
OLAP-Like Analysis
of Time Point-Based Sequential Data�

Bartosz Bębel, Mikołaj Morzy, Tadeusz Morzy,
Zbyszko Królikowski, and Robert Wrembel

Poznań University of Technology, Institute of Computing Science, Poznań, Poland
{Bartosz.Bebel,Mikolaj.Morzy,Tadeusz.Morzy,

Zbyszko.Krolikowski,Robert.Wrembel}@put.poznan.pl

Abstract. Nowadays business intelligence technologies allow to analyze mainly
set oriented data, without considering order dependencies between data. Few
approaches to analyzing data of sequential order have been proposed so far.
Nonetheless, for storing and manipulating sequential data the approaches use ei-
ther the relational data model or its extensions. We argue that in order to be able
to fully support the analysis of sequential data, a dedicated new data model is
needed. In this paper, we propose a formal model for time point-based sequential
data with operations that allow to construct sequences of events, organize them
in an OLAP-like manner, and analyze them. To the best of our knowledge, this is
the first formal model and query language for this class of data.

1 Introduction

Multiple applications generate huge sets of ordered data. Some typical examples in-
clude: workflow systems, user navigation through web pages, diseases curing, RFID-
based goods transportation systems (e.g., [10]), public transportation infrastructures
(e.g., [2,1,15]), and remote media consumption measurement installations (e.g., [12]).
Some of the data have the character of events that last an instant - a chronon, whereas
some of them last for a given time period - an interval. In this regard, sequential data
can be categorized either as time point-based or interval-based [16], but for all of them
the order in which they were generated is important.

Since over 20 years, data analysis has been performed by means of business intelli-
gence (BI) technologies [5] that include a data warehouse (DW) system architecture and
the set of tools for advanced data analysis – the on-line analytical processing (OLAP)
applications (e.g., sales trend analysis, trend prediction, data mining, social network
analysis). Traditional DW system architectures have been developed in order to effi-
ciently analyze data that originally are coming from heterogeneous and distributed data
sources, maintained within an enterprise. OLAP applications, although very advanced
ones, allow to analyze mainly set oriented data, but they are not capable of exploiting
existing order among data. For this reason, a natural extension to traditional OLAP tools

� This work was supported from the Polish National Science Center (NCN), grant No.
2011/01/B/ST6/05169.

S. Castano et al.(Eds.): ER Workshops 2012, LNCS 7518, pp. 153–161, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



154 B. Bębel et al.

has been proposed in the research literature as the set of techniques and algorithms al-
lowing to analyze data that have sequential nature, e.g., [7,8,10,11,14,15]. For storing
and manipulating sequential data, the approaches use either the relational data model or
its extension. We argue that in order to be able to fully support the analysis of sequential
data, a dedicated new data model is needed.

Paper contribution. In this paper, we extend the draft of a formal model for time
point-based sequential data [3] with the definitions of a fact, measure, dimension, and
a dimension hierarchy. Thus, the model allows to analyze sequential data in an OLAP-
like manner. To the best of our knowledge, this is the first comprehensive model and
query language for this class of data.

2 Leading Example

As an illustration of sequential data and their analysis, let us consider patient treatment
data, as shown in Table 1. A patient, identified by a SSN, is diagnosed by a doctor. A
patient obtains prescriptions, each of which is described by: a unique identifier, date
of drawing, patient SSN and his/her age, doctor identifier, medicine name, a dose, a
package capacity, and a discount the patient is eligible for.

Table 1. Example data on patient medicine prescription

prescriptionNo. date patientSSN age doctorID medicine dose package discount

1198/2011 26.04.2011 74031898333 37 3424 zinnat 0.25 g/5 ml 5 0ml 70%
1199/2011 26.04.2011 98111443657 13 3424 pulmeo 5 ml 150 ml 96.5%
3023/2011 27.04.2011 98111443657 13 9843 pulmicort 0.125 mg/ml 20 ml 70%
3024/2011 27.04.2011 98111443657 13 9843 ventolin 1.5 ml 100 ml 70%
3024/2011 27.04.2011 74031898333 37 5644 augmentin 0,6 g/5 ml 100 ml 70%
3026/2011 27.04.2011 98111443657 13 9843 ventolin 0.1 mg/ml 10 a 2 ml 70%
3027/2011 28.04.2011 34122224334 77 9843 zyrtec 1 mg/ml 75 ml 100%
3031/2011 30.04.2011 56090565958 66 9843 pulmicort 0.125 mg/ml 40 ml 100%

Typical OLAP analyses could include: (1) finding the average number of prescrip-
tions filled by a single doctor monthly during one year period, or (2) finding the total
amount of medicines prescribed by doctors working at hospital X.

However, from exploiting the sequential dependencies between data we could mine
a valuable knowledge. Examples of such analyses could include: (1) finding the number
of patients that were treated with medicine A after they were treated with medicine B,
(2) finding the number of patients that within one year were treated at least two times
with medicine A, but these treatments were separated with at least one treatment with
medicine B. We argue that these and many other analyses require a new data model and
query language.

3 Data Model for Sequential Time Point-Based Data

The foundation of our model includes an event and a sequence. A sequence is created
from events by clustering and ordering them. Sequences and events have distinguished
attributes - measures that can be analyzed in an OLAP-like manner in contexts set up
by dimensions.



OLAP-Like Analysis of Time Point-Based Sequential Data 155

3.1 Building Elements of the Model

Event. We assume that an elementary data item is an event, whose duration is a chronon.
Formally, event ei ∈ E, where E is the set of events, is a n-tuple (ai1,ai2, ...,ain), where
ai j ∈ dom(A j). dom(A j) is the domain of attribute A j and dom(A j) =V, where V is the
set of atomic values (character string, date, number) ∪ null value. A j ∈ A, where A is
the set of event attributes.

Attribute hierarchy. Similarly like in traditional OLAP, event attributes may have
some hierarchies associated. Let L = {L1,L2, ...,Lk} be the set of levels in the hier-
archies of the event attributes. Pair 〈LAi ,�Ai〉 describes a hierarchy of attribute Ai ∈A,
where LAi ⊆ L and �Ai is a partial order on set LAi .

Example 1. In the example from Section 2, an event represents drawing a prescription for a
patient. Thus, one event is represented by one row in Table 1, i.e.,E= {e1,e2,e3,e4,e5,e6,e7,e8},
where:

– e1=(1198/2011, 26.04.2011, 74031898333, 37, 3424, zinnat, 0.25 g/5ml, 50 ml, 70%),
– e2=(1199/2011, 26.04.2011, 98111443657, 13, 3424, pulmeo, 5 ml, 150 ml, 96.5%),
– ...
– e8=(3031/2011, 30.04.2011, 56090565958, 66, 9843, pulmicort, 0.125 mg/ml, 40 ml,

100%).

A= {prescriptionNo,date, patientSSN,age,doctorID,medicine,dose, package, discount}.
Two attributes have the following hierarchies (L= LA2 ∪LA3 ):

– LA2 = {date,month,quarter,year} and �A2 : date → month → quarter → year (with values:
26.04.2011 → April 2011 → Q2 2011 → 2011),

– LA3 = {person, patient type} and �A3 person → patient type (with values: 98111443657 →
child, 34122224334 → retired).

Sequence. An ordered list of events that fulfill a given condition is called a sequence.
The order of events in a sequence is defined by values of selected event attributes.
Such attributes will further be called ordering attributes. A sequence is composed of
the events that have the same value of another selected attribute (or attributes). Such
attributes will further be called forming attributes. If a forming attribute has a hierarchy
associated, then a selected level in the hierarchy can also be used as a forming attribute.
Formally, Si ∈ S, where S is the set of sequences, is pair 〈Ei,�〉, where Ei ⊆ E and �
is a partial order on E.

Creating a sequence. For the purpose of creating a sequence from events, we define
operator CreateSequence: E→ S, with the syntax CreateSequence(E,F,Ao, p), where:

– E is th set of elementary events,
– F is the set of pairs 〈Ai,Lj〉, where Ai ∈A is a forming attribute and Lj ∈ LAi is the

level of the forming attribute Ai, or 〈Ai,φ〉 if attribute Ai does not have a hierarchy,
– Ao is the set of ordering attributes, Ao ⊆ A,
– p ∈ P is a logical predicate which selects events to form sequences.

Notice that sequences are not defined statically, but their structure is dynamically con-
structed based on the features of analyses, for which the sequences are created.



156 B. Bębel et al.

Example 2. For the purpose of analyzing patients’ treatments, all events describing prescriptions
given to the same patient are included into one sequence. They are further ordered by a drawing
date.

CreateSequence(E,{〈A3 , patient〉},{A2},null) = {S1,S2,S3,S4} where: S1 = 〈e1,e5〉, S2 =
〈e2,e3,e4,e6〉, S3 = 〈e7〉, S4 = 〈e8〉.

For the purpose of analyzing prescriptions drawn by a doctor during a year, with discounts
equal to or greater than 80%, all events describing prescriptions given by the same doctor are
included into a sequence. They are further ordered by a drawing date.

CreateSequence(E,{〈A5 ,φ〉〈A2,year〉},{A2},A9 ≥ 80%) = {S1,S2} where: S1 = 〈e2〉, S2 =
〈e7,e8〉.

Fact and measure. Any sequence which is the subject of analysis is the fact of analysis.
Similarly as in traditional OLAP, sequences are characterized by the values of their
measure attributes. Measure mi ∈M, where M is the set of measures. dom(mi) = V. A
measure can be either the attribute of an event or the property of the whole sequence. In
order to treat measures uniformly, a measure is defined as function ComputeMeasure
that associates an atomic value with a sequence, i.e., ComputeMeasure : S×M→ V.
The syntax of the function is as follows: ComputeMeasure(Si,name j, p j), where:

– Si ∈ S is a sequence, for which the values of the measure are computed,
– namej is the name of the measure,
– p j ∈ P is an expression that computes the values of the measure for a given se-

quence.

Example 3. Examples of measures being event’s attributes include: patient’s age, medicine’s
doze and discount rate. Examples of measures being properties of a sequence include: duration
of patient’s treatment (a number of days between events: the first and last ones in sequence which
describes patient’s treatment) or the number of prescriptions drawn by a doctor within a day.

Dimension. A dimension sets up the context of an analysis and defines aggregation
paths of facts. Let Di denote a dimension and D denote the set of dimensions, thus
Di ∈ D. A dimension can be either an event attribute or the property of the whole se-
quence. The CreateContext operator associates a dimension with either an event at-
tribute or the whole sequence. It also defines a dimension hierarchy, namely the set
of levels and a partial order on this set. The syntax of the operator is as follows:
CreateContext(nameDi,ADi , pDi ,HDi) = Di, where:

– nameDi is the name of dimension Di,
– ADi equals to A j ∈ A if the dimension is an event attribute A j or ADi = φ if the

dimension is the property of the whole sequence,
– pDi equals to predicate p∈ P if the dimension is the property of the whole sequence

(p is an expression that computes the values of the dimension) or pDi = φ if the
dimension is an event attribute,

– HDi is the set of hierarchies of dimension Di, composed of pairs 〈LDi ,�Di〉, where
LDi ⊆ L is the set of levels in the dimension hierarchy and �Di is a partial order on
set LDi ; HDi = φ if dimension Di does not have a hierarchy.

Example 4. An example of a dimension defined by means of attributes include pa-
tient with hierarchy: person → patient type; the dimension is set up by an operator



OLAP-Like Analysis of Time Point-Based Sequential Data 157

CreateContext(patient,A3,φ ,{〈{person, patient type}, person → patient type〉}). However, if
we would like to analyze the distribution of treatment length, the dimension should be defined
as a function which calculates the length of a sequence describing treatment of a single patient.
In this case the dimension is defined as follows: CreateContext(treatment length,φ , f or all Si ∈
S f ind Tail(Si).A2 −Head(Si).A2,φ).

3.2 Operations of the Model

The operations defined in our model are classified into: (1) operations on sequences, (2)
general operations, (3) operations on dimensions, and (4) analytical functions. Due to
space limitations, we briefly describe the operations in this section.

Operations On Sequences – transform the structure of a single sequence and their
result is another sequence. The operations include:

1. Head(Si) – removes from sequence Si ∈ S all elements except the first one, e.g.,
Head(〈e2,e3,e4,e6〉) = 〈e2〉.

2. Tail(Si) – removes from sequence Si ∈ S all elements except the last one, e.g.,
Tail(〈e2,e3,e4,e6〉) = 〈e6〉.

3. Subsequence(Si,m,n) – removes from sequence Si ∈ S all elements prior to the
element at position m and all elements following element at position n, e.g.,
Subsequence(〈e2,e3,e4,e6〉,2,3) = 〈e3,e4〉.

4. Split(Si,expression) – splits sequence Si ∈ S into the set of new sequences based
on expression; each element of the original sequence belongs to only one of
the resulting sequences, e.g., Split(〈e2,e3,e4,e6〉,”the same values of A5”) =
{〈e2〉,〈e3,e4,e6〉} (the original sequence describes the whole treatment of a pa-
tient regardless of doctors, whereas the resulting set of sequences represents the
treatments of the same patient but now each treatment is conducted by one doctor).

5. Combine(S) – creates a new sequence from elements of all sequences in S ⊆ S

given as parameters; the elements in a new sequence are ordered by the values of
ordering attributes of the original sequences, e.g., Combine({〈e2〉,〈e3,e4,e6〉}) =
〈e2,e3,e4,e6〉 (the original sequences describe treatments of the same patient but
by two different doctors and the resulting sequence represents the whole treatment
of the patient).

General Operations – allow to manipulate sets of sequences.

1. Pin(S,expression) – filters sequences S ⊆ S that fulfill a given expression, e.g.,
Pin(S, length(Si ∈ S) > 3) (rejects all sequences that consist of less than four
events).

2. Select(S,expression) – removes from S⊆ S events that do not fulfill a given expres-
sion, e.g., Select(S,A6 = zinnat) (removes from sequences all events that concern
prescriptions other than ”zinnat”).

3. GroupBy(S,expression | Di) – assigns sequences from S ⊆ S to groups according
to the results of a given grouping expression (case A) or to dimensions in Di ∈ D

(case B). Sequences with the same value of the grouping expression or dimension
value belong to one group. The result of the operation is set G of pairs 〈value,Si〉,



158 B. Bębel et al.

where value is a given value of grouping expression and Si ⊆ S is the set of se-
quences with the same value of a grouping expression (case A), or set of pairs
〈value(Di),Si〉, where value(Di) is the value of dimension Di (case B).

4. Set operations: union ∪, difference \, and intersection ∩ – they are standard set
operations that produce a new set of sequences, e.g., S1 ∪S2.

Operations on Dimensions – allow to navigate in the hierarchy of a given dimension.
The operations include:

1. LevelU p(D,S) navigates one level up in the hierarchy of dimensions in D (where
D ⊆ D) for all sequences in S ⊆ S.
An example of this operation main include changing the levels of at-
tribute A2 - from date to month and A3 - from person to patient type:
LevelU p({date, patient},{S1}) = {S′1}, where

– S1 = 〈e1,e5〉 (e1=(1198/2011, 26.04.2011, 74031898333, ..., 50 ml, 70%),
e5=(3024/2011, 27.04.2011, 74031898333, ..., 100 ml, 70%)),

– S′1 = 〈e′1,e′5〉 (e′1=(1198/2011, April 2011, regular, ..., 50 ml, 70%), e′5=(3024/2011,
April 2011, regular, ..., 100 ml, 70%)).

2. LevelDown(D,S) navigates one level down in the hierarchy of dimensions in D
(where D ⊆ D) for all sequences in S ⊆ S.
An example of this operation may include changing the level of attribute A3 from
patient type to person: LevelDown({patient},{S′1}) = {S′′1}, where

– S′′1 = 〈e′′1 ,e′′5〉 (e′′1=(1198/2011, April 2011, 74031898333, ..., 50 ml, 70%),
e′′5=(3024/2011, April 2011, 74031898333, ..., 100 ml, 70%)).

Analytical Functions – compute aggregates of measures. They include OLAP-like
functions Count, Sum, Avg, Min, and Max. For example, in order to compute the number
of sequences formed with attribute A3 (patientSSN) equal to 98111443657 the follow-
ing expression is used: Count(Pin(S,A3 = 98111443657)).

Example 5. In order to illustrate the application of our model, let us consider two simple analy-
ses.

Find the number of patients who were treated at least two times with the same medicine in
2000, and in between they were prescribed a different medicine. The implementation of this query
using the presented model is as follows:

1. S=CreateSequence(E,{〈A2,year〉,〈A3, person〉},{A2},
A2 between 1.1.2010 and 31.12.2010)

2. S
′ = Pin(S,ei.A6 = ei+2.A6 and ei.A6! = ei+1.A6)

3. Count(S′).

Find distribution of treatment lengths. The implementation of this query is as follows:

1. S=CreateSequence(E,{〈A3, person〉},{A2},null)
2. D1 =CreateContext(treatment length,φ , f or all Si ∈ S f ind Tail(Si).A2−Head(Si).A2,φ)
3. G= GroupBy(S,D1)

4. Count(G).



OLAP-Like Analysis of Time Point-Based Sequential Data 159

4 Related Work

The research and technological areas related to processing sequential data include: (1)
complex event processing (CEP) over data streams and (2) OLAP. The CEP technol-
ogy has been developed for the purpose of continuous analysis of data streams for the
purpose of detecting patterns, outliers, and generating alerts, e.g., [4,9]. On the con-
trary, the OLAP technology [5] has been developed for the purpose of analyzing huge
amounts of data organized in relations but it is unable to exploit the sequential nature
of data. In this respect, Stream Cube [13] and E-Cube [14] implement OLAP on data
streams. Their main focus is on providing tools for OLAP analysis within a given time
window of constantly arriving streams of data.

Another research problem is storage and analysis of data whose inherent feature is an
order. These problems have been researched since several years with respect to storage,
e.g., [20,17] and query processing, e.g., [19,18]. In [20] sequences are modeled by an
enhanced abstract data type, in an object-relational model, whereas in [17] sequences
are modeled as sorted relations. The query languages proposed in [19,18] allow typi-
cal OLTP selects on sequences but do not support OLAP analyzes. Further extension
towards sequence storage and analysis have been made in [6] that proposes a general
concept of a RFID warehouse. Unfortunately, no in-dept discussion on RFID data stor-
age and analysis has been provided.

[7,8,15] focus on storage and analysis of time point-based sequential data. [15] pro-
pose the set of operators for a query language for the purpose of analyzing patterns.
[7,8] focus on an algorithm for supporting ranking pattern-based aggregate queries and
on a graphical user interface. The drawback of these approaches is that they are based
on relational data model and storage for sequential data.

[10,11] address interval-based sequential data, generated by RFID devices. The au-
thors focus on reducing the size of such data. They propose techniques for constructing
RFID cuboids and computing higher level cuboids from lower level ones. For storing
RFID data and their sequential orders the authors propose to use three tables, called
Info, Stay, and Map.

Our approach differs from the related ones as follows. First, unlike [13,14], we focus
on analyzing sequential data stored in a data warehouse. Second, unlike [20,17,18], we
concentrate on an OLAP-like analysis of sequential data. Third, unlike [10,11], we fo-
cus on analyzing time point-based sequential data. Finally, unlike [7,8,15], we propose
a new formal model for sequential data, since in our opinion a relational-like data model
is not sufficient for the support of fully functional analysis.

5 Conclusions and Future Work

In this paper we proposed a formal model for representing and analyzing time point-
based sequential data, based on the notion of an event and a sequence, where se-
quences are dynamically created from events. In order to support OLAP-like analyses
of sequences, we associate with events and sequences attributes representing measures.
Next, we analyze sequences in contexts defined by dimensions. Dimensions can have
hierarchies, like in traditional OLAP. Sequence analysis is performed by four classes of



160 B. Bębel et al.

operations, i.e., operations on sequences, on dimensions, general operations, and ana-
lytical functions. To the best of our knowledge, this is the first comprehensive formal
model and query language for this class of data. Based on the model, we are currently
developing a query processor and results visualizer. Future work will focus on internal
mechanisms, like query optimization and data structures.

OLAP-like analysis of interval-based data requires even more advanced data model
and operators, e.g., computing aggregates on intervals requires additional semantics of
aggregate functions; intervals sort criteria may include begin time, end time, or mid-
point time, resulting in different interval sequences; creating and comparing sequences
of intervals requires well defined operators. For this reason, we start our research with
a simpler problem and in the future we plan to extend our findings towards the interval-
based model.

References

1. Octopus card, http://hong-kong-travel.org/Octopus/ (retrieved March 30,
2012)

2. Smart card alliance, http://www.smartcardalliance.org (retrieved March 30,
2012)

3. Bębel, B., Krzyżagórski, P., Kujawa, M., Morzy, M., Morzy, T.: Formal model for sequen-
tial olap. In: Information Technology and its Applications. NAKOM (2011) ISBN 978-83-
89529-82-4

4. Buchmann, A.P., Koldehofe, B.: Complex event processing. IT - Information Technol-
ogy 51(5), 241–242 (2009)

5. Chaudhuri, S., Dayal, U., Narasayya, V.: An overview of business intelligence technology.
Communications of the ACM 54(8), 88–98 (2011)

6. Chawathe, S.S., Krishnamurthy, V., Ramachandran, S., Sarma, S.: Managing rfid data. In:
Proc. of Int. Conf. on Very Large Data Bases (VLDB), pp. 1189–1195 (2004)

7. Chui, C.K., Kao, B., Lo, E., Cheung, D.: S-olap: an olap system for analyzing sequence data.
In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, pp. 1131–1134. ACM (2010)

8. Chui, C.K., Lo, E., Kao, B., Ho, W.-S.: Supporting ranking pattern-based aggregate queries
in sequence data cubes. In: Proc. of ACM Conf. on Information and Knowledge Management
(CIKM), pp. 997–1006. ACM (2009)

9. Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M.: Cayuga: A
general purpose event monitoring system. In: CIDR, pp. 412–422 (2007)

10. Gonzalez, H., Han, J., Li, X.: FlowCube: constructing rfid flowcubes for multi-dimensional
analysis of commodity flows. In: Proc. of Int. Conf. on Very Large Data Bases (VLDB), pp.
834–845 (2006)

11. Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing and analyzing massive rfid data sets.
In: Proc. of Int. Conf. on Data Engineering (ICDE), p. 83. IEEE (2006)

12. Gorawski, M.: Multiversion Spatio-temporal Telemetric Data Warehouse. In: Grundspenkis,
J., Kirikova, M., Manolopoulos, Y., Novickis, L. (eds.) ADBIS 2009. LNCS, vol. 5968, pp.
63–70. Springer, Heidelberg (2010)

13. Han, J., Chen, Y., Dong, G., Pei, J., Wah, B.W., Wang, J., Cai, Y.D.: Stream cube:
An architecture for multi-dimensional analysis of data streams. Distributed and Parallel
Databases 18(2), 173–197 (2005)

14. Liu, M., Rundensteiner, E., Greenfield, K., Gupta, C., Wang, S., Ari, I., Mehta, A.: E-cube:
multi-dimensional event sequence analysis using hierarchical pattern query sharing. In: Proc.
of ACM SIGMOD Int. Conf. on Management of Data, pp. 889–900. ACM (2011)

http://hong-kong-travel.org/Octopus/
http://www.smartcardalliance.org


OLAP-Like Analysis of Time Point-Based Sequential Data 161

15. Lo, E., Kao, B., Ho, W.-S., Lee, S.D., Chui, C.K., Cheung, D.W.: Olap on sequence data. In:
Proc. of ACM SIGMOD Int. Conf. on Management of Data, pp. 649–660. ACM (2008)

16. Mörchen, F.: Unsupervised pattern mining from symbolic temporal data. SIGKDD Explor.
Newsl. 9(1), 41–55 (2007)

17. Ramakrishnan, R., Donjerkovic, D., Ranganathan, A., Beyer, K.S., Krishnaprasad, M.: Srql:
Sorted relational query language. In: Proc. of Int. Conf. on Scientific and Statistical Database
Management (SSDBM), pp. 84–95. IEEE (1998)

18. Sadri, R., Zaniolo, C., Zarkesh, A., Adibi, J.: Optimization of sequence queries in database
systems. In: Proc. of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pp. 71–81. ACM (2001)

19. Seshadri, P., Livny, M., Ramakrishnan, R.: Sequence query processing. SIGMOD
Record 23(2) (1994)

20. Seshadri, P., Livny, M., Ramakrishnan, R.: The design and implementation of a sequence
database system. In: Proc. of Int. Conf. on Very Large Data Bases (VLDB), pp. 99–110.
Morgan Kaufmann Publishers Inc. (1996)


	OLAP-Like Analysisof Time Point-Based Sequential Data
	Introduction
	Leading Example
	Data Model for Sequential Time Point-Based Data
	Building Elements of the Model
	Operations of the Model

	Related Work
	Conclusions and Future Work
	References




