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Abstract. The use of unmanned vehicles in exploration and surveillance operations
has become evermore pervasive in today’s world. The development of cooperative
motion strategies has been fueled by this increasing demand. However, many dy-
namical models for these autonomous vehicles remain simple and are not accurate
representations of a vehicle where such cooperative motion strategies may be phys-
ically implemented. This paper reviews complementary solutions to the problem
of cooperative deployment of autonomous vehicles using multi-center functions. In
particular, vehicles are subject to three types of dynamic constraints, such as those
due to remaining power supplies, nonholonomic dynamics, and constraints due to
external environmental forces. Simulations illustrate the convergence properties of
the algorithms when applicable.

1 Introduction

The study of coordination mechanisms in multi-agent systems is relevant for both
the understanding of scientific phenomena and the development of new technolo-
gies. A main class of examples from nature is given by swarming in animal species
such as ant colonies, termites, flocking birds, and schooling fish. Emergence and
self-organization is also a characteristic of human politics, societies, and economic
groups. In these groups, each member makes decisions repeatedly based on local
information signals sent or left by other members of the group and the environment.
This decentralized process with no leaders yields complex emerging behaviors that
translate into robust and efficient global structures, patterns, or organizations.

Complex systems in biology and society can help us understand, model, and de-
sign large-scale engineered systems composed of autonomous and semi-autonomous
agents. Their potential advantages are those found in their biological counterparts—
robustness to failure thanks to system redundancy, and increased efficiency in the
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D. Milutinović & J. Rosen (Eds.): Redundancy in Robot Manipulators, LNEE 57, pp. 125–143.
DOI: 10.1007/978-3-642-33971-4 8 c© Springer-Verlag Berlin Heidelberg 2013

soniamd@ucsd.edu


126 S. Martı́nez

number and quality of the global tasks that can be accomplished. However, the re-
alization of multi-agent systems poses new challenges induced by scalability prob-
lems, agent heterogeneity, and intermittent interactions in uncertain, dynamically
changing environments.

Research in mobile robotics has helped enormously in the understanding of these
challenges through the study of several important benchmark problems including
rendezvous, formation control, deployment, and task assignment. In particular, the
problem of robot deployment to provide better coverage or task servicing in an envi-
ronment lends itself to geometric optimization formulations, which have been exten-
sively studied. An incomplete list of references on coverage includes [1, 2], based
on potential field methods, [3] using the theory of coverage point processes, [4]
making use of non-smooth analysis techniques, and [5, 6, 7] based on behavioral
control approaches. More recently, the robotics community is developing new non-
model based algorithms for coordinated deployment and map building [8].

An alternative, popular approach makes use of multi-center performance metrics
and Voronoi-based control algorithms to stabilize multi-robot systems to locally
optimal positions [9, 10]. This approach has been adapted to deal with non-convex
environments with obstacles [11, 12, 13], distributed environment learning [14, 15],
and equitable partitions [16, 17]. The resulting algorithms can be adapted so that
limited-range, distributed interactions are possible as well [18].

More recently, different researchers have started to reconsider the difficulties in-
troduced by vehicle dynamics. Coordination algorithms typically assume simple
dynamics for vehicles. The idea is to implement this strategy as a high-level plan,
together with low-level local motion plans that each vehicle uses to reconfigure to
the prescribed upper-level positions. If synchronization is possible, each vehicle can
wait for others to reach their positions before moving forward. However, in asyn-
chronous regimes this strategy can be just infeasible. On the other hand, dynamic
constraints may require a re-definition of the deployment objectives in order to pro-
duce more meaningful solutions. However, the inclusion of constraints in the coor-
dination objectives can impose additional computational and control challenges.

In this chapter, we review and summarize several extensions of Voronoi-based
deployment to account for different types of dynamical constraints. These include
power constraints, and vehicle controllable and uncontrollable dynamics. The paper
is organized as follows. In Section 2, we review the basic Lloyd’s algorithm to the
Locational Optimization problem for coverage control. In Section 3 we address the
problem of deployment under power limitation to vehicle motion. Section 4 adapts
Lloyd’s algorithm to deal with Dubin’s type of unicycles via a hybrid coordinated
motion law. Finally, Section 5 introduces a heuristic to deal with underactuated and
uncontrollable vehicles in river environments.

2 Benchmark Problem: Coverage Control

In this section, we present a basic coverage control problem formulation together
with gradient-based algorithmic solutions for unconstrained vehicle dynamics
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[9, 10]. Some of these will be extended in the following sections to account for
different types of dynamical constraints.

Basic coverage and task-assignment objectives can be formulated by a meaning-
ful class of Locational Optimization or multicenter performance metrics. Let Q⊆R

2

be a convex, bounded environment, and φ : Q →R≥0 be a scalar field with bounded
support Q. Here, φ represents an a priori measure of information on Q—the higher
the value of φ(q), q ∈ Q, the more attention that should be afforded to q ∈ Q. Let
P = (p1, . . . , pn) denote the agent positions in Q. In the following, we interchange-
ably refer to the elements of the network as sensors, agents, vehicles, or robots. Let
f : R → R be a non-decreasing and piecewise differentiable function relating the
Euclidean distance from pi to q ∈ Q, ‖pi − q‖, to coverage performance from pi on
q, for all i ∈ {1, . . . ,n}. For example, the function f can encode the signal-to-noise
ratio between a source with location q and the sensor located at pi. Or it can de-
fine the cost of servicing a location q by an agent placed at pi; e.g. the traveling
time from pi to q when moving on a straight line with constant velocity. With these
elements, a coverage metric can be defined as:

H (P) =
∫

Q
min

pi
f (‖pi − q‖)dq , (1)

where minpi f (‖pi − q‖) has the interpretation of the best coverage of q provided
by the multi-robot system. The minimization of this metric results into a minimum
average cost to cover Q using the multi-robot group.

For the purpose of defining a distributed algorithm that optimizes this metric, it
is helpful to restate (1) in terms of the individual contribution that each agent in
the network adds to H . For example, assume that f (x) = x2 for all i ∈ {1, . . . ,n}
and denote the associated H by Hcentr. Let V (P) = (V1, . . . ,Vn) be the so-called
Voronoi partition of Q, where

Vi = {q ∈ Q | ‖q− pi‖ ≤ ‖q− pi‖, ∀ j 	= i} , ∀ i ∈ {1, . . . ,n}, (2)

satisfy ∪n
i=1 Vi = Q. Then H may be rewritten as

H (P)≡ H (P,V (P)) =
N

∑
i=1

∫
Vi

‖q− pi‖2φ(q)dq . (3)

Given a region W ⊆ Q, one can define its mass and centroid, as follows:

MW =
∫

W
φ(q)dq , CMW =

∫
W

qφ(q)dq . (4)

It can be shown, see [19, 9], that if agents are in a centroidal Voronoi configuration;
that is, pi = CMVi for all i, then the cost function H is at a local minimum.

An alternative metric that considers flat and limited sensor footprints (resp. travel
ranges) R can be obtained by taking f (‖p−q‖) =−1[0,R)(‖p−q‖), which leads to:
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Harea(P) =−
∫
∪n

i=1 B(pi,R)
φ(q)dq, .

The minimization of this metric results into a maximization of the area covered by
the group of agents. This objective can be combined with the previous one, leading
to a mixed metric of the form Hmixed(P) = αHcentr +βHarea(P), for α , β ≥ 0.

Once a metric is chosen, a gradient-based distributed control algorithm can be
implemented by each agent to asymptotically reach the corresponding set of local
minima. The following law is a continuous-time version of the algorithm in [9]:

ṗi =−sat

(
∂Hcentr

∂ pi

)
=−MVi(CMVi −pi) , i ∈ {1, . . . ,n},

where the function sat(v) = v, if ‖v‖≤ 1, otherwise sat(v) = v
‖v‖ . Essentially, agents

need to be able to compute the regions Vi, and follow the corresponding centroid.
If Q is compact, agents will converge to centroidal locations. The corresponding
Voronoi regions may be computed by agents using information of a limited set of
other agents, the Delaunay neighbors. Thus, the algorithm is distributed in the sense
of the Delaunay graph. Correspondingly, the metrics Harea and Hmixed give rise to
algorithms that are distributed in the sense of the 2R-disk graph (for appropriate
α and β ). Discrete-time versions of these algorithms can be seen to be convergent
even if partial asynchronous behavior is permitted [9, 10].

A simulation of the above gradient algorithm is provided below.

Fig. 1 A simulation run of the gradient-based algorithm associated with Hcentr. The figure
on the left depicts robots’ initial positions. The figure on the right represents robots’ final
positions and correspond to centroidal Voronoi configurations.

3 Power-Limited Deployment

Power-aware algorithms have been the subject of extensive research in static sensor
networks and mobile middleware, see [20, 21]. However, there is limited work on
power constraints, and how these may affect cooperative control algorithms. For
instance, the final agent configurations provided by Figure 1 for a task assignment
objective do not seem reasonable when agents have different motion restrictions.

Here we describe a first approach [22] to deal with this problem in the context of
the Locational Optimization or multicenter type of metrics of Section 2. We assume
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that there is enough group redundancy so that the loss of a particular agent can
be afforded. This allows to account for energy limitations by means of a modified
performance metric of the form of (1) and associated generalized Voronoi partitions.

Let P = (p1, . . . , pn) be the positions of n robots in Q. The sensors have an asso-
ciated energy content Ei such that 0 ≤ Ei ≤ Emax, for all i ∈ {1, . . . ,n}. As agents
move, their energy reserve will decrease. We propose the following simple agent
dynamics in the augmented state (pi,Ei) ∈ Q×R≥0:

ṗi = ui , Ėi =−gi(‖ ṗi‖) , (5)

where ṗi denotes the velocity of agent i such that ‖ ṗi‖ ∈ [0,vmax], ui is the control
input, and gi : [0,vmax] → R≥0 is any increasing function such that gi(x) = 0 only
at x = 0. Intuitively, gi(x) captures the fact that energy expenditure increases as
velocity increases. This modeling assumption is based on the consideration that
power is consumed to change absolute speed and counteract drag forces; the latter
being the predominant force [22]. In the following, we will take gi(x) = g(x) = x2,
for all i ∈ {1, . . . ,n}, for simplicity.

Energy expenditure will affect the travel range that a sensor can cover with max-
imum velocity before running out of batteries. Suppose that agent i travels with
a maximum velocity ṗi(t) = (vmax,0)T ∈ R

2. Then, the vehicle runs out of en-
ergy at time T (vmax) = Ei(0)/g(vmax). The associated travel range is the distance
R∗ = vmaxT (vmax). This motivates the use of a mixed type of performance metric as
in Section 2 that accounts for travel-range limits. Thus, we consider:

H (P,E) =
∫

Q
min

i∈{1,...,n}
fi(dEi(q, pi))φ(q)dq , (6)

where E = (E1, . . . ,En) are current energy levels of agents, the maps fi : R → R

are non-decreasing functions associated with the travel cost of each agent i, and
dEi : Q×Q →R is a weighted (quasi) pseudo-metric function such as the following:

1. The power-weighted metric, dEi, pow(q, pi) = ‖q− pi‖2 − (Ei)
2,

2. The multiplicatively-weighted metric, dEi, mult(q, pi) =
1

E2
i
‖q− pi‖2,

3. The additively-weighted metric, dEi, aw(q, pi) = ‖q− pi‖− (Ei)
2.

All these metrics lead to generalized Voronoi regions [19] whose size depends on
the relative energy content of neighboring robots:

V gen
i = {q ∈ Q |dEi(q, pi)≤ dEi(q, p j),∀ j 	= i} , where dEi is a pseudometric.

Boundaries of these Voronoi regions are (1) straight lines for the power metric,
(2) circles of radii Ei, i ∈ {1, . . . ,n}, for the multiplicatively-weighted metric, and
(3) hyperbolic boundaries for the additively-weighted metric. Due to the difficulty
of representing and intersecting hyperbolic boundaries, we focus on the first two
types. As opposed to standard Euclidean Voronoi regions, these generalized regions
can be non-convex and their generators may lie outside them. If vehicles only have
a limited amount of energy to move using a maximum velocity, Ei, i ∈ {1, . . . ,n},
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we propose that in order for an agent i to be able to cover a point q ∈ Q, agent i
must be able to reach q with its current energy level. This leads to new assignment
regions for agents given by the intersection of Voronoi regions with circles of radii
Ei, i ∈ {1, . . . ,n}.

Let Bi(Ei) be a closed ball centered at pi with radius Ei. Then, the space that
can be covered by the robots to ∪n

i=1 Bi(Ei) ⊆ Q. The new limited-Voronoi regions
assigned to each agent are defined as follows:

V gen
LD, i = {q ∈ Q |dEi(q, pi)≤ dEi(q, p j),∀ j 	= i and ‖q− pi‖ ≤ Ei} ,

where dEi is one of the pseudometrics above. Figure 2 compares limited-Voronoi
regions.
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Fig. 2 Figures from left to right: (i) Voronoi partition associated with the multiplicatively
weighted pseudometric, (ii) limited-range cells associated with the multiplicatively-weighted
pseudometric, (iii) limited-range cells associated with the power-weighted pseudometric

The computation of limited types of regions are spatially distributed over the
Delaunay graph and the third one over the 2Emax-disk graph. The new regions em-
phasize different energy levels of agents. The corresponding metrics for centroidal,
area, and mixed coverage are then given respectively as follows:

Hcentr(P,E) =
∫
∪n

i=1 Bi(Ei)
min

i∈{1,...,n}
{dEi(q, pi)}φ(q)dq ,

Harea(P,E) =
∫

Q
min

i∈{1,...,N}
(−1[0,Ei](‖q− pi‖))φ(q)dq =−

∫
∪n

i=1 Bi(Ei)
φ(q)dq ,

Hmixed(P,E) = κareaHarea(P,E)+κcentHcent(P,E) .

In particular, it is still possible to rewrite Hcentr(P,E) as follows:

Hcentr(P,E) =
n

∑
i=1

∫
V gen

LD, i

dEi(q, pi)φ(q)dq .

For any of these functions H , we can define a gradient descent control algorithm
for agents as follows:
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ṗi =−k∗(pi,Ei)sat

(
∂H

∂ pi

)
, k∗(pi,Ei) =

sat
(

∂H
∂ pi

)
·
(

∂H
∂ pi

)

2
∣∣sat
(

∂H
∂ pi

)∣∣2 ∂H
∂Ei

Ėi =−‖ ṗi‖2, i ∈ {1, . . . ,n}. (7)

That is, assuming that energy decreases according to ‖ ṗi‖2, we modulate the ve-
locity of agents via the gain k∗i while collectively decreasing the cost function H .
In this way, vehicles with lower energy will spend less in moving toward their goal
positions, while vehicles with larger energy will spend more. With this strategy, con-
trollability to critical positions is possible for those agents that have enough energy
to move. For the particular case of Hcentr(P,E), the algorithm makes agents follow
the centroids of the corresponding generalized Voronoi regions if they do not run
out of energy. Convergence is stated in the following theorem.

Theorem 1 (Critical configurations for centroidal coverage and MWVD, [23]).
The critical points of a gradient descent flow characterized by (7) using an objective
function Hcentr are configurations where each agent is either:

1. located at the centroid, pi = CMV gen
LD,i

,

2. has no energy, Ei = 0.

Agents approach these critical configurations as t → ∞.

A simulation run of the energy-aware gradient-descent algorithm for a mixed metric
Hmixed is provided in Figure 3. Agents that need to travel further away, will even-
tually have smaller assigned regions. In this case vehicles end up at the centroids
of their regions. Similar convergence results can be established for the other cost
functions such as Harea. The number of agents that can run out of energy depends
on the initial agents’ positions, the density φ(q), and size of the environment. The
extension of these results to deal with asynchronous implementations can be done
in a similar way to [9].
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Fig. 3 Multi-robot system trajectories evolving under (7) for Hcentr. The final energy regions,
and final agent energy levels, are also shown here.
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4 Unicycle Vehicle Dynamics

Vehicles’ actuation can severely be affected by dynamical constraints on their po-
sitions and velocities. For example, the control laws of the previous section force
individual agents to move directly towards the centroid of their Voronoi regions;
however, this is not always possible. When vehicles are controllable, one can con-
sider vehicle dynamics into the design of coordination algorithms from the start.
This can help avoid severe performance degradation due to lack of synchronization.

In the following we introduce control algorithms that propel a class of non-
holonomic vehicles to centroidal Voronoi configurations while the minimization of
Hcentr is satisfied in certain sense. This results into a hybrid system that can be
analyzed via the novel theory of [24, 26]. Suppose that vehicles are deployed in
a convex, compact environment Q. Referencing Figure 4, each vehicle has con-
figuration variables (pi,θi) ∈ SE(2)Q, and a body coordinate frame with basis
ei,1 = (cosθi,sinθi) and ei,2 = (−sinθi,cosθi). We denote di = CMVi −pi as in
Figure 4 and define the angle Ωi ∈ [−π ,π ] to be the angle between ei,1 and di.
We assume the vehicles have bounded velocity and turning rate, |vi| ≤ vmax and
|ωi| ≤ ωmax respectively. Next, we introduce a Dubin’s type of nonholonomic vehi-
cles that we shall consider.

ei,1

ei,2

Ωi

CMVi

di

θi

pi

ei,1
ei,2

1
ωmax

di

θi

Ωi

CMVi

pi

ei,1

ei,2
1

ωmax

d̃i

θi

Ω̃i

CMVi

p̃i

Fig. 4 Vehicle with wheeled mobile dynamics (left). The variables are redefined for a vehicle
with fixed forward velocity and a left virtual center (middle). The non-active virtual center
quantities are shown with a tilde, ˜ (right).

Vehicles with Fixed Forward Velocity. Simple models for UAVs and underwater
gliders can be modeled as vehicles with constant forward velocity, constant altitude
and a minimum turning radius such as the following [25]:

ṗi = (cosθi,sinθi)
T , θ̇i = ωi ,

where ωi is the only input. Define the vehicle virtual center as its center of rota-
tion when the turning input is ±ωmax. These centers can be on either side of the
vehicle, and a strategy to switch virtual center locations will be introduced later.
Our coverage objective will be formulated in terms of the virtual center of each ve-
hicle to a desired centroid target. This target will be the centroid of the vehicle’s
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Voronoi region calculated using the virtual centers of all vehicles in the network.
Once the virtual center has arrived at the centroid, the vehicle will hover about it by
maintaining the maximum steering input ±ωmax.

The virtual centers’ coordinates in the global frame are

pi
′ = pi ± 1

ωmax
(−sinθi,cosθi)

T . (8)

with time derivative:

ṗi
′ = ṗi ± 1

ωmax
(−(cosθi)θ̇i,−(sinθi)θ̇i)

T =

(
1∓ ωi

ωmax

)
(cosθi,sinθi)

T . (9)

Indeed, with ωi = ±ωmax, the vehicle is hovering since the virtual center remains
fixed, ṗ′i = 0. At any point in time, the current virtual center is chosen by a vehicle
to be located on either side of the direction of travel. To simplify notation, let a
current virtual center be p′i, and the opposite virtual center be p̃′i = p′i± 2

ωmax
ei,2. Let

d̃i = CMi(V (P))− p̃i and let Ω̃i denote the angle between ei,1 and d̃i, see Figure 4.
Each vehicle will either be in forward motion or hovering motion about one of

the centers. This will result into four possible modes of operation for each vehicle
depending on the center location: forward-left, hover-left, forward-right, and hover-
right. We enumerate each mode with the state li ∈ {1,2,3,4}, thus we describe each
agent by a state variable, xi ∈ SE(2)Q×{1,2,3,4}, and the multi-agent system state
by x = (x1, . . . ,xN) ∈R

4N .
The choice of the center for each vehicle is based on the following observation.

Starting arbitrarily with a center position p′i, we propose that each vehicle can switch
to the other center, p̃i, only if the actual improvement in cost satisfies H (P,V (P))−
H (P̃,V (P̃))≥ β , where β ≥ 0 is a fixed constant, P = (p′1, . . . , p′i, . . . , p′n) and P̃ =
(p′1, . . . , p̃i, . . . p′n) considers the new virtual center position p̃i. This improvement
can be evaluated locally by each vehicle, by knowing Vi.

We now describe more precisely the hybrid system that formalizes the coop-
erative algorithm for the multi-UAV group. The system state-space is SE(2)Q ×
{1,2,3,4} ⊆ O = R

4N . First, the sets Ai,1, . . . , Ai,4 define the states where each
vehicle i can flow continuously in each of the four modes, and are given as follows:

(1) An individual vehicle can be in Ai,1 (resp. Ai,3) if the centroid is in front of the
left (resp. right) virtual center at p′i, and if p′i is not sufficiently close to CMi(V ). Ad-
ditionally, the improvement from switching between forward-left to forward-right
(resp. vice-versa) must be better than β . However, if the opposite virtual center p̃′i
is not in Q, then the vehicle may maintain its current virtual center despite violating
the improvement threshold β :

Ai,1={x ∈ O | xi ∈ SE(2)Q ×{1}, ei,1 ·di ≥ ε, Mi‖di‖2 −Mi‖d̃i‖2 ≤ β , ‖di‖ ≥ ε}
∪{x ∈ O | xi ∈ SE(2)Q ×{1}, ei,1 ·di ≥ ε, p̃′i ∈ Qc, ‖di‖ ≥ ε},

Ai,3={x ∈ O | xi ∈ SE(2)Q ×{3}, ei,1 ·di ≥ ε, Mi‖di‖2 −Mi‖d̃i‖2 ≤ β , ‖di‖ ≥ ε}
∪{x ∈ O | xi ∈ SE(2)Q ×{3}, ei,1 ·di ≥ ε, p̃′i ∈ Qc, ‖di‖ ≥ ε},
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(2) A vehicle can be in Ai,2 (resp. Ai,4) if CMi(V ) is behind the left (resp. right)
virtual center p′i, or if p′i is on the boundary Q and heading outwards, or if p′i is
sufficiently close to CMi(V ):

Ai,2 = {x ∈ O | xi ∈ SE(2)Q ×{2}, ei,1 ·di ≤ ε, ‖di‖ ≥ ε} ∪
{x ∈ O | xi ∈ SE(2)Q ×{2}, ei,1 · n̂in ≤ 0}∪{x ∈ O | xi ∈ SE(2)Q ×{2}, ‖di‖ ≤ ε},
Ai,4 = {x ∈ O | xi ∈ SE(2)Q ×{4}, ei,1 ·di ≤ ε, ‖di‖ ≥ ε} ∪
{x ∈ O | xi ∈ SE(2)∂Q×{4}, ei,1 · n̂in ≤ 0}∪{x ∈ O | xi ∈ SE(2)Q×{4}, ‖di‖ ≤ ε}.

The hysteresis variables 0 < ε < ε < ε serve to insure that Zeno effects do not
occur. Combining these sets together, the entire hybrid system flow set is A =⋂N

i=1 (Ai,1 ∪Ai,2 ∪Ai,3 ∪Ai,4). When the system configuration x∈A, the state evolves
under the ẋ = F(x), where F(x) is defined as follows. First, let Fi(x) with:

Fi,1(x) = (cosθi, sinθi,
2Ωiωmax

π
, 0)T , Fi,2(x) = (cosθi, sin θi, ωmax, 0)T ,

Fi,3(x) = (cosθi, sinθi,
2Ωiωmax

π
, 0)T , Fi,4(x) = (cosθi, sinθi,−ωmax, 0)T .

Then, F(x) = (F1(x), · · · , FN(x))T , Fi(x) = Fi,k(x) if and only if li = k ∈ {1,2,3,4}.
We now describe the set where discrete jumps can occur. We will consider:

1. Switching from forward-left to forward-right:

Bi,1 = {x ∈ O | xi ∈ SE(2)Q ×{1}, ei,1 ·di ≥ ε, Mi(‖di‖2 −‖d̃i‖2)≥ β , p̃i ∈ Q},

2. Switching from forward-right to forward-left:

Bi,2 = {x ∈ O | xi ∈ SE(2)Q ×{3}, ei,1 ·di ≥ ε, Mi(‖di‖2 −‖d̃i‖2)≥ β , p̃i ∈ Q},

3. Switching from forward-left to hover-left:

Bi,3 = {x ∈ O | xi ∈ SE(2)Q ×{1}, ei,1 ·di ≤ ε}∪
{x ∈ O | xi ∈ SE(2)∂ Q ×{1},ei,1 · n̂in ≤−ε}∪{x ∈ O | xi ∈ SE(2)Q ×{1}, ‖di‖ ≤ ε},

4. Switching from hover-left to forward-left:

Bi,4 = {x ∈ O | xi ∈ SE2Q×{2}, ei,1 ·di ≥ ε, ei,1 · n̂in ≥ 0, ‖di‖ ≥ ε}
5. Switching from forward-right to hover-right:

Bi,5 = {x ∈ O | xi ∈ SE(2)Q ×{3}, ei,1 ·di ≤ ε}∪
{x ∈ O | xi ∈ SE(2)∂ Q ×{3},ei,1 · n̂in ≤−ε}∪{x ∈ O | xi ∈ SE(2)Q ×{3}, ‖di‖ ≤ ε},

6. Switching from hover-right to forward-right:

Bi,6 = {x ∈ O | xi ∈ SE2Q×{4}, ei,1 ·di ≥ ε, ei,1 · n̂in ≥ 0, ‖di‖ ≥ ε}.

The switching domain is the union B =
⋃N

i=1
⋃6

k=1 Bi,k. The jump map G is then
defined as follows. First, let gi,1(x), . . . ,gi,6(x) be the maps for an individual vehicle
i. These maps are:
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gi,1(x) = (3, pi − 2
ωmax

ei,2,θi), gi,2(x) = (1, pi +
2

ωmax
ei,2,θi),

gi,3(x) = (2, pi,θi), gi,4(x) = (1, pi,θi),

gi,5(x) = (4, pi,θi), gi,6(x) = (3, pi,θi).

We combine the above functions for each vehicle and obtain

Gi(x) =
{
(x1, . . . ,gi,k(x), . . . ,xN) | x ∈ Bi,k, for k ∈ {1, . . . ,6}}.

The complete set-valued jump map is then G(x) =
⋃N

i=1 Gi(x).
Concisely, the hybrid system of unicycles is described as

ẋ = F(x), x ∈ A,

x+ ∈ G(x), x ∈ B.

It can be seen that the system satisfies the Basic Conditions of [26], Section VI. This
allows us to apply the hybrid LaSalle invariance theorem derived therein:

Theorem 2 (Goebel, Sanfelice, Teel [27]). Given a hybrid system (F,G,A,B) on a
state space O ⊆ R

M which satisfies the Basic Conditions, suppose that:

1. there is a V : O → R, Lyapunov function continuous on O and Locally Lipschitz
on a neighborhood of A,

2. U ⊆ O is non-empty,
3. uA(x) = max f∈F(x)L fV (x)≤ 0, for all x ∈ A,
4. uB(x) = maxx+∈G(x)(V (x+)−V(x))≤ 0, for all x ∈ B.

Let x be precompact with range(x) ⊆ U . Then for some constant r ∈ V (U ), x ap-

proaches the largest weakly invariant set in V−1(r)∩U ∩
(

u−1
A (0)∪u−1

B (0)
)

.

A direct application of the above result leads to:

Theorem 3 (Kwok, Martı́nez [28]). Let U = O. Given the hybrid system for fixed
forward velocity vehicles defined above and with virtual center dynamics (9), any
precompact trajectory x(t, j) with rgex ∈ U , will approach the set of points

M = {x ∈ O | ‖CMVi −p′i‖ ≤ ε, ∀ i ∈ {1, . . . ,n}} . (10)

The proof makes use of Hcentr(x1, . . . ,xN) = H( p′1, . . . , p′N) as a locally Lipschitz
Lyapunov function. It can be seen that (i) Ḣcentr(x) ≤ 0 for all x ∈ A and, that (ii)
Hcentr(x+) = Hcentr(x), for all x ∈ B. The proof follows from the analysis that the
only possible set that can contain the largest invariant set is M .

We present a simulation case below where vehicles have a fixed forward velocity
in Figure 5. All vehicles begin with random positions and orientations in the lower
left corner. They start with a left virtual center, but agent 5 switches to a right virtual
center early in the simulation. It can be seen how the vehicles navigate their virtual
centers to the centroids of their Voronoi cells. The plot in the right shows a plot of
the cost function minimization to a critical value.
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Fig. 5 Fixed forward velocity deployment simulation. The agents start in the lower left
corner and path lines are shown in the left figure with final positions and orientations shown
in the right figure. Virtual center locations are denoted by a dot.

5 Uncontrollable Vehicles in River Environments

It is generally assumed that vehicles have fully actuated, or at least controllable,
dynamics. However, potential applications may involve the deployment of vehicles
in hazardous environments where agents lack the actuation to counteract external
forces. Example applications include the deployment of micro-UAVs in wind or
gliders in a swift current. One can still aim to factor such significant environmental
dynamics into the cooperative control algorithms.

In this section we summarize the results found in [29, 30] for the deployment of
vehicles in fast flow environments. Assume the following kinematic model for each
of the agents:

ṗi = ui +V(pi) , (11)

where ui(t) is piecewise smooth, ‖ui‖ ≤ 1, and ‖V‖ > 1. Time-optimal trajectories
can only be obtained with maximum velocity, thus ui = (cosθi,sin θi)

T , see [31].
Our notion of coverage will be associated with the set of points that an agent can

travel to faster than other agents. First, let us recall the definition of reachable set:

Definition 1 (Reachable set). We define the reachable set, R(pi), of an agent at
position pi to be the set of points x ∈ X that an agent can reach in finite time starting
from the initial position pi and using a piecewise smooth control input ui(t) with
‖ui‖ ≤ 1. The T -limited reachable set, RT (pi), of an agent at position pi, is the set
of points that an agent can reach within time T using a piecewise smooth control
input ui(t) with ‖ui‖ ≤ 1.

Figure 6 shows two examples of reachable sets in an affine and constant flows.
A distributed algorithm for the deployment of agents in a flow environment can

be now based on the maximization of the following area coverage metric:

Harea(p1, . . . , pn) =
∫
⋃

RT (pi)
1dx . (12)

This must be done while taking into account the flow environment and how it af-
fects the dynamics of each agent. The consideration of other metrics is still possible,
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cT
vT

Fig. 6 Reachable sets in affine environments. The figure on the right corresponds to the T
reachable set of a vehicle moving with velocity v in a constant flow of magnitude V = (c,0).

however, external drifts give rise to generalized Voronoi regions with complex
boundaries; see [32, 33] for some initial work in this regard. In order to maximize
Harea, one can follow the next steps: (a) determine minimum time trajectories in the
flow environment, and (b) use knowledge of the properties of these optimal trajec-
tories to compute a gradient direction.

In order to find RT (pi), one must solve the following optimal control problem:

minimize: J =

∫ t f

0
1dt ,

subject to: ṗi = ui +V(pi) ,‖ui‖ ≤ 1 , (13)

pi(0)and pi(t f )given .

For a smooth flow field V , this is known as Zermelo’s problem, and a solution can
be found in [31]. The optimal solution is to consider a control input of the form

ui = (cosθi,sinθi) ,

θ̇i = sin2 θi
∂V2

∂x1
+ sinθi cosθi

(
∂V1

∂x1
− ∂V2

∂x2

)
− cos2 θi

∂V1

∂x2
. (14)

The minimum-time trajectories are obtained by using this input in combination
with (11). Note that a constant V produces straight-line optimal trajectories.

To obtain the T -limited boundary of RT (pi), one could integrate (11) using (14)
to time T starting at the agent location pi and initial heading θi(0)∈ [α −β − π

2 ,α +

β + π
2 ], where α = arctan(V2(x),V1(x)) and β = arcsin

(
1

‖V (x)‖
)

. The solutions for

various initial headings at time T could then be recorded and combined with the
solutions γ(t,−1) and γ(t,1) for t ∈ [0,T ]. Note that this procedure works well for
affine flows, for which optimal trajectories are well behaved. That is, the trajectories
do not intersect and they fill up the cone between the extreme optimal trajectories
γ(t,−1) and γ(t,1).

The consideration of piecewise constant flows changes the nature of optimal solu-
tions and reachable sets. We summarize some of their properties under the following
assumption.
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Assumption 1. The flow environment X may have obstacles and:

1. The flow V is piecewise constant. That is, X =
⋃m

k=1 Xk such that V|Xk
is constant

and satisfies ‖V|Xk
‖> 1 for all k.

2. The regions Xk, k ∈ {0, . . . ,m}, are separated by piecewise differentiable curves.
Let ψk,� : Xk →R be piecewise differentiable common boundary of Xk and X�.

3. Along the interface between two flows k and �, we consider any V (x) ∈
co{V|Xk

,V|X�
} for {x | ψk,�(x) = 0}.

Thus, the optimal paths in the interior of each Xk will be straight lines. As a path
reaches Xk, several situations may arise. We briefly describe these in the following.

Catalog of Optimal Trajectories. For simplicity, in this chapter we assume the
boundary of the environment X to be parallel to the flow in the inner region X , and
there will not be obstacles present.

For the case that a trajectory intersects a boundary between two flows, defined
by ψk,�(x) = 0, the intersection can again occur either transversely or tangen-
tially. Based on this, we classify trajectories into simple (transversal) or non-simple
(tangential) trajectories; see Figure 7. The transversal simple trajectories are non-
pathological and undergo a direction change at the interface, following an analogous
rule to that of the Snell’s law in physics:

Proposition 1 (Kwok, Martı́nez [34]). Let V− = (c1,c2)
T and V+ = (d1,d2)

T be
the flows in two neighboring regions, and α1, α2 be their respective flow orienta-
tions. Let ξ be the orientation of the normal vector of the smooth curve ψ(x) = 0 at
the point where the optimal trajectory crosses into the second flow region. A neces-
sary condition for an optimal trajectory across the interface of the two flow regions
requires that:

1+ ‖V−‖cos(θ−−α1)

sin(θ−− ξ )
=

1+ ‖V+‖cos(θ+−α2)

sin(θ+− ξ )
. (15)

Given (15), and a fixed heading θ−, the final heading satisfies

sinθ+ =
B±C

√
B2 +C2 − 1

B2 +C2 , (16)

where B = 1+‖V−‖cos(θ−−α1)
sin(θ−−ξ ) cosξ − d2 and C = 1+‖V−‖cos(θ−−α1)

sin(θ−−ξ ) sinξ + d1.

B2

1

B1

5

3

4

2

6

7

x
p0

Fig. 7 Example of simple trajectories (left figure) and of non-simple trajectories (right figure)
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However, the application of (15) can also result in a trajectory (non-simple tra-
jectory) that travels along the boundary between two different flows; see Figure 7,
right picture. The use of the same result can also give a way to compute a heading
back into the first region. When an agent is moving along a flow boundary, and it is
possible to switch back into the first region, the agent may choose to switch back at
any time, making this process indeterminate. However, the result above dictates that
there is only one possible outgoing heading back into the first flow region. Further-
more, it is possible for these trajectories that flow along boundaries and later return
to intersect other trajectories that remained in the original flow region. For com-
pleteness, the following result summarizes necessary conditions for the incoming
and outgoing angles for these cases.

Proposition 2 (Kwok, Martı́nez [34]). Assume two flow regions defined by the pa-
rameters ‖V−‖,α1 and ‖V+‖,α2, respectively, separated by an interface whose nor-
mal angle is ξ . If it is possible for an agent to flow along the boundary under the
second flow, then θ+ satisfies

θ+ ∈
{

ξ ± arccos [−‖V+‖sin(α2 + ξ )] ,−ξ ± arccos[‖V+‖sin(α2 + ξ )]
}
. (17)

Let D = 1+‖V+‖cos(θ+−α2)
sin(θ+−ξ ) . Then, the incoming heading resulting in flow along the

boundary, if it exists, satisfies

θ− = arctan

[‖V−‖sinα1 −Dcosξ
‖V−‖cosα1 +Dsinξ

]

± arccos

(
−1√

(‖V−‖sinα1 −Dcosξ )2 +(Dsinξ + ‖V−‖cosα1)2

)
. (18)

Knowledge about these trajectories can be used to derive a gradient-ascent algorithm
that aims to maximize Harea. We begin by taking the gradient of Harea with respect
to pi in order to obtain a set directions each agent must travel in.

Proposition 3 (Kwok, Martı́nez [34]). Given the area objective (12), let

Åi = ∂RT (pi)∩
⎛
⎝ ⋃

j∈Ni,flow

RT (p j)

⎞
⎠

c

∩X , (19)

the set of points in ∂RT (pi) is not in the interior of neighboring reachable sets.
Then the gradient with respect to pi is:

∂H

∂ pi
=

∫
Åi

n̂T
out(ζi)

∂ζi

∂ pi
dζi , (20)

where ζi : S→ R
2 is a parametrization of ∂RT (pi), and n̂out : R2 → R

2 is the unit
outward-pointing normal vector at ζi.
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For piecewise constant flows, ∂ζi
∂ pi

can analytically be computed using the previous
analysis of the course changes of optimal trajectories in flows; see [34]. We can
further analyze the algorithm

ṗi =
∂Harea

∂ pi
, i ∈ {1, . . . ,n} , (21)

above for the special case of a single constant flow field. For a constant flow the gra-
dient according to (20) becomes ∂Harea

∂ pi
=
∫

Åi
n̂T

out(ζi)dζi. This result has an intuitive

interpretation. In order to maximize area covered, agents move towards locations
that are not occupied by other agents’ reachable sets. Now the following can be
proven:

Proposition 4 (Kwok, Martı́nez [34])

1. For a constant flow field, V = c, if no regions intersect the boundaries ∂X, then
Harea is non-decreasing if agents use the control law (21).

2. For constant flows, if the flow boundaries are parallel with the flow direction
and X is unbounded (the flow domain is an infinitely long strip), then Harea is
maximized by (21).

Other flow cases make difficult the analysis of the evolution of Harea, similarly to
what happens with time-dependent coverage functions. The current strategy makes
agents follow the direction of maximum ascent of Harea. However, one can imagine

0 20 40 60

100

200

300

400

t

Fig. 8 The central “eye” of the storm is treated as an obstacle, or equivalently a “no-fly zone.”
The simulation snapshots occur for t = 0 (top left), t = 20 (top right), and t = 60 (bottom left).
A plot of the total reachable area is shown in the bottom right.
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situations in which the value of Harea decreases despite of this if, for example,
boundaries of X become closer and closer. The following is a simulation showing
how Harea oscillates around a given value when the flow regions force vehicles into
a bounded region; see Figure 8.

6 Conclusions

This chapter summarized several results concerning the deployment of vehicles sub-
ject to dynamic constraints. In general, the algorithms are distributed over the asso-
ciated Delaunay graphs or, in r -disk graphs with r sufficiently large. The algorithms
provide convergence guarantees to the set of local minima of different classes of Lo-
cational Optimization or multicenter metrics. Dynamic constraints were dealt with
in essentially three ways: (i) in a soft manner, by modifying the Locational Op-
timization metric and working with easy-to-compute generalized Voronoi regions,
and (ii) by resorting to controllability properties of the vehicles, and (iii) by using
the dynamic constraints in the definition of generalized regions assigned to each
vehicle. In general, dynamic constraints will lead to involved generalized Voronoi
regions, whose boundary is hard to compute and represent, as it reduces to the so-
lution of an optimal control problem. We are currently investigating how this can
be alleviated by considering upper and lower approximations of Voronoi regions,
which can be refined to any degree at a higher computational expense. By defining
an algorithm that allows each agent follow the direction of an approximated gradient
using the lower Voronoi region approximation, it can be seen how local minima can
still be reached. We are exploring this in the context of constant river environments
in the manuscript [35] with Voronoi regions given by hyperbolas, but we believe the
approach can be extended to general cost functions.
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