
M*: A Complete Multirobot Path Planning
Algorithm with Optimality Bounds

Glenn Wagner and Howie Choset

Abstract. Multirobot path planning is difficult because the full configuration space
of the system grows exponentially with the number of robots. Planning in the joint
configuration space of a set of robots is only necessary if they are strongly coupled,
which is often not true if the robots are well separated in the workspace. Therefore,
we initially plan for each robot separately, and only couple sets of robots after they
have been found to interact, thus minimizing the dimensionality of the search space.
We present a general strategy called subdimensional expansion, which dynamically
generates low dimensional search spaces embedded in the full configuration space.
We also present an implementation of subdimensional expansion for robot config-
uration spaces that can be represented as a graph, called M*, and show that M* is
complete and finds minimal cost paths.

1 Introduction

Multirobot systems are attractive for surveillance, search and rescue, and warehouse
automation applications. Unfortunately, the flexibility and redundancy that make
multirobot systems appealing also make assigning robots to tasks and planning col-
lision free paths to perform those tasks difficult. In this work, we describe a novel
method, called subdimensional expansion, for efficiently generating collision free
paths for multiple robots [17]. Subdimensional expansion initially assumes that a
path can be found for each robot to the goal in the robots’ individual configuration

Glenn Wagner
The Robotics Institute, Carnegie Mellon University, Newell Simon Hall 4221,
5000 Forbes Ave, Pittsburgh, PA 15213
e-mail: gswagner@andrew.cmu.edu

Howie Choset
The Robotics Institute, Carnegie Mellon University, Newell Simon Hall 3205,
5000 Forbes Ave, Pittsburgh, PA 15213
e-mail: choset@cs.cmu.edu

D. Milutinović & J. Rosen (Eds.): Redundancy in Robot Manipulators, LNEE 57, pp. 167–181.
DOI: 10.1007/978-3-642-33971-4 10 c© Springer-Verlag Berlin Heidelberg 2013

gswagner@andrew.cmu.edu
choset@cs.cmu.edu

168 G. Wagner and H. Choset

Fig. 1 A conceptual vi-
sualization of a variable
dimensionality search space
for five robots (a). Initially
each robot is constrained
to its individually optimal
path, represented by a single
line, but when robots 1 and 2
collide (b), the local dimen-
sionality of the search space
must be increased, as rep-
resented by a square. When
three robots collide while
following their individually
optimal paths (c), the local
dimensionality of the search
space must be increased
further, represented by the
cube, to include all local
paths of the three robots.

(a)

(b) (c)

space, without coordinating with other robots. When the paths of multiple robots
intersect, the joint configuration space of those robots is locally constructed and
planning occurs in this joint space. Once coordination is no longer necessary, plan-
ning reverts to the low dimensional individual spaces until the goal is reached or
another collision is found (Fig 1).

2 Prior Work

Multirobot path planning algorithms can be divided into two categories: coupled and
decoupled [11]. A coupled algorithm seeks to find a path in the full configuration
space of a system [1, 2, 6], which grows exponentially with the number of robots.
As a result, coupled planners may be guaranteed to find an optimal path, but are
computationally infeasible for systems of many robots.

On the other hand, decoupled algorithms search one or more low dimensional
search spaces, which represent a portion of the full configuration space [5,8,12,13,
15]. Searching a lower dimensional representation reduces the computational cost
of finding a path, but the representation may not capture some or all of the solutions
to the planning problem. As a result, decoupled algorithms generally produce results
more quickly, but the quality or existence of the solution is not guaranteed.

M*: A Complete Multirobot Path Planning Algorithm with Optimality Bounds 169

Ideally, a multirobot path planner would combine the scalability of decoupled
approaches with the completeness and optimality guarantees of a coupled approach.
Some prior work seeks to inherit the benefits of both approaches by dynamically
fitting the degree of coupling to the specific problem to be solved. Krishna et al.
developed an approach for decentralized dynamic coupling of robots for velocity
planning [10]. In their algorithm, robots first try to resolve a potential collision by
independently altering their velocity. If this does not succeed, the robots involved in
the collision cooperate to find a safe velocity schedule. If this also fails, they recruit
uninvolved robots to alter their velocities to allow for a solution to be found. This
approach will never change the spatial path the robots follow, and thus is neither
complete nor optimal.

Clark et al. introduced dynamic networks, which explicitly search configuration
spaces of varying sizes [4]. Joint plans are computed for groups of robots capable of
mutual communication. Paths are re-planned whenever a new robot joins the group.
This approach will lead to unnecessary coupling, as not all robots that can commu-
nicate need to cooperate to find a safe path, and only considers local interactions.

Van den Berg et al. [16] developed a planning time algorithm to find a coupling
strategy that minimizes the size of the largest set of coupled robots needed to guar-
antee that a solution will be found. The robots are constrained to move sequentially.
Cycles in these constraints can be used to find sets of robots for which coupled plan-
ning is necessary. This approach is non-ideal due to the restrictions it places on robot
motion, which results in non-optimal paths, and the global nature of the coupling it
performs.

There has also been work in the machine learning community to determine when
coupling multiple robots is necessary. Kok et al. [9] presented an approach which
performs Q-learning for robots individually, but stores statistics for the reward of the
joint actions that are explored. If these statistics indicate that coordinating actions at
a specific space is beneficial, then the algorithm starts learning coordinated actions
at that state. This approach has the benefit of being able to handle tasks besides
basic path planning, such as capturing targets that required coordinated action by
multiple pursers. Melo and Veloso [14] developed a Q-learning algorithm that adds
a ‘coordinate’ action to the set of actions available to each robot, which uses the state
of the nearest neighboring robot to help choose the action to perform. Coordination
between robots only occurs when a robot learns to take the coordinate action.

3 Problem Statement

The objective of subdimensional expansion is to find an optimal collision free path
for a set of n robots, ri, i∈ I = {1, . . . ,n}, in a common workspace W . We denote the
start configuration of each robot in its individual configuration space as qi

s ∈Qi. The
start configuration of all robots can be described as a point in the full configuration
space qs ∈ Q = ∏n

i=1 Qi. The goal configuration for each robot is denoted qi
f ∈ Qi,

while the joint goal configuration is denoted q f ∈Q. The optimal collision free path
from qs to q f is denoted π∗(qs,q f).

170 G. Wagner and H. Choset

The cost f (π) of the path π in the full configuration space is assumed to be the
sum of the costs f i(π i)≥ 0 of the paths π i of the individual robots, i.e.,

f (π(qk,ql)) = ∑
i∈I

f i(π i(qi
k,q

i
l)) π i(qi

k,q
i
l)⊂ Qi, (1)

where π(qi,q j) represents a path from qi to q j.
A collision function is defined to represent collisions between robots ri and r j,

Ψ i j(q) =

{ {i, j}, A(qi)∩A(q j) �= /0
/0, otherwise

. (2)

where A(qi) is the subset of W occupied by ri when located at qi ∈ Qi. We define
a global collision function Ψ : Q→ I, which is the union of all pairwise collision
functions.

Ψ (q) =
⋃

i�= j∈I

Ψ i j(q). (3)

The collision function is “overloaded” to apply to paths, Ψ (π(.)) =
⋃

q∈π(.)Ψ (q).

4 Subdimensional Expansion

Multirobot systems which obey (1) and (3) have a natural decoupling between indi-
vidual robots. (1) guarantees that no joint path can be cheaper than the path found
by optimizing for each robot separately, which is thus a good starting point for mul-
tirobot path planning. The individual paths are combined to form a joint path for the
entire system. When robot-robot collisions are found along the joint path, planning
is locally coupled for the involved robots while uninvolved robots proceed indepen-
dently, which is sufficient to guarantee that a path will be found due to the form
of (3). Subdimensional expansion is a method for encoding the dynamic coupling
into the geometry of the search space, thereby allowing conventional algorithms to
search the necessary portions of the joint configuration space.

Q# is the variably dimensional search space embedded in Q constructed by subdi-
mensional expansion. Note that Q# is dynamically constructed as a planner searches
Q#. The simultaneous construction and search of Q# continues until a path is found
or determined to be impossible. The construction of Q# is guided by information
about robot-robot collisions found by the planner. Thus, the search space is tailored
to the specific problem at hand, allowing the search of a low dimensional space
while also guaranteeing the optimal path will be found.

4.1 Approach

Each robot starts with its own individually optimal policy φ i : Qi → T Qi which
maps the position of a robot to its motion. φ i is chosen such that the path induced

M*: A Complete Multirobot Path Planning Algorithm with Optimality Bounds 171

Fig. 2 Representation of
a search tree and resultant
collision sets. Ovals rep-
resent configurations in Q.
Arrows represent searched
path from the higher to the
lower configuration. Gray
ovals correspond to states
with robot-robot collisions.
The set contained inside the
oval represents the collision
set. Since there is a searched
path from qk to qn, qo, and
qp, Ck contains all robots
which collide at the afore-
mentioned state. Since the
planner has not found a path
from qq to any state with a
collision, Cq is empty.

by obeying φ i from any point qi
k ∈ Qi is an optimal path to qi

f ∈ Qi, and is denoted

πφ i
(qi

k,q
i
f). The joint path generated by all robots obeying their individually optimal

policies is denoted πφ (qk,q f) = ∏i∈I πφ i
(qi

k,q
i
f).

At each instant during the search, the planner initially takes the optimistic view
that the individually optimal path from qk will be collision free, without specific
information to the contrary. The planner maintains a collision set Ck for each qk ∈Q,
which is the set of robots for which the optimistic view at qk has been invalidated.
Let π(qk) be the set of paths the planner has searched that pass through qk. Then Ck

is defined as
Ck =

⋃
π∈π(qk)

Ψ (π) (4)

The collision set Ck thus consists of all robots ri for which the planner has found a
path from qk to a collision containing ri (Figure 2).

Initially, Q# is πφ (qs,q f), with each robot restricted to following its individually

optimal path. When the planner finds a collision, it expands Q# by locally allowing
the robots involved in the collision to deviate from their individually optimal poli-
cies. Naturally, the set of robots not in the collision set, C̄ = I \C remain restricted
to their individually optimal paths, in line with the optimistic belief that this portion
of the path is collision free. These constraints are encoded in the geometry of the
search space Q# by proper choice of the tangent space TqkQ# of Q# at qk.

TqkQ# = tC̄k (qk)× ∏
j∈Ck

T
q j

k
Q j (5)

172 G. Wagner and H. Choset

where tC̄k (qk) ∈ T
q

C̄k
k

QC̄k is tangent to the joint individually optimal path for the

robots in C̄k. Q# is then grown differentially along Tqk Q# from qk, expanding
into a higher dimensional space when the collision set is large, or along the one-
dimensional individual optimal path when the collision set is empty.

4.2 M*

M* is an implementation of subdimensional expansion for cases where the configu-
ration space of each robot ri can be represented by a directed graph Gi = {V i,Ei}. V i

is the set of vertices in Gi that represent positions in Qi, while Ei is the set of directed
edges ei

kl which represent valid transitions connecting vi
k ∈ V i to vi

l ∈ V i. We make
no assumption about the representation used, so Gi may be an approximate cellular
decomposition, a generalized Voronoi diagram, or other graph representation of the
configuration space. The full configuration space of the system is represented by
the graph G = {V,E}= ∏i∈I Gi. The Cartesian product of two graphs, Gi×G j, has
the vertex set V i×V j, and the edge ekl is in the edge set if ei

kl ∈ Ei and e j
kl ∈ E j.

The vertex in G which represents the start configuration of the system is denoted vs,
while the goal configuration is denoted v f .

Representing the configuration space as a graph converts the path planning prob-
lem into a graph search problem. This allows us to base M* on A*, a complete
and optimal graph search algorithm [7]. Recall that A* maintains an open list of
vertices vk to explore. These are sorted based on the sum of the cost of the cheap-
est path π(vs,vk) and a heuristic cost, which is a lower bound on the cost of any
path π(vk,v f). At each iteration, the most promising vertex, vk, from the open list is
expanded. For each neighbor vl of vk, A* checks whether reaching vl via vk is the
cheapest path found thus far to vl . If so, vl is added to the open list. This continues
until v f is expanded, indicating that an optimal path to the goal has been found.

M* is similar to A*, however the expansion step is a little different: M* only con-
siders the limited neighbors of vk, a subset of the neighbors of vk in G, determined
by Ck, providing the benefit of only exploring the “necessary” subspace of the con-
figuration space. The set of limited neighbors V̂k is the set of vertices vl which can be
reached from vk while moving each robot ri ∈ C̄k according to its individually opti-
mal policy φ i(vi

k), where vi
k is the position of ri when the system is at vk. Conversely,

the robots r j ∈Ck are allowed to move to any neighbor of v j
k in Q j

V̂k =

{
vl |∀i ∈ I, vi

l s.t.
{ ei

kl ∈ Ei, i ∈Ck

vi
l = φ i(vi

k), i /∈Ck

}
(6)

If Ψ (vk) �= /0, we set V̂k = /0, to prevent M* from considering paths which pass
through collisions.

Information about collisions must be passed back along all searched paths that
reach them. To this end, the planner maintains a backpropagation set for each vertex
vk, which is the set of all vertices vl that were expanded while vk was in V̂l. The

M*: A Complete Multirobot Path Planning Algorithm with Optimality Bounds 173

Algorithm 1. backprop(vk,Cl ,open):
vk- vertex in the backpropagation set of vl

Cl- the collision set of vl

open- the open list for M*

if Cl �⊂Ck then
Ck←Ck

⋃
Cl

if ¬(vk ∈ open) then
open.append(vk) {If the collision set changed, we will need to re-expand vk}

for vm ∈ vk.back set do
{Iterate over the backpropagation set}
backprop(vm,Ck,open)

backpropagation set is thus the set of neighbors of vk through which the planner has
found a path to vk. The planner propagates information about a collision at vk by
adding Ck =Ψ (vk) to Cl for each vl in the backpropagation set of vk. The planner
then adds Cl to the collision set of each vertex in the backpropagation set of vl , and
repeats this process until a collision set is encountered which contains Ck. Since V̂l

is dependent on Cl , changing Cl adds new paths through vl to the search space. As a
result, vl must be added back to the open list so that these new paths can be searched
(See Algorithm 1).

Finally, since f (πφ (vk,v f)) is a lower bound on the cost of all paths π(vk,v f),
we use it as the heuristic function for M*. Denote the heuristic function

h(vk) = f (πφ (vk,v f))≤ f (π∗(vk,v f)). (7)

M* is described in algorithm 2.
We developed two variants of M*, inflated M* and recursive M* (rM*). In-

flated M* multiplies the heuristic by inflation factor ε > 1 to find a suboptimal
path quickly. rM* is a hierarchical planner that breaks the path planning problem
into multiple sub-problems, by separating the planning for non-interacting groups
of mutually interfering robots. A sub-planner is recursively generated for each such
group to find a path for the colliding robots to the goal. Sub-planners continue to
be generated for smaller groups of colliding robots until the collision involves every
robot handled by the sub-planner.

4.3 Graph-Centric Description

The description of M* in 4.2 provides a local description of the search process,
which is useful for implementation. However, the local description makes proving
the global properties of M* difficult. We now present an alternative description of
M* which better captures the global properties, but is not appropriate for implemen-
tation.

When examining algorithm 2 we see that M* differs from A* in the existence
of the backprop function, and the neighbors added to the open list during the

174 G. Wagner and H. Choset

Algorithm 2. Pseudocode for M*

for all vk ∈V do
vk.cost←MAXCOST
Ck← /0

vs.cost← 0
vs.back ptr = /0
open = {vs}
while True do

open.sort() {Sort in ascending order by v.cost + h(v)}
vk = open.pop(0)
if vk = vs then

{We have found a solution}
return back track(vk) {Reconstruct the optimal path by following vk.back ptr}

if Ψ (vk) �= /0 then
CONTINUE {Skip vertices in collision}

for vl ∈ V̂k do
vl .back set.append(vk) {Add vk to the back propagation list}
Cl ←Cl

⋃
Ψ (vl)

{Update collision sets, and add vertices whose collision set changed back to open}
backprop(vk,Cl ,open)
if vk.cost+ f (ekl)< vl .cost then

{We have found a cheaper path to vl}
vl .cost← vk.cost+ f (ekl)
vl .back ptr← vk {Keep track of the best way to get here}

return No path exists

expansion of a vertex. The backprop function only has a non-trivial result when
a new path to one or more collisions is found. Therefore, M* behaves exactly like
A* running on a graph G# where the neighbors of vk in G# are the vertices in V̂k,
until a new robot-robot collision is found. By thinking of M* as alternating between
running A* on G# and updating G# based on partial results, we can exploit the opti-
mality and completeness of A* to prove similar properties of M*.

G# consists of three subgraphs: G′, Ĝ, and Gφ . G′ is the portion of G# which has
been searched by M*, Ĝ represents the limited neighbors of the vertices in G′ and
Gφ connects the vertices in Ĝ to v f by obeying φ .

G′ = {V ′,E ′} represents the portion of G which has been searched by M*. V ′ is
the set of vertices which have been added to the open list. E ′ consists of the directed
edges ekl connecting each vertex vk which has been expanded by M* to the vertices
vl ∈ V̂k. Since G′ represents all paths which have been explored by the planner, we
can use G′ to define the collision set

Ck =

{
Ψ (vk)

⋃
vl s.t. ∃π(vk,vl)⊂G′Ψ (vl) vk ∈G′

/0 vk /∈G′ (8)

M*: A Complete Multirobot Path Planning Algorithm with Optimality Bounds 175

If vk /∈G′, then M* has never visited vk. Thus in accordance with the optimistic view
that vk and πφ (vk,v f) are collision free, Ck is set to the empty set until vk is added
to the open list.

Ĝk represents the portion of the graph which will be explored when vk is ex-
panded, and is the graph formed from vk, its limited neighbors V̂k, and the edges
connecting vk to the vertices in V̂k. Let Ĝ =

⋃
vk∈G′ Ĝk.

Since Ck = /0 for all vk which are not in G′, we know that the search from vk ∈ Ĝ
will be constrained to πφ (vk,v f) as long as this path lies entirely outside of G′. Let

the graph Gφ
k represent the portion of πφ (vk,v f) from vk to the first vertex along the

path in G′, or v f if πφ (vk,v f) never reenters G′.
G# can now be defined as

G# = G′
⋃

vk∈G′

⎛
⎝Ĝk

⋃
vl∈Ĝk\G′

Gφ
l

⎞
⎠ (9)

As a result of the definitions of G′, Ĝ and Gφ , vertices and edges shift from Gφ to
Ĝ, and from Ĝ to G′ as M* searches G#. See Figure 3 for an illustration of how
the subgraphs change over time. However, G# as a whole only changes when the
collision set of a vertex in G# changes.

4.4 Completeness and Cost-Optimality

A path planning algorithm is complete if it is guaranteed to either find a path or
to determine that no path exists in finite time [3]. M* will be shown to be both
complete and will find a minimal cost path. As demonstrated in 4.3, M* can be
treated as alternating between running A* search on G# and modifying G# based on
the partial search results. Since A* is complete and cost optimal [7], M* is complete
and cost optimal if G# will contain π∗(vs,v f) after a finite number of modifications
or, if π∗(vs,v f) does not exist, G# will be modified at most a finite number of times.

We start by assuming that no solution exists, and show that M* will terminate in
finite time without returning a path. G# is only modified when the collision set of at
least one vertex in G# is modified. Each modification adds one or more robot to the
collision set, thus each collision set can be modified at most n− 1 times, as the first
modification must add at least two robots. Therefore, G# can be modified at most
(n− 1) ∗ |G| times. A* will expand each vertex in a graph at most once [7]. Thus,
M* will always terminate in finite time.

M* will never return a path containing a robot-robot collision. A vertex vk at
which a robot-robot collision takes place can only have outneighbors if vk /∈ G′.
However, before a path through vk can be returned, vk must be added to G′, which
will trigger a modification of G# that removes the outneighbors of vk. Therefore, M*
will never return a path containing a robot-robot collision. Thus M* will correctly
determine that no valid path exists in finite time.

176 G. Wagner and H. Choset

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3 The above figure shows how G′ and G# evolve in the configuration space of two one-
dimensional robots. Vertices are represented as circles, with arrows representing directed
edges. G′ is denoted by solid lines, while G#\G′ is shown as dashed lines. G\G# is repre-
sented by dotted lines, with edges suppressed for clarity. A vertex is given a bold outline
when it is expanded, while filled circles represent vertices with known robot-robot collisions.
vs is in the upper left, while v f is in the bottom right. In (a), (b), and (c), the most promising
vertex in the open list is expanded, until a collision is found. Ĝ is updated to reflect the new
collision sets in (d). Gφ is then updated in (e). In (f) a vertex is re-expanded, having been
added back to the open list when its collision set was changed. (g), (h), and (i) see the most
promising vertices in the open list expanded, until vF is expanded, indicating that a path has
been found.

M*: A Complete Multirobot Path Planning Algorithm with Optimality Bounds 177

Next, assume that a path from vs to v f exists. We will show that M* will find
π∗(vs,v f) as long as one of two cases is always true. We will then prove that one of
these two cases must always hold. Assume that G# always contains either

Case 1: an optimal, collision free path, π∗(vs,v f), or
Case2: a path π(vs,vc) s.t. f (π(vs,vc))+h(vc)≤ f (π∗(vs,v f)), and ∃ vd ∈ π(vs,vc)
s.t. Ψ (vc) �⊂Cd

If case 1 holds, running A* on G# will find π∗(vs,v f), unless there exists a
cheaper path π̃(vs,v f) ⊂ G#. By the definition of π∗(.), there must be a ver-
tex vk ∈ π̃(vs,v f) s.t. Ψ (vk) �= /0, and by (7) f (π̃(vs,vk)) + h(vk) < f (π∗(vs,v f)).
vk /∈ G′, as otherwise it would have no outneighbors, which implies Ck = /0. As a
result, vk fulfills the roles of both vc and vd in the definition of case 2. Therefore M*
will find π∗(vs,v f) if case 1 holds, unless case 2 also holds.

If case 2 holds, then vc will be added to G′ before A* finds any path to v f that
costs more than f (π∗(vs,v f)) [7]. Adding vc to G′ will modify Cd , which will in
turn change G# to reflect the new V̂d and restart A* search. Therefore, M* will never
return a suboptimal path as long as case 2 holds.

For case 2 to hold, there must be at least one vertex vd such that Cd is a strict
subset of I. G# can be modified at most (n− 1) ∗ |G| times before all collision sets
are equal to I. Therefore, case 2 can only hold for a finite number of modifications
to G#. By hypothesis, either case 1 or case 2 holds, which implies that within finite
time only case 1 will be true. M* will thus find π∗(vs,v f) in finite time.

We will now show that case 1 or case 2 must always hold. We proceed by showing
that we can always find a path π ′(vk,v f), f (π(vk,v f)) ≤ f (π∗(vk,v f)) under the
restriction that the robots in C̄k obey their individually optimal policies.

First note that, by the form of (3), if π∗(vk,v f) exists, then for any subset of
robots, Ω ⊂ I, there exists an optimal, collision free path π∗Ω (vΩ

k ,vΩ
f), which may

not be the same as the paths taken by the robots in Ω in π∗(vk,v f). Therefore a path

π ′(vk,v f) = π∗Ck(vCk
k ,vCk

f)×πφ C̄k (vC̄k
k ,vC̄k

f) can be constructed which costs no more
than f (π∗(vk,v f)).

f (π ′(vk,v f)) = fCk (π∗Ck(vCk
k ,vCk

f))+ ∑
j∈C̄k

f j(πφ j
(v j

k,v
j
f)) (10)

= min
πCk (v

Ck
k ,v

Ck
f) s.t. Ψ (πCk (v

Ck
k ,v

Ck
f))= /0

fCk (πCk(vCk
k ,vCk

f))+min ∑
j∈C̄k

f j(π j(v j
k,v

j
f))

(11)

= min
π(vk,v f) s.t. Ψ (πCk (v

Ck
k ,v

Ck
f))= /0

f (π(vk,v f)) (12)

≤min
π(vk,v f) s.t Ψ (πCl (v

Cl
k ,v

Cl
f))= /0,Ck⊂Cl

f (π(vk,v f)) (13)

≤minπ(vk,v f) s.t.Ψ (π(vk,v f))= /0 f (π(vk,v f)) (14)

≤ f (π∗(vk,v f)) (15)

178 G. Wagner and H. Choset

The successor vl of vk along π ′(vk,v f) is in V̂k by (6). Furthermore, Cl ⊂Ck by (8),
so by (13) and (14)

f (π ′(vk,vl))+ f (π ′(vl ,v f))≤ f (π ′(vk,v f))≤ f (π∗(vk,v f)) (16)

Using the above two facts, a path π ′′(vs,v f) ∈G# can be constructed which satisfies
case 1 or case 2. Starting from vs, the successor of the m’th vertex vm ∈ π ′′(vs,v f) is
the successor of vm in π ′(vm,v f). Applying (16) backwards from the last vertex from
v f to vs guarantees that f (π ′′(vs,v f))≤ f (π ′I(vs,v f))≤ f (π∗(vs,v f)). If π ′′(vs,v f)=
π∗(vs,v f) then case 1 is satisfied. Otherwise, there is a vertex vk ∈ π ′′(vs,v f) such
that Ψ (vk) �= /0. By construction, Ψ (vk) �⊂Cl , where vl is the predecessor of vk. By
(7), f (π ′′(vs,vk))+ h(vk) ≤ f (π ′′(vs,v f)) ≤ f (π∗(vs,v f)), so case 2 is satisfied. It
has now been shown that case 1 or case 2 must always hold. Therefore M* will
find π∗(vs,v f), if it exists, in finite time. Since M* is guaranteed to find the optimal
collision free path, or to determine that no valid path exists in finite time, M* is
complete and optimal with respect to f (π(.)).

5 Results

We tested the path planning performance of M* and its variants with randomly
assigned goals. Our simulations were run on a Core i7 processor at 2.8 GHz with 12
Gb of RAM. All simulations are implemented in unoptimized Python. We chose a
square, four-connected grid with a density of 104 cells per robot as our workspace,
allowing the number of robots to vary without changing the level of congestion.
Each cell in the workspace has an independent 35% chance of being an obstacle.
Start and goal positions for each robot are chosen randomly, but such that a path
always exists from the start position of a robot to its goal position (Figure 4). Each
robot incurred a cost of one for each time step for which it was not at its goal. We
tested 100 random environments for a given number of robots, and each trial was
given at most five minutes to find a solution.

The time required to find solutions using A* shows the expected exponential
growth with the number of robots. M* and rM* show performance substantially su-
perior to A* ,which was unsuccessful for problems involving more than 6 robots.
rM* has roughly three times the success rate of M* for the non-inflated case at 10
robots. Using an inflated heuristic, rM* has a greater performance increase, with run
times of approximately one and a half orders of magnitude less than basic M* for
systems of 20 robots, and scaling to twice as many robots with reasonable success
rates (Figure 5). Most importantly, the time to solution plots for inflated rM* are
sublinear on a logarithmic axis. This indicates that for the environments we inves-
tigated, the average computational cost of rM* grows sub-exponentially with the
number of robots.

M*: A Complete Multirobot Path Planning Algorithm with Optimality Bounds 179

Fig. 4 A typical configura-
tion for a 40 robot test run.
Circles represent start posi-
tions of the robots, squares
represent obstacles, and
crosses represent goal po-
sitions. We tested 100 such
randomly generated envi-
ronments for each number
of robots.

Fig. 5 We plot the percent of trials in which each algorithm was able to find a solution within 5
minutes, and the 10’th, 50’th, and 90’th percentile of times required to find a solution for A*,
M*, and recursive M* with both non-inflated and inflated heuristics. The time to solution plots
flatten out when a sufficient number of trials are halted by the time limit. A* and inflated A* are
only simulated to 8 robots, because they always timed out for 7 or more robots. To allow A*,
M*, and rM* to be plotted over similar domains, we assumed that A* and inflated A* would
always time out for systems of 9 and 10 robots. Inflated M* and inflated rM* were able to solve
20 and 40 robot problems respectively, which is reflected in the domains of their plots.

180 G. Wagner and H. Choset

6 Conclusions

We present a general approach to multirobot path planning, called subdimensional
expansion, and an implementation for graph search, called M*. We demonstrate
that M* can scale to problems involving large numbers of robots, while maintaining
completeness and bounded suboptimality. These results illustrate the advantage of
tailoring the search space to the individual problem being solved.

One weakness of M* is that search will fail if a sufficient number of robots are
concentrated at a single choke point, as this will force M* to search an excessively
high dimensional space. One possible solution is to couple the path planning prob-
lem with the task assignment problem, and to avoid task assignments which require
passing through said choke points. Our preliminary results indicate that such cou-
pling can dramatically reduce the time required to find solutions, as well as reduce
the cost of the resultant path compared to the optimal path for a task assignment
found without considering robot-robot interactions.

Subdimensional expansion can be applied to path planning algorithms besides
A*. In general, subdimensional expansion can be applied to nearly any path plan-
ning algorithm that produces a search tree which can be used to define collision sets.
In particular, subdimensional expansion can be applied to RRTs and PRMs [18].

References

1. Ayanian, N., Kumar, V.: Decentralized feedback controllers for multi-agent teams in
environments with obstacles. In: Proceedings of IEEE International Conference on
Robotics and Automation, pp. 1936–1941 (May 2008)

2. Carpin, S., Pagello, E.: On parallel RRTs for multi-robot systems. In: Proceedings of 8th
Conference Italian Association for Artificial Intelligence, pp. 834–841. Citeseer (2002)

3. Choset, H.M.: Principles of robot motion: theory, algorithms, and implementation. The
MIT Press (2005)

4. Clark, C.M., Rock, S.M., Latombe, J.C.: Motion planning for multiple robot systems
using dynamic networks. In: Proceedings of IEEE International Conference on Robotics
and Automation, pp. 4222–4227 (2003)

5. Erdmann, M., Lozano-Perez, T.: On multiple moving objects. Algorithmica 2(1), 477–
521 (1987)

6. Ghrist, R.W., Koditschek, D.E.: Safe cooperative robot dynamics on graphs. SIAM Jour-
nal on Control and Optimization 40(5) (2002)

7. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2) (July
1968)

8. Kant, K., Zucker, S.W.: Toward efficient trajectory planning: The path-velocity decom-
position. The International Journal of Robotics Research 5(3), 72 (1986)

9. Kok, J.R., Hoen, P.J., Bakker, B., Vlassis, N.: Utile coordination: Learning interdepen-
dencies among cooperative agents. In: Proceedings of the IEEE Symposium on Compu-
tational Intelligence and Games (2005)

10. Krishna, K.M., Hexmoor, H., Chellappa, S.: Reactive navigation of multiple moving
agents by collaborative resolution of conflicts. Journal of Robotic Systems, 249–269
(2005)

M*: A Complete Multirobot Path Planning Algorithm with Optimality Bounds 181

11. LaValle, S.M.: Planning algorithms. Cambridge Univ. Pr. (2006)
12. Leroy, S., Laumond, J.-P., Siméon, T.: Multiple path coordination for mobile robots: A

geometric algorithm. In: Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, pp. 1118–1123. Morgan Kaufmann Publishers Inc., San Francisco
(1999)

13. Malcom, R.: Multi-robot path-planning with subgraphs. In: Australasian Conference on
Robotics and Automation (2006)

14. Melo, F.S., Veloso, M.: Learning of coordination: Exploiting sparse interactions in multi-
agent systems. In: Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems
(May 2009)

15. Saha, M., Isto, P.: Multi-robot motion planning by incremental coordination. In: Pro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
5960–5963 (October 2006)

16. Jur van den Berg, J., Snoeyink, M., Lin, D.: Manocha. Centralized path planning for
multiple robots: Optimal decoupling into sequential plans. In: Proceedings of Robotics:
Science and Systems (2009)

17. Wagner, G., Choset, H.: M*: A complete multirobot path planning algorithm with perfor-
mance bounds. In: Proceedings of IEEE International Conference on Intelligent Robots
and Systems 2011 (September 2011)

18. Wagner, G., Kang, M., Choset, H.: Probabilistic path planning for multiple robots with
subdimensional expansion. In: Proceedings of IEEE/RSJ International Conference on
Robotics and Automation (May 2012)

	M*: A Complete Multirobot Path Planning Algorithm with Optimality Bounds
	Introduction
	Prior Work
	Problem Statement
	Subdimensional Expansion
	Approach
	M*
	Graph-Centric Description
	Completeness and Cost-Optimality

	Results
	Conclusions
	References

