
Kalman Smoothing for Distributed Optimal
Feedback Control of Unicycle Formations

Ross P. Anderson and Dejan Milutinović

Abstract. In many multi-agent control problems, the ability to compute an opti-
mal feedback control is severely limited by the dimension of the state space. In this
work, deterministic, nonholonomic agents are tasked with creating and maintaining
a formation based on observations of their neighbors, and each agent in the forma-
tion independently computes its feedback control from a Hamilton-Jacobi-Bellman
(HJB) equation. Since an agent does not have knowledge of its neighbors’ future
motion, we assume that the unknown control to be applied by neighbors can be
modeled as Brownian motion. The resulting probability distribution of its neigh-
bors’ future trajectory allows the HJB equation to be written as a path integral over
the distribution of optimal trajectories. We describe how the path integral approach
to stochastic optimal control allows the distributed control problems to be written
as independent Kalman smoothing problems over the probability distribution of the
connected agents’ future trajectories. Simulations show five unicycles achieving the
formation of a regular pentagon.

1 Introduction

The focus of this work is on formation control, in which each agent, a robotic non-
holonomic vehicle, in a team is tasked with attaining and maintaining pre-specified
distances from the agents in its neighborhood. Problems of this type are beginning
to demonstate their significance and potential impact in a variety of applications in
both the public and private sector [3, 22, 29, 35]. Nonholonomic vehicle formations,
in particular, have attracted much attention [1, 7, 8, 9, 31, 32, 33], but these studies
have typically relied on stability analyses, or on ad-hoc artificial potential functions
or navigation functions.
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Alternatively, the formation control problem may be defined as an optimal feed-
back control problem. To compute an optimal feedback control, one must solve the
Hamilton-Jacobi-Bellman (HJB) equation, which is a nonlinear partial differential
equation (PDE). However, the computational complexity of solving the PDE grows
exponentially with the size of the team, and this severely limits the effectiveness
of conventional techniques of stochastic optimal control. A number of promising
approaches to address this so-called “curse of dimensionality” have been proposed,
including reinforcement learning [36], neurodynamic programming [4], and approx-
imate dynamic programming [30], just to name a few.

In this work, we approach the problem of formation control based on the path
integral formulation of stochastic optimal control [17]. We explicitely take into ac-
count the fact that although agents may be capable of observing or receiving the cur-
rent state of their neighbors, the future trajectories of these neighbors will seldom
be known exactly, since they individually compute their control based on their own
available information and observations. From this point of view, the distributed for-
mation control problem is inherently stochastic, and not only due to unpredictable
neighbors. In addition, the control is a function of an agent’s noisy observations,
and it must also deal with agent model uncertainties and environmental uncertain-
ties (e.g., wind). Along these lines, this work considers the problem of controlling
one agent based on observations of its neighbors and the probability of their future
motion. This probability distribution arises from an assumption that the unknown
control of an agent can be modeled as Brownian motion [15], so that based on the
system kinematics, we can infer the probability of finding the relative state x to all
neighbors in an interval (x,x+ dx) at a particular future time [40].

Perhaps more importantly, this probability distribution over future system trajec-
tories can be used to statistically infer the probability distribution of the control,
and, hence, the optimal control. When an agent’s neighbors are treated as non-
deterministic, one can consider that agent’s optimal control to be the action that min-
imizes the expected value of the accumulated cost with respect to the distribution of
neighbors’ future trajectories (see [20] and references therein for a more precise in-
terpretation in terms of minimization of Kullback-Leibler divergence). Along these
lines, the path integral (PI) formulation of stochastic optimal control [16, 19, 18]
transforms the problem of solving the HJB equation into an estimation problem on
the distribution of optimal trajectories in continuous state space [39].

The path integral approach is made possible by the relation between the solutions
to optimal control PDEs and the probability distribution of stochastic differential
equations [27, 44] (see [24, 25, 26, 28] for an analogous approach in the open-loop
control case), and it has shown great potential for systems with large state space. For
example, Theodorou et al. [37, 38] have examined the the link between reinforce-
ment learning and the path integral method for motor control and robotics, while van
den Broek et al. [5, 6] and Wiegerinck et al. [41, 42] apply the path integral frame-
work to multi-agent systems. In the latter, the agents exhibit explicitly-stochastic
kinematics and cooperatively compute their control from a marginalization of the
joint probability distribution of the group’s system trajectory.
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Fig. 1 Diagram of the AiF moving at direction θ and at a distance r to the neighbor m. The
turning rate and acceleration of the neighbor are unknown.

In this chapter, we develop a method to apply the path integral approach to
fully-distributed multi-agent systems by constructing a fast-switching process that
randomly select a single neighboring agent from which the optimal control may be
inferred. We also establish a connection between the optimal feedback control prob-
lem for multi-agent systems and nonlinear Kalman smoothing algorithms, which
allows each agent to independently compute its control in real-time.

This chapter is organized as follows. Section 2 introduces the formation con-
trol problem as viewed by a single agent in the group and describes a way to pa-
rameterize the kinematic model so that the resulting HJB equation solution can be
represented as a path integral. Section 3 reviews the path integral formulation of
stochastic optimal control. Section 4 presents a duality between stochastic optimal
feedback control and Kalman smoothing algorithms. Section 5 illustrates our meth-
ods with a simulated five-agent formation, and conclusions are in Section 6.

2 Control Problem Formulation

In this section we formulate the optimal feedback control problem for unicycle for-
mations and describe a way to manipulate the model kinematics into a form that
allows the HJB equation solution to be described by a path integral.

2.1 Preliminary Kinematic Model

In the problem formulation, each agent is modeled as a unicycle, which moves in
the direction if its heading angle θ at a speed v:

dx(t) = vcosθdt (1)

dy(t) = vsinθdt (2)

dθ (t) = ωdt (3)

dv(t) = udt, (4)

where u is the feedback acceleration control and ω is the feedback turning rate
control.
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Each agent independently computes its respective control based on observations
of its M neighbors, labeled m = 1, . . . ,M. To this end, we focus on the system state
as viewed by one agent, which we call the agent-in-focus, or AiF for short. Define
Δxm = xm − x and Δym = ym − y as the Cartesian components of the distance from
the AiF to the neighbor m (Fig. 1). These states evolve as:

dΔxm(t) =−vcos(θ )dt + vm cos(θm)dt (5)

dΔym(t) =−vsin(θ )dt + vm sin(θm)dt, (6)

where vm is the speed of neighbor m. Although the kinematics of the neighboring
vehicles are identical, their turning rate control and acceleration control are un-
known. Based on the motivation of the previous section, we assume that the turning
rate and acceleration controls of neighbor m can be modeled as Wiener processes
with mutually independent increments dwθ ,m and dwv,m, and intensities σθ and σv,
respectively:

dθm = σθ dwθ ,m (7)

dvm = σvdwv,m. (8)

Finally, introducing the distance from the AiF to the neighbor m as
rm =

√
Δx2

m +Δy2
m and the angle to the neighbor m as ϕm = tan−1(Δym/Δxm), we

arrive at a preliminary model for the AiF and a single neighbor m:

drm(t) =−vcos(ϕm −θ )dt + vm cos(ϕm −θm)dt (9)

dϕm(t) =
v

rm
sin (ϕm −θ )dt − vm

rm
sin(ϕm −θm)dt (10)

dθ (t) = ωdt (11)

dθm(t) = σθ dwθ ,m (12)

dv(t) = udt (13)

dvm(t) = σvdwv,m. (14)

Note that this system, when augmented to account for M neighbors, would have
a two-dimensional control u = [ω ,u]T , but that the stochastic process w(t) =[
wθ ,1, . . . ,wv,M

]T
would be of dimension M.

2.2 Switching Kinematic Model

Since the AiF will be drawing from the random processes describing its neighbors
kinematics as a source from which to compute its control, we wish to devise a way
to connect the random motion in (12) and (14) to the controls in (11) and (13). In
particular, for reasons that will become more clear in Section 3, any controlled state
should be affected by just one Wiener process, and vice versa. In the model devel-
oped in the previous section, this is not the case since there is a two dimensional
control u and M dimensional stochastic process. In order to manipulate the model
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into such a form, we introduce a second, faster time scale t/ε , for a small ε > 0,
and we assume that in each infinitesimal time increment in this faster time scale,
the AiF is using the relative state to just one neighbor m to compute its control,
and that the choice of neighbor m switches randomly among the M neighbors at a
fast rate. It will turn out [43] that under a sufficiently fast secondary time scale, the
randomly-switching model to be developed in this section is equivalent to (9)-(14).

Let us define the difference in heading angle γ = θ −θm and difference in speed
κ = v− vm. Then we can obtain (Appendix 1) the following model, one for each of
M neighbors.

drm(t) =−
(

1
M

M

∑
j=1

(E(κ j))+ vm(0)

)

cos

(

ϕm − 1
M

M

∑
j=1

(E(γ j)))−θm(0)

)

dt

+(−(κm −E(κm))+ vm(0))cos(ϕm +(γm −E(γm))−θm(0))dt (15)

dϕm(t) =

(
1
M

M

∑
j=1

(E(κ j))+ vm(0)

)

sin

(

ϕm − 1
M

M

∑
j=1

(E(γ j))−θm(0)

)

dt

− 1
rm

(−(κm −E(κm))+ vm(0))sin(ϕm +(γm −E(γm))−θm(0))dt

(16)

dγm(t) =
(

Mωdt −
√

Mσθ dwθ ,m

)
δξ (t/ε),m (17)

dκm(t) =
(

Mudt −
√

Mσvdwm

)
δξ (t/ε),m. (18)

When taking into account all M neighbors of the AiF, the system state is defined
through a concatenation of the model (15)-(18), one for each neighbor m= 1, . . . ,M.

The fast switching behavior [11] is captured by an ergodic Markov chain ξ (t/ε)
with a fast time scale ε > 0, taking on values in {1,2, . . . ,M}. We assume that this
chain is independent of the Wiener process w(t) affecting the neighbors’ heading
angles and speeds in (7)-(8). The Kronecker deltas δ in (17)-(18), therefore, select
the pair of “actively evolving” states among the M states in [γ1, . . . ,γM,κ1, . . . ,κM]T .
In other words, if ξ (t/ε) = M − 1, for example, only the states γM−1 and κM−1

evolve as in (17) and (18), while all other relative heading angle and relative speed
states have zero increment (dγm = dκm = 0). In this case, the AiF is using the random
motion of neighbor M− 1 to compute its control.

The evolution equation for M neighbors may now be written in a more general
stochastic differential equation for the state vector x(t):

dx(t) = f (x)dt +Biudt +Γidw, (19)

where f (x) describes the deterministic motion in states (15)-(16), and the matrices
Bi and Γi in the state ξ (t/ε) = i and state vector x(t) are constructed as:
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Bi = M

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

0 0
...

...
0 0

δi1 0
...

...
δi,M 0

0 δi1
...

...
0 δi,M

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

r1, . . . ,rM,ϕ1, . . . ,ϕM

κ1, . . . ,κM

γ1, . . . ,γM

x(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

r1
...

rm

ϕ1
...

ϕM

γ1
...

γM

κ1
...

κM

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Γi =−
√

M

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

0 . . . 0
...

. . .
...

0 . . . 0

σθ�i 0

0 σv�i

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

r1, . . . ,rM,ϕ1, . . . ,ϕM

γ1, . . . ,γM

κ1, . . . ,κM

(20)

where �i = diag([δi,1, . . . ,δi,M]).
The transition probabilities from state ξ (t/ε) = i to ξ (t/ε) = j are defined in

terms of a M×M generator matrix Q(t)/ε

P(ξ (t +Δ t) = j | ξ (t) = i) = qi j + o(Δ t), j �= i, (21)

and we choose

qi j(t) = 1, j �= i (22)

qii(t) =−(M− 1), (23)

so that the chain has an equal probability of transitioning into any of the M states. It
is well known that in the limit of ε → 0, the evolution of a switching model like (19)
under fast Markov switching ξ (t/ε) converges weakly to an average, or homoge-
nized, model [11, 21]. Because of the symmetry of the transition probabilities (21),
the switching model (15)-(18) then converges weakly the same kinematics as the
original model (9)-(12). However, unlike the original model, the switching model
has the advantage that BiBT

i ∝ ΓiΓ T
i ∀i, which will become important in Section 3.

Therefore, we seek to control the state of x(t) as described by the switching kine-
matic model (19).
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2.3 Cost Functional

In our control approach, the agents create and maintain a formation described by
a vector of nominal distances. From the perspective of the AiF, these distances are
μ = [μ1, . . . ,μM]T , and it computes its respective feedback control u from a cost
functional of the form:

J(x, t,ξ ) = min
u

E

{∫ t f

t

(
1
2
(h(x(s))− μ)T A(h(x(s))− μ)+

1
2

uT Ru
)

ds

}
,

where h(x(t)) = [r1(t), . . . ,rM(t)]T is the vector of distances to each neighbor of the
AiF, and R is the penalty on control, i.e., turning rate and acceleration control. The
nominal distances μ are assumed to be constant over the planning horizon, but any
change in μ could reflect the inclusion of dynamic formation changes. We define
the general state cost k(x),

k(x) = (h(x)− μ)T A(h(x)− μ), (24)

to yield the cost-to-go function for the AiF

Ji(x, t)≡ J(x, t,ξ = i) = min
u

E

⎧
⎨

⎩

t f∫

t

1
2

(
k(x(s))+u(x(s))T Ru(x(s))

)
ds

⎫
⎬

⎭
. (25)

3 Path Integral Construction

In this section the path integral representation of the switching kinematics model
is derived. We begin with the (stochastic) Hamilton-Jacobi-Bellman equation for
the model (19) and cost functional (25), which, for the state of the fast-switching
Markov chain is ξ (t/ε) = i, is

0 = ∂t Ji +min
u

{
( f +Biu)T ∂xJi +

1
2

Tr
(
ΓiΓ T

i ∂ 2
x Ji
)

+
1
2

k(x)+
1
2

uT Ru+
Q(t)

ε
J(x, t)(i)

}
, i = 1, . . . ,M, (26)

where

Q(t)
ε

J(x, t)(i) =
1
ε ∑

j �=i

qi j(t)(Jj(x, t)− Ji(x, t)) . (27)

We have chosen zero terminal cost (at t = t f ) for this system of PDEs,

Ji(x, t f ) = φ(x) = 0, ∀i, ∀x, (28)
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and added reflective boundary conditions to constrain the speed of agents to remain
between vLB ≤ v ≤ vUB:

∂xJi(x, t) · n̂ = 0, ∀i, ∀t, x ∈ V (29)

V =
{

x :
1
M

M

∑
j=1

(E(κ j))+ vm(0) = vLB

⋃ 1
M

M

∑
j=1

(E(κ j))+ vm(0) = vUB

⋃
−(κm −E(κm))+ vm(0) = vLB

⋃
−(κm −E(κm))+ vm(0) = vUB

}
, (30)

at the domain normals n̂.
The HJB equation is typically solved numerically (see [23], for example), which

is impossible for a problem of this size. However, we can exploit the structure of the
formation control problem to formulate the HJB PDE solution as a solution to an
equivalent estimation problem through a path integral representation.

The optimal control u(x, t, i) that minimizes (26) is

u(x, t, i) =−R−1BT
i ∂xJi(x, t), (31)

which, when substituted back into the HJB equation, yields:

0 = ∂t Ji + f T ∂xJi − 1
2
(∂xJi)

T BiR
−1BT

i ∂xJi

+
1
2

Tr
(
ΓiΓ T

i ∂ 2
x Ji
)
+

1
2

k(x(t))+
Q(t)

ε
J(x, t)(i). (32)

A logarithmic transformation [10] is applied for each state i:

Ji(x, t) =−λ logΨi(x, t), (33)

yielding a new PDE

1
Ψi

∂tΨi =
1

2λ
k(x)− f T

Ψi
∂xΨi − 1

2Ψi
Tr
(
ΓiΓ T

i ∂ 2
xΨi
)− Q(t)

ε
logΨ(x, t)(i)

− λ
2Ψ2

i

(∂xΨi)
T BiR

−1BT
i ∂xΨi +

1
2

1

Ψ2
i

(∂xΨi)
T ΓiΓ T

i ∂xΨi. (34)

In the relative model (17)-(18), it can be seen that the states γm(t) and κm(t) col-
lectively describe the evolution of the difference between the AiF control and the
unknown control of a neighbor. This suggests that we might be able to compute a
control that can, in some sense, compensate for the uncertainty associated with a
neighbor’s control. Moreover, this implies that a large disturbance in the relative
states (i.e., (17)-(18)) likely requires a greater control input, and conversely, that
non-actuated states must be noiseless. Because of this, we assume that the noise in
the controlled components is inversely proportional to the control penalty, or
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ΓiΓ T
i = λ BiR

−1BT
i , ∀i. (35)

This selects the value of the control penalty that we shall use in the sequel as

R = diag
(
λ σ−2

θ ,λ σ−2
v

)
. (36)

From (36), the quadratic terms on the second line of (34) cancel, and the remaining
PDE for Ψi is

∂tΨi =
1

2λ
k(x)Ψi − f T ∂xΨi − 1

2
Tr
(
ΓiΓ T

i ∂ 2
x Ψi
)−Ψi

Q(t)
ε

logΨ(x, t)(i). (37)

Note that this cancellation is only possible in the switching model.
Next, it is shown in Appendix 2 that a first order asymptotic approximation to

(37), denoted Ψ0(x, t), is independent of the state i of the chain ξ (t/ε), and that this
approximation satisfies the following linear PDE:

∂tΨ0(x, t) =− f T ∂xΨ0(x, t)− 1
2

Tr
(
Σ∂ 2

x Ψ0
)
+

1
2λ

k(x)Ψ0(x, t) (38)

=−
(

f T ∂x +
1
2

Tr
(
Σ∂ 2

x
)− 1

2λ
k(x)
)

Ψ0 (39)

=−HΨ0(x, t), (40)

where

Σ =
1
M

M

∑
j=1

ΓjΓ T
j (41)

is the average of the covariance of the stochastic disturbances in the switching model
(15)-(18). The boundary conditions become

Ψ0(x, t f ) = exp(0) = 1, ∀x (42)

∂xΨ0(x, t) · n̂ = 0, ∀t, x ∈ V . (43)

This could be numerically solved backward in time from the terminal condition.
However, the Feynman-Kac equations [27, 44] connect certain linear differential
operators, H included, to adjoint operators that describe the evolution of a forward
diffusion process beginning from the current state x̃(t0) = x̃0 = x and ending at
x̃N = x̃(tN) = x̃(t f ).

In expected value, the solution to (40) is

Ψ0(x̃0, t0) = Ep(χ |x̃0)

⎧
⎨

⎩
exp

⎛

⎝− 1
2λ

tN∫

t0

k(x(s))ds

⎞

⎠

⎫
⎬

⎭
, (44)

where x̃(t) satisfies the path integral-associated, uncontrolled dynamics (cf. (19))
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dx̃(t) = f (x̃(t))dt +
√

Σdw (45)

x̃(t0) = x. (46)

Note that since the process x̃(t) is uncontrolled, the expected values of the relative
states γm and κm reduce to θ (0)− θm(0) and v(0)− vm(0), respectively. This sim-
plifies the passive components of the uncontrolled model, i.e., f (·) in (15)-(16), to
the following form, one for each neighbor m:

drm(t) =−κ(0)cos(ϕm −θ (0))dt − (κm − vm(0))cos(ϕm + γm −θ (0))dt (47)

dϕm(t) = κ(0)sin(ϕm −θ (0))dt +
1
rm

(κm − vm(0)) sin(ϕm + γm −θ (0))dt (48)

The expectation in (44) is taken with respect to the distribution p(χ |x̃0) of sample
paths χ that begin at x̃0 = x and evolve as (45). By discretizing the interval [t0, tN ]
into N intervals of equal length Δ t, t0 < t1 < .. . < tN , we can write a sample of the
discretized trajectory χ i

N as

χ i
N =

(
x̃i

1, . . . , x̃
i
N

)
,

which is sampled from

χ i
N ∼ p(χN |x̃0) = p(x̃1, . . . , x̃N |x̃0).

Under this discretization in time, the solution (44) can be written as

Ψ0(x̃0, t0) = lim
Δ t→0

∫
dχN p(χN |x̃0)exp

[

− Δ t
2λ

N

∑
k=1

k(x̃k)

]

, (49)

where dχN =
N
∏

k=1
dx̃k and where p(χN |x̃0) is the probability of a discretized sample

path, conditioned on the starting state x̃0, given by

p(χN |x̃0) =
N−1

∏
k=0

p(x̃k+1|x̃k). (50)

Since, in the uncontrolled process (45), the noise is Gaussian with zero mean and
covariance Σ , the transition probabilities may be written as

p(x̃k+1|x̃k) =
1

√
2π |Σ |Δ t

exp

(
− 1

2Δ t
(x̃k+1

−x̃k − f (x̃k)Δ t)T Σ−1 (x̃k+1 − x̃k − f (x̃k)Δ t)
)
. (51)

We can then write the probability of a complete trajectory as
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p(χN |x̃0) ∝ exp

(

−Δ t
2

N−1

∑
k=0

(
x̃k+1 − x̃k

Δ t
− f (x̃k)

)T

Σ−1
(

x̃k+1 − x̃k

Δ t
− f (x̃k)

))

.

(52)

The path integral representation of Ψ0(x̃0, t0) is obtained from equations (49-52),
and can be written as an exponential of an “action” [14] S(χN |x̃0) along the time-
discretized sample trajectory (x̃1, . . . , x̃N):

Ψ0(x̃0, t0) =
1

|2πΣΔ t|N/2
lim

Δ t→0

∫
dχNexp(−S(χN|x̃0)) (53)

S(x̃1, . . . , x̃N |x̃0) =
N

∑
k=1

Δ t
2λ

k(x̃k)

+
N−1

∑
k=0

1
2Δ t

(x̃k+1 − x̃k −Δ t f (x̃k))
T

×Σ−1 (x̃k+1 − x̃k −Δ t f (x̃k)) . (54)

From (31), (33), the optimal control is given by

u(x̃0, t0, i) = lim
Δ t→0

λ R−1BT
i ∂x̃0

logΨ0

= lim
Δ t→0

∫
dχNP(χN |x̃0)uL(χN |x̃0, i)

= lim
Δ t→0

EP(χN |x̃0) {uL(χN |x̃0, i)} (55)

= EP(χ |x̃0) {uL(χ |x̃0, i)}

where limΔ t→0 P(χN |x̃0) = P(χ |x̃0) is the probability of an optimal trajectory:

P(χN |x̃0) ∝ e−S(χN |x̃0), (56)

and the local controls uL(χN |x̃0) are

uL(χN |x̃0, i) =
1
M

Bi
x̃1 − x̃0

Δ t
, (57)

where the Bi selects a pair (γm,κm) based on the corresponding value of ξ (t/ε), as
in (20). Then (55) is

u(x, i) =
1
M

Bi
EP(χN |x̃0) {x̃1}− x

Δ t
. (58)

In the formulation, after computing u(x(t), t) = u(x̃0, t0), each agent executes only
the first increment of that control, at which point the optimal control is recom-
puted for the next time horizon

[
t0, t f

]
=
[
t, t + t f

]
. In other words, after comput-

ing EP(χN |x̃0) {x̃1}, the AiF applies the control u as chosen by the Bi in (58) to its
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t = 0,
ξ (0)

t = ε ,
ξ (ε)

t = 2ε ,
ξ (2ε)

t0 t1 t2
. . .

tM−1 t f

ε

t0 t1 t2
. . .

tM−1 t f

ε

t0 t1 t2
. . .

tM−1 t f

ε

Δ t

Fig. 2 Receding-horizon timing. At t = 0, the AiF computes EP(χN |x̃0) {x̃1}, and randomly

chooses a value for ξ . The control applied is the ξ th component of (58). In the next time step
ε , the process repeats.

heading angle and speed. Then the problem repeats with a random selection of ξ
(see Fig. 2).

The result of this section is a PDF (49) of the system trajectories, including their
costs, that is marginalized over each infinitesimal temporal increment of the pro-
cess under consideration. The optimal control (58) applied by the AiF in state x
is estimated from this trajectory PDF once the joint probability P(χN |x̃0) has been
computed, a nontrivial task to be discussed in the following section.

4 Computing the Control with Kalman Smoothers

In this section we present our approach that estimates the hidden state of a nonlinear
stochastic process, which corresponds to the maximally-likely trajectory under state
and control costs, using appropriately-chosen noisy measurements.

In general, the marginalization (49) is difficult to evaluate. If one were able to
sample K trajectories from the distribution P(χN |x̃0), approximation of the posterior
distribution, i.e., the optimal control (55), would only require a quick calculation:

u(x) =
1
K

K

∑
i=1

u(i)
L (x̃1, . . . , x̃N |x̃0),

Along these lines, previous works based on the path integral approach to stochastic
optimal control use Markov Chain Monte Carlo (MCMC) techniques [12] to sample
from P(x̃1, . . . , x̃N |x̃0). Although MCMC techniques can be used to generate sam-
ples of the maximally-likely trajectory, we find them to be slow in practice due to
the high dimension of this problem (χN ∈ R

6NM).
Moreover, is is not necessary to sample the entire distribution P(χN |x̃0) since

only the value of x̂1 ≡ EP(χN |x̃0) {x̃1} is needed. Note that this estimate is the first
infinitesimal increment of the optimal trajectory χ∗

N :
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χ∗
N = argmax

χN

{P(χN |μ , x̃0)}

∝ argmax
χN

{P(μ |χN)P(χN |x̃0)} .

In this work, we treat the temporal discretization of the optimal trajectory χ∗
N as the

hidden state of a stochastic process, where measurements are related to the system
goal μ (24). The optimal control can then be computed from the optimal estimate x̂1

of the expected value P(χN |x̃0) {x̃1} given the process and measurements over a fixed
interval t1, . . . , tN . Therefore, we define the following nonlinear smoothing problem.

Nonlinear Smoothing Problem:
Given measurements yk = y(tk) for tk = t1, . . . , tN = t f , where tk+1 − tk = Δ t, com-
pute the estimate x̂1:N of the hidden state x̃1:N from the nonlinear state-space model:

x̃k+1 = x̃k +Δ t f (x̃k)+ εk (59)

yk = h(x̃k)+ηk, (60)

where f (·) and h(·) are as in Section 2, and εk and ηk are independent multivariate
Gaussian random variables with zero mean and covariances:

E
(
εkεT

k

)
= Δ tΣ (61)

E
(
ηkηT

k

)
=

λ
Δ t

A−1. (62)

The smoothing is initialized from x̃0 = x, the current state of the system as viewed
by the AiF. Measurements yk are always exactly yk = μ . If μ is expected to change
over time (e.g., a dynamic formation), then yk = μk.

Note that only the estimate x̂1 is needed to compute the control. The measurement
noise in the estimation problem (62) is related to the instantaneous state costs (24),
and the process noise (61) is related to the instantaneous control costs (25).

To show that the estimation of x̂1 can be computed based on the nonlinear
smoothing, we write the probability of an estimated hidden state x̂k in the filtering
algorithm predication/update steps [13], which is proportional to the measurement
likelihood p(yk|x̂k) and the predicted state p(x̂k|x̂k−1):

p(x̂k|x̂k−1) ∝ p(yk|x̂k)p(x̂k|x̂k−1),

where

p(yk|x̂k)≡ p(μk|x̂k) = N
(
h(x̂k),ηkηT

k

)

∝ exp

{
− Δ t

2λ
(h(x̂k)− μ)T A(h(x̂k)− μ)

}

= exp

{
−Δ t

2λ
k(x̂k)

}
(63)
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and

p(x̂k|x̂k−1) = N (x̂k−1 +Δ t f (x̂k−1),Δ tΣ)

∝ exp

{
− 1

2Δ t
(x̂k − x̂k−1 −Δ t f (x̂k−1))

T

×Σ−1 (x̂k − x̂k−1 −Δ t f (x̂k−1))
}
. (64)

Comparing the right hand sides of (63-64) with (54), it can be seen that the problm
of estimating x̂1 is equivalent to the estimation of x̂1 in the smoothing problem.

The most-likely trajectory originating from state x̂0, that is, the hidden states x̂k,
k = 1, . . . ,N, can be found by filtering and then smoothing the process given the
measurements μk using a nonlinear smoother, such as an Extended Kalman RTS
Smoother (EKF-RTS) or Unscented Kalman RTS Smoother (UKF-RTS) [34]. A
nonlinear Kalman smoothing algorithm assumes that the increments given by (63)
and (64) are to some extent Gaussian, but the algorithm is sufficiently fast to be
applied in real-time by each unicycle in a potentially large group with an even larger
state space, motivating its use in this work.

The control to be applied in the current state x is given by (58), using the x̂1 esti-
mated by the smoother. After this increment, the process repeats. When the smooth-
ing is complete and agents have applied their computed control, each agent must
then observe the actual states of its neighbors so that the next iteration begins with
the correct initial condition. In practice, the controller/smoother must be capable
of efficiently filtering and smoothing over the horizon

[
t0, t f

]
. The computational

complexity of such a smoother is analyzed in [34].
The effect of scaling parameter λ becomes clear in in the dual estimation formu-

lation. For λ � 1, the measurement noise is large, and the smoother will place more
weight on its predictions. Consequently, the passive components of the system f (·)
will dominate, and less control will be applied. Similarly, for λ � 1, the smoother
will trust the measurements, and a greater amount of control will be applied. The
net effect is that λ decides the fraction of the process noise in the original control
problem that is propagated into the estimation problem.

Recall that the spatial boundary condition (43) constrains the speeds of the agents
within upper and lower limits, i.e. to remain outside the set V . In the context of the
smoothing problem, this requires that the probability of a filter prediction, measure-
ment update, or smoothing update to be zero if the estimate enters the boundary V .
To deal with such a problem, the smoothing algorithm should be capable of handling
inequality constraints. Several algorithms of this type exist (see [2], for example),
but in order to keep computation time at a minimum, we instead employ a more
straightforward approach. After each prediction step, if the current estimate x̂k is in
violation of the constraints, the estimate is projected in a least-squares sense to lie
inside the contraint boundaries using Matlab’s lsqlin. The same method is also
applied if the estimate violates the speed constraints during any of the update or
smoothing steps.
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Fig. 3 Five agents, starting from random initial positions and a common speed v = 2.5 [m/s],
must achieve a regular pentagon formation by an individually-optimal choice of acceleration
and turning rate, without any active communication

5 Results

In this section, we apply the methods to a formation control problem in which five
agents achieve the formation of a regular pentagon. Each agent is individually es-
timating the hidden optimal trajectory based on the relative kinematics of all of its
neighbors. The instantaneous state cost (24) penalizes the mean squared distance
from the unicycle to all of its M = 4 neighbors in excess of the side length of the
pentagon (5 [m]) or the diagonal of the pentagon, depending on the relative config-
uration of the pentagon encoded in μ .

The system and control algorithm parameters were chosen as λ = 1, σθ = σv =
0.1, t f = 30 s, A = 0.1I4×4, vLB = 1 [m/s], vUB = 3 [m/s], and Δ t = Δε = 0.1 s.
The control was computed from the result of a Discrete-time Unscented Kalman
Rauch-Tung-Striebel Smoother [34]. Fig. 3 shows the trajectories of all agents,
while the the inter-agent distances can be seen in Fig. 4. With an initial speed of 2.5
[m/s], the agents never hit their limiting speeds vLB or vUB. Once the pentagon has
formed, the agents’ heading angles are not equal, and the formation rotates. Without

t [s]

r m
n

[m
]

0

20

20 40 60 80 100 120

5

10

15

Fig. 4 Inter-agent distance rmn as a function of time. The two radii correspond to the objec-
tive pentagon side length (5 [m]) and the pentagon’s diagonal ( 5

2 (1+
√

5) ≈ 8.1 [m]). The
pentagon continues to rotate after forming.
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Fig. 5 Transition from a pentagon to a line. The initial condition is the final frame of Fig. 3.

a goal of alignment among the agents, each agent is anticipating the pentagon to
rotate (in expected value), and it computes its control so as to maintain its nominal
distances in the rotating pentagon.

A dynamic formation was then created by modifying the nominal distances μ
during simulation. In Fig. 5, after the pentagon had formed, the formation distances
were redefined so that the formation morphed into a line.

6 Discussion

This work considers the problem of unicycle formation control in a distributed op-
timal feedback control setting. Since this gives rise to a system with a high di-
mensional state space, we exploit the stochasticity inherent in distributed multi-
agent control problems and apply the path integral approach in order to compute the
control. The uncertainty in turning rates and accelerations of an agent’s neighbors
are modeled as stochastic processes, and a fast switching kinematic model links
this stochasticity to an agent’s control, allowing the optimal control problem to be
framed as an estimation problem.

Each agent computes its optimal control in real-time by applying a nonlinear
Kalman smoothing algorithm. The measurement noise and process noise of the
smoothing problem are created using the structure of the cost function and stochastic
kinematics. Aside from mutual observations among agents, the formation is created
and maintained without any communication among them.

A number of other goals, e.g., alignment of heading angle, are possible through
a simple change in the cost function. More complex aspects of multi-agent forma-
tion control, such as collision avoidance and dynamic communication networks, for
example, could be handled by a robust smoothing algorithm and will be explored in
future research.
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Kybernetika 4(3), 260–279 (1968)
22. Kumar, V., Rus, D., Sukhatme, G.S.: Networked Robotics. In: Sciliano, B., Khatib, O.

(eds.) Springer Handbook of Robotics. ch. 41, pp. 943–958 (2008)



162 R.P. Anderson and D. Milutinović
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Appendix 1

Here we derive the switching model (15)-(18) from the original model (9)-(14).
First, note that the relative angle and relative speed satisfy

γm(t) = (θ (0)−θm(0))+

t∫

0

ω(x(s))ds−
t∫

0

σθ dwm,θ (65)

κm(t) = (v(0)− vm(0))+

t∫

0

u(x(s))ds−
t∫

0

σvdwm,v, (66)

from which we may obtain

E(γm) = θ (0)−θm(0)+

t∫

0

ωdt (67)

E(γm)− γm =
∫

σθ dwm,θ (68)

E(κm) = v(0)−κm(0)+

t∫

0

udt (69)

E(κm)−κm =

∫
σvdwm,v. (70)

Then the heading angles and speeds of the AiF and its neighbor m can both be
encoded into γm and κm by the relations:

θ (t) = E

⎧
⎨

⎩
γm(t)+θm(0)+

t∫

0

σθ dwm,θ

⎫
⎬

⎭
= E(γm(t))+θm(0) (71)

θm(t) =−(γm −E(γm(t)))+θm(0) (72)

v(t) = E

⎧
⎨

⎩
κm(t)+ vm(0)+

t∫

0

σθ dwm,v

⎫
⎬

⎭
= E(κm(t))+ vm(0) (73)

vm(t) =−(κm −E(κm(t)))+ vm(0). (74)

We assume that only one pair (γm,κm) evolves at a time. Introducing δξ (t/ε),m as the
Kronecker delta selecting the evolution of the pair m, we would have that
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dγm(t) = (ωdt −σθ dwθ ,m)δξ (t/ε),m (75)

dκm(t) = (udt −σvdwm)δξ (t/ε),m. (76)

However, we wish for the average evolution of the states to be the same as in the
original problem formulation. Since each pair m is selected with frequency M−1, we
write the evolution of these relative states as

dγm(t) =
(

Mωdt −
√

Mσθ dwθ ,m

)
δξ (t/ε),m (77)

dκm(t) =
(

Mudt −
√

Mσvdwm

)
δξ (t/ε),m. (78)

Next, we substitute (72) and (74) into θm(t) and vm(t), respectively, in the kinematic
model for rm(t) and ϕm(t). Finally, we also substitute the averages for θ (t) and v(t):

θ (t) =
1
M

M

∑
j=1

(E(γ j(t))+θm(0)) =
1
M

M

∑
j=1

(E(γ j(t)))+θm(0) (79)

v(t) =
1
M

M

∑
j=1

(E(κ j(t))+ vm(0)) =
1
M

M

∑
j=1

(E(κ j(t)))+ vm(0). (80)

Appendix 2

Here we develop a first approximation to (37), reproduced here:

∂tΨi =
1

2λ
k(x)Ψi − f T ∂xΨi − 1

2
Tr
(
ΓiΓ T

i ∂ 2
xΨi
)−Ψi

Q(t)
ε

logΨ (x, t)(i).

This derivation follows closely to that in Chapter 11 of [43].
We seek to find an approximation to Ψi(x, t), and begin with an asymptotic ex-

pansion to Ji(x, t) of the form

Ji(x, t) = A0(x, t, i)+ εA1(x, t, i)+B0(x,τ, i)+ εB1(x,τ, i), i = 1, . . . ,M

where τ = (t f − t)/ε is a stretched-time variable, the Ak(·)’s are outer expansion
terms, and Bk(·)’s are terminal layer correction terms. The expansion terms are
matched at terminal condition (28) with

A0(x, t f , i)+B0(x,0, i) = φ(x) = 0 (81)

A1(x, t f , i)+B1(x,0, i) = 0. i = 1, . . . ,M (82)

From (33), define the transformed expansion terms as

ak(x, t, i) = exp(−Ak(x, t, i)/λ ) (83)

bk(x,τ, i) = exp(−Bk(x,τ, i)/λ ), i = 1, . . . ,M, k = 0,1. (84)
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Substituting the outer expansion terms ak(·) into (37) and collecting terms by pow-
ers of ε , we obtain

ε0 : Q(t)a0(x, t, ·)(i) = 0 (85)

ε1 : ∂t a0(x, t, i) =
1

2λ
k(x)a0(x, t, i)− f T ∂xa0(x, t, i)− 1

2
Tr
(
ΓiΓ T

i ∂ 2
x a0(x, t, i)

)

− a0(x, t, i)Q(t) loga1(x, t, ·)(i). (86)

Writing a0(x, t) = [a0(x, t,1), . . . ,a0(x, t,M)]T , we have from (85) that

Q(t)a0(x, t) = 0.

Then from (22)-(23), the rank of Q(t) is M−1, implying that the null-space of Q(t)
is one dimensional and spanned by a vector of all ones, �= [1, . . . ,1]T . Then a0(x, t)
must be independent of i, and so

a0(x, t) =Ψ0(x, t)�. (87)

Note that this condition on Q(t) further implies the existence of a quasi-stationary
distribution [43] ν(t) = [ν1(t), . . . ,νM(t)] with the properties that ∑M

i=1 νi = 1 and
ν(t)Q(t) = 0. Substituting (87) into (86), left multiplying by νi, and summing over
i gives

M

∑
i=1

νi∂tΨ0(x, t) =
M

∑
i=1

νi
1

2λ
k(x)Ψ0(x, t)−

M

∑
i=1

νi f T ∂xΨ0(x, t)

−
M

∑
i=1

νi
1
2

Tr
(
ΓiΓ T

i ∂ 2
xΨ0(x, t)

)−Ψ0(x, t)
M

∑
i=1

νiQ(t) loga1(x, t, ·)(i).
(88)

The properties of ν(t) cause the last term to drop out, and the νi’s in the first three
sums add to one.

∂tΨ0(x, t) =
1

2λ
k(x)Ψ0(x, t)− f T ∂xΨ0(x, t)−

M

∑
i=1

νi
1
2

Tr
(
ΓiΓ T

i ∂ 2
xΨ0(x, t)

)
. (89)

Next, since Γi selects the ith pair of (γ±m ,κ±
m ) and multiplies them by

√
M, the re-

maining sum represents a consolidation of the diffusion terms associated with each
of the pairs (γ±m ,κ±

m ). Then in light of the chosen symmetry of Q(t) (22)-(23), this
sum reduces to an average diffusion with covariance

Σ =
1
M

M

∑
i=1

ΓiΓ T
i ,

which is (41), and Ψ0(x, t) satisfies
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∂tΨ0(x, t) =
1

2λ
k(x)Ψ0(x, t)− f T ∂xΨ0(x, t)− 1

2
Tr
(
Σ∂ 2

x Ψ0(x, t)
)
. (90)

which is (37), and with terminal condition Ψ0(x, t f ) = exp(φ(x)) = 1, which is (42).
Next we consider the terminal correction terms bk(x,τ, i). Rewriting the original

PDE in the timescale of τ ,

−1
ε

∂τΨi =
1

2λ
k(x)Ψi − f T ∂xΨi − 1

2
Tr
(
ΓiΓ T

i ∂ 2
xΨi
)−Ψi

Q(t f − ετ)
ε

logΨ (x, t)(i),

i = 1, . . . ,M
(91)

and expanding Q(·) around t f ,

Q(t f − ετ)≈ Q(t f )− (ετ) Q′(t)
∣
∣
t=t f

, (92)

we can obtain, using the same method as before,

∂τ b0(x,τ, i) = b0(x,τ, i)Q(t f ) logb0(x,τ, ·)(i). (93)

From (81) and (42), this implies that b0(x,τ, i) = 1 for all time and states i. We do
not derive asymptotic error bounds here.
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