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Abstract. Network creation games model the creation and usage costs of net-
works formed by a set of selfish peers. Each peer has the ability to change the
network in a limited way, e.g., by creating or deleting incident links. In doing
so, a peer can reduce its individual communication cost. Typically, these costs
are modeled by the maximum or average distance in the network. We introduce
a generalized version of the basic network creation game (BNCG). In the BNCG
(by Alon et al., SPAA 2010), each peer may replace one of its incident links by
a link to an arbitrary peer. This is done in a selfish way in order to minimize ei-
ther the maximum or average distance to all other peers. That is, each peer works
towards a network structure that allows himself to communicate efficiently with
all other peers. However, participants of large networks are seldom interested in
all peers. Rather, they want to communicate efficiently with a small subset only.
Our model incorporates these (communication) interests explicitly.

Given peers with interests and a communication network forming a tree, we
prove several results on the structure and quality of equilibria in our model. We
focus on the MAX-version, i.e., each node tries to minimize the maximum dis-
tance to nodes it is interested in, and give an upper bound of O (

√
n) for the

private costs in an equilibrium of n peers. Moreover, we give an equilibrium for
a circular interest graph where a node has private cost Ω (

√
n), showing that our

bound is tight. This example can be extended such that we get a tight bound of
Θ (

√
n) for the price of anarchy. For the case of general networks we show the

price of anarchy to be Θ (n). Additionally, we prove an interesting connection
between a maximum independent set in the interest graph and the private costs of
the peers.

1 Introduction

In a network creation game (NCG), several selfish players create a network by ego-
istic modifications of its edges. One of the most famous NCG models is due to Fab-
rikant et al. [7]. Their model intends to capture the dynamics in large communication
and computer networks built by the individual participants (peers, players) in a selfish
way: participants try to ensure a network structure supporting their own communication
needs whilst limiting their individual investment into the network. Since the players do
not (necessarily) cooperate, the resulting network structure may be suboptimal from
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a global point of view. The analysis of the resulting structure and its comparison to a
(socially) optimal structure is a central aspect in the analysis of network creation games.

In the original model by Fabrikant et al., players may buy (or create) a single edge
for a certain (fixed) cost of α > 0. Their goal is to improve the network structure with
respect to their individual communication needs. There are typically two ways to for-
malize the corresponding communication cost of a single peer: the maximum distance
or the average distance to all other peers in the network. We refer to the different variants
by MAX-version and AVG-version. Alon et al. [2] introduce a slightly simpler model,
called basic network creation games (BNCG), that drops the cost parameter α . Instead,
they limit the possible ways in which peers may change the network by restricting them
to edge swaps: a peer may only replace one of its incident edges with a new edge to an
arbitrary node in the network. Since peers are assumed to be selfish, only edge swaps
(including simultaneous swapping of several edges at once) that improve the private
communication cost of the corresponding peer are considered. In a swap equilibrium,
no player can decrease its communication cost by an edge swap. This simpler variant of
network creation games has the advantage of polynomially computable best responses
of the players. Moreover, it still captures the inherent dynamic character and difficulty
of communication networks formed by selfish participants, while avoiding the quite
intricate dependence on the parameter α (see related work).

Our work generalizes the BNCG model of Alon et al. by introducing the concept
of interests. In real communication networks, participants are typically only interested
in a small subset of peers rather than the complete network. Thus, instead of trying
to minimize the maximal or average distance to all other nodes, the individual players
consider only the distances to nodes they are interested in. The main part of our analysis
focuses on tree networks. Especially, we show that tree networks perform much better
than general networks with respect to the price of anarchy. To avoid networks to become
disconnected (note that in a BNCG peers want to communicate with all other peers and
hence never disconnect the network), we restrict the peers to swaps that preserve con-
nectivity. This restriction is valid from a practical point of view, where a lost network
connectivity is to be avoided, since re-connecting a network causes high or even un-
predictable costs. Moreover, if you consider that interests of the peers may change over
time, it is also important for each single selfish peer to sustain connectivity.

Model and Notions. An instance of the basic network creation game with interests
(I-BNCG) is given by a set of n players (peers, nodes) V = {v1,v2, . . . ,vn}, an ini-
tial connection graph G = (V,E), and an interest graph GI = (V, I). We use I(v) :=
{u ∈V | {v,u} ∈ I} to refer to the neighborhood of a player v in the interest graph and
denote them as the interests of v. Both the connection graph and the interest graph
are undirected. Thus, interests are always mutual. The connection graph represents the
current communication network and can change during the course of the game. We
consider only instances where the (initial) connection graph is a tree, whereas the in-
terest graph GI may be an arbitrary and not necessarily connected graph. Each player
is assumed to have at least one interest. We study two different ways to formalize the
private communication costs of nodes: the MAX-version and the AVG-version. In the
first, the private cost c(v) := max{d(v,u) | u ∈ I(v)} of a node v ∈ V is defined as the

maximum distance from v to its interests. In the second, we define c(v) := ∑u∈I(v)
d(v,u)
|I(v)|
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as the average distance to its interests. Here, d(v,u) denotes the (shortest path) distance
between u and v in the connection graph.

To improve its private cost, a player u may perform edge swaps in the connection
graph: replace an incident edge {u,v} with a new edge {u,w} to an arbitrary player
w ∈V , written as u : [v→ w]. We refer to a single as well as to a series of simultaneously
executed edge swaps of a player u as an improving step if u’s private cost decreases.
A player is only allowed to perform an improving step if the connection graph stays
connected. If no player can perform an improving step, we say the connection graph is
in a MAX-equilibrium or AVG-equilibrium, respectively. See Figure 1 for an example.

w

u

v

(a) Connection graph with v having c(v) = 4.

w

u

v

(b) After swap v : [u → w] with c(v) = 3.

Fig. 1. MAX-version example of an improving swap performed by v. The gray nodes denote I(v),
the thick lines indicate the largest distance to a node in I(v).

The quality of a connection graph G is measured by the social cost c(G) = ∑v∈V c(v)
as the sum over all private costs. Our goal is to analyze the structure and social cost of
worst case swap equilibria and compare them with a general optimal solution. As usual
in algorithmic game theory, we use the ratio of these two values (price of anarchy,
see Section 2.3) for this comparison [9]. Note that if the interest graph is the complete
graph, I-BNCG coincides with the BNCG by Alon et al. [2].

Related Work. Network creation games combine two crucial aspects of modern com-
munication networks: network design and routing. Many such networks consist of au-
tonomous peers and have a highly dynamic character. Thus, it seems natural to use a
game theoretic approach to study their evolution and behavior. Given the possibility
to change the network structure (buy bandwidth, create new links, etc.), peers typi-
cally try to improve their individual communication experience. The question whether
this selfish behavior results in an overall good network structure constitutes the central
question of the study of network creation games as introduced by Fabrikant et al. [7]. In
their model, the authors use a fixed cost parameter α > 0 representing the cost of buy-
ing a single edge. The players (nodes) in such a game can buy edges to decrease their
local communication cost (the average distance to all other nodes in the network). Each
player’s objective is to minimize the sum of its individual communication cost and the
money spent on buying edges. In their seminal work, the authors proved (among other
things) an upper bound of O

(√
α
)

on the price of anarchy (PoA) in the case of α < n2.
Albers et al. [1] proved a constant PoA for α ∈O (

√
n) and the first sublinear worst case

bound of O
(
n1/3

)
for general α . Demaine et al. [6] were the first to prove an O (nε)

bound for α in the range of Ω (n) and o(n lgn). Furthermore, Demaine et al. introduced
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a new cost measure for the private cost, causing the individual nodes to consider their
maximum distance to all remaining nodes instead of the average distance. For this vari-

ant they showed that the PoA is at most 2 for α ≥ n, O
(

min{4
√

lgn,(n/α)1/3}
)

for

2
√

lgn ≤ α ≤ n, and O
(
n2/α) for α < 2

√
lgn. Recently, Mihalák and Schlegel [11]

could prove that for α > 273 ·n all equilibria in the AVG-version are trees (and thus the
PoA is constant). The same result applies to the MAX-version if α > 129.

While network creation games, as defined by Fabrikant et al., and their variants seem
to capture the dynamics and evolution caused by the selfish behavior of peers in an accu-
rate way, there is a major drawback of these models: most of them compute the private
communication cost of the peers over the complete network. Given the immense size
of such communication networks, this seems rather unrealistic. Typically, participants
want to communicate only in small groups, with a small subset of participants they
know. To the best of our knowledge, the only other work taking this into account is
due to Halevi and Mansour [8]. They introduce a concept similar to our interests (see
model description). For the objective of minimizing the average distance of a peer to
its interests, they proved the existence of pure nash equilibria for α ≤ 1 and α ≥ 2 and
upper bounded the PoA by O (

√
n) for general α . In the case of constant α or d (where

d denotes the average degree in the interest graph) or α ∈ O (nd), Halevi and Mansour
upper bounded the PoA by a constant. Furthermore, the authors provided a family of
problem instances for which the PoA is lower bounded by Ω (logn/ loglogn).

Note that all these results largely depend on the cost parameter α . Moreover, as has
been stated in [7], computing a player’s best response for these models is NP-hard.
This observation leads to a new, simplified formalization by Alon et al. [2], trying to
capture the crux of the problem without the burden of this additional parameter. They
introduce basic network creation games (BNCG), where players no longer have to pay
for edges. Instead, possible actions are limited to improving edge swaps: replacing a
single, incident edge by an edge to some arbitrary node which improves the node’s
private cost. Other than that, the general problem stays mostly untouched, especially
the private cost function (average distance or maximum distance to all other nodes).
Best responses in this game turn out to be polynomially computable. Restricting the
initial network to trees, they show that the only equilibrium in the AVG-version is a
star graph. Without restrictions, all swap equilibria are proven to have a diameter of

2O(
√

lgn). For the MAX-version, the authors prove a maximum diameter of three if the
resulting equilibrium is a tree. Furthermore, the authors construct an equilibrium of
diameter Θ (

√
n). Our model is a direct generalization of these BNCGs, introducing the

concept of interests. Up to now, the only other work on BNCGs we are aware of is due
to Lenzner [10]. He studies the dynamics of the AVG-version of BNCGs and proves
for the case of tree connection graphs a convergence to pure equilibria. Moreover, he
proves that any sequence of improving edge swaps converges in at most O

(
n3
)

steps to
a star equilibrium.

Our Contribution. We introduce a generalized class of the BNCG by taking the differ-
ent interests of individual peers into account. We analyze the structure and quality for
the case that the initial connection graph is a tree. For the MAX-version, we derive a
worst case upper bound of O (

√
n) for the private costs of the individual players in an
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equilibrium. Thereto, we introduce and apply a novel combinatorial technique that cap-
tures the structural properties of our equilibria (see MAX-arrangement, Definition 1).
Furthermore, for interest graphs with a maximum independent set of size M ≤√

n (e.g.,
the clique graph with M = 1), we can improve the private cost upper bound to O (M).
Using a circular interest graph, we construct an equilibrium with a player having private
cost Ω (

√
n), showing that our bound is tight. By extending this construction, we are

able to prove a tight bound of Θ (
√

n) on the price of anarchy (ratio between the so-
cial cost of a worst case equilibrium and an optimum [9]). Using a star-like connection
graph, we show the existence of a MAX-equilibrium with small social cost, yielding
a price of stability (ratio between the social cost of a best case equilibrium and an op-
timum [3,4]) of at most two for an I-BNCG. For the case of an I-BNCG featuring a
general connection graph (instead of a tree), we show that the price of anarchy is Θ (n).

2 Quality of Equilibria in I-BNCGs

In this section we show a tight worst case private cost upper bound of Θ
(√

n
)

for every
MAX-equilibrium on trees as well as the same bound for the price of anarchy. The price
of stability we can limit to be at most two. For general connection graphs we provide
an instance with social cost Ω

(
n2
)
, yielding a price of anarchy of Θ (n).

2.1 Private Cost Upper Bound

In the following we prove the private cost upper bound as stated below:

Theorem 1. Let I be a set of interests and G = (V,E) a corresponding tree in a MAX-
equilibrium, n := |V |. Then, for all v ∈V we have c(v) ∈ O (

√
n).

Outline of the proof: We consider a tree network in a MAX-equilibrium and take any
node with maximal private cost. Starting with this node, we define a special node se-
quence, called MAX-arrangement, that will contribute the following properties: each
two successive nodes are interested in each other and every node is “far away” from all
previous nodes of the sequence. We will prove that such a sequence necessarily exists
and that its length is proportional to the private cost of the starting node.

In detail, we prove with Lemma 3 and Lemma 4 that a shortest path traversal of a
MAX-arrangement in the connection graph uses each edge at most twice and by this
limits its length. Lemma 5 constructively shows that given a node with maximal private
cost, there always exists a MAX-arrangement starting with this node and ending with a
node with a private cost of 3. Lemma 2 gives us that the number of nodes in this MAX-
arrangement is proportional to the maximal private cost of the first node. Comparing
the maximum private cost of a node with the length of a shortest path traversal of any
corresponding MAX-arrangement gives us the upper bound.

Remark 1. Note that in a MAX-equilibrium, each node v with | I(v)|= 1 has c(v) = 1.
Hence, for a node v′ with c(v′)> 1, it holds | I(v′)|> 1.
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Fig. 2. Visualization for Lemma 1. v0 can per-
form improving swap v0 : [v1 → v2].

v0

vk−1

w1

w2
vk=w0

vk+1=wt

Fig. 3. Visualization for proof of Lemma 4.
Edge {w0,w1} is used twice.

Lemma 1 (T-configuration). Let I be a set of interests, G = (V,E) a corresponding
tree in a MAX-equilibrium and v ∈V with | I(v)| ≥ 2. Then there exist nodes x,y ∈ I(v)
such that |d(x,v)− d(v,y)| ≤ 1 and v is connected by at most one edge to the shortest
path from x to y and c(v) = d(v,x).

Proof. Let v ∈ V with | I(v)| ≥ 2 and x ∈ I(v) with d(v,x) = c(v). Assume that all
x′ ∈ I(v) \ {x} are at distance d(x′,v) ≤ c(v)− 2 from v. Consider the shortest path
v → v1 → v2 → . . . → x to x. In this case v can reduce its private cost by v : [v1 → v2]
since this swap improves v’s distance to x by 1 but increases the distances to every node
in I(v)\ {x} by at most 1. But this contradicts G being in a MAX-equilibrium.

We now consider all pairs (xi,yi) ∈ I(v)× I(v) for that hold d(v,xi) = c(v) and
d(v,yi) ≥ c(v)− 1. Let us assume that v is connected to each shortest path from xi

to yi by at least two edges that do not lie on that path. (See Figure 2 for a visualization.)
Thus, v is not located on the shortest path from xi to yi for all i. This implies that in the
graph G\ {v} for each pair (xi,yi) there exists a connected component containing both
nodes xi,yi. Since each two nodes at distance exactly c(v) form such a pair, all nodes of
I(v) at distance exactly c(v) must be located in the same connected component, which
gives for every pair (xi,yi) that both nodes are contained in the same component. Hence,
all nodes x′ ∈ I(v) at distance d(x′,v)≥ c(v)−1 from v are in the same connected com-
ponent and by the two edges distance constraint, there must be a path v → v1 → v2

that is a subpath of every path from v to every node xi and yi. Hence, v can perform
the improving swap v : [v1 → v2] (cf. Figure 2). This swap decreases the distance to all
nodes xi,yi by one and increases each distance to other nodes (i.e., nodes w ∈ I(v) with
d(w,v) ≤ c(v)− 2) by at most one and hence contradicts G being in a MAX-equilibri-
um. �	
Definition 1 (MAX-arrangement). Let v0 ∈ V and v1 ∈ I(v0) such that d(v0,v1) =
c(v0). Consider a sequence of nodes v0, . . . ,vm with vi ∈ I(vi−1), i = 1, . . . ,m, with pri-
vate costs c(vi) > 3 for i = 0, . . . ,m− 1 and c(vm) = 3. We call this sequence a MAX-
arrangement if for all i = 2, . . . ,m it holds (see Figure 4 for a visualization):

vi = argmax
vi∈I(vi−1)

{
d(vi−2,vi)

∣
∣
∣
∣

vi−1 is connected by ≤ 1 edge to the
shortest path from vi−2 to vi

}

The key property of a MAX-arrangement is stated by the following two lemmas: con-
sider a node vi in a MAX-arrangement, then (1) its MAX-arrangement successor node
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v0 v1

v2

v3

v4 v5

. . .
vm−1 vm

Fig. 4. Visualization of a MAX-arrangement. The radius of a circle around a node corresponds to
the node’s private cost. Curled lines denote shortest paths.

vi+1 cannot have a “much lower” private cost than vi and (2) in the connection graph
the shortest path from vi to vi+1 can overlap by at most one edge with the shortest path
to vi’s MAX-arrangement predecessor node.

Lemma 2. For each two successive nodes vi,vi+1 (0 ≤ i < m) in a MAX-arrangement
v0, . . . ,vm it holds d(vi,vi+1)≥ c(vi)− 1 and hence c(vi+1)≥ c(vi)− 1.

Proof. Consider a node vi, 0 ≤ i < m, in the MAX-arrangement. Then by Lemma 1,
there exist x,y ∈ I(vi) with d(vi,x) = c(vi) and c(vi) ≥ d(vi,y) ≥ c(vi)− 1 such that
vi is connected by at most one edge to the shortest path from x to y. At least one
of these nodes is a valid candidate for the next MAX-arrangement node vi+1 (even
if neither x nor y is vi+1, we get a distance lower bound) and we get d(vi,vi+1) ≥
min{d(vi,x),d(vi,y)} ≥ c(vi)− 1. This gives, c(vi+1)≥ c(vi)− 1. �	
Lemma 3 (Increasing Distance). Let I be a set of interests and G = (V,E) a corre-
sponding tree in a MAX-equilibrium with v0, . . . ,vk a MAX-arrangement. Then the dis-
tances to v0 are monotonically increasing, i.e., d(v0,vi)≤ d(v0,vi+1) for i= 1, . . . ,k−1.

Proof. By c(v1)≥ 3 we get with Remark 1 that | I(v1)| ≥ 2. Hence by Lemma 1, there
exists a node v2, such that the paths v1 to v0 and v1 to v2 overlap by at most one edge.
By construction of the MAX-arrangement the distance d(v0,v2) is maximal among all
distances from v0 to nodes v ∈ I(v1) and hence we get d(v0,v1)≤ d(v0,v2).

Assume that there is a node vi with smallest index i ≥ 2 in the MAX-arrangement
for which the claim does not hold. That is d(v0,vi−1)≤ d(v0,vi) > d(v0,vi+1). Denote
by x the most distant node from v0 that is on all shortest paths from v0 to vi−1, v0 to vi,
and v0 to vi+1. (Such a node x exists since especially v0 fulfills the restrictions.) By the
choice of i and since all these paths cross node x, we get:

d(x,vi−1)≤ d(x,vi)> d(x,vi+1) (1)

By definition of the MAX-arrangement, vi is connected by at most one edge to the
shortest path from vi−1 to vi+1. Hence, x must be a node on the path from vi−1 to vi+1.
First note that x cannot be vi or a neighbor of vi, since for those cases with (1) we get
d(x,vi+1) < d(x,vi) ≤ 1. Further, x must lie on the shortest path from vi−1 to vi, since
otherwise x would lie on the shortest path from vi to vi+1 which implies by d(vi−1,vi)≥
3 that d(x,vi)< d(x,vi−1). This gives d(x,vi)≤ d(x,vi+1) and is a contradiction. �	
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Lemma 4. Let I be a set of interests and G = (V,E) a corresponding tree in a MAX-
equilibrium. Consider a MAX-arrangement v0, . . . ,vm. Then, no edge in E is used more
than two times by the shortest path visiting the nodes v0, . . . ,vm in the given order.

Proof. We label the nodes of G by their distances to v0. This is, for every v ∈ V
we define a level by level(v) := d(v0,v). We consider an arbitrary node vk with k ∈
{1, . . . ,m− 1} and the corresponding shortest path vk =: w0 → w1 → . . .→ wt := vk+1
to node vk+1. By definition, vk is connected by at most one edge to the shortest path from
vk−1 to vk+1 (see Figure 3). By Lemma 3 we have level(vk−1)≤ level(vk)≤ level(vk+1).
Hence, for i = 2, . . . , t −1 we get level(wi)< level(wi+1). This is, at most one edge (ex-
plicitly edge {w0,w1}) of the shortest path from v0 to vk is used a second time by the
shortest path traversal from vk to vk+1. By Lemma 2 we have t ≥ c(vk)− 1 ≥ 3 and get
level(vk)< level(vk+1). �	
Now we prove that given a node v0 of a MAX-equilibrium tree with c(v0) > 3, there
exists a MAX-arrangement starting with v0 and closing with a node with private cost 3.
With the previous results about MAX-arrangements, this leads to the upper bound.

Lemma 5. Let I be a set of interests and G = (V,E) a corresponding tree in a MAX-
equilibrium. Then for v0,v1 ∈ V with d(v0,v1) > 3 and v1 ∈ I(v0) there exists a MAX-
arrangement starting with v0. And for every such MAX-arrangement it holds that the
shortest path that visits all nodes of the MAX-arrangement in the given order uses at
least (c(v0)

2 + c(v0)− 6)/4 different edges of G.

Proof. Existence: v0,v1 obviously fulfill the conditions of a MAX-arrangement. Thus, it
suffices to show that, given the beginning of a MAX-arrangement v0, . . . ,vi with c(v j)>
3, j = 0, . . . , i− 1, we can either find a next node vi+1 that suffices the conditions or
otherwise c(vi) = 3. Assume c(vi) > 3. Then, by Lemma 1 there exist x,y ∈ I(vi) with
d(vi,x) = c(vi) and c(vi)≥ d(vi,y)≥ c(vi)−1 such that vi is connected by at most one
edge to the shortest path from x to y. Since c(vi) > 3, also c(x) ≥ 3 and c(y)≥ 3 hold.
Now, for at least one node (x or y) we have that this node is most distant to vi−1, it is
not vi−2, and thus it fulfills the conditions for a MAX-arrangement.

Traversal: We now can apply the previous lemmas for providing the minimal length
of such a MAX-arrangement: Lemma 2 states that by construction we always have
c(vi+1) ≥ c(vi)− 1. Lemma 3 implies that no node can be contained more than once
in a MAX-arrangement. By the arguments above, we can always find a new node
for the MAX-arrangement until we reach a node w with c(w) = 3. Hence, the MAX-
arrangement contains at least c(v0)−2 nodes. Since the distance between two succeed-
ing nodes in the MAX-arrangement decreases by at most one per node, a traversal of

this MAX-arrangement consists of at least ∑c(v0)
i=3 i= (c(v0)

2+c(v0)−6)/2 edges. From
these, by Lemma 4, at least (c(v0)

2 + c(v0)− 6)/4 edges are different. �	
Theorem 1 (Restated) Let I be a set of interests and G = (V,E) a corresponding tree
in a MAX-equilibrium, n := |V |. Then, for all v ∈V we have c(v) ∈ O (

√
n).

Proof. W.l.o.g. we may assume that there is at least one {v,v′} ∈ I with d(v,v′) ≥ 3.
Let nodes v0,v1 ∈ V , v1 ∈ I(v0) have maximal distance among all nodes,
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v1 vn vn−1 vn−3 vl+D−2 vl vl−D+2 vk+5 vk+2 vk+1

. . . . . . . . . . . . . . .

v2 v3 v4 vi−1 vi vi+1 vi+2 vk−2 vk−1 vk
D−1 D D−1

Fig. 5. Tree G = (V,E) in a MAX-equilibrium with private cost Ω (D) for node vi, with D :=√|V |−2+1, k := 2D−3, and l = n−∑D
i=1 i.

D := d(v0,v1) = c(v0). Then, by Lemma 5 we can find a MAX-arrangement v0, . . . ,vm

whose traversal uses at least (D2 +D− 6)/4 different edges. Since our tree has exactly
n− 1 edges, we get (D2 +D− 6)/4 ≤ n− 1 as an upper bound for the size of every
MAX-arrangement and hence the private cost upper bound is D ∈ O (

√
n). �	

2.2 The Private Cost Upper Bound Is Tight

Next, we show that the upper bound of O
(√|V |) for the private costs is tight by con-

structing a MAX-equilibrium instance with one player having private cost Ω
(√|V |).

Remark 2. For a connection graph with nodes V := {v1, . . . ,vn}, let I := {{vi,vi+1}|i =
1, . . . ,n−1}∪{{vn,v1}} be interests such that (V, I) is a circle. Then, a node vi with de-
gree one in G cannot perform any swap if and only if it holds |d(vi−1,vi)−d(vi,vi+1)| ≤
1 and vi is connected by one edge to the shortest path from vi−1 to vi+1 (cf. Lemma 1).

Theorem 2. There exists a set of interests and a corresponding tree G = (V,E) in a

MAX-equilibrium with a node vi ∈V that has private cost c(vi) ∈ Ω
(√|V |

)
.

Sketch. We consider interests I := {{vi,vi+1}|i = 1, . . . ,n − 1} ∪ {{vn,v1}} and the
connection graph as stated in Figure 5. (For the proof see the full version [5].) �	

2.3 Existence of MAX-equilibria and the Price of Anarchy

In this section we compute the price of stability (PoS) and the price of anarchy (PoA).
Let the social optimum represent an instance with the smallest social cost of any tree
over all nodes (which is not necessarily in a MAX-equilibrium). Then, the PoS denotes
the ratio between the minimum social cost of a MAX-equilibrium and the cost of a
social optimum. Whereas the PoA denotes the ratio between the worst social cost of a
MAX-equilibrium and the cost of a social optimum.

In the full version [5], we provide a simple approximation algorithm that generates
for any interest graph a MAX-equilibrium tree whose social cost is at most twice as
high as an optimal solution, yielding the following lemma.

Lemma 6. For every set of interests I there exists a corresponding tree G = (V,E) in a
MAX-equilibrium that causes social cost c(G)≤ 2n, n := |V |.
Theorem 3. The price of stability for I-BNCG is at most 2.
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Proof. Let I be a set of interests over nodes V , n := |V |. Then each connection graph
that is a tree induces social cost of at least n. By Lemma 6 there exists a connection
graph in a MAX-equilibrium with social cost of at most 2n. Thus, the price of stability
is at most 2n/n = 2. �	
Lemma 7. There exist interest graphs over n nodes with a corresponding MAX-equi-
librium tree that causes social cost of Ω (n ·√n).

Sketch. Consider I := {{vi,vi+1}|i = 1, . . . ,�n/2�− 1}∪{{vi,v1}|i = �n/2�, . . . ,n}∪
{{vn/2−1,vi}|i = �n/2�, . . . ,n} and construct a similar graph as in Figure 5 but with
�n/2� nodes at position of vi, each with private cost Ω (

√
n). (See full version [5].) �	

Theorem 4. The price of anarchy for I-BNCG is Θ(
√

n).

Proof. Theorem 1 provides an upper bound of O (
√

n) for the private cost of every node
in a tree in a MAX-equilibrium with n nodes. By this, O (n ·√n) is an upper bound for
the social cost of every MAX-equilibrium. Further, by Lemma 7 we get Ω (n ·√n) as
a worst case lower bound for the social cost of a graph in a MAX-equilibrium. For the
cost of a social optimum, we get Θ (n). (Each social optimum incurs cost of at least n
and at most 2n.) Hence, we get Θ (n ·√n/n) =Θ (

√
n) for the price of anarchy. �	

2.4 The Price of Anarchy for I-BNCG on General Graphs

Theorem 5. The price of anarchy for I-BNCG with general connection graphs is Θ (n).

Proof. First, note that the social cost of every instance are upper bounded by n2 and
lower bounded by n. Second, we provide an interest graph over n nodes (n ≡ 0 mod 6)
and a corresponding MAX-equilibrium graph G = (V,E) with social cost Ω

(
n2
)

(see
Figure 6). To this, we connect n/2 nodes to a ring (ring nodes) and connect one addi-
tional (satellite) node to each of them. Each of the ring nodes is interested in its three
adjacent nodes in G, whereas each satellite node is interested in its neighbor at the ring
and in both satellite nodes at distance exactly n/6+ 2. This is an equilibrium and all
n/2 satellite nodes have a private cost of n/6+2, i.e., the price of anarchy is Ω (n). �	

3 Further Structural Properties of Equilibria

By Lemma 5 we achieved an upper bound for any MAX-arrangement (see Definition 1)
contributed only by the property that the network is connected. Here, we introduce a
second upper bound for a MAX-arrangement that is given by the size of a maximum
independent set (MIS) in the interest graph. Having such an MIS of size M, we can
bound the maximum private costs by O

(
M
)
, which yields improved bounds for specific

families of interest graphs. Particularly, this gives asymptotically same upper bounds for
complete interest graphs on trees as those explicitly constructed by Alon et al. [2].

Theorem 6. Let I be a set of interests and G = (V,E) a corresponding tree in a MAX-
equilibrium. Let M be the size of a maximum independent set in (V, I). Then for every
MAX-arrangement v0, . . . ,vm: The length of this MAX-arrangement is at most 2 ·M.
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Fig. 6. MAX-equilibrium graph with social cost of Ω
(
n2
)
. Each white node is interested in its

three neighbors. Each gray node is interested in its white neighbor and the two gray nodes at
distance n/6+2.

Proof. We prove that the nodes of v0, . . . ,vm−1 with even index form an independent
set in the interest graph (V, I). Consider an even index i and assume for contradiction
that there is an even index k < i such that vk ∈ I(vi). By Lemma 3 we get d(vk,vk+1)≤
d(vk,vk+2). If vk+2 �= vi with Lemma 2 and c(v j)> 3 for all v j in the MAX-arrangement
we get d(vk,vi)> d(vk,vk+2)+ 1 ≥ c(vk). But this is a contradiction.

Thus, consider the case vk+2 = vi. Since vk+1 is connected by at most one edge to
the shortest path from vk to vk+2 and d(vk+1,vk+2)≥ 3 we get vk+2 �∈ I(vk). Otherwise
we either get the same contradiction as before, or vk+1 would contradict to be the most
distant node in I(vk) that fulfills the MAX-arrangement conditions. Hence, the nodes
with even index form an independent set in (V, I), which gives m ≤ 2 ·M �	
Corollary 1. Let I be a set of interests and G = (V,E) a corresponding tree in a MAX-
equilibrium, n := |V |. Let the size M of any MIS in (V, I) be limited by

√
n. Then, for

v ∈V we have c(v) ∈ O (M).

Proof. W.l.o.g. we assume that there is a node with private cost greater than 3. Hence,
there is a MAX-arrangement v0, . . . ,vm,vm+1 with c(vi)> 3, i = 1, . . . ,m and c(vm+1) =
3. By Theorem 6 we get m ≤ 2M. Analog to Theorem 1, we get the upper bound. �	
Corollary 2. Let I be a set of interests and G = (V,E) a corresponding tree in a MAX-
equilibrium. If (V, I) is a complete graph, then c(v) ∈ O (1) for all v ∈V.

In the full version [5], we provide a scenario and a corresponding cyclic invocation
sequence over all nodes, with each node performing a best-response improving swap
(if possible), such that the nodes never reach a MAX-equilibrium. This gives:

Remark 3. I-BNCG is no potential game as defined by Monderer and Shapley [12].

4 Outlook and Future Work

In this paper, we presented tight worst case bounds for the private costs as well as for
the social cost of any MAX-equilibrium on tree networks. Furthermore, we drew an in-
teresting connection between the size of an MIS in the interest graph and upper bounds
on the private/social costs. In comparison with MAX-equilibria on general graphs, we
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could show that the price of anarchy can perform much worse if the connection graph
is not acyclic. However, it remains an open question whether the price of anarchy on
general connection graphs with complete interests could perform better than O (n). For
this, so far there is only a worst case lower bound of Ω (

√
n) (by Alon et al. [2]) for

the graph diameter in a MAX-equilibrium, yielding a lower bound for the price of anar-
chy. Techniques similar to our MAX-arrangement-technique may allow deeper insights
into the nature of MAX-equilibria in that scenario. Apart from this, finding good upper
bounds on the social cost of an AVG-equilibrium remains a challenging problem (in the
full version [5], we give a lower bound of Ω(n) for the private costs).

Even if the existence of a MAX-equilibrium is always ensured (which we proved for
trees), it remains an open question whether the dynamics ever reaches an equilibrium.
We could state examples, where the network never converges to a MAX-equilibrium. It
seems an interesting question whether we can guarantee the convergence by additional
policies, e.g., by restricting the order in which nodes perform their swaps. And in case
of a guaranteed convergence, how many swaps would it take to reach an equilibrium?

Currently, we only considered static interest graphs. But in practice, interests of net-
work participants might change over time. Introducing a time model and considering
certain (possibly restricted) changes of the interest graph seems a natural way to gener-
alize our model, yielding an interesting online problem.
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