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Preface

The present volume is devoted to the Fifth International Symposium on Algo-
rithmic Game Theory (SAGT), an interdisciplinary event intended to provide a
forum for researchers and practitioners to exchange innovative ideas and to be
aware of each other’s approaches and findings. The main focus of SAGT is on
the study of the algorithmic aspects of game theory; typical questions include
how scarce computational resources affect the way games between selfish agents
are played and the impact of selfishness on the quality of the outcome of a multi-
player system. This is a departure from traditional algorithmic theory in which
players are supposed to be cooperative.

The algorithmic approach to game theory has been applied primarily to prob-
lems from economics and computer science (e.g., auctions, network, and routing
problems). We believe that this approach can be used to pose new questions and
to give answers to problems in other fields like physics and biology and hope
SAGT will be one of the fora that make this convergence happen.

SAGT 2012 took place in the Technical University of Catalonia, Barcelona
(Spain), during October 22–23, 2012. The present volume contains all con-
tributed papers that were accepted at SAGT 2012 in alphabetical order by
author.

In response to the call for papers, the Program Committee received 44 submis-
sions of which 22 were selected for inclusion in the scientific program of the sym-
posium after a detailed evaluation (each submission was read by at least three
Program Committee members) and electronic discussion. Papers co-authored by
a Program Committee member were handled by a special sub-committee.

We would like to thank all of the authors who submitted papers and the
members of the Program Committees, the external reviewers, and the Organizing
Committee.

We gratefully acknowledge the support from the Software Department and
the ALBCOM research group from Universitat Politècnica de Catalunya, as
well as the financial support from Universitat Politècnica de Catalunya and the
Generalitat de Catalunya.

We wish to thank the creator of the EasyChair System, a free conference
management system, which was very helpful in the selection of the scientific
program and in the preparation of this volume

August 2012 Maria Serna
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Bilò, Davide
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A Classification of Weakly Acyclic Games�

Krzysztof R. Apt1,2 and Sunil Simon1

1 CWI, Amsterdam, The Netherlands
2 ILLC, University of Amsterdam

Abstract. Weakly acyclic games form a natural generalization of the
class of games that have the finite improvement property (FIP). In such
games one stipulates that from any initial joint strategy some finite im-
provement path exists. We classify weakly acyclic games using the con-
cept of a scheduler recently introduced in [1].

1 Introduction

1.1 Background

Given a strategic game, when we allow the players to improve their choices on
a unilateral basis, we are naturally brought to the concept of an improvement
path, in which at each stage a single player who did not select a best response is
allowed to select a better strategy. By definition every finite improvement path
terminates in a Nash equilibrium. This suggests the finite improvement property
(FIP), introduced in [2], according to which every improvement path is finite.
This is obviously a desired property of a game that in particular is satisfied by
the congestion games.

However, the FIP is a very strong property and many natural games do not
satisfy it. In particular, [3] studied the congestion games in which the payoff
functions are players specific. These games do not have the FIP. Milchtaich
proved that such games belong to a larger class of games (essentially introduced
in [4]), called weakly acyclic games, in which one only stipulates that from any
initial joint strategy some finite improvement path exists.

Weakly acyclic games have a natural appeal because the concept of an im-
provement path captures the idea of a possible ‘interaction’ resulting from play-
ers’ preference for better strategies and hence provides a link with distributed
computing. In particular, [5] introduced a natural class of weakly acyclic games,
which model the routing aspects on the Internet. In turn, [6] showed that for
weakly acyclic games, a modification of the traditional no-regret algorithm yields
almost sure convergence to a pure Nash equilibrium. Further, [7] proved that the
existence of a unique (pure) Nash equilibrium in every subgame implies that the
game is weakly acyclic.

� A full version with all the proofs is available at the authors’ homepages.

M. Serna (Ed.): SAGT 2012, LNCS 7615, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 K.R. Apt and S. Simon

1.2 Our Work

If we view a strategic game as a distributed system in which the players attempt
to find a Nash equilibrium by means of a ‘better response (respectively, ‘best
response) dynamics’, then the property of being weakly acyclic only guarantees
that finding a Nash equilibrium is always possible. However, such an existence
guarantee does not help the players to find it. By adding to the game a sched-
uler , a concept recently introduced in [1], we ensure that the players always
reach a Nash equilibrium, by repeatedly interacting with it. A scheduler is sim-
ply a function that given a finite sequence of joint strategies selects a player who
can improve his payoff in the last joint strategy. Each player interacts with the
scheduler by submitting to it a strategy he selected. Subsequently the scheduler
again selects a player who did not select a best response. This interaction process
leaves open how each player selects his better (respectively, best) strategy.

In the presence of a scheduler for a strategic game G we can view the resulting
interaction as a ‘supergame’ between the central authority represented by the
scheduler and the players of G. The aim of the central authority is to reach a
Nash equilibrium in spite of a limited guarantee on the behaviour of the players:
all it can be sure of is that each selected player will select a better response
(respectively a best response). The resulting interaction results in an improve-
ment path (respectively a best response improvement path). If all so generated
improvement paths are finite, we say that the game respects the scheduler.

By providing a classification of the schedulers we obtain a natural classification
of weakly acyclic games. An advantage of such a classification is that given
a weakly acyclic game we can determine under what adverse circumstances a
Nash equilibrium still can be reached. Consequently some existing results can be
improved. In particular, we show in Section 7 how we can strengthen our recent
result from [1] concerning a class of social network games. In turn, [8] recently
strengthened the above mentioned theorem of [3] by showing that congestion
games with player specific payoff functions respect every local best response
scheduler, defined below in Section 3.

In what follows we introduce eight natural categories of schedulers. They yield
nine classes of finite weakly acyclic games that for two player games collapse into
five classes.

2 Preliminaries

Assume a set N := {1, . . . , n} of players, where n > 1. A strategic game for
n players, written as (S1, . . . , Sn, p1, . . . , pn), consists of a non-empty set Si of
strategies and a payoff function pi : S1 × · · · × Sn→ R, for each player i.

Fix a strategic game G := (S1, . . . , Sn, p1, . . . , pn). We denote S1 × · · · × Sn

by S, call each element s ∈ S a joint strategy , denote the ith element of s by
si, and abbreviate the sequence (sj)j �=i to s−i. Occasionally we write (si, s−i)
instead of s.

We call a strategy si of player i a best response to a joint strategy s−i of
his opponents if ∀s′i ∈ Si pi(si, s−i) ≥ pi(s

′
i, s−i). If si is (not) a best response
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to s−i, we say that player i selected (did not select) a best response in s.
Next, we call a joint strategy s a Nash equilibrium if each si is a best response
to s−i, that is, if ∀i ∈ N ∀s′i ∈ Si pi(si, s−i) ≥ pi(s

′
i, s−i). We also define

BR(s) := {i | player i selected a best response in s},

NBR(s) := {i | player i did not select a best response in s}.
Further, we call a strategy s′i of player i a better response given a joint strategy
s if pi(s

′
i, s−i) > pi(si, s−i). Following [2] a path in S is a sequence (s1, s2, . . .)

of joint strategies such that for every k > 1 there is a player i such that
sk = (s′i, s

k−1
−i ) for some s′i �= sk−1

i . A path is called an improvement path (re-
spectively, a best response improvement path , in short a BR-improvement
path) if it is maximal and for all k > 1, pi(s

k) > pi(s
k−1) (respectively, ski is

a best response to sk−1
−i ), where i is the player who deviated from sk−1. So in

an improvement path each deviating player selects a better response, while in a
BR-improvement path each deviating player selects a best response.

The better response graph (respectively, the best response graph) asso-
ciated with the game G is defined as (S,→), where s → s′ if (s, s′) is a step in
an improvement path (respectively, in an BR-improvement path).

Given joint strategies s, s′ ∈ S and a player i we define

s
i→s′ iff s−i = s′−i and pi(s

′) > pi(s),

s
i⇒s′ iff s

i→s′ and s′i is a best response to s′−i.

Recall that G has the finite improvement property (FIP), (respectively, the
finite best response property (FBRP)) if every improvement path (respec-
tively, every BR-improvement path) is finite. Obviously, if a game has the FIP
or the FBRP, then it has a Nash equilibrium – it is the last element of each
path. Following [4,3] we call a strategic game weakly acyclic (respectively,
BR-weakly acyclic) if for any joint strategy there exists a finite improvement
path (respectively, BR-improvement path) that starts at it.

3 Schedulers

In what follows we introduce some classes of weakly acyclic games. They are
defined in terms of schedulers. By a scheduler we mean a function f that
given finite sequence s1, . . ., sk of joint strategies that does not end in a Nash
equilibrium selects a player who did not select in sk a best response. In practice
schedulers will be applied only to initial prefixes of improvement paths.

Consider an improvement path ρ = (s1, s2, . . .). We say that ρ respects a
scheduler f if for all k smaller than the length of ρ we have sk+1 = (s′i, s

k
−i),

where f(s1, . . ., sk) = i. We say that a strategic game respects a scheduler
f if all improvement paths ρ which respect f are finite. Further, we say that
a strategic game respects a BR-scheduler f if all BR-improvement paths ρ
which respect f are finite.
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In what follows we study various types of schedulers. We say that a scheduler
f is state-based if for some function g : S→ R we have

f(s1, . . ., sk) = g(sk).

We say that a function g : P(N)→N is a choice function if for all A �= ∅ we
have g(A) ∈ A. Next, we say that a scheduler f is set-based if for some choice
function g : P(N)→N

f(s1, . . ., sk) = g(NBR(sk)).

Finally, we say that a set-based scheduler f is local if the above choice function
g satisfies the following property:

if g(A) ∈ B ⊆A then g(A) = g(B). (1)

A simple way of producing choice functions g : P(N)→N that satisfy (1) is the
following. Take a permutation π of 1, . . ., n and define for A �= ∅ [π](A) := π(k),
where k is the smallest element of N such that π(k) ∈ A. That is, [π](A) is the
first element on the list π(1), . . ., π(n) that belongs to A.

In Section 7 we shall need the following characterization result.

Proposition 1. A choice function g : P(N)→N satisfies (1) iff it is of the
form [π] for some permutation π of 1, . . ., n.

Proof. Suppose a choice function g : P(N)→N satisfies (1). Define a permuta-
tion π of 1, . . ., n inductively as follows:

π(1) := g(N), π(2) := g(N \ {π(1)}), . . ., π(n) := g(N \ {π(1), . . ., π(n− 1)}).

Take now a nonempty subset A of N . Let π(k) = [π](A). By definition
{π(1), . . ., π(k − 1)} ∩ A = ∅ and π(k) ∈ A. Let B := N \ {π(1), . . ., π(k − 1)}.
By definition g(B) = π(k). Further, A⊆B and π(k) ∈ A, so by property (1) we
have g(A) = g(B) = [π](A).

Next, it is straightforward to check that each function [π] satisfies (1). ��

The games that respect schedulers fall into various categories. In what follows
FIP (respectively, FBRP) stands for the class of games that have the FIP (re-
spectively, FBRP), WA (respectively, BRWA) for the class of weakly acyclic
games (respectively, BR-weakly acyclic games), Sched (respectively, SchedBR)
stands for the class of games that respect a scheduler (respectively, a BR-
scheduler), etc.

4 Schedulers versus State-Based Schedulers

We prove here three implications which show that the classes of games SchedBR,
Sched, State and StateBR coincide.
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Theorem 1 (Sched ⇒ State). If a game respects a scheduler, then it respects
a state-based scheduler.

Proof. Fix a strategic game G = (S1, . . . , Sn, p1, . . . , pn). Let Y := ∪k∈NYk,
where

– Y0 := {s ∈ S | s is a Nash equilibrium},
– Yk+1 := Yk ∪ {s | ∃i ∀s′(s i→s′ → s′ ∈ Yk)}.

For each s ∈ Yk+1 \ Yk, let fState(s) := i, where i is such that ∀s′(s i→s′ → s′ ∈
Yk).

If Y = S, then we can view fState as a state-based scheduler. We now prove two
claims concerning the set Y and the scheduler fState .

Claim 1. If a strategic game G respects a scheduler, then Y = S.

Proof. Suppose that G respects a scheduler f . Assume by contradiction that
Y �= S. Take s0 ∈ S \ Y . Suppose f(s0) = i1. By the definition of Y there exists

a joint strategy s1 such that s0
i1→s1 and s1 ∈ S \ Y . Suppose f((s0, s1)) = i2.

Again, by the definition of Y there exists a joint strategy s2 such that s1
i2→s2

and s2 ∈ S \ Y . Iterating this argument we construct an infinite improvement
path which respects f , which yields a contradiction. ��

Claim 2. If for a strategic game G we have Y = S, then G respects fState .

Proof. We prove by induction on k that all improvements paths that start in a
joint strategy from Yk and respect fState are finite.

The claim holds vacuously for k = 0. Suppose it holds for some k ≥ 0. Take
some s ∈ Yk+1 \Yk and an improvement path ξ that respects fState and starts in

s. Suppose that fState(s) := i. Then for some s′, s i→s′ is the first step in ξ. By
the definition of fState , s

′ ∈ Yk, so by the induction hypothesis ξ is finite. ��

Suppose now that a game G respects a scheduler. By Claim 1 Y = S, so fState
is a state-based scheduler. By Claim 2, G respects fState . ��

The above proof uses a construction similar to the one used to compute the
winning regions of reachability games, see, e.g., [9, page 104].

Theorem 2 (SchedBR ⇒ StateBR). If a game respects a BR-scheduler, then
it respects a state-based BR-scheduler.

Proof. The proof is the same as that of Theorem 1 with the relation
i⇒ used

instead of
i→. ��

Theorem 3 (SchedBR ⇒ Sched). If a finite game respects a BR-scheduler,
then it respects a scheduler.
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Proof. The idea of the proof is as follows. Suppose that a game respects a
BR-scheduler fBR. We construct then a scheduler f inductively by repeatedly
scheduling the same player until he plays a best response, and subsequently
scheduling the same player as fBR does.

To make it precise we need some notation. We call an initial prefix of an im-
provement path an improvement sequence. To indicate the deviating players
at each step of an improvement sequence (s0, . . ., sk) we shall write it alterna-

tively as s0
i1→s1

i2→. . .
ik→sk.

Given an improvement sequence ξ we denote by [ξ]BR the subsequence of it
obtained by deleting the joint strategies that do not result from a selection of a
best response. In general [ξ]BR is not a improvement sequence (for example, it
does not need to be a maximal sequence), but it is if every maximal subsequence

of it of the form s0
i→s1

i→. . .
i→sm ends with a selection of a best response.

Given a finite sequence of joint strategies ξ we denote its last element by
last(ξ) and denote the extension of ξ by a joint strategy s by ξ, s. We define the
desired scheduler f inductively by the length of the sequences. For a sequence
of length 1, so a joint strategy that is not a Nash equilibrium, we put f(s) :=
fBR(s).

Suppose now that we defined f on all sequences of length k. Consider a se-

quence ξ, s of length k+1. If ξ, s is not an improvement path or last(ξ)
f(ξ)→ s does

not hold, then we define f(ξ, s) arbitrarily. Otherwise we put

f(ξ, s) :=

{
fBR([ξ, s]BR) if si is a best response to s−i

f(ξ) otherwise

We claim that G respects the scheduler f . To see it take an improvement path
ξ that respects f . By the definition of f , [ξ]BR is an improvement sequence that
respects fBR. By assumption [ξ]BR is finite, so ξ is finite, as well. ��

Note that the above theorem fails to hold for infinite games. Indeed, consider
a two player game ({0}, [0, 1], p1, p2), where [0, 1] stands for the real interval
{r | 0 ≤ r ≤ 1} and p1(0, s2) = p2(0, s2) := s2. Then 1 is a unique best response
of player 2 to the strategy 0, so this game respects the unique BR-scheduler.
However, it does not respect the unique scheduler.

5 Other Implications

For two player games another implication holds.

Proposition 2 (Sched ⇒ FBRP). If a two player game respects a scheduler,
then every BR-improvement path is finite.

Proof. Suppose that a two player game G respects a scheduler. Note that the
best response graph of G has the property that for every node s that is not a
source node, the set NBR(s) has at most one element. Take a BR-improvement
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path ξ. Suppose that (s, s′) is the first step in ξ and that η is the suffix of ξ
that starts at s′. Then every element s′′ of η is such that the set NBR(s′′) has
at most one element. Hence η respects any scheduler and consequently is finite.
So ξ is finite, as well. ��

By definition if a two player game respects a set-based scheduler, then it re-
spects a local scheduler. Thus for two player games we get the implications and
equivalences depicted in Figure 1. All implications can be shown to be proper
by example games which are omitted due to lack of space.

FIP �� Local �� ��

��

Set ��

��

State �� ����

��

Sched ����

��

WA��

FBRP �� ��
��

LocalBR
�� �� SetBR

�� �� StateBR
�� �� SchedBR

�� BRWA

Fig. 1. Classification of two player finite weakly acyclic games

For arbitrary finite games we have the implications and equivalences depicted
in Figure 2. Again, all implications can be shown to be proper.

FIP �� Local ��

��

Set ��

��

State �� ����

��

Sched ����

��

WA��

FBRP ��
��

LocalBR
�� SetBR

�� StateBR
�� �� SchedBR

�� BRWA

Fig. 2. Classification of finite weakly acyclic games

6 Potentials

To characterize the finite games that have the FIP [2] introduced the concept of
a (generalized ordinal) potential . We now introduce an appropriately modified
notion to characterize the games that respect a scheduler. We shall use it in the
next section to reason about a natural class of games.

Consider a game (S1, . . . , Sn, p1, . . . , pn) and a scheduler f . We say that a
function F : S→R is an f-potential (respectively, an f-BR-potential) if for
every initial prefix of an improvement path (respectively, an BR-improvement
path) (s1, . . ., sk, sk+1) that respects f we have F (sk+1) > F (sk).

Note that when f is a state-based scheduler, then a function F is an f -
potential iff for all i, s′i and s

if f(s) = i and pi(s
′
i, s−i) > pi(si, s−i), then F (s′i, s−i) > F (si, s−i),

and similarly for the f -BR-potentials. In the proof below we use the following
classic result of [10].

Lemma 1 (König’s Lemma). Any finitely branching tree is either finite or it
has an infinite path.
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Theorem 4. Consider a finite game G.

(i) G respects a scheduler f iff an f -potential exists.
(ii) G respects a BR-scheduler f iff an f -BR-potential exists.

Proof. (i) (⇒ ) Consider a branching tree the root of which has all joint strate-
gies as successors, the non-root elements of which are joint strategies, and whose
branches are the improvement paths that respect f . Because the game is finite
this tree is finitely branching. By König’s Lemma this tree is finite, so we con-
clude that the number of improvement paths that respect f is finite. Given a
joint strategy s define F (s) to be the number of improvement sequences (in the
sense of the proof of Theorem 3) that respect f and that terminate in s. Clearly
F is an f -potential.
(⇐ ) Let F be an f -potential. Suppose by contradiction that an infinite im-
provement path that respects f exists. Then the corresponding values of F form
a strictly increasing infinite sequence. This is a contradiction, since there are
only finitely many joint strategies.

The proof of (ii) is analogous. ��

The argument given in (i)(⇒ ) follows the proof of [3] of the fact that every
game that has the FIP has a generalized ordinal potential. Note that when the
range of the f -potential is finite the implications (⇐) in (i) and (ii) also hold
for infinite games.

7 An Application: Cyclic Coordination Games

In coordination games the players need to coordinate their strategies in order
to choose among multiple pure Nash equilibria. Here we consider a natural set
up according to which the players are arranged in a directed simple cycle and
the payoff functions can yield three values: 0 if one chooses a ‘noncommitting’
strategy, 1 if one coordinates with the neighbour and −1 otherwise. We call
such games cyclic coordination games. They are special cases of strategic
games introduced in [1] that are naturally associated with social networks built
over arbitrary weighted directed graphs. We showed there that a similar game
respects a local scheduler. We now show how using the concept of an f -potential
we can strengthen this result.

More precisely, let Gcoord = (S1, . . . , Sn, p1, . . . , pn) be a (possibly infinite)
strategic game in which there is a special strategy t0 ∈

⋂
i∈N Si common to all

the players. For i ∈ N , let i ⊕ 1 and i � 1 denote the increment and decrement
operations done in cyclic order within {1, . . . , n}. That is, for i ∈ {1, . . ., n− 1},
i ⊕ 1 = i + 1, n ⊕ 1 = 1, for i ∈ {2, . . ., n}, i � 1 = i − 1, and 1 � 1 = n. The
payoff functions are defined as,

pi(s) :=

⎧⎪⎨⎪⎩
0 if si = t0,

1 if si = si�1 and si �= t0,

−1 otherwise.
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Theorem 5. Each coordination game Gcoord respects every local scheduler.

Proof. For n = 2, it is easy to see that Gcoord has the FIP and hence the result
follows. Therefore, assume that n > 2. We prove the result by showing that for
every local scheduler f , it is possible to associate an f -potential with the game
Gcoord .

Let f be a local scheduler. By Proposition 1, the choice function g associated
with f is of the form [π] for some permutation π of 1, . . ., n. Let l = π(n) be
the last element in the permutation π (this will be the only information about π
that we shall rely upon). Let U := {−1, 0, 1}n and let F : S → U be a function
defined by F (s) := (pl(s), pl⊕1(s), pl⊕2(s), . . . , pl⊕(n−1)(s)).

For x ∈ U and i ∈ {1, . . . , n}, xi denotes the i-th entry in x and as before,
x−1 = (x2, . . . , xn). We also use the notation F (s)[i] to denote the i-th entry in
the n-tuple F (s).

Let ≺L be the strict counterpart of the lexicographic ordering over the (n−1)-
tuples of −1, 0, 1, where −1 ≺L 0 ≺L 1. We extend ≺L to a relation � ⊆ U ×U .
For x, y ∈ U such that x �= y, x � y if one of the following mutually exclusive
conditions holds:

C1 x1 ∈ {−1, 1} and y1 = 0,
C2 x1 = y1 = 0 and x−1 ≺L y−1,
C3 x1, y1 ∈ {−1, 1} and x−1 ≺L y−1,
C4 x1, y1 ∈ {−1, 1}, x−1 = y−1 and x1 ≺L y1.

In other words, if the first entry of y is 0 and that of x is not 0, then x�y. If the
first entry of both x and y is 0, then to order x and y we use the lexicographic
ordering over the (n− 1)-tuples x−1 and y−1. If the first entry of both x and y
is not 0, then again to order x and y we use the lexicographic ordering over x−1

and y−1, the exception being when x−1 = y−1. In this case, to determine the
ordering we use the lexicographic ordering over x1 and y1.

Claim 3. The relation � is a strict total ordering over U .

Assuming Claim 3, consider an initial prefix ξk+1 = (s1, . . . , sk, sk+1) of an
improvement path ξ that respects f . We claim that F (sk) � F (sk+1). We have
the following cases:

– f(sk) = l⊕ i where i ∈ {1, . . . , n−1}. Since ξ respects f , we have pl⊕i(s
k) <

pl⊕i(s
k+1), so F (sk)[i + 1] ≺L F (sk+1)[i + 1]. Since i �= n, if i > 1, then by

the definition of the payoff functions, for all j ∈ {1, . . . , i − 1}, pl⊕j(s
k) =

pl⊕j(s
k+1). If i �= n − 1, then pl(s

k) = pl(s
k+1) and it immediately follows

that F (sk)�F (sk+1). Therefore, the interesting case is when i = n−1. Here
we show that the first entry in F (sk+1) remains 0 after the update by player
n− 1 iff the first entry in F (sk) is 0.
• If F (sk)[1] = 0, then F (sk+1)[1] = 0.
Indeed, suppose F (sk)[1] = 0. Since f(sk) �= l, we have skl = sk+1

l . By
the definition of the payoff function, for any joint strategy s, pl(s) = 0 iff
sl = t0. Thus irrespective of the choice of l⊕(n−1) we have pl(s

k+1) = 0,
so F (sk+1)[1] = 0.
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• If F (sk)[1] �= 0, then F (sk+1)[1] �= 0.
Suppose F (sk)[1] �= 0. By the definition of the payoff functions, skl �= t0.
Since f(sk) �= l, we have skl = sk+1

l . Therefore irrespective of the choice
of l ⊕ (n− 1) we have pl(s

k−1) �= 0, so F (sk+1)[1] �= 0.

Thus by conditions C2 and C3 in the definition of �, and the fact that
(F (sk))−1 ≺L (F (sk+1))−1, we indeed have F (sk)� F (sk+1).

– f(sk) = l. Since ξ respects f , for all i ∈ {1, . . . , n−1} we have l⊕i ∈ BR(sk).
We claim that in this case, skl �= t0 and skl�1 = t0. Suppose not. If skl = t0,

then for all i ∈ {1, . . . , n− 1}, l⊕ i ∈ BR(sk) implies that skl⊕i = t0. This in

turn implies that l ∈ BR(sk), which is a contradiction. If skl�1 �= t0, then we
have the following two possibilities:

• skl�1 = skl . This implies l ∈ BR(sk), which is a contradiction.

• skl�1 �= skl . Then there exists j ∈ {1, . . . , n − 1} such that skl⊕j = skl�1

and skl⊕(j−1) �= skl⊕j . Since s
k
l⊕j �= t0, this implies that l ⊕ j �∈ BR(sk),

which is a contradiction.

Now, if skl �= t0, s
k
l�1 = t0 and pl(s

k) < pl(s
k+1), then sk+1

l = t0. By C1 in

the definition of �, it then follows that F (sk)� F (sk+1).

Finally, since the set U which is the range of the function F is finite and � is a
strict total order on U , we can use an appropriate encoding e : U → R such that
u1�u2 iff e(u1) < e(u2). Then e(F (sk)) < e(F (sk+1)). So e◦F is an f -potential.
By the remark following Theorem 4 the result follows. ��

Proof of Claim 3. Let x, y ∈ U such that x �= y. We have the following cases.

– x1 ∈ {−1, 1} and y1 = 0. Then by C1, x� y.
– x1 = 0 and y1 = 0. Then by C2, if x−1 ≺L y−1 then x� y else y � x.
– x1 = 0 and y1 ∈ {−1, 1}. Then by C1, y � x.
– x1, y1 ∈ {−1, 1} and x−1 �= y−1. Then by C3, if x−1 ≺L y−1 then x� y else
y � x.

– x1, y1 ∈ {−1, 1} and x−1 = y−1. Then by C4, if x1 ≺L y1 then x � y else
y � x.

Further, it can be verified that the relation � is transitive by a straightforward
case analysis. ��

Note that Theorem 5 cannot be extended to set-based schedulers. Indeed, sup-
pose that n > 2, and for some t �= t0 we have t ∈ ∩i∈NSi. Consider the joint strat-
egy s := (t, t0, . . ., t0) and a set-based scheduler f such that for all k ∈ {1, . . ., n},
f({k, k⊕ 1}) := k⊕ 1, f({k, k⊕ 2}) := k, with arbitrary values for other inputs.
Then the following infinite improvement path respects this scheduler. For the
sake of readability we underlined the strategies that are not best responses.

(t, t0, . . ., t0), (t, t, t0, . . ., t0), (t0, t, t0, . . ., t0), . . .

Finally, observe the following properties of the coordination games.
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Theorem 6.

(i) The game Gcoord has the FIP iff n = 2 or ∩i∈NSi = {t0}.
(ii) In Gcoord , starting from each joint strategy there exists an improvement

path of length ≤ n and a BR-improvement path of length ≤ 2n− 2.

Note that s is a Nash equilibrium in the game Gcoord iff it is is of the form
(t, . . . , t). So we can alternatively state item (i) as: The game Gcoord has the FIP
iff n = 2 or it has exactly one Nash equilibrium.

Proof. (i) (⇒) As already mentioned when n = 2, Gcoord has the FIP. If n > 2,
then the above example implies that ∩i∈NSi = {t0}.
(⇐) Suppose that Gcoord does not have the FIP. Consider an infinite improve-
ment path ξ. Some player, say i, is selected in ξ infinitely often. This means that
player i selects in ξ some strategy t �= t0 infinitely often. Indeed, otherwise from
some moment on in each joint strategy in ξ his strategy would be t0, which is
not the case.

Each time player i switches in ξ to the strategy t, the strategy of his pre-
decessor i � 1 is necessarily t, as well. So also player i � 1 switches in ξ to t
infinitely often. Iterating this reasoning we conclude that each player selects in
ξ the strategy t infinitely often. In particular t ∈ ∩i∈NSi.

(ii) Take a joint strategy s. Note that if all payoffs in s are ≥ 0, then s is a Nash
equilibrium. Suppose that some payoff in s is < 0. Then repeatedly select the
first player in the cyclic order whose payoff is negative and let him switch to t0.
After at most n steps the Nash equilibrium (t0, . . ., t0) is reached.

For the BR-improvement path we use the local scheduler f associated with
the identity permutation, i.e., we repeatedly schedule the first player in the cyclic
order who did not select a best response.

Consider a joint strategy s taken from a BR-improvement path. Observe that
for all k if sk �= t0 and pk(s) ≥ 0 (so in particular if sk is a best response to
s−k), then sk = sk�1. So for all i > 1, the following property holds:

Z(i): if f(s) = i and si−1 �= t0 then for all j ∈ {n, 1, . . ., i− 1}, sj = si−1.

In words: if i is the first player who did not select a best response and player
i−1 strategy is not t0, then this is a strategy of every earlier player and of player
n.

Along each BR-improvement path that respects f the value of f(s) strictly
increases until the path terminates or at certain stage f(s) = n. Note that then
sn−1 = t0 since otherwise on the account of property Z(n) all players’ strategies
are equal, so s is a Nash equilibrium and hence f(s) is undefined. So the unique
best response for player n is t0. This switch begins a new round with player
1 as the next scheduled player. Player 1 also switches to t0 and from now on
every consecutive player switches to t0, as well. The resulting path terminates
once player n− 2 switches to t0. Consequently the length of the generated BR-
improvement path is ≤ 2n− 2. ��
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We can naturally extend the notion of a scheduler to one that chooses a non-
empty set of players. These players then simultaneously select a better (respec-
tively, best) response. Such a set-valued scheduler models a controlled concurrent
better (respectively, best) response dynamics. We have then the following exten-
sion of Theorem 5. For every player l the game Gcoord respects every set-valued
scheduler ḡ such that for every A ⊆ N such that |A| > 1, ḡ(A) ⊆ A\{l}. One can
check that if (s, s′) is a step of a ‘concurrent’ improvement path that respects ḡ,
then F (s)� F (s′). We plan to study set-valued schedulers in another paper.

Acknowledgement. We thank Ruben Brokkelkamp and Mees de Vries for
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Abstract. We introduce a new measure of the discrepancy in strategic
games between the social welfare in a Nash equilibrium and in a social
optimum, that we call selfishness level . It is the smallest fraction of
the social welfare that needs to be offered to each player to achieve that
a social optimum is realized in a pure Nash equilibrium. The selfishness
level is unrelated to the price of stability and the price of anarchy and in
contrast to these notions is invariant under positive linear transforma-
tions of the payoff functions. Also, it naturally applies to other solution
concepts and other forms of games.

We study the selfishness level of several well-known strategic games.
This allows us to quantify the implicit tension within a game between
players’ individual interests and the impact of their decisions on the
society as a whole. Our analysis reveals that the selfishness level often
provides more refined insights into the game than other measures of
inefficiency, such as the price of stability or the price of anarchy.

1 Introduction

The discrepancy in strategic games between the social welfare in a Nash equilib-
rium and in a social optimum has been long recognized by the economists. One
of the flagship examples is Cournot competition, a strategic game involving firms
that simultaneously choose the production levels of a homogeneous product. The
payoff functions in this game describe the firms’ profit in the presence of some
production costs, under the assumption that the price of the product depends
negatively on the total output. It is well-known, see, e.g., [1, pages 174–175], that
the price in the social optimum is strictly higher than in the Nash equilibrium,
which shows that the competition between the producers of a product drives its
price down.

In computer science the above discrepancy led to the introduction of the
notions of the price of anarchy [2] and the price of stability [3] that measure
the ratio between the social welfare in a worst and, respectively, a best Nash
equilibrium and a social optimum. This originated a huge research effort aiming
at determining both ratios for specific strategic games that possess (pure) Nash
equilibria.

� A full version with all proofs is available at the authors’ homepages.
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These two notions are descriptive in the sense that they refer to an existing
situation. In contrast, we propose a notion that measures the discrepancy be-
tween the social welfare in a Nash equilibrium and a social optimum, which is
normative, in the sense that it refers to a modified situation. On an abstract
level, the approach that we propose here is discussed in [4], in chapter “How to
Promote Cooperation”, from where we cite (see page 134): “An excellent way to
promote cooperation in a society is to teach people to care about the welfare of
others.”

Our approach draws on the concept of altruistic games (see, e.g., [5] and more
recent [6]). In these games each player’s payoff is modified by adding a positive
fraction α of the social welfare in the considered joint strategy to the original
payoff. The selfishness level of a game is defined as the infimum over all α ≥ 0
for which such a modification yields that a social optimum is realized in a pure
Nash equilibrium.

Intuitively, the selfishness level of a game can be viewed as a measure of the
players’ willingness to cooperate. A low selfishness level indicates that the players
are open to align their interests in the sense that a small share of the social
welfare is sufficient to motivate them to choose a social optimum. In contrast, a
high selfishness level suggests that the players are reluctant to cooperate and a
large share of the social welfare is needed to stimulate cooperation among them.
An infinite selfishness level means that cooperation cannot be achieved through
such means.

Often the selfishness level of a strategic game provides better insights into
the game under consideration than other measures of inefficiency, such as the
price of stability or the price of anarchy. To illustrate this point, we elaborate
on our findings for the public goods game with n players. In this game, every
player i chooses an amount si ∈ [0, b] that he wants to contribute to a public
good. A central authority collects all individual contributions, multiplies their
sum by c > 1 (here we assume for simplicity that n ≥ c) and distributes the
resulting amount evenly among all players. The payoff of player i is thus pi(s) :=
b− si +

c
n

∑
j sj .

In the (unique) Nash equilibrium, every player attempts to “free ride” by
contributing 0 to the public good (which is a dominant strategy), while in the
social optimum every player contributes the full amount of b. As we will show,
the selfishness level of this game is (1 − c

n )/(c − 1). This bound suggests that
the temptation to free ride (i) increases as the number of players grows and
(ii) decreases as the parameter c increases. Both phenomena were observed by
experimental economists, see, e.g., [5, Section III.C.2]. In contrast, the price of
stability (which coincides with the price of anarchy) for this game is c, which is
rather uninformative.

In this paper, we define the selfishness level by taking pure Nash equilibrium
as the solution concept. This is in line with how the price of anarchy and price
of stability were defined originally [2, 3]. However, the definition applies equally
well to other solution concepts and other forms of games.
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Our Contributions. In this paper, we study the selfishness level of some selected
classical and fundamental strategic games. These games are often used to illus-
trate the consequences of selfish behaviour and the effects of competition. To
this aim, we first derive a characterization result that allows us to determine the
selfishness level of a strategic game. Our characterization shows that the selfish-
ness level is determined by the maximum appeal factor of unilateral profitable
deviations from specific social optima, which we call stable. Intuitively, the ap-
peal factor of a single player deviation refers to the ratio of the gain in his payoff
over the resulting loss in social welfare.

We show that the selfishness level of a finite game can be an arbitrary real
number that is unrelated to the price of stability. A nice property of our selfish-
ness level notion is that, unlike the price of stability and the price of anarchy, it
is invariant under positive linear transformations of the payoff functions.

We then use the above characterization result to analyze the selfishness level of
several strategic games. In particular, we show that the selfishness level of finite
ordinal potential games is finite. We also derive explicit bounds on the selfishness
level of fair cost sharing games and congestion games with linear delay functions.
These bounds depend on the specific parameters of the underlying game, but
are independent of the number of players. Moreover, our bounds are tight.

Further, we show that the selfishness level of the Prisoner’s Dilemma with
n players is 1/(2n − 3) and that of the public goods game with n players is
max{0, (1− c

n )(c− 1)}. Finally, the selfishness level of Cournot competition (an
example of an infinite ordinal potential game), Tragedy of the Commons, and
Bertrand competition turns out to be infinite.

Related Work. There are only few articles in the algorithmic game theory litera-
ture that study the influence of altruism in strategic games [7–11]. In these works,
altruistic player behavior is modeled by altering each player’s perceived payoff
in order to account also for the welfare of others. The models differ in the way
they combine the player’s individual payoff with the payoffs of the other players.
All these studies are descriptive in the sense that they aim at understanding the
impact of altruistic behavior on specific strategic games.

Closest to our work are the articles [10] and [8]. Elias et al. [10] study the
inefficiency of equilibria in network design games (which constitute a special
case of the cost sharing games considered here) with altruistic (or, as they call
it, socially-aware) players. As we do here, they define each player’s cost function
as his individual cost plus α times the social cost. They derive lower and upper
bounds on the price of anarchy and the price of stability, respectively, of the
modified game. In particular, they show that the price of stability is at most
(Hn + α)/(1 + α), where n is the number of players.

Chen et al. [8] introduce a framework to study the robust price of anarchy,
which refers to the worst-case inefficiency of other solution concepts such as
coarse correlated equilibria (see [12]) of altruistic extensions of strategic games.
In their model, player i’s perceived cost is a convex combination of (1− ᾱi) times
his individual cost plus ᾱi times the social cost, where ᾱi ∈ [0, 1] is the altruism
level of i. If all players have a uniform altruism level ᾱi = ᾱ, this model relates
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to the one we consider here by setting α = ᾱ/(1 − ᾱ) for ᾱ ∈ [0, 1). Although
not being the main focus of the paper, the authors also provide upper bounds of
2/(1+ ᾱ) and (1− ᾱ)Hn+ ᾱ on the price of stability for linear congestion games
and fair cost sharing games, respectively.

Note that in all three cases the price of stability approaches 1 as α goes to∞.
This seems to suggest that the selfishness level of these games is ∞. However,
this is not the case as outlined above.

Other models of altruism were proposed in [7, 9]. Chen and Kempe [9] define
the perceived cost of a player as (1 − β) times his individual cost plus β/n
times the social cost, where β ∈ [0, 1]. Caragiannis et al. [7] define the perceived
cost of player i as (1 − ξ) times his individual cost plus ξ times the sum of the
costs of all other players (i.e., excluding player i), where ξ ∈ [0, 1]. Both models
are equivalent to the model the we consider here by using the transformations
α = β/((1− β)n) for β ∈ [0, 1) and α = ξ/(1− 2ξ) for ξ ∈ [0, 12 ).

In network congestion games, researchers studied the effect of imposing tolls
on the edges of the network in order to reduce the inefficiency of Nash equi-
libria; see, e.g., [13]. From a high-level perspective, these approaches can also
be regarded as being normative. Conceptually, our selfishness level notion is re-
lated to the Stackelberg threshold introduced by Sharma and Williamson [14].
The authors consider network routing games in which a fraction β ∈ [0, 1] of the
flow is first routed centrally and the remaining flow is then routed selfishly. The
Stackelberg threshold refers to the smallest value β that is needed to improve
upon the social cost of a Nash equilibrium flow.

2 Selfishness Level

A strategic game (in short, a game) G = (N, {Si}i∈N , {pi}i∈N ) is given by
a set N = {1, . . . , n} of n > 1 players, a non-empty set of strategies Si for
every player i ∈ N , and a payoff function pi for every player i ∈ N with
pi : S1 × · · · × Sn→ R. The players choose their strategies simultaneously and
every player i ∈ N aims at choosing a strategy si ∈ Si so as to maximize his
individual payoff pi(s), where s = (s1, . . . , sn).

We call s ∈ S1 × · · · × Sn a joint strategy , denote its ith element by si,
denote (s1, . . . , si−1, si+1, . . . , sn) by s−i and similarly with S−i. Further, we
write (s′i, s−i) for (s1, . . . , si−1, s

′
i, si+1, . . . , sn), where we assume that s′i ∈ Si.

Sometimes, when focussing on player i we write (si, s−i) instead of s.
A joint strategy s a Nash equilibrium if for all i ∈ {1, . . . , n} and s′i ∈

Si, pi(si, s−i) ≥ pi(s
′
i, s−i). Further, given a joint strategy s we call the sum

SW (s) :=
∑n

i=1 pi(s) the social welfare of s. When the social welfare of s is
maximal we call s a social optimum .

Given a strategic game G := (N, {Si}i∈N , {pi}i∈N ) and α ≥ 0 we define the
game G(α) := (N, {Si}i∈N , {ri}i∈N ) by putting ri(s) := pi(s) + αSW (s). So
when α > 0 the payoff of each player in the G(α) game depends on the social
welfare of the players. G(α) is then an altruistic version of the game G.
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Suppose now that for some α ≥ 0 a pure Nash equilibrium of G(α) is a social
optimum of G(α). Then we say that G is α-selfish . We define the selfishness
level of G as

inf{α ∈ R+ | G is α-selfish}. (1)

Here we adopt the convention that the infimum of an empty set is ∞. Further,
we stipulate that the selfishness level of G is denoted by α+ iff the selfishness
level of G is α ∈ R+ but G is not α-selfish (equivalently, the infimum does not
belong to the set). We show below (Theorem 2) that pathological infinite games
exist for which the selfishness level is of this kind; none of the other studied
games is of this type.

The above definitions refer to strategic games in which each player imaximizes
his payoff function pi and the social welfare of a joint strategy s is given by
SW (s). These definitions obviously apply to strategic games in which every
player i minimizes his cost function ci and the social cost of a joint strategy s is
defined as SC(s) :=

∑n
i=1 ci(s). The definition also extends in the obvious way

to other solution concepts (e.g., mixed or correlated equilibria) and other forms
of games (e.g., subgame perfect equilibria in extensive games).

Note that the social welfare of a joint strategy s in G(α) equals (1+αn)SW (s),
so the social optima of G and G(α) coincide. Hence we can replace in the above
definition the reference to a social optimum of G(α) by one to a social optimum
of G.

Intuitively, a low selfishness level means that the share of the social welfare
needed to induce the players to choose a social optimum is small. This share can
be viewed as an ‘incentive’ needed to realize a social optimum. Let us illustrate
this definition on three simple examples.

Example 1. Prisoner’s Dilemma

C D
C 2, 2 0, 3
D 3, 0 1, 1

C D
C 6, 6 3, 6
D 6, 3 3, 3

Consider the Prisoner’s Dilemma game G (on the left) and the resulting game
G(α) for α = 1 (on the right). In the latter game the social optimum, (C,C), is
also a Nash equilibrium. One can easily check that for α < 1, (C,C) is also a
social optimum of G(α) but not a Nash equilibrium. So the selfishness level of
this game is 1.

Example 2. Battle of the Sexes

F B
F 2, 1 0, 0
B 0, 0 1, 2

Here each Nash equilibrium is also a social optimum, so the selfishness level of
this game is 0.
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Example 3. Game with a bad Nash equilibrium
The following game results from equipping each player in the Matching Pennies
game with a third strategy E (for edge):

H T E
H 1,−1 −1, 1 −1,−1
T −1, 1 1,−1 −1,−1
E −1,−1 −1,−1 −1,−1

Its unique Nash equilibrium is (E,E). It is easy to check that the selfishness
level of this game is ∞.

Recall that, given a finite game G that has a Nash equilibrium, its price of
stability is the ratio SW (s)/SW (s′) where s is a social optimum and s′ is a
Nash equilibrium with the highest social welfare in G. So the price of stability of
G is 1 iff its selfishness level is 0. However, in general there is no relation between
these two notions.

Theorem 1. For every finite α > 0 and β > 1 there is a finite game whose
selfishness level is α and whose price of stability is β.

Further, in contrast to the price of stability (and to the price of anarchy ,
defined as the ratio SW (s)/SW (s′) where s is a social optimum and s′ is a Nash
equilibrium with the lowest social welfare in G) the notion of the selfishness level
is invariant under simple uniform payoff transformations. Given a game G and
a value a we denote by G + a (respectively, aG) the game obtained from G by
adding to each payoff function the value a (respectively, by multiplying each
payoff function by a).

Proposition 1. Consider a game G and α ≥ 0.

1. For every a, G is α-selfish iff G+ a is α-selfish,
2. For every a > 0, G is α-selfish iff aG is α-selfish.

This result allows us to better frame the notion of selfishness level. Namely,
suppose that the original n-players game G was set up by a designer who has a
fixed budget SW (s) for each joint strategy s and that the selfishness level of G
is α <∞. Then we should scale G(α) by the factor a := 1/(1 + αn) so that for
each joint strategy s its social welfare in the original game G and aG(α) is the
same.

By the above proposition, α is the smallest non-negative real such that aG(α)
has a Nash equilibrium that is a social optimum. The game aG(α) can then be
viewed as the intended transformation of G. That is, each payoff function pi of
the game G is transformed into the payoff function

ri(s) :=
1

1 + αn
pi(s) +

α

1 + αn
SW (s).

Note that the selfishness level is not invariant under a multiplication of the payoff
functions by a value a ≤ 0. Indeed, for a = 0 each game aG has the selfishness
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level 0. For a < 0 take the game G from Example 3 whose selfishness level is
∞. In the game aG the joint strategy (E,E) is both a Nash equilibrium and a
social optimum, so the selfishness level of aG is 0.

Theorem 2. There exists a game whose selfishness level is 0+, i.e., it is α-
selfish for every α > 0, but it is not 0-selfish.

3 A Characterization Result

We now characterize the games with a finite selfishness level. To this end we
shall need the following notion. We call a social optimum s stable if for all
i ∈ N and s′i ∈ Si the following holds: if (s′i, s−i) is a social optimum, then
pi(si, s−i) ≥ pi(s

′
i, s−i). In other words, a social optimum is stable if no player

is better off by unilaterally deviating to another social optimum.
It will turn out that to determine the selfishness level of a game we need to

consider deviations from its stable social optima. Consider a deviation s′i of player
i from a social stable optimum s. If player i is better off by deviating to s′i, then
by definition the social welfare decreases, i.e., SW (si, s−i)− SW (s′i, s−i) > 0. If
this decrease is small, while the gain for player i is large, then strategy s′i is an
attractive and socially acceptable option for player i. We define player i’s appeal
factor of strategy s′i given the social optimum s as

AFi(s
′
i, s) :=

pi(s
′
i, s−i)− pi(si, s−i)

SW (si, s−i)− SW (s′i, s−i)
.

In what follows we shall characterize the selfishness level in terms of bounds on
the appeal factors of profitable deviations from a stable social optimum.

Theorem 3. Consider a strategic game G := (N, {Si}i∈N , {pi}i∈N).

1. The selfishness level of G is finite iff a stable social optimum s exists for
which α(s) := maxi∈N, s′i∈Ui(s) AFi(s

′
i, s) is finite, where Ui(s) := {s′i ∈ Si |

pi(s
′
i, s−i) > pi(si, s−i)}.

2. If the selfishness level of G is finite, then it equals mins∈SSO α(s), where
SSO is the set of stable social optima.

3. If G is finite, then its selfishness level is finite iff it has a stable social op-
timum. In particular, if G has a unique social optimum, then its selfishness
level is finite.

4. If β > α ≥ 0 and G is α-selfish, then G is β-selfish.

4 Examples

We now use the above characterization result to determine or compute an upper
bound on the selfishness level of some selected games. First, we exhibit a well-
known class of games (see [15]) for which the selfishness level is finite.
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Potential Games. Given a game G := (N, {Si}i∈N , {pi}i∈N ), a function P :
S1×· · ·×Sn→ R is called an ordinal potential function for G if for all i ∈ N ,
s−i ∈ S−i and si, s

′
i ∈ Si, pi(si, s−i) > pi(s

′
i, s−i) iff P (si, s−i) > P (s′i, s−i). A

game that possesses an ordinal potential function is called an ordinal potential
game .

Theorem 4. Every finite ordinal potential game has a finite selfishness level.

In particular, every finite congestion game (see [16]) has a finite selfishness level.
We derive below explicit bounds for two special cases of these games.

Fair Cost Sharing Games. In a fair cost sharing game, see, e.g., [17], players
allocate facilities and share the cost of the used facilities in a fair manner. For-
mally, a fair cost sharing game is given by G = (N,E, {Si}i∈N , {ce}e∈E), where
N = {1, . . . , n} is the set of players, E is the set of facilities, Si ⊆ 2E is the
set of facility subsets available to player i, and ce ∈ R+ is the cost of facility
e ∈ E. It is called a singleton cost sharing game if for every i ∈ N and for every
si ∈ Si: |si| = 1. For a joint strategy s ∈ S1 × · · · × Sn let xe(s) be the number
of players using facility e ∈ E, i.e., xe(s) = |{i ∈ N | e ∈ si}|. The cost of a
facility e ∈ E is evenly shared among the players using it. That is, the cost of
player i is defined as ci(s) =

∑
e∈si

ce/xe(s). The social cost function is given
by SC(s) =

∑
i∈N ci(s).

We first consider singleton cost sharing games. Let cmax = maxe∈E ce and
cmin = mine∈E ce refer to the maximum and minimum costs of the facilities,
respectively.

Proposition 2. The selfishness level of a singleton cost sharing game is at most
max{0, 12cmax/cmin − 1}. Moreover, this bound is tight.

This result should be contrasted with the price of stability of Hn and the price
of anarchy of n for cost sharing games [17]. Cost sharing games admit an exact
potential function and thus by Theorem 4 their selfishness level is finite. However,
one can show that the selfishness level can be arbitrarily large (as cmax/cmin →
∞) even for n = 2 and two facilities.

We next derive a bound for arbitrary fair cost sharing games with non-negative
integer costs. Let L be the maximum number of facilities that any player can
choose, i.e., L := maxi∈N,si∈Si |si|.

Proposition 3. The selfishness level of a fair cost sharing game with non-
negative integer costs is at most max{0, 12Lcmax − 1}. Moreover, this bound is
tight.

Remark 1. We can bound the selfishness level of a fair cost sharing game with
non-negative rational costs ce ∈ Q+ for every facility e ∈ E by using Proposi-
tion 3 and the following scaling argument: Simply scale all costs to integers, e.g.,
by multiplying them with the least common multiplier q ∈ N of the denomina-
tors. Note that this scaling does not change the selfishness level of the game by
Proposition 1. However, it does change the maximum facility cost and thus q
enters the bound.
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Linear Congestion Games. In a congestion game G := (N,E, {Si}i∈N , {de}e∈E)
we are given a set of players N = {1, . . . , n}, a set of facilities E with a delay
function de : N → R+ for every facility e ∈ E, and a strategy set Si ⊆ 2E for
every player i ∈ N . For a joint strategy s ∈ S1 × · · · × Sn, define xe(s) as the
number of players using facility e ∈ E, i.e., xe(s) = |{i ∈ N | e ∈ si}|. The goal
of a player is to minimize his individual cost ci(s) =

∑
e∈si

de(xe(s)). The social
cost function is given by SC(s) =

∑
i∈N ci(s). Here we call a congestion game

symmetric if there is some common strategy set S ⊆ 2E such that Si = S for all
i. It is singleton if every strategy si ∈ Si is a singleton set, i.e., for every i ∈ N
and for every si ∈ Si, |si| = 1. In a linear congestion game, the delay function
of every facility e ∈ E is of the form de(x) = aex + be, where ae, be ∈ R+ are
non-negative real numbers.

We first derive a bound on the selfishness level for symmetric singleton linear
congestion games. As it turns out, a bound similar to the one for singleton
cost sharing games does not extend to symmetric singleton linear congestion
games. Instead, the crucial insight here is that the selfishness level depends on
the discrepancy between any two facilities in a stable social optimum. We make
this notion more precise.

Let s be a stable social optimum and let xe refer to xe(s). Define the discrep-
ancy between two facilities e and e′ under s as

λ(xe, xe′ ) =
2aexe + be
ae + ae′

− 2ae′xe′ + be′

ae + ae′
. (2)

It can be shown that λ(xe, x
′
e) ∈ (−1, 1). Let λmax(s) be the maximum dis-

crepancy between any two facilities under s. Further, let λmax be the maximum
discrepancy over all stable social optima, i.e., λmax = maxs∈SSO λmax(s).

Let Δmax := maxe∈E(ae + be) and Δmin := mine∈E(ae + be). Further, let
amin be the minimum non-zero coefficient of a latency function, i.e., amin =
mine∈E:ae>0 ae.

Proposition 4. The selfishness level of a symmetric singleton linear congestion
game is at most max{0, 12 (Δmax −Δmin)/((1− λmax)amin)− 1

2}. Moreover, this
bound is tight.

Observe that the selfishness level depends on the ratio (Δmax−Δmin)/amin and
1/(1−λmax). In particular, the selfishness level becomes arbitrarily large as λmax

approaches 1.
We next state a bound for the selfishness level of arbitrary congestion games

with linear delay functions and non-negative integer coefficients, i.e., de(x) =
aex + be with ae, be ∈ N for every e ∈ E. Let L be the maximum number of
facilities that any player can choose, i.e., L := maxi∈N,si∈Si |si|.

Proposition 5. The selfishness level of a linear congestion game with non-
negative integer coefficients is at most max{0, 12 (LΔmax−Δmin−1)}. Moreover,
this bound is tight.

For linear congestion games, the price of anarchy is known to be 5
2 , see [18, 19].

In contrast, our bound shows that the selfishness level depends on the maximum
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number of facilities in a strategy set and the magnitude of the coefficients of the
delay functions.

Remark 2. We can use Proposition 5 and the scaling argument outlined in Re-
mark 1 to derive bounds on the selfishness level of congestion games with linear
delay functions and non-negative rational coefficients.

Prisoner’s Dilemma for n Players. We assume that each player i ∈ N =
{1, . . . , n} has two strategies, 1 (cooperate) and 0 (defect). We put pi(s) :=
1− si + 2

∑
j �=i sj .

Proposition 6. The selfishness level of the n-players Prisoner’s Dilemma game
is 1

2n−3 .

Intuitively, this means that when the number of players in the Prisoner’s Dilemma
game increases, a smaller share of the social welfare is needed to resolve the un-
derlying conflict. That is, its ‘acuteness’ diminishes with the number of players.
The formal reason is that the appeal factor of each unilateral deviation from the
social optimum is inversely proportional to the number of players.

In particular, for n = 2 we get, as already argued in Example 1, that the
selfishness level of the original Prisoner’s Dilemma game is 1.

Public Goods. We consider the public goods game with n players. Every player
i ∈ N = {1, . . . , n} chooses an amount si ∈ [0, b] that he contributes to a public
good, where b ∈ R+ is the budget. The game designer collects the individual
contributions of all players, multiplies their sum by c > 1 and distributes the
resulting amount evenly among all players. The payoff of player i is thus pi(s) :=
b− si +

c
n

∑
j∈N sj .

Proposition 7. The selfishness level of the n-players public goods game is

max
{
0,

1− c
n

c−1

}
.

In this game, every player has an incentive to “free ride” by contributing 0 to
the public good (which is a dominant strategy). The above proposition reveals
that for fixed c, in contrast to the Prisoner’s Dilemma game, this temptation
becomes stronger as the number of players increases. Also, for a fixed number
of players this temptation becomes weaker as c increases.

Cournot Competition. We consider Cournot competition for n firms with a linear
inverse demand function and constant returns to scale, see, e.g., [1, pages 174–
175]. So we assume that each player i ∈ N = {1, . . . , n} has a strategy set
Si = R+ and payoff function pi(s) := si(a − b

∑
j∈N sj) − csi for some given

a, b, c, where a > c ≥ 0 and b > 0.
The price of the product is represented by the expression a−b

∑
j∈N sj and the

production cost corresponding to the production level si by csi. In what follows
we rewrite the payoff function as pi(s) := si(d− b

∑
j∈N sj), where d := a− c.

Proposition 8. The selfishness level of the n-players Cournot competition game
is ∞.
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Intuitively, this result means that in this game no matter how much we ‘in-
volve’ the players in sharing the social welfare we cannot achieve that they will
select a social optimum.

Tragedy of the Commons. Assume that each player i ∈ N = {1, . . . , n} has
the real interval [0, 1] as its set of strategies. Each player’s strategy is his
chosen fraction of a common resource. Let (see [20, Exercise 63.1]): pi(s) :=
max{0, si(1−

∑
j∈N sj)}. This payoff function reflects the fact that player’s en-

joyment of the common resource depends positively from his chosen fraction of
the resource and negatively from the total fraction of the common resource used
by all players. Additionally, if the total fraction of the common resource by all
players exceeds a feasible level, here 1, then player’s enjoyment of the resource
becomes zero.

Proposition 9. The selfishness level of the n-players Tragedy of the Commons
game is ∞.

Bertrand Competition. Next, we consider Bertrand competition, a game con-
cerned with a simultaneous selection of prices for the same product by two firms,
see, e.g., [1, pages 175–177]. The product is then sold by the firm that chose a
lower price. In the case of a tie the product is sold by both firms and the profits
are split. We assume that each firm has identical marginal costs c > 0 and no
fixed cost, and that each strategy set Si equals [c,

a
b ), where c <

a
b . The payoff

function for player i ∈ {1, 2} is given by

pi(si, s3−i) :=

⎧⎪⎨⎪⎩
(si − c)(a− bsi) if c < si < s3−i

1
2 (si − c)(a− bsi) if c < si = s3−i

0 otherwise.

Proposition 10. The selfishness level of the Bertrand competition game is ∞.

5 Concluding Remarks and Extensions

We introduced the selfishness level of a game as a new measure of discrepancy
between the social welfare in a Nash equilibrium and in a social optimum. Our
studies reveal that the selfishness level often provides more refined insights than
other measures of inefficiency.

The definition of the selfishness level naturally extends to other solution con-
cepts and other forms of games. For example, for mixed Nash equilibria we
simply adapt our definitions by stipulating that a strategic game G is α-selfish if
the social welfare of a mixed Nash equilibrium of G(α) is equal to the optimum
social welfare of G(α). The selfishness level of G is then defined as before in (1).
For example, with this notion the selfishness level of the Matching Pennies game
is 0.

We can also consider subgame perfect equilibria and extensive games. We
leave for future work the study of such alternatives.
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Abstract. We consider randomized mechanisms for multi-dimensional
scheduling. Following Lavi and Swamy [10], we study a setting with re-
strictions on the domain, while still preserving multi-dimensionality. In
a sense, our setting is the simplest multi-dimensional setting, where each
machine holds privately only a single-bit of information.

We prove a separation between truthful-in-expectation and universally
truthful mechanisms for makespan minimization: We first show how to
design an optimal truthful-in-expectation mechanism, and then prove
lower bounds on the approximation guarantee of universally truthful
mechanisms.

1 Introduction

Designing truthful mechanisms for scheduling problems was first suggested in
the seminal paper by Nisan and Ronen [15], as a paradigm to demonstrate the
applicability of Mechanism Design to an optimization problem. In its general
form, where the machines are unrelated, there are n jobs to be assigned to m
machines. The time needed by a machine i to process job k is described by a
nonnegative real value tik. Given such an input matrix, a standard task from the
algorithm designer’s point of view, is to allocate the jobs in a way such that some
global objective is optimized; a typical objective is to minimize the maximum
completion time (i.e. the makespan). In a game-theoretic setting, it is assumed
that each entry of this matrix is not known to the designer, but instead is a
private value held by a selfish agent that controls the machine. Therefore this
value might be misreported to the designer if this is advantageous to the agent.
Mechanism design suggests using monetary compensation to incentivize agents
to report truthfully. Truthfulness is desired, because it facilitates the prediction
of the outcome and at the same time simplifies the agents’ way of reasoning.

� Research partially supported by the PRIN 2008 research project COGENT (COm-
putational and GamE-theoretic aspects of uncoordinated NeTworks), funded by the
Italian Ministry of University and Research.

�� Part of this work was done while the author was at the Max-Planck Institute for
Informatics, Saarbrücken, and while visiting University of Salerno.

M. Serna (Ed.): SAGT 2012, LNCS 7615, pp. 25–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



26 V. Auletta, G. Christodoulou, and P. Penna

The challenge is to design truthful mechanisms that optimize/approximate the
makespan. When the entries of the matrix t are unrelated, the domain of input
for each machine i is an n-valued vector ti. For this multi-dimensional domain,
the constraints imposed by truthfulness make the problem hard. Nisan and Ro-
nen [15], showed that it is impossible to design a truthful mechanism with ap-
proximation factor better than 2, even for two machines. Later this bound was
further improved to 2.41 [5] for 3 machines, and to 2.618 [9] for many machines.
In [15], it was also shown that applying the VCG mechanism [17,3,8] achieves an
approximation ratio of m, and it has been conjectured that this bound is tight.
This conjecture still remains open, but it was further strengthened by Ashlagi
et al. [2], who proved the conjecture for the intuitively very natural case of
anonymous mechanisms (where roughly the allocation algorithm does not base
its decisions on the machines’ ids).

Randomization provably helps for this problem. There are two notions of
truthfulness for randomized mechanisms. Roughly, a mechanism is universally
truthful if it is defined by a probability distribution of truthful mechanisms,
while it is truthful in expectation, if in expectation no player can benefit by ly-
ing. Already in [15], a universally truthful mechanism was suggested, for two
machines. The mechanism was extended for the case of m machines by Mu’alem
and Schapira [14] with an approximation guarantee of 0.875m, and this was fur-
ther improved in [12] to 0.837m. Lu and Yu [13] showed a truthful-in-expectation
mechanism with a guarantee of (m + 5)/2. In [14] it was also shown a lower
bound of 2 − 1/m, for both randomized versions, while in [4] the lower bound
was extended for fractional mechanisms, and an upper bound of (m+ 1)/2 was
provided. Surprisingly, even for the special case of two machines a tight answer
has not been given for randomized mechanisms. Currently the lower bound is
1.5 [14], while the best upper bound is 1.5963 due to [13].

Setting restrictions to the input domain can make the problem easier. The
single-dimensional counterpart of the problem is the scheduling on related ma-
chines. In that case it is assumed that machine i has speed si, then tik = wk/si,
where the weights wk of the jobs are known to the designer. Notice that the only
missing information is the speed of the machines. In that case, the constraints
imposed by truthfulness seem harmless; the optimal allocation is truthfully im-
plementable [1], although it takes exponential running time, while the best pos-
sible approximation guarantee, a PTAS, can be achieved by polynomial time
truthful mechanisms [7,6]. An immediate conclusion is that when one restricts
the domain, then truthfulness becomes less and less stringent.

A prominent approach suggested byLavi and Swamy [10], is to restrict the input
domain, but still keep the multi-dimensional flavour. They assumed that each en-
try can take only two possible valuesL,H , that are publicly known to the designer.
In this case, a very elegant deterministic mechanism achieves an approximation
factor of 2, that is a great improvement comparing to the m upper bound that is
the best known for the general problem. Surprisingly, even for this special case the
lower bound is 11/10. Yu [18] extended this study, for more than two values, but
where the inputs are restricted in balls around two values.
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1.1 Our Contribution

The focus of this work is, following [10] to restrict even further the domain. We
still allow only two possible values L,H , that are publicly known, but we even
restrict the way these values are placed in a player i’s input vector. We assume
that for each machine some known partition of the tasks into two parts is given
to the designer. The only missing information is in which part player assigns low
values, and in which part it assigns the high ones. Therefore, the only missing
information is a single bit for each player1. The lower bound given in [10] is still
valid for our setting. It is important to emphasize that all the aforementioned
lower bounds are due to truthfulness, and hold even for exponential running
time algorithms. We explore the effects of truthfulness (both randomized and
deterministic) in this restricted setting:

(1) Power of truthful-in-expectation mechanisms. There is a class of two-values
scheduling problems for which every algorithm (thus including optimal ones) can
be turned into a truthful-in-expectation mechanism with the same approxima-
tion guarantee (Theorem 3). On the contrary, randomized universally truthful
mechanisms cannot achieve an approximation better than 31/30 (Theorem 17),
and the 11/10 lower bound for deterministic mechanisms in [10] also applies.

Notice that such a separation was not known for the general problem since,
although Lu [11], showed a lower bound higher than 1.5 for universally truthful
mechanisms, the result holds only for scale-free mechanisms. This is arguably a
very natural assumption, but it is still needed to be proven that it is without
loss of generality.

(2) Two-values vs three-values domains. For two machines, three-values domains
are as difficult as the general unrelated machines: the lower bound of 2 for
deterministic mechanisms still hold (Theorem 18). We give a partial evidence
of the fact that two-values domains are easier by giving a deterministic truthful
3/2-approximation mechanisms for the subcase of given partitions (the most
general domain we consider in this work – see Section 1.2 – still a restriction of
the two-values domains).

Due to space limitations some of the proofs are omitted. We refer the reader
to the full version of this work.

1.2 Preliminaries

We have n jobs to be scheduled on m machines. Each job must be assigned to
exactly one machine. In the unrelated-machines setting, each machine i has a
vector of processing times or type ti = (tih)h, where tih ∈ �≥0 is i’s processing
time for job h. In the two-values domains by Lavi and Swamy [10], the time

1 Notice that the information missing is just a single bit, much less than that of
the related machines case, where the missing information is a positive real number.
However, ours is not a single-dimensional domain. We refer the reader to Chapter 9
and 12 of [16] for the precise definition of a single-dimensional domain.
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for executing job h on machine i is either L (low) or H (high), with H > L (the
case L = H is trivial). We say that machine i is an LS-machine (respectively,
HS-machine) if all jobs in S take time L (respectively, H), and all jobs not in
S take time H (respectively, L). That is, the type ti of an LS-machine i is such
that for any job h

tih = Lh
S :=

{
L if h ∈ S
H otherwise

(1)

and similarly for HS-machines.
In this work, we consider the following special case of the two-values domains

[10]. In the case with given partitions, for each machine i we are given a
(publicly known) subset Si and the private information is whether i is an LSi-
machine or an HSi -machine. Hence, the type ti must belong to a simple domain
of two elements only (i.e., ti ∈ {LSi, HSi}). Intuitively, a type ti = LSi indicates
that machine i is “good” for the jobs in Si and “bad” for other jobs, while for
ti = HSi it is the other way around (notice that HSi = LS̄i

where S̄i = [n] \Si).
We shall further distinguish between three restrictions (of increasing difficulty)
of the given partitions domain: (i) Identical partitions, where all subsets Si

are identical; (ii) Uniform partitions, where all subsets Si have size s for some
s ≥ 0; and (iii) (Unrestricted) Given partitions, which impose no restriction
on the subsets Si.

We say that job h is an L-job (respectively, H-job) for machine i if tih = L
(respectively, tih = H), with ti being the type of machine i. We represent an
allocation by a matrix x = (xih), where xih ∈ {0, 1} and xih = 1 iff job h
is assigned to machine i (since every job is assigned to exactly one machine,∑

i xih = 1). Given an allocation x and machine types t, we define the load of
machine i as the set of jobs allocated to i in x and denote by Ci(x, t) :=

∑
h xihtih

the cost of machine i. The makespan of x with respect to t is maxi Ci(x, t).
An exact or optimal allocation x is an allocation that, for the given input t,
minimizes the makespan. A c-approximation is an allocation whose makespan
is at most c times that of the optimal allocation. A deterministic algorithm A
outputs an allocation x = A(t). For randomized algorithms, A(t) is a probability
distribution over all possible allocations; we call A(t) a randomized allocation.

In order to characterize truthful mechanisms, we consider the allocations that
are given in output for two inputs which differ only in one machine’s type.
We let (t̂i, t−i) denote the vector (t1, . . . , ti−1, t̂i, ti+1, . . . , tm). Given types t
and a job allocation x, we count the number of L-jobs and the number of H-
jobs allocated to machine i in x: ni

L(x, t) := |{h : tih = L and xih = 1}| and
ni
H(x, t) := |{h : tih = H and xih = 1}|.

Definition 1 (monotone algorithm). An algorithm A is monotone (in expec-
tation) if, for any machine i and for any two inputs t = (ti, t−i) and t̂ = (t̂i, t−i),
the following inequality holds (in expectation):

ni
L − ni

H + n̂i
L − n̂i

H ≥ 0 (2)

where ni
L = ni

L(A(t), t), n
i
H = ni

H(A(t), t), n̂i
L = ni

L(A(t̂), t̂), and n̂i
L =

ni
L(A(t̂), t̂).
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By applying [10, Proposition 5.7] to our given partitions domains, we obtain
that truthfulness is equivalent to the monotonicity condition above:

Theorem 2. For the case of identical/uniform/unrestricted given partitions,
there exist prices P such that the mechanism (A,P ) is truthful (in expectation)
iff A is monotone (in expectation).

Throughout the paper, we refer to the quantity ni
L(x, t)−ni

H(x, t) as the unbal-
ance of machine i. We also refer to the quantity in (2) as the overall unbalance
of machine i. For any instance t, for any two machines i and j, and for any
α, β ∈ {L,H}, we consider the subset of jobs whose execution time is α on
machine i and β on machine j as J ij

αβ(t) := {h : tih = α and tjh = β}.

1.3 An Illustrative Example

We begin with an example and show how to use randomization. Consider the
following instances along with their optimal allocation (gray box), and the quan-
tities ni

L − ni
H for each of the two machines (numbers outside the box):

2 5 5 52

2 5 5 52 5 5

5 5 2 5 5 52

25

4

5 5

5 2 2 22 255 2 2 22

25 2 2 22

2 5 5 52 5 5

25 2 2 225 5

-3 5 1

0 1 -2 4 (3)

Let machine 1 and machine 2 correspond to top and bottom machine, respec-
tively. Observe that the monotonicity condition is violated for machine i = 2
by looking at the two middle instances (they differ in the machine connected by
dotted line). Indeed the quantity in (2) is 1−2 = −1. Alternatively, we can swap
the allocation in the first and in the third input:

2 5 5 52

2 5 5 52 5 5

5 5 2 5 5 52

25

4

5 5

5 2 2 22 255 2 2 22

25 2 2 22

2 5 5 52 5 5

25 2 2 225 5

-3 5

10

1

-2

4 (4)

Now, however, the monotonicity condition is violated by machine i = 1 for the
last two instances. These instances are used by Lavi and Swamy [10] to prove
a lower bound for deterministic mechanisms. However, if we choose randomly
between the allocation in (3) and the one in (4) with the same probability, the
corresponding optimal algorithm satisfies monotonicity in expectation (for ex-
ample, in the leftmost instance the unbalance becomes −3/2 for both machines,
while in the second instance it remains unchanged).

Our simple example shows that for two machines with identical partitions as
above, and values L = 2 and H = 5, there exists an exact truthful-in-expectation
mechanism but no truthful mechanism can achieve an approximation factor bet-
ter than 1.1 [10]. In the sequel we show that this positive result holds in general
for some of our domains, and not only in the very special instance where deter-
ministic mechanisms cannot be optimal.



30 V. Auletta, G. Christodoulou, and P. Penna

2 Identical Partitions

In this section we consider the case of machines with identical partitions and give
a general (“black box”) method to convert scheduling algorithms into mecha-
nisms that are truthful-in-expectation. The main result of this section is sum-
marized by the following theorem.

Theorem 3. Every deterministic algorithm A for scheduling jobs on machines
with identical partitions can be turned into a randomized mechanism M which is
truthful in expectation and such that the allocation returned by M has makespan
not worse than the one returned by A.

Let (S, S̄) be a partition of the jobs, with |S| = s and |S̄| = n − s, such that
for each machine i we have Si = S. Without loss of generality we can reorder
the jobs in such a way that S = {1, 2, . . . , s} and S̄ = {s + 1, s + 2, . . . , n}.
Since the partition of the jobs is public the only information that is private to
each machine is which side of the partition contains its L-jobs. Thus, the type’s
domain of each machine contains only two elements: LS = (L · · ·LH · · · · · ·H)
and HS = (H · · ·HL · · · · · ·L). For any instance t, we denote by mS(t) and
mS̄(t) the numbers of LS-machines and HS-machines in t, respectively. Clearly,
mS(t) +mS̄(t) = m. It is convenient to count, for each side of the partition, the
number of jobs that x allocates as L-jobs:


S(x, t) = |h ∈ S : xih = 1 and tih = L| (5)

The quantity 
S̄(x, t) is defined similarly, and 
(x, t) := 
S(x, t) + 
S̄(x, t) is the
overall number of allocated L-jobs. Following the idea described in Section 1.3,
we show now how to obtain a randomized allocation from a deterministic one
by randomly “shuffling” machines of the same type:

Definition 4. For any deterministic allocation x we denote by x(rand) the ran-
domized allocation obtained as follows:

– Pick an integer r ∈ {0, . . . ,mS− 1} uniformly at random, and set x
(rand)
i :=

xi+r mod mS for each LS-machine i;

– Pick an integer r̄ ∈ {0, . . . ,mS̄− 1} uniformly at random, and set x
(rand)
i :=

xi+r̄ mod mS̄
for each HS-machine i.

For any deterministic algorithm A, we let A(rand) be the randomized algorithm
that, on input t, returns the randomized allocation x(rand) where x = A(t).

Notice that 
S(x
(rand), t) = 
S(x, t) and 
S̄(x

(rand), t) = 
S̄(x, t). In the following
discussion we fix x and t and simply write 
S and 
S̄ .

For any LS-machine i, its expected load consists of ni
L = 
S/mS L-jobs and

ni
H = (n−s−
S̄)/mS H jobs. Thus the expected unbalance of an LS-machine is
ni
L−ni

H = 1
mS

[
S−(n−s−
S̄)] = 1
mS

[
−(n−s)]. Similarly, the expected load of

an HS-machine i consists of ni
L = 
S̄/mS̄ L-jobs and nj

H = (s− 
S)/mS̄ H-jobs
and its expected unbalance is equal to ni

L−ni
H = 1

mS̄
[
S̄− (s− 
S)] = 1

mS̄
(
−s).
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Lemma 5. Algorithm A(rand) is monotone-in-expectation if the deterministic
algorithm A satisfies the following condition. For any t = (LS , t−i) and t̂ =
(HS , t−i), it holds that


− (n− s)

mS
+


̂− s

mS̄ + 1
≥ 0 (6)

where 
 = 
(A(t), t) and 
̂ = 
(A(t̂), t̂) denote the number of L-jobs allocated on
input t and t̂, respectively.

Proof. Consider two instances t = (LS , t−i) and t̂ = (HS , t−i). By the previous
discussion we have that the total unbalance of machine i is ni

L−ni
H+ n̂i

L− n̂i
H =

�−(n−s)
mS

+ �̂−s
m̂S̄

, where m̂S̄ is the number of HS-machines in t̂. Since m̂S̄ = mS̄+1,

then (6) is equivalent to (2) and thus A(rand) is monotone-in-expectation.

2.1 Canonical Allocations

Lemma 5 says that in order to design an exact truthful-in-expectation mech-
anism it is enough to design a deterministic exact algorithm A which obeys
the condition in (6). We show that this is always possible by transforming the
allocation of the algorithm into a “canonical” allocation (specified below).

Definition 6. Given an allocation x and an instance t, for any α, β ∈ {L,H}
and for any two machines i and j, we let nij

αβ(x, t) be the number of α-jobs that

are allocated to machine i and that are β-jobs for machine j: nij
αβ(x, t) := |{k :

xik = 1, tik = α, and tjk = β}|.

Notice that nij
αβ is different from nji

βα because the first index denotes the machine
that gets the jobs. We can now define our canonical allocations.

Definition 7 (canonical allocation). A canonical allocation (for the instance
t) is an allocation obtained by modifying a deterministic allocation x as follows:

1. Apply the following Rule R1 until possible: Suppose jobs h and k are al-
located to machines i and j, respectively (xih = 1 = xjk). If tik ≤ tih and
tjh < tjk (no machine gets worse and at least one gets better if we swap the
jobs), then move job h to machine j and job k to machine i (set xik = xjh = 1
and xih = xjk = 0).

2. Apply the following Rule R2 until possible: If nij
HL(x, t) > nji

LH(x, t) and j

gets only jobs from Jji
LH(t), then move all nij

HL jobs in J ij
HL(t) from i to j,

and move all jobs from Jji
LH(t) from j to i (see Figure 1.).

Remark 8. Both Rule R1 and R2 decrease the overall number of H-jobs by at
least one. Thus, given x and t, it is possible to compute in polynomial time a
canonical allocation (following the two steps in Definition 7) whose cost is not
larger than the cost of x.
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L L

L L

H H

H H

L L

H H

H H· · ·
L L· · ·

H H· · ·
L L· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

︷︸︸︷︷︸︸︷
i

j

nij
HL

nji
LH

L L

L L

H H

H H

L L

H H

H H· · ·
L L· · ·

H H· · ·
L L· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

i

j

Fig. 1. The swapping Rule R2 in the definition of canonical allocation

2.2 A Black-Box Construction (Proof of Theorem 3)

Lemma 9. Every deterministic algorithm A can be turned into a randomized
algorithm A(rand) which is monotone in expectation and whose output allocation
has makespan not worse than the one returned by A.

Proof (Proof Idea). The proof is based on the following structural properties
of canonical allocations. Either 
S(x, t) = |S| or 
S̄(x, t) = |S̄|. Moreover these
bounds also hold:


S(x, t) = |S| implies 
S̄(x, t) ≥
mS̄

m
· |S̄|


S̄(x, t) = |S̄| implies 
S(x, t) ≥
mS

m
· |S|

To apply Lemma 5 we need to prove that, for any t = (LS , t−i) and t̂ = (HS , t−i)


− (n− s)

mS
+


̂− s

m−mS + 1
≥ 0

We distinguish these four possible cases: (1) 
S = |S| and 
̂S̄ = |S̄|, (2) 
S̄ = |S̄|
and 
̂S = |S|, (3) 
S = |S| and 
̂S = |S|, (4) 
S̄ = |S̄| and 
̂S̄ = |S̄|. Cases (1)-(2)
use the fact that 
+ 
̂ ≥ n. Cases (3)-(4) use the bounds above and m̂S̄ = mS̄+1.

3 Mechanisms for Two Machines

In this section we restrict our attention to the case of m = 2 machines. We give
an exact truthful-in-expectation mechanism for the case of uniform partitions
(Sect. 3.1) and a deterministic 3/2-approximation mechanism for the case of
unrestricted given partitions (Sect. 3.2).

3.1 Exact Randomized Mechanisms for Uniform Partitions

We can always assume that any deterministic algorithm can produce canonical
allocations (see Remark 8). We show that every exact algorithm can be turned
into a monotone-in-expectation algorithm (thus an exact truthful-in-expectation
mechanism). Unlike the case of identical partitions, we apply a randomization
step only in some cases. Specifically, we will randomize if the two machines
have types t = (LS1 , LS2) or t′ = (HS1 , HS2), and give in output directly the
allocation of the deterministic algorithm in the other two cases, inputs (LS1 , HS2)
and (HS1 , LS2).

We start by characterizing exact canonical allocations.
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Definition 10 (allocation classes). An allocation x is classified with respect
to the instance t as J ij

LH(t) if machine i gets only a proper subset of the jobs

in J ij
LH(t); x is symmetric if each machine i gets all jobs in J ij

LH(t), no job in

J ij
HL(t), and a (possibly empty) subset of the jobs in J ij

LL(t) ∪ J
ij
HH (t).

Lemma 11. Every instance t admits an exact canonical allocation that is either
symmetric or of class J ij

LH(t), with i ∈ {1, 2}.
We next show that certain symmetric allocations can be converted into random-
ized allocations having a “good” unbalance, without increasing their cost.

Definition 12 (randomizable allocation). A symmetric allocation x is ran-
domizable if the following holds. Let i be the machine such that |J ij

LH(t)| ≥
|J ij

HL(t)|.2 Then, one of the following two conditions holds: (1) nji
LL(x, t) ≥

|J ij
LH(t)| − |J ij

HL(t)|, or (2) nji
HH(x, t) ≤ nij

HH (x, t).

Lemma 13. For every deterministic allocation x that is randomizable with re-
spect to the instance t, there exists a randomized allocation x(rand) which gives an
expected unbalance of n

2 −|JHH(t)| to both machines and has the same makespan
as the makespan of x.

Proof (Sketch). Let x be an allocation that is randomizable with respect to t.
We build a new allocation y as follows. Let i be a machine such that |J ij

LH(t)| ≥
|J ij

HL(t)| and let δ := |J ij
LH(t)| − |J ij

HL(t)|. The new allocation is obtained by

swapping all jobs in J ij
HH (t) and some of the jobs in J ij

LL(t) according to the
following two cases:

1. (nji
LL(x, t) ≥ δ) In this case we move nji

LL(x, t) − δ jobs from machine j to

machine i, and nij
LL(x, t) jobs from machine i to machine j.

2. (nji
LL(x, t) < δ) In this case we move nij

LL(x, t) + δ − nji
LL(x, t) jobs from

machine i to machine j (this quantity is nonnegative by Definition 12).

Finally, build the randomized allocation x(rand) by picking at random x or y.

The above lemma and its randomization procedure guarantees that the mono-
tonicity condition can be satisfied whatever are the canonical allocations that
we do not randomize, inputs (LS1 , HS2) and (HS1 , LS2). Moreover, for the case
of uniform partitions, it turns out that the exact allocations of instances t =
(LS1 , LS2) and t

′ = (HS1 , HS2) are both randomizable. Thus the following holds:

Theorem 14. There exists an exact truthful-in-expectation mechanism for the
case of two machines with uniform partitions.

3.2 A Deterministic 3/2-Approximation Mechanism

In this section we prove the following result:

Theorem 15. There exists a 3/2-approximation deterministic truthful mecha-
nism for two machines with (unrestricted) given partitions.

In order to prove this result we exhibit a monotone 3/2-approximation algorithm.

2 Recall that by definition J ij
LH(t) = Jji

HL(t) and thus such machine must exist.
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The algorithm. On input t, the algorithm partitions the jobs into three subsets:
JLL(t), JHH(t) and JLHHL(t) := J12

LH(t) ∪ J12
HL(t).

First, allocates jobs in JLHHL(t), and then completes the allocation by divid-
ing “evenly” the other jobs in JLL(t) and in JHH(t). Some careful “tie breaking
rule” must be used here to deal with the case in which some of these subsets of
jobs have odd cardinality.

The algorithm consists of the following two steps (in the sequel we do not
specify the input “t”):

1. Step 1 (allocate jobs in JLHHL). We allocate these jobs depending on
the class of the canonical exact allocation for all jobs:

(a) (class J12
LH or J21

LH). Compute a canonical exact allocation for JLHHL.

(b) (class symmetric). Assign all jobs in JLHHL as L-jobs.

We denote by J i
LHHL the set of jobs that are assigned to machine i in this

first step, and C
(LHHL)
i be the corresponding cost.

2. Step 2 (allocate jobs in JLL and JHH). For a set of jobs S and a
nonnegative integer q, we denote by �S/q� and �S/q� an arbitrary subset
of S of cardinality �|S|/q� and �|S|/q�, respectively. We define the set J i

of all jobs that are assigned to machine i at the end of this step (which
includes the jobs J i

LHHL assigned in the previous step) as follows: For i

and j satisfying C
(LHHL)
i ≥ C

(LHHL)
j , we allocate to i the set J i that is

equal to J i
LHHL ∪

⌊
JHH

2

⌋
∪
⌈
JLL

2

⌉
, if both |JLL| and |JHH | are odd, and

J i
LHHL ∪

⌊
JHH

2

⌋
∪
⌊
JLL

2

⌋
otherwise. Machine j gets all the other jobs

Jj := J̄ i = [n] \ J i.

Approximation guarantee. The proof of the approximation guarantee is based
on the following lemma that proves that the two steps of the algorithm keep a
small difference between the completion time of the two machines:

Lemma 16. After each step, the difference between the two completion times is

at most the optimum, that is maxi C
(LHHL)
i ≤ OPT and maxi Ci ≤ mini Ci +

OPT .

To prove the 3/2-approximation we have to distinguish two cases, depending
on which class of canonical allocation has been used in Step 1 to allocate jobs
in JLHHL. We observe that in the first case (class J12

LH or J21
LH) at least one

of these jobs is allocated as an H-job; in the second case, instead, all jobs in
JLHHL are allocated as L-jobs and the remaining jobs are distributed among
the two machines in order to minimize the makespan. In both the cases, using
Lemma 16 we can prove that APX ≤ (3/2) ·OPT .

It is easy to verify that the mechanism can indeed reach a 3/2 approximation
guarantee.
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Monotonicity. First observe that the algorithm assigns to machine i at least half
(rounded up or down) of its L-jobs in t, and at most half (rounded up or down)
of its H-jobs in t. In particular,

nij
LH ≥

⌈
Jij
LH

2

⌉
, nij

LL ≥
⌊
Jij
LL

2

⌋
and nij

HL ≤
⌊
Jij
HL

2

⌋
, nij

HH ≤
⌈
Jij
HH

2

⌉
. For the

jobsets JLL and JHH this is immediate. Now, let us consider the jobset J ij
LH (the

other case is symmetric). If we are in the symmetric case, the algorithm assigns
all these jobs to i. Otherwise, the algorithm computes the canonical optimum

on JLHHL. Suppose that nij
LH < �J

ij
LH

2 �. Optimality implies that machine i gets

at least one H job from the set J ij
HL. But then the allocation is not canonical

(nor optimal) since Rule 2 of Definition 7 can be applied. Therefore we obtain

ni
L ≥

⌈
J ij
LH

2

⌉
+

⌊
J ij
LL

2

⌋
, ni

H ≤
⌈
J ij
HH

2

⌉
+

⌊
J ij
HL

2

⌋
. (7)

Second, observe that if the type of machine i flips from ti to t̂i, then |Ĵ ij
ᾱβ | = |J

ij
αβ |

(here L̄ = H and H̄ = L). Applying (7) for both ti, t̂i and using the last identity,
we finally obtain (2).

4 Lower Bounds and Separation Results

The next theorem says that truthful-in-expectation mechanisms are provably
more powerful than universally truthful mechanisms. Indeed, for this problem
version, exact truthful-in-expectation mechanism exist for any number of ma-
chines (see Theorem 3)

Theorem 17. No universally truthful mechanism can achieve an approximation
factor better than 31/30 for scheduling on two machines, even for the case of
identical partitions.

The proof combines the idea of the lower bound by Lavi and Swamy [10] with the
use of Yao’s Min-Max Principle suggested by Mu’alem and Schapira [14]. The
above bounds can be strengthen by considering three-values domains (which are
no-longer “single-bit”).

Theorem 18. For two machines and the case in which the processing times
can take three values, no (deterministic) truthful mechanism can achieve an
approximation factor better than 2. Moreover, no randomized universally truthful
mechanism can achieve and approximation factor better than 9/8.

The first part is an alternative proof for the lower bound of 2 for two machines,
first showed by Nisan and Ronen in [15]. The proof in [15] requires that the
input domain consists of at least 4 different values. Here, we extend the proof
in order to hold even when the domain consists of only 3 different values. The
second part adapts this proof via Yao’s Min-Max Principle.
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5 Conclusion

This work leaves several open questions. First of all, we are able to derive mecha-
nisms for an arbitrary number of machines only in one case (identical partitions).
Second, exact truthful-in-expectation mechanisms for two machines are given
only for uniform partitions. Is it possible to extend the result to more general
cases, like (1) any number of machines with uniform partitions, or (2) two ma-
chines with unrestricted given partitions? Finally we note that the lower bound
of 2 for three-values domains does not consider jobs’ partitions (as our upper
bounds do) and thus it would be natural/interesting to prove a lower bound for
three-values domains with given partitions.
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Abstract. We revisit the complexity of deciding, given a (finite) strate-
gic game, whether Nash equilibria with certain natural properties exist;
such decision problems are well-known to be NP-complete [2, 6, 10].
We show that this complexity remains unchanged when all utilities are
restricted to be 0 or 1; thus, win-lose games are as complex as general
games with respect to such decision problems.

1 Introduction

Among the most fundamental problems in Algorithmic Game Theory are those
concerning the Nash equilibria [13, 14] of a strategic game: states where no player
could unilaterally deviate to improve her utility. Such algorithmic problems,
including their decision, search and approximation variants, have been studied
extensively in the last few years — see, e.g., [1–8, 11]. The fundamental theorem
of Nash [13, 14] that Nash equilibria are guaranteed to exist makes the search
problem for Nash equilibria total, which implies that the search problem is not
NP-complete unless NP = co-NP [12, Theorem 2.1].

In a wake of breakthrough results on search problems about Nash equilib-
ria, it has been shown [3, 8] that computing or approximating (additively) a
Nash equilibrium even for two-player games with rational utilities is complete
for PPAD [15], a complexity class capturing the computation of discrete fixed
points; ditto for multiplicative approximation [7].

Abbott et al. [1] present a polynomial time reduction, specifically a Nash-
homomorphism, mapping a two-player game with rational utilities to a two-
player win-lose game where all utilities are 0 or 1; the Nash homomorphism
comes with a polynomial time map which guarantees (i) to return a Nash equilib-
rium for the two-player general game when presented with a Nash equilibrium
for the two-player win-lose game, so that (ii) every Nash equilibrium for the
two-player general game is returned for some Nash equilibrium of the two-player
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win-lose game (surjectivity property). Hence, the search problem for win-lose
games remains PPAD-complete.

Decision problems about Nash equilibria result naturally by twisting the
search problem in one of several simple ways that deprive it from its existence
guarantees. Here is a (non-exhaustive) list of (informally stated here, see Sec-
tion 3 for formal statements) decision problems about Nash equilibria: Given
a strategic game, does it have: (i) A Nash equilibrium where each player has
utility at least a given number? [10],(ii) A Nash equilibrium where each player
has utility at most a given number?, (iii) At least two Nash equilibria? [10],
(iv) A Nash equilibrium whose support contains a set of strategies? [10], (v) A
Nash equilibrium whose support is contained in a set of strategies? [10], (vi) A
Nash equilibrium whose support has size greater than a given number? [10], (vii)
A Nash equilibrium whose support has size smaller than a given number? [10],
(viii) A Nash equilibrium in which the total utility of players is at least a given
number? [6], (ix) A Nash equilibrium in which the total utility of players is
at most a given number?, (x) A rational Nash equilibrium (i.e., one with all
probabilities rational)? [2].

Some of these decision problems are NP-complete for symmetric two-player
games; this was originally shown by Gilboa and Zemel [10] and later by Conitzer
and Sandholm [6] via a unifying reduction from the satisfiability problem (which
covered some additional decision problems over those considered in [10]). The
last problem in the list is NP-complete even for three-player games [2] — recall
that all Nash equilibria of a two-player game are rational, so that the problem
is trivial for two-player games.

We emphasize that the polynomial time reduction (Nash-homomorphism)
from two-player games with rational utilities to two-player win-lose games [1]
does not imply that the decision problems about Nash equilibria for two-player
win-lose games have the same complexity as for two-player general games. This
is because the Nash-homomorphism provides no guarantee that any property of
the Nash equilibrium of the two-player win-lose game is preserved in the returned
(by the map) Nash equilibrium of the general two-player game.

It follows that a polynomial time reduction from an NP-hard problem to
the decision problems about Nash equilibria for two-player games (such as the
ones given in [6, 10]) composed with the Nash-homomorphism from two-player
games to two-player win-lose games in [1] does not suffice to provide a polynomial
time reduction from the same NP-hard problem to the decision problems about
Nash equilibria for two-player win-lose games. Thus, the complexity of decision
problems about Nash equilibria for two-player win-lose games has remained open.

In this work, we settle the complexity of the natural decision problems about
Nash equilibria previously considered in [6, 10] (or introduced here) for win-lose
games. Specifically, we show, as our main result, that these decision problems are
NP-complete for two-player win-lose games (Theorem 2). In a similar vein, the
decision problem asking whether a given game has a rational Nash equilibrium [2]
is shown NP-complete for three-player win-lose games (Theorem 3). Thus, these
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decision problems about Nash equilibria have the same complexity for win-lose
games as for general games.

To show our results (Theorems 2 and 3), we first prove a significant milestone,
which we describe. Say that a game has the positive utility property if each
player has always a response to the choices of the other players that makes her
utility greater than zero. Note that for two-player win-lose games, the positive
utility property implies that the utility matrix of the row player (resp., column
player) cannot have a column (resp., row) containing only zeros. We revisit the
decision problem from [2] asking whether a given game has the same set of Nash
equilibria with a gadget game, and additionally we assume that the gadget
game has the positive utility property; we show that, when restricted to win-lose
games, this problem is co-NP-hard for any choice of a win-lose gadget game
(with the positive utility property) (Theorem 1).

Theorem 1 is the backbone technical result in the paper; its proof utilizes a re-
duction from the satisfiability problem, which establishes that the unsatisfiability
of a given formula is equivalent with the fact that the constructed win-lose game
does not have a Nash equilibrium with properties opposite to those possessed by
the Nash equilibria of the gadget game (Proposition 1), while the satisfiability
of the formula always guarantees the existence of at least one Nash equilibrium
with some particular properties which are independent from both the formula
and the gadget game (i.e., they hold a priori as a feature of the reduction)
(Proposition 2). This implies, in particular, that deciding whether the two win-
lose games have the same set of Nash equilibria is co-NP-hard (Theorem 1),
improving [2, Theorem 1] which applies to general two-player games.

The reduction used for the proof of Theorem 1 constitutes a major improve-
ment over previous reductions from the satisfiability problem in [2, 6] to yield
a win-lose game (rather than a general game) while preserving the relation
between its Nash equilibria and the satisfiability of the formula.

Moreover, by suitable choices of the gadget game so that the properties pos-
sessed by its Nash equilibria dismatch the properties of the Nash equilibria in-
duced when the formula is satisfiable, particular NP-hardness results follow
(Theorems 2 and 3). These results extend the corresponding results from [6, 10]
which apply to two-player symmetric games with rational utilities.

For example, choosing the gadget game as a two-player win-lose game where
each player has a single strategy and all utilities are 1 implies that a handful of
properties are NP-hard to decide for two-player, win-lose games (Theorem 2).
Choosing the gadget game as a three-player win-lose game with a single irra-
tional Nash equilibrium implies that deciding the existence of a rational Nash
equilibrium is NP-hard for three-player win-lose games (Theorem 3).

2 Framework

A (strategic) game is a triple SG = 〈[r], {Σi}i∈[r], {Ui}i∈[r]〉, where: (i) [r] =
{1, . . . , r} is a finite set of players with r ≥ 2, and (ii) for each player i ∈
[r], Σi is the set of strategies for player i, and Ui is the utility function



40 V. Bilò and M. Mavronicolas

Ui : ×k∈[r]Σk → R for player i. A win-lose game is a game SG such that
for each player i ∈ [r], Ui : ×k∈[r]Σk → {0, 1}. For each player i ∈ [r], denote
Σ−i = ×k∈[r]\{i}Σk; denote Σ = ×k∈[r]Σk. For each integer r ≥ 2, denote as
r-SG the set of r-player games; so, SG =

⋃
r≥2 r-SG is the set of all strategic

games. A profile is a tuple s of r strategies, one for each player. For a profile
s, the vector U(s) = 〈U1(s), . . . ,Ur(s)〉 is called the utility vector. A partial
profile s−i is a tuple of r − 1 strategies, one for each player other than i; so
s−i ∈ Σ−i. For a profile s and a strategy ti ∈ Σi of player i, denoted as s−i � ti
the profile obtained by substituting ti for si in s.

A mixed strategy for player i ∈ [r] is a probability distribution σi on her
strategy set Σi: a function σi : Σi → [0, 1] such that

∑
s∈Σi

σi(s) = 1. Denote
as Supp(σi) the set of strategies s ∈ Σi such that σi(s) > 0. The mixed strategy
σi : Σi → [0, 1] is rational if all values of σi are rational numbers. A mixed
profile σ = (σi)i∈[r] is a tuple of mixed strategies, one for each player. A partial
mixed profile σ−i is a tuple of r−1 mixed strategies, one for each player other
than i. For a mixed profile σ and a mixed strategy τi of player i ∈ [r], denote
as σ−i � τi the mixed profile obtained by substituting τi for σi in σ. A mixed
profile is rational if all of its mixed strategies are rational. So, a profile is the
degenerate case of a mixed profile where all probabilities are either 0 or 1. A
mixed profile σ induces a probability measure Pσ on the set of profiles in the
natural way. Say that the profile s is enabled, and write s ∼ σ, in the mixed
profile σ if Pσ(s) > 0; note that for a profile s, Pσ(s) =

∏
k∈[r] σk(sk). Under

the mixed profile σ, the utility of each player becomes a random variable. So,
associated with the mixed profile σ is the expected utility for each player
i ∈ [r], denoted as Ui(σ) and defined as the expectation according to Pσ of her
utility for a profile s enabled in the mixed profile σ; so, Ui(σ) = Es∼σ (Ui (s)) =∑

s∈Σ(SG) Pσ(s) · Ui(s) =
∑

s∈Σ(SG)

(∏
k∈[r] σk(sr)

)
· Ui(s).

A pure Nash equilibrium, is a profile s ∈ Σ such that for each player i ∈ [r]
and for each strategy ti ∈ Σi, Ui (s) ≥ Ui (s−i � ti). A best-response for player
i in σ is a pure strategy t ∈ Σi such that Ui(σ−i � t) ≥ Ui(σ−i � s) for each
s ∈ Σi. A mixed Nash equilibrium, or Nash equilibrium for short, is a
mixed profile σ such that for each player i ∈ [r] and for each mixed strategy τi,
Ui(σ) ≥ Ui(σ−i�τi). Denote as NE(SG) the set of Nash equilibria for a strategic
game SG. We shall later use the following basic property:

Lemma 1. A mixed profile σ is a Nash equilibrium if and only if for each player
i ∈ [r], (i) for each pair of strategies si, ti ∈ Supp(σi), Ui(σ−i�si) = Ui(σ−i�ti),
(ii) for each strategy ti ∈ Supp(σi), Ui(σ) = Ui(σ−i � ti), and (iii) for each pair
of strategies si ∈ Supp(σi) and ti �∈ Supp(σi), Ui(σ−i � si) ≥ Ui(σ−i � ti).

Given two mixed profiles σ and σ̂, define Diff(σ, σ̂) := {i ∈ [r] : σi �= σ̂i} as the
set of players playing different mixed strategies in σ and σ̂. A Nash equilibrium
σ is Strong if for each mixed profile σ̂ such that Ui(σ̂) > Ui(σ) for some
i ∈ [r], it holds Uj(σ̂) ≤ Uj(σ) for some j ∈ Diff(σ, σ̂). A Nash equilibrium σ is
Pareto-Optimal if for each mixed profile σ̂ such that Ui(σ̂) > Ui(σ) for some
i ∈ [r], it holds Uj(σ̂) < Uj(σ) for some j ∈ [r].
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3 Statement of Results and Related Work

This section collects together the formal statements of (i) the various decision
problems we shall consider, all in the style of Garey and Johnson [9] where I. and
Q. stand for Instance and Question, respectively, and (ii) the main results
(Theorems 1, 2 and 3). It concludes with a summary of known results.

MAXIMUM UTILITY
I.: A game SG and a number u.
Q.: Is there a Nash equilibrium σ s.t. for each player i ∈ [r], Ui(σ) ≥ u?

MINIMUM UTILITY
I.: A game SG and a number u.
Q.: Is there a Nash equilibrium σ s.t. for each player i ∈ [r], Ui(σ) ≤ u?

∃ SECOND NASH
I.: A game SG.
Q.: Does SG have at least two Nash equilibria?

NASH IN A SUBSET
I.: A game SG, and a subset of strategies Ti ⊆ Σi for each player i ∈ [r].
Q.: Is there a Nash equilibrium σ s.t. for each player i ∈ [r], Supp(σi) ⊆ Ti?

A SUBSET IN NASH
I.: A game SG, and a subset of strategies Ti ⊆ Σi for each player i ∈ [r].
Q.: Is there a Nash equilibrium σ s.t. for each player i ∈ [r], Ti ⊆ Supp(σi)?

NASH MAXIMUM SUPPORT
I.: A game SG and an integer k ≥ 1.
Q.: Is there a Nash equilibrium σ s.t. for each player i ∈ [r], |Supp(σi)| ≥ k?

NASH MINIMUM SUPPORT
I.: A game SG and an integer k ≥ 1.
Q.: Is there a Nash equilibrium σ s.t. for each player i ∈ [r], |Supp(σi)| ≤ k?

MAXIMUM TOTAL UTILITY
I.: A game SG and a number u.
Q.: Is there a Nash equilibrium σ s.t.

∑
i∈[r] Ui(σ) ≥ u?

MINIMUM TOTAL UTILITY
I.: A game SG and a number u.
Q.: Is there a Nash equilibrium σ s.t.

∑
i∈[r] Ui(σ) ≤ u?

∃ PARETO OPTIMAL NASH
I.: A game SG.
Q.: Is there a Pareto Optimal Nash equilibrium?

∃ NON-PARETO OPTIMAL NASH
I.: A game SG.
Q.: Is there a non-Pareto Optimal Nash equilibrium?

∃ STRONG NASH
I.: A game SG.
Q.: Is there a Strong Nash equilibrium?
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∃ NON-STRONG NASH
I.: A game SG.
Q.: Is there a non-Strong Nash equilibrium?

Clearly, restricted to two-player games with rational utilities, all these decision
problems belong to NP . We shall start with two milestone decision problems

related to the notion of Nash-equivalence: Two strategic games ŜG and SG

are Nash-equivalent [2] if NE(ŜG) = NE(SG): they have the same set of Nash
equilibria. This leads to the following decision problem [2]:

NASH-EQUIVALENCE

I.: Two games ŜG and SG from r-SG, for some integer r ≥ 2.

Q.: Are ŜG and SG Nash-equivalent?

For a fixed game ŜG, called the gadget game, a parameterized restriction of
NASH-EQUIVALENCE with a single input (the game SG) results to the following
decision problem [2]:

NASH-EQUIVALENCE(ŜG)

I.: A game SG from r-SG (where ŜG is from r-SG).
Q.: Are ŜG and SG Nash-equivalent?

So, NASH-EQUIVALENCE(ŜG)≤PNASH-EQUIVALENCE. It has been shown that

NASH-EQUIVALENCE(ŜG) is co-NP-hard [2, Theorem 1]; hence, so is NASH-
EQUIVALENCE. A strategic game SG satisfies the positive utility property if
for each player i ∈ [r] and each partial pure profile s−i ∈ Σ−i, there is a strategy
t(s−i) ∈ Σi for which Ui(s−i � t(s−i)) > 0.
The main results follow:

Theorem 1. Fix a win-lose game ŜG with the positive utility property. Then,

restricted to win-lose games, NASH-EQUIVALENCE(ŜG) is co-NP-hard.

By suitable choices for the gadget game ŜG, the Nash-equivalence of the given

game SG to the gadget game ŜG becomes equivalent to the fact that SG does
not have a Nash equilibrium with certain properties. Since deciding the Nash-
equivalence is co-NP-hard, we obtain:

Theorem 2. Restricted to two-player win-lose games, the following decision
problems are NP-complete:

Group I Group II

MINIMUM UTILITY MAXIMUM UTILITY
NASH MAXIMUM SUPPORT NASH MINIMUM SUPPORT
MINIMUM TOTAL UTILITY MAXIMUM TOTAL UTILITY
∃ SECOND NASH
NASH IN A SUBSET
A SUBSET IN NASH
∃ NON-PARETO OPTIMAL NASH
∃ NON-STRONG NASH
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NP-complete for Two-player

Problem Games Symmetric Games Win-lose Games

NASH-EQUIVALENCE(ŜG) [2] ? Theorem 1

NASH-EQUIVALENCE [2] ? Theorem 1

MAXIMUM UTILITY ⇐ [6, 10] Theorem 2

MAXIMUM TOTAL UTILITY ⇐ [6] Theorem 2

MINIMUM UTILITY ⇐ ? Theorem 2

MINIMUM TOTAL UTILITY ⇐ ? Theorem 2

∃ SECOND NASH ⇐ [6, 10] Theorem 2 & [5]

NASH IN A SUBSET ⇐ [6, 10] Theorem 2

A SUBSET IN NASH ⇐ [6, 10] Theorem 2

NASH MAXIMUM SUPPORT ⇐ [6, 10] Theorem 2

NASH MINIMUM SUPPORT ⇐ [10] Theorem 2

∃ STRONG NASH ⇐ [6] ?

∃ NON-STRONG NASH ⇐ ? Theorem 2

∃ PARETO-OPTIMAL NASH ⇐ [6] ?

∃ NON-PARETO-OPTIMAL NASH ⇐ ? Theorem 2

NASH-REDUCTION(ŜG) [2] ? ?

NASH-REDUCTION [2] ? ?

NP-complete for Three-player

Problem Games Symmetric Games Win-lose Games

∃ RATIONAL NASH [2] ? Theorem 3

∃ IRRATIONAL NASH* [2] ? ?

Fig. 1. Summary of results and comparison to previous work. The symbol ”?” indicates
that the NP-hardness of the corresponding decision problem remains open. (*: The
problem ∃ IRRATIONAL NASH was only shown to be NP-hard [2].) An arrow ⇐ in the
column for two-player (general) games indicated that the result follows immediately
from the corresponding result in some of the other two columns.

Group I and Group II include decision problems whose proof of NP-hardness
will use the two-player win-lose gadget games ŜG1 and ŜGn, respectively.

Theorem 3. Restricted to three-player win-lose games, ∃ RATIONAL NASH is
NP-complete.

Figure 1 provides a tabular summary of our results in direct comparison to
previous results. Roughly speaking, our results extend almost all previous NP-
completeness results for decision problems about Nash equilibria in two-player
symmetric games [6, 10] (resp., three-player general games) to two-player win-
lose games (resp., three-player win-lose games).

4 Proofs

Theorem 1:
Given an instance φ of 3-SAT with n = |V(φ)| ≥ 5 and an r-player win-lose

gadget game ŜG with the positive utility property, construct (in polynomial

time) the r-player win-lose game SG(φ) =
〈
[r], {Σi}i∈[r] , {Ui}i∈[r]

〉
as follows:
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For each player i ∈ [2], Σi := Σ̂i ∪ L(φ) ∪ C(φ) ∪ V; for each player i ∈ r \ [2],
Σi := Σ̂i ∪ {δ}, where each strategy in Σ̂i with i ∈ [r] is inherited from the

gadget game ŜG, L(φ) and C(φ) are strategies coming from the formula φ, while
V = {vi,j : 0 ≤ i, j < n and i �= j} and δ are special strategies needed to

force each Nash equilibrium σ ∈ NE(SG(φ)) \ NE(ŜG) to have some desired
properties. Players 1 and 2 are special; they are the only players whose sets of
strategies are influenced by the formula φ.

Fix a profile s = 〈s1, . . . , sr〉 from Σ = Σ1 × . . . × Σr. Use s to partition [r]

into P̂(s) = {i ∈ [r] | si ∈ Σ̂i} and P(s) = {i ∈ [r] | si �∈ Σ̂i}; loosely speak-

ing, P̂(s) and P(s) are the sets of players choosing and not choosing strategies

inherited from ŜG, respectively. We use c to denote a generic clause belonging
to C(φ) and either 
 or 
, eventually indexed with constants or variables in the
set In := {0, 1, . . . , n− 1}, to denote a generic literal in L(φ). Moreover, all the
arithmetic operations defined on In are taken modulo n. Finally, we denote as π
a permutation on [r]. The utility vector U(s) is depicted in Figure 2. For brevity,

Case Condition on the profile s = 〈s1, s2, . . . , sr〉 Utility vector U(s)

(1) s = 〈�, �, δ, . . . , δ〉 〈0, 0, 1, . . . , 1〉
(2) s = 〈�i, �j , δ, . . . , δ〉 with (j = i ∧ �i �= �j) ∨ j = i+ 1 〈1, 0, 1, . . . , 1〉
(3) s = 〈�i, �j , δ, . . . , δ〉 with j = i+ 2 ∨ j = i+ 3 〈0, 1, 1, . . . , 1〉
(4) s = 〈�i, �j , δ, . . . , δ〉 with j /∈ {i, i+ 1, i+ 2, i+ 3} 〈0, 0, 1, . . . , 1〉
(5) s = 〈vij , �k, δ, . . . , δ〉 with k ∈ {i, j} 〈1, 0, 1, . . . , 1〉
(6) s = 〈c, �, δ, . . . , δ〉 with � ∈ c 〈1, 0, 1, . . . , 1〉
(7) For each i ∈ [r], si ∈ Σ̂i Û(〈s1, . . . , sr〉)
(8) |P̂(s)| > 1 and |P(s)| > 0 Ui(s) = 1 if i ∈ P̂(s)

Ui(s) = 0 if i ∈ P(s)

(9) P̂(s) = {i} with i ∈ [r] \ [2] Ui(s) = 1
Uj �=i(s) = 0

(10) P̂(s) = {i} with i ∈ [2] Ui(s) = 1

and s[2]\{i} ∈ {�0, �0, �1, �1} ∪ C(φ) ∪ V Uj �=i(s) = 0

(11) s = π(t), where t falls in one of π (U(t))
the Cases (1) through (10)

(12) None of the above 〈0, . . . , 0〉

Fig. 2. Utility functions for the game SG(φ)

we shall also write SG, L and C for SG(φ), L(φ) and C(φ). We first prove two sig-
nificant properties of the game SG which come from the definition of the utility

functions and the positive utility property of the gadget game ŜG.

Lemma 2. Let σ be a mixed strategy profile of SG such that Supp(σi) ⊆ Σ̂i for
some i ∈ [r]. Then, for any [r] � j �= i, the set of best-responses for player j in

σ is contained in Σ̂j.
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Lemma 3. Let σ be a mixed strategy profile of SG such that Supp(σi) ⊆ Σ̂i∪C∪V
for some i ∈ [2]. Then, the set of best-responses for player j = [2] \ {i} in σ is

contained in Σ̂j.

We first prove that the only Nash equilibria for SG in which one of the players
only plays strategies inherited from the gadget game are those belonging to

NE(ŜG); the proof uses Lemma 2.

Lemma 4. NE(ŜG) ⊆ NE(SG) and there is no Nash equilibrium σ ∈ NE(SG)\
NE(ŜG) such that Supp(σi) ⊆ Σ̂i for some player i ∈ [r].

For a given mixed profile σ, we denote as σi(L), σi(C ∪ V) and σi(Σ̂i), the

total probability that player i puts on strategies belonging to L, C ∪ V and Σ̂i,
respectively. Using Lemma 3, we prove that in a Nash equilibrium σ ∈ NE(SG)\
NE(ŜG), both special players play some literal with positive probability.

Lemma 5. In a Nash equilibrium σ ∈ NE(SG) \ NE(ŜG), σ1(L) · σ2(L) > 0.

Next, we prove that in a Nash equilibrium σ ∈ NE(SG)\NE(ŜG), the two special
players play each pair of literals 
 and 
 with the same positive probability.

Lemma 6. In a Nash equilibrium σ ∈ NE(SG) \ NE(ŜG), it holds that σi(
) +
σi(
) = σi(L)/n > 0 for any i ∈ [2] and for any 
 ∈ L.

Next, we prove that in a Nash equilibrium σ ∈ NE(SG) \ NE(ŜG), all the non-
special players adopt δ as a pure strategy.

Lemma 7. In a Nash equilibrium σ ∈ NE(SG)\NE(ŜG), it holds that σi(δ) = 1
for each player i ∈ [r] \ [2].

As a consequence of Lemma 7, the utility of the two special players in either σ
and σ−i � s, for any s ∈ Σi and i ∈ [2], are entirely determined by their chosen
strategies. So, henceforth, we shall only focus on the strategies adopted by the

two special players when considering Nash equilibria in the setNE(SG)\NE(ŜG).
We continue to refine the conditions satisfied by a Nash equilibrium by show-

ing that, in a Nash equilibrium other than the ones inherited from the gadget
game, no special player puts positive probability on strategies from C ∪ V.

Lemma 8. In a Nash equilibrium σ ∈ NE(SG) \ NE(ŜG), it holds that σi(C ∪
V) = 0, for each special player i ∈ [2].

Next step is to prove that in each Nash equilibrium other than those inherited
from the gadget game, both special players only play literals.

Lemma 9. In a Nash equilibrium σ ∈ NE(SG) \NE(ŜG), it holds that σi(L) =
1, for each special player i ∈ [2].

The next claim, combined with Lemma 6, shows that a Nash equilibrium other
than those inherited from the gadget game induces an assignment for φ.
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Lemma 10. In a Nash equilibrium σ ∈ NE(SG) \NE(ŜG), it holds that σ1(
) ·
σ2(
) = 0, for any 
 ∈ L.

Corollary 1. In a Nash equilibrium σ ∈ NE(SG) \ NE(ŜG), it holds that
U1(σ) = U2(σ) = 2/n.

As a consequence of Lemmas 6 and 10, we have the following corollary.

Corollary 2. In a Nash equilibrium σ ∈ NE(SG) \ NE(ŜG), both players uni-
formly randomizes over the same assignment for φ.

Proposition 1. Fix a win-lose game ŜG with the positive utility property and

an instance φ of 3-SAT. If φ is unsatisfiable, then it holds NE(SG) = NE(ŜG).

Proposition 2. Fix a win-lose game ŜG with the positive utility property and
an instance φ of 3-SAT with n = |V(φ)|. If φ is satisfiable, then SG has a

Nash equilibrium σ ∈ NE(SG) \ NE(ŜG) such that for each i ∈ [2], it holds

(i) |Supp(σi)| = n, (ii) Ui(σ) = 2/n, (iii) Supp(σi) ∩ Σ̂i = ∅, (iv) σi(s) = 1/n
for each s ∈ Supp(σi). Moreover if φ is satisfiable with vj set to true for some

j ∈ In, SG has a Nash equilibrium σ ∈ NE(SG) \ NE(ŜG) such that for each
i ∈ [2], (v) it holds 
j ∈ Supp(σi).

Since ŜG satisfies the positive utility property, then, by Propositions 1 and 2,

it holds NE(SG) �= NE(ŜG) if and only if φ is satisfiable. So, SG and

ŜG are Nash-equivalent if and only if φ is unsatisfiable. Hence, 3-SAT ≤P

NASH-EQUIVALENCE(ŜG) and NASH-EQUIVALENCE(ŜG) is co-NP-hard.
Theorem 2:

Define ŜG1 as the two-player win-lose game in which both players have exactly

one strategy and all utilities are 1. Since ŜG1 trivially satisfies the positive utility
property, it follows by Proposition 1 that if φ is unsatisfiable then SG has a unique
Nash equilibrium σ̂ which is pure, Pareto-Optimal, Strong and has Ui(σ̂) = 1
for each i ∈ [2].

By Propositions 1 and 2, there is a Nash equilibrium σ ∈ NE(SG) \NE(ŜG1)
if and only if φ is satisfiable, thus showing NP-hardness of ∃ SECOND NASH.

By property (i) of Proposition 2, it follows that if φ is satisfiable, then for
any 1 ≤ k ≤ n, SG has a Nash equilibrium σ such that |Supp(σi)| ≥ k for each
player i ∈ [2]. Hence, for any 2 ≤ k ≤ n, SG has a Nash equilibrium σ such that
|Supp(σi)| ≥ k for each player i ∈ [2] if and only if φ is satisfiable, thus showing
NP-hardness of NASH MAXIMUM SUPPORT.

The arguments for MINIMUM UTILITY, MINIMUM TOTAL UTILITY, NASH
IN A SUBSET, A SUBSET IN NASH, ∃ NON-PARETO-OPTIMAL NASH and ∃
NON-STRONG NASH are deferred to the Appendix.

Given a positive integer n, define ŜGn as the two-player win-lose game in which
both players have the same set of strategies {s0, . . . , sn−1} and U1(s) = 1 if and
only if s = 〈si, si〉, while U2(s) = 1 if and only if s = 〈si, si+1〉, where addition
is taken modulo n; so player 1 wins if the two players concur while player 2 wins
if the two players choose successive strategies (with player 2 following).
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Proposition 3. ŜGn satisfies the positive utility property and has a unique Nash
equilibrium in which both players play all the strategies with probability 1

n and
achieve expected utility equal to 1

n .

For any instance φ of 3-SAT with |V(φ)| ≥ 5, consider the gadget game ŜGh for

some h > n. Since ŜGh satisfies the positive utility property, it follows by Propo-
sitions 1 and 3 that if φ is unsatisfiable, then SG has a unique Nash equilibrium
σ̂ such that for each i ∈ [2] it holds Ui(σ̂) =

1
h and |Supp(σi)| = h.

By property (i) of Proposition 2, it follows that if φ is satisfiable, then for
any n ≤ k ≤ h, SG has a Nash equilibrium σ such that |Supp(σi)| ≤ k for each
player i ∈ [2]. Hence, for any n ≤ k < h, SG has a Nash equilibrium σ such that
|Supp(σi)| ≤ k for each player i ∈ [2] if and only if φ is satisfiable, thus showing
NP-hardness of NASH MINIMUM SUPPORT. The arguments for MAXIMUM
UTILITY and MAXIMUM TOTAL UTILITY are deferred to the Appendix.

Theorem 3:

Define ŜG2 as the gadget game in which there are three players, the set of
strategies for players 1 and 2 is {0, 1}, the set of strategies for player 3 is {0, 1, 2}
and the utility functions are defined as follows:

Profile s Utility vector Û(s) Profile s Utility vector Û(s)

〈0, 0, 0〉 〈1, 0, 1〉 〈1, 0, 0〉 〈0, 0, 1〉
〈0, 0, 1〉 〈1, 1, 0〉 〈1, 0, 1〉 〈0, 1, 1〉
〈0, 0, 2〉 〈0, 1, 0〉 〈1, 0, 2〉 〈1, 0, 0〉
〈0, 1, 0〉 〈0, 1, 0〉 〈1, 1, 0〉 〈1, 1, 0〉
〈0, 1, 1〉 〈1, 0, 0〉 〈1, 1, 1〉 〈0, 0, 1〉
〈0, 1, 2〉 〈0, 0, 1〉 〈1, 1, 2〉 〈1, 1, 0〉

Proposition 4. ŜG2 satisfies the positive utility property and has only one Nash
equilibrium which is irrational.

Since ŜG2 satisfies the positive utility property and has only irrational Nash
equilibria, it follows from Proposition 1 that if φ is unsatisfiable, then SG only
admits irrational Nash equilibria. Conversely, from property (iv) of Proposition 2
it follows that if φ is satisfiable, then SG admits a rational Nash equilibrium.
Hence, SG admits a rational Nash equilibrium if and only if φ is satisfiable.

5 Epilogue

We have shown that win-lose games are as hard as general games with respect to
(all but four of) the decision problems about Nash equilibria that were previously
considered in [2, 6, 10]. Our result complements the result of Abbott et al. [1]
that win-lose games are as hard as general games with respect to the search
problem for a Nash equilibrium.

Our work leaves open several interesting problems. The most obvious open
problem is whether the decision problems ∃ PARETO-OPTIMAL NASH, ∃
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STRONG NASH and NASH-REDUCTION (resp., ∃ IRRATIONAL NASH) are still
NP-hard for two-player (resp., three-player) win-lose games.

Win-lose (two-player) games and symmetric (two-player) games are individ-
ually hard, as shown in this paper and in [6], respectively. Perhaps the most
interesting problem left open is whether symmetric, win-lose (two-player) games
are still as hard as general games with respect to the decision problems.

References

1. Abbott, T., Kane, D., Valiant, P.: On the Complexity of Two-Player Win-Lose
Games. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Sciences, pp. 113–122 (October 2005)
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Abstract. For any transferable utility game in coalitional form with
a nonempty core, we show that that the number of blocks required to
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is at most n− 1, where n is the number of players. This bound exploits
the geometry of the core and is optimal. It considerably improves the
upper bounds found so far by Kóczy [7], Yang [13, 14] and a previous
result by ourselves [2] in which the bound was n(n− 1)/2.

1 Introduction

1.1 Preliminaries

TU Games. We consider cooperative games with transferable utility (TU-
games for short). Formally, a TU-game is a pair (N, v) where

– N = {1, . . . , n} is a nonempty finite player set ;
– v : 2N −→ R is a real-valued function such that v(∅) = 0.

A nonempty subset S of N is called a coalition and s stands for its cardinality.
The real number v(S) is interpreted as the worth of coalition S, i.e. the value
generated by players of S when they cooperate without the help of players in
N\S. The set N is called the grand coalition.
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An allocation x ∈ Rn on N is an n-dimensional vector giving a payoff xi ∈ R

to each player i ∈ N . We state: x(S) =
∑

i∈S xi.
An allocation x ∈ Rn is efficient if x(N) = v(N), individually rational if

xi ≥ v({i}) for each i ∈ N . The two properties above can be seen as the minimal
requested for an acceptable allocation. The set of efficient allocations is denoted
by E(N, v). An individually rational and efficient allocation is referred to as an
imputation. The (possibly empty) set of imputations is denoted by I(N, v) ⊆
E(N, v).

The Core. Let Γ be the class of all finite TU-games. A solution on Γ is a
function F which assigns to each (N, v) ∈ Γ a set of allocations F (N, v). The
most famous solution for TU-games is the core introduced by Gillies [5]. The core
is the solution C on Γ that assigns to each TU-game (N, v) ∈ Γ the possibly
empty set C(N, v) of all efficient and stable allocations, i.e.

C(N, v) =
{
x ∈ E(N, v) : ∀S ∈ 2N , x(S) ≥ v(S)

}
.

Note that the core is a subset of the set of imputations. We denote by Γ c the
class of all TU-games with a nonempty core. In the rest of the article we only
consider the class Γ c. The core can be also defined using the notions of block
and dominance.

Given an allocation x ∈ Rn and a coalition S, xS denotes the restriction of x
to S. For two allocations x, y ∈ Rn, we write xS < yS if xi < yi for each i ∈ S
and xS ≤ yS if xi ≤ yi for each i ∈ S but xS �= yS.

Definition 1. Assume that there exists a non empty coalition S ∈ 2N and two
efficient allocations x and y of E(N, v) such that both x(S) < y(S) ≤ v(S)
and xS ≤ yS (resp. xS < yS). In such a case, we say that S weakly (resp.
strongly) blocks x, and that y weakly dominates x (resp. y strongly dominates x)
via coalition S, and we denote this relation by x  S y (resp. x ≺S y). We write
x  y (resp. x ≺ y) if there exists a coalition S such that x  S y (resp. x ≺S y)
and say that y weakly (resp. strongly) dominates x.

The strong dominance relation indicates that it is in the interest of all players in
S to switch from x to y, while the weak dominance relation only imposes that
the payoff of no player in S is reduced when moving from x to y and at least
one of them is strictly better off. In the rest of the article, and with the notable
exception of section 3, we will use the weak dominance relation.

Let x be an efficient allocation that lies out of the core. There necessarily
exists an efficient allocation y such that x(S) < y(S) ≤ v(S). Thus, coalition
S can propose to replace x by y. For instance, y can be any efficient allocation
such that yi = xi + (v(S)− x(S))/s for each i ∈ S, which makes every member
of S strictly better off than in x. Thus, the players of S can threaten to split
from the grand coalition since x ≺S y. In a sense x fails to ensure the stability
of the grand coalition. Such a situation cannot arise if x is a core allocation.
Hence, the core can also be defined as the set of efficient allocations which are
not (strongly or weakly) dominated i.e.
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C(N, v) =
{
x ∈ E(N, v) : ∀y ∈ E(N, v),¬(x  y)

}
.

In other words, the maximal elements of the dominance relations over E(N, v)
coincide with the core allocations. As such, the core satisfies the internal stability
property: elements of the core are not comparable under the weak or strong
dominance relation. Nevertheless, the core is often criticized on two aspects.
Firstly, it does not account for every imputation it excludes. More specifically, the
core does not necessarily satisfy the external stability property: an imputation
out of the core is not always dominated by an imputation of the core. Shapley [11]
has proved the external stability for the class of convex TU-games.1 Secondly,
Harsanyi [6] and Chwe [3] consider that this solution concept is too myopic
because it neglects the effect of successive blocks. Harsanyi [6] introduces a new
indirect dominance relation, which consists of a chain of blocks, in order to cope
with these lacks.

A weak weak (resp. strong) chain of blocks is a finite sequence (x0, x1, . . . , xm)
of efficient allocations such that, for each k = 0, . . . ,m−1, it holds that xk  xk+1

(resp. xk ≺ xk+1). The number m of allocations in the chain is called its length.
An allocation y indirectly weakly (resp. strongly) dominates an allocation x
if there exists a weak (resp. strong) chain of blocks starting at x and ending
at y. Harsanyi originally applies this indirect dominance relation to study the
von Neumann-Morgenstern stable sets (Von Neumann and Morgenstern [12]).
Sengupta and Sengupta [10] employ it to show that the core is indirectly ex-
ternally stable for the weak dominance relation: starting from any imputation
that stands outside the core, there always exists a weak chain of blocks which
terminates in the core. In other words, the core can be considered as a von
Neumann-Morgenstern stable set under the indirect weak dominance relation.

1.2 The Results

This last result has initiated the literature on the accessibility of the core, on
which the reader is referred to Bal et al. [2] and the references therein. The
central question that has appeared is to determine a upper bound on the length
of the chain of blocks needed to access the core. Several recent articles try to
answer this question and this article improves on the existing answers. We only
mention the two most recent approaches. In our previous article [2] we show
that the core of any TU-game with n players can be accessed with a weak chain
of blocks of length at most n(n − 1)/2 blocks such that each element of this
chain is an imputation. Yang [14] obtains the linear bound 2n− 1 but this result
has two drawbacks. Firstly, this bound only holds for the class of cohesive TU-
games i.e. the class of games in which no partition of the player set generates a
larger cumulated worth than the grand coalition. Secondly, even if the starting
allocation is an imputation, the other allocations in the weak chain of blocks
need not be efficient, which is rather far from the spirit of the original idea of
Harsanyi [6].

1 A TU-game is convex if for each pair of coalitions S, T ⊆ N , it holds that v(S∪T )−
v(S ∩ T ) ≥ v(S) + v(T ).
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In the present article we also obtain a linear bound: the core can be accessed
in at most n − 1 blocks. More importantly, for the first time in the literature,
we are able to prove that this bound is optimal. These results can be stated as
follows.

Theorem 1. Let (N, v) ∈ Γ c be a n-player TU-game with a nonempty core with
n ≥ 3. For each imputation x ∈ I(N, v), there exists a core element c ∈ C(N, v)
and a weak chain of blocks from x to c with length at most n− 1 and such that
each allocation of the chain is an imputation.

This bound is optimal: for each integer n ≥ 3, there exists a n-player TU-game
(N, v) ∈ Γ c with a nonempty core and an imputation x ∈ I(N, v) such that each
weak chain of blocks from x to any core allocation in C(N, v) has length at least
n− 1.

Note that in the cases n = 1 and n = 2, the accessibility of the core is trivial,
since either the set of imputations and the core coincide or the core is empty. The
proof of Theorem 1 relies on a procedure which is similar to the one introduced
by Sengupta and Sengupta [10]. In particular, both procedures share the idea
of using a core element as a reference point. Nevertheless, we introduce three
major differences detailed below.

The first difference is the choice, at each step of the chain of blocks, of the
blocking coalition. While Sengupta and Sengupta [10] choose a coalition among
the most unsatisfied coalitions with respect to the current imputation, we select
a coalition S such that the hyperplane defined by x(S) = v(S) for x ∈ Rn has
a nonempty intersection with the core. As a consequence, the geometry of the
core plays an important role in our analysis. This choice enables to simplify the
procedure introduced in Sengupta and Sengupta [10].

The second difference is that the target core allocation can vary from one block
to the next block in the weak chain of blocks while it is unique in Sengupta and
Sengupta [10]. However, all target core allocations that are used along the weak
chain of blocks have at least one common coordinate.

Thirdly, the result crucially relies on the use of the Davis-Maschler reduced-
games ([4]). The Davis-Maschler reduced-games describe situations in which all
the players agree that the left players get their core reference payoffs but continue
to cooperate with the remaining players, subject to the foregoing agreement.
The Davis-Maschler reduced-games are well known for being the basis of the
so-called reduced-game property, which states that if an allocation is prescribed
by some solution concept in a TU-game, then the restriction of this allocation
to any coalition of players is also prescribed by the solution concept in the
reduced-game associated with these coalition and allocation. Our previous article
describes connections between a game and its Davis-Maschler reduced-games. In
the current article, we explore more deeply these connections.

In [2], the first two aspects were not used while the third one was not essential
to prove the results.

Core accessibility only using strong dominances can also be investigated. To
the best of our knowledge, there does not exist any such study in the literature
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so far. This fact can be explained by our last result: the accessibility of the core
is not always possible under the strong dominance relation.

Theorem 2. For each n ≥ 3, there exists a n-player TU-game (N, v) ∈ Γ c with
a nonempty core and an imputation x ∈ I(N, v) from which the core cannot be
accessed by a strong chain of blocks.

This article proves that the optimal number of blocks required to access the core
of any n-player TU-game is n − 1. Our result provides a definitive answer to
the question of the accessibility of the core. A challenging issue is to investigate
whether this result still holds for the related concept of coalition structure core.
From Yang [14] and Bal et al. [1] we know that the number of blocks required to
access the coalition structure core is at most quadratic in the number of players.

2 Optimality under the Weak Dominance Relation

In this section, we start by stating some connections between a TU-game and
its Davis-Maschler reduced-games. These intermediary results will be used later
on to prove Theorem 1. Although the proofs are similar than in Bal et al. [2],
we give them for completeness. Secondly, we describe the procedure. Thirdly, we
prove the first part of Theorem 1, i.e. that the core of an n-player TU-game is
accessible in at most n− 1 blocks. This part is obtained as a corollary of a more
general results in which we consider efficient allocations instead of imputations.
Fourthly, we show that our bound is optimal.

2.1 Reduced-Games Equivalences

Let S ⊂ N be any coalition different from N and x ∈ E(N, v) any efficient
allocation. Davis and Maschler [4] introduce the reduced-game with respect to
S and x, denoted by (S, vS,x) and defined, for each T ⊆ S, by :

vS,x(T ) =

⎧⎨⎩
0 if T = ∅,
v(N)− x(N\S) if T = S,
maxR∈2N\S

(
v(T ∪R)− x(R)

)
otherwise.

The weak dominance relation  will be used in the Davis-Maschler reduced-
games as well. In such a case, we will specify in which game the dominance
relation is applied in order to avoid any risk of confusion.

A solution F on Γ satisfies the reduced-game property if for each (N, v) ∈ Γ ,
each nonempty coalition S ⊂ N and each x ∈ F (N, v), it holds that xS ∈
F (S, vS,x). It is well-known that the core satisfies the reduced-game property. In
fact, the reduced-game property is one of the axioms used by Peleg [8] in order
to characterize the core.

For the class Γ c of TU-games with a nonempty core, we will construct Davis-
Maschler reduced-games with respect to core allocations only. This section es-
tablishes two interesting properties of such reduced-games.



54 S. Béal, E. Rémila, and P. Solal

Let (N, v) ∈ Γ c be any TU-game with a nonempty core, S ⊂ N be any
nonempty coalition and c ∈ C(N, v) be any core allocation of (N, v). Observe
that

vS,c(S) = v(N)− c(N\S) = c(N)− c(N\S) = c(S).

The first lemma establishes connections between the sets of efficient allocations
and the cores of a TU-game and of its Davis-Maschler reduced games.

Lemma 1. Consider any (N, v) ∈ Γ c, any nonempty coalition S ⊂ N and any
c ∈ C(N, v). Pick any allocation x ∈ Rn such that xN\S = cN\S. Then

– x ∈ E(N, v) if and only if xS ∈ E(S, vS,c),
– x ∈ C(N, v) if and only if xS ∈ C(S, vS,c).

Proof. Firstly, suppose that x ∈ E(N, v). It holds that

xS(S)=x(N)−x(N\S)=v(N)−c(N\S)=c(N)−(c(N)−c(S)) = c(S) = vS,c(S),

so that xS ∈ E(S, vS,c). Conversely, suppose that xS ∈ E(S, vS,c). Since xN\S =
cN\S and xS(S) = vS,c(S) = c(S), we get

x(N) = x(S) + x(N\S) = c(S) + c(N\S) = c(N) = v(N),

proving that x ∈ E(N, v).
Secondly, suppose that x ∈ C(N, v). Since x ∈ E(N, v), we have that xS ∈

E(S, vS,c). Now, choose any coalition T ∈ 2S . It holds that:

vS,c(T ) = v(T ∪ T )− c(T ) ≤ x(T ∪ T )− c(T ) = x(T ) = xS(T ),

which means that xS is also a stable allocation in (S, vS,c). We conclude that
xS ∈ C(S, vS,c).

Conversely, suppose that xS ∈ C(S, vS,c). Since xS ∈ E(S, vS,c), we have
x ∈ E(N, v). Next, choose any coalition T ∈ 2N . The definition of vS,c and
xS ∈ C(S, vS,c) imply that

v(T ) = v((T ∩ S) ∪ (T \S))
= v((T ∩ S) ∪ (T \S))− c(T \S) + c(T \S)
≤ vS,c(T ∩ S) + c(T \S)
≤ xS(T ∩ S) + c(T \S)
= x(T ),

from which we obtain x ∈ C(N, v).

The second lemma describes the connections between the weak dominance rela-
tions in a TU-game and in its Davis-Maschler reduced games.

Lemma 2. Consider any (N, v) ∈ Γ c, any non-empty coalition S ⊂ N and any
c ∈ C(N, v). Pick any two allocations x, y ∈ E(N, v) such that xN\S = yN\S =
cN\S and a nonempty coalition T ⊂ S. Then:

x  T∪T y in E(N, v) if and only if xS  T yS in E(S, vS,c).
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Proof. Firstly, assume that x  T∪T y in E(N, v). Then x(T ∪ T ) < y(T ∪ T )
and xT∪T ≤ yT∪T . In addition, T ∈ 2N\S implies xT = yT . It follows that
x(T ) < y(T ).

Next, x  T∪T y in E(N, v) also means that y(T ∪ T ) ≤ v(T ∪ T ). Therefore,
by definition of y, we get vS,c(T ) = v(T ∪ T )− c(T ) ≥ y(T ∪ T )− c(T ) = y(T ).
We conclude that xS  T yS in E(S, vS,c).

Secondly, assume that xS  T yS in (S, vS,c). Then x(T ) < y(T ) and xT ≤ yT .
Since xT = yT by assumption, this implies that xT∪T ≤ yT∪T .

Furthermore, xS  T yS in (S, vS,c) also means that y(T ) ≤ vS,c(T ) = v(T ∪
T ) − c(T ). Thus, v(T ∪ T ) ≥ y(T ) + c(T ) = y(T ∪ T ). Therefore x  T∪T y in
E(N, v).

One directly obtains the following corollary.

Corollary 1. Consider any (N, v) ∈ Γ c, any S ⊂ N and any c ∈ C(N, v). Pick
any two allocations x, y ∈ E(N, v) such that xN\S = yN\S = cN\S. If xS  yS
in E(S, vS,c), then x  x in E(N, v).

A key-point is that this corollary does not hold if the weak dominance relation
is replaced by the strong dominance relation. This explains the differences in
term of accessibility of the core with respect to the weak and strong dominance
relations. This aspect is formally investigated in section 3.

The intermediary results in this section also raise a difficulty. Equivalent re-
sults cannot be stated if the considered allocations are imputations: it may hap-
pen that, for an imputation x ∈ I(N, v), the allocation xS is not in I(S, vS,c).
We also discuss this point latter on.

2.2 The Procedure

Consider a TU-game (N, v) ∈ Γ c. From now on, we fix an efficient allocation
x ∈ E(N, v). In order to exploit the results of the previous section, we will
exhibit an allocation which satisfies several properties. It will be used to define
the allocations along our weak chain of blocks. The construction of this allocation
relies on the following result about the geometry of C(N, v).

Let B(N, v) denote a minimal collection, with respect to set inclusion, of
coalitions in 2N\{N} such that

C(N, v) =
{
z ∈ E(N, v) : ∀S ∈ B(N, v), z(S) ≥ v(S)

}
.

Lemma 3. For each S ∈ B(N, v), there exists a core allocation c ∈ C(N, v)
such that c(S) = v(S).

Proof. First note that such a minimal collection B(N, v) trivially exists. By
way of contradiction, assume that there exists T in B(N, v) such that for each
z ∈ C(N, v) it holds that v(T ) < z(T ). Consider the set

D(N, v) = {z ∈ E(N, v) : ∀S ∈ B(N, v)\{T }, z(S) ≥ v(S)}.
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Since B(N, v) is a minimal set with respect to inclusion, we have C(N, v) ⊂
D(N, v). Hence, we can choose x ∈ D(N, v)\C(N, v). Pick also any y ∈ C(N, v).
By definition of x and y and by the initial assumption on T , we have x(T ) <
v(T ) < y(T ). Now, define

α =
v(T )− y(T )

x(T )− y(T )
,

and observe that α ∈ (0, 1). Next, construct the allocation c = αx+(1−α)y. In
particular, it holds that c(T ) = v(T ). Moreover, c belongs to D(N, v) because it
is a convex combination of two elements of the convex set C′. In addition, since
both x(S) ≥ v(S) and y(S) ≥ v(S) for each S ∈ B(N, v)\{T }, we conclude that
c ∈ C(N, v). This contradicts the initial assumption.

Because the core is a polytope, the statement of Lemma 3 can be strengthen if the
core is full-dimensional, i.e. has a nonempty interior. More precisely, it is known
that for each full-dimensional core, there exists a unique (up to a multiplication
by positive scalars) minimal collection of constraint inequalities that determines
it. Moreover, for each distinct pair of constraint inequalities, there is an element
is the core that saturates the first constraint and lies strictly above the second
constraint inequality. On this point we refer the reader to Schrijver [9].

Lemma 4. Let x ∈ E(N, v) be an efficient allocation such that x /∈ C(N, v).
There exists an allocation y satisfying the following four properties.

1. y ∈ E(N, v);
2. x  y;
3. there exists c ∈ C(N, v) and i ∈ N such that yi = ci;
4. for each player i ∈ N , we have yi ≥ min(xi, v({i})).

Proof. Consider any x ∈ E(N, v)\C(N, v). There is some S ∈ B(N, v) such that
x(S) < v(S). Moreover, by Lemma 3, there isa core allocation c ∈ C(N, v) such
that c(S) = v(S). We define the allocation y as follows:

yi =

{
xi +

v(S)− x(S)

s
if i ∈ S,

ci if i ∈ N\S.

Now we prove that y satisfies the claimed properties. Actually, we do not use
the particular structure of y for players in S. The important coordinates of y are
on the players in N\S.

For the first property, the equality v(S) = c(S) implies that

y(N) = x(S)+s
v(S)− x(S)

s
+c(N\S) = v(S)+c(N\S) = c(S)+c(N\S) = v(N),

which proves that y ∈ E(N, v).
For the second property, the claim x  y is obviously satisfied, since v(S) −

x(S) > 0 and y(S) = v(S) imply x  S y.
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For the third property, it is enough to show that N\S �= ∅, which is ensured
by S ∈ B(N, v) since N �∈ B(N, v). For the fourth property, the inequality
x(S) < v(S) implies that yS > xS . Finally, for each i ∈ N\S, it holds that
yi = ci ≥ v({i}).

The selection of the unsatisfied coalition S such that x  S y is the cornerstone
of our construction. It is a main difference with Sengupta and Sengupta [10]
and Béal et al. [2]. We choose S ∈ B(N, v) whereas Sengupta and Sengupta
[10] choose S such that the positive excess v(S) − x(S) is maximal, and Béal
et al. [2] select a coalition among the smallest coalitions with positive excess.
Selecting S in B(N, v) is necessary to construct an allocation y in a simpler way
than in Sengupta and Sengupta [10] and Béal et al. [2]. Another difference with
Sengupta and Sengupta [10] and Béal et al. [2] is related to the use of the core
allocations as a target. Both use a unique core allocation along their weak chain
of blocks. Here, we take in account the whole geometry of the core since it is the
chosen coalition S ∈ B(N, v) that determines which core allocation can be used
to construct the current block.

2.3 The Upper Bound

We now have the material to prove that the core of any n-player TU-game can
be accessed in at most n− 1 blocks.

Proposition 1. Let (N, v) ∈ Γ c be a n-player TU-game with a nonempty core.
For each efficient allocation x ∈ E(N, v), there exists a core element c ∈ C(N, v)
and a weak chain of blocks from x to c such that

– the length of this weak chain of blocks is at most n− 1;
– each blocking efficient allocation z in this weak chain of blocks satisfies the

condition that, for each j ∈ N , zj ≥ min(xj , v({j})).

Proof. Consider any arbitrary TU-game (N, v) ∈ Γ c. The proof is done by in-
duction on the number n of players in (N, v).
Initialization: For n = 1, the unique efficient allocation is also the unique core
allocation so that the result trivially holds.
Induction hypothesis: Assume that the statement of the Proposition 1 holds
for any k-player TU-game, k ∈ {1, . . . , n− 1}.
Induction step: Consider any n-player TU-game (N, v) ∈ Γ c and any x ∈
E(N, v). If x ∈ C(N, v), then we are done. Otherwise, using the procedure de-
scribed in Lemma 4, we construct an imputation y satisfying the four properties
stated in that Lemma.

In particular, there exists a player i ∈ N and an core allocation c ∈ C(N, v)
such that yi = ci. Consider the Davis-Maschler reduced-game (N\{i}, vN\{i},c).
This TU-game is an (n−1)-player TU-game with a nonempty core since Lemma
1 states that cN\{i} ∈ C(N\{i}, vN\{i},c). The induction hypothesis can be used:
there exists a core element d ∈ C(N\{i}, vN\{i},c) and a weak chain of blocks
(z0, z1, . . . , zm) such that z0 = yN\{i} and zm = d with m ≤ n − 2. For each
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k ∈ {0, . . . ,m}, it also holds that zk ∈ E(N\{i}, vN\{i},c). Furthermore, for each
j ∈ N\{i}, we have z0j ≥ min(yj , vN\{i},c({j})) and, for each k ∈ {1, . . . ,m},
zkj ≥ min(zk−1

j , vN\{i},c({j})). Hence, for each k ∈ {1, . . . ,m} and each j ∈
N\{i}, it holds that zkj ≥ min(yj , vN\{i},c({j})).

For each k ∈ {0, . . . ,m}, define the allocation z′k ∈ Rn as z′kN\{i} = zk

and z′ki = ci. Lemma 1 yields that z′m ∈ C(N, v) since z′mN\{i} = zm = d and

d ∈ C(N\{i}, vN\{i},c). Furthermore, from Lemma 2, the sequence of allocations
(z′0, z′1, . . . , z′m) is a weak chain of blocks. This implies that (x, z′0, z′1, . . . , z′m)
is a weak chain of blocks of length m + 1. Since m ≤ n − 2, the length of the
weak chain of blocks (x, z′0, z′1, . . . , z′m) is bounded by n− 1, which proves the
first part of the Proposition 1.

Regarding the second part of the Proposition 1, consider any player j ∈ N\{i}.
We have already proved that zkj ≥ min(yj , vN\{i},c({j})). We also have yj ≥
min(xj , v({j})). By definition of vN\{i},c, it holds that vN\{i},c({j})) ≥ v({j}).
Altogether, this implies that

zkj ≥ min(xj , v({j})),

or equivalently, that z′kj ≥ min(xj , v({j})). Lastly, the inequality z′ki = ci ≥
v({i}) ≥ min(xi, v({i})) completes the proof.

The first part of Theorem 1 is a corollary of Proposition 1. In fact, if the set
of efficient allocations is replaced by the set of imputations in the statement of
Proposition 1, then the length of the weak chain of blocks required to access the
core is still at most n− 1. Moreover, for each player j ∈ N , the condition zj ≥
min(xj , v({j})) for each blocking allocation z reduces to zj ≥ v({j} since xj ≥
v({j}) whenever x is an imputation. This ensures that the weak chain of blocks
only contains imputations. It is nevertheless important to state Proposition 1.
The reason is that, in the induction step, a blocking imputation can be lead to
an allocation which is not individually rational in the associated Davis-Maschler
reduced-game.

2.4 Optimality

This section is devoted to the proof of the second part of Theorem 1, i.e. it is
impossible to improve upon the bound n − 1. More specifically, for each n ≥ 3,
we construct an n-player TU-game with a nonempty core and an imputation
x ∈ I(N, v) such that the length of each chain of blocks from x to any core
allocation of C(N, v) is at least n− 1.

Proof (Theorem 1 — second part). Let n ≥ 3 and (N, v) be the n-player TU-
game such that v(S) = s if s ≥ n − 1 and v(S) = 0 otherwise. If c belongs to
C(N, v), then, for each player i ∈ N , it holds that

ci = c(N)− c(N\{i}) ≤ v(N)− v(N\{i}) = 1.
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Combined with the efficiency of c, we obtain that ci = 1 for each i ∈ N . Since
the allocation (1, . . . , 1) belongs to C(N, v), we conclude this allocation is the
unique core allocation.

Now, pick any x ∈ I(N, v)\C(N, v). The imputation x is acceptable for all
coalitions of size at most n − 2 and it is not acceptable for a coalition N\{i}
if and only if xi > 1. Then, the number Δ(x) of coalitions for which x is not
acceptable is the number of players i ∈ N such that xi > 1.

Consider any imputation y ∈ I(N, v) such that x  y. Note that x  S y
is only possible if S = N\{i} for some i ∈ N such that xi > 1. Consider any
such block. By definition of a block, we get that y(N\{i}) ≤ v(N\{i}). Now,
consider any other coalition S for which x is not acceptable, which means that
S = N\{j} for some j ∈ N\{i}. Since yj ≥ xj and y, x ∈ E(N, v), it holds that

y(N\{j}) ≤ x(N\{j}) < v(N\{j}).

In other words, if x is not acceptable for a coalition other than N\{i}, then y
is also not acceptable for this coalition. still unsatisfied with respect to y. Thus
Δ(y) ≥ Δ(x)−1. It follows that any weak chain of blocks of length p and starting
from x terminates in an allocation z such that Δ(z) ≥ Δ(z)− p.

Now suppose that the starting imputation x is given x1 = 0 and, for each
i ∈ N\{1}, xi = 1 + 1/(n − 1). It holds that Δ(x) = n − 1. This implies that
each weak chain of blocks of length at most n− 2 and starting at x terminates
in an allocation z, such that Δ(z) ≥ n − 1 − (n − 2) = 1. In other words, each
weak chain of blocks of length at most n− 2 and starting at x cannot access the
core C(N, v). We conclude that a weak chain of blocks of length at most n− 1
is necessary to access the core if x is the initial imputation.

3 An Impossibility Result under the Strong Dominance
Relation

In this section, we prove Theorem 2 stating that the core is not always accessible
if the blocks are constructed from the strong dominance relation. For each n ≥ 3,
the proof relies on the n-player TU-game depicted in section 2.4, which is used
to show that there exists an imputation from which the core is not accessible
through a strong chain of blocks.

Proof (Theorem 2). For each n ≥ 3, consider the n-player TU-game (N, v) in-
troduced in section 2.4. Consider the set A(N, v) of imputations of (N, v) such
that x ∈ A(N, v) if the two following conditions are satisfied:

– for each i ∈ N\{1}, xi ≥ 1;
– there exists at most one i ∈ N\{1} such that xi = 1.

Note that if x ∈ A(N, v), these two conditions imply that 0 ≤ x1 < 1. The set
A(N, v) is clearly nonempty since it contains the allocation x constructed at the
end of the proof of the second part of Theorem 1 in the section 2.4. Now consider
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any imputation x ∈ A(N, v). Pick any i ∈ N and any efficient allocation y ∈
E(N, v) such that x ≺N\{i} y. Recall that no coalition of size at most n− 2 can
block x. Furthermore, observe that i �= 1 since x(N\{1}) > n− 1 = v(N\{1}).
By definition, for each player j ∈ N\{1, i}, it holds that yj > xj ≥ 1. Moreover,
we have yi = v(N) − y(N\{i}) ≥ v(N) − v(N\{i}) = 1. This proves that y
belongs to A(N, v).

As a consequence, any strong block starting in A(N, v) also ends in A(N, v).
It follows that any strong chain of blocks starting in A(N, v) also terminates in
A(N, v). Since the unique core allocation (1, . . . , 1) does not belong to A(N, v),
we can conclude that the core of the TU-game (N, v) is not accessible from
A(N, v) by means of the strong dominance relation.

References
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Abstract. We consider generalized congestion games, a class of games
in which players share a set of strategies and the payoff functions depend
only on the chosen strategy and the number of players playing the same
strategy, in such a way that fewer such players results in greater payoff.
In these games we consider improvement paths. As shown by Milchtaich
[2] such paths may be infinite. We consider paths in which the players
deviate in a specific order, and prove that ordered best response improve-
ment paths are finite, while ordered better response improvement paths
may still be infinite.

1 Introduction

Congestion games, first introduced by Rosenthal [5], are a class of games char-
acterized by a finite set of resources, from which players choose a subset as a
strategy. Each resource then gives each of its users a cost, which depends only
on the number of players using it, and a player’s cost is the sum of her resources’
costs. Rosenthal showed that congestion games always admit a potential func-
tion, which implies not only that congestion games have Nash equilibria in pure
strategies, but also that they have the finite improvement property: starting at
any joint strategy, when players change their strategies one by one in a way
that improves their individual payoffs, a Nash equilibrium is eventually reached.
Later, Monderer and Shapley [4] showed the converse: every finite potential game
is isomorphic to a congestion game.

Expanding on the idea of modeling congestion situations with games, Milch-
taich [2] introduced a class of games we will call generalized congestion games.
These games are similar to congestion games, dropping the assumption that the
payoff for using a strategy is not player-dependent, but introducing the limita-
tions that a strategy consists of a single resource, and a resource’s payoff depends
nonincreasingly on the number of players using it. Generalized congestion games
do not, in general, admit a potential function. In fact, they do not generally have
the finite improvement property or even the weaker finite best response property,
which states that players shifting to a best response move towards an equilib-
rium. Milchtaich did however show that all generalized congestion games are
weakly acyclic. Weakly acyclic games are games in which from every joint strat-
egy there is a way for players to consecutively play best response that reaches a
Nash equilibrium.
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Meanwhile, motivated by a different class of weakly acyclic games, Apt and
Simon [1] introduced scheduler functions. These functions are a way to formalize
the idea of an arbiter who determines which player is allowed to deviate to a
new strategy. This allows one to consider whether the paths generated by such
an arbiter converge to an equilibrium.

With this in mind we take a second look at generalized congestion games.
We consider ordered paths, better and best response paths in which players
move only when players which are ordered higher are playing best response.
Although we avoid using schedulers because in this case the notation does not
add anything, these paths correspond to the paths generated by Apt and Simon’s
local scheduler functions. These ordered paths are important because they model
common situations, for example ones in which some players respond faster than
others, or a situation with an arbiter with a very simple method of selection: a
fixed ordering of players in which the higher player has higher priority.

We prove that best response ordered improvement paths are necessarily finite
in generalized congestion games, improving on Milchtaich’s result, which did not
classify which kinds of best response improvement paths must be finite. Better
response ordered improvement paths on the other hand may still be infinite.

In [3] a somewhat related result is proved in the context of extensive games.
Given a strategic game, a sequential-move version of the game is an extensive
game of perfect information in which the players are put in a fixed order and
whose actions are the strategies of the original game. Milchtaich proved that
for every ordering of the players the resulting sequential-move version has a
subgame perfect equilibrium such that the actions selected by the players in this
equilibrium form a Nash equilibrium of the original game.

2 Notation

Definition 1. A generalized congestion game is a noncooperative game wherein
players N = {1, . . . , n} share a set of strategies R = {1, . . . , r}, also called
resources. Given a joint strategy s ∈ Rn, we write si for the strategy played
by player i and s−i for the strategies played by the other players, so that s =
(si, s−i). For a joint strategy s, we refer to the number of players playing strategy
j as the congestion cj(s) at that strategy, and call the vector of congestions for
all strategies c(s) = (c1(s), . . . , cr(s)) the congestion vector. A player’s payoff
depends only on her chosen strategy and the congestion at that strategy. This
allows us to write pi(j, c) for the payoff of player i for playing strategy j with
congestion c. For a joint strategy s ∈ Rn the payoff to player i is then written as
pi(s

i, csi(s)). A player’s payoff does not increase as the congestion at her strategy
increases: for any i ∈ N , j ∈ R we have

c1 ≥ c2 =⇒ pi(j, c1) ≤ pi(j, c2).

We now formalize what better and best response mean in this context.
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Definition 2. Given a joint strategy s ∈ Rn, a strategy j ∈ R is called a better
response for player i when

pi(j, cj(s) + 1) > pi(s
i, csi(s))

and a best response for player i when

j ∈ argmax
j̃∈R

pi(j̃, cj̃((j̃, s
−i))).

Next, we introduce our object of study.

Definition 3. A path is a finite or infinite sequence of joint strategies (s0, s1, . . .),
such that every joint strategy can be reached by a single player changing strat-
egy from the previous joint strategy. Formally, for any sk in the sequence with
k > 0, there are i ∈ N and j ∈ R such that j �= sik−1 and

sk = (j, s−i
k−1).

Player i is called the deviator at this step.
A path is called a better response improvement path if at every step the de-

viator changes her strategy to a better response strategy. A path is called a
best response improvement path if at every step the deviator is not playing best
response, but changes her strategy to a best response strategy.

A game is said to have the finite improvement property (FIP) if all its bet-
ter response improvement paths are finite, and the finite best response property
(FBRP) if all its best response improvement paths are finite. A game is called
weakly acyclic (WA) if for every joint strategy there exists a best response im-
provement path that starts in that joint strategy and ends in a Nash equilibrium.

Milchtaich [2] has characterized which of these properties generalized conges-
tion games have (as detailed in the next section). To make his classification finer,
we introduce the notion of ordered improvement paths.

Definition 4. An ordered (best or better response) improvement path is an im-
provement path for which the players can be ordered in such a way, that whenever
a player deviates, all players higher in the order than her are already playing
best response.

We say a game has the finite ordered improvement property (FOIP) if all its
ordered better response improvement paths are finite; it has the finite ordered
best response property (FOBRP) if all its ordered best response improvement
paths are finite.

3 Weak Acyclicity and Finite Path Properties

Milchtaich [2] showed that generalized congestion games do not generally have
the FIP or even the FBRP. We reproduce his counterexample here, to give a
simple example of a generalized congestion game, and also to introduce some
notation that will be used later at a more complex example.

Milchtaich’s example is a three-player three-strategy game, in which the play-
ers’ payoffs satisfy the following inequalities.
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• p1(3, 1) > p1(2, 1) ≥ p1(2, 2) > p1(3, 2).
• p2(1, 1) > p2(3, 1) ≥ p2(3, 2) > p2(1, 2).
• p3(2, 1) > p3(1, 1) ≥ p3(1, 2) > p3(2, 2).

Further, any payoff not mentioned in the above list is minimal. In this game,
the path ((2, 1, 1), (3, 1, 1), (3, 3, 1), (3, 3, 2), (2, 3, 2), (2, 1, 2), (2, 1, 1)) is a best re-
sponse improvement path. This path is represented by the following diagram.

1

2 2

��

3 3 �� 2

1 1

��

6 3
��

3

4 1

��

5 2

��

Fig. 1. Diagram representing the deviations in the infinite best response improvement
path

We visualize the strategies as nodes, and the deviations as arrows. Every arrow
is labeled with two numbers. The first, black number represents the deviation
(which are numbered in order). The second, red number represents the deviator.

This best response improvement path is in particular a cycle, so it can be
repeated arbitrarily, showing that generalized congestion games do not generally
have the FBRP. However, the joint strategies (3, 1, 2) and (2, 3, 1) are Nash
equilibria, and it is not difficult to see that from any joint strategy there exists
a best response improvement path to one of these: the game is weakly acyclic.
More generally, Milchtaich [2] showed that all generalized congestion games are
weakly acyclic.

4 Convergence of Ordered Paths

4.1 Ordered Best Response Paths

If generalized congestion games do not possess the FBRP, we can ask what
restrictions we can put on improvement paths to ensure that the paths do always
end in an equilibrium. Here we consider ordered paths, inspired by Apt and
Simon [1]. They formalized the notion of an arbiter who determines which player
is the next deviator in a path by introducing scheduler functions. Our theorem
states, in the language of those functions, that every generalized congestion game
respects every best response local scheduler.

Theorem 1. All generalized congestion games have the finite ordered best re-
sponse property.
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Proof. Consider an arbitrary n player generalized congestion game and an or-
dered best response improvement path (s0, s1, . . .). Renumber the players so that
player one is first in the order, then player two, and so on.

We proceed the proof by induction on the number of players. For one player
the theorem trivially holds. Assume the theorem holds for n− 1 players.

We need to show that the improvement path (s0, s1, . . .) is necessarily finite.
If the nth player deviates only finitely many times in this path, it must be finite.
Indeed, given finitely many deviations of player n, from some point on during
the path, player n’s strategy remains the same; then the game can be viewed as
an n − 1 player generalized congestion game, and by the induction hypothesis
the path can only be finitely much longer. It thus suffices to show that the nth
player deviates only finitely many times. We will show that from the nth player’s
first deviation, her payoff never decreases, and since it must increase with each
of her deviations, she can deviate only finitely many times.

Let the kth step of the improvement path be the step immediately before
any of the nth player’s deviations. Since player n is the next deviator, in sk
players 1 through n−1 are playing best response. The congestion vector c(sk) =
(c1(sk), . . . , cr(sk)) plays a special role in the proof: we want to consider every
congestion vector that follows it relative to c(sk). For any strategy sl ∈ Rn in
our path we define the relative congestion vector

c̃(sl) = c(sl)− c(sk)

and call the sum of the positive entries of c̃(sl) the congestion difference between
sl and sk.

For instance, say that the nth player is playing strategy j0 at step k, and that
in changing her strategy to a best response to sk, she deviates to strategy j1.
This gives (assuming without loss of generality that j0 < j1)

c(sk+1) = (c1(sk+1), . . . , cj0(sk+1), . . . , cj1(sk+1), . . . , cr(sk+1))

= (c1(sk), . . . , cj0(sk)− 1, . . . , cj1(sk) + 1, . . . , cr(sk)),

and
c̃(sk+1) = (0, . . . ,−1, . . . , 1, . . . , 0).

So sk+1 has 1 congestion difference from sk.
The nth player’s deviation may have upset the equilibrium of the first n− 1

players, and the path will continue until they have reached an equilibrium again.
If during this process the number of players playing strategy j1 does not increase
from cj1(sk) + 1, the payoff of the nth player does not decrease during the
other players’ moves. In order to have a joint strategy in which the number of
players playing strategy j1 is at least cj1(sk) + 2, that joint strategy must have
a congestion difference from sk of at least 2. We claim that no joint strategies
with congestion difference greater than one from sk occur.

Suppose to the contrary that one does. Then there must be a first deviation
changing a joint strategy with congestion difference 1 from sk to one with 2. We
denote this latter strategy su, and call the player who caused this increase in
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congestion difference player i. For player i we consider the sequence of strategies
l0, . . . , lm she plays, where l0 is her strategy at the kth step, l1 is her strategy
after her first deviation, and so on, and the deviation from lm−1 to lm results in
su. (Note that the steps where these deviations occur are not consecutive; other
players deviate while player i stays at her strategy.) Let sb1 , . . . , sbm be the joint
strategies that occur immediately before each of the ith player’s deviations. More
precisely, the shift from sbp to sbp+1 is caused by player i deviating from lp−1 to
lp, for 1 ≤ p ≤ m.

To arrive at a contradiction, we look at each of the ith player’s deviations
in reverse, and for each deduce what the relative congestion vector immediately
before the deviation must be. We visually represent the argument by showing
each of the ith player’s deviations separately, with what we know about the
relative congestion vector of the joint strategy before the deviation written below
it. In this visualisation, the strategies l0, . . . , lm are shown distinct. Of course,
we can not a priori say anything about the distinctness of these strategies, but
while considering the relative congestion vectors of sb1 , . . . , sbm we will see that
the strategy lm appears only once in the sequence, which is what is necessary
for the proof.

First, consider the deviation from lm−1 to lm. By assumption, the sum of the
positive entries of c̃(sbm) is 1, while the sum of the positive entries of c̃(sbm+1) is
2. This means that at sbm , the relative congestion at lm−1 is either −1 or 0, and
the relative congestion at lm is either 0 or 1. Figure 2 shows this in a diagram:

lm−1
�� lm

c̃(sbm) : −1 or 0 0 or 1

Fig. 2. Diagram with possible values of the relative congestion vector when considering
player i’s last deviation

This shows in particular that m > 1, because if this were the only deviation
of the ith player, she would also have wanted to deviate from l0 = lm−1 to lm at
sk, which contradicts her playing best response at sk.

This justifies considering the ith player’s deviation from lm−2 to lm−1. At
sbm−1 , the relative congestion at lm−1 is at least −1, because the congestion
difference from sk is at most 1. Therefore, after the deviation to lm−1, the
payoff of player i is at most pi(lm−1, clm−1(sk)). But from the diagram above,
the relative congestion at lm−1 was at most zero when player i deviated away
from it, improving her payoff. So the payoff to player i has risen between sbm−1

and su. It follows that lm−2 �= lm, because if they were equal, the congestion
at lm must have been higher during sbm−1 than during su. This is impossi-
ble, because at su there is a relative congestion at lm of at least 1, and at
sbm−1 there is by assumption a relative congestion at any strategy of at most 1.
Then, since the deviation to lm−1 was by assumption a best response, we must
have that pi(lm, clm(sbm−1)) < pi(lm, clm(sbm)) (otherwise the deviation would
have been to lm). From the definition of generalized congestion games it follows
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that clm(sbm−1) > clm(sbm), so in particular c̃lm(sbm−1) = 1 and c̃lm(sbm) = 0.
This accounts for the sole positive entry of c̃(sbm−1) and c̃(sbm−1+1). This means
that we must have c̃lm−1(sbm−1) = −1, which is sufficient information to add to
our diagram, shown in Fig. 3.

lm−2
�� lm−1 lm

c̃(sbm−1) : 0 −1 1

lm−2 lm−1
�� lm

c̃(sbm) : −1 or 0 0

Fig. 3. Diagram with possible values of the relative congestion vector when considering
player i’s last two deviations

The relative congestion vector c̃(sbm−1) takes a very specific form: we have
c̃lm(sbm−1) = 1, c̃lm−1(sbm−1) = −1, and all its other entries equal 0. We will
show that all relative congestion vectors associated with sb1 , . . . , sbm−1 are of
this form. We forgo the formal induction step to avoid even more cumbersome
notation, and instead show the next step, trusting that this will illustrate the
general process.

So consider the ith player’s deviation from lm−3 to lm−2. Since sbm−2 has
congestion difference at most one from sk, c̃lm−2(sbm−2) is at least−1. This means
that after the deviation, the payoff to player i is at most pi(lm−2, clm−2(sk)). But
as can be easily seen in the diagram above, this payoff is strictly smaller than
pi(lm, clm(sk) + 1), because the difference is two payoff increasing deviations; so
again, lm−3 �= lm, since that would imply a relative congestion greater than 1
at lm during sbm−3 , and it follows that at steps sbm−2 and sbm−2+1, the relative
congestion at lm must be 1. This means that at sbm−2+1 the relative congestion
at lm−2 may be at most 0, which means it must precisely be −1 at sbm−2 . Again,
we can fill out our diagram (Fig. 4):

lm−3
�� lm−2 lm−1 lm

c̃(sbm−2) : 0 −1 0 1

lm−3 lm−2
�� lm−1 lm

c̃(sbm−1) : 0 0 −1 1

lm−3 lm−2 lm−1
�� lm

c̃(sbm) : −1 or 0 0

Fig. 4. Diagram with possible values of the relative congestion vector when considering
player i’s last three deviations
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For every possible previous deviation, the same argument holds. That is, be-
fore any deviation, there is a relative congestion of 1 at lm, a relative congestion
of −1 at the strategy to which the ith player deviates, and a relative congestion
of 0 elsewhere. This yields the complete diagram in Fig. 5:

l0 �� l1 · · · lm−3 lm−2 lm−1 lm

c̃(sb1) : 0 −1 0 0 0 1

l0 l1 �� · · · lm−3 lm−2 lm−1 lm

c̃(sb2) : 0 0 0 0 0 1

...
...

. . .
...

...
...

...

l0 l1 · · · lm−3
�� lm−2 lm−1 lm

c̃(sbm−2) : 0 0 0 −1 0 1

l0 l1 · · · lm−3 lm−2
�� lm−1 lm

c̃(sbm−1) : 0 0 0 0 −1 1

l0 l1 · · · lm−3 lm−2 lm−1
�� lm

c̃(sbm) : −1 or 0 0

Fig. 5. Diagram with possible values of the relative congestion vector when considering
all of player i’s deviations

In this figure a contradiction clearly appears. Namely, when player i deviates
from l0, the strategy she played at sk, the relative congestion there is 0; between
each of her deviations, her payoff stays the same or goes up, and she ends up at
strategy lm, with relative congestion 1. This contradicts the fact that in sk she
plays a best response, because she would then, too, have gotten a better payoff
at lm.

This means that from sk until the next deviation of player n, no strategy
occurs with congestion difference greater than 1 from sk, which means that
player n’s payoff does not decrease between her deviations. This, in turn, means
that she can deviate only finitely many times, because the game is finite. After
her last deviation, the game can be considered an n− 1 player game, and by the
induction hypothesis, any ordered path in an n − 1 player game is finite. This
shows that the ordered path (s0, s1, . . .) is finite as well. ��

4.2 Ordered Better Response Paths

The condition of ‘orderedness’ is then sufficient for best response improvement
paths to be finite. Next, we consider ordered better response improvement paths.
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The following game is an example of a generalized congestion game in which an
ordered better response improvement path is not finite. This demonstrates that
generalized congestion games do not, generally, have the FOIP.

Example 1. An example of a generalized congestion game without the finite
ordered improvement property is a seven-player eight-strategy game, in which
the following equations hold:

• p1(2, 1) = p1(3, 1) > p1(3, 2) > p1(2, 2),
• p2(3, 1) > p2(1, c) > p2(3, 2),
• p3(4, 1) = p3(5, 1) > p3(5, 2) > p3(4, 2),
• p4(5, 1) > p4(1, c) > p4(5, 2),
• p5(1, 1) > p5(6, 1) > p5(4, c) > p5(2, c) > p5(1, 2) > p5(6, 2),
• p6(8, 1) > p6(6, c) > p6(5, c) > p6(3, c) > p6(8, 2),
• p7(1, 1) ≥ p7(1, 2) > p7(7, 1) > p7(8, 1) ≥ p7(8, 2) > p7(1, 3),

where c represents any possible congestion. All payoffs not mentioned above are
assumed to be lower than the ones listed above. In such a game, the following
path is an ordered better response improvement path:

1. (2, 3, 4, 5, 1, 8, 7)
2. (2, 3, 4, 5, 1, 8, 1)
3. (2, 3, 4, 5, 2, 8, 1)
4. (3, 3, 4, 5, 2, 8, 1)
5. (3, 1, 4, 5, 2, 8, 1)
6. (3, 1, 4, 5, 4, 8, 1)
7. (3, 1, 5, 5, 4, 8, 1)
8. (3, 1, 5, 1, 4, 8, 1)
9. (3, 1, 5, 1, 6, 8, 1)
10. (3, 1, 5, 1, 6, 8, 8)

11. (3, 1, 5, 1, 6, 3, 8)
12. (2, 1, 5, 1, 6, 3, 8)
13. (2, 1, 5, 1, 6, 5, 8)
14. (2, 3, 5, 1, 6, 5, 8)
15. (2, 3, 4, 1, 6, 5, 8)
16. (2, 3, 4, 1, 6, 6, 8)
17. (2, 3, 4, 5, 6, 6, 8)
18. (2, 3, 4, 5, 1, 6, 8)
19. (2, 3, 4, 5, 1, 6, 7)
20. (2, 3, 4, 5, 1, 8, 7)

This path is represented by the diagram in figure 6. The visualisation is the same
as for the example in section 3.

Because the proof of theorem 1 revolves around the fact that the last player’s
payoff can not decrease, this example revolves around decreasing the seventh
player’s payoff. The reason this can occur is that, unlike in a best response
ordered path, a player who starts moving can move almost arbitrarily between
strategies, disturbing other players (who will then start moving) before reaching
a best response.

The path falls into roughly two parts. The first part starts as player 7 deviates
from strategy 7 to strategy 1. This causes player 5, who was playing strategy
one, to become dissatisfied: she starts moving, and goes past strategies 2 and
4 to strategy 6. As she passes strategy 2, player 1, who has higher priority, is
disturbed: player 1 moves to strategy 3, where she disturbs player 2, who in
turn deviates to strategy 1. (This double movement, player 1 to strategy 3 and
then player 2 to strategy 1 is necessary, because if player 1 had gone straight to
strategy 1, she would deviate back as soon as player 5 left strategy 2). Similarly,
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Fig. 6. Diagram representing deviations in the infinite ordered improvement path

as player 5 passes strategy 4, she disturbs player 3, who moves to strategy 5
where she disturbs player 4, who moves to strategy 1. At this point, one player
has left strategy 1 since the arrival of player 7, and two extra players have arrived
at it. This means that the payoff of player 7 has decreased, which is what we
wanted to achieve.

The second part is about moving players back to their original positions.
Player 7 deviates to strategy 8, where player 6 has been waiting. Player 6 will
move between important strategies, disturbing players, causing them to move
back to their original position. First, she moves to strategy 3, disturbing player
1, who deviates back to strategy 2. As player 6 departs from strategy 3, the
strategy is empty again, so player 2 deviates back to it. Next, player 6 moves
to strategy 5, similarly disturbing player 3, who deviates back to strategy 4.
Again, when player 6 departs to strategy 6, strategy 5 is left empty, allowing
player 4 to return to it. This in turn frees up strategy 1, which incentivizes
player 5 to deviate back to it. Then player 6 has reached best response, and
almost all players are in their original positions. Finally, player 7 completes her
cycle, moving to strategy 7, freeing up strategy 8 for player 6 to return to, which
restores the initial joint strategy.

5 Open Problems

Our original aim was to determine whether for every generalized congestion
game there exists some order such that every improvement path conforming to
that order is finite. By Theorem 1, this is true for best response improvement
paths. For better response improvement paths the problem is still open. We
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believe that every generalized congestion game has an order for which all better
response improvement paths are finite. The smallest counterexample (explained
above) we have found is quite large and very fragile: for most orders, all paths
with those orders are finite.

Milchtaich [2] showed in the proof of the weak acyclicity of generalized con-
gestion games, that there always exists a best response improvement path which
is no longer than r

(
n+1
2

)
. We have not provided a proof of an upper bound on

the lengths of our paths. Numerical experiments suggest an upper bound of at
most n2 deviations in a path. In particular, we suspect that this bound does not
depend on the number of strategies. So far, we have only been able to prove this
for two players.
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very short notice.
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Abstract. Network creation games model the creation and usage costs of net-
works formed by a set of selfish peers. Each peer has the ability to change the
network in a limited way, e.g., by creating or deleting incident links. In doing
so, a peer can reduce its individual communication cost. Typically, these costs
are modeled by the maximum or average distance in the network. We introduce
a generalized version of the basic network creation game (BNCG). In the BNCG
(by Alon et al., SPAA 2010), each peer may replace one of its incident links by
a link to an arbitrary peer. This is done in a selfish way in order to minimize ei-
ther the maximum or average distance to all other peers. That is, each peer works
towards a network structure that allows himself to communicate efficiently with
all other peers. However, participants of large networks are seldom interested in
all peers. Rather, they want to communicate efficiently with a small subset only.
Our model incorporates these (communication) interests explicitly.

Given peers with interests and a communication network forming a tree, we
prove several results on the structure and quality of equilibria in our model. We
focus on the MAX-version, i.e., each node tries to minimize the maximum dis-
tance to nodes it is interested in, and give an upper bound of O (

√
n) for the

private costs in an equilibrium of n peers. Moreover, we give an equilibrium for
a circular interest graph where a node has private cost Ω (

√
n), showing that our

bound is tight. This example can be extended such that we get a tight bound of
Θ (
√

n) for the price of anarchy. For the case of general networks we show the
price of anarchy to be Θ (n). Additionally, we prove an interesting connection
between a maximum independent set in the interest graph and the private costs of
the peers.

1 Introduction

In a network creation game (NCG), several selfish players create a network by ego-
istic modifications of its edges. One of the most famous NCG models is due to Fab-
rikant et al. [7]. Their model intends to capture the dynamics in large communication
and computer networks built by the individual participants (peers, players) in a selfish
way: participants try to ensure a network structure supporting their own communication
needs whilst limiting their individual investment into the network. Since the players do
not (necessarily) cooperate, the resulting network structure may be suboptimal from
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a global point of view. The analysis of the resulting structure and its comparison to a
(socially) optimal structure is a central aspect in the analysis of network creation games.

In the original model by Fabrikant et al., players may buy (or create) a single edge
for a certain (fixed) cost of α > 0. Their goal is to improve the network structure with
respect to their individual communication needs. There are typically two ways to for-
malize the corresponding communication cost of a single peer: the maximum distance
or the average distance to all other peers in the network. We refer to the different variants
by MAX-version and AVG-version. Alon et al. [2] introduce a slightly simpler model,
called basic network creation games (BNCG), that drops the cost parameter α . Instead,
they limit the possible ways in which peers may change the network by restricting them
to edge swaps: a peer may only replace one of its incident edges with a new edge to an
arbitrary node in the network. Since peers are assumed to be selfish, only edge swaps
(including simultaneous swapping of several edges at once) that improve the private
communication cost of the corresponding peer are considered. In a swap equilibrium,
no player can decrease its communication cost by an edge swap. This simpler variant of
network creation games has the advantage of polynomially computable best responses
of the players. Moreover, it still captures the inherent dynamic character and difficulty
of communication networks formed by selfish participants, while avoiding the quite
intricate dependence on the parameter α (see related work).

Our work generalizes the BNCG model of Alon et al. by introducing the concept
of interests. In real communication networks, participants are typically only interested
in a small subset of peers rather than the complete network. Thus, instead of trying
to minimize the maximal or average distance to all other nodes, the individual players
consider only the distances to nodes they are interested in. The main part of our analysis
focuses on tree networks. Especially, we show that tree networks perform much better
than general networks with respect to the price of anarchy. To avoid networks to become
disconnected (note that in a BNCG peers want to communicate with all other peers and
hence never disconnect the network), we restrict the peers to swaps that preserve con-
nectivity. This restriction is valid from a practical point of view, where a lost network
connectivity is to be avoided, since re-connecting a network causes high or even un-
predictable costs. Moreover, if you consider that interests of the peers may change over
time, it is also important for each single selfish peer to sustain connectivity.

Model and Notions. An instance of the basic network creation game with interests
(I-BNCG) is given by a set of n players (peers, nodes) V = {v1,v2, . . . ,vn}, an ini-
tial connection graph G = (V,E), and an interest graph GI = (V, I). We use I(v) :=
{u ∈V | {v,u} ∈ I} to refer to the neighborhood of a player v in the interest graph and
denote them as the interests of v. Both the connection graph and the interest graph
are undirected. Thus, interests are always mutual. The connection graph represents the
current communication network and can change during the course of the game. We
consider only instances where the (initial) connection graph is a tree, whereas the in-
terest graph GI may be an arbitrary and not necessarily connected graph. Each player
is assumed to have at least one interest. We study two different ways to formalize the
private communication costs of nodes: the MAX-version and the AVG-version. In the
first, the private cost c(v) := max{d(v,u) | u ∈ I(v)} of a node v ∈ V is defined as the

maximum distance from v to its interests. In the second, we define c(v) := ∑u∈I(v)
d(v,u)
|I(v)|
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as the average distance to its interests. Here, d(v,u) denotes the (shortest path) distance
between u and v in the connection graph.

To improve its private cost, a player u may perform edge swaps in the connection
graph: replace an incident edge {u,v} with a new edge {u,w} to an arbitrary player
w∈V , written as u : [v→w]. We refer to a single as well as to a series of simultaneously
executed edge swaps of a player u as an improving step if u’s private cost decreases.
A player is only allowed to perform an improving step if the connection graph stays
connected. If no player can perform an improving step, we say the connection graph is
in a MAX-equilibrium or AVG-equilibrium, respectively. See Figure 1 for an example.

w

u

v

(a) Connection graph with v having c(v) = 4.

w

u

v

(b) After swap v : [u→ w] with c(v) = 3.

Fig. 1. MAX-version example of an improving swap performed by v. The gray nodes denote I(v),
the thick lines indicate the largest distance to a node in I(v).

The quality of a connection graph G is measured by the social cost c(G) = ∑v∈V c(v)
as the sum over all private costs. Our goal is to analyze the structure and social cost of
worst case swap equilibria and compare them with a general optimal solution. As usual
in algorithmic game theory, we use the ratio of these two values (price of anarchy,
see Section 2.3) for this comparison [9]. Note that if the interest graph is the complete
graph, I-BNCG coincides with the BNCG by Alon et al. [2].

Related Work. Network creation games combine two crucial aspects of modern com-
munication networks: network design and routing. Many such networks consist of au-
tonomous peers and have a highly dynamic character. Thus, it seems natural to use a
game theoretic approach to study their evolution and behavior. Given the possibility
to change the network structure (buy bandwidth, create new links, etc.), peers typi-
cally try to improve their individual communication experience. The question whether
this selfish behavior results in an overall good network structure constitutes the central
question of the study of network creation games as introduced by Fabrikant et al. [7]. In
their model, the authors use a fixed cost parameter α > 0 representing the cost of buy-
ing a single edge. The players (nodes) in such a game can buy edges to decrease their
local communication cost (the average distance to all other nodes in the network). Each
player’s objective is to minimize the sum of its individual communication cost and the
money spent on buying edges. In their seminal work, the authors proved (among other
things) an upper bound of O

(√
α
)

on the price of anarchy (PoA) in the case of α < n2.
Albers et al. [1] proved a constant PoA for α ∈O (

√
n) and the first sublinear worst case

bound of O
(
n1/3

)
for general α . Demaine et al. [6] were the first to prove an O (nε)

bound for α in the range of Ω (n) and o(n lgn). Furthermore, Demaine et al. introduced
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a new cost measure for the private cost, causing the individual nodes to consider their
maximum distance to all remaining nodes instead of the average distance. For this vari-

ant they showed that the PoA is at most 2 for α ≥ n, O
(

min{4
√

lgn,(n/α)1/3}
)

for

2
√

lgn ≤ α ≤ n, and O
(
n2/α) for α < 2

√
lgn. Recently, Mihalák and Schlegel [11]

could prove that for α > 273 ·n all equilibria in the AVG-version are trees (and thus the
PoA is constant). The same result applies to the MAX-version if α > 129.

While network creation games, as defined by Fabrikant et al., and their variants seem
to capture the dynamics and evolution caused by the selfish behavior of peers in an accu-
rate way, there is a major drawback of these models: most of them compute the private
communication cost of the peers over the complete network. Given the immense size
of such communication networks, this seems rather unrealistic. Typically, participants
want to communicate only in small groups, with a small subset of participants they
know. To the best of our knowledge, the only other work taking this into account is
due to Halevi and Mansour [8]. They introduce a concept similar to our interests (see
model description). For the objective of minimizing the average distance of a peer to
its interests, they proved the existence of pure nash equilibria for α ≤ 1 and α ≥ 2 and
upper bounded the PoA by O (

√
n) for general α . In the case of constant α or d (where

d denotes the average degree in the interest graph) or α ∈ O (nd), Halevi and Mansour
upper bounded the PoA by a constant. Furthermore, the authors provided a family of
problem instances for which the PoA is lower bounded by Ω (logn/ loglogn).

Note that all these results largely depend on the cost parameter α . Moreover, as has
been stated in [7], computing a player’s best response for these models is NP-hard.
This observation leads to a new, simplified formalization by Alon et al. [2], trying to
capture the crux of the problem without the burden of this additional parameter. They
introduce basic network creation games (BNCG), where players no longer have to pay
for edges. Instead, possible actions are limited to improving edge swaps: replacing a
single, incident edge by an edge to some arbitrary node which improves the node’s
private cost. Other than that, the general problem stays mostly untouched, especially
the private cost function (average distance or maximum distance to all other nodes).
Best responses in this game turn out to be polynomially computable. Restricting the
initial network to trees, they show that the only equilibrium in the AVG-version is a
star graph. Without restrictions, all swap equilibria are proven to have a diameter of

2O(
√

lgn). For the MAX-version, the authors prove a maximum diameter of three if the
resulting equilibrium is a tree. Furthermore, the authors construct an equilibrium of
diameter Θ (

√
n). Our model is a direct generalization of these BNCGs, introducing the

concept of interests. Up to now, the only other work on BNCGs we are aware of is due
to Lenzner [10]. He studies the dynamics of the AVG-version of BNCGs and proves
for the case of tree connection graphs a convergence to pure equilibria. Moreover, he
proves that any sequence of improving edge swaps converges in at most O

(
n3
)

steps to
a star equilibrium.

Our Contribution. We introduce a generalized class of the BNCG by taking the differ-
ent interests of individual peers into account. We analyze the structure and quality for
the case that the initial connection graph is a tree. For the MAX-version, we derive a
worst case upper bound of O (

√
n) for the private costs of the individual players in an
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equilibrium. Thereto, we introduce and apply a novel combinatorial technique that cap-
tures the structural properties of our equilibria (see MAX-arrangement, Definition 1).
Furthermore, for interest graphs with a maximum independent set of size M≤

√
n (e.g.,

the clique graph with M = 1), we can improve the private cost upper bound to O (M).
Using a circular interest graph, we construct an equilibrium with a player having private
cost Ω (

√
n), showing that our bound is tight. By extending this construction, we are

able to prove a tight bound of Θ (
√

n) on the price of anarchy (ratio between the so-
cial cost of a worst case equilibrium and an optimum [9]). Using a star-like connection
graph, we show the existence of a MAX-equilibrium with small social cost, yielding
a price of stability (ratio between the social cost of a best case equilibrium and an op-
timum [3,4]) of at most two for an I-BNCG. For the case of an I-BNCG featuring a
general connection graph (instead of a tree), we show that the price of anarchy is Θ (n).

2 Quality of Equilibria in I-BNCGs

In this section we show a tight worst case private cost upper bound of Θ
(√

n
)

for every
MAX-equilibrium on trees as well as the same bound for the price of anarchy. The price
of stability we can limit to be at most two. For general connection graphs we provide
an instance with social cost Ω

(
n2
)
, yielding a price of anarchy of Θ (n).

2.1 Private Cost Upper Bound

In the following we prove the private cost upper bound as stated below:

Theorem 1. Let I be a set of interests and G = (V,E) a corresponding tree in a MAX-
equilibrium, n := |V |. Then, for all v ∈V we have c(v) ∈ O (

√
n).

Outline of the proof: We consider a tree network in a MAX-equilibrium and take any
node with maximal private cost. Starting with this node, we define a special node se-
quence, called MAX-arrangement, that will contribute the following properties: each
two successive nodes are interested in each other and every node is “far away” from all
previous nodes of the sequence. We will prove that such a sequence necessarily exists
and that its length is proportional to the private cost of the starting node.

In detail, we prove with Lemma 3 and Lemma 4 that a shortest path traversal of a
MAX-arrangement in the connection graph uses each edge at most twice and by this
limits its length. Lemma 5 constructively shows that given a node with maximal private
cost, there always exists a MAX-arrangement starting with this node and ending with a
node with a private cost of 3. Lemma 2 gives us that the number of nodes in this MAX-
arrangement is proportional to the maximal private cost of the first node. Comparing
the maximum private cost of a node with the length of a shortest path traversal of any
corresponding MAX-arrangement gives us the upper bound.

Remark 1. Note that in a MAX-equilibrium, each node v with | I(v)|= 1 has c(v) = 1.
Hence, for a node v′ with c(v′)> 1, it holds | I(v′)|> 1.
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v0

v1v2

xi2

yi2

xi1

yi1

xi3

yi3

xi4

yi4

Fig. 2. Visualization for Lemma 1. v0 can per-
form improving swap v0 : [v1 → v2].

v0

vk−1

w1

w2
vk=w0

vk+1=wt

Fig. 3. Visualization for proof of Lemma 4.
Edge {w0,w1} is used twice.

Lemma 1 (T-configuration). Let I be a set of interests, G = (V,E) a corresponding
tree in a MAX-equilibrium and v ∈V with | I(v)| ≥ 2. Then there exist nodes x,y ∈ I(v)
such that |d(x,v)− d(v,y)| ≤ 1 and v is connected by at most one edge to the shortest
path from x to y and c(v) = d(v,x).

Proof. Let v ∈ V with | I(v)| ≥ 2 and x ∈ I(v) with d(v,x) = c(v). Assume that all
x′ ∈ I(v) \ {x} are at distance d(x′,v) ≤ c(v)− 2 from v. Consider the shortest path
v→ v1 → v2 → . . .→ x to x. In this case v can reduce its private cost by v : [v1 → v2]
since this swap improves v’s distance to x by 1 but increases the distances to every node
in I(v)\ {x} by at most 1. But this contradicts G being in a MAX-equilibrium.

We now consider all pairs (xi,yi) ∈ I(v)× I(v) for that hold d(v,xi) = c(v) and
d(v,yi) ≥ c(v)− 1. Let us assume that v is connected to each shortest path from xi

to yi by at least two edges that do not lie on that path. (See Figure 2 for a visualization.)
Thus, v is not located on the shortest path from xi to yi for all i. This implies that in the
graph G\ {v} for each pair (xi,yi) there exists a connected component containing both
nodes xi,yi. Since each two nodes at distance exactly c(v) form such a pair, all nodes of
I(v) at distance exactly c(v) must be located in the same connected component, which
gives for every pair (xi,yi) that both nodes are contained in the same component. Hence,
all nodes x′ ∈ I(v) at distance d(x′,v)≥ c(v)−1 from v are in the same connected com-
ponent and by the two edges distance constraint, there must be a path v → v1 → v2

that is a subpath of every path from v to every node xi and yi. Hence, v can perform
the improving swap v : [v1 → v2] (cf. Figure 2). This swap decreases the distance to all
nodes xi,yi by one and increases each distance to other nodes (i.e., nodes w ∈ I(v) with
d(w,v) ≤ c(v)− 2) by at most one and hence contradicts G being in a MAX-equilibri-
um. ��
Definition 1 (MAX-arrangement). Let v0 ∈ V and v1 ∈ I(v0) such that d(v0,v1) =
c(v0). Consider a sequence of nodes v0, . . . ,vm with vi ∈ I(vi−1), i = 1, . . . ,m, with pri-
vate costs c(vi) > 3 for i = 0, . . . ,m− 1 and c(vm) = 3. We call this sequence a MAX-
arrangement if for all i = 2, . . . ,m it holds (see Figure 4 for a visualization):

vi = argmax
vi∈I(vi−1)

{
d(vi−2,vi)

∣∣∣∣ vi−1 is connected by ≤ 1 edge to the
shortest path from vi−2 to vi

}
The key property of a MAX-arrangement is stated by the following two lemmas: con-
sider a node vi in a MAX-arrangement, then (1) its MAX-arrangement successor node
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v0 v1

v2

v3

v4 v5

. . .
vm−1 vm

Fig. 4. Visualization of a MAX-arrangement. The radius of a circle around a node corresponds to
the node’s private cost. Curled lines denote shortest paths.

vi+1 cannot have a “much lower” private cost than vi and (2) in the connection graph
the shortest path from vi to vi+1 can overlap by at most one edge with the shortest path
to vi’s MAX-arrangement predecessor node.

Lemma 2. For each two successive nodes vi,vi+1 (0 ≤ i < m) in a MAX-arrangement
v0, . . . ,vm it holds d(vi,vi+1)≥ c(vi)− 1 and hence c(vi+1)≥ c(vi)− 1.

Proof. Consider a node vi, 0 ≤ i < m, in the MAX-arrangement. Then by Lemma 1,
there exist x,y ∈ I(vi) with d(vi,x) = c(vi) and c(vi) ≥ d(vi,y) ≥ c(vi)− 1 such that
vi is connected by at most one edge to the shortest path from x to y. At least one
of these nodes is a valid candidate for the next MAX-arrangement node vi+1 (even
if neither x nor y is vi+1, we get a distance lower bound) and we get d(vi,vi+1) ≥
min{d(vi,x),d(vi,y)} ≥ c(vi)− 1. This gives, c(vi+1)≥ c(vi)− 1. ��

Lemma 3 (Increasing Distance). Let I be a set of interests and G = (V,E) a corre-
sponding tree in a MAX-equilibrium with v0, . . . ,vk a MAX-arrangement. Then the dis-
tances to v0 are monotonically increasing, i.e., d(v0,vi)≤ d(v0,vi+1) for i= 1, . . . ,k−1.

Proof. By c(v1)≥ 3 we get with Remark 1 that | I(v1)| ≥ 2. Hence by Lemma 1, there
exists a node v2, such that the paths v1 to v0 and v1 to v2 overlap by at most one edge.
By construction of the MAX-arrangement the distance d(v0,v2) is maximal among all
distances from v0 to nodes v ∈ I(v1) and hence we get d(v0,v1)≤ d(v0,v2).

Assume that there is a node vi with smallest index i ≥ 2 in the MAX-arrangement
for which the claim does not hold. That is d(v0,vi−1)≤ d(v0,vi) > d(v0,vi+1). Denote
by x the most distant node from v0 that is on all shortest paths from v0 to vi−1, v0 to vi,
and v0 to vi+1. (Such a node x exists since especially v0 fulfills the restrictions.) By the
choice of i and since all these paths cross node x, we get:

d(x,vi−1)≤ d(x,vi)> d(x,vi+1) (1)

By definition of the MAX-arrangement, vi is connected by at most one edge to the
shortest path from vi−1 to vi+1. Hence, x must be a node on the path from vi−1 to vi+1.
First note that x cannot be vi or a neighbor of vi, since for those cases with (1) we get
d(x,vi+1) < d(x,vi) ≤ 1. Further, x must lie on the shortest path from vi−1 to vi, since
otherwise x would lie on the shortest path from vi to vi+1 which implies by d(vi−1,vi)≥
3 that d(x,vi)< d(x,vi−1). This gives d(x,vi)≤ d(x,vi+1) and is a contradiction. ��
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Lemma 4. Let I be a set of interests and G = (V,E) a corresponding tree in a MAX-
equilibrium. Consider a MAX-arrangement v0, . . . ,vm. Then, no edge in E is used more
than two times by the shortest path visiting the nodes v0, . . . ,vm in the given order.

Proof. We label the nodes of G by their distances to v0. This is, for every v ∈ V
we define a level by level(v) := d(v0,v). We consider an arbitrary node vk with k ∈
{1, . . . ,m− 1} and the corresponding shortest path vk =: w0 → w1 → . . .→ wt := vk+1
to node vk+1. By definition, vk is connected by at most one edge to the shortest path from
vk−1 to vk+1 (see Figure 3). By Lemma 3 we have level(vk−1)≤ level(vk)≤ level(vk+1).
Hence, for i = 2, . . . , t−1 we get level(wi)< level(wi+1). This is, at most one edge (ex-
plicitly edge {w0,w1}) of the shortest path from v0 to vk is used a second time by the
shortest path traversal from vk to vk+1. By Lemma 2 we have t ≥ c(vk)− 1≥ 3 and get
level(vk)< level(vk+1). ��

Now we prove that given a node v0 of a MAX-equilibrium tree with c(v0) > 3, there
exists a MAX-arrangement starting with v0 and closing with a node with private cost 3.
With the previous results about MAX-arrangements, this leads to the upper bound.

Lemma 5. Let I be a set of interests and G = (V,E) a corresponding tree in a MAX-
equilibrium. Then for v0,v1 ∈ V with d(v0,v1) > 3 and v1 ∈ I(v0) there exists a MAX-
arrangement starting with v0. And for every such MAX-arrangement it holds that the
shortest path that visits all nodes of the MAX-arrangement in the given order uses at
least (c(v0)

2 + c(v0)− 6)/4 different edges of G.

Proof. Existence: v0,v1 obviously fulfill the conditions of a MAX-arrangement. Thus, it
suffices to show that, given the beginning of a MAX-arrangement v0, . . . ,vi with c(v j)>
3, j = 0, . . . , i− 1, we can either find a next node vi+1 that suffices the conditions or
otherwise c(vi) = 3. Assume c(vi) > 3. Then, by Lemma 1 there exist x,y ∈ I(vi) with
d(vi,x) = c(vi) and c(vi)≥ d(vi,y)≥ c(vi)−1 such that vi is connected by at most one
edge to the shortest path from x to y. Since c(vi) > 3, also c(x) ≥ 3 and c(y)≥ 3 hold.
Now, for at least one node (x or y) we have that this node is most distant to vi−1, it is
not vi−2, and thus it fulfills the conditions for a MAX-arrangement.

Traversal: We now can apply the previous lemmas for providing the minimal length
of such a MAX-arrangement: Lemma 2 states that by construction we always have
c(vi+1) ≥ c(vi)− 1. Lemma 3 implies that no node can be contained more than once
in a MAX-arrangement. By the arguments above, we can always find a new node
for the MAX-arrangement until we reach a node w with c(w) = 3. Hence, the MAX-
arrangement contains at least c(v0)−2 nodes. Since the distance between two succeed-
ing nodes in the MAX-arrangement decreases by at most one per node, a traversal of

this MAX-arrangement consists of at least ∑c(v0)
i=3 i= (c(v0)

2+c(v0)−6)/2 edges. From
these, by Lemma 4, at least (c(v0)

2 + c(v0)− 6)/4 edges are different. ��

Theorem 1 (Restated) Let I be a set of interests and G = (V,E) a corresponding tree
in a MAX-equilibrium, n := |V |. Then, for all v ∈V we have c(v) ∈ O (

√
n).

Proof. W.l.o.g. we may assume that there is at least one {v,v′} ∈ I with d(v,v′) ≥ 3.
Let nodes v0,v1 ∈ V , v1 ∈ I(v0) have maximal distance among all nodes,
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v1 vn vn−1 vn−3 vl+D−2 vl vl−D+2 vk+5 vk+2 vk+1

. . . . . . . . . . . . . . .

v2 v3 v4 vi−1 vi vi+1 vi+2 vk−2 vk−1 vk
D−1 D D−1

Fig. 5. Tree G = (V,E) in a MAX-equilibrium with private cost Ω (D) for node vi, with D :=√
|V |−2+1, k := 2D−3, and l = n−∑D

i=1 i.

D := d(v0,v1) = c(v0). Then, by Lemma 5 we can find a MAX-arrangement v0, . . . ,vm

whose traversal uses at least (D2 +D− 6)/4 different edges. Since our tree has exactly
n− 1 edges, we get (D2 +D− 6)/4 ≤ n− 1 as an upper bound for the size of every
MAX-arrangement and hence the private cost upper bound is D ∈ O (

√
n). ��

2.2 The Private Cost Upper Bound Is Tight

Next, we show that the upper bound of O
(√
|V |

)
for the private costs is tight by con-

structing a MAX-equilibrium instance with one player having private cost Ω
(√
|V |

)
.

Remark 2. For a connection graph with nodes V := {v1, . . . ,vn}, let I := {{vi,vi+1}|i =
1, . . . ,n−1}∪{{vn,v1}} be interests such that (V, I) is a circle. Then, a node vi with de-
gree one in G cannot perform any swap if and only if it holds |d(vi−1,vi)−d(vi,vi+1)| ≤
1 and vi is connected by one edge to the shortest path from vi−1 to vi+1 (cf. Lemma 1).

Theorem 2. There exists a set of interests and a corresponding tree G = (V,E) in a

MAX-equilibrium with a node vi ∈V that has private cost c(vi) ∈Ω
(√

|V |
)

.

Sketch. We consider interests I := {{vi,vi+1}|i = 1, . . . ,n− 1} ∪ {{vn,v1}} and the
connection graph as stated in Figure 5. (For the proof see the full version [5].) ��

2.3 Existence of MAX-equilibria and the Price of Anarchy

In this section we compute the price of stability (PoS) and the price of anarchy (PoA).
Let the social optimum represent an instance with the smallest social cost of any tree
over all nodes (which is not necessarily in a MAX-equilibrium). Then, the PoS denotes
the ratio between the minimum social cost of a MAX-equilibrium and the cost of a
social optimum. Whereas the PoA denotes the ratio between the worst social cost of a
MAX-equilibrium and the cost of a social optimum.

In the full version [5], we provide a simple approximation algorithm that generates
for any interest graph a MAX-equilibrium tree whose social cost is at most twice as
high as an optimal solution, yielding the following lemma.

Lemma 6. For every set of interests I there exists a corresponding tree G = (V,E) in a
MAX-equilibrium that causes social cost c(G)≤ 2n, n := |V |.

Theorem 3. The price of stability for I-BNCG is at most 2.
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Proof. Let I be a set of interests over nodes V , n := |V |. Then each connection graph
that is a tree induces social cost of at least n. By Lemma 6 there exists a connection
graph in a MAX-equilibrium with social cost of at most 2n. Thus, the price of stability
is at most 2n/n = 2. ��

Lemma 7. There exist interest graphs over n nodes with a corresponding MAX-equi-
librium tree that causes social cost of Ω (n ·

√
n).

Sketch. Consider I := {{vi,vi+1}|i = 1, . . . ,�n/2�− 1}∪{{vi,v1}|i = �n/2�, . . . ,n}∪
{{vn/2−1,vi}|i = �n/2�, . . . ,n} and construct a similar graph as in Figure 5 but with
�n/2� nodes at position of vi, each with private cost Ω (

√
n). (See full version [5].) ��

Theorem 4. The price of anarchy for I-BNCG is Θ(
√

n).

Proof. Theorem 1 provides an upper bound of O (
√

n) for the private cost of every node
in a tree in a MAX-equilibrium with n nodes. By this, O (n ·

√
n) is an upper bound for

the social cost of every MAX-equilibrium. Further, by Lemma 7 we get Ω (n ·√n) as
a worst case lower bound for the social cost of a graph in a MAX-equilibrium. For the
cost of a social optimum, we get Θ (n). (Each social optimum incurs cost of at least n
and at most 2n.) Hence, we get Θ (n ·√n/n) =Θ (

√
n) for the price of anarchy. ��

2.4 The Price of Anarchy for I-BNCG on General Graphs

Theorem 5. The price of anarchy for I-BNCG with general connection graphs is Θ (n).

Proof. First, note that the social cost of every instance are upper bounded by n2 and
lower bounded by n. Second, we provide an interest graph over n nodes (n≡ 0 mod 6)
and a corresponding MAX-equilibrium graph G = (V,E) with social cost Ω

(
n2
)

(see
Figure 6). To this, we connect n/2 nodes to a ring (ring nodes) and connect one addi-
tional (satellite) node to each of them. Each of the ring nodes is interested in its three
adjacent nodes in G, whereas each satellite node is interested in its neighbor at the ring
and in both satellite nodes at distance exactly n/6+ 2. This is an equilibrium and all
n/2 satellite nodes have a private cost of n/6+2, i.e., the price of anarchy is Ω (n). ��

3 Further Structural Properties of Equilibria

By Lemma 5 we achieved an upper bound for any MAX-arrangement (see Definition 1)
contributed only by the property that the network is connected. Here, we introduce a
second upper bound for a MAX-arrangement that is given by the size of a maximum
independent set (MIS) in the interest graph. Having such an MIS of size M, we can
bound the maximum private costs by O

(
M
)
, which yields improved bounds for specific

families of interest graphs. Particularly, this gives asymptotically same upper bounds for
complete interest graphs on trees as those explicitly constructed by Alon et al. [2].

Theorem 6. Let I be a set of interests and G = (V,E) a corresponding tree in a MAX-
equilibrium. Let M be the size of a maximum independent set in (V, I). Then for every
MAX-arrangement v0, . . . ,vm: The length of this MAX-arrangement is at most 2 ·M.
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Fig. 6. MAX-equilibrium graph with social cost of Ω
(
n2
)
. Each white node is interested in its

three neighbors. Each gray node is interested in its white neighbor and the two gray nodes at
distance n/6+2.

Proof. We prove that the nodes of v0, . . . ,vm−1 with even index form an independent
set in the interest graph (V, I). Consider an even index i and assume for contradiction
that there is an even index k < i such that vk ∈ I(vi). By Lemma 3 we get d(vk,vk+1)≤
d(vk,vk+2). If vk+2 �= vi with Lemma 2 and c(v j)> 3 for all v j in the MAX-arrangement
we get d(vk,vi)> d(vk,vk+2)+ 1≥ c(vk). But this is a contradiction.

Thus, consider the case vk+2 = vi. Since vk+1 is connected by at most one edge to
the shortest path from vk to vk+2 and d(vk+1,vk+2)≥ 3 we get vk+2 �∈ I(vk). Otherwise
we either get the same contradiction as before, or vk+1 would contradict to be the most
distant node in I(vk) that fulfills the MAX-arrangement conditions. Hence, the nodes
with even index form an independent set in (V, I), which gives m≤ 2 ·M ��

Corollary 1. Let I be a set of interests and G = (V,E) a corresponding tree in a MAX-
equilibrium, n := |V |. Let the size M of any MIS in (V, I) be limited by

√
n. Then, for

v ∈V we have c(v) ∈ O (M).

Proof. W.l.o.g. we assume that there is a node with private cost greater than 3. Hence,
there is a MAX-arrangement v0, . . . ,vm,vm+1 with c(vi)> 3, i = 1, . . . ,m and c(vm+1) =
3. By Theorem 6 we get m≤ 2M. Analog to Theorem 1, we get the upper bound. ��

Corollary 2. Let I be a set of interests and G = (V,E) a corresponding tree in a MAX-
equilibrium. If (V, I) is a complete graph, then c(v) ∈ O (1) for all v ∈V.

In the full version [5], we provide a scenario and a corresponding cyclic invocation
sequence over all nodes, with each node performing a best-response improving swap
(if possible), such that the nodes never reach a MAX-equilibrium. This gives:

Remark 3. I-BNCG is no potential game as defined by Monderer and Shapley [12].

4 Outlook and Future Work

In this paper, we presented tight worst case bounds for the private costs as well as for
the social cost of any MAX-equilibrium on tree networks. Furthermore, we drew an in-
teresting connection between the size of an MIS in the interest graph and upper bounds
on the private/social costs. In comparison with MAX-equilibria on general graphs, we



Basic Network Creation Games with Communication Interests 83

could show that the price of anarchy can perform much worse if the connection graph
is not acyclic. However, it remains an open question whether the price of anarchy on
general connection graphs with complete interests could perform better than O (n). For
this, so far there is only a worst case lower bound of Ω (

√
n) (by Alon et al. [2]) for

the graph diameter in a MAX-equilibrium, yielding a lower bound for the price of anar-
chy. Techniques similar to our MAX-arrangement-technique may allow deeper insights
into the nature of MAX-equilibria in that scenario. Apart from this, finding good upper
bounds on the social cost of an AVG-equilibrium remains a challenging problem (in the
full version [5], we give a lower bound of Ω(n) for the private costs).

Even if the existence of a MAX-equilibrium is always ensured (which we proved for
trees), it remains an open question whether the dynamics ever reaches an equilibrium.
We could state examples, where the network never converges to a MAX-equilibrium. It
seems an interesting question whether we can guarantee the convergence by additional
policies, e.g., by restricting the order in which nodes perform their swaps. And in case
of a guaranteed convergence, how many swaps would it take to reach an equilibrium?

Currently, we only considered static interest graphs. But in practice, interests of net-
work participants might change over time. Introducing a time model and considering
certain (possibly restricted) changes of the interest graph seems a natural way to gener-
alize our model, yielding an interesting online problem.
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Abstract. Many puzzling social behaviors, such as avoiding eye contact,
using innuendos, and insignificant events that trigger revolutions, seem to
relate to common knowledge and coordination, but the exact relationship
has yet to be formalized. Herein, we present such a formalization. We
state necessary and sufficient conditions for what we call state-dependent
equilibria – equilibria where players play different strategies in different
states of the world. In particular, if everybody behaves a certain way (e.g.
does not revolt) in the usual state of the world, then in order for players
to be able to behave a different way (e.g. revolt) in another state of the
world, it is both necessary and sufficient for it to be common p-believed
that it is not the usual state of the world, where common p-belief is
a relaxation of common knowledge introduced by Monderer and Samet
[16]. Our framework applies to many player r-coordination games – a
generalization of coordination games that we introduce – and common
(r, p)-beliefs – a generalization of common p-beliefs that we introduce.
We then apply these theorems to two particular signaling structures to
obtain novel results.

1 Introduction

In the popular parable “The Emperor’s New Clothes” [2], a gathering of adults
pretends to be impressed by the Emperor’s dazzling new suit despite the fact
that he is actually naked. It is not until an innocent child cries out “But he
has nothing on at all!” that the Emperor’s position of authority and respect
is questioned. This is a metaphor for a number of common political situations
in which the populace knows the current regime is inept but takes no action
against it until some seemingly insignificant event occurs, such as the child’s
cry. In fact, in Tunisia, despite years of political repression and poverty, it was
not until the previously unknown street vendor Mohamed Bouazizi set himself
on fire that citizens rose up in protest. Common knowledge – everyone knows
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that everyone knows that... – might offer such an explanation for this strange
phenomenon: while the boy’s cry and the self immolation of Mohamed Bouazizi
do not teach anyone that the government is inept, they make it commonly known
that the government is inept. Likewise, common knowledge has been proffered as
an explanation for many other puzzling social behaviors: it is common to avoid
eye-contact when caught in an inappropriate act, despite the fact that looking
away, if anything, increases the conspicuousness of a shameful deed. Nevertheless,
even Capuchin monkeys look away when they ignore a request to help an ally in
a tussle [21]. And few adults after a nice date are fooled by the inquiry “Would
you like to come upstairs for a drink?” yet all but the most audacious avoid the
explicit request [22].

Many authors have aptly noted that common knowledge plays an important
role in these puzzling social behaviors [10, 4, 6, 22]. Avoiding eye contact prevents
common knowledge that you were noticed, using innuendos enables a speaker to
request something inappropriate without making the request commonly known,
and prohibiting public displays of criticism of the government while not prevent-
ing people from realizing the flaws of their government, prevent the flaws from
being commonly known. Authors have argued that common knowledge is impor-
tant in these situations because common knowledge is needed for coordination.
But without formal arguments, many important questions still remain, such as:
what exactly needs to be “commonly known” in order to “coordinate”? What ex-
actly will happen in the absence of common knowledge? Miscoordination? When
common knowledge is lacking, but almost present, e.g. if everyone is pretty sure
that everyone is pretty sure... will this have the same effect as common knowl-
edge? Such details, which may seem pedantic, are crucial for answering practical
questions such as: if I cannot think up an innuendo, will an appropriately placed
cough midsentence do the trick? Why is it that sometimes we use innuendos and
sometimes we go out of our way to state the obvious?

We will formalize the role of common knowledge in coordination, which will
enable us to address each of these questions. The crucial step in our formalism
is based on the insight of Rubinstein [23]. Rubinstein considers coordination
games – games in which players make choices such that they would like to mimic
the choice that others make. Rubinstein supposes that players coordinate on a
particular action A in a given situation. He then supposes that the situation
changes and asks whether the players can coordinate on a different action instead.
He shows that unless it is commonly known that the situation has changed,
players still must coordinate on A. The intuition is clear: even if one player knows
that circumstances have changed, if he thinks the other player does not know this,
then he expects the other player to play as if circumstances have not changed.
Since it is a coordination game, he best responds by playing as if circumstances
have not changed. Likewise, even if both players know that circumstances have
changed, and both players know that both players know this, but one player
does not realize the second player has this second degree of knowledge, then this
player will expect the other player to play as if circumstances have not changed.
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By the above argument, he best responds by playing as if circumstances have
not changed. The same logic continues indefinitely.

Rubinstein presents a particular instance in which the above logic holds. The
contribution of our paper is to show that this logic holds quite generally, for
any two player coordination game, and in fact, for a generalization to many
players. And moreover, we show that common knowledge is not just necessary
for changing behaviors when circumstances change, but common knowledge is
also sufficient. We hope that this will lead to a deeper understanding of these
puzzling social behaviors, as well as some novel predictions.

Our results. In this paper, we introduce state-dependent equilibria, which we
define as equilibrium strategies in which players take different actions when
the circumstances change. This notion allows us to address the questions that
were left unanswered by the informal discussions of common knowledge and
coordination. In particular, we characterize the conditions under which rational
players are able to play state-dependent equilibria.

We begin by considering two-player coordination games. We show that it is
not quite common knowledge that determines the existence of state-dependent
equilibria but rather a relaxation of common knowledge. This notion corresponds
with common p-beliefs, as developed by Monderer and Samet [16]: each believes
with probability at least p that each believe with probability at least p.... In
our framework, we show that p depends on the precise payoffs of the game and
corresponds to the risk dominance of Harsanyi and Selten [14].

We then introduce a natural n-player generalization of coordination games
that we call r-coordination games in which coordination on an action is successful
if at least some fraction r of the players take that action. Accordingly, we also
develop a generalization of common p-beliefs for this setting.

In order to derive our results, we provide a unifying theoretical framework
for analyzing our games. Our framework gives tight necessary and sufficient
conditions on the players’ beliefs under which a state-dependent equilibrium
exists. These conditions depend on the payoffs of the game (in particular on
the risk dominance) and, in the case of r-coordination games, on the threshold
fraction r required for successful coordination.

Our final contribution is to apply this framework both to simple but puzzling
social behavior and to more complex distributed phenomena that arise in biology,
economics, and sociology. The first application is eye-contact. We offer a post hoc
explanation for why we avoid eye-contact when caught in an inappropriate act.
For the second and third applications, we show how our results can be applied
to situations in which the true state of the world is observed by all players with
arbitrarily small noise, as in the global games literature [18, 20, 19]. This yields
some novel predictions about social behaviors, such as which cues can be used
to instigate a revolution, and when a researcher’s reputation can be resilient to
substandard work.

Due to space constraints, the proofs of our claims will appear in the full version
of the paper.
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1.1 Related Work

The concept of common knowledge was first formalized in multi-modal logic
in 1969 by Lewis [15]. Aumann later put common knowledge in a set-theoretic
framework [3].

In 1989, Rubinstein used common knowledge to analyze a problem related to
the coordinated attack problem in computer science [23]. This problem, called
the Electronic Mail Game, was the first example that common knowledge is very
different than any finite order of knowledge. Rubinstein showed that the lack of
common knowledge prevents players from switching strategies (i.e. prevents the
existence of state-dependent equilibria) in the Electronic Mail Game. See [17]
for a retrospective on the Electronic Mail Game. Our results show that common
knowledge is not just necessary but also sufficient and holds for any coordination
game and even r-coordination games.

Carlsson and Van Damme showed that when players have noisy signals about
the payoffs in a coordination game, as the noise vanishes, the unique equilibrium
in the game becomes the risk dominant equilibrium [5]. Morris and Shin applied
this result to bank runs and currency crisis, showing that there is a unique
underlying value at which currencies collapse and bank runs occur, in contrast to
previous models, which permitted multiple equilibria and prevented comparative
static analysis [18, 20, 19]. In some of our applications, we use similar signaling
structures, but the uncertainty does not affect the payoffs. We find circumstances
under which no state-dependent equilibria exist.

Monderer and Samet developed an approximate notion of common knowledge
called common p-beliefs, which is relevant in our framework. We will draw heav-
ily on their definitions and results [16]. Others have discussed the role of common
knowledge in social puzzles, albeit less formally than in the aforementioned liter-
ature. Chwe discusses the role of common knowledge in public rituals [6]. Pinker
et al discusses the role of common knowledge in innuendos [22]. Binmore and
Friedell discuss the role of common knowledge in eye contact [9, 4]. In our paper
we formalize the role of common knowledge in many of these social puzzles.

The role of common knowledge has been studied in the fields of distributed
computing and artificial intelligence [11, 7, 12]. This line of work suggests that
knowledge is an important abstraction for distributed systems and for the de-
sign and analysis of distributed protocols, in particular for achieving consistent
simultaneous actions. Fagin and Halpern [13, 8] present an abstract model for
knowledge and probability in which they assign to each agent-state pair a prob-
ability space to be used when computing the probability that a formula is true.
A complexity-theoretic version of Aumann’s celebrated Agreement Theorem is
provided in [1].

2 Preliminaries

We will adopt the set-theoretic formulation of common knowledge introduced by
Aumann [3]. In this model, there is a set Ω of “states of the world”. Each player
i has some information regarding the true state of the world. This information is
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given by a partition Πi of Ω. In particular, for ω ∈ Ω, Πi(ω) is the set of states
indistinguishable from ω to player i – that is, when ω occurs, player i knows
that one of the states in Πi(ω) occurred but not which one. Finally, there is a
probability distribution μ over Ω, representing the (common) prior belief of the
players over the states of the world. These parameters all together constitute the
information structure.

Definition 1 (Information structure). An information structure is a tuple
I = (N, Ω, μ, {Πi}i∈N ) where N is the set of players (with n := |N |), Ω is the
set of possible states of the world, μ is a strictly positive common prior probability
distribution over Ω, and Πi is the information partition of player i. Πi(ω) gives
the set of states indistinguishable from ω to player i.

A (Bayesian) game is now defined by an information structure, a set of possible
actions for each player and a state-dependent utility for each player.

Definition 2 (Bayesian game). A Bayesian game Γ is a tuple (I, {Ai}i∈N ,
{ui}i∈N) where I = (N, Ω, μ, {Πi}i∈N ) is an information structure, Ai is the
(finite) set of possible actions that player i can take, ui : A1×. . .×An×Ω → R is
the utility for player i given the state of the world and the actions of all players.

A strategy profile prescribes the action (possibly randomized) that each player
takes at each state of the world.

Definition 3 (Strategy profile). A strategy profile is a function σ =
(σ1, . . . , σn) : Ω → A1 × . . . × An that specifies what action each player takes in
each state of the world.

Since a player cannot distinguish between states belonging to the same partition,
it is enforced that if a player i plays some strategy σ = σi(ω) at some state ω ∈ Ω,
it must be the case that i plays σ at all states ω′ ∈ Πi(ω). We can now recall
the definition of Bayesian Nash equilibrium.

Definition 4 (Bayesian Nash equilibrium). A strategy profile σ
= (σ1, . . . , σn) : Ω → A1 × . . . × An is a Bayesian Nash equilibrium (BNE)
of Γ if for all i ∈ N ,

1. σi(ω) = σi(ω′) whenever ω ∈ Πi(ω′).
2.

∫
ω∈Ω

ui(σi(ω), σ−i(ω))dμ(ω) ≥ ∫
ω∈Ω

ui(σ′
i(ω), σ−i(ω))dμ(ω) for all σ′ satis-

fying property 1.

We now introduce our key definition of state-dependent equilibria, which we
define as equilibrium strategies in which players take different actions when
the circumstances change. This notion allows us to address the questions that
were left unanswered by the informal discussions of common knowledge and
coordination.

Definition 5 (State-dependent BNE). We say that a Bayesian Nash equilib-
rium σ∗ is state-dependent if for some ω, ω′ ∈ Ω, i ∈ N , we have that σ∗

i (ω) = A
and σ∗

i (ω′) = B.
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We now define the notion of p-belief, introduced by Monderer and Samet [16],
which extends the notion of common knowledge by Aumann [3]. Let p be a
number between 0 and 1. We say that a player i p-believes the event E at state
of the world ω if the subjective probability that i assigns to E at ω is at least p.
That is, whenever ω is the true state of the world, i believes that an event in E
occurred with probability at least p. Henceforth, we will use short expressions
such as “i p-believes E at ω” to refer to this concept.

We denote by Bp
i (E) the set of all states of the world at which player i p-

believes E.

Definition 6 (p-belief [16]). For any 0 ≤ p ≤ 1, we say that player i p-believes
E at ω if μ(E | Πi(ω)) ≥ p. We will denote by Bp

i (E) the event that i p-believes
E, i.e. Bp

i (E) = {ω | μ(E | Πi(ω)) ≥ p}.
Observe that by definition of Bp

i (E), the notation ω ∈ Bp
i (E) indicates that

whenever ω occurs, player i believes with probability at least p that the event E
occurred. An event E is then defined p-evident if whenever it occurs, each player
i believes with probability at least p that it indeed occurred.

Definition 7 (evident p-belief [16]). An event E is evident p-belief if for all
i ∈ N we have E ⊆ Bp

i (E).

The following concept extends the notion of common knowledge.

Definition 8 (common p-belief [16]). An event C is common p-belief at state
ω if there exists an evident p-belief event E such that ω ∈ E, and for all i ∈ N ,
E ⊆ Bp

i (C).

Monderer and Samet provide a nice example that illustrates this concept: sup-
pose the true state is either E or F with equal probability. The true state is
announced and each of two players independently hears the announcement with
probability 1 − ε, 0 < ε < 1/2. Then if E is the true state and both hear the
announcement then E is common p-belief for all p < 1− ε even though it is not
common knowledge.

3 Two Player Framework

In this section we consider the classic 2-player, 2-strategy symmetric coordination

game. The payoffs are as follows:
A B

A a, a b, c
B c, b d, d

Assumption 1 (Coordination game). We make the following standard as-
sumption on the parameters of a symmetric coordination game: a > c and d > b.

Throughout this paper, we will use p∗ = d−b
d−b+a−c . This value is called risk-

dominance [14]. Note that if player i believes with probability exactly p∗ that
the other player will play A at ω, then player i will be indifferent between playing
A and B at ω.

For convenience, we will use the following definitions throughout this section.
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Definition 9. Given any strategy profile σ, we let Ai(σ) = {ω|σi(ω) = A} and
Bi(σ) = {ω|σi(ω) = B}, i.e. the set of states where player i plays A and B
respectively.

We now state our main result for the 2-player case. The main question we ask
is when is it possible for the two players to coordinate on different actions in
different states of the world. We answer this question in terms of the existence
of evident p-belief events (where p depends on the payoff matrix) showing that
such events are necessary and sufficient.

Theorem 1. There exists a state-dependent Bayesian Nash equilibrium σ∗ if
and only if there exists a non-empty evident p∗-belief event E and a non-empty
evident (1 − p∗)-belief event F such that E ∩ F = ∅.
While evident knowledge is both necessary and sufficient for state-dependent
equilibria, our theorem further allows us to specify how the strategies must
depend on these evident events, which we express in the following corollary:

Corollary 1. A strategy profile σ∗ is a state-dependent Bayesian Nash equi-
librium if and only if there exists a non-empty evident p∗-belief event E and
a non-empty evident (1 − p∗)-belief event F such that Bp∗

i (E) ∩ B1−p∗
i (F ) = ∅

and Bp∗
i (E) ∪ B1−p∗

i (F ) = Ω for all i, in which case Ai(σ∗) = Bp∗
i (E) and

Bi(σ∗) = B1−p∗
i (F ) for all i.

Our next corollary states the relationship between state-dependent equilibria
and common knowledge.

Corollary 2. If σ∗ is a Bayesian Nash equilibrium such that σ∗
i (ω) = A and

σ∗
i (ω′) = B, then ¬ω′ is common p∗-belief at ω and ¬ω is common (1−p∗)-belief

at ω′.

4 Application: A Rationale for Avoiding Eye-Contact

Two Charedi men, Michael and Dave, go to a bar, and each spots the other,
purposely looking away before meeting eyes. Why?

Suppose that the next day they have to decide whether to tell the Rabbi. If
one expects the other to tell, he is better off also admitting to his actions. On
the other hand, if one does not expect the other to tell, then he is better off
also not admitting to his transgression. The payoffs can be interpreted as the
coordination game from the two-player framework by interpreting A as the act
of not telling the Rabbi, B as the act of telling the Rabbi.

We make the reasonable assumption that if at least one of the men stays
home, neither tells the Rabbi that he saw the other player at the bar (since he
in fact did not). We will use our framework from section 3 to show that (a)
there is always an equilibrium in which they both tell the Rabbi if they make
eye-contact at the bar, and (b) under mild assumptions, if they do not make eye
contact, neither will tell the Rabbi.
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The Model. We now specify the information structure: we suppose that in one
state of the world, at least one of them stays home (H) while in another state of
the world, Dave enters the bar, and Michael is already sitting at the bar. When
Dave walks in, Michael is either staring at the bartender, in which case he would
not see Dave, or looking at the door, in which case he would. As soon as Dave
enters, he sees Michael, so he quickly turns around and walks out. Dave turns
around before or after noticing if Michael saw him.

The set of possible states of the world is given by
Ω = {H, (M,D), (M′,D), (M,D′), (M′,D′)}. We interpret the states of the
world as follows: H is the state where Dave does not go to the bar and stays
at (H)ome. M is the event that Michael goes to the bar and sees Dave, and
D is the event that Dave sees Michael. (M,D) is the state where Dave goes to
the bar, Michael sees him, and Dave sees that Michael saw him (i.e. they make
eye-contact). (M′,D′) is the state where Dave goes to the bar, Michael is looking
at the bartender, and Dave leaves the bar before checking if Michael saw him.

The information partitions are given as follows:

ΠM = {{H, (M′,D′), (M′,D)}, {(M,D′)}, {(M,D)}}
ΠD = {{H}, {(M′,D′), (M,D′)}, {(M′,D)}, {(M,D)}}

Observe that (M,D) is an evident p∗-belief event, that is, when eye contact
happens, it becomes common knowledge between Michael and Dave as expected.

We use the following independent probabilities to deduce the priors over the
state space: pB is the probability that Dave goes to the bar i.e., he does not stay
home; pM′ is the probability that Michael is looking at the bartender when Dave
walks in; pD′ is the probability that, conditioned on Dave going to the bar, he
leaves the bar without noticing Michael.

Our first claim is an almost trivial one which shows that there always exists
an equilibrium in which they both tell the Rabbi if they make eye-contact.

Claim. There exists a Bayesian-Nash equilibrium of Γ such that σ∗(H) = (A, A)
and σ∗((M,D)) = (B, B) for any pB, pM′ , pD′ .

Our next claim shows conditions under which if Michael and Dave do not make
eye-contact, they must continue playing A if they play A on H. That is, suppose
Michael and Dave coordinate on (A, A) when Dave stays home; under what
conditions is it the case that they can play (B, B) only at (M,D), i.e. only when
they make eye-contact.

Claim. Suppose σ∗ is a Bayesian-Nash equilibrium of Γ with σ∗(H) = (A, A). If
pM′ > p∗ and pBpM′

pBpM′+(1−pB) < 1 − p∗ then σ∗(ω) 
= (B, B) for all ω 
= (M,D).

Now that we have formalized why someone mightwant to avoid eye contact, we can
discuss when this is worthwhile. For instance, avoiding eye contact will not serve
any purpose when it is very likely that they saw each other, e.g. if the bar had no-
body else present and was very well lit (i.e. when pM′ and pD′ are small). Likewise,
avoiding eye contact serves no purpose if, when it is commonly known that both
parties see each other doing an act, neither is expected to play any differently than
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if neither transgressed (i.e. σ∗(M,D) = (A, A)). For example, the transgression is
not perceived as related to the ensuing coordination game, e.g. if the two religious
men have already discussed their secret abhorrence of the religion.

Moreover, avoiding eye contact only serves a purpose if there will be an ensuing
coordination game (i.e. a > c). If in fact Michael would prefer to rat on Dave,
regardless of whether Dave rats on Michael (e.g. because he knows the Rabbi will
believe him, and he would like Dave to be excommunicated) then Dave does not
help himself by avoiding Michael’s eyes. In fact, to the extent that Dave thinks
this might be the case, he might want to avoid eye contact, as it may make his
presence more conspicuous to Michael.

Lastly, Michael may even purposely make eye contact, or yell out “hey Dave,
is that you,” if he in fact wants to switch from them both playing A to both
playing B (which would be the case if d > a). For instance, this would be the
case if Dave was looking for someone to leave the community with him and help
him start a new life in the secular world.

5 n-Player Framework

We now introduce r-coordination games. Let Ω be all possible states of the
world. There are n players, each of whom can take action A or B. A player’s
payoff for a particular action is a function of the fraction of players who play B.
In particular, a player’s payoffs are a function of whether the fraction of players
who play B exceeds a threshold r̄. Let r denote the fraction of players who play
B. The payoffs are as follows.

ui(A, r) =
{

a : r ≤ r̄
b : r > r̄

ui(B, r) =
{

c : r ≤ r̄
d : r > r̄

We again use assumption 1 on the values of the parameters, namely that a > c
and d > b. In this context, these assumptions on the payoff parameters generalize
that of a 2 player coordination game in that a player best respond by playing A
if and only if sufficiently many others play A.

We will also assume that n is sufficiently large such that a particular player’s
decision to play A or B does not affect whether r exceeds r̄.

Furthermore, we will again use p∗ = d−b
d−b+a−c . For n-players, p∗ is a general-

ization of risk dominance. If player i believes with probability exactly p that at
least (1 − r̄) players will play A at ω, then player i will be indifferent between
playing A and B at ω.

Note that this setup is a generalization of the two player setup. In particular,
if there are two players, then we can let r̄ be any value in (1/2, 1) in order to
obtain the two player model.

In Definitions 10, 11, and 12, we generalize p-beliefs, evident p-beliefs, and
common p-beliefs to n players.
Definition 10 ((r, p)-belief). For any 0 ≤ p ≤ 1 and any 0 ≤ r ≤ 1, we
say that event E is (r, p)-belief at ω if |{i | ω ∈ Bp

i (E)}| ≥ rn. We define
Br,p(E) = {ω : |{i | ω ∈ Bp

i (E)}| ≥ rn} as the event that at least a fraction of
r players p-believes E.
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Definition 11 (evident (r, p)-belief). An event E is evident (r, p)-belief if
E ⊆ Br,p(E).

Definition 12 (common (r, p)-belief). Given an event C, let C0 = Br,p(C)
and inductively define Cn = Br,p(

⋂
i<n Ci) for all n ≥ 2. Then C is common

(r, p)-belief at ω if ω ∈ ⋂
n≥1 Cn

Note that common (r, p)-beliefs is identical to common p-beliefs when n = 2 and
r = 1. The following theorem and corollaries are analogous to our two-player
theorems and corollaries, despite the differing setup and proofs.

Theorem 2. There exists a state-dependent Bayesian Nash equilibrium σ∗ if
and only if there exists a non-empty evident (1 − r̄, p∗)-belief event E and a
non-empty evident (s, 1−p∗)-belief event F such that E∩F = ∅ for some s > r̄.

Corollary 3. A strategy profile σ∗ is a state-dependent Bayesian Nash equilib-
rium if and only if there exists a non-empty evident (1 − r̄, p∗)-belief event E
and a non-empty evident (s, 1 − p∗)-belief event F for some s > r̄ such that
Bp∗

i (E) ∩ B1−p∗
i (F ) = ∅ and Bp∗

i (E) ∪ B1−p∗
i (F ) = Ω for all i, in which case

Ai(σ∗) = Bp∗
i (E) and Bi(σ∗) = B1−p∗

i (F ) for all i.

Corollary 4. If σ∗ is a Bayesian Nash equilibrium such that |{j | σ∗
j (ω) =

A}| ≥ 1− r̄ and |{j | σ∗
j (ω′) = B}| > r̄, then ¬ω′ is common (1− r̄, p∗)-belief at

ω and ¬ω is common (r̄, 1 − p∗)-belief at ω′.

6 n-Player Application: The Emperor’s Clothes

Suppose that John Doe is on his way to being the next game theorist superstar.
He finally comes out with his first paper, and superficially it is a spectacular
paper. However, the paper offers no real insight, a fact that John attempts to
hide with mathematical complexity. And this is fairly clear to nearly everyone
in the field. Nevertheless, editors start requesting the paper, departments start
offering him positions, conferences start asking him to give the keynote. Why?

Presumably, no one wants to be the lone person in the field who disrespects
the superstar. For example, nobody wants to be the only person not to invite
John to a conference or a special journal issue; he might end up with a powerful
enemy, even if John’s research is not good. However, if everyone in the field
disrespects John Doe, then everyone benefits from doing likewise, since no one
wants his keynote speaker to be unpopular or his new recruit never to be invited
to conferences. Thus, we can model this as a r-coordination game where A is
the act of showing John Doe respect (e.g. inviting him to a conference), and B
is an act of disrespect.1

We make the assumption that if in fact John Doe’s researchwere as great as peo-
ple expected, then everyonewould treat him with respect. Furthermore, we assume
1 Note that “The Emperor’s New Clothes” can be seen as a metaphor for this story.

John Doe is analogous to the Emperor and his colleagues are analogous to the citizens
who do not, initially, publicly disrespect the obviously flawed superstar.
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that if a person can detect that John’s research is bad, he can only approximately
estimate how many others can detect this as well. We will show (Theorem 3) that,
under mild conditions, if John’s research is bad, no matter what fraction of peo-
ple in the field can detect that his research has no insight, he will still be treated
with respect. However, if people know exactly what fraction of the field know that
John’s research is bad, and that fraction is sufficiently high, then it is possible to
treat John with disrespect (subsequent Claim). This is in stark contrast with the
case where the error in a person’s estimate is arbitrarily small.

The Model. We model the information structure as follows: we assume that if
John’s research is in fact bad, then 1 − ε of the population can detect that it is
bad. Everyone who can detect that it is bad has some impression of how easy it
is for others to detect how bad it is; namely, they each get a signal θi which is
independently drawn from U [ε− δ, ε + δ]. After observing his private signal, but
not ε, player i can choose to play A or B. As in the general setup, the payoff
from each action is a function of the fraction of players who play B. Let r denote
the fraction of players who play B. The payoffs are as in Section 5.

We can interpret Theorem 3 as follows. Suppose players disrespect John if
their private signal θi of the true state ε is smaller than some (arbitrarily small)
threshold ε̄. Then, if the fraction r̄ of players needed to coordinate on B is larger
than the risk-dominance p∗, this set of strategies is not an equilibrium. Note that
the condition on r̄ does not depend on ε̄. Another way of interpreting our results
is the following. Even if many believe that many believe that many believe...that
John’s research is bad (for finitely many iterations), John will still be respected.
Whereas, if it is common knowledge (subsequent Claim), e.g. if it is publicly
announced how bad John’s research is, he will no longer be respected.

Theorem 3. Let ε ∼ U [0, 1] and θi ∼iid U [ε − δ, ε + δ] for all i and for some
δ > 0. Let σ∗ be a strategy profile such that σ∗

i (θi) = B when θi ≤ ε̄ and
σ∗

i (θi) = A when θi > ε̄ for some ε̄ ∈ [δ, 1 − δ]. Then for δ → 0, σ∗ is not a
Bayesian Nash equilibrium if r̄ > p∗.

We contrast this result with the scenario in which the exact value of ε is observed
by those who can detect that John’s research is bad (i.e. θi = ε). The following
claim can be easily established.

Claim. The strategy profile σ∗ is a Bayesian Nash equilibrium if σ∗
i (θi) = A if

ε ≤ 1 − r̄ and σ∗
i (θi) = B otherwise.
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Abstract. We consider the problem of approximating the minmax value
of a multi-player game in strategic form. We argue that in three-player
games with 0-1 payoffs, approximating the minmax value within an addi-

tive constant smaller than ξ/2, where ξ = 3−√
5

2
≈ 0.382, is not possible

by a polynomial time algorithm. This is based on assuming hardness of
a version of the so-called planted clique problem in Erdős-Rényi ran-
dom graphs, namely that of detecting a planted clique. Our results are
stated as reductions from a promise graph problem to the problem of
approximating the minmax value, and we use the detection problem for
planted cliques to argue for its hardness. We present two reductions: a
randomised many-one reduction and a deterministic Turing reduction.
The latter, which may be seen as a derandomisation of the former, may
be used to argue for hardness of approximating the minmax value based
on a hardness assumption about deterministic algorithms. Our technique
for derandomisation is general enough to also apply to related work about
ε-Nash equilibria.

1 Introduction

We consider games in strategic form between 3 players. These are given by a finite
strategy space for each player, S1,S2, and S3 (also called the pure strategies),
together with utility functions u1, u2, u3 : S1 × S2 × S3 → IR. We can identify
the strategy spaces with the sets [n1],[n2], and [n3], where ni = |Si|. We shall
refer to this as a n1 × n2 × n3 game. In this paper only the utilities for Player 1
are relevant.

Let Δ1,Δ2, and Δ3 be the sets of probability distributions over S1,S2, and
S3 respectively; these are also called mixed strategies. The minmax value (also
known as the threat value) for Player 1 is given by:
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min
(σ2,σ3)∈Δ2×Δ3

max
σ1∈Δ1

E
ai∼σi

[u1(a1, a2, a3)]

A strategy profile (σ2, σ3) for Player 2 and Player 3 for which this values is
obtained is called an optimal minmax profile. It is not hard to see that Player
1 may always obtain the maximum by a pure strategy, i.e., the minmax value is
equal to:

min
(σ2,σ3)∈Δ2×Δ3

max
a1∈S1

E
a2∼σ2
a3∼σ3

[u1(a1, a2, a3)] (1)

The corresponding notion of minmax value in finite two-player games is a fun-
damental notion of game theory. Minmax values have been studied much less in
multi-player player games, but are arguably also here of fundamental interest. In
particular the minmax value of such games is crucial for the statements as well
as proofs of the so-called folk theorems that characterise the Nash equilibria of
repeated games. The problem of computing the minmax value of a multi-player
game was first considered only recently by Borgs et al. [1], exactly in the context
of studying computational aspects of the folk theorem. In particular they show
that approximating the minmax value of a three-player game within a specific
inverse polynomial additive error is NP hard.

Here, to be able to talk meaningfully about approximation within an additive
error, we assume that all payoffs have been normalised to be in the interval be-
tween 0 and 1. The question of approximating the minmax value was considered
further by Hansen et al. [2]. Using a “padding” construction it was observed that
the NP hardness result of Borgs et al. extends to any inverse polynomial additive
error. This was complemented by a quasipolynomial approximation algorithm
obtaining an approximation to within an arbitrary ε > 0, which was obtained
using a result of Lipton and Young [3], stating that in an n×nmatrix game with
payoffs between 0 and 1, each player can guarantee a payoff within any ε > 0
of the value of the game using strategies that simply consist of a uniform choice
from a multiset of �lnn/(2ε2)� pure strategies. We summarise these results by
the following theorem.

Theorem 1 ([1,2]). For any constant ε > 0 it is NP hard to approximate the
minmax value of an n× n× n game with 0-1 payoffs within additive error 1/nε.
On the other hand, there is an algorithm that, given ε > 0 and a n×n×n game
with payoffs between 0 and 1, approximates the minmax value from above with
additive error at most ε in time nO(log(n)/ε2).

This naturally raises the question of whether it is possible to approximate the
minmax value within any constant ε > 0 in polynomial time, or even whether
it is possible to approximate the minmax value within some nontrivial additive
constant 0 < ε < 1/2 in polynomial time. Due to the quasipolynomial time
algorithm above, it is unlikely that the theory of NP completeness can shed
light on this question.

A similar situation is present for the problem of computing a Nash equilibrium
in two-player bimatrix games. Celebrated recent results [4,5] show that this prob-
lem is complete for the complexity class PPAD. On the other hand several works
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provide algorithms for computing an ε-Nash equilibrium. An ε-Nash equilibrium
in a n × n bimatrix game with payoffs between 0 and 1 can be computed in
time nO(log(n)/ε2) [6], by an algorithm similar to the one described above for the
minmax value. As for polynomial time algorithms, several algorithms have been
devised for decreasing additive error ε (see e.g. [7] for references). The current
best such algorithm achieves ε = 0.3393 [7]. How well a Nash equilibrium can be
approximated in the sense of ε-Nash equilibria is a major open question. Having
a polynomial time algorithm, polynomial also in 1/ε, or in other words having a
fully polynomial time approximation scheme (FPTAS), would imply that every
problem in the class PPAD would be solvable in polynomial time [5]. Currently
there is no evidence for or against the existence of a polynomial time algorithm
for any fixed ε > 0, or in other words a polynomial time approximation scheme
(PTAS) for computing ε-Nash equilibria.

The Planted Clique Problem. Our result depends on assuming hardness
of the so-called planted clique problem (more precisely, the detection variant).
Let Gn,p denote the distribution of Erdős-Rényi random graphs on n vertices
where each potential edge is included in the graph independently at random with
probability p. Most frequently the case of p = 1/2 is considered, but we will be
interested in having p > 0 be a small constant. This choice is made in order to
get a conclusion as strong as possible from our proof.

It is well known that in almost every graph from Gn,p the largest clique is of
size 2 log1/p n−O(log logn) [8]. The hidden clique problem is defined using the
distribution Gn,p,k [9,10] of graphs on n vertices defined as follows: A graph G is
picked according to Gn,p, then a set of k vertices is chosen uniformly at random,
independent of G, and connected to form a clique. Thus apart from the planted
k-clique the graph is completely random. The (search variant of the) planted
clique problem is then defined as follows: Given a graph G chosen at random
from Gn,p,k, find a k-clique in the graph G. Note that when the parameter k
is significantly larger than 2 log1/p n, the planted clique is with high probability
the unique maximum clique in the graph, and thus it also makes sense to talk
about finding the planted clique, with high probability. Furthermore, by guessing
2 log1/p n of the vertices of the planted clique and determinig their common
neighbours, such a clique can be found in quasipolynomial time.

The planted clique problem is known as a difficult combinatorial problem. In-
deed the current best polynomial time algorithms for solving the planted clique
problem [11,12] are only known to work when k = Ω(

√
n). We may compare

this with the observation due to Kučera [10] that for k ≥ C
√
n logn when C is

a suitably large constant, the vertices of the clique would almost surely be the
vertices of largest degree, and hence easy to find. The planted clique problem
has also been proposed as a basis for a cryptographic one-way function [13]. For
this application, however, the size of the planted clique is k = (1 + ε) log1/p n,
which is smaller than the expected size of the largest clique. Recently, Feldman
et al. gave further evidence towards the computational hardness of planted clique
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by proving lower bounds for a broad class of algorithms they call statistical
algorithms [14].

The planted clique detection problem is defined as follows: Given a graph G
chosen at random from either (i) Gn,p, or (ii) Gn,p,k, decide which is the case.

It is an interesting open question whether the above game-theoretic problems
and the planted clique problem actually have the same complexity (which is likely
to be between P and NP). As a first step, in Section 3 we give a reduction from
optimal Nash equilibria to a variant of the minmax value in three-player games.

1.1 Our Results

We show a relationship between the task of approximating the minmax value in
a three-player game and the planted clique detection problem. Our result builds
heavily on the ideas of the work of Hazan and Krauthgamer in [15] (see also
[16]). These are described in the next section.

In our results we prove hardness of approximating the minmax value, and
aim to obtain a conclusion as strong as possible, while maintaining a reasonable
hardness assumption.

We will actually state our results using the following promise1 graph problem
Gap-DBS, parametrized by numbers 0 < c1 < c2 and η > 0. Let G = (V1, V2, E)
be a bipartite graph. For S ⊆ V1, T ⊆ V2 the density of the subgraph induced

by S and T is given by d(S, T ) = |E(S,T )|
|S||T | . Note that if we let A denote the

adjacency matrix of G and let uS and uT be the probability vectors that are
uniform on the sets S and T , then we have d(S, T ) = uTSAuT .

Gap Dense Bipartite Subgraph (Gap-DBS)
Input: Bipartite graph G = (V1, V2, E), |V1| = |V2| = n

Promise: Either

(i) There exist S ⊆ V1, T ⊆ V2, |S| = |T | = c2 lnn, such
that d(S, T ) ≥ 1− η, or

(ii) For all S ⊆ V1, T ⊆ V2, |S| = |T | = c1 lnn, it holds that
d(S, T ) ≤ η.

Problem: Decide which of these is the case

We also introduce the following gap problem for the minmax value of three-player
games with 0-1 payoffs, parametrised by numbers 0 ≤ α < β ≤ 1

Gap three-player minmax (Gap-minmax)
Input: n× n× n game G with 0-1 payoffs

Promise: The minmax value for Player 1 in G is either at most α, or at
least β.

Problem: Decide which of these is the case

1 Clearly if there exist sets S and T with |S| = |T | = c2 lnn and d(S, T ) ≥ 1−η, there
exist subsets S′ ⊆ S and T ′ ⊆ T with |S′| = |T ′| = c1 lnn and d(S′, T ′) ≥ 1− η as
well.
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We are now ready to state our results. Throughout the paper ξ = 3−√
5

2 ≈ 0.382
is the smaller of the two roots of x2 − 3x+ 1 = 0, which is also known as 1− ϕ,
where ϕ is the conjugate golden ratio.

Theorem 2. There exist reductions from the Gap-DBS problem to the Gap-
minmax problem as follows.

1. For every 0 < η < 0.1 and 0 < c1 < c2 satisfying c2
c1

> 2 ln(1/η)
(1−η)η2 there is

a randomised many-one reduction from the Gap-DBS problem to the Gap-
minmax problem with parameters (η, ξ − η/5).

2. For every 0 < η < 0.1 and 0 < c1 < c2 satisfying c2
c1

> 1/η there is a
deterministic Turing reduction from the Gap-DBS problem to to the Gap-
minmax problem with parameters (η, ξ − η/5).

We prove the two parts of this theorem as two separate theorems, stated as
Theorem 8 and Theorem 12. We note that, interestingly, the constant ξ has
previously turned up as the additive error ξ + δ, for arbitrary δ > 0, obtained
by an approximation algorithm for computing ε-Nash equilibria [17].

One can view the second reduction in Theorem 2 as a derandomisation of the
first one, at the cost of turning the many-one reduction into a Turing reduction.
On the other hand the required ratio between c1 and c2 is actually much smaller.

We will use the planted clique problem to argue that the Gap-DBS is hard
for certain settings of parameters (c1, c2, η). For this we use similar arguments
as in [15,16]. Given a graph H that is an input to the planted clique detection
problem, we let A be the adjacency matrix of H and let G be the bipartite graph
that also has A as adjacency matrix. We wish to have the following property: If
H was chosen from Gn,p,k, then with high probability G belongs to case (i) of
the Gap-DBS problem, and if H was instead chosen from Gn,p then with high
probability G belongs to case (ii) of the Gap-DBS problem. This can indeed be
obtained with an appropriate assumption about the clique detection problem.
We have the following statement, whose proof we omit due to space limitations.

Proposition 3. For any η > 0 there exist p > 0 and c1 > 0 such that for
k = c2 lnn, with c2 > c1, Gap-DBS with parameters (c1, c2, η) is as hard as the
hidden clique detection problem for Gn,p,k.

The choice of c2 > c1 of interest for us will be dictated by the choice of reduc-
tion we wish to use from Theorem 2, and in turn dictates the precise hardness
assumption for the planted clique detection problem needed. However we find it
natural to assume that the planted clique detection problem is hard for Gn,p,k

for any p > 0 and any k = c2 lnn, c2 > 2/ ln 1
p , i.e., with k strictly greater than

the largest clique in Gn,p. Thus our results can be stated as follows.

Theorem 4. For every ε > 0, there is no randomised polynomial time algorithm
that with high probability approximates the minmax value of an n× n× n game
with payoffs between 0 and 1 within an additive error ξ/2− ε, unless there exist
p > 0 and c2 > 2/ ln 1

p and a randomised polynomial time algorithm that solves
the planted clique detection problem for Gn,p,k with high probability, for k =
c2 lnn.
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Theorem 5. For every ε > 0, there is no polynomial time algorithm approxi-
mating the minmax value of an n×n×n game with payoffs between 0 and 1 within
an additive error ξ/2− ε, unless there exist 0 < c1 < c2 satisfying c2 > c1/η and
a (deterministic) polynomial time algorithm that solves the Gap-DBS problem
with parameters (η, c1, c2), for η = 5/3ε.

1.2 Related Work

The problem of computing a Nash equilibrium in a bimatrix is PPAD complete.
However, there are many different properties such that asking for a Nash equi-
librium that satisfies the property is an NP hard problem [18,19]. In particular
it is NP hard to compute a Nash equilibrium maximizing the social welfare, i.e.,
maximizing the sum of the two players’ payoffs.

Hazan and Krauthgamer [15], motivated by the question of whether there is
a PTAS for computing ε-Nash equilibria, considered an “ε-Nash” variant of the
problem of maximizing social welfare, namely that of computing an ε-Nash equi-
librium whose social welfare is no less than the maximal social welfare achievable
by a Nash equilibrium, minus ε. In order to describe all the results in the follow-
ing, say that an ε-Nash equilibrium is δ-good if its social welfare is no less than
the maximal social welfare achievable by a Nash equilibrium, minus δ.

Remark 6. For the notion introduced by Hazan and Krauthgamer, Minder and
Vilkenchik [16] use the terminology “ε-best ε-Nash equilibrium”. However we
feel this is somewhat of a misnomer, since the social welfare is compared to
the largest achievable by a Nash equilibrium rather than an ε-Nash equilibrium.
Indeed, a simple example2 shows that for any ε > 0 one may have a game where
the (unique) Nash equilibrium has social welfare ε, but there exist an ε-Nash
equilibrium of social welfare 1. For this reason we will instead call it “ε-good”.
In fact, let us generalise the notion and say that an ε-Nash equilibrium is δ-good
if its social welfare is no less than the maximal social welfare achievable by a
Nash equilibrium, minus δ.

Hazan and Krauthgamer gave a randomised polynomial time reduction from the
planted clique problem to the problem of computing an ε-good ε-Nash equilib-
rium. More precisely, they show there are constants ε, c > 0 such that if there
is a polynomial time algorithm that computes in a two-player bimatrix game
an ε-good ε-Nash equilibrium, then there is a randomised polynomial time algo-
rithm that solves the planted clique problem in Gn,1/2 for k = c log2 n with high
probability.

This result was sharpened by Minder and Vilenchik [16], making the constant
c smaller. In particular they obtain c = 3 + δ, for arbitrary δ > 0 (here δ > 0
dictates an upper bound on ε), and for the similar problem of detecting a planted
clique they obtain c = 2+δ. Essentially the goal of Minder and Vilenchik was the
opposite of ours. Namely, viewing their result as arguing for hardness, their goal

2 Consider just the bimatrix game given by the two 1 × 2 matrices
[
1 0

]
for the row

player and
[
0 ε

]
for the column player.
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was to obtain an assumption as weak as possible, while maintaining a nontrivial
conclusion.

Austrin et al. [20] considered the other goal of obtaining strong hardness con-
clusions for computing δ-good ε-Nash equilibria (as well as ε-Nash versions of
computing second equilibria and small support equilibria, and approximating
pure Bayes Nash equilibria), assuming hardness for the planted clique problem.
For this reason their work is the most relevant to use for comparing with our
results. With the goal of obtaining strong hardness conclusions for computing
δ-good ε-Nash equilibria in mind, one now needs to consider both of the param-
eters, ε and δ, and their relationship. Austrin et al. consider the extreme cases
for both of these parameters individually and obtain the following results.

Theorem 7 (Austrin et al.).

1. For any η > 0 there exists δ = Ω(η2) such that computing a δ-good ε-Nash
equilibrium is as hard as the planted clique problem, for ε = 1/2− η.

2. For any η > 0 there exists ε = Ω(η2) such that computing a δ-good ε-Nash
equilibrium is as hard as the planted clique problem, for δ = 2− η.

Furthermore Austrin et al. give a simple polynomial time algorithm that com-
putes a 1

2 -Nash equilibrium with social welfare at least as large as any Nash
equilibrium, showing that the first part of Theorem 7 is tight. Clearly the sec-
ond part is tight as well. On the other hand it appears that the tightness of these
results were possible due to the focus on a single parameter at a time, and the
exact trade-off possible between these two parameters still seems unclear.3

The reductions in [15,16] are randomised reductions, and we remark that our
derandomisation technique can be used for these reductions as well.

2 The Reductions

We collect the utilities for Player 1 in matrices, one for each pure strategy. Thus

we define n2 × n3 matrices A(1), . . . , A(n1) by a
(i)
j,k = u1(i, j, k). In this notation,

if Player 1 plays the pure strategy i and Player 2 and Player 3 play by mixed
strategies x and y, the expected payoff to Player 1 is given by xTA(i)y.

2.1 The Randomised Reduction

In this section we present a randomised reduction from approximate planted
clique to minmax value in three-player games. To be precise, we prove the fol-
lowing result:

3 While the statements of Theorem 7 are given using asymptotic notation, the proofs
provide concrete (albeit not particularly optimised) constants. For instance the proof
of the first part gives δ = 1/288 for ε = 1/4, and the proof of the second part gives
ε = 1/288 for δ = 3/2.
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Theorem 8. Let 0 < η < 0.1 and 0 < c1 < c2 and such that c2
c1

> 2 ln(1/η)
(1−η)η2 .

Then there is a randomised polynomial time many-one reduction which, given
as input the adjacency matrix A ∈ {0, 1}n×n of a bipartite graph G, outputs a
three-player game GA such that with high probability

– if there are subsets S, T ⊆ [n] of size at least c2 lnn such that d(S, T ) ≥ 1−η,
then minmax1GA ≤ η.

– if d(S, T ) < η for every S, T ⊆ [n] of size at least c1 lnn, then minmax1GA >
ξ − η

5 .

We will need the following lemma, whose proof is an easy application of the
Chernoff bound.

Lemma 9. Let 0 < δ < 1, and k1 = c1 lnn, k2 = c2 lnn, where 0 < c1 < c2
satisfy c2 >

2 ln(1/δ)
(1−δ)δ2 · c1. Let D ⊆ [n] be a fixed subset of size |D| = k2. Then

there is a constant c such that if we we choose at random m = nc subsets
S1, . . . , Sm ⊆ [n], by letting j ∈ Si with probability 1 − δ, independently for
every i and j, with probability at least 1 − n−Ω(1) the sets satisfy the following
properties.

(a) For all i, |Si ∩D| ≥ (1− δ)2k2.
(b) For every set S ⊆ [n] of size |S| = k1, there exists i such that Si ∩ S = ∅.

Proof (of Thm. 8). We use Lemma 9 with c1 and c2 as in the problem description
and δ = 1 −

√
1− η = η/2 + O(η2). Let m be as in the lemma. The reduction

first guesses 2m subsets S
(r)
1 , . . . , S

(r)
m , S

(c)
1 , . . . , S

(c)
m at random as in the lemma.

It then outputs a three-player game GA as follows:

– Players 2 and 3 have n strategies each.
– Player 1 has 2m + 1 strategies given by matrices B, R(1), . . . , R(m), and
S(1), . . . , S(m). The matrix B is defined as B = 1−A, and R(k) and C(k) for
k = 1, . . . ,m, are given by

(R(k))ij =

{
1 if i �∈ Sr

k

0 if i ∈ Sr
k

and (C(k))ij =

{
1 if j �∈ Sc

k

0 if j ∈ Sc
k

We claim that this game satisfies our assumptions.
For the first part, let S, T ⊆ [n] be sets of size at least c2 logn such that

d(S, T ) ≥ 1 − η. By choosing appropriate subsets, we may assume that, in
fact, |S| = |T | = c2 logn. Furthermore, by Lemma 9, with high probability
|Sc

i ∩ T | ≥ (1 − δ)2c2 lnn. Thus if players 2 and 3 play strategies uS and uT ,
respectively, Player 1 will receive payoff at most 1 − (1 − δ)2 = δ(2 − δ) =
(1−

√
1− η)(1 +

√
1− η) = η by playing any of the strategies corresponding to

R(k) and C(k), while playing the strategy corresponding to B will give Player 1
payoff 1− d(S, T ) < η.

For the second part, we assume to the contrary that G has density d(S, T ) < η
for all sets S, T of size at least c1 lnn, but minmaxGA ≤ a. Let (σ2, σ3) be an
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optimal strategy profile, i.e., max
{
σT
2Bσ3, σ

T
2R

(k)σ3, σ
T
2C

(k)σ3
}
≤ a. We first

show that on any support of size at most k1 each of σ2 and σ3 places probability
at most a: Suppose S ⊆ [n] and |S| ≤ k1 with Prσ2 [S] = p. Then by switching
to an appropriate set action corresponding to R(k), Player 1 might increase his
payoff to at least p. Thus p ≤ a. The proof for σ3 is the same, replacing R(k)

with C(k). We set, with foresight, a = ξ− η
5 , b = 1− ξ− η

2 , and c = 1− η. Direct
calculations show that for 0 < η < 0.1, these values satisfy

a < b < c < 1 (1 − a)b > a and (1− a)c > b . (2)

We show that there exist sets S and T of size at least c1 lnn such that uTSAuT ≥
1 − c: Define T = {i | σT

2Bei ≤ b}, and let p = Prσ3 [T ]. Then a ≥ σT
2Bσ3 ≥

(1 − p)b, and therefore (1 − p)b < a, which means 1 − p < a/b. But we have
1 − a > a/b, which then implies p > a, and therefore |T | ≥ c1 lnn as argued
above. Furthermore, by definition of T we have σT

2BuT ≤ b. Next, define S =
{i | eiTBuT ≤ c}, and let p = Prσ2 [S]. Similarly to before we then have b ≥
σT
2BuT ≥ (1− p)c which means (1− p)c < b, and thus 1− p < b/c. But we have

1 − a > b/c, which then implies p > a, and again we obtain that |S| ≥ c1 lnn.
Furthermore, by definition of S and B = 1−A we have uTSAuT ≥ 1− c = η.

Remark 10. We remark that the above analysis is tight, namely that in the case
when d(S, T ) < η for every S, T ⊆ [n] of size at least c1 lnn, it is not possible to
prove a lower bound on the minmax value better than ξ in the game constructed.

2.2 Derandomisation

In this section we derandomise our result in Theorem 8, at the price of turning
our many-one reduction into a Turing reduction.

Recall that randomness was needed by our reduction for the construction of

the sets S
(r)
i and S

(c)
i . We now show how these sets can be constructed explicitly,

giving a derandomised analogue of Lemma 9:

Lemma 11. Let 0 < k1 < k2 < n ∈ IN. Then there are families A(1), . . . , A(r)

of subsets of [n] such that

– there are r = 2O(k2) logn families, and each family is of size s =
(
k2

k1

)
,

– for every set M ⊆ [n] of size k2, there is an index j ∈ [r] such that∣∣∣A(j)
i ∩M

∣∣∣ = k2 − k1, for all i ∈ [s] and

– for every set M ⊆ [n] of size k1 and every j ∈ [r], there is an index i ∈ [s]

such that A
(j)
i ∩M = ∅.

These sets can be constructed in time polynomial in n and r. In particular, if
k2 = O(log n) then both r and s are polynomial in n, and the families of subsets
can be constructed in time polynomial in n.

Proof. In [21], Alon et al. gave a construction of a family H = {f1, . . . , fr} of
perfect hash functions from [n] to [k2]. This means

– each fj is a function from [n] to [k2] and
– for each M ⊆ [n] of size k2, at least one of the fj is injective on M .
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Moreover, r = 2O(k2) logn and the functions can be constructed in time polyno-
mial in n and r.

Let s =
(
k2

k1

)
≤ 2k2 and let M1, . . . ,Ms be an enumeration of the subsets of

[k2] of size k1. Define A
(j)
i := {x ∈ [n] | fj(x) �∈ Mi}. These subsets meet the

size restrictions claimed in the lemma and are readily seen to be constructable
in time poly(n, r).

Now, let M ⊆ [n] be of size k2, and suppose fj is injective on M . Then

A
(j)
i ∩M = {x ∈M | fj(x) �∈Mi}, and because fj is a bijection between M and

[k2], this set has size k2 − k1 for all i ∈ [s].
Furthermore, if M ⊆ [n] is of size k1, then |fj(M)| ≤ k1 for all j ∈ [r]. Thus

for each j there is an i such that fj(M) ⊆Mi, which implies A
(j)
i ∩M = ∅.

Our derandomised reduction now looks as follows:

Theorem 12. For 0 < η < 0.1 and 0 < c1 < c2 and such that c2
c1
> 1

η , there is
a polynomial-time Turing reduction from Gap-DBS to Gap-Minmax with a gap
(η, ξ − η/5).

Proof. The reduction works as in the randomised case, the main difference being

that instead of guessing sets S
(r)
i and S

(c)
i at random, we construct (polynomially

many) set families A(1), . . . , A(r) using the construction in Lemma 11 with k1/2 =

c1/2 lnn. We then use each pair of such families to construct a game G
(j1,j2)
A as

in the proof of Theorem 8; using the family A(j1) for the row strategies and A(j2)

for the column strategies. We show that

– if d(S, T ) ≥ 1 − η for some sets S, T of size at least c2 lnn, then

minmax1G
(j1,j2)
A ≤ η, for some j1 and j2, and

– if d(S, T ) ≤ η for all sets S, T of size at least c1 lnn, then minmax1G
(j1,j2)
A ≥

ξ − η/5, for all j1, j2.

The proof works as in the randomised case: For the first part, we note that by

Lemma 11, for some j1, j2 and all i we have
∣∣∣A(j1)

i ∩ S
∣∣∣ = k2 − k1 ≥ (1 − η)k2

and
∣∣∣A(j2)

i ∩ T
∣∣∣ = k2−k1 ≥ (1− η)k2, and therefore minmax1G

(j1,j2)
A ≤ η in this

case. The second part is unchanged from the randomised case.

3 A Reduction from Optimal NE to Minmax

The following reduction gives evidence to the fact that computing the minmax-
value in three-player games is at least as hard as finding ε-Nash equilibria with
high average payoff.

Theorem 13. There is a polynomial time reduction which, given payoff matri-
ces R,C ∈ [0, 1]m×n specifying a game G in which the players have m and n
strategies respectively, and α ∈ [0, 1], ε > 0, outputs payoff matrices for Player
1 in a three-player game H such that:
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– If G has an ε-Nash equilibrium with average payoff > 1−α, then minmax1H ≤
α.

– If G has no 2ε-Nash equilibrium with average payoff > 1 − α − ε, then
minmax1H > α+ ε.

Proof. Player 1 has m+ n + 1 strategies, Player 2 has m strategies and Player
3 has n strategies. We group Player 1’s strategies into three categories:

1. one strategy called v which has payoff matrix 1− (R+ C)/2,
2. for each ı̃ ∈ [m] a strategy aı̃ with payoff matrix α− ε+ (Rı̃j −Rij)i,j ,
3. for each j̃ ∈ [n] a strategy bj̃ with payoff matrix α− ε+ (Cij̃ − Cij)i,j .

Let σ2 ∈ Δm and σ3 ∈ Δn be mixed strategies for players 2 and 3. Then

1. the expected payoff for Player 1 when playing strategy v is one minus the
social welfare of the game specified by R and C if players 2 and 3 play the
strategy profile (σ2, σ3),

2. the expected payoff when playing aı̃ is α − ε plus Player 2’s gain when
defecting to strategy ı̃,

3. the expected payoff when playing bj̃ is α − ε plus Player 3’s gain when
defecting to strategy j̃.

In particular, if σ2 ∈ Δm and σ3 ∈ Δn are an ε-Nash equilibrium with average
payoff > 1−α, then no strategy for Player 1 in H will have expected payoff > α,
if players 2 and 3 play according to σ2 and σ3, so minmax1H ≤ α.

On the other hand, suppose that G has no 2ε-Nash equilibrium with average
payoff > 1−α− ε. Let σ2 and σ3 be strategies for players 2 and 3 in H. If Player
1 receives payoff < α+ ε when responding to σ2 and σ3 with strategy v, then the
average payoff of (σ2, σ3), as a pair of strategies in G, will be at least 1− α− ε.
By our assumption on G, (σ2, σ3) can not be an 2ε-Nash equilibrium, i.e., one of
the players can gain more than 2ε by deviating. But then one of the strategies
aı̃, bj̃ will give Player 1 an expected payoff of at least α + ε in H. Therefore
minmax1H > α+ ε in this case.

4 Conclusion

We have considered a promise graph problem, which is hard assuming standard
hardness assumptions on detecting planted cliques in random graphs. We have
shown that the problem of approximating the minmax value in three-player
games with 0-1 payoffs is at least as hard as this promise graph problem, by giving
both a randomised many-one reduction and a deterministic Turing reduction.
We believe this gives a satisfactory answer (in the negative) to the question
of whether the minmax value in three-player games can be approximated in
polynomial time within any additive error ε > 0. We leave open the problem of
whether the minmax value of three-player games can be approximated within
some nontrivial additive error 0 < ε < 1/2 in polynomial time.
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Abstract. In an ε-Nash equilibrium, a player can gain at most ε by
changing his behaviour. Recent work has addressed the question of how
best to compute ε-Nash equilibria, and for what values of ε a polynomial-
time algorithm exists. An ε-well-supported Nash equilibrium (ε-WSNE)
has the additional requirement that any strategy that is used with non-
zero probability by a player must have payoff at most ε less than a best
response. A recent algorithm of Kontogiannis and Spirakis shows how to
compute a 2/3-WSNE in polynomial time, for bimatrix games. Here we
introduce a new technique that leads to an improvement to the worst-
case approximation guarantee.

1 Introduction

In a bimatrix game, a Nash equilibrium is a pair of strategies in which both play-
ers only assign probability to best responses. The apparent hardness of comput-
ing an exact Nash equilibrium [5,4] has led to work on computing approximate
Nash equilibria, and two notions of approximate Nash equilibria have been de-
veloped. The first, and more widely studied, notion is of an ε-approximate Nash
equilibrium (ε-Nash), where each player is required to achieve an expected payoff
that is within ε of a best response. A line of work [7,6,2] has investigated the
best ε that can be guaranteed in polynomial time. The current best result in this
setting is a polynomial time algorithm that finds a 0.3393-Nash equilibrium [12].

However, ε-Nash equilibria have a drawback: since they only require that the
expected payoff is within ε of a pure best response, it is possible that a player
could be required to place probability on a strategy that is arbitrarily far from
being a best response. This issue is addressed by the second notion of an ap-
proximate Nash equilibrium. An ε-well supported approximate Nash equilibrium
(ε-WSNE), requires that both players only place probability on strategies that
have payoff within ε of a pure best response. This is a stronger notion of equi-
librium, because every ε-WSNE is an ε-Nash, but the converse is not true.
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In contrast to ε-Nash, there has been relatively little work ε-WSNE. The first
result on the subject gave a 5

6 additive approximation [7], but this only holds if
a certain a graph-theoretic conjecture is true. The best-known polynomial-time
additive approximation algorithm was given by Kontogiannis and Spirakis, and
achieves a 2

3 -approximation [10]. We will call this algorithm the KS algorithm.
In [9], which is an earlier conference version of [10], the authors presented an
algorithm that they claimed was polynomial-time and achieves a φ-WSNE, where

φ =
√
11
2 −1 ≈ 0.6583, but this was later withdrawn, and instead the polynomial-

time 2
3 -approximation algorithm was presented in [10]. It has also been shown

that there is a PTAS for ε-WSNE if and only if there is a PTAS for ε-Nash [4].
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Fig. 1. Two examples that approach the worst case for the KS algorithm

Our approach. We build on the KS algorithm for finding a 2
3 -WSNE. Figure 1a

gives a game where the KS algorithm produces a 2
3 -WSNE. The KS algorithm

begins by checking there is a pure 2
3 -WSNE. In Figure 1a, there is a pure 2

3 -
WSNE when τ = 0, but not when τ > 0, because any pure profile where both
payoffs are at least 1

3 is a 2
3 -WSNE. If no pure 2

3 -WSNE exists, the algorithm
solves the zero-sum game (D,−D), where D = 1

2 (R−C), and gives the solution
as a WSNE in the original game. In Figure 1a, if τ is small, then the solution
to the zero-sum game has the row player playing B, and the column player
mixing equally between 
 and r. The regret for the row player is the difference
between the payoff of a best response, and the lowest payoff of a row used by
the row player. In our example, the row player’s regret is the difference between
the payoff of B and the payoff of T , and we can see that as τ → 0, the row
player’s regret approaches 2

3 . Since we have a ε-WSNE only if both players
have regret smaller than ε, the quality of the WSNE approaches the worst-case
bound of 2

3 .
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Notice that in Figure 1a we can improve things for the row player by trans-
ferring some of the column player’s probability from r to 
. The row player’s
regret is reduced, and the column player’s regret is the same. However, consider
Figure 1b. Once again this is approximately worst-case for the KS algorithm;
the column player again mixes 
 and r, while the row player uses row B, again
getting regret of about 2

3 . This game is designed to prevent the trick of shifting
some of the column player’s probability so as to reduce the row player’s regret.

In this case however, there is a new trick, which is to focus on rows T and
M , and columns 
 and r, where the payoffs are similar to the Matching Pennies
game. By mixing uniformly on these strategies, the players both obtain average
payoffs more than 1

3 , so that their regret in the entire game must be less than 2
3 .

Our main result is to show that one of these tricks can always be applied,
and that we can always produce an ε-WSNE with ε < 2

3 . We give an algorithm
with three steps. The first step finds the best pure WSNE, and corresponds to
the preprocessing step of the KS algorithm. The second step searches for the
best WSNE where both players use at most two strategies, which corresponds to
checking whether the Matching Pennies trick can be applied. The third step uses
the KS algorithm to find a 2

3 -WSNE, and then finds the best possible WSNE that
can be produced through our trick of shifting probabilities. We show that one of
these three steps will always produce an ε-WSNE with ε = 2

3−0.004735 ≈ 0.6619.

2 Definitions

A bimatrix game is a pair (R,C) of two n×nmatrices: R gives payoffs for the row
player, and C gives payoffs for the column player. We assume that all payoffs are
in the range [0, 1]. We use [n] = {1, 2, . . . n} to denote the pure strategies for each
player. To play the game, both players simultaneously select a pure strategy: the
row player selects a row i ∈ [n], and the column player selects a column j ∈ [n].
The row player then receives Ri,j , and the column player receives Ci,j .

A mixed strategy is a probability distribution over [n]. We denote a mixed
strategy as a vector x of length n, such that xi is the probability that the pure
strategy i is played. The support of mixed strategy x, denoted Supp(x), is the
set of pure strategies i with xi > 0. If x and y are mixed strategies for the row
and column player, respectively, then we call (x,y) a mixed strategy profile.

Let y be a mixed strategy for the column player. The best responses against y
for the row player is the set of pure strategies that maximize the payoff against
y. More formally, a pure strategy i ∈ [n] is a best response against y if, for
all pure strategies i′ ∈ [n] we have:

∑
j∈[n] yj · Ri,j ≥

∑
j∈[n] yj · Ri′,j . Column

player best responses are defined analogously. A mixed strategy profile (x,y) is
a mixed Nash equilibrium if every pure strategy in Supp(x) is a best response
against y, and every pure strategy in Supp(y) is a best response against x.
Nash [11] showed that all bimatrix games have a mixed Nash equilibrium.

An approximate well-supported Nash equilibrium weakens the requirements
of a mixed Nash equilibrium. For a mixed strategy y of the column player, a
pure strategy i ∈ [n] is an ε-best response for the row player if, for all pure
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strategies i′ ∈ [n] we have:
∑

j∈[n] yj · Ri,j ≥
∑

j∈[n] yj · Ri′,j − ε. We define
ε-best responses for the column player analogously. A mixed strategy profile
(x,y) is an ε-well-supported Nash equilibrium (ε-WSNE) if every pure strategy
in Supp(x) is an ε-best response against y, and every pure strategy in Supp(y)
is an ε-best response against x.

3 Our Algorithm

We begin with an algorithm for finding the best WSNE on a given pair of
supports. Let Sc and Sr be supports for the column and row player, respectively.
We define an LP, which assumes that the row player uses a strategy with support
Sr, and then finds a strategy on Sc that minimizes the row player’s regret.

Definition 1. Let y′ be a mixed strategy for the column player. We define:

Minimize: ε

Subject to: Ri′ · y′ −Ri · y′ ≤ ε i ∈ Sr, i
′ ∈ [n] (1)

y′
j = 0 j /∈ Sc (2)

A linear program for the row player can be defined symmetrically.
Let (y∗, εy) be a solution of the LP given in Definition 1 (that is, y∗ and

εy are the values of y′ and ε that result) with parameters Sr and Sc, and let
(x∗, εx) be a solution of the corresponding LP for the row player. We define ε∗

to be max(εx, εy), and we have the following property.

Proposition 2. (x∗,y∗) is an ε∗-WSNE.

More importantly, we can show that (x∗,y∗) is at least as good, or better than,
all well-supported Nash equilibria with support Sc and Sr.

Proposition 3. For every ε-WSNE (x,y) with Supp(x) = Sr and Supp(y) =
Sc, we have ε∗ ≤ ε.

Our algorithm for finding a WSNE consists of three distinct procedures.

(1) Find the best pure WSNE. The KS algorithm requires a preprocessing
step that eliminates all pure 2

3 -WSNE, and this is a generalisation of that
step. Suppose that the row player plays row i, and that the column player
plays column j. Let: εr = maxi′(Ri′,j) − Ri,j , and εc = maxj′(Ci,j′ ) − Ci,j .
Thus i is an εr-best response against j, and that j is an εc-best response
against i. Therefore, (i, j) is a max(εr, εc)-WSNE. We can find the best pure
WSNE by checking all O(n2) possible pairs of pure strategies. Let εp be the
best approximation guarantee that is found by this procedure.

(2) Find the best WSNE with 2×2 support. We can use the linear program
from Definition 1 to implement this procedure. For each of the O(n4) possible
2×2 supports, we solve the LPs to find a WSNE. Proposition 3 implies that
this WSNE is at least as good as the best WSNE on those supports. Let εm
be the best approximation guarantee that is found by this procedure.
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(3) Find an improvement over the KS algorithm. The KS algorithm con-
structs a zero-sum game (D,−D), where D = 1

2 (R − C), and solves it.
Kontogiannis and Spirakis showed that, if there is no pure 2

3 -WSNE, the
min-max strategies for the zero-sum game are always a 2

3 -WSNE in the orig-
inal game [10]. To find an improvement over the KS algorithm, we take the
mixed strategy pair (x,y) that is produced by the KS algorithm, and we
use the linear program from Definition 1 with parameters Sr = Supp(x) and
Sc = Supp(y). Let (x∗,y∗) be the mixed strategy profile returned by the
LPs, and let εi be the smallest value such that (x∗,y∗) is a εi-WSNE.

We take the smallest of εp, εm, and εi, and return the corresponding WSNE.

4 Outline

We want to show that our algorithm finds a (23 − z)-WSNE, for some z > 0. The
precise value of z will be determined during the proof, so for now we treat z as
a parameter. At a high level, we will show that if εp >

2
3 − z, and if εm > 2

3 − z,
then we must have εi ≤ 2

3−z. Recall that Procedure (3) takes the mixed strategy
profile (x,y), and finds the best WSNE on the supports of x and y. Our approach
is to use the assumptions that εp >

2
3 − z and εm > 2

3 − z to construct (x′,y′),
which is a specific (23 − z)-WSNE on the supports of x and y. The existence of
(x′,y′) then implies that Procedure (3) must produce at least a (23 − z)-WSNE.

In our proof, we focus on how the mixed strategy y′ can be constructed from y.
However, all of our arguments can be applied symmetrically in order to construct
x′ from x. Our approach is to take the strategy y and to improve it. If x is not
a (23 − z)-best response against y, then there must be at least one row i such
that Ri · y > 2

3 − z. We call these bad rows, and the goal of our construction
is to improve all bad rows, so that we can find a (23 − z)-WSNE. We will first
define a strategy yimp, which improves a specific bad row. Then, we define y′

to be a convex combination of y and yimp. Formally, we will define y′ = y(t),
where t ∈ [0, 1], and y(t) := (1− t) · y + t · yimp.

For the remainder of the proof, we will be concerned with finding a value of z
for which the following property holds.

Definition 4. P (z) is the property of (non-negative real value) z that there ex-
ists t ∈ [0, 1] such that, for all row player strategies x′ with Supp(x′) = Supp(x),
x′ is a (23 − z)-best response against y(t).

Since all of our arguments can also be applied to the row player, if P (z) holds
then there must exist a t such that (x(t),y(t)) is a (23 −z)-WSNE. Our goal is to
find the largest value of z for which P (z) holds in all bimatrix games. Once we
have determined the appropriate z, we will have then shown that our algorithm
will always find a (23 − z)-WSNE for all possible input games.

In the final part of our proof, we will develop a test that represents a sufficient
condition for P (z) to hold in all bimatrix games. If the test is passed then P (z)
holds in all bimatrix games, but we do not prove that P (z) does not hold when
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the test is failed. Our test is monotone in z, and so to complete our proof, we use
binary search to find the largest z for which the test tells us that P (z) holds. We
find that the test is passed when z = 0.004735, but failed when z = 0.004736.
Thus, we arrive at our main result.

Theorem 5. The algorithm given in Section 3 finds a (23 − 0.004735)-WSNE.

5 The Proof

5.1 Re-analysing the KS Algorithm

The original KS algorithm uses a preprocessing step that checks for a pure 2
3 -

WSNE, and stops if one is found. In our version we initially check for a pure
2
3 − z-WSNE, a stronger requirement that leaves more input games that have to
be handled by the rest of the algorithm. The results we establish for the rest of
the algorithm are given in terms of the column player’s strategy; corresponding
results hold when the row player is considered.

Proposition 6. Assume that εp >
2
3 − z, and let (x,y) be the WSNE returned

by the KS algorithm. If the row player has regret larger than 2
3−z in (x,y), then

for all rows i′ we have both of the following:

Ri′ · y ≤
2

3
+ 2z, Ri′ · y − Ci′ · y ≤ 3z.

This proposition shows that, under our new assumptions the KS algorithm will
now produce a mixed strategy pair (x,y) that is a (23 + 2z)-WSNE. The main
goal of our proof is to show that the probabilities in x and y can be rearranged to
construct a (23−z)-WSNE. From this point onwards, we only focus on improving
the strategy y, with the understanding that all of our techniques can be applied
in the same way to improve the strategy x.

Our improvement procedure must consider the rows i whose payoff lies in the
range 2

3 − z < Ri ·y ≤ 2
3 +2z. We call these rows bad rows, because they are the

rows that must be improved to produce a (23 − z)-WSNE. We classify the bad
rows according to how bad they are.

Definition 7. A row i is q-bad if Ri · y = 2
3 + 2z − qz.

It can be seen from Proposition 6 that every row is q bad for some q ≥ 0, and
we are particularly interested in the q-bad rows with 0 ≤ q < 3.

5.2 The Structure of a q-Bad Row

To define our improvement procedure, we must understand the structure of
a q-bad row. If i is a q-bad row, then we can apply the second inequality of
Proposition 6 to obtain:

Ci · y ≥
2

3
− z − qz. (3)

Now consider a q-bad row i with q < 3. We can deduce the following three
properties about row i.
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– Definition 7 tells us that Ri · y is close to 2
3 .

– Equation (3) tells us that Ci · y is close to 2
3 .

– The fact that εp >
2
3 − z implies that, for each column j, we must either

have Ri,j <
1
3 + z or Ci,j <

1
3 + z, because otherwise (i, j) would be a pure

(23 − z)-WSNE.

In order to satisfy all three of these conditions simultaneously, the row i must
have a very particular form, which the rows T and M in Figure 1b show: ap-
proximately half of the probability assigned by y must be given to columns j
where Ri,j is close to 1 and Ci,j is close to

1
3 , and the other (approximately) half

of the probability assigned by y must be given to columns j where Ri,j is close
to 1

3 and Ci,j is close to 1.
Building on this observation, we split the columns of each row i into three

sets. We define the set Bi of big columns to be Bi = {j : Ri,j ≥ 2
3 + 2z}, and

the set Si of small columns to be Si = {j : Ci,j ≥ 2
3 +2z}. Finally, we have the

set of other columns Oi = {1, 2, . . . , n} \ (Bi ∪ Si), which contains all columns
that are neither big nor small. We can then formalise our observations by giving
inequalities about the amount of probability that y can assign to these sets.

Proposition 8. If i is a q-bad row then:∑
j∈Oi

yj ≤
2qz

1
3 − 2z

,

∑
j∈Bi

yj ≥
1
3 + z − qz − (13 + z)

∑
j∈Oi

yj

2
3 − z

,

∑
j∈Si

yj ≥
1
3 − 2z − qz − (13 + z)

∑
j∈Oi

yj

2
3 − z

.

The first inequality is obtained by an application of Markov’s inequality. The
second two can be proved by substituting bounds for Bi, Si, and Oi into Defi-
nition 7 and Equation 3. The inequalities show that, if q = 0, then y must give
a roughly equal split between the big and small columns. As q increases, our
inequalities become weaker, and the split may become more lopsided.

5.3 The Improved Strategies yimp and y(t)

We now define an improved version of y. We start by constructing yimp, which
will improve the worst bad row. That is, we choose ı̄ to be the index of a row in
argmaxi(Ri · y), and therefore ı̄ is a q̄-bad row such that there is no q-bad row
with q < q̄. We fix ı̄ and q̄ to be these choices for the rest of this paper. If q̄ ≥ 3,
then y does not need to be improved. Therefore, we can assume that q̄ < 3.

We aim to improve row ı̄ by moving the probability assigned to Bı̄ to Sı̄.
This is a generalisation of shifting probability from the first column to the
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second column in Figure 1a. Formally, we define the strategy yimp, for each j
with 1 ≤ j ≤ n, as:

yimp
j =

⎧⎪⎪⎨⎪⎪⎩
0 if j ∈ Bı̄,

yj +
yj·

∑
k∈Bı̄

yk
∑

k∈Sı̄
yk

if j ∈ Sı̄,

yj otherwise.

The strategy yimp improves the specific bad row ı̄, but other rows may not
improve, or even get worse in yimp. Therefore, we propose that y should be
gradually improved towards yimp. More formally, for the parameter t ∈ [0, 1],
we define the strategy y(t) to be (1− t) · y + t · yimp.

5.4 An Upper Bound on Ri · yimp

Recall that P (z) checks whether there exists a t such that all row player strategies
with support Supp(x) are (23−z)-best responses against y(t). In order to perform
this test, we check whether there exists a t such that Ri · y(t) ≤ 2

3 − z, for all
rows i. Thus, eventually, we will need an upper bound on Ri · y(t) for each row
i. Since y(t) is a convex combination of y and yimp, we begin the construction
of our test by finding an upper bound on Ri · yimp.

The strategy yimp is defined by moving all probability from Bı̄ to Sı̄. We are
interested in the effect that this can have on a q-bad row i �= ı̄. If we consider the
partition of the columns in ı̄ into (Bı̄, Sı̄, Oı̄), and the partition of the columns in i
into (Bi, Si, Oi), then we have a decomposition into nine possible intersections:

Row i

Row ı̄ Bı̄ Sı̄ Oı̄

Bi Bi BiSi Si SiOi Oi Oi

We cannot know the precise amount of probability that y assigns to each of the
sets in the decomposition. However, Proposition 8 gives useful constraints on the
probabilities allocated to the sets used in the decomposition. We will use these
inequalities to write down a linear program that characterises Ri · yimp.

The LP will have one variable for each of the sets in the decomposition. The
idea is that each variable should represent the amount of probability that y
assigns to that set. Thus, we have nine variables: dbb, dbs, dbo, and so on, where
the variable dbb represents

∑
j∈Bı̄∩Bi

yj , the variable dbs represents
∑

j∈Bı̄∩Si
yj ,

and so on. For convenience, we use
∑
db∗ as a shorthand for dbb + dbs + dbo, and∑

d∗b as a shorthand dbb + dsb + dob. We also use
∑
ds∗,

∑
d∗s,

∑
do∗, and∑

d∗o, which have analogous definitions. Finally, we use
∑
d∗∗ as a shorthand

for
∑
db∗ +

∑
ds∗ +

∑
do∗.

The LP is shown in Figure 2; the constraints that variables dij are non-
negative, and should sum to 1 are not shown. The LP takes three parameters: z,
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q̄, and q. The inequalities of this LP are taken directly from Proposition 8, and
each inequality appears twice: once for row ı̄, and once for row i. The objective
function is intended to capture Ri · yimp, and it the auxiliary function:

φ(z, q) =

⎛⎝1 +

1
3 + z + qz + 2qz

1
3−2z

1
3 − 2z − qz − (13 + z) 2qz

1
3−2z

⎞⎠ .

If s(z, q̄, q) is the solution of this LP, then we have the following proposition.

Proposition 9. For every q-bad row i we have Ri · yimp ≤ s(z, q̄, q).

Maximize: φ(z, q̄)

(
dsb + (

1

3
+ z) · dss + (

2

3
+ 2z) · dso

)

+ dob + (
1

3
+ z) · dos + (

2

3
+ 2z) · doo

Subject to:
∑

db∗ ≥
1
3
+ z − q̄z − ( 1

3
+ z)(

∑
do∗)

2
3
− z

(4)

∑
d∗b ≥

1
3
+ z − qz − ( 1

3
+ z)(

∑
d∗o)

2
3
− z

(5)

∑
ds∗ ≥

1
3
− 2z − q̄z − ( 1

3
+ z)(

∑
do∗)

2
3
− z

(6)

∑
d∗s ≥

1
3
− 2z − qz − ( 1

3
+ z)(

∑
d∗o)

2
3
− z

(7)

∑
do∗ ≤ 2q̄z

1
3
− 2z

(8)

∑
d∗o ≤ 2qz

1
3
− 2z

(9)

Fig. 2. A linear program that gives an upper bound on Ri · yimp

5.5 Applying the Matching Pennies Argument

Recall that εm is computed in stage 2 of our algorithm, and is the quality of
the best WSNE with 2 × 2 support. So far, we have not used the assumption
that εm > 2

3 − z. In this section we will see how this assumption can be used to
strengthen our LP. We define a matching pennies sub-game as follows.

Definition 10 (Matching Pennies). Let i and i′ be two rows, and let j and
j′ be two columns. If j ∈ Bi∩Si′ and j

′ ∈ Bi′ ∩Si, then we say that i, i′, j, and
j′ form a matching pennies sub-game.
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An example of a matching pennies sub-game is given by l, r, T , and M in
Figure 1b, because we have l ∈ BM ∩ ST , and we have r ∈ BT ∩ SM . In this
example, we can obtain an exact Nash equilibrium by making the row player
mix uniformly between T and M , and making the column player mix uniformly
between l and r. However, in general we can only expect to obtain an (23 − z)-
WSNE using this technique.

Proposition 11. If there is a matching pennies sub-game, then we can con-
struct a (23 − z)-WSNE with a 2× 2 support.

Thus, we can assume that our game does not contain a matching pennies sub-
game, because otherwise Procedure (2) would have found a (23−z)-WSNE. Note
that, by definition, if the game does not contain a matching pennies sub-game,
then for all rows i we must have either Bı̄ ∩ Si = ∅, or Bi ∩ Sı̄ = ∅.

We can use this observation to strengthen our LP. We define two LPs, each of
which is constructed by adding an extra constraint to our existing LP. In the first
LP we add the constraint dbs = 0, and in the second LP we add the constraint
dsb = 0. We refer to the solutions of these two LPs as s1(z, q̄, q) and s2(z, q̄, q)
respectively. We then obtain the following strengthening of Proposition 9.

Proposition 12. For each q-bad row i we either have Ri ·yimp ≤ s1(z, q̄, q), or
we have Ri · yimp ≤ s2(z, q̄, q).

5.6 A Linear Upper Bound for Our LPs

Now we can finally obtain our bound for Ri ·yimp, by proving an upper bound for
sk(z, q̄, q). It is not difficult to show that sk is monotonically increasing in q̄. Since
q̄ < 3, we can therefore argue that sk(z, q̄, q) ≤ sk(z, 3, q). Then, using standard
techniques from sensitivity analysis in linear programming, it is possible to bound
sk(z, 3, q) by a linear function.

Proposition 13. We can compute cz,k and dz,k so that sk(z, 3, q) ≤ cz,k+dz,k·q.
To obtain our final upper bound on Ri ·yimp, we simply take the maximum over
the two LPs. That is, we set cz = max(cz,1, cz,2) and dz = max(dz,1, dz,2). This
then leads to our final upper bound for Ri · yimp.

Proposition 14. We have Ri · yimp ≤ cz + dz · q, for every q-bad row i.

5.7 The Test for P (z)

Finally, we can describe the test that determines whether P (z) holds in all
bimatrix games. The test constructs a point t∗z, and then checks whether Ri ·
y(t∗z) ≤ 2

3 − z holds for all rows i.
We begin by defining t∗z , which is the smallest value of t for which, if i is a

0-bad row, then Ri · y(t) ≤ 2
3 − z. By definition we have that Ri · y = 2

3 + 2z,
and we also know that Ri · yimp ≤ cz + dz · 0. Therefore t∗z is the solution of:

(
2

3
+ 2z) · (1− t∗z) + cz · t∗z =

2

3
− z.
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This can be seen graphically in Figure 3a. The line in the figure starts at 2
3 + z

when t = 0, and ends at cz when t = 1. The point t∗z is the value of t at
which this line crosses 2

3 − z. We can solve the equation to obtain the following
formula:

t∗z =
3z

2
3 + 2z − cz

. (10)

Ri · y(t)

t

2
3
− z

2
3

2
3
+ 2z

t∗z

(a) Finding t∗z.

Ri · y(t)

t
2
3
− z

2
3

2
3
+ 2z

t∗z

q∗z

(b) Finding q∗z .

Fig. 3. Diagrams that show how t∗z and q∗z are found

Next, we define a constant q∗z . For each row i, there is a trivial bound of:

Ri · yimp ≤ 1. (11)

Note that if q is large, then this bound will be better than our bound of cz+dz ·q.
The next step of our procedure is to find q∗z , which is the smallest value of q
such that, using this trivial bound (11), we can conclude that Ri ·y(t∗z) ≤ 2

3 − z.
Formally, we define q∗z to be the solution of:

(
2

3
+ 2z − q∗zz) · (1− t∗z) + t∗z =

2

3
− z.

This can be seen diagrammatically in Figure 3b: we fix a line that passes through
1 when t = 1, and 2

3 − z when t = t∗z. Then, q
∗
z is defined to be the point at

which this line meets the y-axis of the graph, where t = 0. Solving the equation
gives the following formula for q∗z .

q∗z =
(2z − 1

3 ) · t∗z − 3z

zt∗z − z
(12)

For rows i that are q-bad with q ≥ q∗z , we can apply the trivial bound (11) to
argue that Ri · y(t∗z) ≤ 2

3 − z. Therefore, we need only be concerned with rows i
that are q-bad with 0 ≤ q < q∗z . The next proposition gives a simple test that can
be used to check whether all such rows will have the property Ri ·y(t∗z) ≤ 2

3 − z.
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Proposition 15. If cz + dz · q∗z ≤ 1, then Ri · y(t∗z) ≤ 2
3 − z for all rows i.

Thus, our test for checking whether P (z) holds in all bimatrix games can be
summarised as follows. First we compute the constants cz and dz. Then we use
these to compute t∗z and q∗z . Finally, we check whether cz + dz · q∗z ≤ 1. If the
inequality holds, then Proposition 15 implies that P (z) is true. To complete the
proof of Theorem 5, it suffices to note that our test proves that P (z) holds in
all bimatrix games for z = 0.004735.

6 Conclusions

In Section 3, we presented a polynomial-time algorithm for computing a (23 −z)-
WSNE, where z = 0.004735. We do not believe that our analysis is tight, as it
uses several restrictions that our algorithm does not face. For example, y(t) uses
the same support as the strategy returned by the KS algorithm, whereas the
LP given in Definition 1 can return a subset of this support. Another example
is that in the analysis we only consider 2 × 2 subgames in which players mix
uniformly, whereas Procedure 2 considers all mixtures.

An interesting open question is the following. Does every bimatrix game pos-
sess a 1

2 -WSNE, where both players use at most two strategies? This is known
to be true with high probability in random games [1], but not known in general.
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Abstract. We study mechanisms for combinatorial auctions that are
simultaneously incentive compatible (IC), envy free (EF) and efficient in
settings with capacitated valuations — a subclass of subadditive valua-
tions introduced by Cohen et al. [4]. Capacitated agents have valuations
which are additive up to a publicly known capacity. The main result of
Cohen et al. [4] is the assertion that the Vickrey-Clarke-Groves mecha-
nism with Clarke pivot payments is EF (and clearly IC and efficient) in
the case of homogeneous capacities. The main open problem raised by
Cohen et al. [4] is whether the existence result extends beyond homo-
geneous capacities. We resolve the open problem, establishing that no
mechanism exists that is simultaneously IC, EF and efficient for capaci-
tated agents with heterogeneous capacities. In addition, we establish the
existence of IC, EF, and efficient mechanisms in the special cases of ca-
pacitated agents with heterogeneous capacities, where (i) there are only
two items; or (ii) the individual item values are binary. Finally, we show
that the last existence result does not extend to the stronger notion of
Walrasian mechanisms, i.e. mechanisms whose allocation and payments
correspond to a Walrasian equilibrium.

1 Introduction

A combinatorial auction mechanism takes as input agents’ valuations for bun-
dles of items and computes an allocation and payment for each agent. Incentive
compatibility (IC) and envy freeness (EF) are two desirable properties of combi-
natorial auction mechanisms. IC ensures that agents cannot gain by misreporting
their private information [11], while EF imposes a notion of fairness on the out-
come of the auction. Specifically, EF requires that no agent prefers the allocation
and payment of another agent to her own [5, 6, 13, 14, 18].

IC is desirable for various reasons. IC mechanisms create incentives for the
agents to report their true values, and as a result, the computed allocation
may better optimize the objective of the auctioneer. In addition, IC mechanisms
are considered fair in the sense that they do not advantage more sophisticated
agents. This is, however, a very weak notion of fairness, and it is well known

� A full version of this paper including all proofs is available on the authors’ websites.
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that IC mechanisms may not adhere to very basic fairness requirements [1]. In
particular, IC mechanisms may produce outcomes which are not EF. This may
be problematic in certain settings, such as government run spectrum auctions,
since the participants, after observing the outcome, may question the fairness
of the auction, and perceive others as being favored by the mechanism. Recent
experiments show that people place extremely high value on fairness. For exam-
ple, Rafaeli et al. [17] show that people care about fairness in queues even more
than the actual delay they experience. If outcomes are EF, in contrast, then no
agent views other agents’ outcomes as preferable.

EF outcomes can be thought of as a relaxation of the outcomes of a Wal-
rasian equilibrium. In a Walrasian equilibrium, we have item prices such that
every agent receives a bundle that maximizes her utility (i.e., valuation for the
bundle minus the sum of the prices of the bundle’s items), and the market
clears (i.e., every unsold item has a price of zero).1 If a Walrasian equilibrium
exists, then the corresponding outcome is efficient [2] and valuations that are
gross-substitutes (which is a subclass of subadditive valuations) always admit a
Walrasian equilribrium [9].

While every Walrasian equilibrium outcome is clearly EF, the other direction
does not hold. In contrast to a Walrasian equilibrium outcome, envy free out-
comes assign (arbitrary) bundle prices, which may not correspond to item prices.
If the allocation and payments of a mechanism correspond to a Walrasian equi-
librium outcome, we say that the mechanism is Walrasian.

In this paper, we focus on combinatorial auction mechanisms that are simul-
taneously IC, EF and efficient; i.e, maximize social welfare. We also consider
how our results are affected by replacing the EF requirement with the stronger
Walrasian requirement. Because we focus on efficient allocations, the problem
of finding IC+(EF or Walrasian) mechanisms reduces to finding payment rules
which are IC+(EF or Walrasian), except, possibly, for cases where there may be
multiple efficient allocations as in Section 4.

Notably, without the additional EF (or Walrasian) requirement, the family of
Vickrey-Clarke-Groves (VCG) mechanisms [3, 8] is known to be IC and efficient
for arbitrary valuations. Moreover, the classic results of Green and Laffont [7]
and Holmstrom [10] prove that for the efficient allocation and valuations that
are connected domains (which include the valuations studied in this paper), any
IC mechanism is a VCG mechanism. VCG mechanisms allocate according to
an efficient allocation, and determine the payment for each agent in a way that
reporting one’s true valuations is a dominant strategy. VCG mechanisms are
essentially a family of payment rules. The most common payment rule is known
as the Clarke pivot rule, in which an agent’s payment is the externality that the
agent imposes on the other agents.

Similarly, without the additional IC requirement, Mu’alem [15] shows that
the efficient allocation can always be supported by EF payments. In particular,

1 We differentiate between a Walrasian equilibrium and a Walrasian equilibrium out-
come since a Walrasian equilibrium requires specification of item prices while an
outcome simply states the bundle and payment of each agent.



122 M. Feldman and J. Lai

an allocation has supporting EF payments iff it is locally efficient — a weaker
notion than global efficiency. Thus, an EF and efficient mechanism exists for
arbitrary valuation functions.

Therefore, every efficient allocation can be supported by IC payments and
can also be supported by EF payments. Unfortunately, it is not always the case
that the set of IC payment rules shares a non-empty intersection with the set
of EF payment rules, i.e., there may not be a payment rule that can simulta-
neously satisfy IC and EF. Most of the mechanism design literature focuses on
mechanisms that are either IC or EF, but not much attention has been given to
the combination of both properties.

One exception is the unit demand case, where each agent desires at most one
item. Under these preferences, it is known that VCG with Clarke pivot pay-
ments is Walrasian [9, 12] (and is, therefore, clearly IC and EF). Another more
recent systematic treatment of the problem is the work of Cohen et al. [4] which
considers mechanisms that are IC, EF and efficient for various subadditive val-
uation classes. In particular, Cohen et al. [4] introduce the class of capacitated
valuations, which is a natural generalization of unit-demand. Agents with ca-
pacitated valuations are associated with a publicly known capacity c and values
for individual items. An agent’s value for a bundle of items is the sum of the
values for the c most valued items in the bundle. We refer to the case where all
agents are capacitated and have the same capacity as homogeneous capacities
and the general case where agents may have arbitrary capacities as the hetero-
geneous capacities case. Because the capacities are publicly known, these classes
of valuations are connected and any IC and efficient mechanism must be a VCG
mechanism. The results of Cohen et al. [4] are summarized in Figure 1. The main

capacitated -
heterogeneous

capacitated -
homogeneous

IC + Walrasian NO [derived by right column]
NO [Cohen et al. [4]]

NO for binary valuations [new]

IC + EF

NO [new: main result]
YES for n = 2 [Cohen et al. [4]]

YES for m = 2 [new]
YES for binary valuations [new]

YES [Cohen et al. [4]]

Fig. 1. This table specifies the existence of a particular type of mechanism (rows) for
various families of valuation functions (columns). Efficiency is required in all entries.
The results are divided between those that are established by Cohen et al. [4] and those
that are established here, indicated as [new].

result is that the VCG mechanism with Clarke pivot payments is EF for homoge-
neous capacities. For the broader class of heterogeneous capacities, Cohen et al.
[4] show that the VCG mechanism with Clarke pivot payments is not EF, but
it is left open whether there exists any mechanism that is simultaneously IC, EF,
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and efficient. This problem is the main open problem raised by Cohen et al.
[4]. For the special case in which there are only two agents (with heterogeneous
capacities), it is shown that a particular VCG mechanism (that does not use
Clarke pivot payments) is always EF. They also show that under the additional
requirement of no positive transfers (i.e., payments are weakly positive), no IC,
EF, and efficient mechanism exists, even for two agents and two items.

In this paper, we resolve open problems raised in Cohen et al. [4], and establish
several additional results for additional natural special cases. Our results are
summarized in Figure 1, marked by [new]. Our main results are:

– We prove that for heterogeneous capacities, there is no mechanism that is IC,
EF and efficient, even if no other requirement (such as no positive transfers)
is imposed. To establish this impossibility, we take a computational approach
which frames the problem of finding satisfactory VCG payments as a linear
program. This result shows that homogeneous capacities is a maximal class
that admits an IC, EF, and efficient mechanism. If the capacities are not
homogeneous, then IC, EF, and efficient mechanisms no longer exist.

– We devise an IC, EF, and efficient mechanism for heterogeneous capacities
in the special case of two items. This result complements the positive result
of Cohen et al. [4] which establishes existence for the special case of two
agents. Interestingly, the Clarke pivot payment is not EF in either of these
cases. Moreover, the two cases rely on different payment rules.

– We then restrict attention to the interesting special case in which agents’
valuations for individual items are binary; i.e., in {0, 1}. We refer to this
class as the binary valuations class. This is a natural setting where each agent
likes a subset of the items but still has a capacity. In this case, there exists a
mechanism for heterogeneous capacities that is simultaneously IC, EF, and
efficient. In particular, we show that that VCG with Clarke pivot payments
is EF if ties in the efficient allocation are broken based on a lexicographic
order that favors higher-capacity agents. The tie breaking method is shown
to be critical; VCG with Clarke pivot payments is not EF if ties are broken
arbitrarily (see Section 4). The proof involves viewing allocations as flows
on a particular graph and using augmenting paths and flow decomposition.
Similar techniques were used to prove the main result of Cohen et al. [4].

– Finally, we consider mechanisms that are IC, Walrasian, and efficient. We
find that, while IC, EF and efficient mechanisms exist for binary valuations
and heterogeneous capacities, this result does not extend to IC, Walrasian,
and efficienct mechanisms. In particular, we show that there is no IC, Wal-
rasian, and efficient mechanism even for binary valuations and homogeneous
capacities.

2 Model and Preliminaries

Suppose we have a set N = {1, . . . , n} of agents and a set G = {1, . . . ,m} of
goods. We will index agents by i and j and goods by k. Each agent i is associated
with a valuation function vi : 2

G → R≥0 that maps each bundle of goods to the
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agent’s value for that bundle. A valuation profile v = (v1, . . . , vn) consists of
a valuation function for each agent. We will often adopt the view of agent i
and write a valuation profile as (vi, v−i), where v−i denotes the valuations of
all agents other than i. An allocation a ∈ A assigns a bundle of goods to each
agent such that no good is given to more than one agent. Let ai denote the
bundle of items allocated to agent i under allocation a. We use the shorthand
v(a) to denote the social welfare of allocation a, i.e.

∑n
i=1 vi(ai). An allocation

is efficient if it maximizes social welfare amongst all allocations.
An allocation rule g maps a valuation profile to an allocation, and a payment

rule p maps a valuation profile to a payment for each agent, with gi(v) and pi(v)
denoting the bundle and payment of agent i, respectively. We assume quasi-
linear utilities, i.e., the utility of agent i who receives bundle ai and pays pi is
vi(ai)− pi. A mechanism M = (g, p) consists of an allocation rule and payment
rule. The following properties of mechanisms are central to our study.

Definition 1. A mechanism (g, p) is efficient if g(v) is an efficient allocation
for all v.

Definition 2. A mechanism (g, p) is incentive-compatible (IC) if there is no
benefit to mis-reporting, i.e., for every agent i and every valuation profile (vi, v−i),
vi(gi(vi, v−i))− pi(vi, v−i) ≥ vi(gi(v

′
i, v−i))− pi(v

′
i, v−i).

Definition 3. A mechanism (g, p) is envy-free (EF) if no agent prefers the
allocation and payment of another agent to her own, i.e., for every i, for every
(vi, v−i), for every j �= i, vi(gi(vi, v−i))−pi(vi, v−i) ≥ vi(gj(vi, v−i))−pj(vi, v−i).

Definition 4. A mechanism (g, p) is Walrasian if the allocation and payments
correspond to a Walrasian equilibrium outcome. In other words, there exists a
price vector (q1, . . . , qm) such that:

gi(v) ∈ argmax
S⊆G

(
vi(S)−

∑
k∈S

qk

)
(1)

pi(v) =
∑

k∈gi(v)

qk (2)

qk = 0 if k is unallocated in g(v) (3)

It is easy to verify that a Walrasian mechanism is also EF due to the first
condition of Walrasian equilibrium, which stipulates that agents are allocated
bundles which maximize their utility given the Walrasian item prices.

In this paper, we study mechanisms where g is an efficient allocation rule.
Because we will be considering efficient allocations, it is convenient to introduce
the following notation. Given a valuation profile v, Opt refers to an efficient
allocation when all agents are considered. There may be multiple efficient allo-
cations due to ties, but we point out where this distinction is important (e.g.,
in Section 4). Elsewhere, we assume that Opt is any efficient allocation. Opt−i

refers to an efficient allocation when agent i is excluded. Since Opt and Opt−i are
allocations, Optj and Opt−i

j give the allocation of agent j in these allocations.
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2.1 Characterization of IC and EF Mechanisms

When g is an efficient allocation, IC mechanisms are guaranteed to exist. In
particular, Vickrey-Clarke-Groves mechanisms are IC.

Definition 5. A Vickrey-Clarke-Groves (VCG) mechanism is a mechanism
(g, p), where g(v) is an efficient allocation and p(v) takes on the following form,

pi(v) = hi(v−i)−
∑
j �=i

vj(Optj),

where hi can be any function of v−i.

One of the most common choices of the hi function is the Clarke pivot payment
rule, given by

hi(v−i) =
∑
j �=i

vj(Opt−i
j ). (4)

The obtained payment is then pi(v) =
∑

j �=i vj(Opt−i
j )−

∑
j �=i vj(Optj), which

can be interpreted as the externality that agent i imposes on the other agents.
It is well known that VCG mechanisms are IC from the classic results of

Clarke [3] and Groves [8]. When the possible valuations of each agent form a
connected domain (i.e., there is a path between any two possible valuations that
stays within the set of possible valuations), VCG mechanisms are the only IC
and efficient mechanisms [7, 10]. Therefore, when considering IC and efficient
mechanisms for connected domains, the only flexibility one has is in the choice
of the function hi(v−i).

If we consider VCG mechanisms, EF is equivalent to imposing a simple con-
dition on the hi(v−i) functions. When clear in the context, we will often drop
the input v−i and simply refer to hi(v−i) using hi.

Theorem 1. [16] A VCG mechanism with efficient allocation Opt is EF iff for
every valuation profile v and for every pair of agents i, j:

hi(v−i)− hj(v−j) ≤ vj(Optj)− vi(Optj). (5)

Note that if there are multiple efficient allocations, then EF may depend on
which efficient allocations are chosen by the mechanism. This turns out to be
the case when we study binary valuations in Section 4. When the choice of
efficient allocations is unimportant or when the efficient allocations are unique,
the problem of finding IC, EF, and efficient mechanisms for connected domains
reduces to finding hi functions which satisfy (5).

2.2 Restricted Classes of Valuations

Following Cohen et al. [4], we consider the following classes of valuations. A
valuation function is superadditive if for any sets S, T ⊆ G, vi(S) + vi(T ) ≤
vi(S ∪T ). A valuation function vi is subadditive if for any sets S, T ⊆ G, vi(S)+
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vi(T ) ≥ vi(S ∪ T ). Pápai [16] proves that if valuations are superadditive, then
VCG with Clarke pivot payments is EF (and trivially IC and efficient). In this
paper, we focus on a subset of subadditive valuations. A valuation function is
capacitated with capacity c if it is additive over items up to the capacity c. For
sets of items with cardinality greater than c, the value is the sum of the c most
valued items. In other words, if we let top(vi, S) denote the c most valued items
in S with top(vi, S) = S if |S| ≤ c, then

vi(S) =
∑

k∈top(vi,S)

vi({k})

We refer to the case where all agents have the same capacity as the homogeneous
capacities case, and the more general where capacities can differ as the hetero-
geneous capacities case. We assume that agent capacities are publicly known so
that our valuations form a connected domain and VCG mechanisms are the only
IC mechanisms.

3 General Capacitated Valuations

Cohen et al. [4] provide VCG payment rules which are EF for case of two capac-
itated agents and any number of items. We devise a mechanism for the comple-
mentary case, where there are two items and any number of capacitated agents.
We also provide a negative result that shows that it is not possible to move
beyond these special cases.

Theorem 2. There exists an IC, EF, and efficient mechanism for two items
and any number of capacitated agents.

Theorem 3. For capacitated valuations, where the number of items and the
number of agents are both at least 3, there is no mechanism that is IC, EF, and
efficient.

The valuations in the proof of Theorem 3 involve agents with capacities 1 and
2, so it is not possible to further generalize the positive result for two items to
any number of items but restricted capacities.

4 Binary Preferences

Up until now we assumed that agents’ valuations for individual items are real
numbers. In many real-life settings, however, bidders’ preference structure is
much simpler. In particular, consider a case where every agent has a set of
desired items, which are items she is interested in getting. For example, a traveler
who needs to express her preferred seats in an airplane would usually have in
mind a set of desired seats (e.g., aisle seats). Such a preference structure can
be represented by binary valuations, where an agent’s valuation for every item
is either 0 or 1. Moreover, in many situations agents simply do not know their
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valuations for items. In such cases, the binary valuation structure may serve as
a good model, since agents, even if they cannot calculate their exact value for
various items, can usually tell whether or not they want some item.

These examples motivate the study of IC, EF, and efficient mechanisms under
this restricted preference structure. In particular, we ask whether the impossibil-
ity result from the previous section can be circumvented by considering the class
of binary valuations (still under capacitated agents). This question is answered
in the affirmative. Interestingly, in this case ties among efficient allocations can-
not be broken arbitrarily. Only by breaking ties in a very certain way (which we
will specify soon) can the desired result be achieved.

The last positive result, however, does not extend to IC, Walrasian, and effi-
cient mechanisms, as even in the more restricted setting — that of agents with
homogeneous capacities — there are simple examples that admit no IC, Wal-
rasian, and efficient mechanism.

Theorem 4. For capacitated agents, where vi({k}) ∈ {0, 1} for every i, k, there
exists an IC, EF, and efficient mechanism.

Before proceeding with the proof of Theorem 4, we establish some concepts and
propositions that are needed in the proof. It will be useful to have in mind the
following simple example.

Example 1. Suppose there are three agents, with agents 1 and 2 having capac-
ity 1 and agent 3 having capacity 2. Agents 1 and 3 desire items b, c while agent
2 desires item a.

Because agent values are either 0 or 1, there may be many efficient allocations,
and the particular efficient allocation chosen affects the envy-freeness of the
resulting mechanism. We consider a lexicographically-maximal efficient alloca-
tion, where the sorting is done based on the agents’ capacities. First, order the
agents in a non-increasing order of capacities, arbitrarily breaking ties among
agents with the same capacity. Next, compute an efficient allocation that is
lexicographically-maximal (among all efficient allocations), according to the or-
der above. i.e., find an efficient allocation such that there is no other efficient
allocation that gives an agent with a lower index (i.e. higher capacity) greater
value. We only consider allocations in which no agent receives more items than
her capacity. This aids in obtaining EF yet is without loss with respect to ef-
ficiency because giving an agent more items than her capacity cannot increase
welfare. In example 1, a lexicographically-maximal allocation gives agent 3 pri-
ority over agents 1 and 2 (since agent 3 has higher capacity). As a result, any
lexicographically-maximal efficient allocation must give b, c to agent 3 and a to
agent 2.

We show that a lexicographically-maximal efficient allocation, when combined
with the Clarke-pivot rule, is IC and EF. Theorem 3.2 from Cohen et al. [4] shows
that Clarke-pivot, when used with any efficient allocation, yields a payment rule
where agents with higher capacity do not envy agents with lower capacity. As
a result, to prove that our mechanism is EF, it remains to show that under
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Fig. 2. (a) The graph G(v) for the valuations in Example 1. (b) A graph representing
the differences between Opt and D−3 for Example 1 (used in the proof of Theorem 4).
Edges from agents to items indicate items an agent receives in Opt but not in D−3.
Edges from items to agents indicate items an agent receives in D−3 but not Opt. Here
we assume that Opt allocates a to agent 2 and b, c to agent 3 while D−3 allocates a to
agent 2 and b to agent 1.

a lexicographically-maximal efficient allocation and Clarke-pivot, agents with
lower capacity do not envy agents with higher capacity.

For a given instance of valuations v, it will be useful to consider a directed
graph G(v) similar to Cohen et al. [4]. G(v) contains a source, a node for each
agent, a node for each item, and a sink. If an agent desires an item, G(v) contains
a directed edge from the agent to the item with capacity 1 (note not to confuse
edge capacities in the graph representation with agents’ capacities). The source
is connected to each agent with a directed edge with capacity equal to the agent’s
capacity. Each item is connected to the sink with capacity 1. Figure 2(a) depicts
this graph for Example 1. An allocation then corresponds to a feasible flow in
G(v) by connecting each agent to the items it is allocated and appropriately
saturating the edges from the source to the agents and the items to the sink.
Any integral flow also corresponds naturally to a feasible allocation.

Consider agents i and j, with agent i having strictly lower capacity than agent
j. We wish to show that agent i will not envy agent j. A sufficient condition
for this is hi − hj ≤ vj(Optj)− vi(Optj). In the remainder of this section, Opt

refers to a lexicographically-maximal efficient allocation and Opt−i refers to a
lexicographically-maximal efficient allocation that excludes agent i. Consider the
following procedure. Start with the lexicographically-maximal efficient allocation
Opt. Remove agent i from this allocation by deallocating agent i (make all of the
items allocated to agent i available). Call this allocation C−i. C−i necessarily has
weakly less welfare than Opt−i as it is a feasible allocation to the agents other
than i. Consider G(v−i), the directed graph that excludes agent i, and the flow
on G(v−i) corresponding to C−i. We can find an allocation D−i with v(D−i) =
v(Opt−i) by adding augmenting paths to the flow on G(v−i) corresponding to
C−i. Since all edge capacities are integer, it is without loss of generality to
consider augmenting paths with net flow of 1. It is also without loss of general-
ity to assume that each augmenting path only visits the sink once since any path
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that visits the sink multiple times contains a smaller augmenting path which
visits the sink only once. The following propositions establish properties of these
augmenting paths.

Proposition 1. After each augmenting path, the total set of allocated items
increases by exactly one item.

Proposition 2. The second to last node (i.e., the node prior to the sink) in
each augmenting path is one of the items agent i was originally allocated in Opt.

Proposition 3. After adding an augmenting path, every agent other than i re-
ceives at least as many items as it did in Opt. Additionally, agent j will receive
the same number of items as it did in Opt.

We are now ready to prove Theorem 4.

Proof. Let Opt be a lexicographically-maximal efficient allocation, and let D−i

be the allocation formed by removing agent i and then adding augmenting paths
to G(v−i). Consider the following bipartite graph Gf and corresponding flow f
that relates Opt and D−i. The left hand side has nodes representing agents, and
the right hand side has nodes representing items. There is an edge from an agent
node to an item node if the agent receives the item in Opt but not in D−i. There
is an edge from an item node to an agent if the agent receives the item in D−i

but not in Opt. Let there be a flow of 1 on each edge in this graph. Figure 2(b)
illustrates Gf and f for Example 1.

Proposition 3 establishes that the only source (node with greater outflow than
inflow) is agent i, and that agent j has equal indegree and outdegree since it
receives the same number of items in Opt and D−i. Using flow decomposition,
we can decompose f into paths and cycles. Each of the paths starts at agent
i, with one path for each item agent i was allocated in Opt. By executing a
path or cycle, we mean that for every agent to item edge we modify the current
allocation by giving the item to the agent, and for every item to agent edge, we
remove the item from the agent.

We now construct allocation E−j , which will not allocate any items to agent
j, starting from allocation D−i. The items j receives in D−i can be split into
two sets. The first set consists of items it also received in Opt, and the second
set consists of items it did not receive in Opt. Items in the second set will show
up as an item to agent edge in Gf . The sum of the number of items in these
two sets will be vj(Optj) (Proposition 3). For every item given to agent j in

both Opt and D−i, give the item to agent i. The remaining items that agent j
receives in D−i are part of either a cycle or a path in the flow decomposition
of f . For every cycle that contains agent j, execute the cycle, and give the item
agent j receives to agent i. This results in agent i receiving some item in Optj .
For every path that contains agent j, execute the path, stopping at agent j. This
results in agent i receiving an item that it desires.

After this process, every agent other than i, j receives the same exact number
of items as in D−i. Agent i receives vj(Optj) items, some of which are in Optj
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and possibly undesired by agent i (the items j received in both Opt and D−i

and the items that were a part of cycles including agent j) and others which are
desired by agent i (the items that were part of the paths starting with agent i and
ending in agent j). Therefore, agent i receives a bundle that is Optj , with some

items replaced by items the agent surely desires. As a result, vi(E
−j) ≥ vi(Optj).

To complete the proof, we note that v(E−j) is a lower bound on v(Opt−j) = hj
and verify the EF condition for agent i.

Example 1 demonstrates that the tie-breaking rule among efficient allocations
is crucial, as some choices of efficient allocations do not yield EF Clarke pivot
payments. The restriction to values in {0, 1} is tight in sense that if agents have
values in {r, s} with r, s > 0, then VCG with Clarke pivot and lexicographically
maximal allocations may no longer be EF. Our final result examines whether this
positive result can be extended beyond EF to the stronger notion of Walrasian
mechanisms. Notably, for the class of unit-demand valuations (homogeneously
capacitated agents with capacity 1), VCG with Clarke pivot payments is Wal-
rasian (even for real valuations) [9, 12]. We find that these results cannot be
extended, even if we consider homogeneous capacities and binary valuations.

Theorem 5. There exists no IC, Walrasian, and efficient mechanism for the
class of homogeneously capacitated, binary valuations.

5 Discussion and Open Problems

This work settles the main open question posed by Cohen et al. [4] regarding
the existence of an IC, EF and efficient mechanism for valuation classes beyond
homogeneous capacities. While there always exists an efficient IC mechanism,
and similarly an efficient EF mechanism, there exists no mechanism that simul-
taneously satisfies both requirements when agents’ capacities are heterogeneous.
This result eliminates the hope for the existence of IC and EF mechanisms in the
more general classes of submodular or subadditive valuations. The impossibility
result is accompanied by two positive results, showing that existence of an IC
and EF mechanism can be restored if either agents’ valuations for individual
items are binary or if there are only two items. The former result, however, does
not extend to the stronger notion of a Walrasian mechanism, even if valuations
are capacitated and binary. The natural future direction, given the impossibility
result, is to resort to near-optimal outcomes. What is the best approximation to
social welfare that can be achieved by a mechanism that is simultaneously EF
and IC, for different valuation classes?
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Abstract. We study a capacitated symmetric network design game,
where each of n agents wishes to construct a path from a network’s
source to its sink, and the cost of each edge is shared equally among its
agents. The uncapacitated version of this problem has been introduced
by Anshelevich et al. (2003) and has been extensively studied. We find
that the consideration of edge capacities entails a significant effect on the
quality of the obtained Nash equilibria (NE), under both the utilitarian
and the egalitarian objective functions, as well as on the convergence
rate to an equilibrium. The following results are established. First, we
provide bounds for the price of anarchy (PoA) and the price of stabil-
ity (PoS) measures with respect to the utilitarian (i.e., sum of costs)
and egalitarian (i.e., maximum cost) objective functions. Our main re-
sult here is that, unlike the uncapacitated version, the network topology
is a crucial factor in the quality of NE. Specifically, a network topology
has a bounded PoA if and only if it is series-parallel (SP). Second, we
show that the convergence rate of best-response dynamics (BRD) may
be super linear (in the number of agents). This is in contrast to the un-
capacitated version, where convergence is guaranteed within at most n
iterations.

1 Introduction

The construction of large networks by strategic agents has been widely studied
from a game-theoretic perspective in the last decade [3, 8, 9, 25]. For a moti-
vating example, consider the construction and maintenance of large computer
networks by independent economic agents with different, and often competing,
self-interests. The game-theoretic perspective offers tools and insights that are
fundamental to the understanding and analysis of these settings.

In a symmetric network design game, a network is given, where each edge is
associated with some cost; and a set of n agents wish to buy some path from

� This work was partially supported by the Israel Science Foundation (grant number
1219/09), by the Leon Recanati Fund of the Jerusalem School of Business Adminis-
tration, the Google Inter-university center for Electronic Markets and Auctions, and
the People Programme (Marie Curie Actions) of the European Unions Seventh Frame-
work Programme (FP7/2007-2013) under REA grant agreement number 274919. The
authors wish to thank Eli Ben-Sasson and Irit Dinur for helpful discussion.

M. Serna (Ed.): SAGT 2012, LNCS 7615, pp. 132–143, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Capacitated Network Design Games 133

the network’s source (s) to its sink (t). Every agent chooses an s-t path, and the
cost of every edge is divided equally among the agents who use it. This is often
called a fair cost-sharing method. The game theoretic twist is the assumption
that each agent chooses its path strategically, so as to minimize its cost. It is well
known that Nash equilibria of this game need not be efficient, where efficiency
is usually defined with respect to either the sum of the agents’ costs (referred to
as the utilitarian or sum-cost objective) or to the maximum cost of any agent
(referred to as the egalitarian or max-cost objective).

The efficiency loss is commonly quantified using the price of anarchy (PoA)
[17, 23] and price of stability (PoS) [3] measures; the former refers to the ratio
between the cost of the worst Nash equilibrium and the social optimum, whereas
the latter refers to the ratio between the cost of the best Nash equilibrium and
the social optimum. The network design game described above is fairly easy
to analyze. The PoA is known to be tightly bounded by n with respect to the
utilitarian objective function1 [3]. It is not too difficult to see that the same
bound holds with respect to the egalitarian objective. In addition, the PoA
is independent of the network topology, as the worst case is obtained for two
parallel links. The PoS, in contrast, is always equal to 1 (with respect to both
objective functions), since in a symmetric network, the profile in which all agents
share the shortest path from s to t is a Nash equilibrium. Finally, best-response
dynamics (i.e., dynamics in which agents sequentially apply their best-response
moves) exhibits a simple structure, where convergence to a NE is guaranteed
within at most n steps.

Interestingly, as we shall soon see, a lot of the aforementioned results should
be attributed to the assumption that the network edges are uncapacitated; i.e.,
it is assumed that edges may hold any number of agents. While this assumption
has been employed by most of the studies on strategic network formation games,
we claim that in real-life applications network links have a limit on the number
of agents they can serve. To reflect this observation, we introduce capacitated
network design games, in which every edge, in addition to its cost, is also asso-
ciated with a capacity that specifies the number of agents it can hold. We study
the quality of NE in these games (using both PoA and PoS measures) and the
convergence rate of best-response dynamics. We are particularly interested in
the effect of the topology of the underlying network on the obtained results.

In cases where edges are associated with capacities, a feasibility problem arises
(i.e., whether there exists a solution that accommodates all the agents). However,
as already hinted at by [3], if a feasible solution exists, the arguments used in the
uncapacitated version can be applied to show that a pure NE exists and, more-
over, every best-response dynamics converges to a pure NE. This observation
motivates our study.

Our Contribution. For the PoA, the lower bound of n trivially carries over to
the capacitated version; thus, one cannot expect for a bound better than n. The
upper bound of n, however, does not carry over. In particular, we demonstrate

1 While [3] consider an underlying directed graph, this bound carries over to the
undirected case.
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that the PoA can be arbitrarily high. As it turns out, however, the network
topology plays a major role in the obtained PoA. A symmetric network topol-
ogy G is said to be PoA bounded if for every symmetric network design game
that is played on G, the PoA is bounded by n, independent of the edge costs
and capacities. Our main result here is a full characterization of PoA-bounded
network topologies. Specifically, we show that a symmetric network topology is
PoA bounded if and only if it is a series-parallel (SP) network; i.e., a network
that is built inductively by series and parallel compositions of SP networks. This
result holds with respect to both the sum-cost and max-cost objectives. More-
over, for parallel-link networks, we show that the PoA (with respect to both the
sum-cost and max-cost objectives) is essentially bounded by the maximum edge
capacity in the network, and this is tight.

This separation between the graph topology and the assignment of edge costs
and capacities reflects a separation between the underlying infrastructure and
the edge characteristics. While the infrastructure is often stable over time, the
edge characteristics may be modified over short time periods. A PoA bounded
topology ensures that, no matter how edge characteristics evolve, the cost of a
NE will never exceed n. Such topologies should be desired by network designers,
who wish to guarantee the efficiency in their network despite the fact they do
not control the actions of the individual users. Notably, within the class of SP
networks, the worst case is obtained already for parallel links.

In contrast to the PoA, the PoS with respect to the sum-cost objective is not
affected by the network topology. In particular, we provide a lower bound of
H(n) (i.e., the harmonic nth number) for the PoS on parallel-link graphs, and
show that for every symmetric network the PoS is upper bounded by H(n).

As for the max-cost objective function, for SP graphs the upper bound of n
that is established for the PoA trivially carries over to the PoS, and a matching
lower bound is established. For general graphs, we establish an upper bound
of n logn. Closing the gap between n and log n for the PoS in general graphs
remains an open problem.

Most of our results for the PoA and PoS bounds are summarized in Table 1,
where they are also contrasted with the corresponding results in the uncapac-
itated version (specified in brackets). These results suggest that the departure
from the classic assumption of uncapacitated edges brings in significant differ-
ences in the quality of equilibria.

Additionally, we study the convergence rate of best-response dynamics (BRD)
to a NE. Here too, the consideration of capacities introduces additional com-
plexity that reveals itself through a slower conversion rate. While BRD in the
uncapacitated version is guaranteed to converge within at most n iterations, we
establish a lower bound of Ω(n3/2) for convergence in capacitated games. More-
over, this lower bound is obtained already in the simplest graphs; i.e., graphs
that are composed of parallel links.

Finally, we note that while the feasibility problem in capacitated games is
equivalent to a maximum flow computation, and thus can be solved in polynomial
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Table 1. Summary of our results. The values in brackets correspond to the bounds
for uncapacitated games. All the results, except for the PoS w.r.t max-cost for general
networks are tight.

Parallel links SP General

sum-cost (sc)
PoA n (n) n (n) unbounded (n)
PoS log n(1) log n(1) log n(1)

max-cost (mc)
PoA n (n) n (n) unbounded (n)
PoS n (1) n (1) n log n(1)

time, the optimization version of the problem is NP-complete (this can be easily
verified through a reduction from 0-1 knapsack [14]).

Related Work. Various models of network design and formation games have
been extensively studied in the last decade from a game-theoretic perspective [3–
7, 18], with a great emphasis on the PoA and PoS measures. The PoA in network
design games has been also studied with respect to the strong equilibrium solution
concept by Epstein et al. [8], Andelman et al. [2] and Albers [1].

The role that network topology plays in game-theoretic settings has been stud-
ied in various models. In the model of network routing, it has been shown by
Roughgarden and Tardos [25] that the PoA is independent of the network topol-
ogy. In contrast, the network topology seems to matter a lot in other settings.
Some prominent examples include the following. Milchtaich [21] showed that the
Pareto efficiency of equilibria in network routing games (with a continuum of
agents) strongly depends on the network topology. In addition, topological char-
acterizations for symmetric network games have been also provided for other
equilibrium properties, including (Nash and strong) equilibrium existence (see
Milchtaich [20], Epstein et al. [8, 9], and Holzman and Law-Yone [15, 16]), and
equilibrium uniqueness (see Milchtaich [19]).

Best-response dynamics (BRD) and its convergence rate has been the subject
of intensive research recently. Since every congestion game is a potential game
[22, 24], BRD always converge to a pure NE. However, they may in general take
exponential number of steps depending on the number of agents, as established
by Fabrikant et al. [11]. Anshelevich et al. [3] established that BRD may take
exponential number of steps to converge in network design games, but is poly-
nomial for the special case of two agents. Notably, as shall be discussed in Sect.
5, the exponential convergence rate does not apply in our setting. BRD conver-
gence has been also studied in scheduling and routing games (see Even-Dar et
al. [10], Fotakis [13], and Feldman and Tamir [12]).

2 Model and Preliminaries

2.1 Capacitated Symmetric Cost Sharing Games

A capacitated, symmetric cost-sharing connection (CCS) game (also known as
single commodity) is a tuple
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Δ = 〈n,G = (V,E), s, t, {pe}e∈E , {ce}e∈E〉,

where n is the number of agents and G = (V,E) is an undirected graph, with
s, t ∈ V as its source and sink nodes, respectively. Every edge e ∈ E is asso-
ciated with a cost pe ∈ R≥0 and a capacity ce ∈ N , where an edge capacity
specifies the maximum number of agents that can use it. The set of agents
{1, . . . , n} is also denoted by [n]. Every agent i wishes to construct an s-t path
in G. The strategy space of an agent i, denoted Σi, is the set of s − t paths
in G, and a strategy of an agent i is denoted by Si ∈ Σi. Since this is a sym-
metric game, all agents have the same strategy space. The joint action space is
denoted by Σ.

We consider the fair cost-sharing game, where an edge’s cost is shared
equally by all the agents that use it in their path. Given a strategy profile S =
(S1, . . . , Sn), we denote by xe(S) the number of agents that use edge e in their
path; i.e., xe(S) = |{i : e ∈ Si}|. A profile S is said to be feasible if for every
e ∈ E, xe(S) ≤ ce. The cost of agent i in a profile S is defined as

pi(S) =

{∑
e∈Si

pe

xe(S) , if S is feasible

∞ , otherwise
(1)

A profile S is said to be a Nash equilibrium if no agent can improve its cost
by a unilateral deviation; i.e., for every i, S′

i ∈ Σi, S−i ∈ Σ−i, it holds that
pi(S) ≤ pi(S

′
i, S−i), where S−i denotes the joint action of all agents except i.

Given a game Δ, let τ(Δ) denote the set of all feasible profiles in Δ. A CCS
game Δ is said to be feasible if it admits a feasible profile; i.e., τ(Δ) �= ∅.

We consider two social cost functions. The sum-cost of a profile S is the total
cost of the agents in S (and also equals the total cost of the purchased edges in
S), and is given by

scΔ(S) =

{∑
i pi(S) , if S is feasible

∞ , otherwise

The max-cost of a profile S is the maximum cost of any agent in S, and is given
by

mcΔ(S) =

{
maxi∈[n] pi(S) , if S is feasible

∞ , otherwise

We denote by OPTsc(Δ) and OPTmc(Δ) the optimal profiles with respect to the
sum-cost and max-cost objectives, respectively. When clear in the context, we
omit Δ, and also abuse notation and use OPTsc(Δ) and OPTmc(Δ) to denote
the cost of the respective optimal solutions.

In the figures of the paper, every edge is associated with a tuple (ce, pe),
denoting its capacity and cost, respectively.
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2.2 Nash Equilibrium Existence

An uncapacitated fair cost sharing game is known to be a potential game [3].
Every potential game admits a pure NE [22]. Moreover, BRD (where agents
sequentially apply their best-response moves) always converge to a pure NE.
Capacitated versions are not guaranteed to admit a feasible solution; however,
if a feasible solution exists, then so does a pure NE.

Observation 1. [3] Let Δ be a CCS game s.t. τ(Δ) �= ∅. Then, Δ admits a
pure NE and every best response dynamics convergence to a NE.

This proof relies on the existence of a potential function, Φ(S) =∑
e∈E

∑xe(S)
i=1

pe

xe(S) , that emulates the cost of an agent when deviating from

a feasible solution to another.

2.3 Efficiency Loss

To quantify the efficiency loss due to strategic behavior, we use the PoA and
PoS measures. The PoA is the ratio of the worst Nash equilibrium and the so-

cial optimum, and is given by PoAsc(Δ) =
maxS∈NE(Δ) scΔ(S)

OPTsc(Δ) and PoAmc(Δ) =
maxS∈NE(Δ) mcΔ(S)

OPTmc(Δ) with respect to the sum-cost and max-cost objectives, re-

spectively, where NE(Δ) denotes the set of NE of Δ, and it is assumed
that NE(Δ) �= ∅. Similarly, the PoS of sum-cost and max-cost are given by

PoSsc(Δ) =
minS∈NE(Δ) scΔ(S)

OPTsc(Δ) and PoSmc(Δ) =
minS∈NE(Δ) mcΔ(S)

OPTmc(Δ) , respectively.

2.4 Graph Theoretic Preliminaries

In this section we provide some preliminaries regarding network topologies. A
symmetric network is an undirected graph G along with two distinguished nodes,
a source s and a sink t. When clear in the context, we refer to G as the sym-
metric network. A CCS game is symmetric (also called single-commodity) if its
underlying network is symmetric with source s and sink t, and nodes s and t
are the respective source and sink of all the agents.A symmetric network G is
embedded in a symmetric network G′ if G′ is isomorphic to G or to a network
derived from G by applying the following operations any number of times in any
order: (i) Subdivision of an edge (i.e., its replacement by a path of edges), (ii)
Addition of a new edge joining two existing nodes, (iii) Extension of the source
or the sink (i.e., addition of a new edge joining s or t with a new node, which
becomes the new source or sink, respectively).

Next, we define the following operations on symmetric networks:

Identification: The identification operation is the collapse of two nodes into
one. More formally, given a graph G = (V,E) we define the identification of
nodes v1 ∈ V and v2 ∈ V forming a new edge v ∈ V as creating a new graph
G′ = (V ′, E′) where V ′ = V \ {v1, v2} ∪ {v} and E′ includes the edges of E
where the edges of v1 and v2 are now connected to v.
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Parallel Composition: Given two symmetric networks, G1 = (V1, E1) and
G2 = (V2, E2), with sources s1 ∈ V1 and s2 ∈ V2 and sinks t1 ∈ V1 and t2 ∈ V2,
respectively, we define a new symmetric network G = G1||G2 as follows. Let
G′ = (V1 ∪ V2, E1 ∪ E2) be the union of network. To generate G = G1||G2 we
identify the sources s1 and s2, forming a new source node s, and identify the the
sinks t1 and t2, forming a new sink t.

Series Composition: Given two symmetric networks, G1 = (V1, E1) and G2 =
(V2, E2), with sources s1 ∈ V1 and s2 ∈ V2 and sinks t1 ∈ V1 and t2 ∈ V2,
respectively, we define a new symmetric network G = G1 → G2 as follows. Let
G′ = (V1 ∪ V2, E1 ∪ E2) be the union network. To generate G = G1 → G2 from
G′ we identify the vertices t1 and s2, forming a new vertex u. The network G
has a source s = s1 and a sink t = t2.

A Series-parallel (SP) network is a symmetric network that is constructed
inductively from two SP networks by either a series composition or a parallel
composition, where a single edge serves as the base of the induction. That is,
a symmetric network consisting of a single edge is an SP network. In addition,
given two SP networks, G1 and G2, the networks G = G1||G2 and G = G1 → G2

are SP networks.

3 The Sum-Cost Objective Function

3.1 Price of Anarchy (PoA)

Throughout this section, we write PoA to denote PoAsc for simplicity. In unca-
pacitated cost sharing games, the PoA is n (tightly). This is, however, not the
case in capacitated games, as demonstrated by the following proposition.

Proposition 1. The price of anarchy with respect to the sum-cost function in
CCS games can be arbitrarily high.

Proof. Consider a CCS game with two agents and an underlying graph as de-
picted in Fig. 1(a), and suppose that y is arbitrarily larger than x. The optimal
profile is where one agent uses the path s-a-t and the other uses the path s-b-t,
resulting in a total cost of 4x. However, there is a NE in which one agent uses
the path s-a-b-t and the other uses the path s-b-a-t, resulting in a total cost of
4x+ y. Therefore, PoAsc(Δ) = 4x+y

4x , which can be arbitrarily high.

Our goal is to characterize network topologies in which such a “bad” example
cannot occur; i.e., topologies in which the PoA is always bounded, independent
of the specific edge costs and capacities. The lower bound of n for a network
with two parallel links motivates the following definition.

Definition 1. A symmetric network G = (V,E) with source s and sink t is PoA
bounded for a family of symmetric CCS games F if for every symmetric CCS
game Δ ∈ F on the symmetric network G, it holds that PoA(Δ) ≤ n.

Our main result is a full characterization of PoA bounded network topologies.
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Fig. 1. (a) An example where the PoA can be arbitrarily high. (b) A Braess Graph.

Theorem 1. For symmetric CCS games, a symmetric network topology G is
PoA bounded w.r.t. sum-cost if and only if G is a series-parallel (SP) network.

The proof of our characterization is composed of two parts. First, we show that
for every symmetric CCS game that is played on an SP network PoAsc ≤ n.
This is the content of Theorem 2. Second, we show that for every symmetric
network topology G that is not an SP network, there exists a game that is
played on G for which the PoA can be arbitrarily high. This part is the content of
Theorem 2.

Theorem 2. Let Δ be a feasible CCS game with an underlying graph G. If G
is an SP graph then PoAsc(Δ) ≤ n.

In order to complete the characterization it remains to show that for every non-
SP network G, there exists a symmetric CCS game on G that has an unbounded
price of anarchy.

Theorem 3. Let G be a non-SP symmetric network. Then, there exists a sym-
metric CCS game on G for which the price of anarchy is arbitrarily high.

In order to prove the last theorem, we use the following result, established by
Milchtaich [21].

Lemma 1. [21] A symmetric network G is an SP network if and only if the
symmetric network in Fig. 1(b) is not embedded in G.

The network topology in the last lemma is precisely the network topology with
the unbounded PoA that motivated our study. The last lemma asserts that this
graph topology is embedded in every non-SP network. Thus, in order to establish
the assertion of Theorem 1, it remains to show that the unbounded PoA given
in Proposition 1 can be extended to every network topology that embeds it. This
is established in the following lemma.

Lemma 2. Let G be a symmetric network that is not PoA bounded with respect
to sum-cost for a family of symmetric CCS games F , and suppose G is embedded
in a symmetric network G′. Then, G′ is not PoA bounded with respect to sum-
cost for the family F either.
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For the case of parallel-edge networks, we show that the PoA cannot exceed the
maximum edge capacity in the network.

Theorem 4. Let Δ be a feasible CCS game with an underlying graph G that
consists of parallel edge. Let Cm denote the maximum capacity of any edge in
G. It holds that PoAsc(Δ) ≤ Cm.

3.2 Price of Stability (PoS)

As mentioned above, for uncapacitated symmetric games, PoS = 1. In capaci-
tated game, however, the PoS need not be optimal. Moreover, suboptimality is
obtained already in parallel-link networks.

Theorem 5. There exists a symmetric CCS game in which the PoS with respect
to sum-cost is H(n).

Proof. Consider a CCS game with n agents played on a graph that consists of
n + 1 parallel links, e1, . . . , en+1, such that for i ∈ [n], pi = 1/i and ci = 1;
and pn+1 = 1 + ε and cn+1 = n. It is easy to verify that the optimal solution
is achieved when all the agents share edge en+1. However, this profile is not a
NE since a single agent can benefit by deviating to edge en, incurring a cost of
1/n instead of (1 + ε)/n. Following similar reasonings, agents will continue to
deviate, one by one, until reaching the profile in which for every agent i ∈ [n],
agent i uses edge ei. The cost of this profile is H(n); the assertion follows.

As established in [3], the potential function method can be used to show that
the last bound is tight. The proof uses the potential function Φ(S) =∑

e∈E

∑xe(S)
i=1

pe

xe(S) , and follows the same reasoning as in the uncapacitated case.

Theorem 6. [3] For every feasible symmetric CCS game, it holds that PoSsc ≤
H(n).

4 The Max-cost Objective Function

In this section we study the max-cost objective function.

4.1 Price of Anarchy (PoA)

We first observe that the PoA can be arbitrarily high also with respect to the
max-cost function.

Proposition 2. The PoA with respect to max-cost in CCS games can be arbi-
trarily high.

As in the sum-cost case, we wish to characterize network topologies in which the
PoA cannot exceed n. Interestingly, we obtain the exact same characterization
as in the sum-cost case.
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Theorem 7. A symmetric network topology G is PoA bounded w.r.t. max-cost
if and only if G is an SP network.

For the case of parallel-edge networks, we show that the PoA cannot exceed the
maximum edge capacity in the network.

Theorem 8. Let Δ be a feasible CCS game with an underlying graph G that
consists of parallel edge. Let Cm denote the maximum cost of any edge in G. It
holds that PoAmc(Δ) ≤ Cm.

4.2 Price of Stability (PoS)

For SP graphs, it follows directly from Theorem 7 that the PoS is bounded by
n (since PoS is always bounded by PoA). This bound is tight, as follows from
the example given in the proof of Theorem 5 . In this example, the unique NE is
one in which every agent uses a distinct path, and the maximal cost incurred by
any agent is 1, compared to 1/n in the optimal solution. For general networks,
we establish the following bound.

Theorem 9. For every CCS game Δ, it holds that PoSmc(Δ) is bounded by
nH (n).

Proof. Consider the function Φ(S) =
∑

e∈E

∑xe(S)
i=1

pe

xe(S) . It is shown by [3] that

this is an exact potential function for the game; i.e., it emulates the change in
the cost of a deviating agent. It is easy to verify that for every profile T ,

sc(T ) ≤ Φ(T ) ≤ H (n) · sc(T ). (2)

Let S∗ be an optimal solution with respect to max-cost, and consider a NE S
that is obtained by running best-response dynamics with an initial profile S∗. We
get that mc(S) ≤ sc(S) ≤ Φ(S) ≤ Φ(S∗) ≤ H (n)sc(S∗) ≤ nH (n)mc(S∗), where
the second and fourth inequalities follow from Equation 2, the third inequality
follows from the fact that Φ is a potential function and S is obtained from S∗

through best-response steps, and the last inequality follows from the definition
of max-cost. It follows that mc(S)/mc(S∗) ≤ nH (n), as promised.

5 Convergence Rate of BRD

In this section we study the convergence rate of best-response dynamics (BRD)
to a NE. While BRD may in general take exponential number of steps depending
on the number of agents to converge [3], the following proposition establishes
that in the case of a symmetric, undirected graph, BRD converges to a pure
NE within at most n steps, and this is tight. The intuition for this observation
is that, in the uncapacitated version, after an agent deviates to some path P
(as its best-response), the cost incurred by an agent using this path in the next
iteration can only decrease; therefore, P remains a best-response move until all
agents converge to the same path.
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Observation 2. For every uncapacitated cost-sharing game, every BRD con-
verges to a NE within at most n steps, independent of the initial profile.

In contrast, the following proposition shows that the convergence process of a
capacitated game may be longer. In particular, we establish a lower bound of
Ω(n3/2), even for parallel-link graphs.

Proposition 3. There exists a symmetric CCS game and a best-response dy-
namics with convergence time of Ω(n3/2).

6 Discussion

In this work we introduce a model of capacitated network design games, and
study the implications of edge capacities on the existence and quality of Nash
equilibria with respect to different objective functions, as well as on the con-
vergence rate of best-response dynamics. We find that the consideration of edge
capacities has a significant effect on all the above properties. Our main con-
tribution is a full characterization of network topologies that have a bounded
price of anarchy, independent of the edge capacities and costs. Our results sug-
gest many avenues for future research. A few obvious directions include closing
the gap of the PoS with respect to the max-cost objective for general networks,
the consideration of non-symmetric networks and a better understanding of the
convergence rate of best-response dynamics.
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Abstract. Game theory studies situations in which strategic players can
modify the state of a given system, due to the absence of a central author-
ity. Solution concepts, such as Nash equilibrium, are defined to predict
the outcome of such situations. In the spirit of the field, we study the
computation of solution concepts by means of decentralized dynamics.
These are algorithms in which players move in turns to improve their
own utility and the hope is that the system reaches an “equilibrium”
quickly.

We study these dynamics for the class of opinion games, recently in-
troduced by [1]. These are games, important in economics and sociology,
that model the formation of an opinion in a social network. We study
best-response dynamics and show that the convergence to Nash equilib-
ria is polynomial in the number of players. We also study a noisy version
of best-response dynamics, called logit dynamics, and prove a host of re-
sults about its convergence rate as the noise in the system varies. To get
these results, we use a variety of techniques developed to bound the mix-
ing time of Markov chains, including coupling, spectral characterizations
and bottleneck ratio.

1 Introduction

Social networks are widespread in physical and digital worlds. The following
scenario therefore becomes of interest. Consider a group of individuals, connected
in a social network, who are members of a committee, and suppose that each
individual has her own opinion on the matter at hand. How can this group of
people reach consensus? This is a central question in economic theory, especially
for processes in which people repeatedly average their own opinions. This line
of work, see e.g. [2–5], is based on a model defined by DeGroot [6]. In this
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model, each person i holds an opinion given by a real number xi, which might
for example represent a position on a political spectrum. There is an undirected
graph G = (V,E) representing a social network, and node i is influenced by the
opinions of her neighbors in G. In each time step, node i updates her opinion to
be an average of her current opinion with the current opinions of her neighbors.
A variation of this model of interest to our study is due to Friedkin and Johnsen
[7]. In [7] it is additionally assumed that each node i maintains a persistent
internal belief bi, which remains constant even as node i updates her overall
opinion xi through averaging. (See Sect. 2 for the formal framework.)

However, as recently observed by Bindel et al. [1], consensus is hard to reach,
the case of political opinions being a prominent example. The authors of [1]
justify the absence of consensus by interpreting repeated averaging as a decen-
tralized dynamics for selfish players. Consensus is not reached as players will
not compromise further when this diminishes their utility. Therefore, these dy-
namics will converge to an equilibrium in which players might disagree; Bindel
et al. study the cost of disagreement by bounding the price of anarchy in this
setting.

In this paper, we continue the study of [1] and ask the question of how quickly
equilibria are reached by decentralized dynamics in opinion games. We focus on
the setting in which players have only a finite number of strategies available.
This is motivated by the fact that in many cases although players have personal
beliefs which may assume a continuum of values, they only have a limited number
of strategies available. For example, in political elections, people have only a
limited number of parties they can vote for and usually vote for the party which
is closer to their own opinions. Motivated by several electoral systems around
the world, we concentrate in this study on the case in which players only have
two strategies available. This setting already encodes a number of interesting
technical challenges as outlined below.

1.1 Our Contribution

For the finite version of the opinion games considered in [1], we firstly note that
this is a potential game [8, 9] thus implying that these games admit pure Nash
equilibria. The set of pure Nash equilibria is then characterized. We also notice
the interesting fact that while the games in [1] have a price of anarchy of 9/8,
our games have unbounded price of anarchy, thus implying that for finite games
disagreeing has far deeper consequences on the social cost. These basic facts turn
out to be useful in the study of decentralized dynamics for finite opinion games.

Given that the potential function is polynomial in the number of players,
by proving that the potential decreases by a constant at each step of the best-
response dynamics, we can prove that this dynamics quickly converges to pure
Nash equilibria. This result is proved by “reducing” an opinion game to a version
of it in which the internal beliefs can only take certain values. The reduced
version is equivalent to the original one, as long as best-response dynamics is
concerned. Note that the convergence rate for the version of the game considered
in [1] is unknown.
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In real life, however, there is some noise in the decision process of players.
Arguably, people are not fully rational. On the other hand, even if they were,
they might not exactly know what strategy represents the best response to a
given strategy profile due to the incapacity to correctly determine their utility
functions. To model this, we study logit dynamics [10] for opinion games. Logit
dynamics features a rationality level β ≥ 0 (equivalently, a noise level 1/β) and
each player is assumed to play a strategy with a probability which is proportional
to the corresponding utility to the player and β. So the higher β is, the less noise
there is and the more the dynamics is similar to best-response dynamics. Logit
dynamics for potential games defines a Markov chain that has a nice structure.
As in [11, 12] we exploit this structure to prove bounds on the convergence
rate of logit dynamics to the so-called logit equilibrium. The logit equilibrium
corresponds to the stationary distribution of the Markov chain. Intuitively, a
logit equilibrium is a probability distribution over strategy profiles of the game;
the distribution is concentrated around pure Nash equilibrium profiles.1 It is
observed in [12] how this notion enjoys a number of desiderata one would like
solution concepts to have.

We prove a host of results on the convergence rate of logit dynamics that
give a pretty much complete picture as β varies. We give an upper bound in
terms of the cutwidth of the graph modeling the social network. The bound
is exponential in β and the cutwidth of the graph, thus yielding an exponential
guarantee for some topology of the social network. We complement this result by
proving a polynomial upper bound when β takes a small value, namely, for β at
most the inverse of the maximum degree of nodes of the graph. We complete the
preceding upper bound in terms of the cutwidth with lower bounds. Firstly, we
prove that in order to get an (essentially) matching lower bound it is necessary
to evaluate the size of a certain subset of strategy profiles. For large enough
β relative to this subset then we can prove that the upper bound is tight for
any social network (specifically, we roughly need β bigger than n logn over the
cutwidth of the graph). For smaller values of β, we are unable to prove a lower
bound which holds for every graph. However, we prove that the lower bound
holds in this case at both ends of the spectrum of possible social networks.
In details, we look at two cases of graphs encoding social networks: cliques,
which model monolithic, highly interconnected societies, and complete bipartite
graphs, which model more sparse “antitransitive” societies. For these graphs,
we firstly evaluate the cutwidth and then relate the latter to the size of the
aforementioned set of states. This allows to prove a lower bound exponential in
β and the cutwidth of the graph for (almost) any value of β. As far as we know,
no previous result was known about the cutwidth of a complete bipartite graph;
this might be of independent interest. The result on cliques is instead obtained
by generalizing arguments in [13].

To prove the convergence rate of logit dynamics to logit equilibrium we adopt
a variety of techniques developed to bound the mixing time of Markov chains.

1 It is worth noting that the focus of best-response dynamics and logit dynamics is on
two different solution concepts.
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To prove the upper bounds we use some spectral properties of the transition ma-
trix of the Markov chain defined by the logit dynamics, and coupling of Markov
chains. To prove the lower bounds, we instead relay on the concept of bottleneck
ratio and the relation between the latter and mixing time. (The interested reader
might refer to [13] for a discussion of these concepts.)

Due to the lack of space some of the proofs are omitted or sketched.

1.2 Related Work

In addition to the papers mentioned above, our paper is related to the work
on logit dynamics. This dynamics is introduced by Blume [10] and it is mainly
adopted in the analysis of graphical coordination games [14–16], in which players
are placed on vertices of a graph embedding social relations and each player
wants to coordinate with neighbors: we highlight that an unique game is played
on every edge, whereas, for opinion games, we need different games in order to
encode beliefs (see below). Asadpour and Saberi [17] adopt the logit dynamics
for analyzing a class of congestion games. However, none of these works evaluates
the time the logit dynamics takes in order to reach the stationary distribution:
this line of research is conducted in [11, 12].

A number of papers study the efficient computation of (approximate) pure
Nash equilibria for 2-strategy games, such as, party affiliation games [18, 19]
and cut games [20]. Similarly to these works, we focus on a class of 2-strategy
games and study efficient computation of pure Nash equilibria; additionally we
also study the convergence rate to logit equilibria.

Another related work is [21] by Dyer and Mohanaraj. They study graphical
games, called pairwise-interaction games, and prove among other results, quick
convergence of best-response dynamics for these games. However, our games do
not fall in their class. The difference is that, in their case, there is a unique
game being played on the edges of the graph; as noted above, we instead need a
different game to encode the internal beliefs of the players.

2 The Game

Let G = (V,E) be an undirected connected graph2 with |V | = n. Every vertex of
the graph represents a player. Each player i has an internal belief bi ∈ [0, 1] and
only two strategies or opinions are available, namely 0 and 1. Motivated by the
model in [1], we define the utility of player i in a strategy profile x ∈ {0, 1}n as

ui(x) = −

⎛⎝(xi − bi)
2 +

∑
j : (i,j)∈E

(xi − xj)
2

⎞⎠ .

2 A number of papers, including [1], assume that the graph is weighted to model neigh-
bors’ different levels of influence. Here we focus on the case in which all neighbors
exert the same kind of “political” weight.
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We call such a game an n-player opinion game on a graph G. Let Di(x) = {j :
(i, j) ∈ E ∧ xi �= xj} be the set of neighbors of i that have an opinion different
from i. Then ui(x) = −(xi − bi)

2 − |Di(x)| .
Let D(x) = {(u, v) ∈ E : xu �= xv} be the set of discording edges in the

strategy profile x, that is the set of all edges in G whose endpoints have different
opinions. Then it is not hard to check that the function Φ(x) =

∑
i(xi − bi)

2 +
|D(x)| is an exact potential function for the opinion game described above.
Interestingly, the potential function looks very similar to (but not the same as)
the social cost SC(x) = −

∑n
i=1 ui(x) =

∑
i(xi − bi)

2 + 2|D(x)|.
Let Bi be the integer closer to the internal belief of the player i: that is,

Bi = 0 if bi ≤ 1/2, Bi = 1 if bi > 1/2. Moreover, let Ns
i (x) = |{j : (i, j) ∈

E and xj = s}| be the number of neighbors of i that play strategy s in the
strategy profile x.

It is not hard to verify that in Nash equilibria each player i selects Bi if and
only if at least half his neighborhood has selected this opinion. The only special
cases occur when players have beliefs in {0, 1/2, 1}: if bi = 1/2 player i will
be additionally indifferent when exactly half (assuming that Δi is even) of his
neighbors are playing the same strategy and the other half are playing the other
strategy; if bi = 0 or bi = 1 player i will also be indifferent when Δi is odd and
only �Δi/2� neighbors are playing Bi. Roughly speaking, in a Nash equilibrium
players tend to form large coalitions, by preferring to play what the majority
plays to their own beliefs.

It is easy to check that this game has infinite Price of Anarchy. Consider the
opinion game on a clique where each player has internal belief 0: the profile
where each player has opinion 0 has social cost 0. The profile where each player
has opinion 1 is a Nash equilibrium and its social cost is n > 0. This is in sharp
contrast with the bound 9/8 proved in [1].

3 Best-Response Dynamics

Given two games we say they are best-response equivalent if each player has
identical best responses to every combination of opponents’ strategies. For the
opinion games the following observation is straightforward.

Observation 1. Let G be an opinion game where the player i has belief bi ∈
(0, 1/2): then G is best-response equivalent to the same game where the belief
of i is set to bi = 1/4. Similarly, if the player i has opinion bi ∈ (1/2, 1) the
game is best-response equivalent to the same game where the belief of i is set to
bi = 3/4.

The following theorem shows that, for this class of games, the best-response
dynamics quickly converges to a Nash equilibrium.

Theorem 2. The best-response dynamics for an n-player opinion game G con-
verges to a Nash equilibrium after a polynomial number of steps.
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Proof (Sketch). From Observation 1 we know that each opinion game is best-
response equivalent to an opinion game where each player i has bi ∈ S ={
0, 14 ,

1
2 ,

3
4 , 1

}
. So, for a given opinion game G we construct a game G′ with

beliefs restricted to belong to S by “rounding” the beliefs of the original game
and show that best-response dynamics converges quickly on G′. We begin by ob-
serving that for every profile x, we have 0 ≤ Φ(x) ≤ n2 + n. Thus, the theorem
follows by showing that at each time step the cost of a player decreases by at
least a constant value. ��

4 Logit Dynamics for Opinion Games

Let G be an opinion game as from the above; moreover, let S = {0, 1}n denote the
set of all strategy profiles. For two vectors x,y ∈ S, we denote with H(x,y) =
|{i : xi �= yi}| the Hamming distance between x and y. The Hamming graph of
the game G is defined as H = (S,E), where two profiles x = (x1, . . . , xn),y =
(y1, . . . , yn) ∈ S are adjacent in H if and only if H(x,y) = 1.

The logit dynamics for G runs as follows: at every time step (i) Select one
player i ∈ [n] uniformly at random; (ii) Update the strategy of player i according
to the Boltzmann distribution with parameter β over the set Si = {0, 1} of her
strategies. That is, a strategy si ∈ Si will be selected with probability

σi(si | x−i) =
1

Zi(x−i)
eβui(x−i,si) , (1)

where x−i ∈ {0, 1}n−1 is the profile of strategies played at the current time
step by players different from i, Zi(x−i) =

∑
zi∈Si

eβui(x−i,zi) is the normalizing
factor, and β ≥ 0. As mentioned above, from (1), it is easy to see that for β = 0
player i selects her strategy uniformly at random, for β > 0 the probability
is biased toward strategies promising higher payoffs, and for β that goes to ∞
player i chooses her best response strategy (if more than one best response is
available, she chooses one of them uniformly at random).

The above dynamics defines a Markov chain {Xt}t∈N with the set of strategy
profiles as state space, and where the probability P (x,y) of a transition from
profile x = (x1, . . . , xn) to profile y = (y1, . . . , yn) is zero if H(x,y) ≥ 2 and it
is 1

nσi(yi | x−i) if the two profiles differ exactly at player i. More formally, we
can define the logit dynamics as follows.

Definition 3 (Logit dynamics [10]). Let G be an opinion game as from the
above and let β ≥ 0. The logit dynamics for G is the Markov chain Mβ =
({Xt}t∈N, S, P ) where S = {0, 1}n and

P (x,y) =
1

n
·

⎧⎪⎨⎪⎩
σi(yi | x−i), if y−i = x−i and yi �= xi;∑n

i=1 σi(yi | x−i), if y = x;

0, otherwise;

(2)

where σi(yi | x−i) is defined in (1).
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The Markov chain defined by (2) is ergodic. Hence, from every initial profile x
the distribution P t(x, ·) of chain Xt starting at x will eventually converge to a
stationary distribution π as t tends to infinity.3 As in [12], we call the stationary
distribution π of the Markov chain defined by the logit dynamics on a game G,
the logit equilibrium of G. In general, a Markov chain with transition matrix P
and state space S is said to be reversible with respect to the distribution π if, for
all x,y ∈ S, it holds that π(x)P (x,y) = π(y)P (y,x). If the chain is reversible
with respect to π, then π is its stationary distribution. For the class of potential
games the stationary distribution is the well-known Gibbs measure.

Theorem 4 ([10]). If G = ([n],S,U) is a potential game with potential func-
tion Φ, then the Markov chain given by (2) is reversible with respect to the Gibbs
measure π(x) = 1

Z e
−βΦ(x), where Z =

∑
y∈S e

−βΦ(y) is the normalizing con-
stant.

Mixing Time of Markov Chains. The most prominent measures of the rate of
convergence of a Markov chain to its stationary distribution is the mixing time.
For a Markov chain with transition matrix P and state space S, let us set
d(t) = maxx∈S ‖P t(x, ·)− π‖TV, where the total variation distance ‖μ− ν‖TV

between two probability distributions μ and ν on the same state space S is
defined as ‖μ− ν‖TV = maxA⊂S |μ(A) − ν(A)|. For 0 < ε < 1/2, the mixing
time is defined as tmix(ε) = min{t ∈ N : d(t) ≤ ε}. It is usual to set ε = 1/4
or ε = 1/2e. If not explicitly specified, when we write tmix we mean tmix(1/4).
Observe that tmix(ε) ≤ �log2 ε−1�tmix.

Bottleneck Ratio. An important concept to establish our lower bounds is rep-
resented by the bottleneck ratio. Consider an ergodic Markov chain with finite
state space S, transition matrix P , and stationary distribution π. The probabil-
ity distribution Q(x,y) = π(x)P (x,y) is of particular interest and is sometimes
called the edge stationary distribution. Note that if the chain is reversible then
Q(x,y) = Q(y,x). For any L ⊆ S, we let Q(L, S \ L) =

∑
x∈L,y∈S\LQ(x,y).

The bottleneck ratio of L ⊆ S, L non-empty, is B(L) = Q(L,S\R)
π(L) .

The following theorem relates bottleneck ratio and mixing time.

Theorem 5 (Bottleneck ratio [13]). Let M = {Xt : t ∈ N} be an irreducible
and aperiodic Markov chain with finite state space S, transition matrix P , and
stationary distribution π. Then the mixing time is tmix ≥ maxL : π(L)≤1/2

1
4·B(L) .

4.1 Upper Bounds

For Every β. Consider the bijective function σ : V → {1, . . . , |V |}: it represents
an ordering of vertices of G. Let L be the set of all orderings of vertices of
G and set V σ

i = {v ∈ V : σ(v) < i}. Then, the cutwidth of G is CW(G) =
minσ∈L max1<i≤|V | |E(V σ

i , V \ V σ
i )| .

3 The notation P t(x, ·), standard in Markov chains literature [13], denotes the prob-
ability distribution over states of S after the chain has taken t steps starting
from x.
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Theorem 6. Let G be an n-player opinion game on a graph G = (V,E). The
mixing time of the logit dynamics for G is tmix ≤ (1 + β) · poly (n) · eβΘ(CW(G)).

The proof is a generalization of a similar proof given by Berger et al. [22] based
on spectral arguments.

For Small β. The following theorem shows that for small values of β the mixing
time is polynomial. We remark that there are network topologies for which this
theorem gives a bound higher than that guaranteed by Theorem 6 on the values
of β for which the mixing time is polynomial.

Theorem 7. Let G be an n-player opinion game on a connected graph G, with
n > 2. Let Δmax be the maximum degree in the graph. If β ≤ 1/Δmax, then the
mixing time of the logit dynamics for G is O(n log n).

Proof (Sketch). Consider two profiles x and y that differ only in the strategy
played by player j and consider the coupling described in [11] for two chains X
and Y starting respectively from X0 = x and Y0 = y. We show the expected
distance between X1 and Y1 after one step of the coupling is less then e−1/(3n).
The bound on the mixing time follows from the well-known path coupling tech-
nique [23]. ��

4.2 Lower Bounds

Recall that H is the Hamming graph on the set of profiles of an opinion games
on a graph G. The following observation easily follows from the definition of
cutwidth.

Observation 8. For every path on H between the profile 0 = (0, . . . , 0) and the
profile 1 = (1, . . . , 1) there exists a profile for which there are at least CW(G)
discording edges.

From now on, let us write CW as a shorthand for CW(G), when the reference
to the graph is clear from the context. For sake of compactness, we set b(x) =∑

i(xi − bi)
2. We denote as b� the minimum of b(x) over all profiles with CW

discording edges.
Let R0 (R1) be the set of profiles x for which a path from 0 (resp., 1) to

x exists on H such that every profile along the path has potential value less
than b�+CW. To establish the lower bound we use the technical result given by
Theorem 5 which requires to compute the bottleneck ratio of a subset of profiles
that is weighted at most a half by the stationary distribution. Accordingly, we
set R = R0 if π(R0) ≤ 1/2 and R = R1 if π(R1) ≤ 1/2. (If both sets have
stationary distribution less than one half, the best lower bound is achieved by
setting R to R0 if and only if Φ(0) ≤ Φ(1).) W.l.o.g., in the remaining of this
section we assume R = R0.
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For Large β. Let ∂R be the set of profiles in R that have at least a neighbor
y in the Hamming graph H such that y /∈ R. Moreover let E(∂R) the set of
edges (x,y) in H such that x ∈ ∂R and y /∈ R: note that |E(∂R)| ≤ n|∂R|. The
following lemma bounds the bottleneck ratio of R.

Lemma 9. For the set of profiles R defined above, we have B(R) ≤ n · |∂R| ·
e−β(CW+b�−b(0)).

Proof. Since 0 ∈ R, it holds π(R) ≥ π(0) = e−βb(0)

Z . Moreover, by (1) we have

Q(R,R) =
∑

(x,y)∈E(∂R):
y=(x−i,yi)

e−βΦ(x)

Z

eβui(y)

eβui(x) + eβui(y)

=
∑

(x,y)∈E(∂R):
y=(x−i,yi)

e−βΦ(x)

Z

e−βΦ(y)eβ(ui(x)+Φ(x))

e−βΦ(x)eβ(ui(x)+Φ(x)) + e−βΦ(y)eβ(ui(x)+Φ(x))

=
1

Z

∑
(x,y)∈E(∂R)

e−βΦ(x)e−βΦ(y)

e−βΦ(x) + e−βΦ(y)
=

1

Z

∑
(x,y)∈E(∂R)

e−βΦ(y)

1 + eβ(Φ(x)−Φ(y))

≤ 1

Z

∑
(x,y)∈E(∂R)

e−βΦ(y) ≤ |E(∂R)| · e
−β(b�+CW)

Z
.

The second equality follows from the definition of potential function which im-
plies Φ(y) − Φ(x) = −ui(y) + ui(x) for x and y as above; last inequality holds
because if by contradiction Φ(y) < b� + CW then, by definition of R, it would
be y ∈ R, a contradiction. ��

From Lemma 9 and Theorem 5 we obtain a lower bound to the mixing time of
the opinion games that holds for every value of β, every social network G and
every vector (b1, . . . , bn) of internal beliefs. However, it is not clear how close
this bound is to the one given in Theorem 6. Nevertheless, by taking bi = 1/2
for each player i and β high enough, we can state the following theorem.

Theorem 10. Let G be an n-player opinion game on a graph G. Then, there

exist a vector of internal beliefs such that for β = Ω
(

n logn
CW

)
it holds tmix ≥

eβΘ(CW).

Proof. If bi = 1/2 for every player i, from Lemma 9 and Theorem 5, since

|∂R| ≤ 2n then tmix ≥ eβCW

n2n = eβCW−n log(2n) = eβΘ(CW). ��

For Smaller β. Theorem 10 gives an almost tight lower bound for high values of
β for each network topology. It would be interesting to prove a matching bound
also for lower values of the rationality parameter: in this section we prove such
a bound for specific classes of graphs: complete bipartite graphs and cliques.

We start by considering the class of complete bipartite graphs Km,m.
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Theorem 11. Let G be an n-player opinion game on Km,m. Then, there exist a

vector of internal beliefs such that, for every β = Ω
(

1
m

)
, we have tmix ≥ eβΘ(CW)

n .

To prove the theorem above, we start by evaluating the cutwidth of Km,m: in
particular, we characterize the best ordering from which the cutwidth is obtained.
We will denote with A and B the two sides of the bipartite graph. Then it is not
hard to see that the ordering that obtains the cutwidth in Km,m is the one that
selects alternatively a vertex from A and a vertex from B. Moreover, it turns
out that the cutwidth of Km,m is �m2/2�. The following lemma gives a bound
to the size of ∂R for this graph.

Lemma 12. For the opinion game on the graph Km,m with bi = 1/2 for every

player i, there exists a constant c1 such that |∂R| ≤ ec1
√
CW.

Proof (Sketch). Since bi = 1/2 for every player i, we have that b(x) = n/4 for
every profile x. Therefore, by definition of R, all profiles in R (and therefore ∂R)
have less then CW discording edges. Indeed, for x ∈ R we have b(x) + |D(x)| =
Φ(x) < b� + CW. Moreover, if a profile y has less then CW − m discording
edges, then y is not in ∂R as a state neighbor of y has at most m− 1 additional
discording edges.

Consequently, to bound the size of ∂R, we need to count the number of profiles
in R that have potential between b�+CW−m and b�+CW−1 (i.e., the number
of profiles with at least CW − m and at most CW − 1 discording edges). By
using the facts about the cut-width of bipartite graphs stated above, we have
|∂R| ≤ (5e)m ≤ e3m. The lemma follows since m ≤

√
2
√
CW. ��

Proof (of Theorem 11). If bi = 1/2 for every player i, from Lemmata 9 and 12,

we have B(R) ≤ n · ec1
√
CW · e−βCW ≤ n · e−βCW(1−c2), where c2 = c1

√
CW

βCW < 1

since by hypothesis β > c1√
CW

= Ω(1/m); we also notice that c2 goes to 0 as β

increases. The theorem follows from Theorem 5. ��

We remark that it is possible to prove a result similar to Theorem 11 also for
the clique Kn: the proof follows from a simple generalization of Theorem 15.3
in [13] and by observing that the cutwidth of a clique is �n2/4�.

5 Conclusions and Open Problems

In this work we analyze two decentralized dynamics for binary opinion games: the
best-response dynamics and the logit dynamics. For the best-response dynamics
we show that it takes time polynomial in the number of players to reach a Nash
equilibrium, the latter being characterized by the existence of clusters in which
players have a common opinion. On the other hand, for the logit dynamics we
show polynomial convergence when the level of noise is high enough and that it
increases as β grows.

It is important to highlight, as noted above, that the convergence time of the
two dynamics are computed with respect to two different equilibrium concepts,
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namely Nash equilibrium for the best-response dynamics and logit equilibrium
for the logit dynamics. This explains why the convergence times of these two
dynamics asymptotically diverge even though the logit dynamics becomes similar
to the best response dynamics as β goes to infinity.

Theorem 6 and 10 which prove bounds to the convergence of logit dynamics
can also be read in a positive fashion. Indeed, for social networks that have a
bounded cutwidth, the convergence rate of the dynamics depends only on the
value of β. (We highlight that checking if a graph has bounded cutwidth can be
done in polynomial time [24].) In general, we have the following picture: as long
as β is less than the maximum of (roughly) logn

CW and 1
Δ the convergence time

to the logit equilibrium is polynomial. Moreover, Theorem 10 shows that for β
lower bounded by (roughly) n logn

CW the convergence time to the logit equilibrium
is super-polynomial. Then for some network topology, there is a gap in our
knowledge which is naturally interesting to close.

In [25] the concept of metastable distributions has been introduced in order to
predict the outcome of games for which the logit dynamics takes too much time
to reach the stationary distribution for some value of β. It would be interesting to
investigate existence and structure of such distributions for our opinion games.

We also note that our proofs for logit dynamics can be extended to the case
in which the social graph is weighted. In such a setting, however, we obtain
non-matching bounds: it would be interesting to develop more sophisticated
techniques in order to get tight bounds.

References

1. Bindel, D., Kleinberg, J., Oren, S.: How bad is forming your own opinion? In: 2011
IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS),
pp. 57–66 (October 2011)

2. Acemoglu, D., Ozdaglar, A.: Opinion dynamics and learning in social networks.
Dynamic Games and Applications 1, 3–49 (2011)

3. DeMarzo, P.M., Vayanos, D., Zwiebel, J.: Persuasion bias, social influence, and
unidimensional opinions. The Quarterly Journal of Economics 118(3), 909–968
(2003)
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1 Introduction

An typical instance of a non-atomic bottleneck routing game consists of a directed
network, with origin s and destination t, where each edge has a non-decreasing
function determining the edge’s latency as a function of traffic. A traffic rate is
controlled by an infinite population of players, each willing to route a negligible
amount of traffic through an s− t path. The players seek to minimize the maxi-
mum edge latency, a.k.a. the bottleneck cost of their path. Thus, the players reach
a Nash equilibrium flow, or simply a Nash flow, where they all use paths with a
common locally minimum bottleneck cost. Bottleneck routing games and their
variants have received considerable attention due to their practical applications
to communication networks (see e.g., [6,3] and the references therein).

Previous Work. Bottleneck routing games admit a Nash flow that is optimal
for the network, in the sense that it minimizes the maximum latency on any
used edge, a.k.a. the bottleneck cost of the network (see e.g., [3, Corollary 2]).
However, bottleneck routing games usually admit many other Nash flows, some
with a bottleneck cost quite far from the optimum. Hence, there has been a
considerable interest in quantifying the performance degradation, due to the
players’ selfish behavior, in (several variants of) bottleneck routing games. This
is measured by the Price of Anarchy (PoA) [13], that is the ratio of the bottleneck
cost of the worst Nash flow to the optimal bottleneck cost of the network.

Simple examples (see e.g., [7, Fig. 2]) demonstrate that the PoA of bottleneck
routing games with linear latencies can be Ω(n), where n is the number of nodes.
For atomic splittable bottleneck routing games, where the population of players
is finite, and each player has a non-negligible amount of traffic which can be
split among different paths, Banner and Orda [3] observed that the PoA can be
unbounded, even for very simple networks, if the players have different origins
and destinations and the latency functions are exponential. On the other hand,
Banner and Orda proved that if the players use paths that, as a secondary
objective, minimize the number of bottleneck edges, then all Nash flows are
optimal. For a variant of non-atomic bottleneck routing games, where the social
cost is the average (instead of the maximum) bottleneck cost of the players, Cole,
Dodis, and Roughgarden [7] proved that the PoA is 4/3, if the latency functions
are affine and a subclass of Nash flows, called subpath-optimal Nash flows, is only
considered. Subsequently, Mazalov et al. [16] studied the inefficiency of the best
Nash flow under this notion of social cost.

For atomic unsplittable bottleneck routing games, where each player routes a
unit of traffic through a single s− t path, Banner and Orda [3] proved that for
polynomial latencies of degree d, the PoA is O(md), where m is the number of
edges. On the other hand, Epstein, Feldman, and Mansour [8] proved that for
series-parallel networks, all Nash flows are optimal. Busch and Magdon-Ismail
[5] proved that the PoA of atomic unsplittable bottleneck routing games with
identity latency functions can be bounded in terms of natural topological prop-
erties of the network. In particular, they proved that the PoA of such games is
O(l+ logn), where l is the length of the longest s− t path, and O(k2 + log2 n),
where k is length of the longest circuit.
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Fig. 1. Braess’s paradox for bottleneck routing games. We consider identity latency
functions and a unit of traffic to be routed from s to t. The worst Nash flow, in (a), has
a bottleneck cost of 1. The optimal flow is the same as the flow in (b), and achieves a
bottleneck cost of 1/2. Hence, PoA = 2. In the subnetwork (b), the Nash flow is unique
and coincides with the optimal flow. Thus the PoA improves to 1. Hence the network
on the left is paradox-ridden, and the network on the right is the best subnetwork of it.

With the PoA of bottleneck routing games so large and crucially depending
on topological properties of the network, a natural approach to improving the
equilibrium performance is to exploit Braess’s paradox [4], namely that removing
some edges may change the network topology (e.g., it may decrease the length
of the longest path or cycle), and significantly improve the bottleneck cost of
the worst Nash flow (see e.g., Fig. 1). This approach gives rise to the (selfish)
network design problem, where we seek to recognize bottleneck routing games
suffering from the paradox, and to improve the bottleneck cost of the worst Nash
flow by edge removal. In particular, given a bottleneck routing game, we seek
for the best subnetwork, namely, the subnetwork for which the bottleneck cost
of the worst Nash flow is best possible. In this setting, one may distinguish two
extreme cases: paradox-free instances, where edge removal cannot improve the
bottleneck cost of the worst Nash flow, and paradox-ridden instances, where the
bottleneck cost of the worst Nash flow in the best subnetwork is equal to the
optimal bottleneck cost of the original network (see also [18,11]).

The approximability of selective network design, a generalization of network
design where we cannot remove certain edges, was considered by Hou and Zhang
[12]. For atomic unsplittable bottleneck routing games with a different traffic rate
and a different origin and destination for each player, they proved that if the
latency functions are polynomials of degree d, it is NP-hard to approximate se-
lective network design within a factor of O(md−ε), for any ε > 0. Moreover, for
atomic k-splittable bottleneck routing games with multiple origin-destination
pairs, they proved that selective network design is NP-hard to approximate
within any constant factor.

However, a careful look at the reduction of [12] reveals that their strong in-
approximability results crucially depend on both (i) that we can only remove
certain edges from the network, so that the subnetwork actually causing a large
PoA cannot be destroyed, and (ii) that the players have different origins and
destinations (and also are atomic and have different traffic rates). As for the
importance of (ii), in a different setting, where the players’ individual cost is
the sum of edge latencies on their path and the social cost is the bottleneck
cost of the network, it is known that Braess’s paradox can be dramatically more
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severe for instances with multiple origin-destination pairs than for instances with
a single origin-destination pair. More precisely, Lin et al. [14] proved that if the
players have a common origin and destination, the removal of at most k edges
from the network cannot improve the equilibrium bottleneck cost by a factor
greater than k+1. On the other hand, Lin et al. [15] presented an instance with
two origin-destination pairs where the removal of a single edge improves the
equilibrium bottleneck cost by a factor of 2Ω(n). Therefore, both at the technical
and at the conceptual level, the inapproximability results of [12] do not really
shed light on the approximability of the (simple, non-selective) network design
problem in the simplest, and most interesting, setting of non-atomic bottleneck
routing games with a common origin and destination for all players.

Contribution. In this work, we investigate the approximability of the network
design problem for the simplest, and seemingly easier to approximate, variant of
non-atomic bottleneck routing games with a single origin-destination pair. Our
main result is that network design is hard to approximate within reasonable
factors, and holds even for strictly increasing linear latencies. To the best of
our knowledge, this is the first work that investigates the approximability of the
network design problem for the basic variant of bottleneck routing games.

In Section 3, we use techniques similar to those in [8,7], and show that bot-
tleneck routing games do not suffer from Braess’s paradox either if the network
is series-parallel, or if we consider only subpath-optimal Nash flows.

On the negative side, we employ, in Section 4, a reduction from the 2-Directed
Disjoint Paths problem, and show that for linear bottleneck routing games, it is
NP-hard to recognize paradox-ridden instances (Lemma 1). In fact, the reduction
shows that it is NP-hard to distinguish between paradox-ridden instances and
paradox-free instances, even if their PoA is equal to 4/3, and thus, it is NP-hard
to approximate the network design problem within a factor less than 4/3.

In Section 5, we apply essentially the same reduction, but in a recursive way,
and obtain a much stronger inapproximability result. We assume the existence
of a γ-gap instance, which establishes that network design is inapproximable
within a factor less than γ, and show that the construction of Lemma 1, but
with some edges replaced by copies of the gap instance, amplifies the inapprox-
imability threshold by a factor of 4/3, while it increases the size of the network
by roughly a factor of 8 (Lemma 2). Therefore, starting from the 4/3-gap in-
stance of Lemma 1, and recursively applying this construction a logarithmic
number times, we show that it is NP-hard to approximate the network design
problem for linear bottleneck routing games within a factor of O(n0.121−ε), for
any constant ε > 0. An interesting technical point is that we manage to show
this inapproximability result, even though we do not know how to efficiently
compute the worst equilibrium bottleneck cost of a given subnetwork. Hence,
our reduction uses a certain subnetwork structure to identify good approxima-
tions to the best subnetwork. To the best of our knowledge, this is the first rime
that a similar recursive construction is used to amplify the inapproximability
threshold of the network design problem, and of any other optimization problem
related to selfish routing.
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In Section 6, we consider general latency functions, and present an algorithm
for finding a subnetwork that is almost optimal w.r.t. the bottleneck cost of its
worst Nash flow, when the worst Nash flow in the best subnetwork routes a
non-negligible amount of flow on all edges. The algorithm is based on Althöfer’s
Sparcification Lemma [1], and is motivated by its recent application to network
design for additive routing games [11]. For any constant ε > 0, the algorithm
computes a subnetwork and an ε/2-Nash flow whose bottleneck cost is within an
additive term of O(ε) from the worst equilibrium bottleneck cost in the best sub-

network. The running time is roughly |P|poly(logm)/ε2 , and is quasipolynomial,
when the number |P| of paths is quasipolynomial.

Next, we present our results with as much technical justification as the space
constraints permit. The interested reader may find the omitted proofs in [10].

Other Related Work. Considerable attention has been paid to the approx-
imability of network design for additive routing games, where the players seek to
minimize the sum of edge latencies on their path, and the social cost is the total
latency incurred by the players. Roughgarden [18] introduced the selfish net-
work design problem in this setting, and proved that it is NP-hard to recognize
paradox-ridden instances. He also proved that it is NP-hard to approximate the
network design problem for such games within a factor less than 4/3 for affine
latencies, and less than �n/2� for general latencies. For atomic unsplittable ad-
ditive routing games with weighted players, Azar and Epstein [2] proved that
network design is NP-hard to approximate within a factor less than 2.618, for
affine latencies, and less than dΘ(d), for polynomial latencies of degree d.

On the positive side, Milchtaich [17] proved that non-atomic additive routing
games on series-parallel networks do not suffer from Braess’s paradox. Fotakis,
Kaporis, and Spirakis [11] proved that we can efficiently recognize paradox-
ridden instances when the latency functions are affine, and all, but possibly a
constant number of them, are strictly increasing. Moreover, applying Althöfer’s
Sparsification Lemma [1], they gave an algorithm that approximates network
design for affine additive routing games within an additive term of ε, for any
constant ε > 0, in time that is subexponential if the total number of s− t paths
is polynomial and all paths are of polylogarithmic length.

2 Model, Definitions, and Preliminaries

Routing Instances. A routing instance is a tuple G = (G(V,E), (ce)e∈E , r),
where G(V,E) is a directed network with origin s and destination t, ce : [0, r] (→
IR≥0 is a continuous non-decreasing latency function associated with edge e, and
r > 0 is the traffic rate entering at s and leaving at t. We consider a non-atomic
model of selfish routing, where r is divided among an infinite population of
players, each routing a negligible amount of traffic from s to t. We let n ≡ |V | and
m ≡ |E|, and let P denote the set of simple s− t paths in G. A latency function
ce(x) is linear if ce(x) = aex, for some ae > 0, and affine if ce(x) = aex + be,
for some ae, be ≥ 0. We say that a latency function ce(x) satisfies the Lipschitz
condition with constant ξ > 0, if for all x, y ∈ [0, r], |ce(x)− ce(y)| ≤ ξ|x− y|.
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Subnetworks and Subinstances.Given an instance G = (G(V,E), (ce)e∈E , r),
any subgraph H(V,E′), E′ ⊆ E, obtained from G by edge deletions, is a subnet-
work of G. H has the same origin s and destination t as G, and its edges have
the same latency functions as in G. Each instance H = (H(V,E′), (ce)e∈E′ , r),
where H(V,E′) is a subnetwork of G(V,E), is a subinstance of G.
Flows. A (G-feasible) flow f is a non-negative vector indexed by P so that∑

p∈P fp = r. For a flow f and every edge e, we let fe =
∑

p:e∈p fp denote the
amount of flow that f routes through e. A path p (resp. edge e) is used by flow
f if fp > 0 (resp. fe > 0). Given a flow f , the latency of each edge e is ce(fe),
and the bottleneck cost of each path p is bp(f) = maxe∈p ce(fe). The bottleneck
cost of a flow f , denoted B(f), is B(f) = maxp:fp>0 bp(f). An optimal flow of
G, denoted o, minimizes the bottleneck cost among all G-feasible flows. We let
B∗(G) = B(o). We note that for every subinstance H of G, B∗(H) ≥ B∗(G).
Nash Flows and their Properties. A flow f is at Nash equilibrium, or simply,
is a Nash flow, if f routes all traffic on paths of a locally minimum bottleneck
cost. Formally, f is a Nash flow if for all p, p′ ∈ P , if fp > 0, then bp(f) ≤ bp′(f).
Therefore, in a Nash flow f , all players incur a common bottleneck cost B(f) =
minp bp(f), and for every s− t path p′, B(f) ≤ b′p(f).

We observe that if a flow f is a Nash flow for an s− t network G(V,E), then
the set of edges e with ce(fe) ≥ B(f) comprises an s − t cut in G. For the
converse, if for some flow f , there is an s− t cut consisting of edges e either with
fe > 0 and ce(fe) = B(f), or with fe = 0 and ce(fe) ≥ B(f), then f is a Nash
flow. Moreover, for all bottleneck routing games with linear latencies aex, a flow
f is a Nash flow iff the set of edges e with ce(fe) = B(f) comprises an s− t cut.

It can be shown that every bottleneck routing game admits at least one Nash
flow (see e.g., [7, Proposition 2]), and that there is an optimal flow that is also
a Nash flow (see e.g., [3, Corollary 2]). In general, a bottleneck routing game
admits many different Nash flows, each with a possibly different bottleneck cost.
Given an instance G, we let B(G) denote the bottleneck cost of the players in
the worst Nash flow of G, i.e. the Nash flow f that maximizes B(f) among all
Nash flows. We refer to B(G) as the worst equilibrium bottleneck cost of G. For
convenience, for an instance G = (G, c, r), we sometimes write B(G, r), instead
of B(G), to denote the worst equilibrium bottleneck cost of G. We note that for
every subinstance H of G, B∗(G) ≤ B(H), and that there may be subinstances
H with B(H) < B(G), which is the essence of Braess’s paradox (see e.g., Fig. 1).

Subpath-Optimal Nash Flows. For a flow f and any vertex u, let bf (u)
denote the minimum bottleneck cost of f among all s − u paths. The flow f is
a subpath-optimal Nash flow [7] if for any vertex u and any s − t path p with
fp > 0 that includes u, the bottleneck cost of the s − u part of p is bf(u). For
example, the Nash flow f in Fig. 1.a is not subpath-optimal, because bf (v) = 0,
through the edge (s, v), while the bottleneck cost of the path (s, u, v) is 1. For
this instance, the only subpath-optimal Nash flow is the optimal flow.

ε-Nash Flows. The definition of a Nash flow can be generalized to that of an
“almost Nash” flow: For some constant ε > 0, a flow f is an ε-Nash flow if for
all s− t paths p, p′, if fp > 0, bp(f) ≤ bp′(f) + ε.
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Price of Anarchy. The Price of Anarchy (PoA) of an instance G, denoted
ρ(G), is the ratio of the worst equilibrium bottleneck cost of G to the optimal
bottleneck cost. Formally, ρ(G) = B(G)/B∗(G).
Paradox-Free and Paradox-Ridden Instances. A routing instance G is
paradox-free if for every subinstance H of G, B(H) ≥ B(G). Paradox-free in-
stances do not suffer from Braess’s paradox and their PoA cannot be improved
by edge removal. An instance G is paradox-ridden if there is a subinstance H of
G such that B(H) = B∗(G) = B(G)/ρ(G). Namely, the PoA of paradox-ridden
instances can decrease to 1 by edge removal.

Best Subnetwork. Given an instance G = (G, c, r), the best subnetwork H∗ of
G minimizes the worst equilibrium bottleneck cost, i.e., for all subnetworks H
of G, B(H∗, r) ≤ B(H, r).

Problem Definitions. Next, we study the complexity and the approximability
of two basic selfish network design problems for bottleneck routing games:

– Paradox-Ridden Recognition (ParRidBC) : Given an instance G, decide
if G is paradox-ridden.

– Best Subnetwork (BSubNBC) : Given an instance G, find the best subnet-
work H∗ of G.

The objective function of BSubNBC is the worst equilibrium bottleneck cost
B(H, r) of a subnetwork H . Thus, a (polynomial-time) algorithm A achieves an
α-approximation for BSubNBC if for all instances G, A returns a subnetwork
H with B(H, r) ≤ αB(H∗, r). A subtle point is that given a subnetwork H , we
do not know how to efficiently compute the worst equilibrium bottleneck cost
B(H, r) (see also [2,12]). To deal with this delicate issue, our hardness results use
a certain subnetwork structure to identify a good approximation to BSubNBC.

3 Paradox-Free Topologies and Paradox-Free Nash Flows

We start by discussing two interesting cases where Braess’s paradox does not
occur. We first observe that for any bottleneck routing game G defined on a
series-parallel network, ρ(G) = 1, and thus Braess’s paradox does not occur. We
recall that a directed s− t network is series-parallel iff it does not contain a θ-
graph with degree-2 terminals as a topological minor. Therefore, the example in
Fig. 1 shows that series-parallel networks is the largest class of networks for which
Braess’s paradox does not occur (see also [17] for a similar result for additive
routing games). The proof is conceptually similar to that of [8, Lemma 4.1].

Proposition 1. Let G be a bottleneck routing game on an s − t series-parallel
network. Then, ρ(G) = 1.

Next, we observe that any subpath-optimal Nash flow achieves an optimal bot-
tleneck cost. Thus, Braess’s paradox does not occur if we only consider subpath-
optimal Nash flows.

Proposition 2. Let G be any bottleneck routing game, and let f be any subpath-
optimal Nash flow of G. Then, B(f) = B∗(G).
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4 Recognizing Paradox-Ridden Instances Is Hard

Next, we show that given a linear bottleneck routing game G, it is NP-hard not
only to decide whether G is paradox-ridden, but also to approximate the best
subnetwork within a factor less than 4/3. To this end, we employ a reduction
from the 2-Directed Disjoint Paths problem (2-DDP), where we are given a
directed network D and distinguished vertices s1, s2, t1, t2, and ask whether D
contains a pair of vertex-disjoint paths connecting s1 to t1 and s2 to t2. 2-DDP is
NP-complete, even if the network D is known to contain two edge-disjoint paths
connecting s1 to t2 and s2 to t1 [9, Theorem 3]. In the following, we say that a
subnetwork D′ of D is good if D′ contains (i) at least one path outgoing from
each of s1 and s2 to either t1 or t2, (ii) at least one path incoming to each of t1
and t2 from either s1 or s2, and (iii) either no s1 − t2 paths or no s2 − t1 paths.
We say that D′ is bad if any of these conditions is violated by D′. We note that
we can efficiently check whether a subnetwork D′ of D is good, and that a good
subnetwork D′ serves as a certificate that D is a yes-instance of 2-DDP. The
following lemma directly implies the hardness result of this section.

Lemma 1. Let I = (D, s1, s2, t1, t2) be any 2-DDP instance. Then, we can
construct, in polynomial time, an s − t network G(V,E) with a linear latency
function ce(x) = aex, ae > 0, on each edge e, so that for any traffic rate r > 0,
the bottleneck routing game G = (G, c, r) has B∗(G) = r/4, and:

1. If I is a yes-instance of 2-DDP, there exists a subnetwork H of G with
B(H, r) = r/4.

2. If I is a no-instance of 2-DDP, for all subnetworks H ′ of G, B(H ′, r) ≥ r/3.
3. For all subnetworks H ′ of G, either H ′ contains a good subnetwork of D, or

B(H ′, r) ≥ r/3.

Proof sketch. We construct the network G by adding 4 vertices, s, t, v, u, to
D and 9 “external” edges e1 = (s, u), e2 = (u, v), e3 = (v, t), e4 = (s, v),
e5 = (v, s1), e6 = (s, s2), e7 = (t1, u), e8 = (u, t), e9 = (t2, t) (see also Fig. 2.a).
The external edges e1 and e3 have latency ce1(x) = ce3(x) = x/2. The external
edges e4, . . . , e9 have latency cei = x. The external edge e2 and each edge e of
D have latency ce2(x) = ce(x) = εx, for some ε ∈ (0, 1/4).

We first observe that B∗(G) = r/4. As for (1), by hypothesis, there are vertex-
disjoint paths in D, p and q, connecting s1 to t1, and s2 to t2. Let H be the
subnetwork of G that includes all external edges and only the edges of p and q
from D (see also Fig. 2.b). We let H = (H, c, r) be the corresponding subinstance
of G. The flow routing r/4 units through each of the paths (e4, e5, p, e7, e8) and
(e6, q, e9), and r/2 units through (e1, e2, e3), is an H-feasible Nash flow with a
bottleneck cost of r/4.

We proceed to show that any Nash flow of H achieves a bottleneck cost of
r/4. For sake of contradiction, let f be a Nash flow of H with B(f) > r/4. Since
f is a Nash flow, the edges e with ce(fe) ≥ B(f) form an s− t cut in H . Since
the bottleneck cost of e2 and of any edge in p and q is at most r/4, this cut
includes either e6 or e9 (or both), either e1 or e3 (or both), and either e4 or e8
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Fig. 2. (a) The network G constructed in the proof of Lemma 1. (b) The best subnet-
work of G, with PoA = 1, for the case where D contains a pair of vertex-disjoint paths
connecting s1 to t1 and s2 to t2.

(or e5 or e6, in certain combinations with other edges). Let us consider the case
where this cut includes e1, e4, and e6. Since the bottleneck cost of these edges
is greater than r/4, we have more than r/2 units of flow through e1 and more
than r/4 units of flow through each of e4 and e6. Hence, we obtain that more
than r units of flow leave s, a contradiction. All other cases are similar.

To conclude the proof, we first observe that (3) implies (2), because if I is a
no-instance, any two paths, p and q, connecting s1 to t1 and s2 to t2, have some
vertex in common, and thus, D does not include any good subnetworks.

To sketch the proof of (3), we let H ′ be any subnetwork of G, and let H′ be
the corresponding subinstance of G. We can show that either H ′ contains (i) all
external edges, (ii) at least one path outgoing from each of s1 and s2 to either t1
or t2, and (iii) at least one path incoming to each of t1 and t2 from either s1 or
s2, or H

′ includes a “small” s−t cut, and any H′-feasible flow f has B(f) ≥ r/3.
Let us now consider a subnetwork H ′ of G that does not contain a good

subnetwork of D, but it satisfies (i), (ii), and (iii) above. By (ii) and (iii), and
the hypothesis that the subnetwork of D included in H ′ is bad, H ′ contains an
s1 − t2 path p and an s2 − t1 path q. At the intuitive level, this corresponds to
the case where no edges are removed from G. Then, routing r/3 units of flow
on each of the s − t paths (e1, e2, e3), (e1, e2, e5, p, e9), and (e6, q, e7, e2, e3) has
a bottleneck cost of r/3 and is a Nash flow, because the edges with bottleneck
cost r/3 comprise an s− t cut. ��
The bottleneck routing game G, in Lemma 1, has ρ(G) = 4/3, and is paradox-
ridden, if I is a yes instance of 2-DDP, and paradox-free, otherwise. Hence:

Theorem 1. Deciding whether a bottleneck routing game with strictly increasing
linear latencies is paradox-ridden is NP-hard.

Moreover, Lemma 1 implies that it is NP-hard to approximate BSubNBC within
a factor less than 4/3. A subtle point here is that given a subnetworkH , we do not
know how to efficiently compute the worst equilibrium bottleneck cost B(H, r).
However, we can use the notion of a good subnetwork of D, and deal with this
issue (see also the discussion before Theorem 2).
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5 Approximating the Best Subnetwork Is Hard

Next, we recursively apply the construction of Lemma 1, and show that it is
NP-hard to approximate BSubNBC within a factor of O(n.121−ε), for any ε > 0.

We consider an s − t network G that can be constructed in polynomial time
from a 2-DDP instance I, and includes (possibly many copies of) D. G has a
linear latency ce(x) = aex on each edge e, and for any rate r > 0, the bottleneck
routing game G = (G, c, r) has B∗(G) = r/γ1, for some γ1 > 0. Moreover,

1. If I is a yes-instance, there exists a subnetworkH of G with B(H, r) = r/γ1.
2. If I is a no-instance, for all subnetworks H ′ of G, B(H ′, r) ≥ r/γ2, for some

γ2 ∈ (0, γ1).
3. For all subnetworks H ′ of G, either H ′ contains at least one copy of a good

subnetwork of D, or B(H ′, r) ≥ r/γ2.

The existence of such a network G shows that it is NP-hard to approximate
BSubNBC within a factor less than γ = γ1/γ2. Thus, we refer to G as a γ-gap
instance. E.g., the network constructed in the proof of Lemma 1 has γ1 = 4 and
γ2 = 3, and thus it is a 4/3-gap instance. We next show that given I and a
γ1/γ2-gap instance G, we can construct a 4γ1/(3γ2)-gap instance G′.

Lemma 2. Let I = (D, s1, s2, t1, t2) be a 2-DDP instance, and let G be a γ1/γ2-
gap instance with linear latencies, based on I. Then, we can construct, in time
polynomial in the size of I and G, an s − t network G′ with a linear latency
function ce(x) = aex, ae > 0, on each edge e, so that for any traffic rate r > 0,
the bottleneck routing game G′ = (G′, c, r) has B∗(G) = r/(4γ1), and:

1. If I is a yes-instance, there is a subnetwork H of G′ with B(H, r) = r/(4γ1).
2. If I is a no-instance, for all subnetworks H ′, B(H ′, r) ≥ r/(3γ2).
3. For all subnetworks H ′ of G′, either H ′ contains at least one copy of a good

subnetwork of D, or B(H ′, r) ≥ r/(3γ2).

The proof applies the construction of Lemma 1, but with all external edges,
except for e2, replaced by a copy of the gap-instance G. Hence, the number of
vertices of G′ is at most 8 times the number of vertices of G plus the number of
vertices ofD. If we start with an instance I of 2-DDP whereD has k vertices, and
apply Lemma 1 once, and subsequently apply Lemma 2 for �log4/3 k� times, we

obtain a k-gap instance G′ where G′ has n = O(k8.23) vertices. Suppose now that
there is a polynomial-time algorithm A that approximates the best subnetwork
of G′ within a factor of O(k1−ε) = O(n0.121−ε), for a constant ε > 0. Then, if I is
a yes-instance, algorithm A, applied to G′, should return a best subnetwork H
with at least one copy of a good subnetwork of D. Since H contains a polynomial
number of copies of subnetworks of D, and we can check this in polynomial time,
and efficiently recognize I as a yes-instance of 2-DDP. On the other hand, if
I is a no-instance, D includes no good subnetworks. Again, we can efficiently
check that in the subnetwork returned by A, there are not any copies of a good
subnetwork of D, and hence recognize I as a no-instance of 2-DDP. Thus:

Theorem 2. For bottleneck routing games with linear latencies, it is NP-hard
to approximate BSubNBC within a factor of O(n0.121−ε), for any constant ε > 0.
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6 Networks with Quasipolynomially Many Paths

In this section, we approximate, in quasipolynomial-time, the best subnetwork
and its worst equilibrium bottleneck cost for instances G = (G, c, r) where the
network G has quasipolynomially many s− t paths, the latency functions satisfy
a Lipschitz condition, and the worst Nash flow in the best subnetwork routes a
non-negligible amount of flow on all edges.

The restriction to networks with quasipolynomially many s− t paths is some-
how necessary, in the sense that Theorem 2 shows that if the network has expo-
nentially many s− t paths, as it happens for the hard instances of 2-DDP, and
thus for the networks G and G′ in the proofs of Lemma 1 and Lemma 2, it is
NP-hard to approximate BSubNBC within any reasonable factor. In addition,
we assume here that there is a constant δ > 0, such that the worst Nash flow in
the best subnetwork H∗ routes more than δ units of flow on all edges of H∗.

W.l.o.g., we normalize the traffic rate r to 1. Our algorithm is based on [11,
Lemma 2], which applies Althöfer’s Lemma [1], and shows that any flow can be
approximated by a sparse flow using logarithmically many paths.

Lemma 3. Let G = (G(V,E), c, 1) be an instance, and let f be a flow. Then, for
any ε > 0, there exists a G-feasible flow f̃ using at most k(ε) = �log(2m)/(2ε2)�+
1 paths, such that for all edges e, |f̃e− fe| ≤ ε, if fe > 0, and f̃e = 0, otherwise.

By Lemma 3, there exists a sparse flow f̃ that approximates the worst Nash flow
f on the best subnetwork H∗ of G. Moreover, the proof of [11, Lemma 2] shows
that the flow f̃ is determined by a multiset P of at most k(ε) paths, selected
among the paths used by f . Then, for every path p ∈ P , f̃p = |P (p)|/|P |, where
|P (p)| is number of times the path p is included in the multiset P . Therefore,
if the total number |P| of s − t paths in G is quasipolynomial, we can find, by
exhaustive search, in quasipolynomial-time, a flow-subnetwork pair that approx-
imates the optimal solution of BSubNBC. Based on this intuition, we can obtain
an approximation algorithm for BSubNBC on networks with quasipolynomially
many paths, under the technical assumption that the worst Nash flow in the
best subnetwork routes a non-negligible amount of flow on all edges.

Theorem 3. Let G = (G(V,E), c, 1) be a bottleneck routing game with latency
functions that satisfy the Lipschitz condition with a constant ξ > 0, let H∗ be the
best subnetwork of G, and let f∗ be the worst Nash flow in H∗. If for all edges
e of H∗, f∗

e > δ, for some constant δ > 0, then for any constant ε > 0, we can

compute in time |P|O(log(2m)/min{δ2,ε2/ξ2}) a flow f and a subnetwork H such
that: (i) f is an ε/2-Nash flow in the subnetwork H, (ii) B(f) ≤ B(H∗, 1) + ε,
(iii) B(H, 1) ≤ B(f) + ε/4, and (iv) B(f) ≤ B(H, 1) + ε/2.

The algorithm of Theorem 3 computes a flow-subnetwork pair (H, f) such that
f is an ε/2-Nash flow in H , the worst equilibrium bottleneck cost of H approxi-
mates the worst equilibrium bottleneck cost of H∗, since B(H∗, 1) ≤ B(H, 1) ≤
B(H∗, 1) + 5ε/4, by (ii) and (iii), and the bottleneck cost of f approximates
the worst equilibrium bottleneck cost of H , since B(H, 1) − ε/4 ≤ B(f) ≤
B(H, 1) + ε/2, by (iii) and (iv).
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Abstract. The holy grail of online advertising is to target users with
ads matched to their needs with such precision that the users respond
to the ads, thereby increasing both advertisers’ and users’ value. The
current approach to this challenge utilizes information about the users:
their gender, their location, the websites they have visited before, and so
on. Incorporating this data in ad auctions poses an economic challenge:
can this be done in a way that the auctioneer’s revenue does not decrease
(at least on average)? This is the problem we study in this paper. Our
main result is that in Myerson’s optimal mechanism, for a general model
of data in auctions, additional data leads to additional expected revenue.
In the context of ad auctions we show that for the simple and common
mechanisms, namely second price auction with reserve prices, there are
instances in which additional data decreases the expected revenue, but
this decrease is by at most a small constant factor under a standard
regularity assumption.

1 Introduction

When an item with latent characteristics is sold, information revealed by the
seller plays a significant role in the value ascribed to the item by potential buy-
ers. For example, when booking a hotel room on a website such as Priceline.com,
every extra piece of information—including the hotel’s star level or its location—
affects the price a buyer is willing to pay. In a similar manner, in online advertis-
ing scenarios, any information revealed about the ad opportunity—including the
description of the webpage’s content or the type of user—plays a crucial role in
determining the ad’s value, in particular because this information is extremely
useful in predicting the click and conversion rate of the user.

In online display advertising settings, the publisher auctions off opportunities
to show an advertisement to its users in real time, often through online ad
marketplaces operated by companies such as Yahoo!, Google or Microsoft. For
example, every time a user visits The New York Times website, the opportunity
to show an advertisement to the user is auctioned off. Both the publisher (in
this case The New York Times) and the market operator have a great deal

� Work done while the authors were at Yahoo! Reseaerch

M. Serna (Ed.): SAGT 2012, LNCS 7615, pp. 168–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Ad Auctions with Data 169

of information about the ad opportunity, including page specific features such
as layout and content, as well as user specific features such as the user’s age,
gender, location, etc. How much of this information should be revealed during
the auction in order to maximize revenue? This is the question we study in this
work.

While concealing information can only decrease social efficiency, it may be
advantageous in terms of revenue, since releasing information may decrease com-
petition. As an example, suppose an advertiser values males at $2 and females
at $8. In an incentive compatible auction, the advertiser bids his value when the
user’s gender is known, but will bid the expected value of $5 when the gender is
not revealed (assuming each gender is equally likely). If there is a second adver-
tiser who values males at $8 and females at $2, then revealing gender segments
the buyers. As a result, when gender is revealed the auctioneer will face a bid
of $8 and $2, and thus collect only $2 in a second price auction; if the gender is
kept hidden, the auctioneer will have two bids of $5 and will collect $5.1

The example above may seem to suggest that it is never in the auctioneer’s
interest to release information about the item. Indeed, Board [5] has shown that
revealing information can only decrease the expected revenue from a second
price auction with two bidders. However, the auctioneer has additional tools to
increase revenue at her disposal, namely she can set a reserve price for each
bidder. The right reserve price may counter the potential loss in competition,
allowing the auctioneer to preserve its revenue. In the example above, a reserve
price of $8 for both advertisers would lead to a revenue of $8 precisely in the
case where gender is revealed. On the other hand, it is not obvious that using
reserve prices or even applying the optimal mechanism is sufficient to recover
the lost revenue from revealing data; see Example 1 in Section 4.2 for a simple
case in which this does not hold.

Our Contribution. In this work we study a general model of single-parameter
auctions with data. We show that while revealing information can lead to a
decrease in the expected revenue of second price auctions, using the revenue-
optimal mechanism counteracts this trend. Our main result is that if Myerson
[17]’s optimal auction mechanism is used, the expected revenue is guaranteed to
(weakly) increase when more information is revealed. This result also applies to
slot auctions and other settings.

We explore the assumptions of this result and show that they are necessary
for revenue monotonicity to hold. In particular, if instead of Myerson’s optimal
mechanism, a simpler reserve price based mechanism is used, revealing infor-
mation can lead to a decrease in expected revenue. However, we prove that
in simple and practical second price auctions with reserve prices, fully reveal-
ing the auctioneer’s information generates approximately the optimal revenue
even compared with arbitrary intricate revealing schemes the auctioneer may
adopt.

1 Perturbing this example slightly shows withholding information can decrease social
welfare.
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1.1 Related Work

The following scenario has been extensively studied in auction theory: The auc-
tioneer has access to a private source of data about the item; she wishes to
maximize her expected revenue by pre-committing to a policy of revealing or
concealing data. Two effects of revealing data have been identified: the linkage
principle by Milgrom and Weber [15], and more recently the allocation effect by
Board [5]. The linkage principle says that when bidders’ valuations are positively
correlated in a specific way to the auctioneer’s data, the auctioneer can increase
her revenue in first or second price auctions by revealing the data. However, in
ad auctions, revealing information can increase the value to some advertisers
and decrease it for the rest, and so the linkage principle does not apply. The
allocation effect studies the effect of information revelation on revenue in second
price auctions as the number of bidders changes.

A recent line of research [9, 16] considers the computational problem of finding
the optimal information revelation scheme in second price auctions. In contrast,
we study optimal auctions and their implications for auctions such as second
price auctions with reserve prices, and never second price auctions per se. The
valuation model of ours is also different. It is neither deterministic nor arbitrarily
correlated, as studied by Emek et al. [9].

We briefly mention related work further afield. Levin and Milgrom [13] high-
light disadvantages of information revelation from a market design point of
view—too much information leads to thin markets that are hard to operate.
Several proposed mechanisms address these issues [4, 7]. Dwork et al. [8] dis-
cuss fairness concerns arising from revealing user data. A separate body of work
considers cases in which bidders, not the auctioneer, have private sources of
information about the item, resulting in asymmetries among them; a recent ex-
ample is Abraham et al. [1]. Ghosh et al. [10] study information revelation in ad
auctions through the process of cookie-matching, and its impact on the revenue
of the auction.

2 Preliminaries

We briefly describe Myerson [17]’s optimal truthful mechanism, under the in-
terpretation of Bulow and Roberts [6]. Given a valuation distribution F , each
probability quantile q corresponds to a value v = F−1(1 − q). Each value, in
turn, corresponds to an expected revenue v(1 − F (v)) generated by setting a
posted price of v. A revenue curve depicts such revenue R(q) = qF−1(1 − q) as
a function of the quantile q, and the ironed revenue curve R̃(q) is the concave
hull of this curve. The ironed virtual valuation of v under the distribution F is
then ϕ̃(v) = dR̃(q)

dq |q=1−F (v).

Theorem 1 (Myerson 17). In a revenue optimal truthful auction in which bid-
ders’ valuations are independently drawn from known distributions D1, · · · , Dn,
the item is allocated to the bidder with the highest non-negative ironed virtual
valuation, and the expected revenue is equal to E[max{0, ϕ̃1(v1), . . . , ϕ̃n(vn)}].
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3 Model

We describe a general model to which our main result applies, and show that ad
auctions are captured in a natural way as an instantiation of this model.

General model. n bidders compete in an auction, in which the subsets of bidders
who can win simultaneously are specified by I ⊆ 2[n], the feasible sets. Every
bidder i ∈ [n] has a private, single-dimensional signal si ∈ R+, drawn indepen-
dently from a publicly known distribution Fi with density fi. In addition, the
auctioneer also has a private signal u ∈ U , drawn from a publicly known discrete
distribution FU with density fU independently of the bidder signals. We also call
u an item type. Denote |U | by m. Bidder i’s value for winning the auction is
a publicly known function vi of his own signal si and the auctioneer’s signal u:
vi,u = vi(si, u). For every u we assume that vi(·, u) is non-negative and strictly
increasing in its argument si. Note that, under these constraints, u can affect
vi,u in a fairly general manner.

Signaling schemes. We adopt the framework for signaling schemes developed by
Emek et al. [9] and Miltersen and Sheffet [16] which has its origins in Milgrom
and Weber [15, see Theorem 9]. A signaling scheme is a set of m distributions
over a signal set Σ of size k. On seeing type u, the auctioneer sends a signal
σ ∈ Σ with probability ψu,σ, and then bidders bid their expected value inferred
from the posterior distribution on u given σ. It is important that the auctioneer
commits to a signaling scheme before the auction starts. In the case of fully
withdrawing the information, Σ has one element, which we call ū, and bidder i’s
posterior valuation in this case is denoted vi,ū = Eu∼FU [vi,u]. In discussing this
scenario, we often equivalently talk about a fictitious item type ū, for which each
bidder i’s valuation is vi,ū.

Ad Auctions: An Instantiation. Ad auctions can be viewed as a special case
of the above general model. In this case one opportunity of displaying an ad
is auctioned to n bidders, and therefore the feasible sets I consist of single
winning bidders. In this scenario, the item type u may refelect the auctioneer’s
information on the user to whom the ad is to be shown. (For this reason we also
call u the user type.) A widely used model for ad auction is that a bidder i has
a private value si for a user to click his ad, and for each user type u there is
a particular probability pi,u with which the user does click. pi,u is the so-called
click-through rate. Now a bidder’s valuation is simply vi,u = vi(si, u) = pi,usi.

4 Full Revelation in Myerson’s Optimal Mechanism

In this section we present and prove our main result, which states that in My-
erson’s optimal mechanism, the expected revenue is monotone non-decreasing
in revealed information, and so full revelation of the auctioneer’s information
maximizes the expected revenue.

Other results on information revelation in the private-value setting focus on
the second price or English auctions [5, 14]. We first show, in the concrete context
of ad auctions, why applying Myerson’s mechanism gives different results. We
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then briefly discuss how to extend our results for ad auctions to slot auctions.
In Section 4.2 we give a simple and general proof of the main result for the
single-parameter model introduced in Section 3.

4.1 Second Price Auction vs. Myerson’s Mechanism in Ad Auctions

Consider the two extreme signaling schemes of full revelation and no revelation.
We show why in contrast to the result of Board [5] for the English auction,
in Myerson’s mechanism the former scheme is always preferable to the latter in
terms of expected revenue (where expectations are taken over the random private
signals and, where appropriate, over the random user type). The optimality of
full revelation and monotonicity of expected revenue in information follow as
corollaries.

Proposition 1. In the ad auctions model, the expected revenue from Myerson’s
mechanism when the user’s type u is revealed is at least as high as the expected
revenue when u is not revealed.

For completeness we include Board’s result for 2 bidders (note that since n = 2,
the second price and English auctions are the same).

Proposition 2 (Board [5]). In a generalization of the ad auctions model with
n = 2 bidders, the expected revenue from the second price or English auction
when the user’s type u is not revealed is at least as high as the expected revenue
when u is revealed.

(a) Second price auction [5] (b) Myerson’s mechanism

Fig. 1. The Effect of Information Revelation

Figure 1, adapted from Board [5], provides intuition for the difference between
the above propositions (see also Palfrey [18], McAfee [14]). In the second price
auction, for every signal profile of the bidders, the revenue is the minimum of
their values and so a concave function. Therefore, while revealing information
produces the average of pointwise minimums, no revelation does at least as
well by producing the minimum of averages. By contrast, recall that applying
Myerson’s mechanism in our setting means that given user type u ∈ U ∪ {ū},
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the auctioneer transforms the advertisers’ values {vi,u} into the corresponding
ironed virtual values {ϕ̃i,u}, and then allocates the impression to the advertiser
with highest non-negative ironed virtual value. The expected revenue is equal
to the expected ironed virtual surplus, and for every signal profile the ironed
virtual surplus is convex, so the effect of data revelation is reversed.

To formalize this intuition we need to show that the same relation that holds
for values before the transformation to ironed virtual values, when a bidder’s
value under no revelation is equal to his expected value under full revelation,
continues to hold after the transformation as well. This is established in Obser-
vations 1 and 2. The proof of Proposition 1 then applies convexity and Jensen’s
inequality to get the result.

Observation 1. Let advertiser i’s value be vi,u = pi,usi, where u ∈ U ∪ {ū}
is the user type and si ∼ Fi. Then vi,u is distributed according to Fi,u(x) =
Fi(x/pi,u), and the corresponding ironed virtual value function is ϕ̃i,u(x) =
pi,uϕ̃i(x/pi,u).

Proof. The derivation of Fi,u is straightforward. The expression for the ironed
virtual value follows by looking at the revenue curves Ri and Ri,u corresponding
to distributions Fi and Fi,u respectively:

Ri,u(1− Fi,u(x)) = x(1 − Fi,u(x))

= pi,u ·
x

pi,u
(1− Fi(x/pi,u))

= pi,uRi(1 − Fi(x/pi,u)).

The ironed revenue curves are concave hulls of the revenue curves, and therefore
preserve the same relationship R̃i,u(1 − Fi,u(x)) = pi,uR̃i(1 − Fi(x/pi,u)). The
ironed virtual valuations, which are their derivatives, also satisfy the same linear
relationship. �
We can now compare the ironed virtual values with and without information
revelation ϕ̃i,u and ϕ̃i,ū. We show the latter equals the former in expectation.

Observation 2. ϕ̃i,ū(vi,ū) = Eu∼FU [ϕ̃i,u(vi,u)].

Proof. We have

ϕ̃i,ū(pi,ūsi) = pi,ūϕ̃i(si) = Eu∼FU [pi,u] ϕ̃i(si)

= Eu∼FU [pi,uϕ̃i(si)] = Eu∼FU [ϕ̃i,u(pi,usi)] ,

where the first and last equalities are by Observation 1, the second is by definition
of pi,ū, and the third is by linearity of expectation. �
Proof of Proposition 1. The expected revenue of Myerson’s mechanism is equal to
its expected ironed virtual surplus [17] [see also 11, Theorem 13.10]. We use this
result by Myerson to prove the proposition as follows. We show that pointwise
for every fixed profile of values per click (s1, . . . , sn), the ironed virtual surplus
of Myerson’s mechanism when u is revealed is at least as high as when u is not
revealed, in expectation over u. Taking expectation over profiles (s1, . . . , sn) and
applying Myerson’s result completes the proof.
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Fix (s1, . . . , sn) and let u ∈ U be the user’s type. The ironed virtual surplus of
Myerson’smechanismwhenu is revealed ismax{0, ϕ̃1,u(p1,us1), . . . , ϕ̃n,u(pn,usn)}.
We will omit the term 0 from this point on, since we can always add a dummy bid-
der whose valuation (and virtual valuation) is constantly 0. Taking expectation
over u gives

Eu∼FU [max{ϕ̃1,u(p1,us1), . . . , ϕ̃n,u(pn,usn)}] . (1)

If u is not revealed, the ironed virtual surplus of Myerson’s mechanism is

max{ϕ̃1,ū(p1,ūs1), . . . , ϕ̃n,ū(pn,ūsn)}.

By Observation 2, this is equal to

max {Eu∼FU [ϕ̃i,u(pi,usi)]}ni=1. (2)

Since max is a convex function, by Jensen’s inequality (1) ≥ (2). We conclude
that in expectation over u, revealing the user’s type u does not reduce the ironed
virtual surplus. �
So far we have considered only two possible signaling schemes for the auction-
eer: either to fully reveal the user’s type or to conceal it. A direct corollary
of Proposition 1 is that the full revelation strategy yields the highest expected
revenue among all possible signaling schemes.

Corollary 1. In the ad auctions model, the expected revenue from Myerson’s
mechanism when the user type is revealed is optimal among all signaling schemes.

Proof. Consider a signaling scheme {ψu,σ}u∈U,σ∈Σ. Condition on the revealed
signal σ. Recall that together with the scheme {ψu,σ} and the distribution FU ,
it induces an ex post distribution FU|σ on the user types. We can now apply
Proposition 1 to the setting in which u ∼ FU|σ , and conclude that the expected
revenue from full revelation of u is at least as high as the expected revenue from
revealing σ. Taking expectation over σ ∈ Σ completes the proof. �
Furthermore, Proposition 1 implies monotonicity of optimal expected revenue in
information release—adding any signaling scheme to Myerson’s mechanism can
only improve expected revenue.

Corollary 2. In the ad auctions model, the expected revenue from Myerson’s
mechanism with a signaling scheme is at least the expected revenue from Myer-
son’s mechanism with no signaling.

Proof. Let fU be the density of the user types in the original setting, and let
{ψu,σ}u∈U,σ∈Σ be the signaling scheme. Now consider the following alternative
setting: A user type σ is sampled from Σ with probability

∑
u∈U fU (u)ψu,σ,

and the bidders’ values are {vi,σ}. Observe that the expected revenue from My-
erson’s mechanism with signaling scheme {ψu,σ} in the original setting equals
the expected revenue from Myerson’s mechanism with full revelation in the new
setting. Similarly, the expected revenue from Myerson with no signaling is the
same in both settings. Applying Proposition 1 to the new setting we get that
the expected revenue from full revelation of σ is at least as high as the expected
revenue from no revelation, completing the proof. �
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Generalization to Slot Auctions. A particular case of practical interest is slot
auctions, in which the auctioneer has k slots {1, · · · , k} to sell to the advertisers,
and an advertiser’s value for winning depends on the particular slot he gets. We
extend our result for ad auctions to show that full information revelation is the
optimal signaling scheme for optimal slot auctions. The main thing to show is
that the ironed virtual surplus remains convex.

Formally, the slots have intrinsic click through rates α1 ≥ α2 ≥ · · · ≥ αk.
An advertiser’s valuation for a user of type u at slot j is αjpi,usi. By the same
argument as in Observation 1, his ironed virtual valuation is αjpi,uϕ̃i(si). The
optimal auction ranks the k bidders with highest non-negative ironed virtual
valuations and maps them to the k slots accordingly (if there are fewer than k
bidders with non-negative ironed virtual valuations then the remaining slots are
not sold). The auctioneer’s expected revenue is then the expected sum of the
k highest ironed virtual valuations. Just as the proof of Proposition 1 and its
corollaries relies on the fact that taking maximum is a convex function, a similar
full revelation statement for slot auctions follows from the next observation,
whose proof is a consequence of the rearrangement inequality and appears in
the appendix.

Observation 3. The function Mk(v1, . . . , vn) =
∑k

j=1 αj max-j{v1, . . . , vn} is
a convex function in (v1, . . . , vn), where max-j{v1, . . . , vn} is the j-th largest
element from the set {v1, . . . , vn}.

For space consideration we omit the proof of this, which is a simple application
of the rearrangement inequality.

By the same argument as before using Jensen’s inequality, we obtain

Corollary 3. In slot auctions, the expected revenue from Myerson’s mechanism
when the user type is revealed is optimal among all signaling schemes.

4.2 General Model

We extend the optimal revelation results in Section 4 to the general single-
parameter model introduced in Section 3. The proof there uses the specific form
of ironed virtual values found in this model (also used in Section 5.1). The spe-
cific ironed virtual values form is not necessary for the result to hold, and here
we prove a general full revelation result for Myerson’s mechanism based only on
its optimality and monotonicity, and not on the details of its allocation rule.

Proposition 3. In the general single-parameter model with values vi,u =
vi(si, u), where vi is non-negative, strictly increasing in si and continuously dif-
ferentiable for every i, the expected revenue from Myerson’s mechanism when the
auctioneer’s information u is revealed is optimal among all signaling schemes.

Proof. Similarly to ad auctions, it is sufficient to compare full revelation to no
revelation. Assume full revelation, and fix the revealed signal of the auctioneer
to be u ∈ U . We define the following auxiliary mechanism M . Mechanism M
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receives reported values {vi,u} from the bidders. By the assumption that vi,u =
vi(si, u) is strictly increasing in bidder i’s signal si, for every i and u there is a
one-to-one relation between bidder i’s signals and values. Therefore mechanism
M may recover the bidders’ signals from their reported values. It then finds
{vi,ū}, the set of values that would have been reported by the bidders if no
data had been revealed. Finally, M runs Myerson’s mechanism on these values,
assuming they’re drawn from distributions {Fi,ū}.

We first claim that the auxiliary mechanism M is truthful, i.e., that its allo-
cation rule is monotone in the reported values {vi,u}. Fix i and s−i. We want to
show that increasing vi,u can only cause M to allocate to bidder i more often.
By truthfulness of Myerson’s mechanism, we know that M is monotone in vi,ū.
Again by the assumption that vi,u is strictly increasing in si for every u, the
expectation vi,ū is also strictly increasing in si. So M is monotone in si, and
thus also in vi,u, as required.

Consider the expected revenue of the auxiliary mechanism M . On one hand,
in expectation over u ∼ FU and the signal profile s, its revenue equals that of
Myerson’s mechanism with no data revelation. On the other hand, for every fixed
u ∈ U , Myerson’s mechanism with full revelation does at least as well as M in
terms of expected revenue over the signal profile, simply because it is optimal.
We conclude that the expected revenue of Myerson with full revelation is at least
as high as with no revelation, completing the proof. �
The following example shows that optimality of full revelation does not hold
without the assumption that a bidder’s value is strictly increasing in his signal.

Example 1. Assume u is distributed uniformly over {0, 1}, and there’s a single
bidder whose private signal s is distributed uniformly over a discrete support
{1, 2, 3}. When u = 0, the bidder’s value is just his signal, i.e., v(s, 0) = s. When
u = 1, the values are v(s, 1) = 4 − s. Then with full revelation, the maximum
expected revenue is 4

3 by setting a reserve price of 2. When no information is
revealed, the bidder’s value is vū = 2 and so the expected revenue is 2.

5 Full Revelation in Simple Auctions with Reserve Prices

In this section we show several results relating to simple, commonly-used ad
auctions, namely second price auctions with anonymous reserves, and second
price auctions with monopoly reserves. In the former, a single reserve price is
applied to all advertisers, and only those who bid above the reserve compete in
a second price auction. In the latter, a distinct monopoly reserve price is ap-
plied to each advertiser, and advertisers who bid above their respective reserves
enter the second price auction. The monopoly reserve price for a bidder with
regular distribution is the optimal price for the auctioneer to set in an auction
where only this bidder participates. Equivalently, it is equal to the value v whose
corresponding virtual value ϕ(v) is 0.

First, in Section 5.1, we complement our results for optimal ad auctions by
showing that in second price auctions with reserves, fully revealing information
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is approximately optimal among all signaling schemes, provided that advertis-
ers’ distributions are regular. This is encouraging in light of previous results on
signaling in second price auctions without reserves: Emek et al. [9] showed that
finding the optimal signaling scheme is NP-hard, and no approximation algo-
rithm is known yet. We note that in practice, second price auctions with reserve
are more common than those without reserve.

In Sections 5.2 and 5.3, we demonstrate that full revelation in simple auctions
can be sub-optimal. In fact, revealing no information at all can sometimes leave
the auctioneer better off, even for distributions such as the uniform distribution,
although by no more than a small constant factor, as we show in Section 5.1.

5.1 Approximation Guarantee in Simple Ad Auctions

We recall the following result of Hartline and Roughgarden [12] on the perfor-
mance of second price auctions with reserves.

Theorem 2. For every single-item setting with values drawn independently from
regular distributions,

1. the expected revenue of the second price auction with the optimal anonymous
reserve price is a 4-approximation to the optimal expected revenue; and

2. the expected revenue of the second price auction with monopoly reserves is a
2-approximation to the optimal expected revenue.

Corollary 4. In ad auctions, when bidders’ valuations per click si are indepen-
dently drawn from regular distributions, fully revealing the type in a second price
auction with anonymous reserve (monopoly reserves, resp.) is a 4-approximation
(2-approximation, resp.) to the expected revenue of the optimal signaling scheme.

Proof. Consider an optimal signaling scheme in a second price auction with
reserves. Under the same signaling scheme, running Myerson’s optimal auction
would extract at least the same expected revenue. By Corollary 1, fully revealing
the user type is optimal among all signaling schemes in Myerson’s auction. Then
for every user type u, we apply Observation 1 and the regularity of the si’s
to establish regularity of the vi,u’s, and so a second price auction with reserves
extracts a 4 (or 2)-approximation by Theorem 2. We conclude that fully revealing
the information u in a second price auction with reserves extracts a 4 (or 2)-
approximation to the revenue obtained by Myerson’s optimal auction with full
information revelation. The corollary follows from this chain of bounds. �

5.2 Revenue Loss with Anonymous Reserve

This section gives an example in which announcing the item type decreases the
revenue of the second price ad auction with the optimal anonymous reserve price.

The example has n = 2 bidders and m = 2 item types, with FU being uniform
between the two types. Bidder 1’s valuation for a “high” type is uniformly drawn
from [0, 2], and for a “low” type is 0. Bidder 2 is not sensitive to the types and her
valuation is drawn uniformly from [0, 1] regardless of the type. When the type
is not announced, the optimal auction is a second price auction with reserve
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price 1/2, and the optimal revenue is 5/12. When the type is revealed to be low,
the optimal auction is a second price auction with a reserve price 1/2, and the
revenue is 1/4. When the type is revealed to be high, if we set a reserve price of
x ∈ [0, 1], the revenue is

x
[
x(1 − x

2
) +

x

2
(1− x)

]
+

∫ 1

x

y(1− y

2
) +

y

2
(1− y) dy =

3

4
x2 − 2

3
x3 +

5

12
.

This is maximized at x = 3/4, yielding a revenue of 9
64 + 5

12 . Setting a reserve
price in [1, 2] does no give a revenue better than 0.5. Therefore, for a high type,
the revenue of an optimal second price auction with anonymous reserve is 9

64
more than 5

12 , whereas for a low type the revenue is 1
6 less. On average, if we

reveal the type, the expected revenue is strictly less than 5
12 .

5.3 Revenue Loss with Monopoly Reserves

This section presents an example in which announcing the item type decreases
the revenue of the second price ad auction with monopoly reserve prices.

As in the previous section, we assume 2 bidders and 2 types, with FU being
uniform. Bidder 1’s valuation is uniformly drawn from [0, 8] for a “high” type,
and uniformly from [0, 4] for a “low” type, whereas bidder 2 is not sensitive to the
item type and her valuation is uniformly drawn from [0, 6] regardless of the type.
When the type is not revealed, the optimal auction is a second price auction with
reserve price 3, and the expected revenue is 2.5. When the type is revealed to be
high, the monopoly reserves are 4 and 3, respectively. The expected revenue is:

4 · Pr(v1 ∈ [4, 8], v2 ∈ [0, 3]) + 3 · Pr(v1 ∈ [0, 4], v2 ∈ [3, 6]) +

4 · Pr(v1 ∈ [4, 8], v2 ∈ [3, 4]) +
14

3
· Pr(v1, v2 ∈ [4, 6]) +

5 · Pr(v1 ∈ [6, 8], v2 ∈ [4, 6]) = 2.889.

When the type is revealed to be low, the monopoly reserves are 2 and 3,
respectively. The expected revenue is:

2 · Pr(v1 ∈ [2, 4], v2 ∈ [0, 3]) + 3 · Pr(v1 ∈ [0, 2], v2 ∈ [3, 6]) +

3 · Pr(v1 ∈ [2, 3], v2 ∈ [3, 6]) +
7

2
· Pr(v1 ∈ [3, 4], v2 ∈ [4, 6]) +

10

3
· Pr(v1, v2 ∈ [3, 4]) = 2.0556.

Thus, the expected revenue when the type is revealed is 2.4722 < 2.5.

6 Conclusion and Open Questions

Incorporating data into ad auctions raises many questions of practical impor-
tance to which our work may be applicable. We mention two open questions:
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(1) In simple second price ad auctions, an intermediate revelation scheme may
generate more revenue than both full revelation and no revelation. Can the auc-
tioneer find such a scheme in a computationally efficient way? This question
was studied by Emek et al. [9] in settings either more general or more restricted
than ours, and remains open for the ad auctions model. (2) Can the auctioneer
increase her revenue by asymmetric revelation of information to the bidders,
perhaps charging them appropriate prices for the information? The answer will
involve overcoming several challenges, some of which are studied in [1, 2, 3].
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Abstract. We study set-system auctions whereby a single buyer wants
to purchase Q items of some commodity. There are multiple sellers, each
of whom has some known number of items, and a private cost for sup-
plying those items. Thus a “feasible set” of sellers (a set that is able to
comprise the winning bidders) is any set of sellers whose total quantity
sums to at least Q. We show that, even in a limited special case, VCG
has a frugality ratio of at least n−1 (with respect to the NTUmin bench-
mark) and that this matches the upper bound for any set-system auction.
We show a lower bound on the frugality of any truthful mechanism of√
Q in this setting and give a truthful mechanism with a frugality ratio

of 2
√
Q. However, we show that similar types of ‘scaling’ mechanism, in

the general (integer) case, give a frugality ratio of at least 4Qe−2

ln2 Q
.

1 Introduction

In this paper we examine a simple and natural type of procurement auction,
whereby some central authority wishes to purchase some items from amongst
a set E of possible sellers, or agents, by requesting quotes for their costs of
supplying the items, then selecting and paying the winners so as to incentivise
true bidding. We examine some alternative mechanisms, which consist of a set
of rules that determine how the auction is run. We assume each seller e ∈ E
provides a (sealed) bid be to the auction mechanism. The auctioneer then utilises
a mechanism, M, to choose a set S of winning agents (a selection rule) and a
price pe to pay each agent (a payment rule).

We focus on so-called truthful mechanisms. In such a mechanism each agent
may maximise its profit simply by making a bid equal to the value that they
have (privately) determined as their true cost — the cost the agent incurs as
a result of participating in the winning set — for agent e we denote this cost
by ce. At first glance, this may appear to be somewhat restrictive, but truthful
mechanisms turn out to be widespread. The first study of a truthful mechanism
was by Vickrey in 1961 [11] showing how a sealed-bid second-price auction is
truthful (an item is sold to the highest bidder, at a price equal to the second-
highest bid). Furthermore, due to the revelation principle (see, e.g., [5,9]), it is
possible to take any mechanism that has a dominant strategy and convert it into
a truthful mechanism.
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However, a truthful mechanism may not be optimal in terms of revenue. For
example, if there are two sellers with very different prices, we must end up pay-
ing the larger of the prices. While accepting that some measure of overpayment
is necessary, it seems reasonable to try and keep this as low as possible, particu-
larly if we are looking for any real-world motivation. This overpayment is often
described (see, e.g., [1,10,7]) in terms of a frugality ratio. The frugality ratio is
defined as the worst-case ratio between the payments made by a given truthful
mechanism and a benchmark figure for the same instance. It has been called “the
price of truthfulness” [4]. When frugality was first studied [1,10], it was in the
context of path auctions, and benchmark figures were described as properties of
the paths. More recently, Karlin, Kempe and Tamir [7] described a benchmark
figure that can be used to express a benchmark figure for any monopoly-free
set-system auction (where the solutions deemed to be acceptable are described
as sets of the agents). They also proposed a scaling mechanism for path auctions,
and describe its frugality ratio. They give a lower-bound on the frugality ratio
for any truthful mechanism, and show that their mechanism is within a constant
factor of this lower bound. This constant factor was later improved by Yan [12]
and Chen et al. [2].

Since then, Elkind, Goldberg and Goldberg [4] considered alternatives to the
benchmark that was proposed in [7] (in [4] they are denoted TUmin, TUmax,
NTUmin, NTUmax). Formal definitions of these are given in Definition 1. They
also described a polynomial-time mechanism, based on an approximation algo-
rithm, which gives a frugality ratio which is close to that of the well-known
Vickrey-Clarke-Groves (VCG) [11,3,6] mechanism (the VCG mechanism must
solve the vertex cover problem exactly, which is known to be NP-complete and
hence cannot be solved in polynomial time unless P=NP). We give, in Sec-
tion 2.1, a more general framework for determining the frugality ratios of sim-
ilarly well-behaved approximation algorithms. (An approximation algorithm is
well-behaved if it is monotonic in the bid values, i.e. an agent cannot go from
being a loser to a winner by increasing its bid.) Most recently, two groups of
researchers [8,2] independently proposed a more general framework of ‘scaling’
mechanisms that produce improved frugality ratios for a number of set-system
auctions, including vertex-covers, flows and cuts. In common with the scaling
mechanisms of Karlin et al. [7] they take advantage of the idea that the size of
the winning set has a large influence on the overpayment made by a mechanism,
and that improvements can be made when the mechanism biases the choice of
winning set towards smaller winning sets (by scaling the bids). The frugality
results that we present in Section 3 are slightly different, in that the feasible sets
may be of similar sizes, yet the frugality ratio can still vary by a large degree.

Preliminaries

Denote a set system as a pair (E ,F), where E is the ground set of n elements
and F ⊆ 2E is a collection of feasible sets.

Each element e ∈ E has cost ce; denote the cost vector c = (c1, . . . , cn).
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Definition 1. Let (E ,F) be a set system, let c be a cost vector, and let S be the
lowest-cost feasible set (with ties broken lexicographically)S ∈ argminT∈F

∑
e∈T ce.

Let NTUmin(c) be the solution to the problem: Minimize B =
∑

e∈S be subject to
the following conditions.

(1) be ≥ ce for all e ∈ S
(2)

∑
e∈S\T be ≤

∑
e∈T\S ce for all T ∈ F

(3) for every e ∈ S, there is Te ∈ F such that e /∈ Te
and

∑
e′∈S\Te

be′ =
∑

e′∈Te\S ce′

As noted, a mechanism M takes a cost vector c, selects a winning feasible set
S, and pays S, incurring a price pM(c). The frugality ratio for mechanismM is

φNTUmin(M) = sup
c
(pM(c)/NTUmin(c)).

We will also consider one of the alternative benchmarks of Elkind et al. [4]. Let
NTUmax(c) be the solution to the problem: Maximize B =

∑
e∈S be subject to

conditions (1), (2), and (3). Let φNTUmax(M) = supc(pM(c)/NTUmax(c)).
To simplify notation, define the aggregates for a set V ⊆ E ; let bV =

∑
e∈V be,

c
V
=
∑

e∈V ce, and pV
=
∑

e∈V pe.

2 Preliminary Results

Let d(V ) be the best feasible set (with the lowest sum of costs) using only
agents in V where V ⊆ E . We will now see a lower bound for NTUmin(c) which,
informally, states that NTUmin must be at least as large as the worst-case cost
of replacing one of the agents to make a feasible set without it. (The proof is
omitted due to space constraints.)

Lemma 1. NTUmin ≥ maxe cd(E\{e}).

This lower bound for NTUmin(c) is a useful tool in analysing frugality ratios,
and we will now see how it can be used to prove an upper bound on the frugality
of mechanisms based on approximation algorithms.

2.1 Frugality of Approximation Mechanisms

Let P be some approximation algorithm, and let SP be the feasible set returned
by P (which uses the bids as an input parameter). We will assume that P is
monotonic in the bids (that is, given fixed bids of the other agents, no agent can
be chosen in the winning set when some smaller bid may result in that agent not
being chosen). So if we use this algorithm as a selection rule, and use threshold
payments as a payment rule, then it is well-known (e.g. [9]) that we have a
resulting truthful mechanism MP . (A threshold payment is the supremum of
the amounts that the agent can bid and still be selected in the winning set,
given the fixed bids of the other agents.) Let k be the approximation ratio of
the algorithm; i.e. some k, such that for all instances of the problem bSP ≤ k · bS
holds. (Note that, as the mechanism is truthful, we can assume that be = ce).
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Lemma 2. Let k be the approximation ratio of the algorithm P. Then ∀e ∈
SP , pe ≤ k ·NTUmin(c).

Proof. We have defined d(E\{e}) to be a (lowest cost) feasible set, not containing
e. Assume, for contradiction, that e were to make a threshold bid, be > k ·
NTUmin(c), and the winning set SP (chosen by P) includes e. From Lemma 1
we can observe that bd(E\{e}) ≤ NTUmin(c). As we have assumed that be ≥
k · NTUmin(c), and as e ∈ SP we have bSP > k · NTUmin(c) (this holds for all
choices of SP when e ∈ SP). Hence, by transitivity, we have bSP > k · bd(E\{e}).
As d(E \ {e}) is a feasible set, the approximation ratio of P is at least

bSP
bd(E\{e})

.

Hence when bSP > k · bd(E\{e}) we have
bSP

bd(E\{e})
> k, showing that P does

not have an approximation ratio of k, giving a contradiction. Therefore for the
threshold bid the inequality be ≤ k · NTUmin(c) holds, and hence the payment
pe ≤ k · NTUmin(c). ��

Theorem 1. Let P be a monotonic approximation algorithm with an approxi-
mation ratio of k. Then the resulting mechanism MP (with selection rule P and
threshold payments) has φNTUmin(c)(MP) ≤ k(n− 1).

Proof. In a monopoly-free setting we have a winning set SP such that |S| ≤
n − 1. from Lemma 2, we have upper bounds on the payment for each e ∈ S,
pe ≤ k ·NTUmin(c). Summing over e ∈ S gives p(SP) ≤ (n− 1)k ·NTUmin(c).

��

While the approximation result is not strictly relevant to the rest of this paper,
it does imply, when k = 1, that φNTUmin(V CG) ≤ n − 1. (This is more precise
than the observation made by Karlin et al. [7] that the frugality ratio of VCG is
O(n).) We will also see, in Section 3.1, that even our most restricted commodity
auction has a frugality ratio that is exactly as high as this upper bound.

3 The Single-Commodity Auction

We consider a single-commodity auction where we have some number of identical
items for sale, and a quantity Q, the number of these items the auctioneer
requires. Each agent e ∈ E can provide a fixed, indivisible, quantity of these
items, denoted by qe. The private cost value of e is denoted by ce, while the
bid made to the mechanism is denoted by be. Again, since we focus on truthful
mechanisms, we can assume be = ce.

One could regard this more abstractly as modelling a setting where each seller
has some level of capacity to assist with a task, and the buyer wants the task
done, and the total capacity to be at least some amount. However, for our results
to apply we would need these capacities to be small integers.

The feasible sets F , are defined based on these quantity parameters as follows:

F = {T ∈ 2E :

(∑
e∈T

qe

)
≥ Q}. (4)
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Initially in Section 3.1 we focus on the special case where each agent e only
has at most 2 items for sale. We call this the {1,2} single-commodity auction.
In Section 3.3 we move to the more general integer single-commodity auctions,
where a seller’s capacity may be any positive integer, not just 1 or 2.

3.1 The {1, 2} Single-Commodity Auction

The {1, 2} Single-Commodity Auction is a single-commodity auction with the
additional restriction, that ∀e ∈ E , qe ∈ {1, 2}. While we could simply use VCG
to run this auction (recall that VCG chooses the lowest-cost solution and pays
each winning agent a threshold value), Table 1 shows that VCG performs poorly
in terms of frugality (in fact, matching the upper bound given in Section 2.1). It
is also interesting to note that this frugality ratio is as large as Q, the number
of items to purchase. We can argue that measuring the frugality ratio in terms
of Q seems to make sense for these types of commodity auctions, as it is more
naturally a parameter of the auction than the number of agents is. Hence, we
will generally consider the frugality ratio in terms of Q, although the results in
terms of n are generally similar.

Table 1. In this example we see that VCG has poor frugality; we have a commodity
auction for quantity Q items and observe that the number of agents n = Q + 1. For
each agent e ∈ E the quantity qe and cost ce are given in the table. A value bmin

e for
a NTUmin bid vector is also given, as is the payment made by the VCG mechanism
pVCG
e .

Agent qe ce bmin
e pVCG

e

S

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 1 0 1 1
2 1 0 0 1
...

...
...

...
...

n− 1 1 0 0 1
n 2 1

Total 1 n− 1

In an attempt to improve frugality, we will now look at a class of (truthful)
mechanisms that choose a winning set a little more intelligently.

3.2 The Mα Mechanism

Here we analyse a class of mechanisms, Mα , each of which is uniquely defined
by its ‘scaling’ value α ∈ R; a definition for this mechanism follows. Mα will
calculate ‘virtual’ bids ve for each agent e by using a scaling factor as follows:

ve =

{
αbe, if qe = 1

be, otherwise.
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For ease of notation, let the aggregate be vV =
∑

e∈V ve. Let S
α ∈ argminT∈F vT

be the winning set (the lexicographically first of the feasible sets that have the
lowest sum of virtual bids). The payment rule is threshold payments. It is easy
to observe that this selection rule is monotonic in the bids, and recall that these
are sufficient conditions for a mechanism to be truthful.

Frugality Ratio for Mα . Recall that S is the lowest-cost feasible set, and
partition S into two sets, S1 having agents with quantity 1, and S2 for those
agents having quantity 2.

As choosing both S and Sα requires that ties are broken lexicographically,
there is no agent in Sα \ S that has the same quantity as an agent in S \ Sα

(if it is chosen in Sα then it would have been chosen in S). For any α > 1,
then where S contains some agent e having qe = 2, then Sα must also contain
agent e. (If there existed i, j /∈ S such that vi + vj ≤ ve, then ci + cj ≤ ce/α
contradicting e being chosen in S in preference to {i, j}). Therefore, where S
and Sα are different, Sα \ S contains only agents with quantity 2 and S \ Sα

contains only agents with quantity 1.
We now partition the winning set Sα into three sets, Sα ∩ S1, S

α ∩ S2, and
Sα \ S then consider the payments to members of each set separately.

Lemma 3. For every instance of Mα when α =
√
Q then pSα∩S1 ≤

√
Q ·

NTUmin.

Proof. We will examine this as two cases. Case 1. Suppose that for every e ∈
Sα∩S1 there exists a Te set satisfying (3) when (Te\S)∩E1 is not empty. Let j be
some agent in Te\S with qj = 1. Assume, for contradiction, that pe > cj . Hence,
agent e’s threshold bid be = pe > cj. As j would bid cj in a truthful mechanism,
butMα chose e then cj ≥ pe giving a contradiction. W.l.o.g., we can assume that
Te = S \{e}∪{j}. Observe that T ′

e \{j}∪{e} is also a feasible set, hence it must
satisfy condition (2), giving bmin

S\(T ′
e∪{e}) ≤ cT ′

e\(S∪{j}, and hence bmin
e ≥ cj or T ′

e

does not satisfy condition (3), showing that Te = S \{e}∪{j} satisfies condition
(3). Using bmin

e = cj we have pSα∩S1 ≤ bmin
Sα∩S1

and hence pSα∩S1 ≤ NTUmin.
Case 2. Suppose that for some e ∈ Sα ∩ S1 there is some Te set satisfying

(3) when (Te \ S) ∩ E1 is empty. There is some j ∈ (Te \ S) ∩ E2 such that
bmin
S\Te

= cTe\S . W.l.o.g. assume that qS\Te
≤ 2. For each e ∈ Sα ∩ S1 agent e’s

threshold bid must be be ≤ cj/α. Hence pe = be ≤ cj/α. As α =
√
Q and Q is

trivially an upper bound on the size of S1, pSα∩S1 ≤
√
Q · cj , with bmin

Sα∩S1
≥ cj

(from S \ Te ⊆ Sα ∩ S1), this gives pSα∩S1 ≤
√
Q · bmin

Sα∩S1
≤
√
Q·NTUmin.

Similar proofs for the other two sets are omitted due to space constraints.

Lemma 4. For every instance ofMα when α =
√
Q then pSα∩S2 ≤

√
Q·bmin

Sα∩S2
.

Lemma 5. For every instance ofMα having α =
√
Q then pSα\S ≤

√
Q ·bmin

S\Sα.

Theorem 2. For {1, 2} Single-Commodity Auctions with quantity Q, the Mα

scaling mechanism when α =
√
Q, gives φNTUmin(αM) ≤ 2

√
Q.
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Proof. From Lemmas 3,4, and 5, the inequalities pSα∩S2 ≤
√
Q ·bmin

Sα∩S2
, pSα\S ≤√

Q · cS\Sα , and pSα∩S1 ≤
√
Q · NTUmin. hold. As S \ Sα and Sα ∩ S2 are

disjoint sets within S, then bmin
Sα∩S2

+ cS\Sα ≤ bmin
S ≤ NTUmin. Therefore, we

have pSα∩S2 +pSα\S ≤
√
Q ·NTUmin, and add to give pS ≤ 2

√
Q ·NTUmin and

hence φNTUmin(Mα) ≤ 2
√
Q. ��

A Lower Bound on Frugality. Here, we see that any truthful mechanism
must pay at least

√
Q·NTUmin, showing that theMα mechanism with α =

√
Q

is within at most a factor of two of optimal.

Theorem 3. There exists a {1, 2} single-commodity auction for Q items such
that any truthful mechanism M, must pay at least

√
Q·NTUmin.

Proof. For any quantity Q, let I be an instance of a set-system auction having
E = {1, . . . , Q + 1} and q = {1, . . . , 1, 2}. Suppose that M is some truthful
mechanism. Consider each e ∈ {1, . . . , Q} and suppose an instance such that
be = 1, bQ+1 =

√
Q and all other agents bid 0. We are interested in two cases,

either every e ∈ {1, . . . , Q} would be chosen in the winning set by M, or else
there is some such e for which Q+ 1 would be chosen instead.

Case 1. Suppose that every e ∈ {1, . . . , Q} is chosen in preference to Q + 1.
Let b = (0, . . . , 0,

√
Q) be a bid vector. Observe that S = {1, . . . , Q} and that

bmin = (
√
Q, 0, . . . , 0) denotes a bid vector satisfying conditions (1),(2) and (3),

hence NTUmin ≤
√
Q. As every agent in S, would have been chosen byM with

a bid of 1 then SM = S and each threshold bid must be at least 1, hence pE ≥ Q
and pE/NTUmin ≥

√
Q.

Case 2. Suppose (w.l.o.g) that agent Q+1 is chosen in preference to agent 1.
Let b = (1, 0, . . . , 0, 1) be a bid vector. Observe that S = {1, . . . , Q} (with the
tie broken lexicographically) and that bmin = (1, 0, . . . , 0) denotes a bid vector
satisfying conditions (1),(2) and (3), hence NTUmin ≤ 1. As mechanismM will
choose agent Q + 1 with bid

√
Q in preference to 1, being truthful implies that

M will still choose Q + 1 with a lower bid of 1, hence Q + 1 ∈ SM. As agent
Q + 1 would still have been chosen had it bid

√
Q, its threshold bid is at least√

Q, and hence pQ+1 ≥
√
Q. This gives pE ≥

√
Q and hence pE/NTUmin ≥

√
Q.

For every truthful mechanism M, either Case 1 or Case 2 applies, hence the
frugality ratio φNTUmin(M) ≥

√
Q. ��

3.3 Integer Single-Commodity Auctions

We consider improvements to frugality bounds in the more general setting, where
the restriction on the quantity of each agent to 1 or 2 is relaxed. We have a lower
bound on frugality of

√
Q from the {1, 2} single commodity auction, but we may

believe that there is a stronger lower bound in the integer case. While we do not
have a result for all truthful mechanisms, we obtain an asymptotically stronger
lower bound on frugality that applies to a natural class of scaling mechanisms,

of at least 4Qe−2

ln2 Q
, for all mechanisms in this class.
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Preliminaries. Let k be a ‘maximum quantity’ parameter such that ∀e ∈
E , qe ≤ k holds and assume that k ≤

√
Q. Let β be a scaling function, returning

a linear scaling vector, a = β(Q, k) (with ae ∈ R). Let Mβ be the mechanism
that uses the scaling vector a = (a1, . . . , ak) returned by β, as follows. Compute
a ‘virtual’ bid ve for each agent e as ve = beaqe . Let S ∈ argminT∈F vT be the
winning set. Each agent e will be paid its threshold value, pe. If we consider every
scaling function β, and the resulting class of mechanisms, then we can think of
Mβ as the class of all ‘blind-scaling’ mechanisms; where the mechanism must
choose a scaling factor for each possible quantity, based only on the quantity
required Q and the maximum quantity parameter k.

A Lower Bound for Blind-Scaling Mechanisms. The proof will examine a
series of example instances given, and show that at least one of them must cause
a payment ratio that satisfies the lower bound. We can generalise the example
given in Table 1, and will show this in Table 2. For each j ∈ {1, . . . , k − 1} let
Table 2 describe instance Ij . Observe the assumption that j < k ≤

√
Q implies

that m ≥ j which is required by the structure of the example (m is defined in
the example as m = �Qj �).

We can see that there are j agents in S that can have a (NTUmin) bid value
bmin
e = 1. We can show that there can be no more than j agents that can each
bid 1 as follows; j + 1 agents, each with quantity j, could be ‘replaced’ by the
j agents outside S, each with quantity j + 1, so no set of j + 1 agents in S can
bid a sum of more than j.

More formally, ∀e ∈ S, let Te = S \ {1, . . . , j, e} ∪ {(m+ 1), . . . , (m+ j + 1)}.
Observe that

(∑j
i=1 qi

)
+qe = j(j+1) and

(∑j+1
i=1 qm+i

)
= j(j+1) hence qS =

Table 2. Instance Ij : In this example we have a {j, j + 1} commodity auction for
quantity Q items. Let m = �Q

j
� and observe that the winning set is given by S =

{1, . . . ,m}. For each agent e ∈ E the quantity qe and cost ce are given in the table. A
value bmin

e for a NTUmin bid vector is also given, giving NTUmin≤ j. The payment
made by the Mβ mechanism is also given in Table 2 as pe.

Agent qe ce bmin
e pe

S

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 j 0 1 aj+1/aj

...
...

...
...

j j 0 1 aj+1/aj

j + 1 j 0 0 aj+1/aj

...
...

...
...

m j 0 0 aj+1/aj

m+ 1 j + 1 1
...

...
...

m+ j + 1 j + 1 1

Total j maj+1/aj
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qT and Te is a feasible set. Using this Te in condition (3) for all e ∈ {j+1, . . . ,m}
gives

(∑j
i=1 b

min
i

)
+ bmin

e =
∑j+1

i=1 c
j
m+1. As

∑j
i=1 b

min
i = j and

∑j+1
i=1 cm+i = j

then we have bmin
e = 0, which shows that for all e ∈ {j + 1, . . . ,m} then vector

bmin has some Te satisfying condition (3) of Definition 1. For all e ∈ {1, . . . , j},
let Te = S \ {e} ∪ {m+ 1} which gives bmin

e = 1, showing that the bid vector
bmin has, for all e ∈ S, some Te satisfying condition (3) and as we can observe
bmin satisfies conditions (1) and (2) then this shows NTUmin ≤ bmin

S and hence
NTUmin ≤ j.

We can also generalise the payment to each e ∈ S. For each agent e ∈ S, if
ve > vm+1 then agent e would not be chosen, as the winning set could become
S \ {e} ∪ {m + 1}. Where ve = vm+1, then agent e may still be chosen, hence
when agent e can submit a threshold bid be such that ve = vm+1 and this gives
the threshold payment.

If we assume for all e ∈ S, that be =
aj+1

aj
then as ve = beaj we have ve =

aj+1

aj
aj = aj+1 = vm+1. This shows that be =

aj+1

aj
is a threshold bid for all

e ∈ S, hence the payment is given by pe =
aj+1

aj
.

Let c be a cost vector for instance Ij and let pE be the sum of payments.

We examine the payment ratio pE
NTUmin as follows. There are at least Q

j agents

in S, each is paid
aj+1

aj
, and NTUmin ≤ j; hence the payment ratio satisfies

the inequality pE
NTUmin ≥

Qaj+1

j2aj
. We can then use this as we move onto the first

part of the proof. We will use the ‘maximum quantity’ parameter, k, and will
examine a series of instances where all agents have quantity at most k. We give

a certain ratio, Q
k−1
k

k2 , and we will show (from these instances) that a minimum
separation is needed between any consecutive scaling values (aj , aj+1) (where
j < k) in order to satisfy this ratio. We will then show how having this minimum
separation between consecutive scaling values implies a large separation between
the first and k-th value, and give a further instance where a large separation will

result in a frugality ratio larger than Q
k−1
k

k2 .
Finally we will show how to compute a value for k that gives a lower-bound

for any given Q.

Proposition 1. For instance Ij of Mβ with j ≤ k − 1 and
aj

aj+1
≤ Q

1
k the

inequality pE
NTUmin ≥

Q
k−1
k

k2 holds.

Proof. As j ≤ k implies 1
j2 ≥

1
k2 , then

Qaj+1

j2aj
≥ Qaj+1

k2aj
. It follows, due to transi-

tivity with pE
NTUmin ≥

Qaj+1

j2aj
that pE

NTUmin ≥
Qaj+1

k2aj
. Also

aj

aj+1
≤ Q

1
k can be be

expressed as
aj+1

aj
≥ Q

−1
k therefore, by transitivity pE

NTUmin ≥
Q
k2

aj+1

aj
≥ QQ

−1
k

k2 .

This can be simplified to state pE
NTUmin ≥

Q
k−1
k

k2 , completing the proof. ��

This minimum separation required between every aj and aj+1 implies that there
is large separation between a1 and ak. We will see, in Table 3, that such a large
separation then results in a similarly large frugality ratio.
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Table 3. Instance Ik: In this example we have a commodity auction for quantity Q
items with the parameter k. Let m = �Q

k
� and observe that the winning set is given

by S = {1, . . . ,m}. For each agent e ∈ E the quantity qe and cost ce are given in the
table. A value bmin

e for a NTUmin bid vector is also given, showing NTUmin ≤ mk.
The payment made by the Mβ mechanism is also given in the table as pe.

Agent qe ce bmin
e pe

S

⎧⎪⎪⎨
⎪⎪⎩

1 k 0 k ka1/ak

...
...

...
...

m k 0 k ka1/ak

m+ 1 1 1
...

...
...

m+ k 1 1

Total mk mka1/ak

Proposition 2. For instance Ik of Mβ the inequality pE
NTUmin ≥

a1

ak
holds.

Proof. For each e ∈ S, there is exactly one feasible set not containing e —
that is E \ {e}. Therefore the only bid vector that could satisfy NTUmin must
satisfy condition (3) of Definition 1 with Te = E \ {e}. Therefore the NTUmin
bid for each e ∈ S must be given by bmin

e = cTe\S = c{m+1,...,m+k+1} = k . As
there are m agents in S, each having a bid bmin

e = k, we have NTUmin ≤ mk.
Similarly, the threshold bid for e must be where ve = v{m+1,...,m+k}. Assuming

be = ka1

ak
multiplying by the scaling factor ak gives ve = ka1

ak
ak = ka1. The

virtual bids of the competing agents i ∈ {m + 1, . . . ,m + k + 1} are vi = a1,
hence v{m+1,...,m+k} = ka1 showing that be =

ka1

ak
is a threshold bid, and hence

the payment pe =
ka1

ak
.

Therefore, in Instance Ik, there are m agents in S; each is paid ka1

ak
giving a

total payment of mka1

ak
. As we have seen NTUmin ≤ mk hence pE

NTUmin ≥
a1

ak
. ��

We now see there is always some instance which implies a lower bound on the
payment ratio, for any possible scaling vector of the mechanism.

Proposition 3. For any scaling vector a given by Mβ there is either some In-
stance Ij for j ∈ {1, . . . , k−1} or Instance Ik such that the inequality pE

NTUmin ≥
Q

k−1
k

k2 holds.

Proof. If there existed some j ∈ {1, . . . , k − 1} such that
aj

aj+1
≤ Q

1
k then

Proposition 1 implies that pE
NTUmin ≥

Q
k−1
k

k2 . So, suppose that the expression

∀j ∈ {1, . . . , k − 1}, aj

aj+1
> Q

1
k holds. We can see this implies that the con-

secutive scaling values must have a certain separation. By way of example, this
gives a1

a2
> Q

1
k , a2

a3
> Q

1
k etc. By transitivity we would have a1

a3
> Q

2
k ,a1

a4
> Q

3
k

etc. This can then be generalised, for j ∈ {1, . . . , k − 1} to give a1

aj+1
> Q

j
k .
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For j = k − 1, then we have a1

ak
> Q

k−1
k . Referring back to Proposition 2,

Instance Ik gives pE
NTUmin ≥

a1

ak
and, by transitivity, pE

NTUmin > Q
k−1
k .

Hence there is some instance, either Ij for j ∈ {1, . . . , k−1} or Ik that satisfies
the proposition. ��

Now that we have seen that there is always some instance that gives at least
this payment ratio in terms of k, we can use this to prove a lemma that shows a
lower bound on the frugality ratio for all Integer Single-Commodity Auctions.

Lemma 6. For all Integer Single-Commodity Auctions with quantity Q and
maximum quantity parameter k ≤

√
Q, for every blind-scaling scaling mecha-

nisms Mβ the inequality φNTUmin(Mβ) ≥ Q
k−1
k

k2 holds.

Proof. The blind-scaling mechanismMβ must, by definition, calculate its scaling
vector a for use on any instance that it may be given with these parameters.
Once this scaling vector is fixed the mechanism may possibly be given either
Instance Ik or Instance Ij for any j ∈ {1, . . . , k − 1}. Proposition 3 shows that

at least one of these instances gives pE
NTUmin ≥

Q
k−1
k

k2 . The existence of such an

instance proves φNTUmin(Mβ) ≥ Q
k−1
k

k2 . ��

Now that we have shown a lower bound on frugality for values of Q in terms
of the parameter k, we can specify a value of k such as to give a lower bound
entirely in terms of Q. To that end, suppose k = lnQ

2 , and we will see this implies

a lower bound of 4Qe−2

ln2 Q
for Mβ mechanisms.

Theorem 4. Given any Integer Single-Commodity Auction having quantity Q,

for every blind-scaling mechanism Mβ the inequality φNTUmin(Mβ) ≥ 4Qe−2

ln2 Q

holds.

Proof. Considering the proof of Lemma 6, suppose k = lnQ/2. The expression

given in Lemma 6 implies Q
k−1
k

k2 = 4Qe−2

ln2 Q
, and hence, φNTUmin(Mβ) ≥ 4Qe−2

ln2 Q
.
��

4 Conclusion

While single-commodity auctions are quite simple, they show surprisingly high
frugality ratios. Particularly in the {1, 2} case, a lower bound on the frugality
ratio for every truthful mechanism of

√
Q seems unreasonably high. This result

could also seem to call into question the suitability of NTUmin as a reasonable
benchmark. Our scaling mechanism is shown to be within a factor of 2 of optimal;
it may be that this factor of 2 could be reduced with a stronger analysis.

While we have shown a fairly large lower bound on the frugality of ‘blind-
scaling’ mechanisms in the more general case of integer single-commodity auc-
tions, it is not known if some other form of mechanism would result in better
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frugality. Also, we have not presented any mechanism that would give a frugality
ratio of better than Q in this case, although it seems that some form of scaling
mechanisms should, at least, give some slightly better result. Choosing to mea-
sure frugality in terms of Q or n makes little difference in the {1, 2} case, but the
difference is more pronounced in the integer case, and showing good frugality
results in terms of n may be an interesting goal.

We have only considered frugality in this setting with respect to NTUmin.
More recently (see, e.g., [2,8]) we have seen frugality ratios analysed with re-
spect to NTUmax. It is likely that we will get more satisfactory frugality ratios
with respect to NTUmax, particularly in the {1, 2} case. Although, in the inte-
ger case, we may still get reasonably large frugality ratios. Take, for example,
Theorem 3 and amend the quantity vector to be q = (1, . . . , 1, Q). This would
give NTUmax = 1 (as Te = {Q + 1} is the only alternative feasible set, and so
must satisfy condition (3)). The rest of the proof could then be applied, with
the obvious minor changes, to show that φNTUmax(M) ≥

√
Q.
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Abstract. We study the problem of computing approximate Nash equi-
libria, in a setting where players initially know their own payoffs but not
the payoffs of other players. In order for a solution of reasonable quality
to be found, some amount of communication needs to take place between
the players. We are interested in algorithms where the communication is
substantially less than the contents of a payoff matrix, for example log-
arithmic in the size of the matrix. At one extreme is the case where the
players do not communicate at all; for this case (with 2 players having
n × n matrices) ε-Nash equilibria can be computed for ε = 3/4, while
there is a lower bound of slightly more than 1/2 on the lowest ε achiev-
able. When the communication is polylogarithmic in n, we show how to
obtain ε = 0.438. For one-way communication we show that ε = 1/2 is
the exact answer.

1 Introduction

Algorithmic game theory is concerned not just with properties of a solution
concept, but also how that solution can be obtained. It is considered desirable
that the outcome of a game should be “easy to compute”, and in that respect
the PPAD-completeness results of [6,2] are interpreted as a “complexity-theoretic
critique” of Nash equilibrium. Following those results, a line of work addressed
the problem of computing ε-Nash equilibrium, where ε > 0 is a parameter that
bounds a player’s incentive to deviate, in a solution. Thus, ε-Nash equilibrium
imposes a weaker constraint on how players are assumed to behave, and an exact
Nash equilibrium is obtained for ε = 0.

Besides the existence of a fast algorithm, it is also desirable that a solution
should be obtained by a process that is simple and decentralised, since that is
likely to be a better model for how players in a game may eventually reach a
solution. In that respect, most of the known efficient algorithms for computing ε-
Nash equilibria are not entirely satisfying. They take as input the payoff matrices
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and output the approximate Nash equilibrium. If we try to translate such an
algorithm into real life, it would correspond to a process where the players pass
their payoffs to a central authority, which returns to them some mixed strategies
that have the “low incentive to deviate” guarantee. In this paper we try to
model a setting where players perform individual computations and exchange
some limited information.

There are various ways in which one can try to model the notion of a decen-
tralised algorithm; here we consider a general approach that has previously been
studied in [4,9] in the context of computing exact Nash equilibria. The players
begin with knowledge of their own payoffs but not the payoffs of the other play-
ers. An algorithm involves communication in addition to computation; to reach
an approximate equilibrium, a player usually has to know something about the
other players’ matrices, but hopefully not all of that information. We study the
computation of ε-Nash equilibria in this setting, and the general topic is the
trade-off between the amount of communication that takes place, and the value
of ε that can be obtained.

1.1 Definitions

We consider 2-player games, with a row player and a column player, who both
have n pure strategies. The game (R,C) is defined by two n×n payoff matrices,
R for the row player, and C for the column player. The pure strategies for the
row player are his rows and the pure strategies of the column player are her
columns. If the row player plays row i and the column player plays column j,
the payoff for the row player is Rij , and Cij for the column player. For the
row player a mixed strategy is a probability distribution x over the rows, and
a mixed strategy for the column player is a probability distribution y over the
columns, where x and y are column vectors and (x,y) is a mixed strategy profile.
The payoffs resulting from these mixed strategies x and y are xTRy for the row
player and xTCy for the column player.

A Nash equilibrium is a pair of mixed strategies (x∗,y∗) where neither player
can get a higher payoff by playing another strategy assuming the other player
does not change his strategy. Because of the linearity of a mixed strategy, the
largest gain can be achieved by defecting to a pure strategy. Let ei be the vector
with a 1 at the ith position and a 0 at every other position. Thus a Nash
equilibrium (x∗,y∗) satisfies

∀i = 1 · · ·n eTi Ry
∗ ≤ (x∗)TRy∗ and (x∗)TCei ≤ (x∗)TCy∗

We assume that the payoffs of R and C are between 0 and 1, which can be
achieved by rescaling. An ε-approximate Nash equilibrium (or, ε-Nash equilib-
rium) is a strategy pair (x∗,y∗) such that each player can gain at most ε by
unilaterally deviating to a different strategy. Thus, it is (x∗,y∗) satisfying

∀i = 1 · · ·n eTi Ry
∗ ≤ (x∗)TRy∗ + ε and (x∗)TCei ≤ (x∗)TCy∗ + ε

We say that the regret of a player is the difference between his payoff and the
payoff of his best response.
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The support of a mixed strategy x, denoted by Supp(x), is the set of pure
strategies that are played with non-zero probability by x.

The communication model: Each player p ∈ {r, c} has an algorithm Ap whose
initial input data is p’s n×n payoff matrix. Communication proceeds in a number
of rounds, where in each round, each player may send a single bit of information
to the other player. During each round, each player may also carry out a polyno-
mial (in n) amount of computation. (One could alternatively omit the restriction
to polynomial computation. Our lower bounds on communication requirement
do not depend on computational limits.) At the end, each player p outputs a
mixed strategy xp. We aim to design (pairs of) algorithms (Ar,Ac) that output
ε-Nash strategy profiles (xr ,xc), and are economical with the number of rounds
of communication.

Notice that given Θ(n2) rounds of communication, we can apply any cen-
tralised algorithm A by getting (say) the row player to pass additive approxi-
mations of all his payoffs to the column player, who applies A and passes to the
row player the mixed strategy obtained by A for the row player. (The quality of
the ε-Nash equilibrium is proportional to the quality of of the additive approxi-
mations used.) For this reason we focus on algorithms with many fewer rounds,
and we obtain results for logarithmic or polylogarithmic (in n) rounds.

We also consider a restriction to one-way communication, where one player
may send but not receive information.

1.2 Related Work

Algorithms for Approximate Equilibria. In recent years a number of al-
gorithms have been developed that compute (in polynomial time) ε-Nash equi-
libria for various values of ε. This is not a complete overview of all existing
algorithms. The algorithm with the best approximation that is known, gives a
0.3393-approximate Nash equilibrium [17]. However, here we mainly use ideas
from certain earlier algorithms.

DMP-algorithm: The DMP-algorithm [7] works as follows to achieve a 0.5-
approximate Nash equilibrium. The algorithm picks a arbitrary row for the row
player, say row i. Let j ∈ argmaxj′ Cij′ . Let k ∈ argmaxk′ Rk′j . So j is a pure-
strategy best response for the column player to row i and k is a best response
strategy for the row player to column j. The strategy pair (x∗,y∗) will now be
x∗ = 1

2ei +
1
2ek and y∗ = ej. With this strategy pair the row player plays a

best response with probability 1
2 to a pure strategy of the column player and the

column player has a pure strategy that is with probability 1
2 a best response.

The DMP-algorithm is well-adapted to the limited-communication setting.
Suppose the row player uses i = 1 as his initial choice of row. The column player
needs to tell the row player his value of j, a communication of O(log n) bits. No
further communication is needed. Notice moreover that the communication is
all one-way; the row player does not need to tell the column player anything.
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Subsequent algorithms for computing ε-Nash equilibria cannot so easily be
adapted to a limited-communication setting, but we can use some of the ideas
they develop, to obtain values of ε below 1

2 in this setting.

An algorithm of Bosse et al. [1]: The algorithm presented in [1] can be seen
as a modification of the DMP-algorithm and achieves a 0.38197-approximate
Nash equilibrium. Instead of a player playing a pure strategy with some positive
probability, the algorithm starts with the row player allocating some probability
to the row-player strategy x belonging to the Nash equilibrium of the zero-sum
game (R − C,C − R). In solving the zero-sum game efficiently we apply the
connection of zero-sum games with linear programming [15,5,11]. If the (mixed)
strategy profile (x,y) that is a Nash equilibrium of (R−C,C−R) gives a 0.38197-
approximate Nash equilibrium for (R,C), this solution is used. Otherwise, the
column player plays a best response ej to x and the row player plays a mixture
of x and ei, where ei is a best response to the strategy ej of the column player.
([1] goes on to improve the worst-case performance to a 0.36395-approximate
Nash equilibrium.)

Notice that this algorithm cannot be adapted in a straightforward way to our
communication-bounded setup, since it requires a computation using knowledge
of both matrices.

Communication Complexity. The “classical” setting of communication com-
plexity is based on the model introduced by Yao in [18]. We will follow the repre-
sentation in [12]. We have two agents1, one holding an input x ∈ {0, 1}n and the
other holding an input y ∈ {0, 1}n. The objective is to compute f(x,y) ∈ {0, 1},
a joint function of their inputs. The computation of f(x,y) is done via a com-
munication protocol P . During the execution of the protocol, the agents send
messages to each other. While the protocol has not terminated, the protocol
specifies what message the sender should send next, based on the input of the
protocol and the communication so far. If the protocol terminates, it will output
the value f(x,y). A communication protocol P computes f if for every input
pair (x,y) ∈ {0, 1}n × {0, 1}n, it terminates with the value f(x,y) as output.

The communication complexity of a communication protocol P for computing
f(x,y) is the number of bits sent during the execution of P , which we denote by
CC(P , f,x,y). The communication complexity of a protocol P for a function f
is defined as the worst case communication complexity over all possible inputs
for (x,y) ∈ {0, 1}n × {0, 1}n, which we denote by CC(P , f):

CC(P , f) = max
(x,y)∈{0,1}n×{0,1}n

CC(P , f,x,y)

The communication complexity of a function f is the minimum over all possible
protocols:

CC(f) = min
P

CC(P , f)

1 We use agents instead of players to avoid confusion, the communication does not
have to be between the players of the game.
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Existing Results on Communication Complexity of Nash Equilibria.
There are a few results concerning the communication complexity of Nash equi-
libria. In [4] it is shown that a lower bound on the communication complexity for
2-player games of finding a pure Nash equilibrium is Ω(n2), where n is the num-
ber of pure strategies for each player. They also show a simple algorithm that
finds a pure Nash equilibrium (if it exists) in O(n2). They do not extend their
analysis to mixed Nash equilibria; their method is about finding out whether
there exists a pure Nash equilibrium, in contrast with the existence of a mixed
Nash equilibrium, which is guaranteed [14].

In [9] the communication complexity of uncoupled equilibrium procedures is
studied. They show that for reaching a pure Nash equilibrium, reaching a pure
Nash equilibrium in a Bayesian setting and for reaching a mixed Nash equilib-
rium, a lower bound on the communication complexity is Ω(2s), where s is the
number of players. To show that reaching this equilibrium is not just due to the
complexity of the input, they also show that you can reach a correlated equilib-
rium in a polynomial number of steps. The methods they use cannot be extended
to analysing the communication complexity of ε-approximate Nash equilibria.
For pure Nash equilibria, their analysis is based on games that might not have a
Nash equilibrium and for mixed strategy Nash equilibrium the analysis is based
on equilibria that require a large description. Approximate Nash equilibria al-
ways exist and can have small descriptions, so the developed techniques do not
work for ε-approximate Nash equilibria.

1.3 Overview of Our Results

For general n × n games we show the following bounds on the approximate
Nash equilibrium if we fix the amount of communication allowed. We start by
considering a version where no communication is allowed. Theorem 1 gives a
simple way to find a 3

4 -Nash equilibrium, in this setting. Theorem 3 identifies
a contrasting lower bound of slightly more than 1

2 . For one-way communication
we exhibit (Theorem 2) a lower bound of 0.5− o( 1√

n
). The DMP-algorithm can

be implemented as a algorithm with one-way communication and gives a 0.5-
approximate Nash equilibrium. Therefore the constant 1

2 in the lower bound of
Theorem 2 is tight, in this context. In Section 3 we show how to compute a
0.438-Nash equilibrium using polylogarithmic communication.

2 Computing Approximate Nash Equilibria with No
Communication

The simplest version of our model is one where there is no communication be-
tween the players.2 That means that for each player p ∈ {r, c}, we must find a

2 This is to some extent inspired by earlier work of the first author [8] that studied
an approach to pattern classification in which the set of observations of each class
must be processed by an algorithm that proceeds independently of the corresponding
algorithms that receive members of the other classes.
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function fp from p’s payoff matrix to a mixed strategy, such that for all pairs of
matrices (R,C), we have that (fr(R), fc(C)) is an ε-Nash equilibrium.

Theorem 1. It is possible to guarantee a 3
4 -approximate Nash equilibrium, with

no communication between the players.

Proof. Each player allocates probability 1
2 to his first pure strategy, and 1

2 to
his best response to the other player’s first pure strategy. In detail, let i ∈
argmaxi′ Ri′1 and let j ∈ argmaxj′ C1j′ . The approximate Nash equilibrium
will be x∗ = 1

2e1 +
1
2ei and y∗ = 1

2e1 +
1
2ej .

Let i′ be a best pure strategy response of the row player to y∗. Then his
incentive to deviate is

(12Ri′1 +
1
2Ri′j)− (14R11 +

1
4R1j +

1
4Ri1 +

1
4Rij)

≤ (14Ri′1 +
1
2Ri′j)− (14R11 +

1
4R1j +

1
4Rij) ≤ 1

4Ri′1 +
1
2Ri′j ≤ 1

4 + 1
2 = 3

4

where the first inequality holds because i was a best response to column 1 (so
Ri1 ≥ Ri′1) and the next inequalities hold because payoffs lie in [0, 1]. The same
kind of argument holds for the column player. This proves the theorem. ��

The following result gives a lower bound of 1
2 ; in fact it provides a stronger result

saying that 1
2 is a lower bound for any amount of one-way communication, where

one player (say, the row player) may send but not receive information about
payoffs. Since the DMP-algorithm uses one-way communication, our result shows
that it is optimal, in this context.

Theorem 2. With one-way communication, it is impossibly to guarantee to find
an ε-Nash equilibrium, for any constant ε < 1

2 .

Proof. We define a game G = (R,C), where R and C are payoff matrices with
dimensions

(
n
k

)
× n, with k ≈

√
n. Consider the following set of column player

payoff matrices C1, . . . , Cn, where C� has a payoff of 1 for every entry in the 
th
column and a 0 in every other place:

∀i, j : C�
ij = 1 if j = 
; 0 otherwise

The row player has matrix R with
(
n
k

)
rows, where a row consists of k 1’s and

(n− k) 0’s. Every row is a different combination, so the
(
n
k

)
rows are all distinct

combinations of k 1’s in a row of length n.
Let Dr be the strategy of the row player, resulting from matrix R. Let Dc

�

be the strategy of the column player resulting from matrices R and C�; note
that with unlimited one-way communication we can assume that the row player
sends all of R to the column player.

We will show that for this class of games, one cannot do better than a
(12 − o( 1√

n
))-approximate Nash equilibrium. This implies for large values of n

approximately a 1
2 -approximate Nash equilibrium.

During the proof we will search for a lower bound of 1
2 − z, where the value

of z is to be determined.
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First observe that a best response for the column player having matrix C�

is e�, the pure strategy of column 
. It has payoff 1 and other columns have
payoff 0. So to reach a (12 − z)-approximate Nash equilibrium, Dc

� must allocate
a probability at least (12 + z) to column 
.

The row player has one matrix R with all different combinations of k 1’s in a
row of length n. Now consider the columns of R. By construction each column
of R consists of k

n ·
(
n
k

)
1’s and (1 − k

n ) ·
(
n
k

)
0’s.

Dr assigns a probability to each row of R. Define an unnormalised probability
distribution Φ over the columns as follows. Φ assigns to each column j a value
Φ(j), which gives the probability that a 1 will be in this column given a row
sampled from Dr. This value Φ(j) will be at most 1, when every row that is
played with positive probability has a 1 in column j. Because every row contains
k 1’s, the sum of over all values will sum to k:

∑n
j=1 Φ(j) = k.

We define column m to be one with a lowest value of Φ: m ∈ argminj Φ(j).
Suppose the column player has payoff matrix Cm. Note that the sum over all
values Φ(j) is k and there are n columns. This means that Φ(m) is at most k

n .
This means that column m, which is played at least 1

2 + z of the time by the

column player, gives a payoff of 0 with a probability of at least 1− k
n .

We now consider the row player’s strategy Dr and construct an improved
response D∗ —that is supposed to be an improvement of at most 1

2 − z— as
follows. D∗ will differ from Dr in the following way. For every row i we see if
there is a 1 on the mth entry. If this is the case, we do not change anything. If
there is a 0 on the mth entry we do the following: look at the positions where
there is a 1 in row i. Of all the entries where there is a 1, we select the entry to
which the column player gives the lowest probability, say entry a. Now we move
all the probability allocated by Dr this row, to the row of R that instead has a
0 on entry a and a 1 on entry m, and is otherwise the same as i.

The probability on entry a is defined as the smallest of all the entries where
this row has a 1. We can bound the probability that was given to this entry
by the column player. A probability at least 1

2 + z is given to column m, so a
probability of 1

2 − z can be distributed over the remaining columns. The column
belonging to entry a has the smallest probability of at least k columns, so the

probability given to column a is at most 1/2−z
k .

The result of this construction of D∗ from Dr is that every row that is played
with positive probability by D∗ will have a 1 on the mth entry. There is a
probability at least (1− k

n ) that a row sampled from Dr did not have a 1 on the
mth entry. This means that the increase in payoff from replacing Dr with D∗ is
at least

(
1− k

n

)
·
(
1

2
+ z

)
−
(
1− k

n

)
· 1/2− z

k
=

(
1− k

n

)
·
(
1

2
+ z −

1
2 − z

k

)

We will show that this increase in payoff is close to 1
2 for well chosen k and z.

Assume that z is chosen such that z = (1/2)−z
k . Equivalently, z = 1/(2k + 2).
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This will make the difference in payoff between Dr and D∗ at least(
1− k

n

)
·
(
1

2
+ z − z

)
=

1

2
− k

2n
.

So if the column player has a regret (as defined in Section 1.1) of ≤ 1
2 − z, the

row player has a regret of at least 1
2 −

k
2n , and we put z = 1

2k+2 . We can use
these two observations to find the value of k such that the regrets are the same
for the row player and column player:

1
2 −

k
2n = 1

2 −
1

2(k+1)
k
2n = 1

2(k+1)

k = 1
2 (
√
4n+ 1− 1) ∨ k = 1

2 (−
√
4n+ 1− 1)

Since k should be greater than 0, only the first solution is feasible. So we have

k = 1
2 (
√
4n+ 1 − 1) and z =

1
2 (

√
4n+1−1)

2n , which is o( 1√
n
). We have proven now

that for general games with one-way communication one cannot do better than
a (12 − o( 1√

n
))-approximate Nash equilibrium. ��

Theorem 3. It is impossible to guarantee a 0.501-Nash equilibrium, with no
communication between the players.

As we noted, the previous Theorem 2 already shows a lower bound of 1
2 in this

setting. Theorem 3 rules out the possibility that 1
2 is the correct answer, as it

was for one-way communication.

Proof. (sketch) For p ∈ {r, c}, let Ωp be the set of (mixed) strategies p may use
(the image of fp). Let c

p be a distribution over [n] that minimises the maximum
variation distance dmax from cp to elements of Ωp; cp is called the centre strategy
for p, and p’s commitment (denoted τp) is 1− dmax. Thus τ

p ∈ [0, 1] and is high
when p must choose a strategy close to some cp.

The proof is by case analysis on the values τr and τc. If either value (say τc)
is ≥ 0.501, then c’s matrix C is chosen to be C� as in the proof of Theorem 2
where column 
 receives low probability from cc. c’s high commitment prevents
c from deviating sufficiently far from cc to make a good enough response.

If either value (say τc) is ≤ 0.05 then c has 3 strategies s1, s2, s3 that are
all very far apart in variation distance. Design a matrix for r where row i is a
very good response to si but a poor response to sj �= si. The row player has no
strategy that is sure to fall short of optimal by ≤ 0.501.

If τr , τc ∈ [0.05, 0.501], assume τr ≥ τc, and design a matrix R such that r’s
commitment forces him to allocate nearly 0.05 of his probability to rows that
have zero payoff. The remaining rows S ⊂ [n] have payoff 1 against “most”
columns (w.r.t. measure cc). Each row in S is a good response to one of the
remaining columns, associated with that row alone, but gets payoff 0 against
others. The column player can be forced by matrix C to allocate probability
≥ 0.499 to one of those columns. r loses 0.05 due to having to allocate ≥ 0.05
to rows outside S, and a further ∼ 0.49 due to not knowing which row in S is
the best one to use, for a total regret > 0.501. ��
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3 A 0.438-Approximate Nash Equilibrium with Limited
Communication

This section provides a 0.438-approximate Nash equilibrium where the amount
of communication between the players is polylogarithmic in n. We present the
algorithm as an α-approximate Nash equilibrium first and then optimize α. At
various points the algorithm uses the operation of communicating a mixed strat-
egy (a probability distribution over [n]) from one player to the other; the details
of this operation are given in Section 3.1. The general idea is to send a sample of
size O(log n) from the distribution and argue that the corresponding empirical
distribution is a good enough estimate for our purposes.

First the row player finds a Nash equilibrium for the zero-sum game (R,−R)
and the column player computes a Nash equilibrium for the zero-sum game
(−C,C). Since both games are zero-sum, we know that the payoff values for
their Nash equilibria will be unique. Both players compare this payoff value
with α. We distinguish two cases, the Nash equilibrium of both players is lower
than α (Case 1) or at least one of the players has a value equal to or higher than
α for his Nash equilibrium (Case 2). With O(1) communication, the case that
holds can be identified.

Case 1:
Both players have a Nash equilibrium with value smaller than α. The row player
finds a strategy pair (x∗

r ,y
∗
r) and the column player a strategy pair (x∗

c ,y
∗
c ). The

row player communicates y∗
r to the column player (as described in Section 3.1)

and the column player sends x∗
c to the row player. They now play the game

with the strategy pair (x∗
c ,y

∗
r). Since y∗

r was a Nash equilibrium strategy in the
zero-sum game (R,−R) and the row player still plays with payoff matrix R, by
definition of a Nash equilibrium, the row player has no strategy that can give
him a payoff of α or higher. The row player has a best response with a value
of at most α, so his regret is also at most α. This leads to an α-approximate
Nash equilibrium for the row player. The strategy x∗

c was a Nash equilibrium
strategy in the zero-sum game (−C,C) and the column player still has payoff
matrix C. So we can use the same argument for the column player to argue that
when the row player has strategy x∗

c , the column player has a α-approximate
Nash equilibrium. This concludes Case 1.

Case 2:
If at least one of the players has a value of at least α for his zero-sum game, he
can get a payoff of at least α if he plays this strategy, regardless the strategy of
the other player. Assume w.l.o.g. that it is the row player who has a payoff of at
least α in his zero-sum game. He communicates this strategy x∗

r to the column
player (again, as described in Section 3.1). The column player identifies a pure
strategy best response ej to the strategy of the row player and communicates
this strategy to the row player (using logn bits).

At this point in the algorithm we have the strategy pair (x∗
r , ej). The col-

umn player has a best response strategy, so at this point his strategy is a 0-
approximate Nash equilibrium. The row player can guarantee a payoff of α.
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Let β ≤ 1 be the value of his best response to ej. So at this point the row player
has a β − α-approximate Nash equilibrium. We next deal with the possibility
that β − α > α.

At this stage the column player has a 0-approximate Nash equilibrium while
we are only looking for a α-approximate Nash equilibrium; meanwhile the row
player has a strategy that might not be good enough for a α-approximate Nash
equilibrium. To change this, we use a method used in [3] (Lemma 3.2), which
allows the row player to shift some of his probability to his best response to ej .
By shifting some of his probability, it could be that ej no longer is a best response
strategy for the column player. This is allowed, as long as the column player’s
regret while playing ej is at most α. Suppose the row player shifts 1

2α of his
probability to a best response strategy. The payoff the column player gets could
be 1

2α lower because of this move. The payoff of some other strategy could go as
much as 1

2α higher because of this shift. The strategy ej was a 0-approximate
Nash equilibrium, so by the shift of 1

2α of the row player’s probability, the regret
of the column player is at most 1

2α+
1
2α = α, which constitutes an α-approximate

Nash equilibrium, for the column player.
The row player is allowed to change the allocation of 1

2α of his probability
with the worst payoff. Since we rearrange the worst part of the row player, the
remainder of his probability, 1 − 1

2α had already at least a payoff of α. The
probability is shifted to his best response with a value of β, with α ≤ β ≤ 1.
This leads to the following inequality:

(1− 1

2
α)α+

1

2
αβ ≥ β − α , 0 ≤ α ≤ β ≤ 1

The solutions to this inequality are

0 < α ≤ 1
2 (5−

√
17) α ≤ β ≤ α2−4α

α−2
1
2 (5 −

√
17) < α < 1 α ≤ β ≤ 1

α = 0 β = 0 α = 1 β = 1

where it holds that if α = 1
2 (5−

√
17) then f(α) = α2−4α

α−2 = 1 and for 0 ≤ α ≤ 1
this function is monotone increasing. This procedure will give an α-approximate
Nash equilibrium, so α should be as low as possible. Next to this it should also
hold for every β with α ≤ β ≤ 1. The lowest α such that this condition hold is
when f(α) = 1, thus α = 1

2 (5−
√
17) ≈ 0.438.

So if the row player rearranges 1
2 · 0.438 = 0.219 of his probability to his

best response row, both players have a strategy that guarantees them a 0.438-
approximate Nash equilibrium.

3.1 Communicating Mixed Strategies

We describe how to communicate an approximation of the mixed strategies that
are computed, using O(log2 n) bits. We ultimately obtain an ε of 0.438 + δ, for
any δ > 0.

We first look at the case where one of the players, assume w.l.o.g. the row
player, has a payoff higher than α in the Nash equilibrium of his zero-sum game



202 P.W. Goldberg and A. Pastink

(R,−R). The column player plays a pure best response to the strategy of the
row player, regardless of the support of the strategy of the row player. So we
mainly consider the row player.

The zero-sum game (R,−R) gives a strategy pair (x∗,y∗). Fix k = lnn
δ2 and

form a multiset A by sampling k times from the set of pure strategies of the row
player, independently at random according to the distribution x∗. Let x′ be the
mixed strategy for the row player with a probability of 1

k for every member of
A. We want the distribution x′ to have a payoff close to the payoff of x∗. This
corresponds to the following event:

φ = {((x′)TRy∗)− ((x∗)TRy∗) < −δ}

As noted in [13] the expression ((x′)TRy∗) is essentially a sum of k independent
random variables each of expected value ((x∗)TRy∗), where every random vari-
able has a value between 0 and 1. This means we can bound the probability that
φ does not hold, which we will call φc. When we apply a standard tail inequality
[10] to bound the probability of φc, we get:

Pr[φc] ≤ e−2kδ2

With k = lnn
δ2 , this gives Pr[φc] ≤ 1

n2 and Pr[φ] ≥ 1 − 1
n2 . If x

′ does not give
payoffs close enough to x∗, we sample again.

The strategy x′ has a guaranteed payoff of 0.438+δ−δ = 0.438. This strategy
is communicated to the column player. The support of this strategy is logarith-
mic and all probabilities are rational (multiples of 1

k ). Communication of one
pure strategy has a communication complexity of O(log n). This will give a com-
munication complexity for x′ of O(log2 n).

The column player computes a pure strategy best response to x′ and com-
municates this strategy in O(log n) to the row player. The strategy of the row
player might not yet lead to a 0.438-approximate Nash equilibrium, his payoff
could be too low. As we have seen before, if the row player redistributes at
most 0.219 of his probability, he is guaranteed to have a strategy that leads to
a 0.438-approximate Nash equilibrium.

This change in strategy of the row player can decrease the payoff of the column
player by as much as 0.219 and increase another pure strategy by as much as
0.219. His strategy was a best response, a 0-approximate Nash equilibrium, and
the improvement to another pure strategy is maximal 0.219+0.219 = 0.438, this
leads to a 0.438-approximate Nash equilibrium.

In the alternative case, where both players have a low (< α) payoff in their
zero-sum games, the technique is essentially the same: each player samples k
times from the opposing distribution, checks that it limits his own payoff to at
most α+ δ, re-samples as necessary, and communicates the k-sample.

4 Conclusions

The general topic of the communication complexity of approximate Nash equilib-
rium, seems to be a rich source of research questions. [16] considers some related
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ones, including the communication required for approximate well-supported equi-
libria, as well as games of fixed size. It may be that future work should address
the issue of communication protocols where the players have an incentive to
report their information truthfully.

Acknowledgements. The first author thanks Sergiu Hart for useful discussions
during the iAGT workshop in May 2011.

References

1. Bosse, H., Byrka, J., Markakis, E.: New Algorithms for Approximate Nash
Equilibria in Bimatrix Games. In: Deng, X., Graham, F.C. (eds.) WINE 2007.
LNCS, vol. 4858, pp. 17–29. Springer, Heidelberg (2007)

2. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In:
Procs. of the 47th FOCS Symposium, pp. 261–272. IEEE (2006)

3. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player
Nash equilibria. J. ACM 56, 14:1–14:57 (2009)

4. Conitzer, V., Sandholm, T.: Communication complexity as a lower bound for
learning in games. In: Proceedings of the 21st ICML, pp. 24–32 (2004)

5. Dantzig, G.B.: Linear Programming and Extensions. Princeton Univ. Press (1963)
6. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing

a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)
7. Daskalakis, C., Mehta, A., Papadimitriou, C.: A Note on Approximate Nash

Equilibria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE
2006. LNCS, vol. 4286, pp. 297–306. Springer, Heidelberg (2006)

8. Goldberg, P.W.: Some discriminant-based PAC algorithms. Journal of Machine
Learning Research 7, 283–306 (2006)

9. Hart, S., Mansour, Y.: How long to equilibrium? the communication complexity of
uncoupled equilibrium procedures. GEB 69(1), 107–126 (2010)

10. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

11. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: 16th
STOC, pp. 302–311. ACM (1984)

12. Kushilevitz, E.: Communication complexity. Advances in Computers 44, 331–360
(1997)

13. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: Procs. of the 4th ACM-EC, EC 2003, pp. 36–41 (2003)

14. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
15. von Neumann, J.: Zur theorie der gesellschaftsspiele. Mathematische Annalen 100,

295–320 (1928)
16. Pastink, A.: Aspects of communication complexity for approximating Nash

equilibria. MSc dissertation, Utrecht University (2012)
17. Tsaknakis, H., Spirakis, P.G.: An Optimization Approach for Approximate Nash

Equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858,
pp. 42–56. Springer, Heidelberg (2007)

18. Yao, A.C.C.: Some complexity questions related to distributive computing
(preliminary report). In: 11th STOC, pp. 209–213. ACM (1979)



Congestion Games with Capacitated Resources�
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Abstract. We extend congestion games to the setting where every re-
source is endowed with a capacity which possibly limits its number of
users. From the negative side, we show that a pure Nash equilibrium is
not guaranteed to exist in any case and we prove that deciding whether
a game possesses a pure Nash equilibrium is NP-complete. Our positive
results state that congestion games with capacities are potential games
in the well studied singleton case. Polynomial algorithms that compute
these equilibria are also provided.

1 Introduction

The players of a congestion game interact by allocating bundles of resources from
a common pool [18]. This type of games leads to well studied models for analyzing
strategic situations including routing [9], network design [3] and load balancing
[8]. They are a prominent model for resource sharing among uncoordinated selfish
users.

Significant interest has been addressed over the last years to the analysis of
practical congestion problems in the Internet. Data delays and losses due to data
congestions, or the network collapse as a consequence of exceeding the data flow
capacity of some links or nodes, has long been a real problem for the Internet [4].
Several policies have been proposed to control congestion, in order to regulate
and improve the availability of broadband access to the Internet. Priority rules,
for instance, have been adopted to regulate the users who enter into the network,
with the objective to prevent congestion and to obtain a Quality of Service (QoS)
that otherwise would not be available to users [5]. A classical example of priorities
of users is provided by the access categories of the IEEE 802.11e standard, that
was developed in order to offer QoS capabilities to Wireless Local Area Networks
(WLANs) [15].

Congestion games [18] can only partially model the practical situation de-
scribed above. In order to catch other realistic factors like capacities of resources
and the different priority of users on the network, a more sophisticated model is
required.
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For this purpose, we introduce the class of congestion games with capacitated
resources, where each resource is associated both with a capacity level, repre-
senting the maximum number of users that such a resource may simultaneously
accommodate, and with an ordering on the users, prescribing the priority of ac-
commodation of the users. Given a certain profile of players’ strategies, the cost
of utilization of a resource for the players which have that resource in their strat-
egy and which are accommodated on it, is a function of the number of players
using it in that profile (as in the case of classical congestion games), whereas
the cost of players having that resource in their strategy, but which are not
accommodated, is prohibitive (supposed infinite).

In this paper we investigate the following questions: Do congestion games
with capacitated resources always admit a pure strategy Nash equilibrium (NE
in short) in any case as it holds for classical congestion games? If not, is it difficult
to decide if an instance possesses a pure NE? Can we identify natural classes
of instances admitting a pure NE? Are there polynomial (or more efficient)
algorithms that build a pure NE for classes containing such an equilibrium?

2 Models and Notations

A strategic (cost) game is a tuple 〈N , (Σi)i∈N , (ci)i∈N 〉, where N = {1, · · · , n}
is a finite set of players ; Σi is a non-empty set of pure strategies for each player
i ∈ N ; ci : Σ1 × · · · × Σn → R is an individual cost function specifying players
i’s cost ci(σ) ∈ R for each strategy profile σ = (σi)i∈N ∈ Σ1×· · ·×Σn and each
i ∈ N .

Using conventional notations, we denote by Σ = Σ1 × · · · × Σn the set of
strategy profiles or strategy space and we denote a strategy profile σ by (σi, σ−i)
if the choice of player i needs stressing. The strategy space Σ is symmetric-strategy
if Σ1 = Σ2 = . . . = Σn.

A pure strategy Nash equilibrium (or simply pure Nash equilibrium, NE in
short) is a pure strategy profile σ ∈ Σ such that, for all players i ∈ N , and all
pure strategies si ∈ Σi, it holds that ci(σ) ≤ ci(si, σ−i). We only deal with pure
strategies in this article so we often omit the word “pure”.

For some given strategy profile, a better move of a player is a unilateral de-
viation such that his cost decreases strictly. If such a better move exists, we say
that the corresponding player is unhappy, otherwise he is happy. In this setting a
NE is a strategy profile where all players are happy. The better-response dynamic
is the process of repeatedly choosing an arbitrary unhappy player and let him
make an arbitrary better move. A potential game is a game in which, for any
instance, the better-response dynamic always converges [17]. Such a property is
typically shown by a potential function argument.

2.1 Congestion Models and Games

Rosenthal [18] defines a congestion model as a tuple 〈N ,R, (Σi)i∈N , (dr)r∈R〉
where N = {1, . . . , n} is the set of players; R is a finite set of m resources ; Σi ⊆
2R is the set of pure strategies of player i, for each i ∈ N ; dr : {0, 1, . . . , n} → R+
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is a delay function associated with resource r, for each r ∈ R. This function
depends on the number of players using resource r, denoted by nr(σ) or simply
nr when the context is clear. The interpretation is that every player of a resource
r incurs a cost of dr(nr) (with the convention that dr(0) = 0). Delay functions
are sometimes supposed monotone (e.g. [9]) but we do not make this restriction
in this paper.

Given a congestion model 〈N ,R, (Σi)i∈N , (dr)r∈R〉, an associated congestion
game is defined as a strategic cost game 〈N , (Σi)i∈N , (ci)i∈N 〉 where for each
σ ∈ Σ and i ∈ N , ci(σ) =

∑
r∈σi

dr(nr(σ)). Better-response dynamic always
converges in congestion games because every better move decreases Rosenthal’s
potential function

∑
r∈R

∑nr

i=1 dr(i) [18].
An important subclass of congestion games is the class of singleton conges-

tion games (also known as parallel-link games) in which every player’s strategy
consists of a single resource [1, 8, 10–12, 14, 16].

2.2 Congestion Games with Capacitated Resources

This section describes the model introduced and studied in this paper. Given a
congestion model 〈N ,R, (Σi)i∈N , (dr)r∈R〉, we also assume that every resource
r ∈ R has a capacity κr – an integer between 1 and n – which is the maximal
number of players that can use resource r. Moreover, every resource r is associated
with a linear order posr : N → {1, . . . , n}, where posr(i) = t means that player i
is in the t-th position of r (pos is strict total). We say that a player i has a higher
priority than player j at resource r iff posr(i) < posr(j). Notice that posr(i) is
defined even if r does not appear in the strategy space of player i.

Let Nr(σ) be the set of players using resource r in the strategy profile σ. A
player i ∈ Nr(σ) is accommodated by r iff the number of players in Nr(σ) having
a position lower than posr(i) is strictly smaller than the capacity of resource r,
i.e., |{j ∈ Nr(σ) : posr(j) < posr(i)}| < κr. The delay dr(σ) of a resource r in
profile σ is defined as dr(min{nr(σ), κr}). The delay dir(σ) of player i ∈ Nr(σ)
on resource r is:

dir(σ) =

{
dr(min{nr(σ), κr}) if i is accommodated,
+∞ otherwise.

(1)

A congestion game with capacitated resources (capacitated congestion game in
short) is a strategic cost game where the cost of a player i in profile σ is defined
as ci(σ) =

∑
r∈σi

dir(σ).
Note that capacitated congestion games follow the original congestion model

of Rosenthal [18] when the resources are not overcrowded. When the capacity
of a resource is exceeded, the game shares similarities with the player-specific
model of Milchtaich [16] since we distinguish between accommodated and non
accommodated players. However congestion games with capacitated resources
are neither a refinement nor an extension of player-specific congestion games.

In congestion games with capacitated resources, a profile is a Nash equilibrium
if the following conditions hold:
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– no player, accommodated by every resource in his current strategy, can uni-
laterally deviate and decrease his cost;

– no player, not accommodated by at least one resource in his current strategy,
can unilaterally deviate and incur a finite cost.

We say that a resource r is saturated if nr(σ) ≥ κr. We say that a player i is
displaced by another player j in the following situation: i is accommodated by a
resource r which is not used by j, j deviates so that r is in his new strategy and
i is not accommodated by r anymore whereas j is (of course posr(j) < posr(i)).

3 Related Works

Various aspects of congestion games were investigated. The existence of pure NE,
the convergence of better-response dynamic and the computation of equilibria
are interleaved questions studied in [2, 6, 9, 14]. Computing a pure NE of a
congestion game is a PLS-complete problem, even if strategies are symmetric.
Nevertheless there are important subclasses for which a NE can be built in
polynomial time, by the use of dedicated algorithms or simply via better response
dynamic (see [19] for a survey).

Many extensions of the congestion model introduced in Rosenthal [18] have
been studied in the literature of strategic games.Player-specific congestion games,
have been introduced in [16] with the objective to model congestion situations
where the delay of each resource in R depends not only on the number of players
using that resource but also on the player’s identity itself. The delay of a player
i ∈ N on resource r ∈ R is a function dir : N→ R+.

A generalization of this model are (player-specific) congestion games with pri-
orities, which have been introduced in [1] with the objective to model situations
where each resource can assign priorities to the players, and players with a higher
priority can displace all players with a lower priority. Every resource r ∈ R is
associated with a map (not necessarily a bijection) πr : N → {1, . . . , |N |}. Sev-
eral players can allocate a resource r (those players form a set Nr(σ)) but only
those with highest priority πr are assigned to r. This latter subset of assigned
players is denoted by N̂r(σ).

Formally, for each strategy profile σ ∈ Σ and each r ∈ R such that Nr(σ) �= ∅,
let N̂r(σ) = argmaxi∈Nr(σ) πr(i) be the set of players assigned to resource r.

The delay incurred by an assigned player i ∈ N̂r(σ) is dir(|N̂r(σ)|). Players in
Nr(σ) \ N̂r(σ), who are not assigned to resource r, incur an infinite delay.

Although there are some similarities between the congestion model with ca-
pacities introduced in this paper and the one with priorities introduced by [1]
(e.g., the possibility to displace players with lower priority on a certain resource),
in general, these two models generate well distinct strategic cost games.. Con-
trasting with the model discussed in this paper, Ackermann et al [1] suppose
that there is no capacity on the resources, two players may have the same pri-
ority with respect to a given resource and two players with distinct priorities on
a resource r can not be both assigned to r.
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Finally, the notion of capacity in systems with congested resources has been
considered in [7] (see also references therein). Nevertheless, capacitated conges-
tion games and the model in [7] are different. In our setting, we consider a finite
number of atomic players and resources have an order on the users, whereas in
[7], players are non-atomic and resources are not endowed with an order.

4 Contribution and Organization

Our goal is two-fold: (i) characterize the existence of a NE in capacitated con-
gestion games; and (ii) efficiently compute an equilibrium if it exists.

First, we consider capacitated congestion games in general. We prove that a
capacitated congestion game always admits a NE if it consists of two resources;
moreover, this equilibrium can be computed in linear time. Besides, a game with
three resources (and more) does not necessarily possess a NE. This negative
result holds even if the game is symmetric-strategy and all players’ strategies
except one are singleton. From a computational aspect, deciding whether a game,
even symmetric-strategy and consisting of two players, has a NE is shown to be
NP-complete. The results are presented in Section 5.

Next, we consider singleton capacitated congestion games. We show that the
game is a potential game so it always admits a NE. The proof is based on
a new geometrical approach of potential argument, which could be seen as a
generalization of a dominant potential function in higher dimension. We believe
that the approach would be useful in proving the existence of NE in other games
and is of independent interest. In computational aspect, the better-response
dynamic converges to a NE in at most O(n4m) strategy changes (recall that n
and m are the number of players and resources, respectively). Additionally, we
give a more efficient algorithm to compute a NE when the game is symmetric-
strategy. The results are presented in Section 6.

5 General Strategies

We begin with a simple symmetric-strategy game which does not admit a NE.
There are two players, three resources x, y and z, and the priorities are the
same for the three resources (priority is always given to the first player). The
strategy space of the players is {{x}, {y, z}}. Resource x has capacity 1 and
dx(1) = 2. Resource y has capacity 2 and dy(1) = 3 while dy(2) = 0. Resource z
has capacity 1 and dz(1) = 0. The game is illustrated in Figures 1 and 2.

Notice that the example possesses some minimal characteristics for the exis-
tence of a NE: a game with one player obviously admits a NE and Theorem 1
states that capacitated congestion games defined on two resources always admit
a NE. Moreover the instance falls into restricted cases which often make the ex-
istence of a NE likely: strategies are symmetric source-target paths of a directed
network, delays are monotone and priorities on the resources are identical.

Theorem 1. Every capacitated congestion game defined on two resources pos-
sesses a pure Nash equilibrium. Moreover, a NE can be computed in linear time.
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{x} {y, z}
{x} +∞ 3

2 2

{y, z} 2 +∞
3 0

Fig. 1. A 3-resource 2-player symmetric-
strategy capacitated congestion game with-
out any pure Nash equilibrium

x y

z

Fig. 2. The corresponding network
where each arc is a resource

Proof (Sketch of proof). We prove that Algorithm 1 outputs an equilibrium
σ. Denote by r and s the resources. Observe that players with strategy space
{{r}, {r, s}}, {{s}, {r, s}} and {{r}, {s}, {r, s}} cannot prefer to play {r, s} over
{r} or {s}, in any profile, as the delay of every resource is non-negative. Hence, we
can reduce the strategy space of those players to be {{r}}, {{s}} and {{r}, {s}},
respectively. The action of the players having only one strategy in their (reduced)
strategy space is obviously known. Denote by N̂ the players whose (reduced)
strategy space is {{r}, {s}}.

Algorithm 1. 2-resource

Input: a set N of players, two resources r, s
Output: A pure Nash equilibrium σ
1: N̂ ← ∅
2: If a player i has only one strategy in his reduced strategy space then assign him to

that strategy, else let σi ← r and N̂ ← N̂ ∪ {i}
3: Rename players in N̂ such that poss(1) < poss(2) < · · · < poss(n̂) where n̂ = |N̂ |
4: Let N̂∞ and N̂f be the set of players in N̂ with infinite cost and finite cost under

the current profile σ, respectively
5: for i = 1 to n̂ do
6: If i ∈ N̂∞ and ci(s, σ−i) < ci(σ) then σi ← s
7: end for
8: for i = 1 to n̂ do
9: if i ∈ N̂f and ci(s, σ−i) < ci(σ) then
10: σi ← s
11: if i displaces a player j ∈ N̂ then
12: σj ← r
13: end if
14: end if
15: end for
16: return profile σ

First, we show an invariant that at anytime, the algorithm maintains the
property that no player of N̂ placed on s can or wants to move to r.

The property is clearly true before the first for loop. During the first for loop,
no player who has moved from r to s has incentive to return back to r because
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he would get an infinite cost. For the second for loop, we prove the invariant
by induction. The base case (before entering to the loop) is straightforward. We
analyze a step by considering three subcases:

– Resource s is saturated before i moves and the deviation implies that a
player j′ /∈ N̂ is displaced. In this case, the deviation does not incentivize a
player j ∈ N̂ placed on resource s to move. Indeed j’s cost is ds(κs) before
and after i’s deviation. After his deviation, i’s cost is ds(κs) which is strictly
smaller than his previous cost. Moving to r is not profitable to j.

– Resource s is saturated before imoves and the deviation implies that a player
j ∈ N̂ is displaced. Observe that j cannot belong to N̂f because the loop
follows the total order of priorities on s. The algorithm assigns j to r so that
his cost is either equal to +∞ or equal to the cost previously incurred by
i. Then, the number of players on s remains unchanged. No player from N̂
placed on resource s has incentive to move, since otherwise the player can do
it before the exchange of i and j, contradiction to the induction hypothesis.

– Resource s is not saturated before i moves and the deviation implies that
at least one player j ∈ N̂ wants to unilaterally move to r. Players i and j
have the same finite cost. By moving to r, player j would get either +∞ or
exactly the cost incurred by i before his deviation, contradiction.

The property holds at the end of the two phases. Now observe that a player
i ∈ N̂ placed on r either has been displaced from s at some step or has had the
opportunity to switch to s during the second loop but did not (could not) do so.
Hence, those players are happy on resource r. The profile σ is then a pure Nash
equilibrium. The algorithm is clearly linear in n.

When the number of resources is unbounded, the problem becomes much harder.

Proposition 1. Deciding whether a symmetric-strategy capacitated congestion
game has a NE is NP-complete, even with two players.

Proof (Sketch of proof). We reduce Partition — a NP-complete problem [13]
— to the symmetric-strategy capacitated congestion game. In Partition, given
n integers {a1, . . . , an} such that

∑n
j=1 aj = 2B > 6 and 0 < aj < B, one has

to decide whether a subset J ⊆ {1, . . . , n} such that
∑

j∈J aj = B =
∑

j /∈J aj
exists.

Given an instance of Partition, we construct a capacitated congestion game
with two players where the resources are the arcs of a network G and the players’
strategies are all paths from a common source s to a common target t, see Figure
3. For arc e0, κe0 = 2, de0 (1) = B + 2 and de0(2) = 0. For arcs ej and e′j where
1 ≤ j ≤ n, κej = κe′j = 2, dej (1) = aj , dej (2) = B + 2, and de′j (1) = 0, de′j (2) =

B + 2. For arc e′n+2, κe′n+2
= 2 and de′n+2

(1) = 2, de′n+2
(2) = 0. For arcs en+1

and e′n+1, their capacities are κen+1 = κe′n+1
= 1 and player 1 has higher priority

than player 2 in both arcs. Moreover, the delay functions are den+1(1) = B,
de′n+1

(1) = B − 1.
One can show that the instance of Partition has a feasible solution iff the

game defined on G admits a NE. ��
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Fig. 3. The network associated with an instance of Partition

6 Singleton Strategies

In this section, we are interested in studying the existence of NE and efficient
algorithms to compute a NE in singleton capacitated congestion games. First,
we present intuitively our approach in proving the existence of a NE.

Starting Point. Consider the following dominant order ≺′. Let A = {a1 ≤
. . . ≤ ak} and B = {b1 ≤ . . . ≤ bk} be two sets of k real-value elements that
are named in increasing order. We say that A ≺′ B if there exists an index
1 ≤ 
 ≤ k such that ai = bi for all 1 ≤ i < 
 and a� < b�. This order is
well-defined and has been used in proving the existence of Nash equilibria (for
example [8]). We interpret this order in a geometrical view. For each set A and
B, map all elements to points on a real line where the coordinate of a point
equals the value of its corresponding element. For u ∈ R, let Au and Bu be the
number of points corresponding to elements in A and B with coordinate smaller
than or equal to u, respectively. Then, the order ≺′ could be equivalently defined
as follows: A ≺′ B if for the smallest u ∈ R such that Au �= Bu, it holds that
Au < Bu. In fact, the smallest u ∈ R such that Au �= Bu is a� where 
 is the
index in the former definition.

As we have seen, the dominant order could be geometrically interpreted as a
one-dimension order. Taking this geometrical approach, we prove the existence
of NE by designing a two-dimension order. Intuitively, the two dimensions are
due to the nature of the game where the cost of a player depends on the resource
delay and the priority of the player on the resource.

Theorem 2. Singleton capacitated congestion games are potential games. More-
over, the better-response dynamic necessarily converges in O(n4m) strategy
changes.

Proof. First, we give some definitions which are useful in the proof.
For each profile σ, a function rankσ : R → N is defined as follows. If resource

r is saturated1 then rankσ(r) = max{posr(j) : σj = r, j is accommodated}.
Otherwise, rankσ(r) := n+ 1.

1 A resource r is saturated if nr(σ) ≥ κr.
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We define a function f that maps each profile σ to a multiset of points in R+×
N. Each resource r in profile σ is associated with the multiset f(r, σ) of points
(dr(1), n+ 1); (dr(2), n+ 1); . . . ; (dr(tr(σ)− 1), n+ 1) and (dr(tr(σ)), rankσ(r))
where tr(σ) := min{nr(σ), κr}. The multiset f(σ) := ∪r∈Rf(r, σ). An illustra-
tion of f(σ) is given in Figure 4.

For a value u ∈ R+, to every profile σ we define the multiset σu := {(a, b) ∈
f(σ) : a ≤ u}. Moreover, denote by |σu| the cardinal of σu and ‖σu‖ :=∑

(a,b)∈σu
b. By the definition, |σu| is the number of points corresponding to

profile σ which are on the left of the line x = u and intuitively ‖σu‖ is the total
height of these points.

y
n+ 1

u x

Fig. 4. An illustration of f(σ), black filled dots if in σu

Now we define a partial order ≺ on profiles. Formally, two profiles ν and σ
satisfy ν ≺ σ if for the smallest u > 0 such that (|σu|, ‖σu‖) �= (|νu|, ‖νu‖) we
have |σu| < |νu|, or |σu| = |νu| but ‖σu‖ > ‖νu‖. Intuitively, we can interpret
this order as follows. Two profiles ν and σ satisfy ν ≺ σ if for the smallest u > 0
such that (|σu|, ‖σu‖) �= (|νu|, ‖νu‖), either (1) the half-space on the left of the
line x = u contains more points of ν than those of σ; or (2) if they are equal,
the total height of such points in ν is smaller than that of σ.

Now we can prove that after a better move of some player i from resource r
in profile σ to a resource s, resulting in profile ν, we get that ν ≺ σ. Note that
f(σ) and f(ν) only differ on some points corresponding to resources r and s. In
the following, we consider only these points. Let u be the cost of player i after
the move, which equals ds(ts(ν)) — the delay of resource s in profile ν. (Note
that player i is accommodated by resource s in profile ν as he has taken a better
move.)

Consider the set of points corresponding to resource r in f(σ) and f(ν). If
i has unbounded cost in profile σ (meaning that i is not accommodated), then
f(r, σ) = f(r, ν). If i is accommodated in profile σ then either f(r, σ) = f(r, ν)∪
(dr(σ), rankσ(r)) in case nr(σ) ≤ κr, or f(r, σ) = f(r, ν) \ (dr(κr), rankσ(r)) ∪
(dr(κr), rankν(r)) in case nr(σ) > κr. However, as i has taken a better move,
dir(σ) = dr(σ) > u. Hence, restricting to points with first coordinate smaller
than or equal to u, f(r, σ) = f(r, ν).
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Consider the set of point corresponding to resource s in f(σ) and f(ν). If s
is unsaturated before the move of i then f(s, ν) = f(s, σ) ∪ (ds(ν), rankν(s))
= f(s, σ) ∪ (u, rankν(s)). If s is saturated before the move of i then f(s, ν) =
f(s, σ) ∪ (u, rankν(s)) \ (u, rankσ(s)).

Therefore, for any u′ < u, (|σu′ |, ‖σu′‖) = (|νu′ |, ‖νu′‖). Moreover, if s is
unsaturated before the move of i, |σu| < |νu|. Otherwise, |σu| = |νu| but
rankν(s) < rankσ(s), so ‖νu‖ < ‖σu‖. Hence, ν ≺ σ, i.e., after each better
move, a new profile is ≺-smaller than the previous one. In conclusion, the game
is a potential game.

Now we bound the number of strategy changes to reach an NE from arbitrary
profile in the better-response dynamic. Let σ be an arbitrary profile. By the
definition of order ≺, there are at most nm values of u that we have to consider.
Moreover, for each u, 0 ≤ |σu| ≤ n and 0 ≤ ‖σu‖ ≤ n(n+1). Hence, there are at
most O(n4m) couples (|σu|, ‖σu‖) (where σ is a profile) which are ≺-different.
Thus, from an arbitrary profile, the better-response dynamic converges to a NE
in at most O(n4m) strategy changes. ��
In the following, we consider singleton capacitated congestion games with ad-
ditional property of symmetry on players’ strategy sets. We give an algorithm
to compute a NE that is more efficient than the better-response dynamic by
exploiting that property.

Theorem 3. A NE in a symmetric-strategy, singleton capacitated congestion
game can be computed in min{n, κ} strategy changes and the overall time com-
plexity of the algorithm is O(min{n2m,κ2}), where κ =

∑
r∈R κr.

Algorithm 2. Symmetric-strategy, singleton capacitated congestion games

Input: Set N of n players, posr and κr for all r ∈ R
Output: An equilibrium σ
1: nr ← 0 for all r ∈ R
2: n̂ ← min{n, κ} where κ =

∑
r∈R κr.

3: while n̂ > 0 do
4: Find r∗ and kr∗ such that dr∗(kr∗) = min{dr(kr) : nr < kr ≤ min{nr +

n̂, κr}, r ∈ R}.
5: n̂ ← n̂− (kr∗ − nr∗)
6: nr∗ ← kr∗

7: end while
8: Rename resources so that dr1(n1) ≤ dr2(n2) ≤ . . . ≤ drm(nm)
9: for j = 1 to m do
10: Assign to resource rj the first nj players S ⊂ N according to posrj
11: N ← N \ S
12: end for
13: Assign all remaining players in N to an arbitrary resource, for example resource

rm.
14: output the current assignment σ.
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Proof. We show that Algorithm 2 computes a NE.
First consider the case n ≥

∑
r∈R κr. By the algorithm, at the end of the

while loop, all resources become saturated with delays dr1(κ1) ≤ . . . ≤ drm(κm).
Next, κr1 first players according to posr1 are assigned to resource r1, then κr2
first players according to posr2 among the remaining players are assigned to
resource r2 then so on. Finally, assign all remaining players to resource rm. The
outcome is a NE because: (1) a player assigned to a resource rj cannot displace
other player assigned to a resource rj′ where j′ < j; (2) a player assigned to
a resource rj cannot decrease his cost by moving to other resource rj′ where
j′ > j.

Now, consider the case n <
∑

r∈R κr. In this case, every player is accommo-
dated to some resource. Suppose a player i, assigned to resource r in profile σ,
has incentive to deviate to resource s resulting in profile σ′.

If i’s deviation displaces some player i′ then we get a contradiction. Indeed,
dr(nr(σ)) = ci(σ) > ci(σ

′) = ci′(σ) = ds(ns(σ)) and poss(i) < poss(i
′) hold.

However, the algorithm fills resource s before resource r (steps 8 to 12 of the
algorithm) and player i should have been assigned to s instead of player i′.

Assume i does not displace anyone when deviating. We have indeed dr(nr(σ)) =
ci(σ) > ci(σ

′) = ds(ns(σ)+1). Consider the moment at which nr is modified for
the last time (line 6 of the algorithm). Let kr and ks be the number of players
already assigned to resource r and s at that time, respectively. By the algorithm,
nr is modified because dr(kr) = dr(nr(σ)) is minimum among other choices. Be-
sides, observe that at that time, n̂ ≥ (ns(σ)− ks) + 1 since later, the algorithm
will set ns(σ) as the number of players (who are different to i) on resource s.
Therefore, resource s and ns(σ)+1 is a candidate for the choice of the algorithm
in line 4. Thus, dr(nr(σ)) ≤ ds(ns(σ) + 1) — contradiction. Hence, every player
in σ is happy, meaning that it is a NE. By the algorithm, the number of strategy
changes is obviously min{n, κ} and the time complexity is dominated by the
while loop which needs at most O(min{n2m,κ2}) operations. ��

7 Conclusion

In the paper, we have assumed that each capacitated resource r is endowed with
a linear order posr, indicating which players are accommodated when the re-
source is overcrowded. We believe that different and equally relevant ways to
determine who is accommodated exist, and the existence of a NE should be
investigated. For instance, an interesting open question is to know the compu-
tational complexity of symmetric-strategy capacitated congestion games with
increasing delay functions. On a dynamic perspective, for instance, it would be
interesting to study a model where the priorities of users depend on their timing
of using resources (for routing problems, this could represent the arrival time
to the starting node of an edge). On the other hand, in this perspective, drop-
ping the assumption of priorities represented by linear orders could generate the
technical problem of coordinating users asking for the same resource at the same
time (on this issue, see the discussion about timestamp games in [10]).
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Abstract. We study a network extension to the Nash bargaining game,
as introduced by Kleinberg and Tardos [6], where the set of players corre-
sponds to vertices in a graph G = (V,E) and each edge ij ∈ E represents
a possible deal between players i and j. We reformulate the problem as
a cooperative game and study the following question: Given a game with
an empty core (i.e. an unstable game) is it possible, through minimal
changes in the underlying network, to stabilize the game? We show that
by removing edges in the network that belong to a blocking set we can
find a stable solution in polynomial time. This motivates the problem of
finding small blocking sets. While it has been previously shown that find-
ing the smallest blocking set is NP-hard [2], we show that it is possible
to efficiently find approximate blocking sets in sparse graphs.

1 Introduction

In the classical Nash bargaining game [9], two players seek a mutually acceptable
agreement on how to split a dollar. If no such agreement can be found, each player
i receives her alternative αi. Nash’s solution postulates, that in an equilibrium,
each player i receives her alternative αi plus half of the surplus 1 − α1 − α2 (if
α1 + α2 > 1 then no mutually acceptable agreement can be reached, and both
players settle for their alternatives).

In this paper, we consider a natural network extension of this game that
was recently introduced by Kleinberg and Tardos [6]. Here, the set of players
corresponds to the vertices of an undirected graph G = (V,E); each edge ij ∈ E
represents a potential deal between players i and j of unit value. In Kleinberg
and Tardos’ model, players are restricted to bargain with at most one of their
neighbours. Outcomes of the network bargaining game (NB) are therefore given
by a matching M ⊆ E, and an allocation x ∈ �

V
+ such that xi + xj = 1 for all

ij ∈M , and xi = 0 if i is M -exposed; i.e., if it is not incident to an edge of M .
Unlike in the non-network bargaining game, the alternative αi of player is not

a given parameter but rather implicitly determined by the network neighbour-
hood of i. Specifically, in an outcome (M,x), player i’s alternative is defined as

M. Serna (Ed.): SAGT 2012, LNCS 7615, pp. 216–226, 2012.
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αi = max{1− xj : ij ∈ δ(i) \M}, (1)

where δ(i) is the set of edges incident to i. Intuitively, a neighbour j of i receives
xj in her current deal, and i may coerce her into a joint deal, yielding i a payoff
of 1− xj .

An outcome (M,x) of NB is called stable if xi + xj ≥ 1 for all edges ij ∈ E,
and it is balanced if in addition, the value of the edges in M is split according to
Nash’s bargaining solution; i.e., for a matching edge ij, xi − αi = xj − αj .

Kleinberg and Tardos gave an efficient algorithm to compute balanced out-
comes in a graph (if these exist). Moreover, the authors characterize the class of
graphs that admit such outcomes. In the following main theorem of [6], a vertex
i ∈ V is called inessential if there is a maximum matching in G that exposes i.

Theorem 1 ([6]). An instance of NB has a balanced outcome iff it has a sta-
ble one. Moreover, it has a stable outcome iff no two inessential vertices are
connected by an edge.

The theory of cooperative games offers another useful angle for NB. In a coopera-
tive game (with transferable utility) we are given a player set N , and a valuation
function v : 2N → �+; v(S) can be thought of as the value that the players in S
can jointly create. The matching game [4,12] is a specific cooperative game that
will be of interest for us. Here, the set of players is the set of vertices V of a given
undirected graph. The matching game has valuation function ν where ν(S) is
the size of a maximum matching in the graph G[S] induced by the vertices in S.

One goal in a cooperative game is to allocate the value v(N) of the so called
grand coalition fairly among the players. The core is in some sense the gold-
standard among the solution concepts that prescribe such a fair allocation: a
vector x ∈ �

N
+ is in the core if (a) x(N) = v(N), and (b) x(S) ≥ v(S) for all

S ⊆ N , where we use x(S) as a short-hand for
∑

i∈S xi. In the special case of
the matching game, this is seen to be equivalent to the following:

C(G) = {x ∈ �
V
+ : x(V ) = ν(V ) and xu + xv ≥ 1, ∀uv ∈ E}. (2)

Thus, the core of the matching game consists precisely of the set of stable out-
comes of the corresponding NB game. This was recently also observed by Bateni
et al. [1] who remarked that the set of balanced outcomes of an instance of NB
corresponds to the elements in the intersection of core and prekernel (e.g., see
[3,10] for a definition),of the associated matching game instance.

1.1 Dealing with Unstable Instances

Using the language of cooperative game theory and the work of Bateni et al. [1],
we can rephrase the main results of [6] as follows: Given an instance of NB, if
the core of the underlying matching game is non-empty then there is an efficient
algorithm to compute a point in the intersection of core and prekernel. Such an
algorithm had previously been given by Faigle et al. in [5]. It is not hard to see
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that the core of an instance of the matching game is non-empty if and only if
the fractional matching LP for this instance has an integral optimum solution.
We state this LP and its dual below; we let δ(i) denote the set of edges incident
to vertex i in the underlying graph, and use y(δ(i)) as a shorthand for the sum
of ye over all e ∈ δ(i).

max
∑
e∈E

ye (P)

s.t. y(δ(i)) ≤ 1 ∀i ∈ V
y ≥ �

min
∑
i∈V

xi (D)

s.t. xi + xj ≥ 1 ∀ij ∈ E (3)

x ≥ �,

LP (P) does of course typically have a fractional optimal solution, and in this case
the core of the corresponding matching game instances is empty. Core assign-
ments are highly desirable for their properties, but may simply not be available
for many instances. For this reason, a number of more forgiving alternative so-
lution concepts like bargaining sets, kernel, nucleolus, etc. have been proposed
in the cooperative game theory literature (e.g., see [3,10]).

This paper addresses network bargaining instances that are unstable; i.e.,
for which the associated matching game has an empty core. From the above
discussion, we know that there is no solution x to (D) that also satisfies �Tx ≤
ν(V ). We therefore propose to find an allocation x of ν(V ) that violates the
stability condition in the smallest number of places. Formally, we call a set B of
edges a blocking set if there is x ∈ �

V
+ such that �Tx ≤ ν(V ), and xi + xj ≥ 1

for all ij ∈ E \B.
Blocking sets were previously discussed by Biró et al. [2]. The authors showed

that finding a smallest such set is NP-hard (via a reduction from maximum
independent set). In this paper, we complement this result by showing that ap-
proximate blocking sets can be computed in sparse graphs. A graph G = (V,E)
is ω-sparse for some ω ≥ 1 if for all S ⊆ V , the number of edges in the induced
graph G[S] is bounded by ω |S|. For example, if G is planar, then we may choose
ω = 3 by Euler’s formula.

Theorem 2. Given an ω-sparse graph G = (V,E), there is an efficient algo-
rithm for computing blocking sets of size at most 8ω + 2 times the optimum.

The main idea in our algorithm is a natural one: formulate the blocking set
problem as a linear program, and extract a blocking set from one of its opti-
mal fractional solutions via an application of the powerful technique of iterative
rounding (e.g., see [8]). We first show that the proposed LP has an unbounded
integrality gap in general graphs, and is therefore not useful for the design of
approximation algorithms for such instances. We turn to the class of sparse
graphs, and observe that, even here, extreme points of the LP can be highly
fractional, ruling out the direct use of standard techniques. We carefully charac-
terize problem extreme-points, and develop a direct rounding method for them.
Our approach exploits problem-specific structure as well as the sparsity of the
underlying graph.
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Given a blocking set B, let E′ = E \B be the non-blocking set edges, and let
G′ = (V,E′) be the induced graph. Notice that the matching game induced by
G′ may still have an empty core, and that the maximum matching in G′ may
even be smaller than that in G. We are however able to show that we can find
a balanced allocation of ν(V ) as follows: let M ′ be a maximum matching in G′,
and define the alternative of player i as

α′
i = max{1− xi : ij ∈ δG′(i) \M ′},

for all i ∈ V . Call an assignment x is balanced if it satisfies the stability condition
(3) for all edges ij ∈M ′, and

xi − α′
i = xj − α′

j ,

for all ij ∈M ′. A straight-forward application of an algorithm of Faigle et al. [5]
yields a polynomial-time method to compute such an allocation. Details are
omitted from this extended abstract.

2 Finding Small Blocking Sets in Sparse Graphs

We attack the problem of finding a small blocking set via iterative linear pro-
gramming rounding. In order to do this, it is convenient to introduce a slight
generalization of the blocking set problem. In an instance of the generalized block-
ing set problem (GBS), we are given a graph G = (V,E), a partition E1 ∪E2 of
E, and a parameter ν ≥ 0. The goal is to find a blocking set B ⊆ E1, and an
allocation x ∈ �

V
+ such that �Tx ≤ ν and xu + xv ≥ 1 for all uv ∈ E \B, where

� is a vector of 1s of appropriate dimension. The problem is readily formulated
as an integer program. We give its relaxation below on the left.

min �
T z (PB)

s.t. xu + xv + zuv ≥ 1

∀uv ∈ E1 (4)

xu + xv ≥ 1

∀uv ∈ E2 (5)

�
Tx ≤ ν (6)

x, z ≥ �

max �
T a+ �

T b− γ ν (DB)

s.t. a(δE1(u))+

b(δE2(u)) ≤ γ ∀u ∈ V (7)

a ≤ �

a, b ≥ �

The LP on the right is the dual of (PB). It has a variable ae for all e ∈ E1,
a variable be for all e ∈ E2, and variable γ corresponds to the primal con-
straint limiting �Tx. We can show the LP is weak and hence not useful for ap-
proximating the generalized blocking set problem in general graphs (for details,
see [7]).

Lemma 1. The integrality gap of (PB) is Ω(n), where n is the number of ver-
tices in the given instance of the blocking set problem.

Given this negative result, we will focus on sparse instances (G, ν) and prove
Theorem 2. We first characterize the extreme points of (PB).
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2.1 Extreme Points of (PB)

In the following, we assume that the underlying graph G is bipartite; this as-
sumption will greatly simplify our presentation, and will turn out to be w.l.o.g.
Let (x, z) be a feasible solution of LP (PB), and let A=(x, z)T = b= be the set of
tight constraints of the LP. It is well known (e.g., see [11] and also [8]) that (x, z)
is an extreme point of the feasible region if A= has full column-rank. In partic-
ular, (x, z) is uniquely determined by any full-rank sub-system A′(x, z)T = b′

of A=(x, z)T = b=. If constraint (6) is not part of this system of equations,
then

A′ = [A′′, I],

where A′′ is a submatrix of the edge-vertex incidence matrix of a bipartite graph,
and I is an identity matrix of appropriate dimension. Such matrices A′ are well-
known to be totally unimodular (e.g., see [11]), and (x, z) is therefore integral
in this case. From now on, we therefore assume that constraint (6) is tight, and
that (x, z) is the unique solution to[

A′′ I
�
T
�
T

](
x̄
z̄

)
=

(
�

ν

)
, (8)

where A′′ is a submatrix of the edge, vertex incidence matrix of bipartite graph
G, I is an identity matrix, and �

T and �
T are row vectors of 1’s and 0’s, respec-

tively. We obtain the following useful lemma.

Lemma 2. Let (x, z) be a non-integral extreme point solution to (PB) satisfying
(8). Then there is an α ∈ (0, 1) such that xu, zuv ∈ {0, α, 1−α, 1} for all u ∈ V ,
and uv ∈ E1.

Proof. Standard linear algebra implies that the solution space to the the system
[A′′ I](x̄, z̄)T is a line; i.e., it has dimension 1. Hence, there are two extreme
points (x1, z1) and (x2, z2) of the integral polyhedron defined by constraints (4),
(5), and the non-negativity constraints, and some α ∈ [0, 1] such that(

x
z

)
= α

(
x1

z1

)
+ (1− α)

(
x2

z2

)
.

In fact, α must be in (0, 1) as (x, z) is assumed to be fractional. This implies

the lemma. ��

We call an extreme point good if there is a vertex u with xu = 1, or an edge
uv ∈ E1 with zuv ∈ {0} ∪ [1/3, 1]. Let us call an extreme point bad other-
wise. We will now characterize the structure of a bad extreme point (x, z). Let
G = (V,E1 ∪ E2) be the bipartite graph for a given GBS instance. Let T1 ⊆ E1

and T2 ⊆ E2 be E1 and E2 edges corresponding to tight inequalities of (PB) that
are part of the defining system (8) for (x, z). Let α be as in Lemma 2. Since (x, z)
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is bad, it must be that either α or 1−α is larger than 2/3; w.l.o.g., assume that
α > 2/3. We define the following useful sets:

X = {u ∈ V : xu = 1− α}
Y = {u ∈ V : xu = α}
O = {u ∈ V : xu = 0}.

Lemma 3. Let (x, z) be a bad extreme point. Using the notation defined above,
we have

(a) zuv = (1 − α) for all uv ∈ E1,
(b) O ∪X is an independent set in G
(c) Each T1 edge is incident to exactly one O and one Y vertex, and the edges

of T2 form a tree spanning X ∪Y . Each edge in E is incident to exactly one
Y vertex.

Proof. We know from Lemma 2 that zuv ∈ {0, 1 − α, α, 1} for all uv ∈ E1; (a)
follows now directly from the fact that (x, z) is bad.

No two vertices u, v ∈ O can be connected by an edge, as such an edge uv
must then have zuv = 1. Similarly, no two vertices u, v ∈ X can be connected by
an edge as otherwise zuv ≥ 1− 2(1− α) > 1/3. Finally, for an edge uv between
O and X , we would have to have zuv ≥ 1− (1−α) > 2/3, which once again can
not be the case. This shows (b).

To see (c), consider first an edge uv in T1; we must have xu+xv = α, and this
is only possible if uv is incident to one O and one Y vertex. Similarly, xu+xv = 1
for all uv ∈ T2, and therefore one of u and v must be in X , and one must be
in Y . It remains to show that the edges in T2 induce a tree. Let us first show
acyclicity: suppose for the sake of contradiction that u1v1, . . . , upvp ∈ T2 form
a cycle (i.e., u1 = vp). Then since G is bipartite, this cycle contains an even
number of edges. Let χ1, . . . , χp be the 0, 1-coefficient vector of the left-hand
sides of the constraints belonging to these edges. We see that

p∑
i=1

(−1)iχi = �,

contradicting the fact that the system in (8) has full (row) rank. Note that the
size of the support of (x, z) is

|T1|+ |X |+ |Y | (9)

by definition. On the other hand, the rank of the system in (8) is

|T1|+ |T2|+ 1 ≤ |T1|+ (|X |+ |Y | − k) + 1,

where k is the number of components formed by the edges in T2. The rank of (8)
must be at least the size of the support, and this is only the case when k = 1;
i.e., when T2 forms a tree spanning X ∪ Y . Since G is bipartite, X must be fully
contained in one side of the bipartition of V , and Y must be fully contained in
the other. Since Y is a vertex cover in G by (b), every edge in E must have
exactly one endpoint in Y . ��



222 J. Könemann, K. Larson, and D. Steiner

2.2 Blocking Sets in Sparse Graphs via Iterative Rounding

In this section we propose an iterative rounding (IR) type algorithm to compute
a blocking set in a given sparse graph G = (V,E). Recall that this means that
there is a fixed parameter ω > 0 such that the graph induced by any set S of
vertices has at most ω|S| edges. Recall that we also initially assume that the
underlying graph G is bipartite.

The algorithm we propose follows the standard IR paradigm (e.g., see [8]) in
many ways: given some instance of the blocking set problem, we first solve LP
(PB) and obtain an extreme point solution (x, z). We now generate a smaller
sub-instance of GBS such that (a) the projection of (x, z) onto the sub-instance
is feasible, and (b) any integral solution to the sub-instance can cheaply be
extended to a solution of the original GBS instance. In particular, the reader
will see the standard steps familiar from other IR algorithms: if there is an edge
uv ∈ E1 with zuv = 0 then we may simply drop the edge, if zuv ≥ 1/3 then we
include the edge into the blocking set, and if xu = 1 for some vertex, then we
may install one unit of x-value at u permanently and delete u and all incident
edges.

The problem is that the feasible region of (PB) has bad extreme points, even
if the underlying graph is sparse and bipartite. We will exploit the structural
properties documented in Lemma 3 and show that a small number of edges can
be added to our blocking set even in this case. Crucially, these edges will have
to come from both E1 and E2.

In an iteration of the algorithm, we are given a sub-instance of GBS. We
first solve (PB) for this instance, and obtain an optimal basic solution (x, z).
Inductively we maintain the following: The algorithm computes a set B̂ ⊆ E of
edges, and vector x̂ ∈ �

V such that

[I1] x̂u + x̂v ≥ 1 for all uv ∈ E \ B̂,
[I2] �T x̂ ≤ ν, and
[I3] |B̂| ≤ (2ω + 1) · �T z,

where ω is the sparsity parameter introduced above. Let us first assume that the
extreme point solution (x, z) is good. In this case we proceed according to one
of the following cases:

Case 1. (∃u ∈ V with xu = 1) In this case, all edges incident to u are covered.
We obtain a subinstance of GBS by removing u and all incident edges from
G, and by reducing ν by 1.

Case 2. (∃uv ∈ E with zuv = 0) In this case, obtain a new instance of GBS by
removing uv from E1, and adding it to E2.

Case 3. (∃uv ∈ E1 with zuv ≥ 1/3) In this case add uv to the approximate
blocking set B, and remove uv from E1.

In each of these three cases, we inductively solve the generated sub-instance of
GBS. If this subinstance is the empty graph, then we can clearly return the
empty set.
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Let us now consider the case where (x, z) is a bad extreme point. This case
will constitute a leaf of the recursion tree, and we will show that we can directly
find a small blocking set. In the following lemma, we define the sets X,Y,O ⊆ V
as in Lemma 3. Its proof is deferred to [7].

Lemma 4. Let (x, z) be a bad extreme point, and let ν be the current bound on
�
Tx. Then (|X |+ |Y |)/2 < ν < |Y |.

We can use this bound on ν to prove that we can find small blocking sets given
a bad extreme point for (PB).

Lemma 5. Given a bad extreme point (x, z) to (PB), we can find a blocking set
B̂ ⊆ E, and corresponding x̂ such that �T x̂ ≤ ν, and |B̂| ≤ (2ω + 1) · �T z.

Proof. We will construct a blocking set B̂ as follows: let x̂u = 1 for a carefully
chosen set Ŷ of ν vertices from the set Y , and let x̂u = 0 for all other vertices
in V . Recall once more from Lemma 3 (b) that Y is a vertex cover in G, and
hence it suffices to choose

B̂ =
⋃

u∈Y \Ŷ
δ(u) =

⋃
u∈Y \Ŷ

(
δE1(u) + δE2(u)

)
(10)

as our blocking set, where δEi(u) denotes the set of Ei edges incident to vertex
u. Let (a, b, γ) be the optimal dual solution of (DB) corresponding to extreme
point (x, z). Then note that complementary slackness together with the fact that
zuv > 0 for all uv ∈ E1 implies that auv = 1 for these edges as well. Thus γ is an
upper bound on the number E1-edges incident to a vertex u by dual feasibility.
With (10) we therefore obtain

|B̂| ≤
∑

u∈Y \Ŷ
(γ + |δE2(u)|) ≤ (|Y | − ν)γ +

∑
u∈Y \Ŷ

|δE2(u)|. (11)

Lemma 3 (c) shows that each E2 edge is incident to one X , and one Y vertex.
As the subgraph induced by X and Y is sparse, there therefore must be a vertex
u1 ∈ Y of degree at most ω(|X |+ |Y |)/|Y |. Removing this vertex from G leaves
a sparse graph, and we can therefore find a vertex u2 of degree at most ω(|X |+
|Y | − 1)/(|Y | − 1). Repeating this |Y | − ν times we pick a set u1, . . . , u|Y |−ν of
vertices such that

|Y |−ν∑
i=1

|δE2(ui)| ≤
|Y |−ν∑
i=1

ω(|X |+ |Y | − i)

|Y | − i
≤

(|Y | − ν) · ω(|X |+ |Y |)
ν

≤ 2ω(|Y | − ν), (12)
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where the last inequality follows from Lemma 4. We now let Ŷ = Y \ {u1, . . . ,
u|Y |−ν}, and hence let x̂u = 1 for u ∈ Ŷ , and x̂u = 0 for all other vertices u ∈ V ;
(11) and (12) together imply that

|B̂| ≤ (|Y | − ν)(γ + 2ω) ≤ (2ω + 1)γ(Y − ν),

where the last inequality follows from the fact that γ ≥ 1. Lemma 3(c) shows
that each edge e ∈ E has exactly one endpoint in Y . Applying complementary
slackness together with the fact that xu > 0 for all u ∈ Y , we can therefore
rewrite the objective function of (DB) as

�
Ta+ �

T b− γ ν = γ(|Y | − ν).

The lemma follows. ��

We can now put things together.

Lemma 6. Given an instance of GBS, the above procedure terminates with a
set B̂ ⊆ E, and x̂ ∈ �

V such that �T x̂ ≤ ν, and x̂u + x̂v ≥ 1 for all uv ∈ E \ B̂.
The set B̂ has size at most (2ω + 1)�T z, where (x, z) is an optimal solution to
(PB) for the given GBS instance.

Proof. The proof uses the usual induction on the recursion depth. Let us first
consider the case where the current instance is a leaf of the recursion tree. The
lemma follows vacuously if the graph in the given GBS instance is empty. Oth-
erwise it follows immediately from Lemma 5.

Any internal node of recursion tree corresponds to an instance of GBS where
(x, z) is a good extreme point. We claim that, no matter which one of the above
cases we are in, we have that (a) a suitable projection of (x, z) yields a fea-
sible solution for the created GBS sub-instance, and (b) we can augment an
approximate blocking set for this sub-instance to obtain a good blocking set for
the instance given in this iteration. We proceed by looking at the three cases
discussed above.

Case 1. Let (x′, z′) be the natural projection of (x, z) onto the GBS sub-instance;
i.e., x′v is set to xv for all vertices in V − u, and z′vw = zvw for the remaining
edges vw ∈ E1 \ δ(u). This solution is easily verified to be feasible. Inductively,
we therefore know that we obtain a blocking set B̄ and corresponding vector
x̄ such that B̄ has no more than (2ω + 1)�T z̄ ≤ (2ω + 1)�T z elements, and
�
T x̄ ≤ ν − 1. Thus, letting x̂v = x̄v for all v ∈ V − u, and x̂u = 1 together with
B̂ = B̄ gives a feasible solution for the original GBS instance.

Case 2. The argument for this case is virtually identical to that of Case 1, and
we omit the details.

Case 3. Once again we project the current solution (x, z) onto the GBS subin-
stance; i.e., let x′ = x, and z′qr = zqr for all qr ∈ E1 − uv. Clearly (x′, z′) is
feasible for the GBS subinstance, and inductively we therefore obtain a vector x̄
and corresponding feasible blocking set B̄ of size at most (2ω+1) ·�T z′. Adding
uv to B̄ yields a feasible blocking set B̂ for the original instance together with
x̂ = x̄. Its size is at most (2ω + 1)�T z′ + 1 ≤ (2ω + 1) 1T z as ω ≥ 1. ��
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Suppose now that we are given a non-bipartite, sparse instance of the blocking
set problem: G = (V,E) is a general sparse graph, and ν > 0 is a parameter. We
create a bipartite graph H in the usual way: for each vertex u ∈ V create two
copies u1 and u2 and add them to H . For each edge uv ∈ E, add two edges u1v2
and u2v1 to H . The new blocking set instance is given by (H, ν′) where ν′ = 2ν.

Given a feasible solution (x, z) to (PB) for the instance (G, ν) , we let x
′
ui

= xu
for all u ∈ V and i ∈ {1, 2}, and z′uivj = zuv for all edges uivj . For any edge uivj
in H , we now have

x′ui
+ x′vj + zuivj = xu + xv + zuv ≥ 1,

and �
Tx′ ≤ 2�Tx ≤ 2ν. Thus, (x′, z′) is feasible to (PB) for instance (H, ν′),

and its value is at most twice that of �T z. Let x̂, B̂ be a feasible solution to the
instance on graph H . Then let

B = {uv ∈ E : u1v2 or u2v1 are in B̂},

and note that B has size at most that of B̂. Also let xu = (x̂u1 + x̂u2)/2 for all
u ∈ V . Clearly, �Tx ≤ ν, and for any edge uv ∈ E, we have

xu + xv ≥
x̂u1 + x̂u2 + x̂v1 + x̂v2

2
,

and the right-hand side is at least 1 if none of the two edges u1v2, u2v1 is in
B̂. This shows feasibility of the pair x,B. In order to prove Theorem 2 it now
remains to show that graph H is sparse. Pick any set S of vertices in H , and let

S′ = {v ∈ V : at least one of v1 and v2 are in S}.

Then |S′| ≤ |S|, and the number of edges of H [S] is at most twice the number
of edges in G[S′], and hence bounded by 2ω |S|; we let ω′ = 2ω be the sparsity
parameter of H . Let (x, z) and (x′, z′) be optimal basic solutions to (PB) for
instances (G, ν), and (H, ν′), respectively. The blocking set B for G has size no
more than

(2ω′ + 1)�T z′ ≤ 2(4ω + 1)�T z.

Thus, we have proven Theorem 2.
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Abstract. We present our results on Uniform Price Auctions, one of
the standard sealed-bid multi-unit auction formats, for selling multiple
identical units of a single good to multi-demand bidders. Contrary to the
truthful and economically efficient multi-unit Vickrey auction, the Uni-
form Price Auction encourages strategic bidding and is socially inefficient
in general, partly due to a ”Demand Reduction” effect; bidders tend to
bid for fewer (identical) units, so as to receive them at a lower uniform
price. Despite its inefficiency, the uniform pricing rule is widely popular
by its appeal to the natural anticipation, that identical items should be
identically priced. Application domains of its variants include sales of
U.S. Treasury bonds to investors, trade exchanges over the internet fa-
cilitated by popular online brokers, allocation of radio spectrum licenses
etc. In this work we study equilibria of the Uniform Price Auction in
undominated strategies. We characterize a class of undominated pure
Nash equilibria and quantify the social inefficiency of pure and (mixed)
Bayes-Nash equilibria by means of bounds on the Price of Anarchy.

1 Introduction

We study Uniform Price Auctions, a standard Multi-Unit Auction format, for
allocating multiple units of a single good to multi-demand bidders within a
single auction process. Multi-unit auctions are deployed in a variety of diverse
trade exchanges, including online sales over the internet held by various bro-
kers [20], allocation of radio spectrum licenses [17], sales of U.S. Treasury bonds
to investors [22], and allocation of advertisement slots on internet sites [8]. The
particular feature of the Uniform Price Auction is a single price for every unit
allocated to any bidder; this makes it a proper representative of a wider cat-
egory of uniform pricing auctions, as opposed to discriminatory pricing ones,
that sell identical units of a single item at different prices [20,13]). As observed
by Milgrom in [17], resurgence of interest in auction design is owed to a large
extent to the success of multi-unit and – particularly – uniform price auction

� Work partially supported by the project AGT of the action THALIS (co-financed
by the EU and Greek national funds) and by EPSRC grant EP/F069502/1.

M. Serna (Ed.): SAGT 2012, LNCS 7615, pp. 227–238, 2012.
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formats. Uniform pricing appeals to the intuitive anticipation of identical prices
for identical items and eases proxy agents that bid on behalf of their employers;
they do not have to explain why they payed more than their competitors.

The design of mechanisms for auctioning multiple units of a single good to
multi-demand bidders dates back to the seminal work of Vickrey [23]. Since then
three standard sealed-bid auction formats have been identified in Auction The-
ory [13]: the Multi-Unit Vickrey Auction, the Uniform Price Auction, and the
Discriminatory Price Auction. A significant volume of research has been ded-
icated to identifying the properties of these standard formats [19,9,1,21,3]. All
three auctions have the same bidding format and allocation rule, and have been
studied extensively for bidders with “downward sloping” (symmetric submodu-
lar [14]) valuations; these prescribe that the marginal value that a bidder has
for each additional unit is non-increasing. Each bidder is asked to issue such a
non-increasing sequence of marginal bids for the k available units. The k highest
marginal bids win the auction and each winning bid grants its issuing bidder a
distinct unit. The Multi-Unit Vickrey auction charges according to an instance
of the Clarke payment rule [6] and generalizes the celebrated single-item Second-
Price Auction to the case of multiple units. The Discriminatory Price Auction
charges the winning bids as payments thus generalizing the First-Price Auction.
The Uniform Price Auction, which was proposed by Friedman [10], charges per
allocated unit the highest rejected (losing) marginal bid. The multi-unit Vickrey
Auction for submodular bidders optimizes the Social Welfare and is truthful (it
is a –weakly – dominant strategy for every bidder to report his marginal val-
ues truthfully). Neither the Discriminatory nor the Uniform Price auctions are
truthful; they encourage strategic bidding.

In fact, a particular form of strategic bidding in Uniform Price Auctions has
been identified as the Demand Reduction effect, observed in [19,9] and formalized
in a general model for multi-unit auctions by Ausubel and Cramton [1]. Bidders
may shade their marginal bids for some units, only to win fewer ones at a lower
uniform price. This leads to diminished revenue and inefficient allocations at
equilibrium. In particular it is known that the socially optimal allocation cannot
be generally implemented in an equilibrium in (weakly) undominated strategies.
Despite this effect, variants of Uniform Price Auctions have seen extensive ap-
plications, contrary to the Vickrey auction, which has been largely overlooked
in practice; implementations of variants of the standard format are offered by
several online brokers 1 [20,12] and are also being used for sales of U.S. Trea-
sury notes to investors since 1992 [22]. We note that the Uniform Price Auction
does retain some interesting features: overbidding any marginal value is a weakly
dominated strategy, and so is any misreport of the marginal bid for the first unit.

Contribution. We study pure Nash and (mixed) Bayes-Nash equilibria of the
Uniform Price Auction in undominated strategies. We give a detailed descrip-
tion of (pure) undominated strategies in the standard model of Uniform Price
Auctions for submodular bidders (Section 4) and demonstrate how their prop-
erties follow from a standard assumption, i.e., that bidders issue non-increasing

1 Among them, eBay ceased its own variant in 2009.
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marginal bids for additional units. Although these properties are mentioned or
partially derived in previous works, our analysis aims at clarifying some ambi-
guity between assumptions and implications. Additionally, we give a proposition
describing a subset of pure Nash equilibria in undominated strategies.

In Section 5 we study the inefficiency of pure Nash equilibria (PNE) of the Uni-
form Price Auction in undominated strategies, i.e., the Price of Anarchy (PoA)
over the subset of such equilibria. We derive an upper bound of e

e−1 for sub-
modular valuation functions. We note here that the auction does have a socially
optimal equilibrium (discussed in Section 3, but not in undominated strategies;
all undominated PNE are known to be socially inefficient). As noted earlier, this
is largely due to the Demand Reduction effect [1], whereby a bidder shades his
bids for additional units, so as to pay a lower price for the units he wins. Our
analysis can be viewed as a quantification of this effect. For any number of units

k ≥ 9, we provide an almost matching lower bound, equal to
(
1− e−1 + 2

k

)−1
. In

Section 6 we consider (mixed) Bayes-Nash equilibria in the incomplete informa-
tion model of Harsanyi. For Bayes-Nash equilibria that emerge from randomized
bidding strategy profiles containing only undominated pure strategies in their
support, we upper bound the Price of Anarchy by O(log k).

2 Related Work

Uniform Price Auctions have received extensive study within the economics com-
munity. Noussair [19] and Engelbrecht-Wiggans and Kahn [9] gave characteriza-
tions of pure Bayes-Nash equilibria under independent private values of bidders,
drawn from continuous distributions. They made a first observation of the effect
of demand reduction. Ausubel and Cramton formalized demand reduction for a
more general model of multi-unit auctions in [1], that allows also interdependent
private values. Bresky showed in [3] existence of pure Bayes-Nash equilibria in
the independent private values model (with continuous valuation distributions)
for several multi-unit auctions, including all three standard formats.

Partly dictated by the practice of auction design and in part because of the
computational difficulty of satisfying truthfulness while approximating the social
welfare efficiently, there has been a resurgence of interest in the computer science
community in studying auction mechanisms that are not necessarily incentive
compatible [5,2,11,15]. Our results also follow this line of work of analyzing
non-truthful mechanisms. Christodoulou, Kovács and Schapira initialized the
study of Combinatorial Auctions, where they proposed that each out of a uni-
verse of distinct goods is sold separately and simultaneously to all other goods,
in a Second-Price auction. For bidders with fractionally subadditive valuations
they proved that this scheme recovers at least 1

2 of the optimal social welfare
in Bayesian (mixed) Nash Equilibrium. Bhawalkar and Roughgarden showed a
bound of O(logm) for the Bayesian Price of Anarchy for subadditive valua-
tions and a bound of 2 for the PoA of pure Nash equilibria [2]. Hassidim et al.
proved welfare guarantees for a similar scheme that incorporated simultaneous
First-Price auctions instead. Very recently, Syrgkanis and Tardos studied in [15]
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sequential First- and Second-Price auctions, motivated by the practical issue
that supply may not be available at once. Lucier and Borodin [16] analyzed the
social inefficiency at (mixed) Bayes-Nash equilibrium of combinatorial auctions
for multiple distinct goods, with greedy allocation algorithms. They proved Price
of Anarchy bounds fairly comparable to the approximation factors of the greedy
allocation algorithms, for the underlying welfare optimization problem.

From the mechanism design perspective, Vickrey designed in [23] the first
truthful mechanism for auctioning multiple units “in one go”, so as to maximize
the social welfare. Since then, computationally efficient truthful approximation
mechanisms for multi-unit auctions and multi-demand bidders were given by
Mu’alem and Nisan in [18] and by Dobzinski and Nisan in [7], even for gen-
eral valuation functions. Very recently, Vöcking gave a randomized universally
truthful polynomial-time approximation scheme for bidders with general valu-
ations [24] (a universally truthful mechanism is a probability distribution over
deterministic truthful mechanisms), thus almost closing the problem. In these
works, the bids are elicited by the allocation algorithms through polynomially
many value queries to the bidders, for specific bundles (with the exception of
k-minded bidders, whose valuation function has a succinct representation).

3 Model and Definitions

We consider auctioning k units of a single item to a set N = [n] of n bidders
indexed by i = 1, . . . , n. Every bidder i ∈ N has a private valuation defined over
the quantity of units he receives i.e. vi : [k] (→ �+, where vi(0) = 0 and each vi
is non-decreasing. In this work we consider submodular valuation functions:

Definition 1. A valuation function f : [k] (→ �+ is called (symmetric) sub-
modular if for every x < y, f(x)− f(x− 1) ≥ f(y)− f(y − 1).

The following is a well known fact concerning submodular valuations.

Proposition 1. Given x, y ∈ [k] with x ≤ y, a submodular valuation function
f satisfies f(x)/x ≥ f(y)/y.

A valuation function vi can be specified by a vector (mi(1), ...,mi(k)) of the
marginal values mi(j) = vi(j)−vi(j−1) incurred to bidder i, for each additional
unit in his allocation (if vi is submodular, mi(j) ≥ mi(j + 1)).

Uniform Price Auction. In the standard Uniform Price Auction, bidders are
asked to submit non-increasing marginal bids. Every bidder i is expected to
declare his whole valuation curve as a vector bi = (bi(1), bi(2), . . . , bi(k)), with
bi(1) ≥ bi(2) ≥ · · · ≥ bi(k), where bi(j) is the declared marginal value of i
for obtaining the j-th unit. A declared bid bi(j) may differ from the actual
marginal value mi(j). Given a bidding configuration b = (b1, . . . , bn), the allo-
cation algorithm produces an allocation x(b) = (x1(b), x2(b), . . . , xn(b)). The
Social Welfare under configuration b equals the bidders’ total value for x(b):

SW (b) =

n∑
i=1

vi(xi(b))



Uniform Price Auctions: Equilibria and Efficiency 231

The allocation algorithm of the Uniform Price Auction is an instantiation of
the greedy algorithm described in [14] and is shown in Figure 1. It allocates the
next unit to the next highest bid. Every bidder i pays a uniform price p(b) per
received unit, which equals the highest rejected bid. If under configuration b
bidder i is allocated xi(b) units and the uniform price is p(b), i pays a total of
xi(b)× p(b) and derives utility ui(b) = vi(xi(b))− xi(b)× p(b).

This format is a generalization of the single-item Vickrey auction to the
case of multiple units, but it does not retain strategyproofness. It always ad-
mits an efficient pure Nash equilibrium though: let x∗ = (x∗1, ..., x

∗
n) be an

optimal allocation2 of units to the bidders. Consider the profile b with bi =
(mi(1), ...,mi(x

∗
i ), 0, ..., 0) if x

∗
i ≥ 1 and bi = 0 otherwise. It can be shown that

this is a Nash equilibrium. However, bi = 0 is weakly dominated for bidders i
with x∗i = 0 (Nash equilibria in undominated strategies are also known to exist).

1. Set xi = 0, for i = 1, . . . , n.
2. For j = 1, . . . , k do:

(a) i∗ ← argmaxi bi(xi + 1)
(b) xi∗ ← xi∗ + 1

3. return x

Fig. 1. Allocation Algorithm

A demand reduction effect occurs in
undominated equilibria of this auction
format. Bidders may have an incentive to
understate their marginal increase for the
j-th unit onwards, for some j > 1 [1]. This
induces economic inefficiency to equilib-
ria in undominated strategies. Nonethe-
less, we show that Uniform Price Auctions
approximate the optimal Social Welfare within a constant factor.

Incomplete Information Setting. Every bidder i ∈ N obtains his valuation
function from a finite set Vi of valuation functions, through a discrete probability
distribution πi : Vi (→ [0, 1] independently of the rest of the biddders; for any
particular v ∈ Vi we write v ∼ πi to signify that it is drawn randomly from
distribution πi. The valuation function of every bidder is private. A valuation
profile v = (v1, . . . , vn) ∈ V = ×iVi is drawn from a publicly known distribution
π = ×iπi, π : V (→ [0, 1]. We thus write accordingly v ∼ π.

Every bidder i knows his own valuation function vi – drawn from Vi according
to πi, but does not know the valuation function vi′ drawn by any other bidder
i′ �= i. Bidder i may only use his knowledge of π to estimate v−i. Given the
publicly known distribution π, the (possibly mixed) strategy of every bidder
is a function of his own valuation vi, denoted by Bi(vi). Bi maps a valuation
function vi ∈ Vi to a distribution Bi(vi) = Bvi

i , over all possible bid vectors
(strategies) for i. In this case we will write bi ∼ Bvi

i , for any particular bid
vector bi drawn from this distribution. We also use the notation B

v−i

−i , to refer
to the vector of randomized strategies of bidders other than i, under valuation
profile v−i for these bidders. A Bayes-Nash equilibrium (BNE) is a strategy
profile B = (B1, . . . , Bn) such that for every bidder i and for every valuation
vi, Bi(vi) maximizes the utility of i in expectation, over the distribution of the
other bidders’ valuations w−i given vi, and over the distribution induced by the
mixed strategies of the bidders. That is, for every pure strategy ci of i:

2 For symmetric submodular valuations the allocation algorithm of the Uniform Price
Auction outputs an optimal allocation when bidders bid truthfully.
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E w−i|vi,
b∼B(vi,w−i)

[
ui(b)

]
≥ E w−i|vi,

b−i∼Bw−i

[
ui(ci, b−i)

]
where we use notation Ev and Ew−i|vi to denote expectation over the distribu-
tions π and π(·|vi) (given vi) respectively. Fix a valuation profile v ∈ V and con-
sider a (mixed) bidding configuration Bv, under v. The Social Welfare SW (Bv)
under Bv is defined in expectation over the bidding profiles chosen by the bid-
ders from their randomized strategies. Then, Ev[SW (Bv)] is the expected Social
Welfare in Bayes-Nash Equilibrium:

Ev [SW (Bv)] = E v∼π,
b∼Bv

[∑
i

vi(xi(b))
]

We denote by xv the socially optimal assignment under valuation profile v ∈ V
and, by slight abuse of notation, Ev [SW (xv)] is the expected optimal social
welfare. We will study the Bayesian Price of Anarchy, i.e. the worst case ratio
Ev[SW (xv)]/Ev [SW (Bv)] over all distributions π and Bayes-Nash equilibria B.

4 Undominated Equilibria

We study bidders with submodular valuation functions. Following Krishna [13]
and Milgrom [17], we consider the standard multi-unit auction format, where
bidders submit a vector of non-increasing marginal bids, i.e., encode their ac-
tual valuation function in a submodular function3. A similar situation occurs
in combinatorial auctions with item-bidding [5,2] wherein bidders encode their
valuation functions with additive functions.

Assumption 1 The strategy space of a bidder i consists of all bidding vectors
bi for which bi(1) ≥ bi(2) ≥ ... ≥ bi(k).

A direct consequence of Assumption 1 is that, under any strategy profile b, the
price p(b) never exceeds any of the winning bids. Lemmas 1 and 2 below state
two well known facts about the Uniform Price Auction with submodular bidders
(see e.g. [13,17]). We state them here to signify that Lemma 1 follows from
Assumption 1 and Lemma 2 follows from the assumption and from Lemma 1.

Lemma 1. For bidders with submodular valuations, and for any j ∈ [k], it is a
weakly dominated strategy to declare a bid bi(j) with bi(j) > mi(j).

Remark 1. By Lemma 1, a weakly undominated strategy captures a stricter no-
tion of conservative behavior, than the usual “no-overbidding” assumption [2,4,5].
In our setting, no-overbidding would mean

∑r
j=1 bi(j) ≤ vi(r) for any

r = 1, . . . , k.

3 This requirement is implementable: the auctioneer can exclude non-conforming bid-
ders. Also, simple examples exhibit its necessity for ensuring individual rationality.
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To distinguish from the usual no-overbidding assumption, we call a bidder i who
bids at most mi(j) for any j ∈ [k] conservative with respect to marginal bids.

Lemma 2. In an undominated strategy, a bidder with a submodular valuation
never declares a bid bi(1) �= vi(1).

We now give a characterization of a subset of undominated equilibria:

Proposition 2. Let b be a pure Nash equilibrium strategy profile of the Uniform
Price Auction in undominated strategies for submodular bidders, with uniform
price p(b). There always exists a pure Nash equilibrium b′ in undominated strate-
gies, satisfying x(b′) = x(b) and:

1. b′i(x) = mi(x), for every bidder i and every x ≤ xi(b).
2. p(b′) ≤ p(b) and p(b′) is either 0 or equal to vi(1) for some bidder i.

5 Inefficiency of Pure Nash Equilibria

This section presents welfare guarantees for pure Nash equilibria of the standard
form of the Uniform Price Auction, discussed in the previous section. First we
are going to show a general result about upper bounding the Price of Anarchy
of pure Nash equilibria. Given a configuration b, we will be denoting by βj(b),
j = 1, . . . , k, the j-th lowest winning bid, so that β1(b) ≤ β2(b) ≤ · · · ≤ βk(b).
In this section we will omit an explicit reference to b in this notation, as it will
be clear from the context. Instead, we use simply βj , j = 1, . . . , k.

Lemma 3. Let b denote an undominated pure Nash equilibrium of a Uniform
Price Auction for k units and x(b) the corresponding allocation. Let x∗ be an
assignment that maximizes the social welfare. The Price of Anarchy is at most:

PoA ≤ sup
b

max
i:x∗

i −xi(b)>0

⎡⎢⎣vi(x∗i ) ·
⎛⎝vi(xi(b))+

x∗
i−xi(b)∑
j=1

βj

⎞⎠−1
⎤⎥⎦ (1)

The following result quantifies the inefficiency of the standard multi-unit Uni-
form Price auction for multi-demand bidders with symmetric submodular valu-
ation functions and identifies the impact of demand reduction [1].

Theorem 1. The Uniform Price Auction recovers in an undominated pure Nash
equilibrium a fraction of at least 1−e−1 of the optimal Social Welfare, for multi-
demand bidders with symmetric submodular valuations.

Proof. It suffices to upper bound the social inefficiency of undominated equilibria
satisfying the properties of Proposition 2. Let p(b) be the uniform price paid
under equilibrium b. To estimate a lower bound on the Social Welfare of b, we
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consider possible deviations of bidders i with x∗i > xi(b). At least one such
bidder exists, otherwise, xi(b) ≥ x∗i for every i implies that b is socially optimal.

For every bidder i with x∗i > xi(b) define ri(b) = x∗i − xi(b); for every value
j = 1, . . . , ri(b) there exists a deviation that will grant him j additional units to
the ones he already holds under b; this is due to the fact that all bidders play
marginal bids at most equal to their marginal valuations in b. Since a sorting
of the marginal values determines x∗, every “socially optimal winner” i (with
x∗i ≥ 1) can feasibly deviate under b so as to obtain at least x∗i units. If ri(b) > 0,
a deviation of i for obtaining any j = 1, . . . , ri(b) additional units will raise the
uniform price to exactly βj (using Proposition 2) and cannot be profitable for i:

vi(xi(b) + j)− (xi(b) + j) · βj ≤ vi(xi(b))− xi(b) · p(b)
To simplify notation, we use hereafter xi for xi(b), p for p(b) and ri for ri(b).
Then we deduce for every i with ri > 0:

βj ≥
1

j + xi
·
(
vi(xi + j)− vi(xi)

)
, for j = 1, . . . , ri (2)

We can now proceed to upper bound (1) from Lemma 3, using (2) as follows:

vi(xi) +

ri∑
j=1

βj ≥ vi(xi) +

ri∑
j=1

1

j + xi
·
(
vi(xi + j)− vi(xi)

)
(3)

= vi(xi) +

ri∑
j=1

(
j

j + xi
· vi(xi + j)− vi(xi)

j

)

≥ vi(xi) +
vi(x

∗
i )− vi(xi)

x∗i − xi
·

ri∑
j=1

j

j + xi
(4)

= vi(xi) +
vi(x

∗
i )− vi(xi)

x∗i − xi
·

⎛⎝x∗i − xi − xi ·
ri∑
j=1

1

j + xi

⎞⎠
= vi(x

∗
i )−

vi(x
∗
i )− vi(xi)

x∗i − xi
· xi ·

ri∑
j=1

1

j + xi
(5)

≥

⎛⎝vi(x∗i )− xi
x∗i

ri∑
j=1

vi(x
∗
i )

j + xi

⎞⎠ ≥
(
1− xi

x∗i

∫ x∗
i

xi

1

y
dy

)
vi(x

∗
i ) (6)

=

(
1 +

xi
x∗i
· ln xi

x∗i

)
· vi(x∗i ) ≥ (1 − e−1) · vi(x∗i ) (7)

Here (3) occurs by substitution of βj from (2). (4) follows by submodularity

of the valuation functions, particularly that vi(xi+j)−vi(xi)
j ≥ vi(x

∗
i )−vi(xi)
x∗
i−xi

, for

any j = 1, . . . , ri where ri = x∗i − xi. For (6) we used
vi(x

∗
i )−vi(xi)
x∗
i −xi

≤ vi(x
∗
i )

x∗
i

,

given vi(0) = 0; we bounded the sum of harmonic terms with the integral, using



Uniform Price Auctions: Equilibria and Efficiency 235∑n
k=m f(k) ≤

∫ n

m−1
f(x)dx, for a monotonically decreasing positive function.

We obtain the final result by minimizing f(y) = 1+y ln y over (0, 1) for y = e−1.
The claimed bound for the PoA follows by Lemma 3. ��

We will produce an almost matching lower bound for the result of theorem 1,
which holds for any number of units k ≥ 9. We note that for k = 2, 3 units, tight
bounds of 4

3 and 18
13 can be derived by direct manipulation of (3).

Theorem 2. For any k ≥ 9, there exist instances where the Uniform Price
Auction recovers in an undominated pure Nash equilibrium at most a factor of
(1− e−1 + 2

k ) of the optimal social welfare, even for 2 submodular bidders.

Proof. Consider k ≥ 9 units and 2 bidders. For q = �e−1 · k − 1� (notice that
q ≥ 1) define the valuation functions to be:

v1(x) = x and v2(x) =

{
x− q · (Hk −Hk−x) x ≤ k − q

k − q · (1 +Hk −Hq) x > k − q

where Hm is the m-th harmonic number. Notice that m2(x) = 0 for x > k − q.
It can be verified that v2 is symmetric submodular in x; for x ≤ k − q we have:

v2(x) = x− q ·
(
Hk −Hk−x

)
=

x∑
j=1

(
1− q

k − j + 1

)
=

x∑
j=1

r − j + 1

k − j + 1

where r = k − q. Then r−j+1
k−j+1 ≤

r−j+2
k−j+2 = r−(j−1)+1

k−(j−1)+1 , thus v2(x) − v2(x − 1) ≤
v2(x − 1) − v2(x − 2), for x ≤ k − q; for x > k − q, v2(x) = v2(x − 1), thus v2
is submodular. For the socially optimal allocation we grant all units to bidder
1, i.e., x∗ = (k, 0, . . . , 0) and SW (x∗) = k. Consider next the configuration b
where:

b1(j) =

{
1, for j ≤ q

0, for j > q
b2(j) =

{
r−j+1
k−j+1 , for j ≤ r = k − q

0, for j > r

Thus, under b, q units are obtained by bidder 1 and k − q units by bidder 2. b
is a pure Nash equilibrium; indeed, bidder 2 is essentially truthful and, with a
uniform price of 0, obtains the maximum of his utility for the won units. Given
that he plays undominated strategies, he may not raise any of his bids further.
Player 1 also pays the uniform price of 0, so he does not have incentive to drop
any of his units. Should player 1 retain any j ≤ r of the r = k − q units held by
bidder 2, he would hold a total of k − r + j units at a uniform price j

k−r+j ; the
marginal value gain of j to bidder 1 from the extra units is cancelled out by a
total payment equal to j. For the social welfare of b we have:

SW (b) = v1(q) + v2(r) = k ·
(
1− q

k
· (Hk −Hq)

)
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Then, the Price of Anarchy is at least k/SW (b), i.e. at least:

(
1− q

k
·
(
Hk −Hq

))−1

≥
(
1− e−1 · k − 2

k
·
∫ k

q+1

1

y
dy

)−1

=

(
1− e−1 · k − 2

k
· ln k

�e−1k − 1�+ 1

)−1

≥
(
1− e−1 +

2

k

)−1

where we used Hk −Hq =
∑k

r=q+1
1
r ≥

∫ k+1

q+1
1
ydy ≥

∫ k

q+1
1
ydy, for monotonically

decreasing positive functions; the final derivation follows by q + 1 ≤ e−1 · k and
�e−1k − 1�+ 1 ≥ e−1k ��

6 Inefficiency of Bayes-Nash Equilibria

In this section we investigate the social inefficiency of (mixed) Bayes-Nash equi-
libria. Following [5,2], to ensure the existence of mixed Bayes-Nash equilibria,
we make the assumption of a finite bidding space for bidders, using Remark 1
combined with a sufficiently fine discretization. Just like for pure equilibria, we
examine Bayes-Nash equilibria with undominated strategies in their support4.

We introduce auxiliary notation for the analysis that follows. Recall that for
any valuation profile v ∈ V , xv = (xv1 , . . . , x

v
n) is the socially optimal assignment.

For any bidder i ∈ N let U i ⊆ V denote the subset of valuation profiles v ∈ V
where xvi ≥ 1, i.e., U i = {v ∈ V|xvi ≥ 1}; these are the profiles under which
i is a “socially optimal winner”. Accordingly, define Wv = {i|xvi ≥ 1}. Given
any (pure) bidding profile b, we use the “operator” βj(b), to denote the j-th
lowest winning bid in b, as in section 5. The following Lemma facilitates the
expression of BNE conditions regarding unilateral deviations; it has been proved
in a different form and under a different context (for simultaneous single-unit
auctions with combinatorial bidders) in [5,2].

Lemma 4. For each bidder i ∈ N with symmetric submodular valuation vi,

define m
[j]
i = (mi(1),mi(2), . . . ,mi(j), 0, 0, . . . , 0) . For any conservative bidding

profile b−i, and for any number of units j: ui(m
[j]
i , b−i) ≥ vi(j)− j · βj(b−i).

Theorem 3. The Price of Anarchy of Bayes-Nash Equilibria in Uniform Price
Auctions with symmemtric submodular bidders is at most O(log k).

Proof. (Sketch) For any Bayes-Nash equilibrium B, fix any valuation profile
v ∈ V and a bidder i ∈ Wv. For j = 1, . . . , xvi , for any valuation profile w−i ∈
V−i and any strategy b ∼ B

w−i

−i , apply Lemma 4. Then take expectation over

b−i ∼ B
w−i

−i and, subsequently, over all valuation profiles w−i ∈ V−i, to obtain:

4 Such Bayes-Nash equilibria can be shown to exist; moreover the strategies in their
support can be shown to be conservative with respect to marginal bids.
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Ew−i|vi
[
E
b−i∼B

w−i
−i

[ui(m
[j]
i , b−i)]

]
≥ vi(j)− j · Ew−i|vi

[
E
b−i∼B

w−i
−i

[βj(b−i)]
]

Because under BNE B bidder i does not have incentive to deviate:

Ew−i|vi
[
Eb∼B(vi,w−i) [ui(b)]

]
≥ Ew−i|vi

[
E
b−i∼B

w−i
−i

[ui(m
[j]
i , b−i)]

]
Thus

1

j
Ew−i|vi

[
Eb∼B(vi,w−i) [vi(xi(b))]

]
+Ew−i|vi

[
E
b−i∼B

w−i
−i

[βj(b−i)]
]
≥ vi(j)

j
.

For any pure strategy ci of bidder i, βj(b−i) ≤ βj(ci, b−i) since the presence of
ci means that more bids are competing to win. Also, by independence of πi, we

have that
∑

w−i
π(w−i|vi) = 1. By submodularity, vi(j)

j ≥ vi(x
v
i )

xv
i

. Then:

1

j
· Ew−i|vi

[
Eb∼B(vi,w−i) [vi(xi(b))]

]
+ Ew

[
Eb∼Bw [βj(b)]

]
≥ vi(x

v
i )

xvi

Summing both sides over j = 1, . . . , xvi , then taking the expectation over the
distribution of v ∈ U i and summing over i ∈ N yields:

∑
i

∑
v∈Ui

π(v)

xv
i∑

j=1

1

j
· E w−i|vi,

b∼B(vi,w−i)

[
vi(xi(b))

]
+
∑
i

∑
v∈Ui

π(v)

xv
i∑

j=1

E w,
b∼Bw

[
βj(b)

]

≥
∑
i

∑
v∈Ui

π(v)

xv
i∑

j=1

vi(x
v
i )

xvi
=

∑
v∈V

π(v)
∑
i∈Wv

vi(x
v
i ) = Ev

[
SW (xv)

]
(8)

The result follows by upper bounding the first and second summands of the
first line of (8) by (1 + ln k)Ev[SW (Bv)] and Ew[SW (Bw)] respectively. The
bounding of the second summand in particular can be carried out by usage of∑

i

∑xi

j=1 βj(b) ≤ SW (b), for any bidding configuration b that is conservative
w.r.t. marginal bids and for any assignment x of all k units to n bidders. ��
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Abstract. We consider strategic games in which each player seeks a
mixed strategy to minimize her cost evaluated by a concave valuation V
(mapping probability distributions to reals); such valuations are used
to model risk. In contrast to games with expectation-optimizer players
where mixed equilibria always exist [15,16], a mixed equilibrium for such
games, called a V-equilibrium, may fail to exist, even though pure equi-
libria (if any) transfer over. What is the impact of such valuations on the
existence, structure and complexity of mixed equilibria? We address this
fundamental question for a particular concave valuation: expectation
plus variance, denoted as RA, which stands for risk-averse; so, vari-
ance enters as a measure of risk and it is used as an additive adjustment
to expectation. We obtain the following results about RA-equilibria:

– A collection of general structural properties of RA-equilibria con-
necting to (i) E-equilibria and Var-equilibria, which correspond to
the expectation and variance valuations E and Var, respectively, and
to (ii) other weaker or incomparable equilibrium properties.

– A second collection of (i) existence, (ii) equivalence and separation
(with respect to E-equilibria), and (iii) characterization results for
RA-equilibria in the new class of player-specific scheduling games.
Using examples, we provide the first demonstration that going from
E to RA may as well create new mixed (RA-)equilibria.

– A purification technique to transform a player-specific scheduling
game on identical links into a player-specific scheduling game so
that all non-pure RA-equilibria are eliminated while new pure equi-
libria cannot be created; so, a particular game on two identical links
yields one with no RA-equilibrium. As a by-product, the first PLS-
completeness result for the computation of RA-equilibria follows.

1 Introduction

In a strategic game, each player is choosing a strategy, and her utility (resp., cost)
depends on the choices of all players in the game. The player is allowed to use
a mixed strategy, a probability distribution over her strategies. (A pure strat-
egy is the case where the player is choosing a certain strategy with probability
1.) Much of Non-Cooperative Game Theory has been built on the fundamen-
tal assumption that players are expectation-optimizers: each player maximizes

M. Serna (Ed.): SAGT 2012, LNCS 7615, pp. 239–250, 2012.
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(resp., minimizes) the expectation of her utility (resp., cost); the earliest account
of Expected Utility Theory, or EUT for short, is the historical book of von Neu-
mann and Morgenstern [17]. In his ground-breaking result, John F. Nash [15,16]
used the linearity of expectation (in the probabilities) to prove the existence of
a Nash equilibrium, where no player can improve her expectation by switch-
ing to another mixed strategy. Existence extends beyond expectation to concave
(resp. convex) valuations (functions from probability distributions to reals) for
games where players maximize (resp., minimize) their utilities (resp., costs) [4].
The assumption that players are expectation-optimizers may not fit well into
the context of risk (cf. [1]), where economic agents may risk for a mixed strategy
yielding uncertain utility over one with more certain, but possibly higher, expec-
tation. This is because valuation functions that cannot be cast as expectations
remain outside the framework of EUT. Even worse, when trading expectation for
arbitrary valuations, mixed equilibria are no a priori preserved even though pure
equilibria are. So, concave (resp., convex) valuations may even fail to guarantee
existence of mixed equilibria when players minimize (resp., maximize) valuations.

Modelling risk has been a very active research topic (see, e.g., [1,11,12,18,19]).
Rabin [18] underlines the inadequacy of expectation to model risk. Already in
1906, Fisher [1] proposed standard deviation (the square root of variance) as a
measure of riskiness which should be added to expectation. Standard deviation
of the return on investment is the standard measure of risk in modern Port-
folio Theory (cf. [11]). Markowitz [11], Nobel Laureate of 1990, advocates that
investors should care about both the risk and the (expected) return of their
investment; he posed the problem of minimizing the variance of a portfo-
lio taking as a constraint a required return in expectation. To the best of our
knowledge, Crawford [3] was the first to ask how non-EUT valuations impact the
existence and structure of mixed equilibria; he presented [3] a simple game
with players maximizing a non-concave valuation as the first counter-example
to the existence of mixed equilibria outside EUT. So, mixed equilibria get en-
dangered and their decision problem becomes non-trivial when players minimize
(resp., maximize) a non-convex (resp., non-concave) valuation. The possibility
that new mixed equilibria be created was left open.

Fiat and Papadimitriou [6] initiated the study of the complexity of mixed equi-
libria in contexts where players maximize a non-concave valuation, thus bringing
a major challenge into theAlgorithmic Game Theory community; we continue this
study.We shall consider gameswith playersminimizinga concave valuation since
we are interested in congestion-like games [20] where players seek tominimize their
delay costs. In this vein, we shall present a collection of structural and complexity
results for mixed equilibria incurred by a particular concave valuation, namely ex-
pectation plus variance, denoted as RA, in both general games and in player-
specific scheduling games, a new class of congestion-like games we introduce.

To model concave valuations, we adopt a definition of concavity which applies
to a function over the convex closure of a finite set and is more general than the
standard. Roughly speaking, such a function is concave if its values on the
convex closure cannot go below any of its values on the set, but must go above
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some of its values on the set in case those are not all equal. We chose to use this
definition since it is the most general definition allowing to prove our results. We
prove that RA is concave in the probabilities of the corresponding player under
the adopted definition of concavity (Proposition 5).

A player i is interested in minimizing her valuation : the value of her valu-
ation function Vi on the tuple of the mixed strategies of players. A collection
of valuation functions V induces a V-equilibrium where no player could de-
crease her valuation by unilaterally switching to another mixed strategy; so,
each player is playing a best-response mixed strategy with respect to V. We
shall also treat two concepts similar to but different than V-equilibrium. The
Strong Equilibrium property requires that for each player, each pure strat-
egy chosen with non-zero probability is a best-response (with respect to V) to
the other players’ mixed strategies. The Weak Equilibrium property loosens
Strong Equilibrium by only requiring that for a player, all pure strategies chosen
with non-zero probability incur the same value of V conditioned on the other
players’ mixed strategies. So, Strong Equilibrium implies Weak Equilibrium (but
not vice versa). Interestingly, we show that for a concave V, the Strong Equilib-
rium property holds for each player in a V-equilibrium (Proposition 1).

We shall focus on the structure of RA-equilibrium, in relation to E-equilibrium
and Var-equilibrium corresponding to the sibling expectation and variance
valuations, respectively, denoted as E and Var. Note that E-equilibrium coincides
with both Nash equilibrium and the Strong Equilibrium (for E). We shall consider
the new class of player-specific scheduling games where the cost (that is,
delay) of a player on the link it chooses is a sum of weights, one for each player
choosing that link and each depending on the two players involved and the
link; so, each player has her own way of evaluating the influence of others on
her. Player-specific scheduling games are different than congestion games with
player-specific payoff functions [14] where (i) the weight of player depends neither
on other players nor on the link, and (ii) each player uses her player-specific
latency function to evaluate her delay on the link it chooses. Player-specific
scheduling games simultaneously capture (i) the unrelated links game [10],
which generalizes the (extensively studied) related links game [9], and (ii) the
max-cut game [2,5] inspired by the Max-Cut problem [21].

We first prove that if for a player (i) the Strong Equilibrium property holds
with respect to RA and (ii) the Weak Equilibrium property holds with respect to
E, then the player is playing a best-response with respect to RA (Theorem 6). In
a sense, this result provides a converse to Proposition 1 for a particular concave
valuation RA: the Weak Equilibrium property with respect to E suffices for the
Strong Equilibrium property with respect to RA to imply best-responses with
respect to RA. More interestingly, we show that RA-equilibrium implies Weak
Equilibrium (i) with respect to E in both the game and the square game where
utilities are squared, and (ii) with respect to Var (Theorem 7). The necessary
conditions on RA-equilibria established in Theorem 7 take the form of a system of
non-linear equations. So, Theorem 7 can be seen as suggesting the first theoretical
explanation behind any general inexistence result of (mixed) V-equilibria when
(players minimize and) V is concave: it may be due to the general unsolvability
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of non-linear systems. We shall treat the necessary conditions on RA-equilibria
(in Theorem 7) as a tool for characterizing their (in)existence in concrete cases.
We continue with results specific to particular games.

The fully mixed case: (I) We prove that in the identical links game [9], we
get an RA-equilibrium if every player chooses every link with equal probability
(Theorem 11). We continue to demonstrate limitations on the existence of fully
mixed equilibria in the form of characterizations; these follow from the necessary
Weak Equilibrium properties (Theorem 7). (II) In the related links game, even
for two players, no single player could randomize over three links with distinct
capacities in an RA-equilibrium (Theorem 12); this excludes fully mixed RA-
equilibria in the presence of such a triple of links. This implies a separation
between fully mixed RA-equilibria and fully mixed E-equilibria [13] for the case
of two players in the related links game. (III) For the case of three players on
three links in the player-specific scheduling game, there is a fully mixed Var-
equilibrium if and only if a certain triangle inequality holds among the weights
(Proposition 14). (IV) Finally, we look at bimatrix games on two strategies.
We derive a combinatorial characterization (Theorem 15) of the two (2 × 2)
matrices for which a fully mixed RA-equilibrium may exist.

Two links: (I) RA-equilibria and E-equilibria coincide in the identical links
game with two links (Theorem 16). Using an example of an identical links game
on three links (Example 1), the coincidence could not extend beyond two (iden-
tical) links. (II) We next assume that the two links are ordered: link 1 incurs
less weight to a fixed player due to some other (also fixed) player choosing the
same link than link 2; this is fulfilled in the related links game with two links of
different capacities. We show that, in an RA-equilibrium, each player either (i)
is pure or (ii) other players influencing her on link 2 are all pure (Theorem 17).
So, there is no fully mixed RA-equilibrium, implying a separation between fully
mixed RA-equilibria and E-equilibria in the related links game with two links.

Two players: We consider a generalization of player-specific scheduling games,
called player-specific scheduling games with monotone latencies, where the in-
curred cost to a player is the value of some monotone function (specific to the
link she chooses) on the sum of weights of players choosing the same link. We
show that, in an RA-equilibrium, either (i) there is a pure player, or (ii) the two
players are choosing from disjoint sets of links, (iii) they are choosing from the
same set of links (Theorem 18). We explore the potential of these necessary con-
ditions to suffice for an RA-equilibrium or for an E-equilibrium. We present two
suitable related links games (Example 2) to demonstrate that (I/a) Condition
(iii) is not sufficient for an RA-equilibrium even for a fully mixed profile that is
an E-equilibrium; (I/b) Condition (ii) is not sufficient for an E-equilibrium even
for a fully mixed profile that is an RA-equilibrium. Even more so, there is a game
with an E-equilibrium violating both Conditions (ii) and (iii) (Example 3).

We present a new purification technique to eliminate all mixed RA-equilibria
from a given player-specific scheduling game on two identical links: given such a
game, we transform it to amodified player-specific scheduling game with nomixed
RA-equilibrium whose pure equilibria are also pure equilibria of the original game



Minimizing Expectation Plus Variance 243

(Theorem 20). (The transformation is surprisingly simple: we simply multiply
the incurred weight of each player choosing link 2 by a large factor and add 1
to it.) So, any RA-equilibrium in the modified game is pure. This is the first
concrete instance of a specific class of games and a specific valuation (RA) such
that there may only be pure equilibria with respect to the valuation. The proof
of Theorem 20 utilizes Theorem 17 to conclude that for a player in the modified
player-specific scheduling game, either (i) she is pure or (ii) her neighbors are
pure; we argue that case (ii) is excluded, so that each player is pure. A particular
subclass of player-specific scheduling games are the max-cut games where all
incurred weights are symmetric in the two players. This subclass may be viewed
either as a class of games or as a PLS-problem corresponding to the minimization
of non-cut edges in the weighted graph induced by the weights, known to be
PLS-complete [21]. We observe that local optima for the PLS-problem exactly
correspond to pure equilibria in the modified max-cut game (Lemma 21). Hence,
computing an RA-equilibrium for the modified max-cut game is PLS-complete
(Theorem 22). This is the first PLS-completeness result about computing an
RA-equilibrium. Finally, we present an example of a player-specific scheduling
game on two identical links with no pure equilibrium. By Theorem 20, this game
is transformed into a player-specific scheduling game on two links with no RA-
equilibrium (Corollary 23). Hence, restricting to player-specific scheduling games
cannot outlaw the inexistence of RA-equilibria.

We remark that the standard definition of strict concavity (cf. Section 2),
which is a restriction of concavity, does not cover RA while it excludes mixed
equilibria (cf. [19]). In contrast, the definition of concavity we adopted, which
encompasses concavity, covers RA while it does not exclude mixed equilibria. Fiat
and Papadimitriou [6, Section 2] introduced a definition of strict concavity which
refers to a pair of a valuation function and a game. It generalizes the standard
definition by requiring strict concavity to hold only if the game is in general
position ; games not in general position have measure 0. Whether the definition
of strict concavity in [6, Section 2] covers RA was not considered in [6]. Fiat and
Papadimitriou [6] proved that games in general position with a strictly concave
valuation may not have mixed quilibria. Hence, the definition of strict concavity
in [6, Section 2] does not exclude mixed equilibria, but they may exist for a class
of games with measure 0. Fiat and Papadimitriou [6, Proposition 2] prove that
RA is concave. We use a simple proof to prove that RA is concave under the
more general definition of concavity (Proposition 5). Fiat and Papadimitriou [6,
Theorem 5] provide a proof sketch to claim that it is NP-complete to decide if
a game with two players has an RA-equilibrium.

2 Framework and Preliminaries

Consider a finite set T = {t1, . . . , tn} and denote as τ the convex closure of T:

τ =
{
x =

∑n
i=1 xi ti | xi ≥ 0 for each i ∈ [n] and

∑
i∈[n] xi = 1

}
. For a point

x ∈ τ , the support of x is σ(x) = {i ∈ [n] | xi > 0}. A function V : τ → R.
is concave if the following two conditions hold for each point x ∈ τ : (C1) If
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V(tj) = V(tk) for all indices j, k ∈ σ(x), then V(x) ≥ V(tj) for each j ∈ σ(x).
(C2) If there are indices j, k ∈ σ(x) with V(tj) �= V(tk), then V(x) > V(t�) for
some 
 ∈ σ(x). This is different from the two standard definitions: (1) A real-
valued function V : T → R on a convex set T is concave if for any two points
t1, t2 ∈ T and any number δ ∈ [0, 1], V(δ t1+(1− δ) t2) ≥ δ V(t1)+ (1− δ)V(t2).
(2) The function V is strictly concave if for any two points t1, t2 ∈ T with
t1 �= t2 and any number δ ∈ (0, 1), V(δ t1 + (1 − δ) t2) > δ V(t1) + (1 − δ)V(t2).
Our definition is more general than the standard definition of concavity.

For an integer n ≥ 2, an n-players game G, or game for short, consists of
(i) n finite sets {Sk}k∈[n] of strategies, and (ii) n cost functions {μk}k∈[n],

each mapping S =
∏

k∈[n] Sk to R. So μi(s) is the cost of player i on s. The

square game G2 results from G by substituting in (ii) the squares of the cost
functions for G. A profile is a tuple s = 〈s1, . . . , sn〉 of strategies, one per player.
For a player i ∈ [n], the partial profile s−i results by eliminating si from s;
denote S−i the set of partial profiles s−i. A mixed strategy for player i is a
probability distribution pi on her strategy set Si. The support of player i in pi is
the set σ(pi) = {
 ∈ Si | pi(
) > 0}. Denote as p�i the pure strategy of player i
choosing the strategy 
 ∈ Si with probability 1. Denote asΔ(Si) the set of mixed
strategies for player i. A mixed profile is a tuple p = 〈p1, . . . , pn〉 of n mixed
strategies, one per player; denote as Δ the set of mixed profiles. For a player i,
the partial mixed profile p−i results by eliminating pi from p. A mixed profile
p induces probabilities p(s) and p(s−i) for each profile s and partial profile s−i.
A player i is fully mixed in p if for each strategy si ∈ Si, 0 < pi(si) < 1; p is
fully mixed if each player is fully mixed. Fix a mixed profile p. For a player
i ∈ [n] and a strategy 
 ∈ Si, denote as A�

i and B�
i the conditional expectations

of her cost and square of the cost had she chosen strategy 
.
For each player i ∈ [n], a valuation function Vi is a mapping from Δ(S) to

R, which yields a valuation Vi(p) to each mixed profile p ∈ Δ(S) for player i.
A valuation V = 〈V1, . . . ,Vn〉 is a tuple of valuation functions, one per player.
Denote as GV the game G together with the tuple V of valuation functions; so,
each player aims at minimizing her valuation in the game GV. Fix a player i ∈ [n].
Say that the mixed strategy pi is a Vi-best response to the partial mixed profile
p−i if Vi (pi,p−i) = min {Vi (p

′
i,p−i)min p′i ∈ Δ(Si)}; so, the mixed strategy pi

minimizes the valuation Vi(p) of player i. The mixed profile p is a V-equilibrium
(for the game GV) if for each player i ∈ [n] the mixed strategy pi is a Vi-
best response to the partial mixed profile p−i; so, no player could unilaterally
deviate to another mixed strategy p′i to decrease her valuation Vi(p). Nash’s
Theorem [15,16] establishes that the game G has at least one mixed equilibrium
with respect to expectation; it was extended by Debreu [4] to establish the
existence of at least one V-equilibrium in case all valuation functions V are
convex (resp., concave) and players are minimizers (resp., maximizers). If the
valuation functions V are concave (resp., convex) and players are minimizers
(resp., maximizers), then the existence of a V-equilibrium is not guaranteed.

The mixed profile p has the Strong Equilibrium property for player i ∈ [n]

in GV if for each strategy 
 ∈ σ(pi), Vi

(
p�i ,p−i

)
= min

{
Vi

(
p�

′
i ,p−i

)
| 
′ ∈ Si

}
;
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so, each pure strategy in the support of player i is a Vi-best-response to the
partial mixed profile p−i. The mixed profile p has the Strong Equilibrium
property if it has the Strong Equilibrium property for each player. The mixed
profile p has the Weak Equilibrium property for player i ∈ [n] in the game

GV if for each pair of strategies 
, 
′ ∈ σ(pi), Vi

(
p�i ,p−i

)
= Vi

(
p�

′
i ,p−i

)
. The

mixed profile p has the Weak Equilibrium property in the game GV if it has
the Weak Equilibrium property for each player. A fully mixed profile with the
Weak Equilibrium property, has the Strong Equilibrium property. We show:

Proposition 1. For GV, fix player i ∈ [n]. Assume for each partial mixed profile
p−i ∈ Δ(S−i), the function Vi (pi,p−i) is concave in pi. If pi is a Vi-best-
response to p−i, then p has the Strong Equilibrium property for i.

A player-specific scheduling game is equipped with a weight ω(i, j, 
) for
each triple of a player i ∈ [n], a player j ∈ [n] and a strategy 
 ∈ Si, with
S1 = . . . = Sn = [m]; ω(i, j, 
) represents the load due to player j incurred
to player i on strategy 
. The m strategies are also called links. Given the
collection of weights {ω(i, j, r)}i,j∈[n],r∈Si

, the cost function μi is defined by

μi (s) =
∑

j | sj=si
ω (i, j, si). A player-specific scheduling game on iden-

tical links is the special case of a player-specific scheduling game where for
each pair of players i, i′ ∈ [n], for each pair of links 
, 
′, ω(i, j, 
) = ω(i, j, 
′).
The following are important special cases of player-specific scheduling games:
(1) The unrelated links game [10] where for each player i ∈ [n], for each
strategy 
 ∈ [m], and for each player j ∈ [n], ω (i, j, 
) = ω (j, 
); so, there is
incurred the same load ω (j, 
) due to player j on strategy 
 to all players i ∈ [n].
(This special case is more general than the well-studied related links game [9]

where ω (j, 
) =
wj
c� for a collection of weights {wi}i∈[n] and a collection of ca-

pacities {c�}�∈[m].) (2) The max-cut game or party affiliation game [2,5],
denoted as MCG, is the symmetric special case of a player-specific game on
two identical links where for each pair of players i, j ∈ [n], ω(i, j) = ω(j, i).
The non-zero weights in a max-cut game induces an undirected (edge-weighted)
graph G = 〈V,E〉 with V = [n]. Each player is identified with a vertex v ∈ V ;
for a player i ∈ [n], denote as N(i) = {j ∈ [n] | {i, j} ∈ E} the neighborhood of
i in [n]. Clearly, μi (s) =

∑
j∈N(i)|sj=si

ω (i, j). So, each player is minimizing the
sum of weights on edges to neighbors choosing the same strategy, called non-
cut edges. Thus, a pure equilibrium for the max-cut game is a local minimum
with respect to the sum of weights on neighboring non-cut edges; the well-known
Max-Cut problem asks for the global minimum (resp., global maximum) with
respect to the total sum of weights on non-cut edges (resp., cut edges). We now
derive expressions for A�

i and B�
i , with i ∈ [n] and 
 ∈ [m], to be used later:

Lemma 2. Consider a player-specific scheduling game. Fix a mixed profile p.
Then, for each pair of a player i ∈ [n] and a link 
 ∈ [m], A�

i = ω (i, i, 
) +∑
k∈[n]\{i} pk(
) · ω (i, k, 
) and

B�
i = ω2 (i, i, 
) + 2 ω (i, i, 
)

∑
k∈[n]\{i}

pk(
) · ω (i, k, 
) +
∑

k∈[n]\{i}
pk(
) · ω2(i, k, 
)
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+2
∑

j,k∈[n]\{i}
pj(
) pk(
)ω (i, j, 
) ω (i, k, 
) .

We shall treat (i) the expectation Ei(p) = Es∼p (μi(s)) =
∑

s∈S p(s)μi(s),

(ii) the variance Vari(p) =
∑

s∈S p(s)μ2
i (s) −

(∑
s∈S p(s)μi(s)

)2
, so that

for a strategy 
 ∈ Si, Vari
(
p−i, p

�
i

)
= B�

i −
(
A�
i

)2
, and (iii) the expectation

plus variance RAi(p) given as RAi(p) =
∑

s∈S p(s)μi(s) +
∑

s∈S p(s)μ2
i (s)−(∑

s∈S p(s)μi(s)
)2
; so, RAi(p) =

∑
�∈Si

pi(
) ·
(
A�
i + B�

i

)
−
(∑

�∈Si
pi(
) · A�

i

)2
.

Here, RA stands for risk-averse. With E = 〈E1, . . . ,En〉, Var = 〈Var1, . . . ,Varn〉
and RA = 〈RA1, . . . ,RAn〉, the games GE, GVar and GRA result.

3 Structural Results

Since RA is the sum of E and Var, it immediately follows:

Lemma 3. Assume that p is (i) an E-equilibrium (for GE) and (ii) a Var-
equilibrium (for GVar). Then, p is an RA-equilibrium (for GRA).

We also observe:

Lemma 4. Consider an E-equilibrium p with σ(pi) ∩ σ(pk) = ∅ for each pair
of players i, j ∈ [n]. Then, for each player i ∈ [n], Vari(p) = 0, so that p is an
RA-equilibrium.

We continue to show:

Proposition 5. Fix a player i ∈ [n] and a partial mixed profile p−i ∈ Δ (S−i).
Then, the valuation function RAi (pi,p−i) is concave in pi.

We now show:

Theorem 6. Fix a player i ∈ [n] and assume that the mixed profile p has (A1)
the Strong Equilibrium property for player i in the game GRA, and (A2) the Weak
Equilibrium Property for player i in the game GE. Then, the mixed strategy pi is
an RA-best response to p−i.

We continue to show:

Theorem 7. Fix a player i ∈ [n] and assume that the mixed strategy pi is an
RA-best-response to the partial mixed profile pi in the game GRA. Then, p has
the Weak Equilibrium property for player i in the games GE, (G2)E and GVar.

We finally show:

Proposition 8. A fully mixed profile is an RA-equilibrium if and only if it is
both an E-equilibrium and a Var-equilibrium.

The following observation follows immediately from Theorem 7.

Lemma 9. Consider a game G with two players, for which 〈p, q〉 is an RA-
equilibrium with σ(p) = σ(q). Then, 〈p, q〉 is an E-equilibrium.
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4 Existence, Equivalence, Separation and
Characterization Results

We partition into (I) results about the fully mixed case; (II) results for the
case of two links; and (III) results for the case of two players. We shall use an
implication of Lemma 2, providing expressions for Var in two special cases.

Corollary 10. Consider the player-specific scheduling game. Fix a profile p.
Then, for each pair of a player i ∈ [n] and a link 
 ∈ [m], Vari

(
p�i ,p−i

)
= B�

i −(
A�
i

)2
=
∑

k∈[n]\{i} p
�
k

(
1− p�k

)
ω2 (i, k, 
); for games on two links,Vari

(
p�i ,p−i

)
=∑

k∈[n]\{i} pk(1) pk(2)ω
2 (i, k, 
); for games with two players, Vari

(
p�i ,p−i

)
=

p�
i

(
1− p�

i

)
ω2

(
i, i, 


)
, where i denotes the player opponent to i.

For the fully mixed case, we first show:

Theorem 11. Consider the identical links game. Then, the fully mixed profile
p with all probabilities equal is an RA-equilibrium.

We continue to show:

Theorem 12. Consider the related links game G with two players on m ≥ 3
links. Fix a triple of links 1, 2, 3 with different capacities. Then, there is no RA-
equilibrium with a mixed player over links 1, 2, 3.

By Theorem 7, Corollary 10 immediately implies:

Lemma 13. Consider an RA-equilibrium p for the player-specific scheduling

game G with two players. Then, for each player i ∈ [2], p�
i

(
1− p�

i

)
ω2

(
i, i, 


)
is

constant over all links 
 ∈ σ(i).

The strictly positive numbers {α1, α2, α3} satisfy the strict triangle inequality
if (i) α1 < α2 + α3, (ii) α2 < α1 + α3, and (iii) α3 < α1 + α2. We show:

Proposition 14. The player-specific scheduling game G with two players on
three links has a fully mixed Var-equilibrium if and only if for each player i ∈ [2],

the numbers

{
1

ω2
(
i, i, 


) | 
 ∈ [3]

}
satisfy the strict triangle inequality.

A bimatrix game is a two-players game; it is represented as the pair of r × c
matrices 〈A,B〉 such that for each pair of indices 
 ∈ [r], 
′ ∈ [c], a��′ = μ1(
, 


′)

and b��′ = μ2(
, 

′). A 2 × 2 matrix A =

(
a11 a12
a21 a22

)
. is column-nice if there

holds one of conditions (C1) and (C2): (C1): a11 = a21 and a22 = a12. (C2)
(C2/a) a11 �= a21 and a12 �= a22; (C2/b) a11 > a21 if and only if a22 > a12;
(C2/c) a11 + a21 = a22 + a12. We show:
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Proposition 15. A bimatrix game SG = 〈A,B〉 on two strategies has a fully
mixed RA-equilibrium if and only if both matrices A and B are column-nice.

We now present results for the case of two links. We first show:

Theorem 16. For the identical links game with two links, a mixed profile is an
RA-equilibrium if and only if it is an E-equilibrium.

We now show:

Example 1. Consider the identical links game with three identical players on
three links. Then. there are: (1)An RA-equilibrium which is not an E-equilibrium.
(2) An E-equilibrium which is not an RA-equilibrium.

We finally show:

Theorem 17. Consider a player-specific scheduling game G on two links such
that for each pair of players i, j ∈ [n], either (A1) ω (i, j, 1) = ω (i, j, 2) = 0 or
(A2) ω (i, j, 1) < ω (i, j, 2). Consider an RA-equilibrium p (for the game GRA).
Then, for each player i ∈ [n], either (C1) pi is a pure strategy, or (C2) pk is a
pure strategy for each player k ∈ [n] \ {i} with ω (i, k, 2) �= 0.

We now present results for the case of two players. We first consider a generaliza-
tion of a player-specific scheduling game, called a player-specific scheduling
game with strictly monotone latencies, which comes with a collection of
strictly monotone latencies {fj : N→ N}j∈[m] so that for each player i ∈ [n] and

a profile s ∈ S, μi (s) = fsi

(∑
k∈[m] | sk=si

ω (i, k, si)
)
. A weighted schedul-

ing game with strictly monotone latencies is the special case where for
all triples of players i, j ∈ [n] and strategy 
 ∈ [m], ω (i, j, 
) = wj , for a
collection of weights {wk}k∈[n]. So, for a player i ∈ [n] and a profile p ∈ S,

μi (s) = fsi

(∑
k∈[m] | sk=si

wk

)
. We show:

Theorem 18. Consider a weighted scheduling game with strictly monotone la-
tencies G, with two players. Then, for an RA-equilibrium 〈p, q〉 of G, either (C1)
at least one player is pure, or (C2) σ(p) ∩ σ(q) = ∅, or (C3) σ(p) = σ(q).

We continue with two examples:

Example 2. Consider the related links game with two players. Then, there are:
(1) An E-equilibrium 〈p, q〉 with σ(p) = σ(q) which is not an RA-equilibrium. (2)
An RA-equilibrium 〈p, q〉 with σ(p) ∩ σ(q) = ∅ which is not an E-equilibrium.

Example 3. Consider the related links game with two players. Then, there is an
E-equilibrium 〈p, q〉 such that neither (C2) σ(p)∩σ(q) = ∅ nor (C3) σ(p) = σ(q).

Finally, we observe:

Lemma 19. A player-specific scheduling game with two players on three links
has a pure equilibrium.
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5 Inexistence and Complexity Results

Consider an instance of a player-specific scheduling game G on identical links,
defined by the weights {ω(i, j)}i,j∈[n]. Assume there are only two links. De-
note as G the corresponding class of player-specific scheduling games on two
identical links. Induced by the game G is the modified game Ĝ defined by
the weights ω̂(i, j, 
) = D · ω(i, j) if 
 = 1, or D · ω(i, j) + 1 if 
 = 2, for
each pair of players i, j ∈ [n]. where D = n + 1. Clearly, the modified game

G is a player-specific scheduling game. Denote as Ĝ the class of games resulting
from the transformation of games in G. Note that μ̂i(s) = μi(s) if si = 1, or
μi(s) + δi(s) if si = 2, where δi(s) = |{j ∈ [n] | sj = si = 2}|. So, 1 ≤ δi(s) ≤ n.
We show:

Theorem 20. Ĝ has no mixed RA-equilibrium, and every pure equilibrium of Ĝ
is a pure equilibrium of G.

Denote asMCG the subclass of G consisting of games where the non-zero weights
are symmetric; so, for each pair of players i, j ∈ [n], ω(i, j) = ω(j, i). Each
game MCG ∈ MCG is called a max-cut game [5,5]; its underlying (symmet-
ric) graph G = 〈V,E〉 is defined by the non-zero weights of the game MCG.
So, MCG is a class of games, but it can also be viewed as a PLS-problem [8]
where the global function (from profiles to integers) to be (locally) minimized is
W(s) =

∑
{i,j}∈E|si=sj

ω(i, j), and the neighborhood of each player i is defined

as [2] \ {si}; so it is the link to which player i can switch. In a similar way, we

associate with the classMCG the function Ŵ(s) = D ·W(s)+η(s), where η(s) =

|i ∈ [n] | si = 2|. We abuse notation to denote as MCG and M̂CG these PLS-
problems. We prove:

Lemma 21. A profile s is a local optimum in the PLS-problem M̂CG if and

only if s is a pure equilibrium in the game M̂CG.

M̂CG, viewed as a PLS-problem, has a local optimum. So, by Lemma 21 the

game M̂CG has a pure equilibrium and M̂CG is a PLS-problem. By [21], MCG
is PLS-complete. Theorem 20 implies that M̂CG has no mixed RA-equilibrium.
Theorem 20 and Lemma 21 establish a PLS-reduction fromMCG to M̂CG. So:

Theorem 22. It is PLS-complete. to compute an RA-equilibrium for the mod-

ified max-cut game M̂CG.

We continue with a player-specific scheduling game G1 with three players on two
identical links with no pure equilibrium. By Theorem 20, this implies:

Corollary 23. There is a player-specific scheduling game Ĝ1 with three players
on two links which has no RA-equilibrium.
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Abstract. Lookahead search is perhaps the most natural and widely
used game playing strategy. Given the practical importance of the method,
the aim of this paper is to provide a theoretical performance examina-
tion of lookahead search in a wide variety of applications. To determine a
strategy play using lookahead search, each agent predicts multiple levels
of possible re-actions to her move (via the use of a search tree), and then
chooses the play that optimizes her future payoff accounting for these
re-actions. There are several choices of optimization function the agents
can choose, where the most appropriate choice of function will depend on
the specifics of the actual game - we illustrate this in our examples. Fur-
thermore, the type of search tree chosen by computationally-constrained
agent can vary. We focus on the case where agents can evaluate only
a bounded number, k, of moves into the future. That is, we use depth
k search trees and call this approach k-lookahead search. We apply our
method in five well-known settings: industrial organization (Cournot’s
model); AdWord auctions; congestion games; valid-utility games and
basic-utility games; cost-sharing network design games. We consider two
questions. First, what is the expected social quality of outcome when
agents apply lookahead search? Second, what interactive behaviours can
be exhibited when players use lookahead search? We demonstrate how
the answer depends on the game played.

Keywords: game theory, market games, valid utility games, cournot,
stackelberg, adwords, network design, bounded rationality.

1 Introduction

Our goal here is not to prescribe how games should be played. Rather, we wish to
analyse how games actually are played. To wit we consider the strategy of looka-
head search, described by Pearl [27] in his classical book on heuristic search as
being used by “almost all game-playing programs”. To understand the lookahead
method and the reasons for its ubiquity in practice, consider an agent trying to
decide upon a move in a game. Essentially, her task is to evaluate each of her
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possible moves (and then select the best one). Equivalently, if she knows the
values of each child node in the game tree then she can calculate the value of
the current node. However, the values of the child nodes may also be unknown!
Recall two prominent ways to deal with this. Firstly, crude estimates based upon
local information could be used to assign values to the children; this is the ap-
proach taken by best response dynamics. Secondly, the values of the children can
be determined recursively by finding the values of the grandchildren. At its com-
putational extreme, this latter approach in a finite game is Zermelo’s algorithm -
assign values to the leaf nodes1 of the game tree and apply backwards induction
to find the value of the current node.

Both these approaches are special cases of lookahead search: choose a local
search tree T rooted at the current node in the game tree; valuations (or esti-
mates thereof) are given to leaf nodes of T ; valuations for internal tree nodes are
then derived using the values of a node’s immediate descendants via backwards
induction; a move is then selected corresponding to the value assigned the root.
For best response dynamics the search tree is simply the star graph consisting of
the root node and its children. With unbounded computational power, the search
tree becomes the complete (remaining) game tree used by Zermelo’s algorithm.

In practice the actual shape of the search tree T is chosen dynamically. For
example, if local information is sufficient to provide a reliable estimate for a
current leaf node w then there is no need to grow T beyond w. If not, longer
branches rooted at w need to be added to T . Thus, despite our description
in terms of “backwards induction”, lookahead search is a very forward looking
procedure. Subject to our computational abilities, we search further forward
only if we think it will help evaluate a game node. Indeed, in our opinion, it is
this forward looking aspect that makes lookahead search such a natural method,
especially for humans and for dynamic (or repeated) games.2

Interestingly, the lookahead method was formally proposed as long ago as
1950 by Shannon [31], who considered it a practical way for machines to tackle
complex problems that require “general principles, something of the nature of
judgement, and considerable trial and error, rather than a strict, unalterable
computing process”. To illustrate the method, Shannon described in detail how it
could be applied by a computer to play chess. The choice of chess as an example
is not a surprise: as described the lookahead approach is particularly suited
to game-playing. It should be emphasised again, however, that this approach
is natural for all computationally constrained agents, not just for computers.
Lookahead search is an instinctive strategic method utilised by human beings as
well. For example, Shannon’s work was in part inspired by De Groot’s influential
psychology thesis [16] on human chess players. De Groot found that all players
(of whatever standard) used essentially the same thought process - one based
upon a lookahead heuristic. Stronger players were better at evaluating positions

1 Often the values of the leaf nodes will be true values rather than estimates, for
example when they correspond to end positions in a game.

2 In contrast, strategies that are prescribed by axiomatic principles, equilibrium con-
straints, or notions of regret are much less natural for dynamic game players.
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and at deciding how to grow (prune or extend) the search tree but the underlying
approach was always the same.

Despite its widespread application, there has been little theoretical examina-
tion of the consequences of decision making determined by the use of local search
trees. The goal of this paper is to begin such a theoretical analysis. Specifically,
what are the quantitative outcomes and dynamics in various games when players
use lookahead search?

1.1 Lookahead Search: The Model

Having given an informal presentation, let’s now formally describe the lookahead
method. Here we consider games with sequential moves that have complete infor-
mation. These assumptions will help simplify some of the underlying issues, but
the lookahead approach can easily be applied to games without these properties.

We have a strategic game G(P ,S, {αi : i ∈ P}). Here P is the set of n
players, Si is the set of possible strategies for i ∈ P , S = (S1 × S2 . . . × Sn) is
the strategy space, and αi : S → R is the payoff function for player i ∈ P . A
state s̄ = (s1, s2, . . . , sn) is a vector of strategies si ∈ Si for each player i ∈ P .

Suppose player i ∈ P is about to decide upon a move. With lookahead search
she wishes to assign a value to her current state node s̄ ∈ S that corresponds
to the highest value of a child node. To do this she selects a search tree Ti over
the set of states of the game rooted at s̄. For each leaf node l̄ in Ti, player i
then assigns a valuation Πj,l̄ = αj(l̄) for each player j. Valuations for internal
nodes in Ti are then calculated by induction as follows: if player p is destined
to move at game node v̄ then his valuation of the node is given by Πp,v̄ =
maxū∈C(v̄)[rp,v̄ + Πp,ū]. Here, C(v̄) denotes the set of children of v̄ in Ti, and
rp,v̄ is some additional payoff received by player p at node v̄. Should p choose
the child ū∗ ∈ C(v̄) then assume any non-moving player j �= p places a value of
Πj,v̄ = rj,v̄ +Πj,ū∗ on node v̄. Then given values for children of the root node s̄
of Ti, player i is thus able to compute the lookahead payoff Πi,s̄ which she uses
to select a move to play at s̄. [The method is defined in an analogous manner if
players seek to minimise rather than maximise their “payoffs”.]

After i has moved, suppose player j is then called upon to move. He applies
the same procedure but on a local search tree Tj rooted at the new game node.
Note that j’s move may not be the move anticipated by i in her analysis. For
example, suppose all the players use 2-lookahead search. Then player i calculates
on the basis that player j will use a 1-lookahead search tree T ′

j when he moves
– because for computational purposes it is necessary that T ′

j ⊆ Ti. But when he
moves player j actually uses the 2-lookahead search tree Tj and this tree goes
beyond the limits of Ti.

1.2 Lookahead Search: The Practicalities

There is still a great deal of flexibility in how the players implement the model.
For example
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• Dynamic Search Trees. Recall that search trees may be constructed dy-
namically. Thus, the exact shape of the search tree utilized will be heavily in-
fluenced by the current game node, and the experience and learning abilities of
the players. Whilst clearly important in determining gameplay and outcomes,
these influences are a distraction from our focal point, namely, computation and
dynamics in games in which players use lookahead search strategies. Therefore,
we will simply assume here that each Ti is a breadth first search tree of depth
ki. Implicitly, ki is dependent on the computational facilities of player i.
• Evaluation Functions. Different players may evaluate leaf nodes in different
ways. To evaluate internal nodes, as described above, we make the standard
assumption that they use a max (or min) function. This need not be the case.
For example, a risk-averse player may give a higher value to a node (that it does
not own) with many high value children than to a node with few high value
children – we do not consider such players here.
• Internal Rewards or Not: Path Model vs. Leaf Model. We distinguish
between two broad classes of game that fit in this framework but are conceptually
quite different. In the first category, payoffs are determined only by outcomes
at the end of game. Valuations at leaf nodes in the local search trees are then
just estimates of the what the final outcome will be if the game reaches that
point. Clearly chess falls into this category. In the second category, payoffs can
be accumulated over time - thus different paths with the same endpoints may
give different payoffs to each player. Repeated games, such as industrial games
over multiple time periods, can be modelled as a single game in this category.
The first category is modelled by setting all internal rewards rp,v̄ = 0. Thus what
matters in decision making is simply the initial (estimated) valuations a player
puts on the leaf nodes. We call this the leaf (payoff) model as an agent then
strives to reach a leaf of Ti with as high a value as possible. The second category
arises when the internal rewards, rp,v̄, can be non-zero. Each agent then wishes
to traverse paths that allow for high rewards along the way. More specifically, in
this model, called the path (payoff) model, the internal reward is rp,v̄ = αp(v̄).
• Order of Moves: Worst-Case vs. Average-Case. In multiplayer games,
the order in which the players move may not be fixed. This adds additional
complexity to the decision making process, as the local search tree will change
depending upon the order in which players move. Here, we will examine two
natural approaches a player may use in this situation: worst case lookahead
and average case lookahead. In the former situation, when making a move, a
risk-averse player will assume that the subsequent moves are made by different
players chosen by an adversary to minimize that player’s payoff. In the latter
case, the player will assume that each subsequent move is made by a player
chosen uniformly at random; we allow players to make consecutive moves. In
both cases, to implement the method the player must perform calculations for
multiple search trees. This is necessary to either find the worst-case or perform
expectation calculations.

In practice, such versatility is a major strength and a key reason underly-
ing the ubiquity of lookahead search in game-playing. For example, it accords
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well with Simon’s belief, discussed in Section 1.4, that behaviours should be
adaptable. For theoreticians, however, this versatility is problematic because it
necessitates application-specific analyses. This will be apparent as we present
our applications; we will examine what we consider to be the most natural im-
plementation(s) of lookahead search for each game, but these implementations
may vary each time!

1.3 Techniques and Results

We want to understand the social quality of outcomes that arise when com-
putationally bounded agents use k-lookahead search to optimise their expected
or worst-case payoff over the next k moves. Two natural ways we do this are
via equilibria and via the study of game dynamics. To explain these ap-
proaches, consider the following definition. Given a lookahead payoff function,
Πi,s̄, a lookahead best-response move for player i, at a state s̄ ∈ S, is a strategy
si maximising her lookahead payoff, that is, ∀s′i ∈ Si: Πi,s̄ ≥ Πi,(s̄−i,s′i). [A move
s′i for player i, at a state s̄ ∈ S, is lookahead improving if Πi,s̄ ≤ Πi,(s̄−i,s′i).] A
lookahead equilibrium is then a collection of strategies such that each player is
playing her lookahead best-response move for that collection of strategies. Our
focus here is on pure strategies. Then, given a social value for each state, the
coordination ratio (or price of anarchy) of lookahead equilibria is the worst pos-
sible ratio between the social value of a lookahead equilibrium and the optimal
global social value.

To analyse the dynamics of lookahead best-response moves, we examine the
expected social value of states on polynomial length random walks on the looka-
head state graph, G. This graph has a node for each state s ∈ S and an edge from
s̄ to a state t̄ with a label i ∈ P if the only difference between s̄ and t̄ is that
player i changes strategy from si to ti, where ti is the lookahead best response
move at s̄. The coordination ratio of lookahead dynamics is the worst possible
ratio between the expected social value of states on a polynomially long random
walk on G and the optimal global social value.

For practical reasons, we are usually more interested in the dynamics of looka-
head best-response moves than in equilibria. For example, as with other equilib-
rium concepts, lookahead best-response moves may not lead to lookahead equi-
libria. Indeed, such equilibria may not even exist. Typically, though, the methods
used to bound the coordination ratio for k-lookahead equilibria can be combined
with other techniques to bound the coordination ratio for k-lookahead dynam-
ics. Consequently, for both simplicity and brevity, most of the results we give
here concern the coordination ratio for lookahead equilibria. We are particularly
interested in discovering when lookahead equilibria guarantee good social solu-
tions, and how outcomes vary with different levels of foresight (k). We perform
our analyses for an assortment of games including an AdWord auction game, the
Cournot game, congestion games, valid-utility games, and a cost-sharing network
design game.

We begin, in Section 2, with the Cournot duopoly game. Here two firms
compete in producing a good consumed by a set of buyers via the choice of
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production quantities. We study equilibria in these simple games resulting from
k-lookahead search. The equilibria for myopic game playing, k = 1, are well-
understood in Cournot games. For k > 1, however, firms produce over 10%
more than if they were competing myopically; this is better for society as it
leads to around a 5% increase in social surplus. Surprisingly, the optimal level of
foresight for society is k = 2. Furthermore, we show that Stackelberg behaviours
arise as a special case of lookahead search where the firms have asymmetric
computational abilities.

Next, in Section 3, we examine strategic bidding in an AdWord generalised
second-price auction, and studying the social values of the allocations in the
resulting equilibria. In particular, we show that 2-lookahead game playing results
in the optimal outcome or a constant-factor approximate outcome under the leaf
and path models, respectively. This is in contrast to 1-lookahead (myopic) game
playing which can result in arbitrarily poor equilibrium outcomes, and shows
that more forward-thinking bidders would produce efficient outcomes.

Third, we examine congestion games with linear latency functions, and study
the average of delay of players in those games. We show that 2-lookahead game
playing results in constant-factor approximate solutions. In particular, the coor-
dination ratio of lookahead dynamics is a constant. These guarantees are similar
to those obtained via 1-lookahead.

Fourth, we consider two classes of resource sharing games, known as valid-
utility and basic-utility games. For both of these games, we show that lookahead
game playing may result in very poor solutions. For valid-utility games, we show
k-lookahead can give a coordination ratio for lookahead dynamics of Θ(

√
n),

where n is the number of players. Myopic game play can also give very poor so-
lutions [15], but additional foresight does not significantly improve outcomes in
the worst case. For basic-utility games, however, myopic game dynamics give a
constant coordination ratio [15] whereas we show that 2-lookahead game playing
may result in o(1)-approximate social welfare with the leaf model. Thus, addi-
tional foresight in games need not lead to better outcomes, as is traditionally
assumed in decision theory.

Finally, we present a simple example of a cost-sharing network design game
that illustrates how the use of lookahead search can encourage cooperative be-
haviour (and better outcomes) without a coordination mechanism.

Due to space constraints, all the proofs as well as our results for congestion
games, valid and basic-utility games, and cost-sharing networks are omitted from
this proceedings version but can be found in the full paper.

1.4 Background and Related Work

This work is best viewed within the setting of bounded rationality pioneered by
Herb Simon [32]. An extensive discussion on this relationship is given in the full
paper. The value of lookahead search in decision-making has been examined by
the artificial intelligence community [25]; for examples in effective diagnostics
and real-time planning see [17] and [29]. Lookahead search is also related to
the sequential thinking framework in game theory [23,34]. Compared to such
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works, our focus is more theoretical and less experimental and psychological.
Specifically, we desire quantitative performance guarantees for our heuristics.

Our study also relates to the price of anarchy in a game, and to the con-
vergence of game dynamics to approximately optimal solutions [22,15] and to
sink equilibria [15,10]. Numerous articles study the convergence rate of best-
response dynamics to approximately optimal solutions [8,12,3,4]. For example,
polynomial-time bounds has been proven for the speed of convergence to ap-
proximately optimal solutions for approximate Nash dynamics in a large class
of potential games [3], and for learning-based regret-minimisation dynamics for
valid-utility games [4]. Our work differs from all the above as none of them cap-
ture lookahead dynamics. In another line of work, convergence of best-response
dynamics to (approximate) equilibria and the complexity of game dynamics and
sink equilibria have been studied [11,1,7,33,10,21], but our paper does not focus
on these types of dynamics or convergence to equilibria.

A much broader discussion of other concepts of equilibria and game dynamics
that have been studied in the economics and computer science literatures can
be found in the full paper.

2 Industrial Organisation: Cournot Competition

For our first example, we consider the classical game theoretic topic of duopolistic
competition. Economists have considered a number of alternative models for
market competition [35], prominent amongst them is the Cournot model [9].
Our main result is that the social surplus increases when firms are not myopic;
surprisingly, social welfare is actually maximized when firms use 2-lookahead.

The Cournot model assumes players sell identical, nondifferentiated goods,
and studies competition in terms of quantity (rather than price). Each player
takes turns choosing some quantity of good to produce, qi, and pays some
marginal cost to produce it, c. The price for the good is then set as a function of
the quantities produced by both players, P (qi+qj) = (a−qi−qj), for some con-
stant a > c. On turn l, each player i makes profit: Π l

i(qi, qj) = qi(a− qi− qj− c).
In this form, the model then only has one equilibrium, called the Cournot equi-
librium, where qi = (a − c)/3 for each player. We may assume that a = 1 and
c = 0. Then, at equilibrium, each player makes a profit of Πi(qi, qj) = qi(1−2qi).
The consumer surplus is 2q2i and the social surplus (the sum of the firms profits
and the consumer surplus) is 2qi(1− qi).

We analyse this game when players apply k-lookahead search. In industrial
settings it is natural to assume that payoffs are collected over time (as in a
repeated game); thus, we focus upon the path model. We define this model
inductively. In a k-step lookahead path model, each player i’s utility is the sum
of his utilities in the current turn and the k − 1 subsequent turns. He models
the quantities chosen in the subsequent turns as though the player acting during
those turns were playing the game with a smaller lookahead. More specifically, he
assumes that the player acting in the t’th subsequent turn chooses their quantity
to maximise their utility under a k− t lookahead model. In order to rewrite this
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rigorously, let πi
l be the contribution to his utility that player i expects on the lth

subsequent turn (and πi
0 be the contribution to his utility that player i expects

on his current turn), let πj
l be the contribution to player j’s utility that player i

expects on the l’th subsequent turn, and let qil (respectively, q
j
l ) be the quantity

that player i expects to choose (respectively, expects his opponent to choose)
under this model.

Then in the path model, player i’s expected utility function is Πi =
∑k−1

t=0 π
i
t.

Player j’s expected utility function on player i’s turn is Πj =
∑k−1

t=0 π
j
t . Our aim

now is to determine the quantities that player i expects to be chosen by both
players in the subsequent turns and, thereby, determine the quantity he chooses
this turn and the utility he expects to garner. To facilitate the discussion, it
should be noted that unless noted otherwise, any reference to a “turn” refers to
a turn during player i’s calculation and not an actual game turn.

To simplify our analysis, we will define ql to be the quantity chosen on turn l
by whichever player is acting and Πl to be the expected utility that that player
garners from turn l to turn k. So Π0 = Πi, Π1 =

∑k−1
t=1 π

j
t , etc. We define Πl

to be the utility garnered from turn l to turn k by the player who does not act
during turn l. So Π0 = Πj , Π1 =

∑k−1
t=1 π

i
t, etc. It is clear that on each turn l,

the active player is trying to maximise Πl.
We are now ready to compute these quantities and utilities recursively. From

our definition above, we obtain Πk = qk(1− qk − qk−1) and Πk = qk−1(1− qk −
qk−1), and the recursive formula for l < k that Πl = ql(1− ql− ql−1)+Πl+1 and
Π l = ql−1(1− ql− ql−1) +Πl+1. Note that in each of these formulas, Πl and Πl

are each functions of qt for t ≥ l; ql−1 is in fact fixed on the previous turn and
is, therefore, not a variable in Πl. It is then possible to calculate ql recursively.

Lemma 1. It holds that ql is βl−αlql−1, where βk = αk = βk−1 = 1
2 , αk−1 = 1

3
and, for l < k − 1,

βl =
2− βl+1 + αl+1βl+2 − αl+1αl+2βl+1

4− 2αl+1 − α2
l+1αl+2

, αl =
1

4− 2αl+1 − α2
l+1αl+2

Our goal is now to calculate q0 as this will tell us the quantity that player i
actually chooses on his turn. From the above lemma, we can calculate q0 if
we can determine α0 and β0. Using numerical methods on the above recursive
formula, we see that as k→∞, α0 decreases towards a limit of 0.2955977 . . . and
β0 approaches a limit of 0.4790699 . . .. These values also converge quite quickly;
they both converge to within 0.0001 of the limiting value for k ≥ 10. Thus,
at a lookahead equilibrium, player i will choose qi ≈ .0.4790699− 0.2955977qj
and player j, symmetrically, will choose qj ≈ 0.4790699− 0.2955977qi. So each
player will choose a quantity q ≈ 0.369767. which is more than in the myopic
equilibrium. Indeed, it is easy to show that for every k ≥ 2, each player will
produce more than the myopic equilibrium. We observe the quantity produced
does not change monotonically with the length of foresight k, but it does increase
significantly if non-myopic lookahead is applied at all. Consequently, in the path
model looking ahead is better for society overall but worse for each individual
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firm’s profitability (as the increase in sales is outweighed by the consequent
reduction in price).

Theorem 1. For Cournot games under the path model, output at a k-lookahead
equilibrium peaks at k = 2 with output 12.5% larger than at a myopic equilibrium
(k = 1). As foresight increases, output is 10.9% larger in the limit. The associated
rises in social surplus are 5.5% and 4.9%, respectively. ��

Stackelberg Behaviours: We could also analyse this game under the leaf
model, but this model is both less realistic here and trivial to analyse. How-
ever, it is interesting to note that for the leaf model with asymmetric lookahead,
where player i has 2-lookahead and player j has 1-lookahead, we get the same
equilibrium as the classic Stackelberg model for competition. Thus, the use of
lookahead search can generate leader-follower behaviours.

3 Generalised Second-Price Auctions

For our second example, we apply the lookahead model to generalised second-
price (GSP) auctions. Our main results are that outcomes are provably good
when agents use additional foresight; in contrast, myopic behaviour can produce
very poor outcomes.

The auction set-up is as follows. There are T slots with click-through rates
c1 > c2 > ... > cT > 0, that is, higher indexed slots have lower click-through
rates. There are n players bidding for these slots, each with a private valuation
vi. Each player i makes a bid bi. Slots are then allocated via a generalised second
price auction. Denote the jth highest bid in the descending bid sequence by bj ,
with corresponding valuation vj . The jth best slot, for j ≤ T , is assigned to the
jth highest bidder who is charged a price equal to bj+1. The T highest bidders
are called the “winners”. According to the pricing mechanism, if bidder i were
to get slot t in the final assignment, then he would get utility uit = (vi− bt+1)ct.
We denote a player i’s utility if he bids bi by ui(bi) (the other players bids are
implicit inputs for ui).

This auction is used in the context of keyword ad auctions (e.g, Google Ad-
Words) for sponsored search. Given the continuous nature of bids in the GSP
auction, the best response of each bidder i for any vector of bids by other bidders
corresponds to a range of bid values that will result in the same outcome from
i’s perspective. Among these set of bid values, we focus on a specific bid value bi,
called the balanced bid [6]. The balanced bid bi is a best-response bid that is as
high as possible such that player i cannot be harmed by a player with a better
slot undercutting him, i.e. bidding just below him. It is easy to calculate that for
player i in slot t, 1 ≤ t < T , the only balanced bid is bi = (1− ct

ct−1
)vi+ ct

ct−1
bt+1.

An important property of balanced bidding is that each “losing” player i
(one not assigned a slot) should bid truthfully, that is bi = vi. To see this add
dummy slots with ct = 0 if t > T . The player who wins the top slot should also
bid truthfully under balanced bidding. Balanced bidding is the most commonly
used bidding strategy [6,20]. For some intuition behind this, note that balanced



260 V. Mirrokni, N. Thain, and A. Vetta

bidding has several desirable properties. For a competitive firm, bidding high ob-
viously increases the chance of obtaining a good slot. Within a slot this also has
the benefit of pushing up the price a competitor pays without affecting the price
paid by the firm. On the other hand, bidding high increases the upper bound
on the price the firm may pay, leading to the possibility that the firm may end
up paying a high price for one of the less desirable slots. Balanced bidding elim-
inates the possibility that a change in bid from a higher bidder can hurt the
firm. (Clearly, it is impossible to obtain such a guarantee with respect to a lower
bidder.) Thus, balanced bidding provides some of the benefits of high bidding at
less risk. Balanced bidding naturally converges to Nash equilibria unlike other
bidding strategies such as altruistic bidding or competitor busting [6]. Moreover,
the other bidding strategies would require some discretization of players’ strat-
egy space in order to analyse the best response dynamics [6,20]. Consequently,
balanced bidding is the most natural strategy choice for our analysis.

For this auction, we consider only the leaf model. This model seems more
natural than the path model for a single auction as players are interested in the
final allocation output by the auction (there are no intermediary payoffs). We
analyse both worst-case and average-case lookahead; depending upon the level
of risk-aversion of the agents both cases seem natural in auction settings.

Let player i’s lookahead payoff (or utility) at bid bi with respect to player
j, denoted by uij(bi), be player i’s payoff (or utility) after player j makes a
best-response move. In the worst-case lookahead model, we define player i’s
lookahead payoff for a vector b̄ of bids as Πi,b̄ = ũi(bi) = minj u

ij(bi). In the
average-case lookahead model, player i’s lookahead payoff Πi,b̄ for a bid vector

b̄ is Πi,b̄ = ūi(bi) = 1
n

∑
j u

ij(bi). Changing strategy from bid bi to bid b̄i is a

lookahead improving move if lookahead utility increases, i.e., ūi(b̄i) > ūi(bi). We
are at a lookahead equilibrium if no player has a lookahead improving move.

It is known that the social welfare of Nash equilibria for myopic game playing
can be arbitrarily bad [6] unless we disallow over-bidding [19]. Here, we prove
the advantage of additional foresight by showing that 2-lookahead equilibria have
much better social welfare. In particular, we show that all such equilibria are
optimal in the worst-case lookahead model, and all such equilibria are constant-
factor approximate solutions in the average-case lookahead model.

3.1 Worst-Case Lookahead

Our proof for the worst-case lookahead model can be seen as a generalisation of
the proof of [5] for a slightly different model. A useful lemma in this context is

Lemma 2. Consider the worst-case lookahead model with the leaf model. Label
the players so that player i is in slot i, and suppose there is a player t such that
vt < vt+1. Then player t myopically prefers slot t+ 1 to slot t.

An equilibrium is output truthful if the slots are assigned to the same bidders
as they would be if bidders were to bid truthfully. It is easy to verify that an
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allocation optimizes social welfare if and only if it is output truthful. Thus to
prove 2-lookahead equilibria are socially optimal it suffices to show they are
output truthful.

Theorem 2. For GSP auctions, any 2-lookahead equilibrium gives optimal so-
cial welfare in the worst-case, leaf model.

3.2 Average Case Lookahead

For the average-case lookahead model, optimality is not guaranteed at equilibria.

Theorem 3. In GSP auctions, there exist 2-lookahead equilibria that are not
output-truthful in the average-case, leaf model.

Despite this negative result, 2-lookahead equilibria cannot have arbitrarily bad
social welfare.

Theorem 4. In GSP auctions, the coordination ratio of 2-lookahead equilibria
is constant in the average-case, leaf model.

Acknowledgements. The authors would like to thank Kevin Leyton-Brown
and Tim Roughgarden for interesting discussions on this topic.
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1. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure
on congestion games. Journal of the ACM 55(6) (2008)

2. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In:
STOC (2005)

3. Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V., Skopalik, A.: Fast convergence
to nearly-optimal solutions in potential games. In: EC, pp. 264–273 (2008)

4. Blum, A., Hajiaghayi, M., Ligett, K., Roth, A.: Regret minimization and the price
of total anarchy. In: STOC, pp. 373–382 (2008)

5. Bu, T., Deng, X., Qi, Q.: Forward looking Nash equilibrium for keyword auction.
Information Processing Letters 105(2), 41–46 (2008)

6. Cary, M., Das, A., Edelman, B., Giotis, I., Heimerl, K., Karlin, A., Mathieu, C.,
Schwarz, M.: Greedy bidding strategies for keyword auctions. In: EC (2007)

7. Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion
games. Games and Economic Behavior 71(2), 315–327 (2011)

8. Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and
Approximation in Potential Games. In: Durand, B., Thomas, W. (eds.) STACS
2006. LNCS, vol. 3884, pp. 349–360. Springer, Heidelberg (2006)

9. Cournot, A.: Recherces sur les Principes Mathématiques de la Théorie des Richesse,
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