concrete components, agents, entities,
etc. who may come into existence in the subsequent phases of development. This
is in line with existing work on the semantics of roles and role-related method-
ological issues [16,10,14]. However, we do not relate the subtyping hierarchy of
roles to that of entities like Steimann’s work [10].

With respect to relationships between roles, our work shares the
relaxing/strengthening principle with the notion of behavioral subtyping [17]
whereby preconditions are eased and postconditions are strengthened in a sub-
type. Our notion of role substitutability in Theorem 1 is nevertheless not in line
with the concept of object aggregation in contemporary object-oriented modeling
where substitutability between component objects does not imply substitutabil-
ity between composite objects.

Regarding the i* standard, we provide an alternative conceptualization of
roles in RE by introducing the concept of contractual rules [2] to the represen-
tation of roles. A role not only has goals (i.e. rights) but also features contracts
(i.e. responsibility). We explicitly represent the responsibilities and rights of roles
who are considered intentional and autonomous in i*.

6 Conclusion

Are business contracts plus goals equal to roles in RE? In this paper, we propose
a formal approach for modeling intentional and autonomous roles in the realm
of RE. We base our work on a unified view in role modeling that suggests we
explicitly represent both the responsibilities and the rights of a role [1]. We argue
that the role’s responsibility and rights can be captured by contractual rules and
goals, respectively. We leverage existing work on the formalization of business
contracts [2] and the formulation of hard goals in the i* modeling framework
[3] in order to devise techniques for reasoning about the composition and the
substitutability of roles. Technically, goals are relaxed by means of entailment
whereas contracts are strengthened via subsumption in a subtype role or a role
composition.

Discussions. The contribution of our work is twofold. First, we propose to con-
ceptually model RE roles in terms of goals and contracts. Second, we deal with
the composition and substitutability of roles by leveraging existing work on busi-
ness contracts and goal-oriented behavior. However, our framework may not cope
with scenarios where role’s contractual rules cannot effectively be merged and/or



264 L.-S. Lê and A. Ghose

entailment between role’s goals cannot be formulated. We have not aligned our
work to contemporary enterprise modeling frameworks such as ArchiMate5.

Future Investigations. Further work includes investigating the non-functional
properties of roles in RE, which can be done by leveraging the i* concepts of
soft goal and belief while making logic-based contractual rules more quantifiable.
Another direction of future work is to detect conflicts between constituent roles
when composing them (e.g. their goals contradict with one another). Yet another
direction for further work would be feeding our role model to a design phase. The
research question here is on the semantics and methodological issues of designing
entities (or agents) so that they can play roles specified in the requirements
phase.

References

1. Zhu, H., Zhou, M.: Roles in Information Systems: A Survey. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(3), 377–396
(2008)

2. Governatori, G., Milosevic, Z.: A Formal Analysis of a Business Contract Language.
International Journal of Cooperative Information Systems 15(4), 659–685 (2006)

3. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements
Engineering. The MIT Press (January 2011)

4. Liu, L., Yu, E., Mylopoulos, J.: Security and Privacy Requirements Analysis within
a Social Setting. In: Proceedings of 11th IEEE International Requirements Engi-
neering Conference, pp. 151–161 (September 2003)

5. ISO/IEC: ITU-T X.903 | ISO/IEC 10746-3 Information Technology - Open Dis-
tributed Processing - Reference Model - Architecture. International Standard, SC
7 and ITU (2010)

6. Hinge, K., Ghose, A., Koliadis, G.: Process SEER: a Tool for Semantic Effect
Annotation of Business Process Models. In: Proceedings of the 13th IEEE Interna-
tional Conference on Enterprise Distributed Object Computing, pp. 49–58. IEEE
Computer Society, Auckland (2009)

7. Raut, M., Singh, A.: Prime Implicates of First Order Formulas. International Jour-
nal of Computer Science and Applications 1(1), 1–11 (2004)

8. Linington, P., Milosevic, Z., Cole, J., Gibson, S., Kulkarni, S., Neal, S.: A Unified
Behavioural Model and a Contract Language for Extended Enterprise. Data &
Knowledge Engineering 51(1), 5–29 (2004)

9. Gabbay, D.M., Woods, J.: Logic and the Modalities in the Twentieth Century.
Handbook of the History of Logic, vol. 7. North-Holland (July 2006)

10. Steimann, F.: On the Representation of Roles in Object-Oriented and Conceptual
Modelling. Journal of Data & Knowledge Engineering 35(1), 83–106 (2000)

11. Steimann, F.: Role = Interface: A merger of concepts. Journal of Object Oriented
Programming 14(4), 23–32 (2001)

5 Archimate Homepage http://www.archimate.nl/

http://www.archimate.nl/


Contracts + Goals = Roles? 265

12. Bachman, C.W.: The Role Data Model Approach to Data Structures. In: Proceed-
ings of International Conference on Databases, pp. 1–18. University of Aberdeen:
Heyden & Son (1980)

13. Steimann, F.: The Role Data Model Revisited. Applied Ontology Journal 2(2),
89–103 (2007)

14. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems:
the Gaia Methodology. ACM Transaction on Software Engineering Methodol-
ogy 12, 317–370 (2003)

15. Genilloud, G., Wegmann, A.: A Foundation for the Concept of Role in Object Mod-
elling. In: Proceedings of 4th International Enterprise Distributed Object Comput-
ing Conference, pp. 76–85 (September 2000)

16. Guarino, N.: Concepts, Attributes and Arbitrary Relations: Some Linguistic and
Ontological Criteria for Structuring Knowledge Bases. Journal of Data & Knowl-
edge Engineering 8(3), 249–261 (1992)

17. Liskov, B.H., Wing, J.M.: A Behavioral Notion of Subtyping. ACM Transactions
on Programming Languages and Systems 16(6), 1811–1841 (1994)

A Goals Entailment

We have hasFullLicense(r) ≡ hasV alidLicense(r) ∧ probationPassed(r)
(i.e. full driver’s license is a valid license that has successfully undergone a
probation), breakdownWithoutCheck(r, c) ≡ breakdownWithWarnings(r, c)∨
levelsDropped(c) (i.e. breakdown was caused by levels dropped significantly, of
which the customer might be warned if the rental car was equipped with sen-
sors) and returnWithin15(r, c) ≡ returnWithin30(r, c) ∧ within15. To make
the proof easier to follow, we denote predicates that appear in the formaliza-
tion of these goals as follows. hasFullLicense(r) ≡ F , hasV alidLicense(r) ≡
V , probationPassed(r) ≡ P , breakdownWithoutCheck(r, c) ≡ C, breakdown-
WithWarnings(r, c) ≡ W , serviceDenied(r) ≡ D, timelyP ickup(r, c) ≡ T ,
booked(r, c) ≡ B, returnWithin30(r, c) ≡ R, returnWithin15(r, c) ≡ Q,
heldResponsible(r) ≡ H , within15 ≡ X , levelsDropped(c) ≡ L.

We can safely add quantifier ∀c ∈ Car to g1 because g1 does not matter
on rental cars. This is to unify goals g1, g2, g3 and gco in terms of quantifiers.
Syntactically, they now all start with quantifiers ∀c ∈ Car, r ∈ Customer. For
the sake of simplicity, we ignore these quantifiers in the proof. Given the afore-
mentioned denotation, we have gco ≡ (¬F → D) ∧ (B → (T ∧ Q) ∧ (C → H),
g1 ≡ ¬V → D, g2 ≡ B → (T ∧R) and g3 ≡ W → H .

Note that ¬F → D equals to F ∨¬Dequiv(V ∧P )∨¬Dequiv(V ∨¬D)∧ (P ∨
¬D)equiv(¬V → D) ∧ (¬P → D), which obviously entails g1. In addition, since
Q ≡ R∧X , we haveB → (T∧Q) ≡ ¬B∨(T∧R∧X) ≡ (¬B∨(T∧R))∧(¬B∨X) ≡
(B → (T ∧ R) ∧ (B → X), which entails g2. Finally, C → H = ¬C ∨ H =
¬(W∨L)∨Hequiv(¬W∧¬L)∨H ≡ (¬W∨H)∧(¬L∨H) ≡ (W → H)∧(L → H),
which entails g3. Thus gco |= g1 ∧ g2 ∧ g3.



266 L.-S. Lê and A. Ghose

B Accumulating Effects

Negating the semantic annotations given in Figure 2 will yield {¬prec,¬pick} ≡
{∃r ∈ Customer, c ∈ Car : booked(r, c) ∧ ¬mecSound(c); ∃r ∈ Customer,
c ∈ Car : booked(r, c) ∧ licensed(r) ∧ ¬rented(r, c)}. In addition, we have
QuickServ ≡ ∀r ∈ Customer, c ∈ Car : booked(r, c) ∧ ¬mecSound(c) →
serviced(c) (i.e. all cars, booked by the customers, that are not mechanically
sound shall be serviced quickly). Thus, ¬QuickServ ≡ ∃r ∈ Customer, c ∈
Car : booked(r, c) ∧ ¬mecSound(c) ∧ ¬serviced(c).

The scenario label for the three constituent roles at the moment when task
Pick-up vehicles has been executed is 〈S,G1, {〈proc, rgst, prec〉, servb},
prec,G2, lics,G3, pick〉. We proceed in cumulating semantic annotations along
this label scenario (see Subsection 2.1). Since proc, rgst, serb, prec, lics and
pick do not contain contradictory clauses (actually serb and prec have the same
clause), we can simply collect their clauses. Negating these clauses would yield
∃r ∈ Customer, c ∈ Car : booked(r, c) ∧ ¬mecSound(c); ∃r ∈ Customer, c ∈
Car : booked(r, c) ∧ ¬mecSound(c); ∃r ∈ Customer, c ∈ Car : booked(r, c) ∧
licensed(r) ∧ ¬rented(r, c).

So, we have {¬prec,¬pick} ∪ ¬QuickServ = ¬delivery.


	Contracts + Goals = Roles?
	Introduction
	Background
	Semantically Annotated Business Processes
	Business Contract Modeling
	Roles in Information Systems

	Roles in the Requirements Phase
	Running Example

	A Framework for Reasoning about Roles in RE
	Role Composition
	Role Subtyping

	Related Work
	Conclusion
	References
	Goals Entailment
	Accumulating Effects




