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Abstract. In the last fifteen years, much interest has been focused on the deploy-
ment of large teams of autonomous robots for applications such as environmen-
tal monitoring, surveillance and reconnaissance, and automated parts inspection for
manufacturing. The objective is to leverage the team’s inherent redundancy to simul-
taneously cover wide regions and achieve massive parallelization in task execution
while remaining robust to individual failures. Despite recent successes, significant
challenges remain, in part, due to the difficulties associated with managing and coor-
dinating the various redundancies that exist in a large team of homogeneous agents.
In this chapter, we present an ensemble approach towards the design of distributed
control and communication strategies for the dynamic allocation of a team of robots
to a set of tasks. This approach uses a class of stochastic hybrid systems to model the
robot team dynamics as a continuous-time Markov jump process. The main advan-
tage is a lower-dimensional representation of the team dynamics that is amenable
to system-level analysis of the team’s performance in the presence of task differ-
entiation. We show how such analysis can be further used to design and optimize
individual robot control policies through simulations and experimental validation.

1 Introduction

In the last fifteen years, much interest has been focused on the deployment of large
teams of autonomous robots for applications such as environmental monitoring,
surveillance and reconnaissance, and automated parts inspection for manufacturing.
The objective is to leverage the team’s inherent redundancy to simultaneously cover
wide regions and achieve massive parallelization in task execution while remain-
ing robust to individual failures. Despite recent successes, significant challenges
remain, in part, due to the difficulties associated with managing and coordinating
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the various redundancies that exist in a large team of homogeneous agents. In this
chapter, we present an ensemble approach towards the design of distributed control
and communication strategies for the dynamic allocation of a team of robots to a set
of tasks. This approach uses a class of stochastic hybrid systems to model the robot
team dynamics as a continuous-time Markov jump process. The result is a lower-
dimensional representation of the team dynamics that is amenable to system-level
analysis of the team’s performance in the presence of task differentiation.

In our work, we consider the allocation of a team of robots to a collection of tasks
distributed within a workspace. Applications include automated warehouses where
inventory from the loading docks must be transported and stowed in their designated
locations or deploying robots to cover different regions with their sensors for moni-
toring or surveillance purposes. In these examples, the team must have the ability to
autonomously move from one task location to another, distribute themselves accord-
ingly among the various locales to ensure task completion or to provide appropriate
sensor coverage, all the while remaining robust to changes in the environment or
individual failures.

The assignment of robots to a collection of spatially distributed tasks is a variant
of the multi-task (MT) robots, single-robots (SR), time-extended assignment (TA)
problem [8]. In the multi-robot domain, market-based approaches have gain much
success [7, 25, 10, 5, 19, 15, 16] and can be further improved when learning is in-
corporated [4]. However, these methods often scale poorly in terms of team size and
number of tasks. Furthermore, these approaches often depend on timely communi-
cation of the various local cost and utility functions and thus may not be suitable
for situations when inter-agent wireless communication is unreliable or extremely
limited [6, 9].

In this chapter, we present an ensemble approach towards the modeling, analysis,
and design of distributed coordination strategies for the dynamic allocation of a team
of homogeneous robots to a collection of spatially distributed tasks. Our approach is
similar to existing work where macroscopic continuous models are used to describe
the dynamics of a robot swarm [20, 18, 14]. The technique builds upon the represen-
tation of the individual robot controllers as probabilistic finite state machines which
enables the approximation of team dynamics as a continuous-time Markov process
[20, 18, 13]. In [11, 13], macroscopic models were used to synthesize stochastic
agent-level control policies to enable the dynamic allocation of a team of robots
to multiple locales in predefined proportions without explicit inter-agent wireless
communication. Different from [18], the desired allocation was achieved through
the selection of the individual robot transition rates and were extended to account
for navigation delays in [1].

In our work, we assume a team of identical robots where the individual agent-
level control policy is given by a sequential composition of individual task con-
trollers. Different from existing work, we use the lower dimensional macroscopic
representation of the ensemble dynamics for analysis and controller synthesis. We
present two different approaches towards the design of stochastic transition rules
that enable the team to autonomously achieve a desired distribution across a collec-
tion of spatially distributed task. In the first approach, mean-field models are used to
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analyze and mitigate the effects of unexpected inter-robot interactions on the team’s
ability to maintain a desired allocation [21]. In the second approach, agent-level
control policies that can affect both the mean and the variance of the distribution is
obtained by modeling the team dynamics as a polynomial Stochastic Hybrid System
(pSHS) [17, 23].

The novelty of the contribution is a team-size invariant approach towards the
design of distributed agent-level control policies that can respond to robot failures
in a natural way and ensure a graceful degradation of the system. By providing a
systems-level view of the team dynamics, the inter-agent communication needs of a
desired coordination strategy can be more explicitly accounted for at the controller
synthesis stage. The rest of the chapter is organized as follows: Section 2 presents
the development of the macroscopic models for an ensemble of robots executing a
collection of tasks with deterministic task execution times. Section 3 describes the
analysis and design of our ensemble model derived distributed control strategies.
We conclude with a brief discussion of future work in Section 4.

2 Problem Formulation

Consider the deployment of N robots to M tasks each located within a different re-
gion in the workspace. In this section, we show how continuous macroscopic mod-
els can be obtained from a collection of individual robot controllers. The goal is
to use these models to design a decentralized control policy to enable the team to
autonomously distribute across the M tasks and maintain the desired allocation at
the various regions.

2.1 Single Robot Controller

Given a collection of {1, . . . ,M} tasks/sites, we use a directed graph, G = (V ,E ),
to model the pairwise precedence constraints between the tasks. Each task is repre-
sented by a vertex in V = {1, . . . ,M}. A directed edge exists between two vertices
(i, j) ∈ V ×V if task i must precede task j and we denote this relation as i ≺ j.
Then, the set of edges, E , is given by E = {∀(i, j) ∈ V ×V |i ≺ j}. We assume G
is a strongly connected graph, i.e., a directed path exists for any i, j ∈ V .

Given the M tasks, we denote the set of task controllers for each task as
{U1, . . . ,UM} and assume that the single robot controller is obtained through the
sequential composition of {U1, . . . ,UM} such that the precedence constraints speci-
fied by G are satisfied. We represent the robot controller as a finite state automaton
where each automaton state i is associated with a task controller Ui. Fig. 1(a) shows
an example robot controller where the arrows denote state transitions that satisfy the
constraints specified in G .

In this work, we consider the assignment/allocation of the team to M tasks/sites.
The team’s objective is to maintain the desired allocation of the robots across the
various regions. At each site, robots execute Ui for a pre-specified amount of time
τi. This represents the time required by a robot to complete the task at the given site.
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Fig. 1 (a) The robot controller. The robot changes controller states based on the guard con-
ditions. (b) Graphical representation of the equivalent chemical reaction network for a robot
ensemble executing the tasks.

Once the task has been completed, the robot must navigate to the next adjacent site
based on the constraints encoded in G . As such, we assume each robot has complete
knowledge of G , the ability to localize within the workspace, and is capable of
navigating from one task/site to another while avoiding collisions with other robots
in the workspace.

2.2 The Ensemble Model

For a team of N robots, each executing the same sequentially composed controller,
e.g., the one in Fig. 1(a), the ensemble dynamics can be modeled as a polyno-
mial stochastic hybrid system (pSHS). This enables us to derive lower dimensional
macroscopic models that describe the time evolution of the distribution of the team
across the various tasks/sites.

Let Xi(t) and X̄i denote the number of robots executing task i (or being site at
i) and the desired number of robots for task i respectively. Then the fraction of the
robots at site i is given by xi(t) = Xi(t)/N with x̄i denoting the desired fraction of
robots. The specification in terms of fractions rather than absolute numbers provides
a team size invariant formulation and is practical for scaling purposes. Since the
tasks are spatially distributed, the robots will move from one task to another and
must avoid collisions with other robots. The variability in robot arrival times at each
site is modeled using transition rates. For every edge ei j ∈ E , we assign constant
ki j > 0 such that ki j defines the transition probability per unit time for one agent
from site i to go to site j. Furthermore, we assume the ensemble dynamics is Markov
which will allow us to model the dynamics of the robot distribution as a set of linear
differential equations. It is important to note that in general ki j �= k ji.

2.2.1 Mean-Field Dynamics

It was shown in [13, 1] that the time evolution of the population fraction executing
task i can be modeled as a continuous-time Markov process in the absence of task
execution times, i.e.,
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d
dt

xi(t) = ∑
( j,i)∈E

k jix j(t)− ∑
(i, j)∈E

ki jxi(t). (1)

The task execution times can be incorporated by reformulating the above equation
as a delayed differential equation of the form

d
dt

xi(t) = ∑
( j,i)∈E

k jix j(t − τ j)− ∑
(i, j)∈E

ki jxi(t). (2)

We note that these models are mean-field descriptions of the team dynamics where
the system state is given by x(t) = [x1(t), . . . ,xM(t)]T . In [13, 2], the desired distri-
bution across the M sites was achieved by using (1) to optimize the ki j terms to meet
specific ensemble performance metrics.

2.2.2 Moment Dynamics

While the mean-field formulation provides a model of the time evolution of the
fractions of robots at each task location, it is possible to provide a different macro-
scopic description of the ensemble dynamics by considering the rates of change of
the various moments of the robot population distribution. Similar to the use of frac-
tions in the previous section, the specification in terms of the moments of the robot
population will also provide a team size invariant formulation. This is achieved by
describing the ensemble dynamics using a set of transition rules of the form:

Xi
ki j−→ Xj ∀ ei j ∈ E . (3)

The above expression represents a stochastic transition rule with ki j as the per unit
reaction rate and Xi(t) and Xj(t) as discrete random variables. In the robotics setting,
equation (3) implies that robots at site i will transition to site j with a rate of ki jXi.

In this formulation, the system states are the random variables Xi(t) with the state
vector given by X(t) = [X1(t), . . . ,XM(t)]T . Given the set of stochastic transition
rules in (3), the moment equations for the discrete random variable Xi is given by
the extended generator of the system [12]. For a real-valued function ψ(Xi), the
extended generator is an expression for the time derivative of the expected value of
ψ , i.e., d

dt E[ψ(Xi)] = E[Lψ(Xi)], and takes the form

Lψ(Xi) =

∑
j
[(ψ(Xi − 1)−ψ(Xi))wji +(ψ(Xi+ 1)−ψ(Xi))wi j] . (4)

The right hand side of (4) gives the continuous time derivatives of the system for
a discrete change in the state Xi. The expression [ψ(Xi − 1)−ψ(Xi)] represents the
change in ψ given a unit change in the discrete variable Xi, while wi j represents the
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frequency at which the change occurs. For the system given by (3), wi j = ki jXi. To
obtain the rate of the change of the expected value of Xi, d

dt E[Xi], we let ψ(Xi) = Xi

in (4). Similarly, to obtain d
dt E[X2

i ], we let ψ(Xi) = X2
i .

For the case when M = 2, the first and second moment dynamics for X1 are given
by

d
dt E[X1] = E

[
((X1+1)−X1)k21X2+((X1−1)−X1)k12X1

]

= k21E[X2]−k12E[X1]
d
dt E[X2

1 ] = E
[
((X1+1)2−X2

1 )k21X2+((X1−1)2−X2
1 )k12X1

]

= −2k12E[X2
1 ]+2k21E[X1X2]+k21E[X2]+k12E[X1].

When the wi j’s are linear with respect to the system state X, the moment equations
are closed. This means that the time derivative for the first moment of Xi, d

dt E[Xi], is
only dependent on the first moments of Xi for i = 1, . . . ,M, i.e., E[X1], . . . ,E[XM], the
second moments are dependent on the first and second moments, and so on and so
forth. This is important because when the moment equations are closed, the moment
dynamics can be expressed as a linear matrix equation.

In general, the ensemble moment dynamics for the system with M tasks/sites is
given

d
dt E[X ] = KE[X ]

d
dt E[XXT ] = KE[XXT ]+E[XXT ]KT +Γ (α,E[X ])

(5)

where [K]i j = k ji and [K]ii =−∑(i, j)∈E ki j. It is important to note that K is a Markov
process matrix and thus is negative semidefinite. This coupled with the conservation
constraint ∑i Xi =N leads to exponential stability of the system given by (5) [11, 17,
23]. Each entry in the matrix of second moments is determined from the moment
closure methods shown above where the entries of Γ (α,E[X ]) are all linear with
respect to the ki j’s and the means E[X ]. For a system with two states, X1 and X2,
Γ (α,E[X ]) is defined as

Γ (α,E[X ]) =
[

k12E[X1]+k21E[X2] −k12E[X1]−k21E[X2]
−k12E[X1]−k21E[X2] k12E[X1]+k21E[X2]

]
.

Similar to the mean-field description, the ki j’s can be chosen to enable a team of
robots to autonomously maintain some desired mean steady-state distribution of
the team across the various tasks/sites [11, 13, 1]. In both formulations, the ki j’s
translate into a set of stochastic guard conditions for the single robot controllers.
The result is a set of decentralized agent-level control policies that allow the team
to maintain the steady-state mean of the ensemble distribution. Different from the
mean-field approach, the formulation of the ensemble dynamics in terms of the mo-
ments of the robot population enables us to synthesize distributed control strategies
to enable the team to maintain both the mean and the variance of the robot team dis-
tribution across the various tasks/sites. We describe the approaches in the following
sections.
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3 Methodology

Regardless of the approach, both (1) (or (2)) and (5) are macroscopic models of the
ensemble activity. In this section, we show how these models can be used to ana-
lyze the effects of uncertainty on the performance of the team of robots servicing a
collection of spatially distributed tasks. Furthermore, we will show how these mod-
els can be used to design distributed coordination strategies to improve the team’s
performance in the presence of the these uncertainties.

3.1 Characterizing and Filtering the Ensemble Noise

Berman et al. showed that when the task execution times are stochastic, the ensem-
ble dynamics given by (2) can be approximated using an equivalent expanded linear
system [1], i.e., a Multi-Pole approximation. This is achieved by introducing addi-
tional dummy transitions between states to approximate the effects of the stochastic
delay times. When delay times are deterministic or near deterministic, Mather et al.
showed that Padé approximants employed in the frequency domain do a better job
of capturing the effects of the delay in (2) [22].

To determine the effects of the deterministic (or near deterministic) delays on
the overall system performance, we can analyze (2) in the frequency domain [22].
In the frequency domain, the time delay is modeled as an exponential variable. As
the frequency increases, the output signal is delayed by more and more periods,
in effect, worsening the phase error. The advantage of the Padé approximation is
the ability to more accurately capture these effects while retaining the algebraic
structure of the differential equations, i.e., (2), in the frequency domain.

Consider the deployment of an ensemble of 10 robots moving in the plane to
2 distinct locations/sites. Initially, robots are randomly assigned to each of the two
sites. To simulate the execution of a task at a given site, each robot is tasked to circle
the site in a clockwise direction for a fixed time τi = τ . Once the task has been ex-
ecuted, the robot moves to the next site and performs the same task at the new site.
The variability in each robot’s site-to-site navigation times depends on the amount
of traffic on the road, which is affected by the number of collision avoidance ma-
neuvers each robot must execute. Fig. 2(a) shows the Fast Fourier Transform (FFT)
of the average output, e.g., xi in (2), of 54 agent-based simulations performed in US-
ARSim [24]. The frequency response of the agent-based simulations was obtained
by logging the population fractions at each site over time and applying the FFT to
these variables for each run. The FFT results were then averaged over all 54 runs.
The agent-based system exhibits a maximum gain at approximately 7.5 mHz while
both the Padé and Multi-Pole macroscopic models exhibit peaks at approximately
the same frequency. However, the Padé model shows larger gain [22].

The spurious frequency components shown in Fig. 2(a) manifest as oscillations in
the ensemble states in the time domain and is an effect of robots clustering together
as they travel from one site to another. These clusters form because too many robots
are traveling between tasks resulting in more collision avoidance maneuvers and
thus further delaying the arrival of robots at their next task. This leads to degraded
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(a) Ensemble Response

(b) Notch Filter Response

Fig. 2 (a) Top: Average of the FFT of the population fraction at site 2 obtained from 54 micro-
discrete simulations. Bottom: Magnitude portion of the Bode plots relating to the number of
Robots at building 2. For the 4th order Padé, and a 4th order Multi-Pole macro-continuous
systems. (b) Frequency response of the classical 2nd order notch filter and the delayed notch
filter given by Hτ(s) = 1

2 (1+e−sωτ ).
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performance as the average transit time between sites will increase due to these
traffic concerns. The Padé approximated macro-continuous model has the ability to
better predict the spurious frequency component that is present in the agent-based
simulations and can provide insight into the synthesis of agent-level controllers to
filter out these spurious frequencies [22].

In general, it is difficult to directly compare the macroscopic results with the
microscopic results. This is because the FFT of the system states only considers the
outputs of the system. The magnitude portion of the Bode plots, on the other hand,
gives the response of the ratio of the output to input of the system for all frequencies.
In other words, the macroscopic frequency response is based on a unity gain input
at all frequencies. The difference between the two plots is dependent on the form of
the noise input to the system and is related by the shape of the frequency spectrum
of the noise input to the system.

3.1.1 Distributed Filtering

To smooth the response of the system, a common approach is to implement a notch
filter to get rid of the spurious behavior. A notch selectively filters out a specific
frequency while leaving other frequency components unchanged, effectively reduc-
ing the gain of the single spurious frequency component. A typical 2nd order notch
controller has the transfer function H1(s) given by

H1(s) =
s2 + 2ζ1ωN +ω2

N

s2 + 2ζ2ωN +ω2
N

where ωN , ζ1, and ζ2 set the location and magnitude of the notch. However, careful
inspection of the closed-loop time domain equations suggest implementation of the
filter will require individual robots to estimate the higher order derivatives of the
populations at the various sites. Instead, we propose an approximate solution, where
the spurious frequency response can be removed without extra knowledge of the
system states by the individual robots.

This can be achieved by splitting the team into two sub-teams where one team
purposely adds an additional delay at a given site for each cycle path in G . This
approach can eliminate a frequency by adding a signal to a copy of itself, 180o

degrees out of phase. The transfer function for the proposed notch filter is Hτ(s) =
1
2 (1+ e−sωτ ). The advantage of this approach is that it can be implemented in a
completely distributed way without requiring any inter-agent communication. The
frequency response plot for this distributed delay notch filter and the classical 2nd

order filter are shown in Fig. 2(b). The difference is that the delay filter cancels every
odd harmonic of the primary notched frequency [21].

The addition of a single notch filter will suppress a single spurious population
behavior. If the task precedence graph has multiple cycles with spurious loops, mul-
tiple notches are required to eliminate spurious behavior. While introduction of a
delay into a system with feedback can be dangerous since it can lead to enough
phase lag to turn negative feedback into positive feedback resulting in unstable
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oscillations, the systems discussed here fall into a family of systems that are sta-
ble independent of delay [3]. Thus, no amount of extra phase delay can drive the
system unstable.

Fig. 3(a) shows the frequency response of the average of 50 agent-based sim-
ulations for a team of 10 with two tasks with and without the delay notch filter.
Our results show that the distributed notch filter suppressed the undesired frequency
component by 70%. Fig. 3(b) shows the frequency response of the average of three
experimental trials for a team of 10 robots with and without the delay notch filter.
Each experiment ran for roughly 45 to 50 minutes with the robots executing 750
state transitions.

3.2 Controlling the Ensemble Moment Dynamics

While the mean-field approach enables us to design decentralized coordination
strategies that can be implemented without any inter-agent wireless communica-
tion, it is limited since it can only affect the mean of the distribution. On the other
hand, the explicit modeling of the moment dynamics of the robot population distri-
bution using (5) gives the ability to devise ensemble feedback strategies that enables
the team to affect the mean, the variances, and any higher order moments of the en-
semble distribution.

As shown with equation (3), the rate in which agents in state Xi transition to Xj

depends on the population in state Xi. As such, the more agents in state Xi, the faster
they transition to Xj. However, Klavins recently showed that if we allow for both
positive and negative transition rates, it is possible to shape both the mean and the
variance of the ensemble distribution [17]. In other words, by introducing a negative
feedback rate, it is possible to slow the population growth at a given state and thus
affect the population variance in that state.

For the M state system described by (5), consider the following ensemble feed-
back controller

u =−Kβ E[X ] Ki j
β =

⎧
⎪⎪⎨

⎪⎪⎩

β ji ∀(i, j) ∈ E

−∑ (i, j)∈E β ji ∀i = j

0 otherwise

. (6)

Expression (6) can be seen as a form of linearizing feedback control that inhibits
transitions from Xi to Xj as Xj becomes larger than Xi. This results with the following
closed-loop moment dynamics

d
dt E[X ] =(Kα +Kβ )E[X ]

d
dt E[XXT ] =(Kα +Kβ )E[XXT ]+E[XXT ](Kα +Kβ )

T

+Γ (α,β ,E[X ]). (7)

The steady-state values of E[Xi] and E[XiXj] can be independently set by adjust-
ing parameters α and β . The above equations are obtained by simply substituting
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(a)

(b)

Fig. 3 (a) Frequency response results for the simulated system. This plot shows the average
response of 50 simulations of the unfiltered (no notch) system and 50 simulations of the
system with the delay notch filter. The system with the distributed filter shows a depression
in the frequency response at the active notching point. (b) Frequency response of the initial
experimental trials. The plots shows the frequency content of 3 averaged response for the
unfiltered and notched system. The peak, though small, is properly located according to the
transition times. The high peak at 6.1mHz in the notched response is due to the round trip
time if all agents went along the delay route that includes the τNOTCH delay.
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(a)

(b)

Fig. 4 These plots compare the steady state distributions and the convergence rate of the
system with and without ensemble feedback. Each left side plot shows the transient behavior
from an initial condition of X = [0,0,30]. The solid lines denote the numerical solutions of
the first moment dynamics and the data points are 10 representative stochastic simulation
runs. The right side plots are the steady state distributions represented as Gaussians.

ki j = αi j −βi j
Xj
Xi

in the reactions given by (3) and applying the extended generator
to ψ(Xi) = Xi [23].

The advantage of the proposed ensemble feedback strategy, over any other neg-
ative feedback strategy, is that it maintains the moment closure property for the
closed-loop system. This enables us to show that the close-loop moment dynamics
remain stable when βi jXj ≤ αi jXi [23]. When βi jXj > αi jXi, the system experiences
a backwards flow. As such, in practice, we restrict this rate to be greater than or
equal to zero. The addition of these saturation effects will slightly complicate the
stability analysis [23].

While the feedback strategy (6) gives robots in state Xi the ability to set their own
state transition rates to be independent from the number of robots Xi, it requires
robots at task i to know how many robots are at adjacent sites, i.e., robots in Xj

where ei j ∈ E . This differs from the delayed notch filter presented in Section 3.1
which can be implemented with no communication. As such, the implementation of
(6) will depend on the available communication infrastructure.
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(a)

(b)

Fig. 5 Probability distribution of the robot ensemble at each site, {X1,X2,X3}. (a) Without
ensemble feedback and (b) with ensemble feedback using local communication.

If we endow each task location with the computational capability to track the
number of robots at the site and the ability to communicate with adjacent task sites,
then the estimation of the ensemble states would be similar to having a single global
estimator. When individual robots arrive at a location, the information is updated
and broadcasted to all adjacent task sites. Fig. 4 shows the first moments of a three
state system (M = 3 tasks) over time with and without the ensemble feedback strat-
egy. Note how the system with ensemble feedback has both faster convergence and
smaller variance on its populations [23].

In practice, not only is it unreasonable to assume full and perfect communica-
tion among the robots, it is often unreasonable to assume full and perfect commu-
nication between the task sites. This is especially true when sites are distributed
across vast geographic regions or in situations where long-range communication is
difficult/impossible, e.g., underground/underwater environments. A distributed im-
plemention of (6) can be achieved through local inter-robot communication alone.
We assume robots have finite communication ranges and can only communicate
with other robots that are co-located at the same site and/or within each other’s
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communication range. As robots move from one site to another, they can exchange
information with other robots they encounter and construct their own estimates of
the population levels at the various sites. Fig. 5 shows the allocation of the 15 robots
to three task sites with and without the distributed implementation of the ensemble
feedback strategy.

4 Discussion and Outlook

In this chapter, we presented a method for synthesizing distributed ensemble feed-
back control strategies through the development and analysis of an appropriate
macroscopic description of the ensemble dynamics. In one case, mean-field models
allowed for the identification of the spurious interactions between robots as they
moved within a workspace executing a collection of spatially distributed tasks. The
macroscopic analysis lead to the development of a distributed filtering strategy that
could be implemented without requiring any inter-robot wireless communication
nor estimation of population variables. In a second case, moment closure techniques
where used to model the dynamics of a team of robots servicing a collection of spa-
tially distributed tasks. The analysis provided a linearizing ensemble feedback strat-
egy to enable the team to maintain the mean and the variance of the robot population
distribution across the various tasks.

The key advantage of this approach is a lower dimensional parameterization of
the ensemble dynamics that retains the salient features of the underlying agent-based
system. These techniques are particularly well-suited for analyzing the effects of un-
certain interactions on overall system performance in multi-agent robotic systems.
Specifically, these techniques enable the analysis of highly redundant systems in a
lower dimensional space while simultaneously retaining the systems-level view of
the dynamics. Furthermore, since interaction uncertainties can be explicitly encoded
in these models, the feedback strategies developed using these techniques would be
robust to any changes in population sizes.

Despite these advantages, further investigation is needed to determine the classes
of multi-agent coordination problems that are amenable to these macroscopic mod-
eling and controller synthesis techniques. Specifically, we are interested in inves-
tigating the viability of these techniques in modeling and controlling multi-agent
robotic systems executing highly coupled tasks. For any ensemble derived feedback
strategy, there is also the added challenge of determining the appropriate distributed
implementation. However, this presents an opportunity for network resource aware
synthesis of distributed coordination and control strategies for multi-agent systems.
We are interested in investigating ensemble controller synthesis techniques that can
take into account the trade-off between more precise control and the need for esti-
mating ensemble states.
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