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Abstract. Localization is an enabling technology, and a prerequisite for a wide
range of robotic tasks. Despite the large amount of work already done in this do-
main, to date, the solution to the localization problem for fully decentralized, large-
scale multi-robot systems is still an open question. In this chapter, we contribute
to this particular problem outline by proposing a low-cost method: we describe
a fully decentralized algorithm, particularly designed for resource-limited robotic
platforms in large-scale systems. In the following sections, we elaborate the com-
ponents of our method, and demonstrate the utility of our low-cost localization al-
gorithm on groups of up to ten real mobile robots. This chapter is rounded off by
bringing our approach into a larger perspective, and by discussing its potential as
well as its limitations.

1 Introduction

A variety of tasks performed by multi-robot systems such as search and res-
cue [12, 13], environmental monitoring [5, 25], and construction of real struc-
tures [16, 32] need accurate localization to succeed. Due to the intrinsic nature of
such tasks, the individual agents are often confined to a small size and weight, which
sets hard limits on on-board resources. Simultaneously, a large portion of the robot’s
resources may be dedicated to the task at hand, especially when this task requires
high-frequency perception-to-action loops, leaving little room for solving the lo-
calization problem. These compounding problems pose the challenge of designing
systems and algorithms that can flexibly accommodate given restrictions, without
compromising performance.
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This chapter presents a concise solution to the localization problem for a collabo-
rative team of mobile robots. Various strategies have been followed in past works on
collaborative localization—our work distinguishes itself by respecting the following
design goals:

Low-cost: The time/energy spent on the localization algorithm must be inferior
to that spent on the actual task at hand. Thus, we try to minimize the over-
all complexity of our algorithm, and simultaneously relax the communication
requirements.

Full decentralization: Each robot carries responsibility for its own localization,
and runs an independent localization algorithm on-board.

Any-time relative observations: Robot-to-robot observations can be made asyn-
chronously, at any given time. This simultaneously means that there are no
connectivity constraints on the robot team, and that the computational time of
fusing relative observations with proprioceptive sensing is bounded.

Mobility: Since our system is decoupled and decentralized, we do not constrain
mobility by making use of any methods that rely on motion agreements among
the robots.

Independence of the environment: In order for our method to be equally suited
for indoor and outdoor applications, in structured as well as unstructured envi-
ronments, it should be self-contained and robust. Thus, we rely only on inter-
robot relative sensing, and on the possibility of an initial localization (of one
of the robots).

Given its efficiency in solving localization problems for unknown initial condi-
tions and its efficiency in accommodating arbitrary probability density functions,
our method of choice is the particle filter. We thus build on the general probabilis-
tic framework of Monte-Carlo Localization (MCL) presented in [7]. In particular,
our collaboration strategy exploits associated, inter-robot relative range and bearing
observations. In order to accommodate the noise characteristics of typical relative
range and bearing measurements, we develop a robot detection model, which is
introduced into our localization algorithm. This combination forms the basis of our
collaborative paradigm. Given this foundation, the key element of our approach con-
sists of an additional routine, namely a reciprocal particle sampling routine, mainly
designed to accelerate the convergence of a robot’s position estimate (to the cor-
rect value), and to mitigate overconfidence. A collaborative localization algorithm
composed of the aforementioned robot detection model jointly with the reciprocal
sampling routine is very efficient with respect to its non-collaborative counterpart.
However, due to the computational overhead induced by the detection model and the
reciprocal sampling routine (which scale to the square of the number of particles),
such an algorithm may run into real-time running constraints. This can turn out to
be particularly prohibitive for platforms with hard limits on available resources. For
this reason, we further extend our approach with a particle clustering method that
reduces the complexity of the overall localization algorithm and also reduces the
amount of data to be communicated. This clustering routine is especially designed
to accommodate the characteristics of the range and bearing robot detection model,
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and does not impose an additional computational burden on the localization algo-
rithm as a whole.

1.1 Related Work

A synopsis of currently available work on multi-robot localization promotes a di-
vision of the various approaches into two main categories: a multi-centralized ap-
proach, and a decentralized approach. The multi-centralized approach distinguishes
itself formally from the decentralized approach by imposing that each robot in the
team maintains a state vector containing the poses of all robots—in other words,
each robot maintains a full-system state estimate, versus an estimate of only its own
pose.

The multi-centralized [23] approach is indeed the more popular (and classical)
approach, as it enables the robots to directly take account of inter-robot depen-
dencies and to estimate correlations. However, it entails some inconveniences. In
an early work, Roumeliotis et al. [30] enable the distribution of a Kalman estima-
tion scheme by constructing communicating filters, which allows team-members
to propagate their state and covariance estimates independently. Yet, as covariance
matrix updates occur during each update step and require information exchange be-
tween all robots and a centralized processor, the method is particularly vulnerable to
single-point failures. In particular, the requirement to update the information in all
robots after a single observation of an individual robot assumes a communication in-
frastructure without any packet loss. The method scales in O(N3) with respect to the
number of robots, and thus limits its scalability due to the high computational cost.
In [19], Martinelli et al. propose an extension to [30], which relaxes the assumptions
on relative observations, but without further improving the algorithm’s scalability
and cost. Howard et al. [10] propose an algorithm based on maximum likelihood
estimation, and validate it on a team of four real robots. Their method relies on pe-
riodical information broadcasts, and it is unclear how the method scales and how
sensitive it is to local minima. In a recent work, Nerurkar et al. [24] address the
reduction of computational complexity and single-point failures by implementing a
maximum a posteriori estimation method. Nevertheless, the O(N2) computational
cost is significant. Also, the proposed method requires synchronous communication
among the robots, and its feasibility still remains to be validated on real robots.
Mourikis et al. [21] consider the problem of resource-constrained collaborative lo-
calization with the goal of deriving optimal sensing frequencies. Yet, as extero-
ceptive data is dealt with in a centralized way, the sensing frequencies inevitably
decrease with an increasing number of robots, thus limiting the scalability of the
approach. Cristofaro et al. [6] present a localization algorithm that arguably alle-
viates the problems described above. The approach is based on an extended infor-
mation filter, whose implementation is distributed over the robot team members.
However, its computational cost increases for each new observation made and it as-
sumes bidirectional synchronous communication, the feasibility of which remains to
be evaluated on real robots. Finally, Leung et al. [15] develop a framework based on
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Fig. 1 System of two robots
Rn and Rm at positions xn

and xm, respectively, shar-
ing a common localization
frame. The figure illustrates
the robots’ relative range
(rnm = rmn) and bearing val-
ues (θnm and θmn).
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‘checkpoints’ which facilitates decentralization of a given localization algorithm.
Their method, however, still aims to maintain full-system state estimates on all
robots, and remains to be evaluated on real robots.

The category of work representing the decentralized approach has an alternative
take on the collaborative localization problem: each robot maintains an estimate of
only its own pose, and fuses relative observations in an opportunistic fashion. Fox et
al. [7] first introduced a multi-robot Monte-Carlo localization algorithm for global
localization, that also relaxes noise assumptions as well as inter-robot dependen-
cies. They propose a method in which robots mutually synchronize their position
beliefs upon detection, and show successful global localization on two real robots.
However, the method has limited scalability due to overconfidence occurring upon
multiple robot detections, and no analysis is provided of the algorithm’s process-
ing requirements. Bahr et al. [1] develop a decentralized localization algorithm,
based on the extended Kalman filter framework, that is especially well suited for
autonomous underwater vehicles with very low data rates. This method, however,
allows cyclic updates and, thus, may suffer from overconfidence. In an addition to
this work [2], the authors remedy the overconfidence problem, but at the cost of a
computationally expensive solution (in particular for a large number of robots and a
high frequency of relative observations).

1.2 Problem Formulation

Let us consider a multi-robot system of N robots R1, R2, ..., RN , in a 2D space,
where the number N does not necessarily need to be known by the robots (see
Figure 1 for a schematic illustration of a two-robot system). For a robot Rn, at
time t, the pose xn,t is given by the Cartesian coordinates xn,t ,yn,t and orientation
φn,t . Also, at time t, a robot Rm is in the set of neighbors Nn,t of robot Rn if robot
Rm is able to take a range measurement r̃mn,t and bearing measurement θ̃mn,t of
robot Rn. Thus, at every moment in time, the neighborhood topology is defined by
the physical constraints given by the relative observation sensors deployed on the
robots. Also, if Rm ∈Nn,t , we make the assumption that the robot Rm can commu-
nicate with the robot Rn. Apart from a sensing modality that enables the robots to
observe inter-robot range and bearing (including a unique robot identifier), they are
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also equipped with a dead-reckoning self-localization module (e.g., odometry), but
do not make use of any exteroceptive sensors capable of feature recognition.

As introduced earlier in this text, every robot runs its own, self-contained, collab-
orative particle filter, with the goal of localizing itself without any prior knowledge
of the initial state or previous measurements. In practice, we assume that one of the
robots is localized at the start of an exercise. It turns out that, as time evolves, our
method ‘propagates’ the correct position belief from robot to robot with help of the
relative positioning sensors, and that at some point in time all robots are localized
(with respect to an upper error bound). The belief of a robot’s pose is formulated as

Bel(xn,t)∼ {〈x[i]n,t ,w
[i]
n,t〉|i = 1, ...,M}= Xn,t (1)

where M is the number of particles, x[i]n,t is a sample of the random variable xn,t (the

pose), and w[i]
n,t is its weight (or importance factor). The symbol Xn,t refers to the set

of particles 〈x[i]n,t ,w
[i]
n,t〉 at time t belonging to robot Rn. This context formalizes the

scope of this chapter: the method that we detail in the following sections solves the
localization problem for large robot teams by exploiting collaboration.

We note that the nature of this problem scenario relates well to current real-world
scenarios. In particular, in environments where it is hard or even impossible to get
a GPS position update, such as underwater or inside buildings, it is always possible
to exploit the mobility of one of the team mates to move into a GPS-friendly envi-
ronment. In underwater robot teams [1], a robot can surface to get a GPS update. Or
similarly, in search and rescue robot teams [12], a robot can navigate to the exit of a
building. Several authors also comment on the advantages of heterogeneity in robot
teams. Bahr et al. [1] note that for optimal localization, it is advantageous to have
a few team members that are able to maintain an accurate estimate of their position
through sophisticated dead-reckoning sensors, thus enabling a much larger group
of robots with less sophisticated sensors to maintain an accurate position. In the
same line of thought, Madhavan et al. [18] argue that when the quality of the mea-
surements from absolute positioning sensors deteriorates for certain robots in the
team, or if some of the team members do not possess absolute positioning capabil-
ities, those robots can take advantage of other team members with complementary
positioning capabilities.

1.3 Case Study

To give the reader a feel for our algorithms, we perform several experiments on a
team of Khepera III robots1 [27]. The Khepera III robot (see Figure 2) has a di-
ameter of 12 cm, making it appropriate for multi-robot experiments in controlled
environments. It has a KoreBot extension board providing a standard embed-
ded Linux operating system on an Intel XSCALE PXA-255 processor running
at 400 MHz, and uses a communication infrastructure enabled through an IEEE

1 http://www.k-team.com/

http://www.k-team.com/
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Fig. 2 Fleet of ten Khepera
III robots. The robots are all
equipped with an inter-robot
relative range and bearing
module, which is composed
of a ring of 16 infrared light
emitting diodes (LEDs).

802.11b wireless card which is installed in a built-in CompactFlash slot. In order
to measure the ground truth positioning to evaluate our algorithms, we installed an
overhead camera system as detailed in [27], in combination with the open source
tracking software SwisTrack [17]. This system allows us to monitor our robots in
real-time with a mean error of about 1 cm and a maximum error below 3 cm. The
robots are equipped with wheel encoders and use odometry for self-localization.
Each robot also uses a relative range and bearing module [29], which provides the
relative observations used by the robot detection model. Figure 2 shows ten robots
equipped with a relative positioning module. In our experimental space, the boards
have a proportional, additive Gaussian range noise with a standard deviation of
σr = 0.15 · rmn, and a bearing noise of σθ = 0.15 rad. In the following, we will
discuss the localization performance in terms of the mean positioning error of all
particles in the robots’ beliefs with respect to the ground truth positions obtained
from the overhead camera system. This metric implicitly includes the spread of the
particle positions, and thus also represents the uncertainty of the position estimate.

2 Collaborative Localization

In this section, we elaborate our collaborative localization algorithm [26], which,
together with the Monte-Carlo Localization (MCL) method presented in [7], forms
the baseline for our work. For convenience, the complete localization algorithm is
shown in Algorithm 1.

2.1 Multi-robot Monte Carlo Localization

Let us from here on consider a robot Rn that is detected by robot Rm, and simultane-
ously receives localization information from robot Rm. If we make the assumption
that individual robot positions are independent, we can formulate the update of the
belief of robot Rn at time t with

Bel (xn,t)= p(xn,t |un,0..t) ·
∫

p(xn,t |xm,t ,rmn,t ,θmn,t)Bel(xm,t)dxm,t (2)

where un,0..t is the sequence of motion control actions up to time t. For such
a collaboration to take place, robot Rm needs to communicate its range and
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bearing measurements r̃mn,t , θ̃mn,t and Bel(xm,t) to robot Rn. Thus a communication
message is composed as dmn,t =

〈
r̃mn,t , θ̃mn,t ,Xm,t

〉
. If several robots in a neighbor-

hood Nn,t communicate with robot Rn, the received information is the set of all
relative observations made by those robots of robot Rn at time t, as well as the be-
lief representations Xm,t of all detecting robots Rm ∈Nn,t . We denote this data set
as Dn,t = {dmn,t |Rm ∈Nn,t}. We note that the collaborative aspect of this formal-
ism lies in the integration of robot Rm’s belief into that of robot Rn (this update
step is shown in Algorithm 1 in line 5). As previously discussed in [7], there are
certain limitations to this approach. Due to the fact that robot Rm integrates its posi-
tion belief into that of robot Rn upon detection, subsequent detections would induce
multiple integrations of this belief, ultimately leading to an overconfident (and pos-
sibly erroneous) belief of the actual pose. Fox et al. remedy this shortcoming by
considering two rules: (i) their approach does not consider negative sights (no de-
tection) of other robots, and (ii) they define a minimum travel distance which a robot
has to complete before detecting a same robot again. Although rule (i) is a practical
consideration, rule (ii) limits the scalability and robustness of the approach. In fact,
it does not respect our design goals of full mobility and any-time observations (see
Sec. 1). We will see in the following sections how our approach tackles this problem
by exploiting a reciprocal sampling method.

Algorithm 1. MultiRob Recip MCL(Xn,t−1,un,t ,zn,t ,Dn,t)

1: Xn,t = Xn,t = /0
2: for i = 1 to M do
3: x[i]n,t ← Motion Model(un,t ,x

[i]
n,t−1)

4: w[i]
n,t ← Measurement Model(x[i]n,t )

5: w[i]
n,t ← Detection Model(Dn,t ,x

[i]
n,t ,w

[i]
n,t )

6: Xn,t ← Xn,t +
〈

x[i]n,t ,w
[i]
n,t

〉
7: end for
8: for i = 1 to M do
9: r ∼U (0,1)

10: if r ≤ (1−α) then

11: x[i]n,t ← Sampling(Xn,t)
12: else
13: x[i]n,t ← Reciprocal Sampling(Dn,t ,Xn,t)
14: end if
15: Xn,t ← Xn,t +

〈
x[i]n,t ,w

[i]
n,t

〉
16: end for
17: return Xn,t
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Fig. 3 Example application of the detection model for multiple detecting robots (a) for two
robots and (b) for three robots. Here, a set of 20 particles is shown, represented by oriented
triangles superimposed over the detecting robots R1, R2, and R3. The detected robot is
shown in white. The model’s probability density is superimposed on the detected robot. The
dotted line and the orientation of the robots show the actual relative range and bearing. The
particle positions were generated randomly from a normal distribution (σx = σy = 0.2 m, and
σφ = 0.2 rad), and range values are perturbed by an additive Gaussian noise with σr = 0.15
and for the bearing values with σθ = 0.15 rad.

2.2 Range and Bearing Detection Model

The detection model p(xn|dmn) describes the probability that robot Rm detects robot
Rn at pose xn = [xn,yn,φn]

T, given the detection data dmn. This probability density
function is applied to the ensemble of particles in the belief of robot Rn, in order
to adjust their weights to current relative observations. Given the nature of relative
observations, we make use of a locally defined polar coordinate system. Hence, we
define the transformation from Euclidean to polar coordinates Tp

e (xq,xp) as

Tp
e (xq,xp) =

[
rqp

θqp

]
(3)

where

rqp =
√
(xp− xq)2 +(yp− yq)2 (4)

θqp = atan2((yp− yq),(xp− xq))−φq (5)

and xq defines the center of the local polar coordinate system. Thus, assuming Gaus-
sian noise and knowledge of the range and bearing standard deviations (σr and σθ ,
respectively), and the independence of range and bearing measurements, the detec-
tion model is

p(xn|dmn) = η · ∑〈
x[i]m ,w

[i]
m

〉
∈Xm

Φ
(

Tp
e (x

[i]
m ,xn); μμμ ,Σ

)
·w[i]

m (6)
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where Φ(·; μμμ ,Σ) is a multivariate normal probability density function with mean
μμμ = [r̃mn,t , θ̃mn,t ]

T and where η is a normalization constant. The covariance matrix
is Σ = diag([σ2

r ,σ2
θ ]) (the work in [8] provides experimental evidence for our plat-

form showing that a range and bearing measurement behaves like two independent
Gaussian variables). As seen in [26], the detection model can easily be augmented
by an additional component in case robot Rn reciprocally detects robot Rm. Here,
for the purpose of our case-study, we use a simple Gaussian distribution in polar co-
ordinates, but all reasonings are valid for completely arbitrary distributions. Indeed,
since we use a particle filter, we can keep the same framework for any possible un-
derlying range and bearing hardware not fulfilling the Gaussian noise assumption.

Finally, the detection model incorporating the detection data from multiple de-
tecting robots can be formulated as the update equation shown in Algorithm 2.
Figure 3 illustrates the probability density function resulting from the detection
model, (a) for two detecting robots, and (b) for three detecting robots. We notice
that when detection data from multiple robots is integrated into the range and bear-
ing model, the detection precision increases.

Algorithm 2. Detection Model(Dn,t ,x
[i]
t ,w[i]

t )

1: w← w[i]
t ·∏dmn∈Dn,t

p(x[i]t |dmn)
2: return w

2.3 Reciprocal Sampling

In addition to using a robot detection model for updating the belief representation
Bel(xn,t), our approach relies on a reciprocal sampling method. Let us refer to the
iterative process described in Algorithm 1: instead of sampling a new particle pose

x[i]n,t from Bel(x[i]n,t−1) in line 11, the reciprocal MCL routine in line 13 samples from
the detection model p(xn|dmn), according to Eq. 6. Thus, samples are drawn at poses
which are probable given reciprocal robot observations, and which are independent
of the previous belief Bel(xn,t−1). By defining a reciprocal sampling proportion α ,
particles are sampled from the robot’s own belief with a probability 1−α , and with
a probability of α from the probability density function proposed by the detection
model. The advantages of this procedure are twofold. Firstly, as the reciprocal sam-
pling method exploits the information available in a whole robot team, it continu-
ously creates particles in areas of the pose space which are likely to be significant,
and thus it allows for very small particle set sizes (also shown in [26]). Secondly, by
sampling new particles from the detection model, the method introduces a variance
proportional to that of the relative detection sensors into the belief of the detected
robot (this proportion can be tuned by varying α), and effectively mitigates overcon-
fidence. Algorithm 3 shows the routine where line 4 represents the sampling step.
There are a multitude of methods which can be applied to sample from a given
distribution. In our particular case (multi-modal Gaussians), sampling from the
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detection model p(xn|dmn) is cheap. For more complex probability density func-
tions, sophisticated and efficient methods such as slice sampling [22] can be
employed.

The idea of extending standard MCL with additional sampling methods was first
shown in [31]. The resulting algorithm named Mixture MCL was shown to increase
the robustness of single-robot global localization. Our method differs from that one
in that it extends to collaborative multi-robot localization algorithms by sampling
from the detection model of one or several mobile robots (whose positions are ini-
tially unknown) as opposed to sampling from the detection model of a potentially
large set of static environmental features (whose positions have to be known or
mapped a priori). Indeed, for complex environments, the method in [31] must be
preceded by a fingerprinting process.

Algorithm 3. Reciprocal Sampling(Dn,t ,Xn,t)

1: if Dn,t = /0 then
2: x← Sampling(Xn,t)
3: else
4: x∼∏dmn∈Dn,t

p(x|dmn)
5: end if
6: return x

We illustrate the effect of reciprocal robot detections by performing a short exper-
iment involving two Khepera III robots, one of which is initially localized. Figure 4
shows the localization error for the second, initially unlocalized robot: In compari-
son to the standard sampling algorithm (Algorithm 1 with α = 0), we see that the
reciprocal sampling algorithm (Algorithm 1 with α > 0) reduces the localization
error by taking better advantage of information available on the localized team-
member. Additionally, in this case where the first robot is well localized during this
short time span, an increased reciprocal sampling proportion α is more efficient due
to the higher probability of drawing accurate reciprocal samples.

Figure 5 shows results obtained in an experiment of 3.5 minutes duration in-
volving ten robots (with one of the robots initially localized). The plots discuss the
sensitivity of our algorithm with respect to the number of particles M, as well as its
robustness with respect to communication failures. Figure 5(a) shows the localiza-
tion performance (averaged over time and robots) for a variable number of particles.
Larger particle sets contribute to an improved localization accuracy. Yet, an 8-fold
increase in the number of particles produces a reduction of only 25% of the local-
ization error. This result coincides with the conclusions made in [26], where it was
shown that by increasing the number of particles, the performance converges to that
of an ideal localization filter with an infinity of particles. Figure 5(b) shows the lo-
calization performance for variable message failure rates. Increasing failure rates
induce a graceful degradation of the localization performance. This result confirms
the algorithm’s robustness with respect to communication failures, which ultimately
reinforces the underlying asynchronous nature of our collaborative paradigm.
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Fig. 4 (a) Schematic illustration of two robots driving past each other. Three detections are
made. (b) Localization error for an initially unlocalized robot. It detects a localized robot
three times along its path. The standard and reciprocal sampling algorithms (employing 50
particles) are tested 1000 times on the data set. The times at which the observations are made
are marked by dotted lines (11.2s, 13.6s, 16s).
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Fig. 5 Localization error for 100 evaluations of the reciprocal sampling algorithm, employing
100 particles per robot and a reciprocal sampling rate α = 0.06. (a) Boxplots show the 25th,
50th and 75th percentile, with whiskers containing 85% of the data (for all robots and time).
The algorithm is tested employing {25, 50, 100, 200, 400} particles per robot. (b) Average
error over all robots. Detection data messages are corrupted by a failure rate of {0.1, 0.2,
0.4}. The errorbars show 95% confidence intervals.

3 Particle Clustering

The algorithm complexity of the detection model p(xn|dmn) (Eq. 6) leads to O(M2)
for Algorithm 1. This cost can be prohibitive for a large number of particles M (i.e.,
large with respect to available computational resources). Also, a multi-robot system
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may have communication constraints that make sending large particle sets infea-
sible. Hence, even though the method applied in this paper allows for very small
particle sets [26], we resort to a clustering method to further reduce the computa-
tional and communication overhead.

Let us consider a case where robot Rm detects robot Rn. For better clarity in the
following derivations, we will assume that |Nn,t | = 1. The goal of the clustering
method is to reduce the number of operations needed to compute the probability
density function p(xn|dmn). Thus, for every detection that it makes, robot Rm resorts
to a clustering method which summarizes its set Xm composed of M particles to
a set X̂m composed of K cluster abstractions (or centroids), reducing the overall
computational cost to O(MK) (this clustering routine is detailed later, in Algorithm
4 of Section 3.1). The resulting partition of the particle set is denoted Cm, with

|Cm|= K. An individual cluster c[k]m ∈ Cm is defined as the set of particles

c[k]m = {〈x[i]m ,w
[i]
m 〉 | f (〈x[i]m ,w

[i]
m 〉, ·) = k}, (7)

where f is a function mapping a particle to a cluster index. Also, we define c[k]m as

the data abstraction of cluster c[k]m , representing all particles in its set by the tuple

c[k]m = 〈x̂[k]m , ŵ[k]
m , μ̂μμ [k]

m , Σ̂ [k]
m 〉, (8)

where μ̂μμ [k]
m is a two dimensional vector and Σ̂ [k]

m is a covariance matrix. Thus,

X̂m = {c[k]m | c[k]m ∈ Cm} is the set of K cluster abstractions. Finally, we denote the
clustered detection data as d̂mn = 〈r̃mn,t , θ̃mn,t , X̂m〉, which is sent in place of the un-
clustered detection data dmn. Formally, given the notation introduced above, finding
an optimal particle clustering is equivalent to solving the following optimization
problem

min
d̂mn

D(p(xn|dmn) || p̂(xn|d̂mn)), (9)

where p̂ is an approximated detection model, and D a distance measure between
two probability density functions. Jain et al. [11] point out that in a typical cluster-
ing task, the actual grouping (or clustering) and cluster data abstraction (or cluster
representation) are separate components of the task and are commonly treated se-
quentially. Hence, we deal with our problem by dividing it into the two following
sub-problems: (i) we consider the set of particles Xm and find an optimal way to

create a partition Cm, and (ii) we consider an arbitrary cluster c[k]m in Cm and find

an optimal way to determine its cluster abstraction c[k]m . For a given set Xm, these
two steps together ultimately lead to a set of cluster abstractions X̂m, which, instead
of Xm, is included into the detection data tuple d̂mn for every new detection made.
The following paragraphs detail our low-cost clustering approach that aims to meet
these specifications.
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Fig. 6 The detection model (here with range and bearing noise σr = 0.15 and σθ = 0.15) is
projected on the detected robot (in white). Final cluster partitions are superimposed on the
particles of the detecting robot. From left to right, top to bottom, the number of clusters K
employed by the clustering algorithm is: 100, 32, 8, 4, 2, 1, for a total number of particles
M = 100.

Algorithm 4. Cluster(Xm,t ,K)

1: X̂m← /0
2: c[1]m ← Xm

3: Cm← c[1]m

4: for k = 1 to K−1 do
5: kmax,dim← find highest variance cluster(Cm)

6: c[kmax]
m ,c[k+1]

m ← split cluster(c[kmax]
m ,dim)

7: Cm← Cm +c[k+1]
m

8: end for
9: for k = 1 to K do

10: c[k]m ← assign data abstraction(c[k]m )

11: X̂m← X̂m +c[k]m

12: end for
13: return X̂m

3.1 Clustering Algorithm

The optimal, combinatorial solution to the clustering problem of Equation 9 requires
the evaluation of a very large number of partitions (the number of ways to partition
a set of M data points into K non-empty clusters is given by Stirling number of the
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second kind). Even though efficient approaches have been proposed [14], combina-
torial solutions still remain prohibitively expensive. Given the usefulness of cluster-
ing in a large range of disciplines, many non-combinatorial clustering approaches
have been proposed [11]. Yet, since our goal is to reduce the final complexity of
our algorithm, the complexity of the actual clustering algorithm must be at most
equal to O(MK). One of the most commonly used low-cost clustering methods is
the k-means algorithm [20]. It starts off with a random initial cluster assignment
and iteratively reassigns clusters until a convergence criterion is met or a maximum
number of iterations L is attained. Although the algorithm has a low time com-
plexity O(MKL), its main disadvantage is that it is sensitive to the initial cluster
assignment. The variant ISODATA algorithm [3] is also an iterative clustering algo-
rithm with a time complexity of O(MKL), with the additional capability to split and
merge clusters according to predefined threshold values. It is therefore more flexible
than the k-means and able to find the optimal partition, provided that the user is able
to define correct threshold values. Non-iterative, incremental clustering algorithms
have the advantage that they are even less time consuming than iterative algorithms.
The leader algorithm [9] is the simplest of that kind. Data points are incrementally
assigned to existing clusters based on a distance metric, with new clusters being
created if all distance measures exceed a predefined criterion. Yet, given the algo-
rithms incremental nature, the final clustering result is dependent on the order of the
assignments made.

We take inspiration from the methods described above to develop a non-iterative,
order-independent, non-parametric approach that produces a predefined number of
K clusters. Our solution is inspired by the construction of multidimensional binary
trees [4], and consists of a 2-dimensional sorting algorithm which repetitively sep-
arates the particle set along the mean of the dimension producing the highest vari-
ance, until the predefined maximum number of clusters K is attained. We note that
splitting along the median instead of the mean incurs a higher complexity. A de-
scription of this algorithm is shown in Algorithm 4. The function in line 5 has a

complexity O(M), the function in line 6 has a complexity O(|c[kmax]
m |), and function

in line 10 has a complexity O(|c[k]m |). Hence, the total algorithm cost is O(MK).
Figure 6 shows examples of final cluster partitions for six different total numbers
of clusters, performed on an identical set of 100 particles. We note that, even for
maximal clustering (K = 1), the detection model is well approximated.

3.2 Cluster Abstraction

For an arbitrary cluster c[k]m , we have the non-summarized detection data d[k]
mn =

〈r̃mn,t , θ̃mn,t ,c
[k]
m 〉. The problem of finding an optimal cluster abstraction c[k]m can, thus,

be formalized as

minDKL(p||p̂)=
∞∫

−∞

p(xn|d̂[k]
mn) log

p(xn|d̂[k]
mn)

p̂(xn|d̂[k]
mn)

dxn (10)
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where DKL is the Kullback-Leibler divergence, and d̂[k]
mn = 〈r̃mn,t , θ̃mn,t ,c

[k]
m 〉 is the

summarized detection data. In [28], we showed the following. Given a point x̂[k]m =

[x̂[k]m , ŷ[k]m , φ̂ [k]
m ]T, and the probability density function

p̂(xn|d̂[k]
mn) = Φ

(
Tp

e (x̂
[k]
m ,xn); μ̂μμ [k]

m , Σ̂ [k]
m

)
, (11)

the Kullback-Leibler divergence between p and p̂ is minimal if

μ̂μμ [k]
m =

1

|c[k]m |
∑

x[i]m∈c
[k]
m

v[k,i]m , (12)

Σ̂ [k]
m =

1

|c[k]m |− 1
∑

x[i]m∈c
[k]
m

(
v[k,i]m − μ̂μμ [k]

m

)(
v[k,i]m − μ̂μμ [k]

m

)T

(13)

are the mean and covariance of v[k,i]m = Tp
e (x̂

[k]
m , x̌[i]m ), with

x̌[i]m = x[i]m + rmn cos(θmn +φ [i]
m ) (14)

y̌[i]m = y[i]m + rmn sin(θmn +φ [i]
m ). (15)

We note that the above equations do not take into account the uncertainty of the
range and bearing observations. Thus, we propose a variant detection model p̂ (cf.
Equation 6) that explicitly takes into account noise. We have

p̂(xn|d̂mn) = η ·∑
c
[k]
m ∈X̂m

Φ
(

Tp
e (x̂

[k]
m ,xn); μ̂μμ [k]

m , Σ̂ [k]
m +Σ

)
· ŵ[k]

m (16)

where μ̂μμ [k]
m and Σ̂ [k]

m +Σ approximate the true mean and covariance, respectively,
in the presence of noise (we remind the reader that Σ = diag([σ2

r ,σ2
θ ])). Indeed,

finding a closed form solution for the true values is intractable. However, if the set

of particles c[k]m is densely populated, our approximation is very good. Moreover,

if the particle positions coincide, and if for a given cluster c[k]m the point x̂[k]m is its
center of mass, the solution is optimal. Hence, we complete the data abstraction

c[k]m = 〈x̂[k]m , ŵ[k]
m , μ̂μμ [k]

m , Σ̂ [k]
m 〉 (cf. Equation 8) with x̂[k]m as the weighted center of mass,

and ŵ[k]
m the cumulative weight

x̂[k]m =
1

ŵ[k]
m

· ∑
〈x[i]m ,w[i]

m 〉∈c[k]m

w[i]
m · [x[i]m ,y

[i]
m ,φ

[i]
m ]T (17)

ŵ[k]
m = ∑

〈x[i]m ,w
[i]
m 〉∈c

[k]
m

w[i]
m . (18)
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Fig. 7 (a) The Kullback-Leibler divergence between the full and approximated detection
models, as a function of the number of clusters employed by the clustering method. (b) Av-
erage localization error over 100 evaluations. The localization algorithm is tested, employ-
ing the clustering method using {1,4,8,16,32} clusters. The errorbars show 95% confidence
intervals.

(a) t = 0 (b) t = 18s (c) t = 36s (d) t = 54s

(e) t = 72s (f) t = 90s (g) t = 108s (h) t = 126s

Fig. 8 The figure shows eight snapshots with 18s intervals of an experimental run on the team
of ten Khepera III robots. Each robot employed 100 particles with a reciprocal proportion
α = 0.06, and used the clustering routine with K = 1. The black lines show the trajectories
completed in the time intervals between snapshots, with the filled black dots representing the
robot positions at the end of the previous snapshots. The red robot was initially localized.

Finally, we note that the constraints given by our approximated detection model p̂
motivate the choice of a clustering algorithm which clusters densely located parti-
cles into common clusters (a condition which is satisfied by Algorithm 4).
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Figure 7(a) shows the Kullback-Leibler divergence between the full and the ap-
proximated detection models p and p̂, calculated from a data set gathered by ten
robots. The more clusters we employ in the clustering method, the smaller the diver-
gence to the true probability density function. This shows that our clustering method
produces a valid representation of the original probability density functions. Figure
7(b) shows the localization performance when employing the clustering method for
a variable number of clusters K. We note that the difference of performance between
maximal clustering (K = 1) and modest clustering (K = 32) is very small. Finally,
to illustrate the localization process, Figure 8 shows eight snapshots based on real
data from an experiment performed over an interval of 126s during which one robot
(in red) is initially localized. Each robot employed 100 particles with a recipro-
cal proportion α = 0.06, and used the clustering routine with maximal clustering
(K = 1). This experiment concludes the validation of our approach by showing how
ten robots are able to converge to correct position estimates in a nevertheless simple,
but effective demonstration scenario.

4 Conclusion

In this chapter, we presented a fully scalable, probabilistic, multi-robot localiza-
tion algorithm based on the Monte Carlo method. Its maximal overall complexity is
O(|N |MK), where |N | is the number of neighboring robots (at a given time, for a
given robot in the system), M the number of particles, and K an adjustable number of
clusters produced by the clustering algorithm. This clustering method has shown to
produce increasingly accurate probability density function representations for large
K, and when employed in practice, has shown to perform well even for very small
K. Furthermore, given the asynchronous paradigm of our collaboration strategy, the
algorithm’s update rate is much higher than the inter-robot message communication
rate. Thus, the number of detected neighbors |N | is in practice no higher than 1,
and the complete routine complexity is reduced to O(MK). Thus, the algorithm is
fully scalable with respect to the number of robots in the system. In addition, the
algorithm poses no communication constraints and shows a graceful performance
degradation in case of message failures. Our approach was experimentally validated
on a team of ten real robots.

Finally, we note that a continuation of this work should consider the following
aspects in particular. We evaluated our approach on a baseline experimental setup,
where the belief of a robot’s position is well represented by a single particle cluster.
Hence, more complex scenarios, including obstacles and multi-modal sensor mod-
els, may exhibit a significant spread of performance when clustering. In such cases,
a trade-off between the number of clusters K and accuracy must be determined.
Also, in severely multi-modal distributions, the construction of the cluster centroid
must be revisited. In the same line of thought, more work needs to be done to ex-
plore arbitrarily distributed, non-Gaussian detection models as an extension to our
generalizable framework.
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