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Abstract. Cable robots form a class of parallel architecture robots with significant
benefits including simplicity of construction, large workspace, significant payload
capacity and end effector stiffness. While conventional cable robots have fixed
bases, we seek to explore inclusion of mobility into the bases (in the form of
gantries, and/or vehicle bases) which can significantly further enhance the capa-
bilities of cable robots. However, this also introduces redundancy and complexity
into the system which needs to be carefully analyzed and resolved. To this end, we
propose a generalized modeling framework for systematic design and analysis of
cooperative mobile cable robots, building upon knowledge base of multi-fingered
grasping, and illustrate it with a case study of four cooperating gantry mounted ca-
ble robots transporting a planar payload. We show its wrench closure workspace and
reconfiguration to extend the workspace, as well as redundancy resolution by opti-
mally repositioning the bases to maximize tension factor along a given trajectory.

1 Introduction

Cable driven parallel manipulators, also called cable-driven robots or cable robots,
are formed by attaching multiple cables (instead of articulated links) to an end-
effector/platform. They have significantly improved workspace as compared to con-
ventional rigid-link architectures, while possessing many of the desirable features
such as high payload-to-weight ratios, low inertial properties, low energy con-
sumption, ease of assembly/disassembly and reconfiguration. Overall low cost and
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reliability contribute to their deployment in many real-world applications, such as
heavy payload handling for manufacturing [1], extraterrestrial exploration [2], hap-
tics [3, 4], large scale radio telescopes [5], and load transport [6].

Cooperative payload manipulation using cables comes in two flavors: one class
of approaches focuses on fixed bases and varying cable lengths [1, 3, 7, 8] (i.e. con-
ventional cable robots); the other class is with fixed cable lengths and moving bases
for manipulating of objects [9] and payload manipulation and transportation on land
[10], sea [11], and in the air [12] (i.e. cable towing). In this work, we explore merg-
ing the two, i.e. coupling mobile bases with articulated-cable-arms together to create
composite mobile-cable collectives for the combined payload transportation and re-
configuration tasks (such as shown in Fig. 1). We call this type of cable robots with
moving bases cooperating mobile cable robots. While this combination potentially
could greatly increase the capability of cable robots, it also introduces redundancy
and complexity into the system. Hence, we will focus on developing a systematic
framework for design, analysis and control of such mobile cable robot collectives.

There are many challenges to the development of such a framework. Cable robot
systems can function only when the cables are in tension, which creates unilat-
eral constraints on the controlled-input rendering conventional control schemes de-
veloped for typical parallel robots incompatible. Workspace determination in the
presence of these unilateral constraints creates challenges that will be reviewed in
Section 2. Further, despite many parallels exist between the unilateral tension re-
quirements and unidirectional normal-force constraints arising in multi-fingered
hands and multi-legged walkers efforts to relate this wealth of literature to cable
robots have been very limited [13].

In modularly composed systems, both the nature of the individual modules as
well as their interactions can affect the overall system performance. Hence, a sys-
tematic (and preferably quantitative) framework for evaluation of the individual

(a) Tow trucks. (b) Tugboats.

(c) Aerial towing.

Payload

Forward Motion

(d) Composite system.

Fig. 1 Illustrative examples of mobile-agent teams tethered to a payload
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module- and system-level characteristics is desirable. This is an aspect that we ex-
amine in the context of cooperative payload transport by mobile cable robot col-
lectives in this chapter. To this end, we leverage the rich history and background
of analysis methods for constrained articulated mechanical systems. In particular,
a twist- and wrench-based analysis of in-parallel systems [14, 15] provides the un-
derlying framework for examining the performance of the cooperative system here.
The unique contributions of this chapter come from: (i) the constructive modeling
of the individual- and group-capabilities of the cooperating mobile cable robots;
(ii) systematic design evaluation of options such as attachment points choices and
mobile base positioning; (iii) redundancy resolution by optimal reconfiguration to
maximize tension factor along a desired trajectory.

2 Background

Besides the recent interest in multiple mobile agents, other forms of cooperative
multi-robot systems including multi-fingered hands and multi-legged vehicles have
been extensively studied in many contexts, as reviewed in [16]. Traditionally, such
systems have been modeled as articulated mechanical systems, with the characteris-
tic formation of closed kinematic chains. Apart from the structural classification
of Type I (legged) and Type II (multi-arm/multi-finger hand) systems, an alter-
nate functional classification into under-actuated, fully-actuated and redundantly-
actuated systems is also possible [16]. It is meaningful to exploit the redundancy in
the system to optimize secondary criteria, such as the contact/internal force distri-
bution, in addition to the performance of the motion tasks in multi-legged walkers
[17], multi-fingered hands [18] and multi-arm systems [19]. It is important to note
that most of these efforts have been addressed in a centralized control context - with
the notable exception of [20].

A cable robot with an n DOF end effector requires at least n+ 1 cables to fully
constrain the end-effector, leading to minimum limits of four cables for planar
robots and seven cables for the spatial case [3]. This also leads to a natural classifi-
cation into fully-, over- and under-constrained cable-robot systems. In the fully- and
over-constrained cable-robot systems, the posture (position/orientation) of the end-
effector can be completely determined by the given lengths of the cables and force
closure can be achieved [13]. The workspace determination [21, 22, 23, 24] poses
challenges - while the potentially-reachable workspace is a function of the geomet-
ric configuration (cable lengths, motor mounting position, cable attachment loca-
tion, etc.), not all postures may be feasible under positive-tension constraints. Hence
an additional functional workspace classification becomes possible [24, 7, 25]. In
[26], a generic method for determining wrench closure for a fully constrained cable
robot is presented. A measure of workspace quality named tension factor is pre-
sented in [27], which we will adopt as our optimization criteria. The similarities
between cable robots and other parallel architecture manipulators lead to system-
atic formulation of system performance from individual agent contribution, and we
explore this perspective next.
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3 Formulation

Using the matrix Lie Group representation of SE(3) based on the notation intro-
duced in [14], let {s} and {b} be the spatial and body fixed frames, the relative
pose of a rigid body may be expressed as gsb =

[Rsb psb
O 1

]
, where R ∈ SO(3) is a

rotation matrix and p ∈ R
3 is a displacement vector. The body twists can be com-

puted as t
˜

b
sb = g−1

sb ġsb. The body twist vector corresponding to this twist matrix can

be interpreted in terms of linear and angular velocities in body fixed coordinates
t
˜

b
sb = b[vx,vy,vz,ωx,ωy,ωz]

T . Wrenches w
˜

b
sb = b[ fx, fy, fz,τx,τy,τz]

T correspond to

co-vector fields and satisfy the virtual work relationship w
˜
· t
˜
= 0. The adjoint trans-

formation Adg =
[

R p̂R
O R

]
and the co-adjoint transformation AdT

g−1 =
[

R O
p̂T R R

]
serves

to transform twists and wrenches between various frames of references.

3.1 Agent Twists

For each cooperating robot (they do not have to be identical), we treat the cable as
an articulated prismatic joint extending from its end-effector. Then it is a straight
forward process to derive its spatial twist. We can assign the preferred frames and
find its body twists of successive joints and then transform to a common frame
(for which we choose fixed world frame {F} here) to compose the agent’s spatial
Jacobian Js

i (qi):

F
[

0t
˜
n

]

i
= Js

i (qi)q̇i =

[
F

[
0t
˜

1

]

i
· · · F

[
n−1t

˜
n

]

i

]
, (1)

where qi are the joint space coordinates. This way, we can incorporate heteroge-
neous mobile agent collectives (such as shown in Fig. 1(d)) to perform cooperative
manipulation.

3.2 Payload Attachment Statics

Since the cables are firmly attached to the payload, there is no slipping. We note that
unlike finger pushing, cable pulling does not depend upon object’s shape/contact
normal direction, rather, it is the cable attachment point’s relative position with re-
spect to payload center of mass (COM) that matters. Thus, we define the cable
attachment contact frame {ci} to have the same orientation as the payload object
COM frame {o}, as shown in Fig. 2. The transformation from cable attachment

frame {ci} to payload frame {o} is given by goci =

[
Roci poci

O 1

]
, where Roci = I

since we choose attachment frame to have the same orientation as payload object
frame, and poci , which are all fixed, once the attachment locations are chosen.

The basis direction of the cable tension in contact frame {ci} is given by Bci , then
the cable wrench can be expressed in the payload object frame {o} via co-adjoint
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Fig. 2 Cable attachment contact model

transformation as ow
˜

i = AdT
g−1

oci
Bci fi. Thus, in the payload object frame, the mapping

P from the space of the m cable tensions f to the object wrench w
˜

o can be expressed
as

w
˜

o = P fm×1 =

⎡

⎣
| | | |

P1 P2 · · · Pm

| | | |

⎤

⎦

6×m

⎡

⎢
⎢
⎢
⎣

f1

f2
...

fm

⎤

⎥
⎥
⎥
⎦
, (2)

where Pi = AdT
g−1

oci
Bci . Analogous to the grasp map, we call P the pulling map.

3.3 The Attachment Pulling Constraint

Now that we have both the agent Jacobian and payload attachment statics model,
we can write the pulling constraint in terms of relative velocity between attachment
contact frame {ci} and cable end frame {ei}. The constrained motion direction is
the cable pulling direction, which means:

BT
ci

t
˜

b
eici

= 0, (3)

where t
˜
b
eici

is the body twist between the payload attachment contact frame {ci} and

mobile agent cable end frame {ei}, expressed in {ci}.
Now we seek to rewrite the constraint (3) in known quantities, i.e. we wish to

relate payload velocity and agent velocity. We expand t
˜

b
eici

as:

t
˜

b
eici

= AdgciF
t
˜

b
eiF + t

˜

b
Fci

=−Adg−1
Fci

t
˜

s
Fei

+Adg−1
oci

t
˜

b
Fo, (4)

where the agent’s spatial twist t
˜

s
Fei

= Js
Fei

q̇i as derived earlier, and t
˜

b
Fo = ẋo is the

payload body twist.
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Fig. 3 Payload with 4 Agents (A,B,C,D)

Substituting (4) into (3), we get:

JT (qT,xo)q̇T = PT
o ẋo, (5)

where the team Jacobian and the pulling map:

JT =

⎡

⎢
⎣

Jt1 O
. . .

O Jtm

⎤

⎥
⎦ , PT

o =

⎡

⎢
⎣

PT
1
...

PT
m

⎤

⎥
⎦=

⎡

⎢
⎣

BT
c1

Ad−1
goc1

...
BT

cm
Ad−1

gocm

⎤

⎥
⎦ , (6)

where Jti = BT
ci

Ad−1
gFci

Js
Fei

. We can rewrite the pulling constraint (5) into the form

Ap(q)q̇ = 0, where Ap = [JT , −PT ] and q = [qT
T , xT

o ]
T .

4 Planar Gantry Cable Robot Example

As an illustrating example of the process, for simplicity, we consider a planar pay-
load being manipulated by four cooperating gantry-type mobile-crane modules.
Each mobile cable robot agent consists of a linear gantry that can translate along
one axis with a mounted winch to control the cable length. The distal end of the
cable is assumed to be attached to the payload using a pin joint (for simplicity, al-
though a variety of other attachments are possible). Four such mobile cable robot
agents are assumed to be attached to a common payload as shown in Fig. 3.
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4.1 Formulation

4.1.1 Kinematics

Following the framework presented above, we show how to systematically derive
the equations. For this planar case:

Adg =

⎡

⎣ R

[
py

−px

]

O 1

⎤

⎦ , AdT
g−1 =

[
R 0

− [py − px]R 1

]
. (7)

The joints of each gantry cable agent are qi = [ l1i, θ2i, l3i ]
T , ∀i ∈ {A,B,C,D}. The

example reference frames for agent A are shown in Fig. 3, where the {3A} frame
is the cable end frame {eA} noted in Section 3. In each successive joint frame, the
body twists can be easily found as:

t
˜

b
01i

=

⎡

⎣
l̇1i

0
0

⎤

⎦ , t
˜

b
12i

=

⎡

⎣
0
0

θ̇2i

⎤

⎦ , t
˜

b
23i

=

⎡

⎣
l̇3i

0
0

⎤

⎦ . (8)

Then the spatial Jacobian of each agent can be found as:

Js
Fei =

⎡

⎣
cosφ0i y0i + l1i sinφ0i cos(φ0i +θ2i)
sinφ0i −x0i − cosφ0il1i sin(φ0i +θ2i)

0 1 0

⎤

⎦ , (9)

where x0i, y0i, φ0i is the position and orientation of the gantry starting frame {0i}
in world fixed frame {F}.

4.1.2 Statics

As shown in Fig. 2, the transformation from cable attachment contact frame {ci}
to payload COM frame {o} is given by goci =

[
I poci

O 1

]
. The basis direction of the

cable tension in attachment contact frame {ci} is given by Bci = [−cosγi, sinγi, 0]T ,
where γi is the angle from {ei} to {ci}, then the cable wrench can be expressed in
the object frame {o} via co-adjoint transformation as:

ow
˜

i = AdT
g−1

oci
Bci fi =

⎡

⎣
−cosγi

sinγi

yoci cosγi + xoci sinγi

⎤

⎦ fi . (10)

We can concatenate the four cable wrenches into:
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⎡

⎣
Fx

Fy

Mz

⎤

⎦=

⎡

⎣
| | | |

PA PB PC PD

| | | |

⎤

⎦

⎡

⎢
⎢
⎣

fA

fB

fC
fD

⎤

⎥
⎥
⎦ , (11)

where Pi = AdT
g−1

oci
Bci , ∀i = A, . . . ,D. This is the pulling map (2) that maps the cable

tension forces f to the object wrench w
˜

o in the payload frame.

4.1.3 Pulling Constraint

The velocity level constraints can be developed by projecting the relative velocity
difference of the cable tip and the payload along the line of action of the cable
(which is the pulling direction). This relative velocity is now expected to be equal
to zero in order to avoid cable slack.

As derived in Section 3.3, for the pulling constraint (5) in body frame, we have:

Poi =

⎡

⎣
−cos(φo −φ0i−θ2i)

sin(φo −φ0i −θ2i)
yci cos(φo −φ0i −θ2i)+ xci sin(φo −φ0i−θ2i)

⎤

⎦ , (12)

and the team Jacobian is:

JT =

⎡

⎢
⎣

Jt1 O
. . .

O Jtm

⎤

⎥
⎦ , (13)

where Jti = [−cosθ2i , cos(φ0i +θ2i)yo + sin(φ0i +θ2i)(x0i + cosφ0i l1i)− cos(φ0i +
θ2i)(y0i + l1i sinφ0i)− sin(φ0i + θ2i)xo + yci cos(φo − φ0i − θ2i) + xci sin(φo − φ0i −
θ2i), − 1].

4.2 Case Study 1: Wrench Closure Workspace and Its Quality

We now consider the ability of the system to both generate and resist arbitrary pay-
load wrenches (i.e. wrench closure). We use the simple planar example of an “L”
shaped payload manipulated by four gantry cable robots to showcase the bene-
fits of the systematic formulation. In particular, we will focus attention on using
quantitative metrics derived from this formulation to determine the wrench closure
workspace and its quality.

4.2.1 Wrench Closure Condition

For planar cases, it is possible to analytically determine the workspace such as
shown in [24]. Considering applicability to spatial cases, the numerical algorithm
presented in [26] can be used to determine wrench closure for general m > n cases
and it is relatively fast in computation. It basically says a necessary and sufficient
condition for wrench closure is a test vector such as pt =−∑n

i=1 pi can be positively
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spanned by another set of basis of the pulling map P. The algorithm itself is straight
forward, whose details can be found in [26].

We show a sample calculation of the workspace when the gantries are positioned
in the middle of their stroke and the attachment points are at the four tips of the
payload. We check for wrench closure condition across the workspace with the pay-
load orientation angle φ varying from −40 to 40 degrees. Fig. 4 shows the resulting
workspace.

4.2.2 Workspace Quality

Apart from simple wrench closure, it would be useful to know the quality of the
workspace. One measure is the tension factor(TF) as defined in [27]:

T F =
min(f)
max(f)

. (14)

Since cable tensions are positive, then 0 < T F ≤ 1. A larger T F means a more even
distribution of tensions in cables. It is shown that maximizing T F is equivalent to
the following linear optimization problem:

minimize
m

∑
i=1

fi

subject to Pf = 0

fi ≥ fimin > 0, (i = 1,2, . . . ,m)

(15)
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Fig. 4 Wrench closure workspace
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Figure 5 shows the quality of the workspace when the gantries are positioned in the
middle of their stroke and the attachment points are at the four tips of the payload.
The tension factors are represented by the relative size of the square markers. We
can see that due to the asymmetric payload shape, the workspace is irregular and its
quality in the sense of tension factors is even more limited. The high redundancy in
the base positioning allows us to optimize the design.

4.3 Case Study 2: Design Optimization

We first show a simple illustration of the idea. As can be easily seen, Fig. 6(a) is not
wrench closure. Intuitively, we have two design choices to make it wrench closure:
one is by changing attachment point location (as shown in Fig. 6(b)); and the other
is by moving the base location (as shown in Fig. 6(c)). While this is simply done by
inspection, in general, the selection of cable attachment point position/base location
for asymmetric payloads tends to be non-intuitive.

Next we perform design optimization based on our systematic formulation to the
example. The “L” shaped payload is assumed to be general with non uniform mass
density and thus its COM does not coincide with its geometric area center. It is in
circumstances such as this that the systematic formulation coupled with quantitative
analysis can be very useful for design and analysis.
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0
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−40
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−20

−10

0
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30

40

φ 
(d

eg
)
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Fig. 5 Workspace tension factor (size of the cubes proportional to TF value)
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Fig. 6 Simple illustration of reconfiguration
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Fig. 7 Effect of cable attachment choice

4.3.1 Cable Attachment Choices

We first consider optimizing the cable attachment point locations on the payload.
The gantries are fixed at the center of their stroke, which essentially reduces our
model to the conventional fixed-base cable robot case.

The base gantries are immobilized at the mid point (l1i = 0.5, ∀i = A, . . . , D) of
their full stroke. The payload COM is at xo =−0.1, yo = 0.1,φo = 30◦. We perform
a parametric sweep to study the role of cable attachment positioning to payload on
the wrench closure condition of the pulling map, as shown in Fig. 7. Two of the
cable attachment points on the payload are held fixed at the tips while the other two
attachments can be repositioned anywhere along the corresponding sides (ycA and
xcB ).

The tension factors for each configuration is shown in Fig. 7(b). We set the ten-
sion factor to −1 to clearly represent wrench singular (not wrench closure) config-
uration. The attachment locations corresponding to optimal tension factor is shown
in Fig. 7(a).
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Fig. 8 Effect of base repositioning

4.3.2 Choices of Mobile Bases

It may be relatively inconvenient to change attachment points on the fly (i.e. re-
grasping); reconfiguring the mobile bases is more useful in practical situations.
Again, we perform a parametric sweep to study the role of base positioning on the
wrench closure of the pulling map. The cable attachment points on the payload are
held fixed at the four corner. Two of the base gantries are immobilized at the mid
point (l1C = 0.5, l1D = 0.5) of their full stroke, while the other two base gantries can
be repositioned anywhere along their full stroke (l1A and l1B ).

Fig. 8(b) showcases the tension factor plotted against the gantry positions (l1A and
l1B ). As a result, the pose that has the largest tension factor is shown in Fig. 8(a).
While the above results were shown in the form of parametric sweep results for
two design variables at a time, this was done solely for visual illustration. Various
optimization methods can now be systematically applied to a full fledged multi-
variable case which is shown next.

4.4 Case Study 3: Maintaining Optimal Tension Factor Along
Trajectory

In addition to the previous “static” design optimization of either attachment location
or base position, a more useful way would be to “dynamically” resolve the redun-
dancy by optimally reconfiguring the base gantry location along a desired trajectory
(such as the case in Fig. 9). This way, tension factor can be maintained the highest
possible all the time. This problem can be solved using “cascaded” optimization.
Basically we wrap an optimization of the four gantry positions on top of the opti-
mization of tension factor.

Different from conventional parallel robot singularities, there is no analytical so-
lution to wrench closure. Therefore conventional singularity avoidance techniques
using redundancy to optimize the smallest singular value are infeasible for the mo-
bile cable robots here. There is no analytical gradient, and numerical approximation



Cooperating Mobile Cable Robots: Screw Theoretic Analysis 121

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 −0.5

0

0.5−20

−10

0

10

20

30

y

x

DesiredTrajectorInWorkspace
φ 

(d
eg

)

(a) Desired trajectory.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Trajectory

(b) Result trajectory.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time step

l 1i

SliderPosition

 

 
l
1A

l
1B

l
1C

l
1D

(c) Gantry position.

0 20 40 60 80 100 120
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time step

l 3i

CableLength

 

 
l
3A

l
3B

l
3C

l
3D

(d) Cable lengths.

0 20 40 60 80 100 120
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
TensionFactor

time step

T
F

(e) Tension factor.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

time step

F
3i

TensionProfile

 

 
F

3A

F
3B

F
3C

F
3D

(f) Cable tensions.

Fig. 9 Reconfiguration to optimize tension factor along trajectory

is not a good solution due to high nonlinearity of the pulling map with respect to
configuration change. Either a pre-calculation/planning of trajectories to avoid sin-
gularity (which is computationally expensive) or reconfiguration along the way is
needed.

In case of wrench singular (not wrench closure) configurations of the mobile ca-
ble robots during the trajectory, two simple approaches can be used to resolve it: one
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is to perform a global optimization to find a feasible bases configuration, then in-
terpolate in the internal joint space to reach the feasible configuration and initialize
from there; the other is to perform a local search by exploratory moves of the mobile
bases which should be faster and possible if it is not far off. Also this might lead to a
local optimal tension factor, but it is acceptable in the case of trajectory tracking. To
ensure continuity, we also impose maximum velocity of gantry as an additional con-
straint to be practical, otherwise optimization results may drive the gantries all over
the place and thus causing discontinuity just to get the best tension factor. Higher
order of continuity can be achieved by imposing acceleration/jerk level constraints
to get a smoother result.

We note here in our case with only one redundant cable, the null space of the
pulling map has only one dimension. So the wrench closure condition in [26] and
tension factor in [27] can be simplified. It is straight forward to show wrench closure
is equivalent to requiring components of the null space vector to have same sign, and
tension factor is equivalent to the ratio of minimum and maximum of the absolute
values of the null space vector. This way, the lower level optimization is reduced
and thus saving us some computation time.

Here we show an example of transporting the payload along a desired trajectory
as shown in Fig. 9(a). The starting point is out of the wrench closure workspace for
the initial base configuration, which is also evident in Fig. 9(e), as the starting ten-
sion factor is −1 indicating non wrench closure. It can be seen from Fig. 9(b), after
a few exploratory steps, the gantry bases move to a feasible configuration, and then
afterwards the redundant gantry positions are optimized (using MATLAB Optimiza-
tion Toolbox) to maintain a configuration that yields the best possible tension factor
as shown in Fig. 9(e). We note that instead of performing optimization, planning
algorithms such as RRT may also be used for reaching an initial feasible configu-
ration. The resulting gantry position is shown in Fig. 9(c), cable length profile in
Fig. 9(d), and corresponding positive cable tensions in Fig. 9(f). We also note that
with high reconfigurability of mobile bases, wrench closure condition can actually
be relaxed (i.e. three mobile cable robots transporting payload) if it is not required
to exert/resist arbitrary wrench, as along as the configuration is able to exert certain
required dynamics forces/moments along a given trajectory. This aspect is currently
being pursued.

5 Discussion

The addition of base mobility provides cable robots greater flexibility, yet it requires
careful investigation. In this chapter we extend a systematic screw theoretic formula-
tion approach to the general cooperating cable robots on mobile bases. In particular,
creating a formalism for studying system level configuration by composing the con-
tributions of individual agents and thereby creating a parametric model is attractive.
Various parametric analysis including parameter sweeps, optimization and sensitiv-
ity analysis, can now be brought to aid design and analysis. Another benefit is the
ready extensibility of framework to full fledged spatial cases using this formalism.
Using this formulation also permits close linkage between grasping, walking and
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in general parallel robots, allowing for cross-pollination of results. Physical system
validation for cooperative ground mobile robots is currently underway.
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