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Abstract. The development of legged robots for complex environments requires
controllers that guarantee both high tracking performance and compliance with the
environment. More specifically the control of contact interaction with the environ-
ment is of crucial importance to ensure stable, robust and safe motions. In the fol-
lowing, we present an inverse dynamics controller that exploits torque redundancy
to directly and explicitly minimize any combination of linear and quadratic costs in
the contact constraints and in the commands. Such a result is particularly relevant
for legged robots as it allows to use torque redundancy to directly optimize contact
interactions. For example, given a desired locomotion behavior, it can guarantee the
minimization of contact forces to reduce slipping on difficult terrains while ensur-
ing high tracking performance of the desired motion. The proposed controller is
very simple and computationally efficient, and most importantly it can greatly im-
prove the performance of legged locomotion on difficult terrains as can be seen in
the experimental results.
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1 Introduction

We are interested in developing legged robots able to perform difficult tasks in chal-
lenging environments. In order to achieve such a goal, we need controllers that can
guarantee at the same time good motion tracking performance and an adequate con-
trol of the contact interactions with the environment. Tracking performance is im-
portant for tasks requiring agility such as climbing or walking on very rough terrain,
where the robot feet must be placed at very precise location. A certain degree of
compliance is desirable to handle unexpected disturbances. But more importantly,
the controller should also be able to directly optimize contact forces. For example,
a walking robot should minimize tangential contact forces to avoid slipping while
it should control contact forces to redistribute its weight among the different limbs
during climbing tasks to increase the range of possible motions. In this chapter, we
present an inverse dynamics controller for high tracking performance and compli-
ance that ensures an optimal distribution of contact forces by using the redundancy
available in the commands.

Model-based approaches such as inverse dynamics or operational space control
offer an interesting framework for the control of legged robots. Indeed, they can
greatly improve tracking performance while allowing more compliant control since
they require lower error feedback gains. While these methods are standard for ma-
nipulators [13], they are not yet widely used for legged robots. Indeed legged robots
are different from manipulators fixed to the ground because they are under-actuated
due to their floating base1 and they are subject to changing contact interaction with
the environment as their legs move. These differences make the design of inverse
dynamics controllers for legged robots more complex.

Recently, several inverse dynamics controllers were proposed for floating-base
robots subject to contact constraints. These methods compute required torques with-
out measuring contact forces by assuming idealized contact constraints and project-
ing the dynamics into a constraint free space [1,7,11]. The methods proposed in [7]
is of special interest since it does not require a structured representation of the dy-
namics (i.e. no need to compute individual components like the inertia matrix, Cori-
olis, and gravity terms) and mainly relies on kinematic quantities, which makes it
particularly robust to uncertainties in parameter estimation and, additionally, com-
putationally very effective.

Interestingly when there are more than six contact constraints with the environ-
ment, the inverse dynamics problem is under-determined in the sense that there is
an infinite number of torque commands for a constraint-consistent desired motion.
It is the case, for example, when a biped has its two feet on the ground or when
a quadruped robot with point feet has more than 2 feet on the ground. There are
more degrees of freedom for the actuation than for the possible motions due to the
constraints imposed by the contacts. The over-constrained case is very interesting
because there is an infinite number of possible choice of commands to realize a de-
sired motion. In general, redundancy is resolved by minimizing a cost criterion, e.g.,

1 We refer to floating base robots that are not fixed to the ground due to their 6 non-actuated
DOFs that describe the position and orientation of the robot relative to an inertial frame.
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a quadratic cost in the commands as in [7, 10]. We will see in the following that we
can use torque redundancy to directly manipulate the contact forces instead. It will
allow us to create tracking controllers optimal with respect to any combination of
linear and quadratic costs of the contact forces and the commands.

The problem of contact force distribution during locomotion has already been
addressed in the literature [4,6]. Force control approaches have been proposed [3,14]
to directly control the contact forces of a legged robot. These approaches have been
successfully used for the control of biped robots. In general, the manipulation of
contact forces is done as a primary goal, for example to create balance controllers.
A potential desired motion is then treated as a secondary goal. It is in contrast with
our approach that aims at creating tracking controllers able to manipulate contact
forces using torque redundancy, i.e. trajectory tracking is the primary goal of the
controller.

The manipulation of contact forces in the context of inverse dynamics or oper-
ational space control has also been addressed in [12]. In this case, desired contact
forces are explicitly controlled using the torques acting in the nullspace of the mo-
tion. Such an approach is interesting if one has a precise objective for the contact
forces. However it does not provide any optimality result on the force distribution.

Recently we have been investigating how we could use torque redundancy in
inverse dynamics controllers and operational space controllers to optimize contact
forces [8,9]. In this chapter, we present some of the latest developments of our work.
We show how we can create inverse dynamics controllers that are optimal with re-
spect to any combination of linear and quadratic cost in the constraint forces and
in the commands. The controller is computationally simple and robust to parameter
estimation errors, which make it well suited for high performance control of com-
plex robots with a large number of degrees of freedom, such as humanoid robots.
We present several applications of the controller to legged robots. Experimental
results show that for the same desired motion, the use of torque redundancy can
significantly improve the performance of the robot during locomotion. It is worth
mentioning that several additional applications and technical details of this work
can be found in [8].

2 Problem Formulation

We first consider the general problem of inverse dynamics for floating-base robots
under constraints. First we present the constraint model and its assumptions. Then
we present the control law recently derived by Mistry et al. [7] for legged robots and
that we will use in subsequent sections.

2.1 Rigid Body Dynamics Model

Assuming that the robot in contact with its environment obeys rigid body dynamics,
its equations of motion are
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Mq̈+h = ST τ + Jc
T λ (1)

under the k constraints
Jcq̈ = b(q, q̇) (2)

where q = [xT
j xT

b ]
T is the vector of joint positions (x j ∈ R

n) and base positions

and orientations (xb ∈ SE(3)), M ∈ R
(n+6)×(n+6) is the rigid body dynamics inertia

matrix, h ∈ R
n+6 is a generalized force vector containing all the modeled forces,

including the Coriolis, centrifugal and gravitational forces as well as friction forces
in the joints. τ ∈ R

n is the actuation vector and S = [In×n 0n×6] ∈ R
n×(n+6) is

the joint selection matrix that characterize the under-actuation. Jc ∈ R
k×(n+6) is the

Jacobian of the k constraints with the λ ∈ R
k Lagrange multipliers that correspond

to the constraint forces.
Following the ideas from [15] we expressed the constraints in acceleration form

(i.e. as given in Eq. 2). Holonomic constraints can be expressed by differentiating
them twice and non-holonomic constraints by differentiating them once. We assume
in the following, without loss of generality, that Jc is full row rank, in the sense that
all constraints are linearly independent. If it is not the case then one can easily
find a reduced number of independent constraints, for example by using the SVD
decomposition of Jc.

Example 1. If we assume that the position of the point feet of a legged robot are
given by xc, then the constraints that the feet do not move relative to the ground can
be written as xc = constant or equivalently by ẋc = 0. Relating this to the motion
of the joints of the robot using the Jacobian of xc we have Jcq̇ = ẋc = 0, which we
differentiate once again to get Jcq̈ =−J̇cq̇.

We assume that the movement plan of the robot is expressed by desired joint accel-
erations that are constraint consistent, i.e., Equation (2) with q̈ = q̈d holds. These
accelerations will be satisfied if and only if they are of the form

q̈d = JG
c b+(I− JG

c Jc)q̈0 (3)

where JG
c can be any generalized inverse [2] of Jc, i.e. a matrix such that JcJG

c Jc =
Jc. Here, q̈0 is an arbitrary acceleration vector and (I− JG

c Jc) projects these accel-
erations into the null space of the constraints.

The general problem of inverse dynamics is then to compute the torques τ such
that they will achieve the desired accelerations q̈d . The range of unconstrained
movements lies in a n+6− k dimensional space while the dimension of the control
vector is n. Therefore we can distinguish three cases for inverse dynamics depending
on the number of constraints:

• k < 6, the system is underactuated since there are more dimensions of movement
than dimensions of actuation. There is at most one solution to the inverse dy-
namics problem: for a solution to exist, the desired accelerations must not only
be constraint consistent, they moreover need to be consistent with the dynamics
of Eq. (1). For example one can think of the case of no constraints, when a cat is
falling and cannot orient its body independently from moving its joints.
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• k = 6, the system is fully actuated. There is exactly one solution provided that the
desired accelerations are constraint consistent. This case is similar to the inverse
dynamics problem of a manipulator fixed to the ground.

• k > 6, the system is overconstrained. There is an infinite number of solutions
for τ that will achieve perfect tracking of q̈d . It is the case, for example, when a
humanoid has both feet flat on the ground, or with one foot and one hand in flat
contact with the environment or when a quadruped with point feet has more than
two feet on the ground.

In the following, we only consider the overconstrained case (k > 6) since it is the
only case where torque redundancy can be used to optimize constraint forces.

2.2 Inverse Dynamics Solution Using Orthogonal Projections

By using orthogonal projections, Mistry et al. [7] proposed recently an efficient way
to compute the inverse dynamics of a constrained under-actuated system without
the need to measure contact forces. More precisely the authors use the QR decom-
position of the constraint Jacobian Jc

T = Q
[
RT 0

]T
, where Q ∈ R

(n+6)×(n+6) is an
orthogonal matrix (i.e. QQT = I) and R ∈ R

6×6 is an upper triangular invertible
matrix. If we decompose Q = [Qc Qu] into the constrained, Qc ∈ R

(n+6)×k, and un-
constrained, Qu ∈ R

(n+6)×(n+6−k), components, the general solution for the inverse
dynamics torques given desired accelerations q̈d can be written as

τ(W,τ0) = QT
u ST QT

u (Mq̈d +h)+ (I−QT
u ST QT

u ST )W−1τ0 (4)

with generalized inverse

QT
u ST = W−1SQu(QT

u ST W−1SQu)
−1 (5)

where W ∈ R
n×n is a symmetric positive definite matrix and τ0 is an arbitrary in-

ternal torque – τ0 is premultiplied by a projection matrix that guarantees that τ0 can
only create internal forces, but no movement.

Moreover the resulting constraint forces can be predicted by

λ = R−1QT
c (Mq̈d +h−ST τ) (6)

Remark 1. In the case where k= 6, there is only one solution and QT
u ST =(QT

u ST )−1

and the nullspace is empty. When k < 6, there is at most one solution and QT
u ST =

(QT
u ST )+, where ()+ denotes the Moore-Penrose generalized inverse and the null-

space is also empty.

We note that the torque control law τ(W,τ0) is parametrized by a weight matrix
and an internal torque vector. It is this parameterization that can be exploited to
resolve torque redundancy. One result that is already known is that τ0 = 0 leads
to the minimization of the cost τT Wτ at each instant of time [7]. We show in the
following how we can do the same for costs in the constraint forces.
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3 Minimization of Constraint Forces

In the previous section, we have presented an idealized way of describing constraints
using acceleration equalities. However using equalities offers a limited representa-
tional capability and cannot capture important aspects such as physical limitations
on the constraint forces that can be generated. For example, in the context of a
constraint that enforces a foot to stay on the ground, we cannot represent the fact
that ground reaction forces should be inside the cone of friction to avoid slipping,
which means that the ratio between forces tangential and normal to the contact must
satisfy an inequality. We can immediately see that including such inequalities for
the inverse dynamics problem will have the consequence that we will not be able
to solve the inverse dynamics problem without a (possibly complex) iterative opti-
mization algorithm. This is in contrast to the simple analytical solution presented in
Eq. (4).

Another solution would be to directly minimize a cost in the constraint forces
that would take into account those inequalities implicitly. If we can get the torque
distribution that minimizes such a cost, then, implicitly, it will try to find a solution
that tends to fulfill the inequalities. Another advantage is that one does not need to
know the exact model of the contact, e.g., the friction cone. For example minimizing
a cost that penalizes the tangential forces during contact will ensure that the robot
minimizes slipping for all sizes of friction cones, i.e., the controller will act as con-
servative as possible towards slipping. While it is possible that such an approach
finds a solution that violates the constraints even if a correct solution exists, we will
see in the next section that it is rarely a problem in practice. A detailed discussion
on limitations and advantages of this approach can be found in [8].

3.1 General Result

We now present the general result used to construct controllers that minimize any
combinations of linear and quadratic costs in the contacts and in the commands.

Theorem 1. The inverse dynamics controller (Eq.4) that minimizes the cost

1
2

τT Wτ τ +bT
τ τ +

1
2

λ T Wλ λ +bT
λ λ (7)

is chosen by setting

W = Wτ +SWcST (8)

τ0 = −bτ +SWc(Mq̈+h)+Sbc (9)

where

Wc = Q
[

R−T Wλ R−1 0
0 I

]
QT , (10)

bc = Q
[

R−T

0

]
bλ , (11)



Using Torque Redundancy to Optimize Contact Forces in Legged Robots 41

JT
c = Q

[
R
0

]
is the QR decomposition of the constraint Jacobian and Wλ is such

that Wτ +SWcST is symmetric positive definite.

We omit the proof as it can be found in [8] with more technical details. The result
provides us with a way to directly and explicitly optimize at the same time both
command costs and constraint forces using torque redundancy. The result is very
general as it can be applied for any type of constraints expressed in the form of
Equation (2) and for any combination of linear and quadratic costs of those con-
straints. The result applies to any control system whose equations of motion can be
written as Equation (1) and is therefore not limited to legged robots.

Remark 2. In addition to its very nice computational properties, the formulation of
the inverse dynamics control as proposed in [7] is very convenient as we can use the
same orthogonal decomposition Q to derive the torque parametrization for optimal
distribution of constraint forces.

Now cost functions can be designed depending on the desired application in order
to manipulate the generated constraint forces and torques.

3.2 Examples of Optimization

In this section we discuss a few controllers that can be derived using the results of
the previous section and some of their properties relevant for applications.

3.2.1 Minimization of Tangential Contact Forces

To ensure proper contact with the ground, one has to guarantee that the ground
reaction forces stay within the friction cones. The friction cone is a purely geometric
constraint that is defined by a friction constant and the orientation of the contact
surface with the contacting foot. In the case of locomotion, to avoid slipping, one
would like to have the reaction forces as orthogonal to the constraint surface as
possible. In other words, the tangential forces should be minimized. Moreover in
the case of a flat foot on the ground, the resulting moment around the foot should
be as small as possible. The cost to optimize should therefore take into account
the orientation of the ground in order to redirect contact forces in a more desirable
direction.

In order to minimize the tangential forces and the moments around the foot, we
propose the following cost

Wλ =

⎡

⎢
⎣

RT
leg1

Wleg1Rleg1 0
. . .

0 RT
legn

WlegnRlegn

⎤

⎥
⎦ (12)

with
Wlegi = diag(Ktx,Kty,1,Kmx,Kmy,Kmz) (13)
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where Rlegn is a rotation matrix that corresponds to the orientation of the surface
with respect to the inertial frame (i.e. it aligns the reaction forces and moments of a
foot with the orientation of the surface) . Ki are gains associated with the tangential
forces in x,y directions and the moments in x,y,z directions. Here we assume that
the z direction is normal to the ground.

Remark 3. In the case of point feet the matrix Wleg is reduced to its 3×3 upper-left
sub-matrix. The gains Kt and Km must be chosen with appropriate units such that
the summations in the cost are unit consistent. The exact values of the gains need to
be designed specific to the application.

3.2.2 Tracking Desired Contact Forces

Instead of only minimizing constraint forces, we can also manipulate the value of
these forces explicitly in order to create more interesting contacts. For example,
when one wants to manipulate the center of pressure of the feet during walking (in
a case where the feet are not co-planar) or to explicitly regulate force interaction in
specified directions. The previous results allow us to do that very easily. Assume we
have a desired interaction force vector λ d and we want the contact forces to follow
this desired force vector as close as possible. We can then minimize a weighted
square error that measures the performance in tracking

1
2
(λ −λ d)

T K(λ −λ d) (14)

where K is symmetric positive definite. Then, noticing that

1
2
(λ −λ d)

T K(λ −λ d) =
1
2

λ T Kλ +
1
2

λ T
d Kλ d −λ T

d Kλ (15)

we can create a controller that will optimally track those constraint forces in the
sense that it will minimize the tracking error by choosing the following controller
parameters

Wλ = K (16)

bλ = −λ T
d K (17)

It is interesting since we can use the torque redundancy to explicitly manipulate
contact forces and track desired forces. The tracking performance will obviously
be dependent on the desired forces and the redundancy left in the nullspace of the
motion. It means that it will not be possible to track arbitrary forces, however we
are guaranteed to have an optimal performance in terms of the tracking cost.

4 Experimental Results

We now present some experiments in order to illustrate the advantages of using the
previously proposed redundancy resolution scheme. In the following, we apply our
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Fig. 1 The robots used in the simulations: left, SARCOS humanoids, right, Boston Dynamics
Little Dog

approach on two different simulated robots (Figure 1) using different optimization
criteria for the controller as well as a preliminary application on a real quadruped
robot.

4.1 Control of a Humanoid Robot

Our first results are shown on a simulation of the Sarcos humanoid robot (Figure 1)
which is a 34-DOFs human size torque controlled humanoid robot. The main objec-
tive of the experiment is to illustrate in simple examples how the inverse dynamics
controller can manipulate contact forces.

In the experiment, we keep the robot in a desired posture while minimizing tan-
gential ground reaction forces together with the moment generated around the feet
(as described in Section 3.2.1). We compare the resulting contact forces with the
original inverse dynamics controller that minimizes the total command cost τT τ . In
this static case, the contact forces are only generated through actuation and gravity.

We tested both controllers in two contexts: in a symmetric posture on a flat ter-
rain and on a terrain where the robot is stepping on a 10 cm box. The results of
the experiments are shown in Figure 2. We notice that on the flat surface, both con-
trollers generate similar contact forces and moments. However in the asymmetric
case, when the robot is on a step, we clearly see a difference in force and moment
distributions. The original controller generates unnecessary tangential forces and
moments to keep its posture while the other controller minimizes the contact con-
straints. We can clearly see the advantage of such a controller when stepping for
example on an object that is not bolted to the ground and could potentially move.

4.2 Simulation of Quadruped Locomotion

Next, we show the performance of our torque controller in a more dynamic situation
where we used a simulation of the LittleDog robot for quadruped locomotion. The
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(a) Flat terrain experiments
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(b) Step experiments

Fig. 2 Results of the first experiment with the humanoid simulation. We depict the contact
forces split into normal forces and absolute tangential forces (upper graphs) and show the 3
moments created around the feet (middle graph) and a snapshot of the posture of the robot in
each experiment. The regular inverse dynamics controller is plotted in blue and the controller
minimizing contact forces is plotted in red. For each experiment we set Ktx = Kty = 1000N−2

and Kmx = Kmy = Kmz = 2000Nm−2.
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planning of desired joint positions, velocities and accelerations is done following the
method proposed in [5]. We use a ZMP-based algorithm to plan the desired center of
gravity (COG) motion of the robot. The COG plan is completed with a world space
target for the position of the foot of the swing leg. These kinematic trajectories are
converted into joint space reference trajectories via an analytical inverse kinematics
model, which exists for this robot due to its 3 DOF legs.

In order to achieve asymptotically stable tracking of trajectories in joint space,
an error feedback command in joint-space is added to the feedforward command
computed by the inverse dynamics law. The resulting reference command, given
desired qd , q̇d and q̈d , is therefore

τ = τ(W,τ0)+PID(qd , q̇d) (18)

where PID corresponds to a joint space PID error feedback controller.
We use a physical simulation of the Little Dog robot (Fig. 1). In order to stay

as close as possible to reality, we simulate the controller as it would be executed
on the real robot. The real robot has an on-board controller running at 400 Hz that
generates the PID commands and can add a feedforward torque command (i.e. the
inverse dynamics torque in our case). The desired positions, velocities and feedfor-
ward commands are generated on a host computer in a different controller that is
running at 100 Hz. It must be noted that the inverse dynamics controller is therefore
running at a relatively slow bandwidth for torque control and is much slower than
the PID control loop. Therefore it can have a negative effect on the actual perfor-
mance of the simulated controllers as opposed to what would be produced by an
idealized or perfect model.

In order to show the performance of our method, we tested the locomotion of the
robot with the controller we proposed as compared to two other controllers. First the
original inverse dynamics controller that minimizes the total torque command τT τ ,
and second a PID controller without inverse dynamics but with gains twice as high
as the other controllers. The higher gains are required to maintain sufficient nominal
tracking performance.

We systematically tested the performance of locomotion for these three con-
trollers on a flat, level surface with different coefficients of static friction and on
a 0.25 radians sloped surface. For each of the experiments, we measured the track-
ing performance by computing the root mean square (RMS) tracking error in joint
space. Furthermore, the distribution of ground reaction forces at each leg is recorded
and the average amount of leg slipping per stance phase is computed.

In Figures 3 and 4, we illustrate the results of these experiments. We show the
results only for the front left leg since the results for the other legs are qualitatively
the same. We can notice that in all the experiments, the controller we proposed
always achieves the best performance in terms of both low tracking error and low
slipping. As expected, we see better tracking performance for both inverse dynamics
controllers with low PID gains as compared to the high-gain PID controller. We must
also note that, in addition, we realized a compliant control of the robots, which is
not possible for the PID controller.
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Fig. 3 Experiments on flat terrain. The figures on the left show the performance measures
for the 3 different controllers (cf. text). The figures on the right show the distribution of the
contact forces normal to the terrain as a function of the absolute value of the corresponding
tangential contact forces. The solid lines indicates the median of the distribution and the
dashed line the interquartile range of the distribution (i.e. 50 % of the distribution lies between
the dashed lines). For the controller minimizing contact forces we used Ktx = Kty = 10N−2

in all experiments.

On flat ground, our controller minimizing tangential forces leads to very little slip
(approx. 2mm), which for practical purposes can be viewed as negligible. There are
two sources that lead to this tracking error despite a perfect rigid body model used
in the controller and a deterministic simulation. First, the assumption of holonomic
ideal constraints is not fulfilled since the simulation uses a penalty method (i.e. a
spring-damper model) to model ground contact and friction. Second, there might be
some numerical inaccuracies building up due to numerical integration, even though
this can generally be assumed to be very small.

It should be noted that the amount of slip for the other controllers increases as
the friction coefficient is lowered and goes up to more than 1.5 cm for the lowest
chosen friction coefficient of 0.1. It seems that the PID controller degrades less than
the normal inverse dynamics when lowering friction.

We also see that the typical distribution of ground reaction forces is more verti-
cal for the controller optimizing the tangential forces and that the variation of this
distribution is also lower. We can therefore conclude that the controller generates
contact forces that are oriented more suitably for walking without slipping.
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Fig. 4 Experiments on the slope. The figures on the left show the performance measures
for the 3 different controllers (cf. text). The figures on the right show the distribution of the
contact forces normal to the terrain as a function of the absolute value of the corresponding
tangential contact forces. The solid lines indicates the median of the distribution and the
dashed line the interquartile range of the distribution (i.e. 50 % of the distribution lies between
the dashed lines). For the controller minimizing contact forces we used Ktx = Kty = 10N−2

in all experiments.

On the slope, the results of the performance measured by the slip are even more
distinct. The controller having optimal distribution of forces slips less than 6 mm
for a friction coefficient higher than 0.5, while the other controllers slip up to 2 to
3 times more for the same simulation conditions. We note that the robot controlled
using the original inverse dynamics controller was not able to climb slopes with
static friction lower than 0.42 (i.e. the robot would slip and eventually fall) while
the other controllers could climb a slope with static friction as low as 0.33. The
amount of slipping is still lower for the proposed controller but we note that the
high gain PID controller has similar performance for the lowest friction coefficient
– again we would like to point out that, however, the PID controller is not compliant
and rather stiff.

Again, the distribution of forces on the ground varies less and is more vertically
oriented in the case of the controller using the optimal distribution of forces.
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4.3 Application to Real Robot

In this section we present experiments with the real Little Dog robot. We ran the
locomotion controller with the original inverse dynamics controller minimizing the
torque command and with the new controller optimizing tangential ground reaction
forces. The terrain was composed of a level flat board and a slope of 0.46 radians,
which is higher than the experiments done in simulation – the actual robot turned out
to be more capable than our physical simulator. The controller was run at 3 different
speeds with a stepping period between 3 to 4 seconds. We were not able to see
significant behavioral differences, i.e. we could not see a case where one controller
was able to make the robot go up the slope while the other would not. However,
we consistently noticed that when using the controller minimizing the tangential
forces the robot would reach the top of the slope faster as can be seen in Figure 5.
We observed this behavior in all the experiments we ran. It is interesting since the
planned desired trajectories were the same for both controllers.

When looking at the amount of slipping, we can see a consistent decrease in the
amount of slipping with the controller using optimal distribution of contact forces,
as we show in Figure 6. The amount of slip is computed accurately thanks to a
motion capture system that tracks the position of the robot. We notice that the robot
is slipping on average 30% less when using the new controller.

We also looked at the distribution of contact forces when the robot was walking
on level ground (Figure 6). While this data has to be interpreted cautiously in view
of the high level of noise in the force measurements, we clearly see a trend for a
better distribution of forces when using the new proposed controller.

While we see a clear trend of improvement of locomotion on the real robot, this
improvement was not sufficient enough to be able to see the behavioral differences

Fig. 5 Snapshots of a typical experiment. The figure is organized as two rows of snapshot,
time going from left to right. There is approximately 2.5 seconds between each frame. For
each frame, the upper graph is the experiment using the controller with minimization of
tangential forces and the lower one corresponds to the controller minimizing the command
cost. We notice that due to a reduced amount of slipping, the robot using the minimization of
tangential forces reaches the top of the slope faster. The planned desired trajectories are the
same for both robots.
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Fig. 6 Real robot on 0.25 radians slope, in red the optimal controller in blue the normal ID
controller

observed in simulation. However a few limitations of the robotic platform can ex-
plain the quality of the results:

• As we discussed in the previous section, our inverse dynamics controller is run-
ning at a 100Hz bandwidth on a host computer. Such a low bandwidth of control
clearly limits the possible performance of the robot. For example, on a modern
torque controlled humanoid robot such as the Sarcos humanoid, one can expect
a 1kHz bandwidth of control.

• There are no torque sensors on the robot to close a torque feedback loop – torque
control is inferred from current control. Therefore any error in the model convert-
ing torques into motor currents will have a negative impact on the actual torques
applied to the robot compared to the desired ones.

• The quality of the dynamics model can also play a role. We evaluated the dynam-
ics model of the robot in a similar way we did in the previous section, however it
turns out that the dynamics is mainly dominated by friction in the joints, which is
a local (decentralized) effect that cannot be re-distributed in a way as suggested
by our controller that exploits actuation redundancy. We note that in our experi-
ment roughly 40 to 50% of the total command is due to the PD controller, which
is rather high.

These limitations are not fundamental ones and can easily be overcome in more ad-
vanced robotic platforms with joint-level force sensing and high control bandwidth.
Our current results then suggest that the proposed controller should perform even
better on these platforms.

5 Conclusion

In this chapter we showed how torque redundancy could be exploited to optimize
contact forces in inverse dynamics controllers. The proposed redundancy resolution
scheme allows to minimize any combination of linear and quadratic costs in the
contact constraints and the commands. Given a desired trajectory, the controller is
optimal at each instant of time. The resulting controller is surprisingly simple as it
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merely involves the inclusion of a weighted pseudo-inverse and an internal torque
vector in the nullspace of the motion. It can therefore be implemented even on real-
time computing hardware with modest computational power. Moreover it can be
shown that the same controller can be used for whole-body controllers based on the
operational space control framework [8].

We proposed to use this result either to track desired contact force trajectories or
to minimize tangential contact forces during legged locomotion. Simulation results
show that, given desired trajectories, we can exploit torque redundancy to achieve
high tracking performance while guaranteeing a better distribution of contact forces
and therefore better locomotion on difficult terrains. This constitutes an interesting
complement to planning algorithms from the control point of view. Our results on
the Little Dog robot, which is not an ideal platform for torque control, also show
that the proposed controller is not a pure theoretical result but is realistic enough
to be used on real systems. Such results are very encouraging as we expect to see
much more improvement on a properly torque-controlled platform.
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