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Preface

Over the course of the 50-year history of robotics, we have witnessed the evolution
of robotic systems with an increasing trend in the number of degrees of freedom.
This trend is visible both in the design of a robot manipulator and in the shift of
focus from single- to multi-robot systems. Following the principles of evolution in
nature, one may infer that adding degrees of freedom to robot systems design is
beneficial. However, since nature did not select snake-like bodies for all creatures, it
is reasonable to expect the presence of a certain selection pressure on the number of
degrees of freedom. Thus, understanding costs and benefits of multiple degrees of
freedom, especially those that create redundancy, is a fundamental problem in the
field of robotics and the main motivation for this volume.

Multiple degrees of freedom and redundancy are characteristics of both modern
robot manipulators and multi-robot systems. While the reason for introducing addi-
tional degrees of freedom and redundancy may be application specific, the presence
of redundancy in these systems forms the basis for common research questions.
Inspired by this, we organized the workshop “Redundancy in Robot Manipulators
and Multi-Robot Systems” at the IEEE/RSJ International Conference on Intelligent
Robots and Systems - IROS 2011. This volume is mostly based on the works pre-
sented at the workshop and serves as its permanent record. The workshop was en-
visioned as a dialog between researchers from two separate, but obviously related
fields of robotics: one that deals with systems having multiple degrees of freedom,
including redundant robot manipulators (serial and parallel), and the other that deals
with multi-robot systems.

The volume consists of twelve chapters, each representing one of the two fields.
However, to keep the spirit of the dialog between the two fields alive, the chapters are
intentionally presented in a mixed order as follows: the first four chapters illustrate
benefits and necessary trade offs with respect to the number of degrees of freedom,
the number of robots and their heterogeneity; the next two chapters are on hyper
redundant robot systems and associated control problems, followed by four chapters
about redundant cable robots and the control of multi-robot systems; and the two
concluding chapters are about robotic exoskeleton systems.
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Performance of Serial Underactuated
Mechanisms: Number of Degrees of Freedom
and Actuators

Ravi Balasubramanian and Aaron M. Dollar

Abstract. While underactuated mechanisms have become popular in robot-hand
designs because of their passive adaptability, existing systems utilize only one ac-
tuator to produce motion in the multiple degrees of freedom in the serial chain of
each finger. In this paper, we explore how the performance of an underactuated se-
rial link chain changes as more actuators are added. The fundamental question of
what extra capability an additional actuator provides to an underactuated system
and how best to implement it has not yet been quantified in the literature. Using a
simple linear underactuated mechanism, we show that the performance of a single-
actuator system (measured as the average number of contacts made with the envi-
ronment) quickly plateaus as the number of degrees of freedom of the mechanism
is increased. Also, we show that as the number of actuators is increased, the sys-
tem’s passive adaptability improves as the mechanism implementation spreads the
actuators across the joints.

1 Introduction

There are two primary approaches in current robotic design to specifying how a
robot is actuated. The traditional approach has been to use an actuator for each
degree of freedom to produce a fully-actuated system. However, this approach of-
ten results in bulky designs requiring complex control algorithms and elaborate
sensing modalities for each control input. Recently, underactuated mechanisms that
have fewer actuators than degrees of freedom have become popular in robot hand
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research, since the underactuated mechanism’s unconstrained freedoms allow it to
adapt to environmental constraints without any sensing [4,7,8,10,13,14]. However,
most current underactuated hand designs use just one actuator to actuate the many
degrees of freedom in a robotic hand. This paper explores how the performance of
an underactuated serial link chain changes as more actuators are utilized. We also
explore how the routing mechanism used to transmit actuation to the degrees of
freedom influences the system’s adaptability.

A key performance goal of underactuated robotic hands is to produce power
grasps and passively make contact at multiple links, thereby providing the robot
the ability to apply forces on the object from multiple contact points and potentially
improving grasp stability. This is achieved by routing the force from the single ac-
tuator to two [8, 12], three [4–6, 11], and even eleven [10] degrees of freedom in a
finger through cable-driven mechanisms or linkage mechanisms (see Fig. 1). These
mechanisms permit the distal link to move even after the proximal link makes con-
tact with an object, a property commonly referred to as adaptability [2, 4, 8]. Note
that as these fingers are incorporated into a robot hand, these same adaptive mecha-
nisms are used to actuate multiple fingers in parallel as well to provide adaptability
between fingers [8, 9, 11]. However, this paper focuses only on the adaptability of a
serial underactuated chain.

The limited number of actuators and the uncertainty in object location and shape
can lead to undesirable situations in which not all links of the chain make con-
tact with the object. Specifically, a decreased number of contacts results in reduced
grasp strength and a reduced ability to resist disturbance forces. Furthermore, un-
constrained degrees of freedom (that is, links without contact constraints) permit
the hand to reconfigure in response to an external disturbance or internal actuation,
which may result in a weakened grasp [1].

In this paper, we explore two specific problems relating to underactuated mech-
anisms: 1) Given a single-actuator system, how does the system’s adaptability vary
as the number of degrees of freedom increases? 2) Given a n degree-of-freedom sys-
tem, how does the performance vary with an increasing number of actuators, and
how should those actuators be best routed to the degrees of freedom? Motivated by the
robotic grasping problem, for simplicity we will use the number of contacts the system
makes with the object on completing the grasping process as the primary performance
metric (even though other metrics such as force application capability are important
as well). Since the grasping problem in unstructured environments has tremendous
uncertainty, we use a probabilistic analysis to quantify system performance.

The majority of underactuated mechanisms described in the robot hand literature
utilize revolute degrees of freedom. However, the non-linearity of their kinematics
and the variety of contact modes (such as sliding and rolling contact) reduce the gen-
erality of the analysis and substantially increase the already large parameter space,
which includes joint stiffnesses, transmission mechanisms, and object shapes. To
minimize the influence of these factors, our analysis will use a linear underactu-
ated mechanism that we first introduced in [2] (see Fig. 2). The simple geometry of
the linear underactuated mechanism’s degrees of freedom and contact modes helps
retain focus on how the number of actuators influences system performance.
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Fig. 1 A schematic of the common underactuated mechanisms used in robot hand designs:
a) a cable-driven mechanism (note that the proximal joint is a free-spinning pulley) and b) a
linkage-driven mechanism

2 The Linear Underactuated Mechanism

The linear underactuated mechanism studied in this paper operates in a single di-
mension. Fig. 2 shows a n = 3 degree of freedom system, where each degree of
freedom is a compliant prismatic joint with unit joint travel. For this system to be
underactuated, the n = 3 degrees of freedom can be actuated by up to n− 1 actua-
tors (that is, the number of actuators m ∈ {1,2}). Each actuator has some bounded
force capability, and the force from the actuator(s) can be transmitted to the de-
grees of freedom through a variety of transmission mechanisms, which will be ex-
plored in section 2.1. Note that the force provided by the single actuator to the distal
joint in the mechanism in Fig. 2a causes the proximal and middle joints also to
compress in the absence of any contact since the mechanism is linear. Thus, the net
displacement of the distal link in free space is three times the displacement of the
proximal link.

Each degree of freedom has a “hook” Hi, i = 1, . . . ,n, through which it can make
contact with the environment, which also has hooks Wi, i = 1, . . . ,n. We assume that
there exists a hook Wi for each degree of freedom, but its location is not known a
priori (Fig. 2c shows the uncertainty in prong location using the thick dotted arrows).
Such contacts place constraints on the mechanism’s motion. Specifically, if the distal
link of the mechanism in Fig. 2a made contact, then the system is locked since the
actuator cannot apply any forces on the proximal and middle joints.

With more than one actuator, there exists significant choice in how the actua-
tors can be utilized. For example, the system in Fig. 2b has two actuators, and the
system is not locked when the distal link makes contact, since the second actuator
can still produce motion in the proximal and middle joints. Note also that the sec-
ond actuator only causes the distal and middle joints to translate (and not compress)
when the mechanism is actuated in free space. Thus, in contrast to the effect of the
first actuator, the net displacement of the distal link in free space due to the second
actuator is equal to the displacement of the proximal link. Such differences in the ca-
pability of actuators inserted at different points in the serial chain have implications
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Fig. 2 A three degree-of-freedom linear underactuated system driven by a cable-driven
mechanism which routes forces from a) a single actuator (inserted at distal joint) and b) two
actuators (inserted at proximal and distal joint). c) A schematic drawing of a linear underac-
tuated system with generalized joint actuation interacting with the environment. The white-
headed arrows represent joint travel, the solid (red) arrows forces, and the thick dotted arrows
uncertainty in object prong location.

in the grasping process, since joint travel is critical for making contact with the
environment. These effects will be discussed in the following sections. Also, the
various control policies available to a multi-actuator system will be explored in
section 2.2.

2.1 Transmission Mechanisms

The transmission mechanism determines the magnitude of forces the actuator can
apply at a specific degree of freedom. While the examples shown in Fig. 2 use cable-
driven mechanisms, our analysis applies to the use of any actuating mechanism such
as linkages or pneumatics. From here on, a joint force will be represented by a
force proportional to the actuator force fa j, j = 1 . . .m, which is applied at the joint
without explicitly specifying how that force was created. We assume for simplicity
that the actuators can only pull, and not push.
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The transmission mechanism can be represented as an actuator Jacobian Ja ∈
Rm×n such that the joint forces τ can be computed as τ = JT

a fa, where fa =[
fa1 . . . fam

]T ∈ R
m. For the single-actuator mechanism in Fig. 2a, Ja =

[
1 1 1

]
.

For simplicity, we assume that the first actuator is always inserted at the distal joint.

For the mechanism in Fig. 2b, Ja =

[
1 1 1
1 0 0

]
, where the second row corresponds

to the second actuator which is inserted at the proximal joint. Note that the second
actuator could have been inserted at a more distal degree of freedom as well (up
until the second degree of freedom) resulting in a different actuator Jacobian. Thus,
with more than one actuator, there are several transmission mechanisms to choose
from. We assume that the two actuators are not routed to the same joint and the
higher number actuators are always inserted more proximally.

Also, one can design transmission mechanisms where a particular actuator is
routed multiple times to various joints, producing actuator Jacobians that have ele-
ments larger than unity (see [2] for examples). In this paper, we will not consider
such mechanisms for simplicity. Thus, the number of possible transmission mech-
anisms with m actuators and n degrees of freedom is equal to the binomial coeffi-
cient

(n−1
m−1

)
(see Table 1).

Table 1 Number of Possible Transmission mechanisms and Control Policies With Six De-
grees of Freedom

Number of
actuators (m)

Possible transmission
mechanisms

Possible control
policies*

1 1 1
2 5 3
3 10 13
4 10 75
5 5 541

*for each mechanism.

2.2 Control Policies

With more than one actuator, there are numerous ways in which the actuators can be
utilized in the grasping process, each method called a control policy. Each control
policy potentially leads to different performance.

One control policy is to use all the actuators simultaneously to produce motion,
that is cp1 := {( fa1, fa2, . . . , fam)}, where the brackets indicate that all the actuators
are used simultaneously. If a particular actuator does not produce any more motion
because the joint it is inserted at has made contact, then the other actuators continue
to produce motion until all actuators do not produce any motion.

Another control policy cp2 := {( fa1),( fa2), . . . ( fam)} is to use each actuator in-
dividually starting from the most distal actuator and then moving to the most prox-
imal actuator. Here the brackets indicate that only one actuator is used at a time.
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The switch from one actuator to another occurs only when an actuator produces no
further motion (when the joint the actuator is inserted at has made contact) or if that
actuator has no remaining force capability to produce motion (the actuator’s force
being consumed by the joint stiffnesses). Note that when a joint, whose motion is
controlled by an actuator, makes contact with the object, only the remaining actua-
tion force is available to produce motion at the other joints that the actuator controls.
For example, if the mechanism in Fig. 2a utilized 25% of its actuation force to make
contact with the proximal link, only 75% of its actuation force remains to produce
motion in the other joints. An alternate control policy cp2 := {( fam), . . . ,( fa1)} is to
the reverse the order of actuator use and start from an actuator that is inserted most
proximally and move sequentially to more distal actuators.

Furthermore, the control policies cp1, cp2, and cp3 can be used recursively with
each subset of actuators. Specifically, a control policy cp4 := {( fa1),( fa2, · · · fam)}
can use the first actuator individually and then use the remaining actuators simul-
taneously. Indeed, the number Tcp(m) of possible control policies with m actuators
grows exponentially as

Tcp(m) = 1+
m−1

∑
i=1

(
m
i

)
Tcp(m− i), (1)

with each control policy producing potentially different behaviors and Tcp(1) =
1 (see Table 1).

2.3 Grasping Process

Given an underactuated system with a defined transmission mechanism and a con-
trol policy, the grasping process involves executing the control policy completely
until all joints can no longer move. With more degrees of freedom, actuators, and a
step-by-step control policy such as cp2 (see section 2.2), the grasping process can
occur in multiple stages. Specifically, with cp2 and the mechanism shown in Fig. 2b,
actuator 1 will cause all the joints to compress. If the distal joint first makes con-
tact, then actuator 1 produces no more motion. Then the next actuator in the control
policy, actuator 2, is utilized. This causes the proximal joint to compress, produce
translation of joint 2 and extension of the springs in joints 2 and 3 until the next con-
tact. If joint 1 makes contact, then the grasping process is complete since there are
no more actuators to produce motion. If on the other hand, joint 2 had made contact,
then the mechanism can still reconfigure and the grasping process continues until
all the joints are locked. Such a grasp is called a power grasp and is a key goal of
grasping with underactuated mechanisms.

2.4 Evaluating Grasping Performance

There are several heuristics used in the robotic grasping literature to measure grasp
quality [3, 15], but in general the goal of the grasping process is to maximize the
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number of contacts between the fingers and the object. Each contact would enable
the finger to apply an additional force to the object and resist external disturbances.

To model the uncertainty in the grasping process, where the object’s exact lo-
cation and shape (modeled by prong location) are unknown, we simulated many
object possibilities in order to quantify a system’s average performance on a generic
object. Thus, the object prong locations were randomized over the unit joint travel
distance (indicated by the thick dotted arrows in Fig. 2c), and each underactuated
system attempted to make contact with all the world prongs using the grasping pro-
cess delineated in section 2.3. The number of contacts that the system made with
each randomized object was recorded. For each underactuated system, we compute
the probability of occurrence of each contact mode after the grasping process for
each randomized object. Then, for each underactuated system, we can compute the
average number of contacts expected for a generic object. A system with a greater
average number of contacts is rated higher.

2.5 Static Analysis

The linear underactuated mechanism’s joint-travel and force-application capabilities
during the grasping process can be computed using a statics analysis at each joint.
The static balance at each contact state is given by

JT
a fa +Kdi + JT

c fi = 0, (2)

where K ∈ R3×3 represents mechanism’s stiffness, Jc ∈ R3×3 the contact-constraint
Jacobian, fi the contact force at joint i, and di the joint travel. In this paper, we
assume that the mechanism’s stiffness K is an identity matrix even though it is a
tunable parameter.

Note that the static equations (2) need to be solved in conjunction with the rele-
vant contact constraints:

Proximal contact d1 = 0,
Middle contact: d1 + d2 = 0,
Distal contact: d1 + d2 + d3 = 0.

In this paper, the primary focus is on the mechanism’s contact state at the end of
grasping process and not the intermediate contact states or force application capa-
bilities (as was explored in [2]).

3 Results

Using the linear underactuated system presented in section 2, we explored how the
grasping performance of a single-actuator system varied as the number of degrees
of freedom increased from n = 2 to n = 6. We also explored how the grasping per-
formance of a n = 6 degree of freedom system varies as it is actuated by a differing
number of actuators (from m = 1 to m = 5), different mechanism implementations,
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and different control policies. The location of each world prong was randomly sam-
pled from a uniform distribution over the unit length of the degree of freedom (five
hundred samples), and system performance was averaged across all the instances.

We assumed that all the actuators begin with two units of force, where a single
unit of force is sufficient to produce joint motion equal to the length of the joint
while overcoming the unit joint stiffness. We verified that at the end of the grasping
process, all the joints could no longer move and all the actuators had some remain-
ing actuation force capability, indicating that the mechanism was constrained by
external contacts.

Interestingly, we noticed that the different control policies (available for a trans-
mission mechanism with more than one actuator) produced the same number of
contacts after the grasping process. Thus, the control policies did not make a differ-
ence in the final contact state of the system. The rest of the results section will focus
only on how the number of actuators and the transmission mechanism influence
system performance.

3.1 The Single-Actuator System: Performance Variation with
Increasing Degrees of Freedom

Fig. 3 shows the variation in performance of a single-actuator system as the number
of degrees of freedom increases from n = 2 to n = 6. We notice that with two and

Number of
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       n
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74

53
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0
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Fig. 3 Expected number of contacts for a single-actuator linear underactuated system with
varying degrees of freedom. The numbers in the grid represent the probability (percentage,
error in estimates less than 0.8% in all cases) of occurrence of the particular contact mode.
Events in the dense checked region are not possible.
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three degrees of freedom, a single contact is the most likely contact mode. However,
for four and higher degrees of freedom, the double-contact mode has highest likeli-
hood. A weighted average of these results indicate that the expected average number
of contacts marginally increases as the number of degrees of freedom increases (see
Table 2).

Table 2 Single-Actuator System: Performance Variation with Degrees of Freedom

Number of degrees
of Freedom (n)

Expected number of
contacts*

2 1.2
3 1.5
4 1.6
5 1.8
6 1.9

*Standard error is less than 0.04 in estimates.

3.2 Fixed Degree-of-Freedom System: Variation with Number of
Actuators and Transmission Mechanism

Fig. 4 shows how the performance of a six degree of freedom system varies as the
number of actuators that control it are increased from m = 1 to m = 5 and different

3.0

4.0

5.0

6.0

Expected

number

of contacts

Actuator insertion points

Clustered

proximally

Clustered

distally

m=2

m=3

m=4

m=5

Fig. 4 Expected number of contacts for a n = 6 degree-of-freedom linear underactuated sys-
tem as the number of actuators is increased from m = 2 to m = 5. The X-axis represents
mechanism routing where the insertion points become more distal.
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transmission mechanisms are used. As expected, we notice that the expected number
of contacts increases with more actuators. However, the transmission system influ-
ences performance as well. Specifically, if the actuators are inserted most distally,
the expected number of contacts is significantly smaller than the expected number
of contacts if the actuators are inserted most proximally. However, for the m = 3
and m = 4 actuator case, there is some variability in system performance as the
insertion point moves distally, and this is discussed in section 4.2.

3.3 Fixed Degree-of-Freedom System: Best Performance
Variation with Increasing Number of Actuators

Fig. 5 shows how the best performance (across all possible transmission mecha-
nisms) of a six degree of freedom system changes as the number of actuators are
increased from m = 1 to m = 5. We notice that the most likely contact mode is
m + 1 contacts, except for the five actuator case where the most likely number
of contacts is five. Again, these results can be averaged to compute the expected
number of contacts with a generic object as the number of actuators increase (see
Table 3).

Number of

actuators

       m

Number of contacts

27

0

0

0

0

55
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5

Fig. 5 Best-case expected number of contacts (across all transmission mechanisms) for a
n = 6 degree-of-freedom linear underactuated system as the number of actuators is increased
from m = 1 to m = 5. The numbers in the grid represent probability (percentage, error in
estimates less than 0.42% in all cases) of occurrence of the particular contact mode. The
black solid line represents the line where number of contacts equals number of actuators.
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Table 3 Fixed Degree-Of-Freedom System: Best Performance Variation with Number of
Actuators

Number of
actuators (m)

Expected number of
contacts*

1 1.9
2 3.2
3 4.1
4 4.8
5 5.4

*Standard error is less than 0.02 in estimates.

4 Discussion

4.1 Limitations of Single-Actuator Systems

From the analysis of the linear underactuated system, we notice that each additional
degree of freedom provides only marginal advantage in a single-actuator system (see
Table 2 and Fig. 3). A similar analysis is also required for the planar underactuated
systems prevalent in robot hand research. While prior research has shown that power
grasps with multiple contacts between the finger and the object are possible (by
carefully designing joint compliances) even when the single actuator controls many
degrees of freedom, they include assumptions about hand placement (for example,
object pushed against the hand’s palm) and object shape (for example, spherical
shape). The expected performance of these robot hands in terms of the number of
contacts the mechanism makes on average across all possible objects is still unclear.
To our knowledge, this is the first work that explores the variation in expected num-
ber of contacts for a single actuator serial chain with increasing degrees of freedom.

We would also like to point out a key difference between the linear underactu-
ated system and the planar underactuated systems that utilize revolute joints. Since
the linear underactuated system has only one dimension, a contact on one joint can
nullify the actuation force on another joint. In contrast, actuation forces can still be
transferred to the revolute joints after the planar systems make contact with the en-
vironment because of the rotational joint kinematics. This depends on the specific
contact modes (rolling versus sliding) which will determine the mechanism’s abil-
ity to reconfigure [1]. Thus, these factors that influence the mechanism’s adaptabil-
ity must be kept in mind when analyzing the performance of planar underactuated
systems.

4.2 Multi-actuator Systems

As expected, a system with more actuators has greater adaptability irrespective of
how the actuation is routed (see Fig. 4). However, the control policy, or the sequence
of actuator utilization, does not make a difference in terms of the number of contacts
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the mechanism makes with the object after the grasping process. This is a surpris-
ing and useful result which indicates that even with multiple actuators, the robotic
hand can use the actuators in any order to produce an identical final contact mode.
However, it was still useful to explore the various control policies in section 2.2 to
show the completeness of our methods. However, the contact sequence does indeed
depend on the sequence of actuator use. If the contact sequence is important (for
example, making contact sequentially from the proximal link to the distal link to
ensure an enveloping grasp), then the robot must plan the sequence of actuator use
as well.

In terms of mechanism routing, we notice that a system where the actuator in-
sertion points are spread across the serial chain improve mechanism adaptability.
This is particularly noticed in the poor performance of the systems where all the
actuators are inserted most distally. In these cases, contacts at the distal joints would
completely lock the system. Interestingly, with m = 3 and m = 4 actuators, as the
routing becomes more distal there is some variability in performance. This is be-
cause of the poor performance of mechanisms where the insertion points of the
higher-order actuators are adjacent when compared with mechanisms where the in-
sertion points of the higher-order actuators are spread apart. We also notice that the
best performance with m actuators increases linearly until saturating at n− 1 actu-
ators. Thus, there is a linear advantage with each additional actuator. Future work
includes an analysis of a multi-actuator system’s ability to individually control the
contact forces and permit object manipulation.
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Low-Cost Multi-robot Localization

Amanda Prorok, Alexander Bahr, and Alcherio Martinoli

Abstract. Localization is an enabling technology, and a prerequisite for a wide
range of robotic tasks. Despite the large amount of work already done in this do-
main, to date, the solution to the localization problem for fully decentralized, large-
scale multi-robot systems is still an open question. In this chapter, we contribute
to this particular problem outline by proposing a low-cost method: we describe
a fully decentralized algorithm, particularly designed for resource-limited robotic
platforms in large-scale systems. In the following sections, we elaborate the com-
ponents of our method, and demonstrate the utility of our low-cost localization al-
gorithm on groups of up to ten real mobile robots. This chapter is rounded off by
bringing our approach into a larger perspective, and by discussing its potential as
well as its limitations.

1 Introduction

A variety of tasks performed by multi-robot systems such as search and res-
cue [12, 13], environmental monitoring [5, 25], and construction of real struc-
tures [16, 32] need accurate localization to succeed. Due to the intrinsic nature of
such tasks, the individual agents are often confined to a small size and weight, which
sets hard limits on on-board resources. Simultaneously, a large portion of the robot’s
resources may be dedicated to the task at hand, especially when this task requires
high-frequency perception-to-action loops, leaving little room for solving the lo-
calization problem. These compounding problems pose the challenge of designing
systems and algorithms that can flexibly accommodate given restrictions, without
compromising performance.
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This chapter presents a concise solution to the localization problem for a collabo-
rative team of mobile robots. Various strategies have been followed in past works on
collaborative localization—our work distinguishes itself by respecting the following
design goals:

Low-cost: The time/energy spent on the localization algorithm must be inferior
to that spent on the actual task at hand. Thus, we try to minimize the over-
all complexity of our algorithm, and simultaneously relax the communication
requirements.

Full decentralization: Each robot carries responsibility for its own localization,
and runs an independent localization algorithm on-board.

Any-time relative observations: Robot-to-robot observations can be made asyn-
chronously, at any given time. This simultaneously means that there are no
connectivity constraints on the robot team, and that the computational time of
fusing relative observations with proprioceptive sensing is bounded.

Mobility: Since our system is decoupled and decentralized, we do not constrain
mobility by making use of any methods that rely on motion agreements among
the robots.

Independence of the environment: In order for our method to be equally suited
for indoor and outdoor applications, in structured as well as unstructured envi-
ronments, it should be self-contained and robust. Thus, we rely only on inter-
robot relative sensing, and on the possibility of an initial localization (of one
of the robots).

Given its efficiency in solving localization problems for unknown initial condi-
tions and its efficiency in accommodating arbitrary probability density functions,
our method of choice is the particle filter. We thus build on the general probabilis-
tic framework of Monte-Carlo Localization (MCL) presented in [7]. In particular,
our collaboration strategy exploits associated, inter-robot relative range and bearing
observations. In order to accommodate the noise characteristics of typical relative
range and bearing measurements, we develop a robot detection model, which is
introduced into our localization algorithm. This combination forms the basis of our
collaborative paradigm. Given this foundation, the key element of our approach con-
sists of an additional routine, namely a reciprocal particle sampling routine, mainly
designed to accelerate the convergence of a robot’s position estimate (to the cor-
rect value), and to mitigate overconfidence. A collaborative localization algorithm
composed of the aforementioned robot detection model jointly with the reciprocal
sampling routine is very efficient with respect to its non-collaborative counterpart.
However, due to the computational overhead induced by the detection model and the
reciprocal sampling routine (which scale to the square of the number of particles),
such an algorithm may run into real-time running constraints. This can turn out to
be particularly prohibitive for platforms with hard limits on available resources. For
this reason, we further extend our approach with a particle clustering method that
reduces the complexity of the overall localization algorithm and also reduces the
amount of data to be communicated. This clustering routine is especially designed
to accommodate the characteristics of the range and bearing robot detection model,
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and does not impose an additional computational burden on the localization algo-
rithm as a whole.

1.1 Related Work

A synopsis of currently available work on multi-robot localization promotes a di-
vision of the various approaches into two main categories: a multi-centralized ap-
proach, and a decentralized approach. The multi-centralized approach distinguishes
itself formally from the decentralized approach by imposing that each robot in the
team maintains a state vector containing the poses of all robots—in other words,
each robot maintains a full-system state estimate, versus an estimate of only its own
pose.

The multi-centralized [23] approach is indeed the more popular (and classical)
approach, as it enables the robots to directly take account of inter-robot depen-
dencies and to estimate correlations. However, it entails some inconveniences. In
an early work, Roumeliotis et al. [30] enable the distribution of a Kalman estima-
tion scheme by constructing communicating filters, which allows team-members
to propagate their state and covariance estimates independently. Yet, as covariance
matrix updates occur during each update step and require information exchange be-
tween all robots and a centralized processor, the method is particularly vulnerable to
single-point failures. In particular, the requirement to update the information in all
robots after a single observation of an individual robot assumes a communication in-
frastructure without any packet loss. The method scales in O(N3) with respect to the
number of robots, and thus limits its scalability due to the high computational cost.
In [19], Martinelli et al. propose an extension to [30], which relaxes the assumptions
on relative observations, but without further improving the algorithm’s scalability
and cost. Howard et al. [10] propose an algorithm based on maximum likelihood
estimation, and validate it on a team of four real robots. Their method relies on pe-
riodical information broadcasts, and it is unclear how the method scales and how
sensitive it is to local minima. In a recent work, Nerurkar et al. [24] address the
reduction of computational complexity and single-point failures by implementing a
maximum a posteriori estimation method. Nevertheless, the O(N2) computational
cost is significant. Also, the proposed method requires synchronous communication
among the robots, and its feasibility still remains to be validated on real robots.
Mourikis et al. [21] consider the problem of resource-constrained collaborative lo-
calization with the goal of deriving optimal sensing frequencies. Yet, as extero-
ceptive data is dealt with in a centralized way, the sensing frequencies inevitably
decrease with an increasing number of robots, thus limiting the scalability of the
approach. Cristofaro et al. [6] present a localization algorithm that arguably alle-
viates the problems described above. The approach is based on an extended infor-
mation filter, whose implementation is distributed over the robot team members.
However, its computational cost increases for each new observation made and it as-
sumes bidirectional synchronous communication, the feasibility of which remains to
be evaluated on real robots. Finally, Leung et al. [15] develop a framework based on
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Fig. 1 System of two robots
Rn and Rm at positions xn

and xm, respectively, shar-
ing a common localization
frame. The figure illustrates
the robots’ relative range
(rnm = rmn) and bearing val-
ues (θnm and θmn).

x

y

Rn

Rm

θnm

θmn
rmn

xn

xm

‘checkpoints’ which facilitates decentralization of a given localization algorithm.
Their method, however, still aims to maintain full-system state estimates on all
robots, and remains to be evaluated on real robots.

The category of work representing the decentralized approach has an alternative
take on the collaborative localization problem: each robot maintains an estimate of
only its own pose, and fuses relative observations in an opportunistic fashion. Fox et
al. [7] first introduced a multi-robot Monte-Carlo localization algorithm for global
localization, that also relaxes noise assumptions as well as inter-robot dependen-
cies. They propose a method in which robots mutually synchronize their position
beliefs upon detection, and show successful global localization on two real robots.
However, the method has limited scalability due to overconfidence occurring upon
multiple robot detections, and no analysis is provided of the algorithm’s process-
ing requirements. Bahr et al. [1] develop a decentralized localization algorithm,
based on the extended Kalman filter framework, that is especially well suited for
autonomous underwater vehicles with very low data rates. This method, however,
allows cyclic updates and, thus, may suffer from overconfidence. In an addition to
this work [2], the authors remedy the overconfidence problem, but at the cost of a
computationally expensive solution (in particular for a large number of robots and a
high frequency of relative observations).

1.2 Problem Formulation

Let us consider a multi-robot system of N robots R1, R2, ..., RN , in a 2D space,
where the number N does not necessarily need to be known by the robots (see
Figure 1 for a schematic illustration of a two-robot system). For a robot Rn, at
time t, the pose xn,t is given by the Cartesian coordinates xn,t ,yn,t and orientation
φn,t . Also, at time t, a robot Rm is in the set of neighbors Nn,t of robot Rn if robot
Rm is able to take a range measurement r̃mn,t and bearing measurement θ̃mn,t of
robot Rn. Thus, at every moment in time, the neighborhood topology is defined by
the physical constraints given by the relative observation sensors deployed on the
robots. Also, if Rm ∈Nn,t , we make the assumption that the robot Rm can commu-
nicate with the robot Rn. Apart from a sensing modality that enables the robots to
observe inter-robot range and bearing (including a unique robot identifier), they are
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also equipped with a dead-reckoning self-localization module (e.g., odometry), but
do not make use of any exteroceptive sensors capable of feature recognition.

As introduced earlier in this text, every robot runs its own, self-contained, collab-
orative particle filter, with the goal of localizing itself without any prior knowledge
of the initial state or previous measurements. In practice, we assume that one of the
robots is localized at the start of an exercise. It turns out that, as time evolves, our
method ‘propagates’ the correct position belief from robot to robot with help of the
relative positioning sensors, and that at some point in time all robots are localized
(with respect to an upper error bound). The belief of a robot’s pose is formulated as

Bel(xn,t)∼ {〈x[i]n,t ,w
[i]
n,t〉|i = 1, ...,M}= Xn,t (1)

where M is the number of particles, x[i]n,t is a sample of the random variable xn,t (the

pose), and w[i]
n,t is its weight (or importance factor). The symbol Xn,t refers to the set

of particles 〈x[i]n,t ,w
[i]
n,t〉 at time t belonging to robot Rn. This context formalizes the

scope of this chapter: the method that we detail in the following sections solves the
localization problem for large robot teams by exploiting collaboration.

We note that the nature of this problem scenario relates well to current real-world
scenarios. In particular, in environments where it is hard or even impossible to get
a GPS position update, such as underwater or inside buildings, it is always possible
to exploit the mobility of one of the team mates to move into a GPS-friendly envi-
ronment. In underwater robot teams [1], a robot can surface to get a GPS update. Or
similarly, in search and rescue robot teams [12], a robot can navigate to the exit of a
building. Several authors also comment on the advantages of heterogeneity in robot
teams. Bahr et al. [1] note that for optimal localization, it is advantageous to have
a few team members that are able to maintain an accurate estimate of their position
through sophisticated dead-reckoning sensors, thus enabling a much larger group
of robots with less sophisticated sensors to maintain an accurate position. In the
same line of thought, Madhavan et al. [18] argue that when the quality of the mea-
surements from absolute positioning sensors deteriorates for certain robots in the
team, or if some of the team members do not possess absolute positioning capabil-
ities, those robots can take advantage of other team members with complementary
positioning capabilities.

1.3 Case Study

To give the reader a feel for our algorithms, we perform several experiments on a
team of Khepera III robots1 [27]. The Khepera III robot (see Figure 2) has a di-
ameter of 12 cm, making it appropriate for multi-robot experiments in controlled
environments. It has a KoreBot extension board providing a standard embed-
ded Linux operating system on an Intel XSCALE PXA-255 processor running
at 400 MHz, and uses a communication infrastructure enabled through an IEEE

1 http://www.k-team.com/

http://www.k-team.com/


20 A. Prorok, A. Bahr, and A. Martinoli

Fig. 2 Fleet of ten Khepera
III robots. The robots are all
equipped with an inter-robot
relative range and bearing
module, which is composed
of a ring of 16 infrared light
emitting diodes (LEDs).

802.11b wireless card which is installed in a built-in CompactFlash slot. In order
to measure the ground truth positioning to evaluate our algorithms, we installed an
overhead camera system as detailed in [27], in combination with the open source
tracking software SwisTrack [17]. This system allows us to monitor our robots in
real-time with a mean error of about 1 cm and a maximum error below 3 cm. The
robots are equipped with wheel encoders and use odometry for self-localization.
Each robot also uses a relative range and bearing module [29], which provides the
relative observations used by the robot detection model. Figure 2 shows ten robots
equipped with a relative positioning module. In our experimental space, the boards
have a proportional, additive Gaussian range noise with a standard deviation of
σr = 0.15 · rmn, and a bearing noise of σθ = 0.15 rad. In the following, we will
discuss the localization performance in terms of the mean positioning error of all
particles in the robots’ beliefs with respect to the ground truth positions obtained
from the overhead camera system. This metric implicitly includes the spread of the
particle positions, and thus also represents the uncertainty of the position estimate.

2 Collaborative Localization

In this section, we elaborate our collaborative localization algorithm [26], which,
together with the Monte-Carlo Localization (MCL) method presented in [7], forms
the baseline for our work. For convenience, the complete localization algorithm is
shown in Algorithm 1.

2.1 Multi-robot Monte Carlo Localization

Let us from here on consider a robot Rn that is detected by robot Rm, and simultane-
ously receives localization information from robot Rm. If we make the assumption
that individual robot positions are independent, we can formulate the update of the
belief of robot Rn at time t with

Bel (xn,t)= p(xn,t |un,0..t) ·
∫

p(xn,t |xm,t ,rmn,t ,θmn,t)Bel(xm,t)dxm,t (2)

where un,0..t is the sequence of motion control actions up to time t. For such
a collaboration to take place, robot Rm needs to communicate its range and
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bearing measurements r̃mn,t , θ̃mn,t and Bel(xm,t) to robot Rn. Thus a communication
message is composed as dmn,t =

〈
r̃mn,t , θ̃mn,t ,Xm,t

〉
. If several robots in a neighbor-

hood Nn,t communicate with robot Rn, the received information is the set of all
relative observations made by those robots of robot Rn at time t, as well as the be-
lief representations Xm,t of all detecting robots Rm ∈Nn,t . We denote this data set
as Dn,t = {dmn,t |Rm ∈Nn,t}. We note that the collaborative aspect of this formal-
ism lies in the integration of robot Rm’s belief into that of robot Rn (this update
step is shown in Algorithm 1 in line 5). As previously discussed in [7], there are
certain limitations to this approach. Due to the fact that robot Rm integrates its posi-
tion belief into that of robot Rn upon detection, subsequent detections would induce
multiple integrations of this belief, ultimately leading to an overconfident (and pos-
sibly erroneous) belief of the actual pose. Fox et al. remedy this shortcoming by
considering two rules: (i) their approach does not consider negative sights (no de-
tection) of other robots, and (ii) they define a minimum travel distance which a robot
has to complete before detecting a same robot again. Although rule (i) is a practical
consideration, rule (ii) limits the scalability and robustness of the approach. In fact,
it does not respect our design goals of full mobility and any-time observations (see
Sec. 1). We will see in the following sections how our approach tackles this problem
by exploiting a reciprocal sampling method.

Algorithm 1. MultiRob Recip MCL(Xn,t−1,un,t ,zn,t ,Dn,t)

1: Xn,t = Xn,t = /0
2: for i = 1 to M do
3: x[i]n,t ← Motion Model(un,t ,x

[i]
n,t−1)

4: w[i]
n,t ← Measurement Model(x[i]n,t )

5: w[i]
n,t ← Detection Model(Dn,t ,x

[i]
n,t ,w

[i]
n,t )

6: Xn,t ← Xn,t +
〈

x[i]n,t ,w
[i]
n,t

〉
7: end for
8: for i = 1 to M do
9: r ∼U (0,1)

10: if r ≤ (1−α) then

11: x[i]n,t ← Sampling(Xn,t)
12: else
13: x[i]n,t ← Reciprocal Sampling(Dn,t ,Xn,t)
14: end if
15: Xn,t ← Xn,t +

〈
x[i]n,t ,w

[i]
n,t

〉
16: end for
17: return Xn,t
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Fig. 3 Example application of the detection model for multiple detecting robots (a) for two
robots and (b) for three robots. Here, a set of 20 particles is shown, represented by oriented
triangles superimposed over the detecting robots R1, R2, and R3. The detected robot is
shown in white. The model’s probability density is superimposed on the detected robot. The
dotted line and the orientation of the robots show the actual relative range and bearing. The
particle positions were generated randomly from a normal distribution (σx = σy = 0.2 m, and
σφ = 0.2 rad), and range values are perturbed by an additive Gaussian noise with σr = 0.15
and for the bearing values with σθ = 0.15 rad.

2.2 Range and Bearing Detection Model

The detection model p(xn|dmn) describes the probability that robot Rm detects robot
Rn at pose xn = [xn,yn,φn]

T, given the detection data dmn. This probability density
function is applied to the ensemble of particles in the belief of robot Rn, in order
to adjust their weights to current relative observations. Given the nature of relative
observations, we make use of a locally defined polar coordinate system. Hence, we
define the transformation from Euclidean to polar coordinates Tp

e (xq,xp) as

Tp
e (xq,xp) =

[
rqp

θqp

]
(3)

where

rqp =
√
(xp− xq)2 +(yp− yq)2 (4)

θqp = atan2((yp− yq),(xp− xq))−φq (5)

and xq defines the center of the local polar coordinate system. Thus, assuming Gaus-
sian noise and knowledge of the range and bearing standard deviations (σr and σθ ,
respectively), and the independence of range and bearing measurements, the detec-
tion model is

p(xn|dmn) = η · ∑〈
x[i]m ,w

[i]
m

〉
∈Xm

Φ
(

Tp
e (x

[i]
m ,xn);μμμ ,Σ

)
·w[i]

m (6)
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where Φ(·;μμμ ,Σ) is a multivariate normal probability density function with mean
μμμ = [r̃mn,t , θ̃mn,t ]

T and where η is a normalization constant. The covariance matrix
is Σ = diag([σ2

r ,σ2
θ ]) (the work in [8] provides experimental evidence for our plat-

form showing that a range and bearing measurement behaves like two independent
Gaussian variables). As seen in [26], the detection model can easily be augmented
by an additional component in case robot Rn reciprocally detects robot Rm. Here,
for the purpose of our case-study, we use a simple Gaussian distribution in polar co-
ordinates, but all reasonings are valid for completely arbitrary distributions. Indeed,
since we use a particle filter, we can keep the same framework for any possible un-
derlying range and bearing hardware not fulfilling the Gaussian noise assumption.

Finally, the detection model incorporating the detection data from multiple de-
tecting robots can be formulated as the update equation shown in Algorithm 2.
Figure 3 illustrates the probability density function resulting from the detection
model, (a) for two detecting robots, and (b) for three detecting robots. We notice
that when detection data from multiple robots is integrated into the range and bear-
ing model, the detection precision increases.

Algorithm 2. Detection Model(Dn,t ,x
[i]
t ,w[i]

t )

1: w← w[i]
t ·∏dmn∈Dn,t

p(x[i]t |dmn)
2: return w

2.3 Reciprocal Sampling

In addition to using a robot detection model for updating the belief representation
Bel(xn,t), our approach relies on a reciprocal sampling method. Let us refer to the
iterative process described in Algorithm 1: instead of sampling a new particle pose

x[i]n,t from Bel(x[i]n,t−1) in line 11, the reciprocal MCL routine in line 13 samples from
the detection model p(xn|dmn), according to Eq. 6. Thus, samples are drawn at poses
which are probable given reciprocal robot observations, and which are independent
of the previous belief Bel(xn,t−1). By defining a reciprocal sampling proportion α ,
particles are sampled from the robot’s own belief with a probability 1−α , and with
a probability of α from the probability density function proposed by the detection
model. The advantages of this procedure are twofold. Firstly, as the reciprocal sam-
pling method exploits the information available in a whole robot team, it continu-
ously creates particles in areas of the pose space which are likely to be significant,
and thus it allows for very small particle set sizes (also shown in [26]). Secondly, by
sampling new particles from the detection model, the method introduces a variance
proportional to that of the relative detection sensors into the belief of the detected
robot (this proportion can be tuned by varyingα), and effectively mitigates overcon-
fidence. Algorithm 3 shows the routine where line 4 represents the sampling step.
There are a multitude of methods which can be applied to sample from a given
distribution. In our particular case (multi-modal Gaussians), sampling from the
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detection model p(xn|dmn) is cheap. For more complex probability density func-
tions, sophisticated and efficient methods such as slice sampling [22] can be
employed.

The idea of extending standard MCL with additional sampling methods was first
shown in [31]. The resulting algorithm named Mixture MCL was shown to increase
the robustness of single-robot global localization. Our method differs from that one
in that it extends to collaborative multi-robot localization algorithms by sampling
from the detection model of one or several mobile robots (whose positions are ini-
tially unknown) as opposed to sampling from the detection model of a potentially
large set of static environmental features (whose positions have to be known or
mapped a priori). Indeed, for complex environments, the method in [31] must be
preceded by a fingerprinting process.

Algorithm 3. Reciprocal Sampling(Dn,t ,Xn,t)

1: if Dn,t = /0 then
2: x← Sampling(Xn,t)
3: else
4: x∼∏dmn∈Dn,t

p(x|dmn)
5: end if
6: return x

We illustrate the effect of reciprocal robot detections by performing a short exper-
iment involving two Khepera III robots, one of which is initially localized. Figure 4
shows the localization error for the second, initially unlocalized robot: In compari-
son to the standard sampling algorithm (Algorithm 1 with α = 0), we see that the
reciprocal sampling algorithm (Algorithm 1 with α > 0) reduces the localization
error by taking better advantage of information available on the localized team-
member. Additionally, in this case where the first robot is well localized during this
short time span, an increased reciprocal sampling proportion α is more efficient due
to the higher probability of drawing accurate reciprocal samples.

Figure 5 shows results obtained in an experiment of 3.5 minutes duration in-
volving ten robots (with one of the robots initially localized). The plots discuss the
sensitivity of our algorithm with respect to the number of particles M, as well as its
robustness with respect to communication failures. Figure 5(a) shows the localiza-
tion performance (averaged over time and robots) for a variable number of particles.
Larger particle sets contribute to an improved localization accuracy. Yet, an 8-fold
increase in the number of particles produces a reduction of only 25% of the local-
ization error. This result coincides with the conclusions made in [26], where it was
shown that by increasing the number of particles, the performance converges to that
of an ideal localization filter with an infinity of particles. Figure 5(b) shows the lo-
calization performance for variable message failure rates. Increasing failure rates
induce a graceful degradation of the localization performance. This result confirms
the algorithm’s robustness with respect to communication failures, which ultimately
reinforces the underlying asynchronous nature of our collaborative paradigm.



Low-Cost Multi-robot Localization 25

t1

t2

t3

(a)

0 5 10 15 20 25
0

0.5

1

1.5

 

 

t1 t2 t3

R
M

S
E

[m
]

Time [s]

Standard Sampling
Reciprocal Sampling, α = 0.1
Reciprocal Sampling, α = 0.5

(b)

Fig. 4 (a) Schematic illustration of two robots driving past each other. Three detections are
made. (b) Localization error for an initially unlocalized robot. It detects a localized robot
three times along its path. The standard and reciprocal sampling algorithms (employing 50
particles) are tested 1000 times on the data set. The times at which the observations are made
are marked by dotted lines (11.2s, 13.6s, 16s).
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Fig. 5 Localization error for 100 evaluations of the reciprocal sampling algorithm, employing
100 particles per robot and a reciprocal sampling rate α = 0.06. (a) Boxplots show the 25th,
50th and 75th percentile, with whiskers containing 85% of the data (for all robots and time).
The algorithm is tested employing {25, 50, 100, 200, 400} particles per robot. (b) Average
error over all robots. Detection data messages are corrupted by a failure rate of {0.1, 0.2,
0.4}. The errorbars show 95% confidence intervals.

3 Particle Clustering

The algorithm complexity of the detection model p(xn|dmn) (Eq. 6) leads to O(M2)
for Algorithm 1. This cost can be prohibitive for a large number of particles M (i.e.,
large with respect to available computational resources). Also, a multi-robot system
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may have communication constraints that make sending large particle sets infea-
sible. Hence, even though the method applied in this paper allows for very small
particle sets [26], we resort to a clustering method to further reduce the computa-
tional and communication overhead.

Let us consider a case where robot Rm detects robot Rn. For better clarity in the
following derivations, we will assume that |Nn,t | = 1. The goal of the clustering
method is to reduce the number of operations needed to compute the probability
density function p(xn|dmn). Thus, for every detection that it makes, robot Rm resorts
to a clustering method which summarizes its set Xm composed of M particles to
a set X̂m composed of K cluster abstractions (or centroids), reducing the overall
computational cost to O(MK) (this clustering routine is detailed later, in Algorithm
4 of Section 3.1). The resulting partition of the particle set is denoted Cm, with

|Cm|= K. An individual cluster c[k]m ∈ Cm is defined as the set of particles

c[k]m = {〈x[i]m ,w
[i]
m 〉 | f (〈x[i]m ,w

[i]
m 〉, ·) = k}, (7)

where f is a function mapping a particle to a cluster index. Also, we define c[k]m as

the data abstraction of cluster c[k]m , representing all particles in its set by the tuple

c[k]m = 〈x̂[k]m , ŵ[k]
m , μ̂μμ [k]

m , Σ̂ [k]
m 〉, (8)

where μ̂μμ [k]
m is a two dimensional vector and Σ̂ [k]

m is a covariance matrix. Thus,

X̂m = {c[k]m | c[k]m ∈ Cm} is the set of K cluster abstractions. Finally, we denote the
clustered detection data as d̂mn = 〈r̃mn,t , θ̃mn,t , X̂m〉, which is sent in place of the un-
clustered detection data dmn. Formally, given the notation introduced above, finding
an optimal particle clustering is equivalent to solving the following optimization
problem

min
d̂mn

D(p(xn|dmn) || p̂(xn|d̂mn)), (9)

where p̂ is an approximated detection model, and D a distance measure between
two probability density functions. Jain et al. [11] point out that in a typical cluster-
ing task, the actual grouping (or clustering) and cluster data abstraction (or cluster
representation) are separate components of the task and are commonly treated se-
quentially. Hence, we deal with our problem by dividing it into the two following
sub-problems: (i) we consider the set of particles Xm and find an optimal way to

create a partition Cm, and (ii) we consider an arbitrary cluster c[k]m in Cm and find

an optimal way to determine its cluster abstraction c[k]m . For a given set Xm, these
two steps together ultimately lead to a set of cluster abstractions X̂m, which, instead
of Xm, is included into the detection data tuple d̂mn for every new detection made.
The following paragraphs detail our low-cost clustering approach that aims to meet
these specifications.
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Fig. 6 The detection model (here with range and bearing noise σr = 0.15 and σθ = 0.15) is
projected on the detected robot (in white). Final cluster partitions are superimposed on the
particles of the detecting robot. From left to right, top to bottom, the number of clusters K
employed by the clustering algorithm is: 100, 32, 8, 4, 2, 1, for a total number of particles
M = 100.

Algorithm 4. Cluster(Xm,t ,K)

1: X̂m ← /0
2: c[1]m ← Xm

3: Cm← c[1]m

4: for k = 1 to K−1 do
5: kmax,dim← find highest variance cluster(Cm)

6: c[kmax]
m ,c[k+1]

m ← split cluster(c[kmax]
m ,dim)

7: Cm ← Cm +c[k+1]
m

8: end for
9: for k = 1 to K do

10: c[k]m ← assign data abstraction(c[k]m )

11: X̂m← X̂m +c[k]m

12: end for
13: return X̂m

3.1 Clustering Algorithm

The optimal, combinatorial solution to the clustering problem of Equation 9 requires
the evaluation of a very large number of partitions (the number of ways to partition
a set of M data points into K non-empty clusters is given by Stirling number of the
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second kind). Even though efficient approaches have been proposed [14], combina-
torial solutions still remain prohibitively expensive. Given the usefulness of cluster-
ing in a large range of disciplines, many non-combinatorial clustering approaches
have been proposed [11]. Yet, since our goal is to reduce the final complexity of
our algorithm, the complexity of the actual clustering algorithm must be at most
equal to O(MK). One of the most commonly used low-cost clustering methods is
the k-means algorithm [20]. It starts off with a random initial cluster assignment
and iteratively reassigns clusters until a convergence criterion is met or a maximum
number of iterations L is attained. Although the algorithm has a low time com-
plexity O(MKL), its main disadvantage is that it is sensitive to the initial cluster
assignment. The variant ISODATA algorithm [3] is also an iterative clustering algo-
rithm with a time complexity of O(MKL), with the additional capability to split and
merge clusters according to predefined threshold values. It is therefore more flexible
than the k-means and able to find the optimal partition, provided that the user is able
to define correct threshold values. Non-iterative, incremental clustering algorithms
have the advantage that they are even less time consuming than iterative algorithms.
The leader algorithm [9] is the simplest of that kind. Data points are incrementally
assigned to existing clusters based on a distance metric, with new clusters being
created if all distance measures exceed a predefined criterion. Yet, given the algo-
rithms incremental nature, the final clustering result is dependent on the order of the
assignments made.

We take inspiration from the methods described above to develop a non-iterative,
order-independent, non-parametric approach that produces a predefined number of
K clusters. Our solution is inspired by the construction of multidimensional binary
trees [4], and consists of a 2-dimensional sorting algorithm which repetitively sep-
arates the particle set along the mean of the dimension producing the highest vari-
ance, until the predefined maximum number of clusters K is attained. We note that
splitting along the median instead of the mean incurs a higher complexity. A de-
scription of this algorithm is shown in Algorithm 4. The function in line 5 has a

complexity O(M), the function in line 6 has a complexity O(|c[kmax]
m |), and function

in line 10 has a complexity O(|c[k]m |). Hence, the total algorithm cost is O(MK).
Figure 6 shows examples of final cluster partitions for six different total numbers
of clusters, performed on an identical set of 100 particles. We note that, even for
maximal clustering (K = 1), the detection model is well approximated.

3.2 Cluster Abstraction

For an arbitrary cluster c[k]m , we have the non-summarized detection data d[k]
mn =

〈r̃mn,t , θ̃mn,t ,c
[k]
m 〉. The problem of finding an optimal cluster abstraction c[k]m can, thus,

be formalized as

minDKL(p||p̂)=
∞∫

−∞
p(xn|d̂[k]

mn) log
p(xn|d̂[k]

mn)

p̂(xn|d̂[k]
mn)

dxn (10)
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where DKL is the Kullback-Leibler divergence, and d̂[k]
mn = 〈r̃mn,t , θ̃mn,t ,c

[k]
m 〉 is the

summarized detection data. In [28], we showed the following. Given a point x̂[k]m =

[x̂[k]m , ŷ[k]m , φ̂ [k]
m ]T, and the probability density function

p̂(xn|d̂[k]
mn) =Φ

(
Tp

e (x̂
[k]
m ,xn); μ̂μμ [k]

m , Σ̂ [k]
m

)
, (11)

the Kullback-Leibler divergence between p and p̂ is minimal if

μ̂μμ [k]
m =

1

|c[k]m |
∑

x[i]m∈c
[k]
m

v[k,i]m , (12)

Σ̂ [k]
m =

1

|c[k]m |− 1
∑

x[i]m∈c
[k]
m

(
v[k,i]m − μ̂μμ [k]

m

)(
v[k,i]m − μ̂μμ [k]

m

)T
(13)

are the mean and covariance of v[k,i]m = Tp
e (x̂

[k]
m , x̌[i]m ), with

x̌[i]m = x[i]m + rmn cos(θmn +φ [i]
m ) (14)

y̌[i]m = y[i]m + rmn sin(θmn +φ [i]
m ). (15)

We note that the above equations do not take into account the uncertainty of the
range and bearing observations. Thus, we propose a variant detection model p̂ (cf.
Equation 6) that explicitly takes into account noise. We have

p̂(xn|d̂mn) = η ·∑
c
[k]
m ∈X̂m

Φ
(

Tp
e (x̂

[k]
m ,xn); μ̂μμ [k]

m , Σ̂ [k]
m +Σ

)
· ŵ[k]

m (16)

where μ̂μμ [k]
m and Σ̂ [k]

m +Σ approximate the true mean and covariance, respectively,
in the presence of noise (we remind the reader that Σ = diag([σ2

r ,σ2
θ ])). Indeed,

finding a closed form solution for the true values is intractable. However, if the set

of particles c[k]m is densely populated, our approximation is very good. Moreover,

if the particle positions coincide, and if for a given cluster c[k]m the point x̂[k]m is its
center of mass, the solution is optimal. Hence, we complete the data abstraction

c[k]m = 〈x̂[k]m , ŵ[k]
m , μ̂μμ [k]

m , Σ̂ [k]
m 〉 (cf. Equation 8) with x̂[k]m as the weighted center of mass,

and ŵ[k]
m the cumulative weight

x̂[k]m =
1

ŵ[k]
m

· ∑
〈x[i]m ,w[i]

m 〉∈c[k]m

w[i]
m · [x[i]m ,y

[i]
m ,φ

[i]
m ]T (17)

ŵ[k]
m = ∑

〈x[i]m ,w
[i]
m 〉∈c

[k]
m

w[i]
m . (18)
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Fig. 7 (a) The Kullback-Leibler divergence between the full and approximated detection
models, as a function of the number of clusters employed by the clustering method. (b) Av-
erage localization error over 100 evaluations. The localization algorithm is tested, employ-
ing the clustering method using {1,4,8,16,32} clusters. The errorbars show 95% confidence
intervals.

(a) t = 0 (b) t = 18s (c) t = 36s (d) t = 54s

(e) t = 72s (f) t = 90s (g) t = 108s (h) t = 126s

Fig. 8 The figure shows eight snapshots with 18s intervals of an experimental run on the team
of ten Khepera III robots. Each robot employed 100 particles with a reciprocal proportion
α = 0.06, and used the clustering routine with K = 1. The black lines show the trajectories
completed in the time intervals between snapshots, with the filled black dots representing the
robot positions at the end of the previous snapshots. The red robot was initially localized.

Finally, we note that the constraints given by our approximated detection model p̂
motivate the choice of a clustering algorithm which clusters densely located parti-
cles into common clusters (a condition which is satisfied by Algorithm 4).
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Figure 7(a) shows the Kullback-Leibler divergence between the full and the ap-
proximated detection models p and p̂, calculated from a data set gathered by ten
robots. The more clusters we employ in the clustering method, the smaller the diver-
gence to the true probability density function. This shows that our clustering method
produces a valid representation of the original probability density functions. Figure
7(b) shows the localization performance when employing the clustering method for
a variable number of clusters K. We note that the difference of performance between
maximal clustering (K = 1) and modest clustering (K = 32) is very small. Finally,
to illustrate the localization process, Figure 8 shows eight snapshots based on real
data from an experiment performed over an interval of 126s during which one robot
(in red) is initially localized. Each robot employed 100 particles with a recipro-
cal proportion α = 0.06, and used the clustering routine with maximal clustering
(K = 1). This experiment concludes the validation of our approach by showing how
ten robots are able to converge to correct position estimates in a nevertheless simple,
but effective demonstration scenario.

4 Conclusion

In this chapter, we presented a fully scalable, probabilistic, multi-robot localiza-
tion algorithm based on the Monte Carlo method. Its maximal overall complexity is
O(|N |MK), where |N | is the number of neighboring robots (at a given time, for a
given robot in the system), M the number of particles, and K an adjustable number of
clusters produced by the clustering algorithm. This clustering method has shown to
produce increasingly accurate probability density function representations for large
K, and when employed in practice, has shown to perform well even for very small
K. Furthermore, given the asynchronous paradigm of our collaboration strategy, the
algorithm’s update rate is much higher than the inter-robot message communication
rate. Thus, the number of detected neighbors |N | is in practice no higher than 1,
and the complete routine complexity is reduced to O(MK). Thus, the algorithm is
fully scalable with respect to the number of robots in the system. In addition, the
algorithm poses no communication constraints and shows a graceful performance
degradation in case of message failures. Our approach was experimentally validated
on a team of ten real robots.

Finally, we note that a continuation of this work should consider the following
aspects in particular. We evaluated our approach on a baseline experimental setup,
where the belief of a robot’s position is well represented by a single particle cluster.
Hence, more complex scenarios, including obstacles and multi-modal sensor mod-
els, may exhibit a significant spread of performance when clustering. In such cases,
a trade-off between the number of clusters K and accuracy must be determined.
Also, in severely multi-modal distributions, the construction of the cluster centroid
must be revisited. In the same line of thought, more work needs to be done to ex-
plore arbitrarily distributed, non-Gaussian detection models as an extension to our
generalizable framework.
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Using Torque Redundancy to Optimize Contact
Forces in Legged Robots

Ludovic Righetti, Jonas Buchli, Michael Mistry,
Mrinal Kalakrishnan, and Stefan Schaal

Abstract. The development of legged robots for complex environments requires
controllers that guarantee both high tracking performance and compliance with the
environment. More specifically the control of contact interaction with the environ-
ment is of crucial importance to ensure stable, robust and safe motions. In the fol-
lowing, we present an inverse dynamics controller that exploits torque redundancy
to directly and explicitly minimize any combination of linear and quadratic costs in
the contact constraints and in the commands. Such a result is particularly relevant
for legged robots as it allows to use torque redundancy to directly optimize contact
interactions. For example, given a desired locomotion behavior, it can guarantee the
minimization of contact forces to reduce slipping on difficult terrains while ensur-
ing high tracking performance of the desired motion. The proposed controller is
very simple and computationally efficient, and most importantly it can greatly im-
prove the performance of legged locomotion on difficult terrains as can be seen in
the experimental results.
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1 Introduction

We are interested in developing legged robots able to perform difficult tasks in chal-
lenging environments. In order to achieve such a goal, we need controllers that can
guarantee at the same time good motion tracking performance and an adequate con-
trol of the contact interactions with the environment. Tracking performance is im-
portant for tasks requiring agility such as climbing or walking on very rough terrain,
where the robot feet must be placed at very precise location. A certain degree of
compliance is desirable to handle unexpected disturbances. But more importantly,
the controller should also be able to directly optimize contact forces. For example,
a walking robot should minimize tangential contact forces to avoid slipping while
it should control contact forces to redistribute its weight among the different limbs
during climbing tasks to increase the range of possible motions. In this chapter, we
present an inverse dynamics controller for high tracking performance and compli-
ance that ensures an optimal distribution of contact forces by using the redundancy
available in the commands.

Model-based approaches such as inverse dynamics or operational space control
offer an interesting framework for the control of legged robots. Indeed, they can
greatly improve tracking performance while allowing more compliant control since
they require lower error feedback gains. While these methods are standard for ma-
nipulators [13], they are not yet widely used for legged robots. Indeed legged robots
are different from manipulators fixed to the ground because they are under-actuated
due to their floating base1 and they are subject to changing contact interaction with
the environment as their legs move. These differences make the design of inverse
dynamics controllers for legged robots more complex.

Recently, several inverse dynamics controllers were proposed for floating-base
robots subject to contact constraints. These methods compute required torques with-
out measuring contact forces by assuming idealized contact constraints and project-
ing the dynamics into a constraint free space [1,7,11]. The methods proposed in [7]
is of special interest since it does not require a structured representation of the dy-
namics (i.e. no need to compute individual components like the inertia matrix, Cori-
olis, and gravity terms) and mainly relies on kinematic quantities, which makes it
particularly robust to uncertainties in parameter estimation and, additionally, com-
putationally very effective.

Interestingly when there are more than six contact constraints with the environ-
ment, the inverse dynamics problem is under-determined in the sense that there is
an infinite number of torque commands for a constraint-consistent desired motion.
It is the case, for example, when a biped has its two feet on the ground or when
a quadruped robot with point feet has more than 2 feet on the ground. There are
more degrees of freedom for the actuation than for the possible motions due to the
constraints imposed by the contacts. The over-constrained case is very interesting
because there is an infinite number of possible choice of commands to realize a de-
sired motion. In general, redundancy is resolved by minimizing a cost criterion, e.g.,

1 We refer to floating base robots that are not fixed to the ground due to their 6 non-actuated
DOFs that describe the position and orientation of the robot relative to an inertial frame.
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a quadratic cost in the commands as in [7, 10]. We will see in the following that we
can use torque redundancy to directly manipulate the contact forces instead. It will
allow us to create tracking controllers optimal with respect to any combination of
linear and quadratic costs of the contact forces and the commands.

The problem of contact force distribution during locomotion has already been
addressed in the literature [4,6]. Force control approaches have been proposed [3,14]
to directly control the contact forces of a legged robot. These approaches have been
successfully used for the control of biped robots. In general, the manipulation of
contact forces is done as a primary goal, for example to create balance controllers.
A potential desired motion is then treated as a secondary goal. It is in contrast with
our approach that aims at creating tracking controllers able to manipulate contact
forces using torque redundancy, i.e. trajectory tracking is the primary goal of the
controller.

The manipulation of contact forces in the context of inverse dynamics or oper-
ational space control has also been addressed in [12]. In this case, desired contact
forces are explicitly controlled using the torques acting in the nullspace of the mo-
tion. Such an approach is interesting if one has a precise objective for the contact
forces. However it does not provide any optimality result on the force distribution.

Recently we have been investigating how we could use torque redundancy in
inverse dynamics controllers and operational space controllers to optimize contact
forces [8,9]. In this chapter, we present some of the latest developments of our work.
We show how we can create inverse dynamics controllers that are optimal with re-
spect to any combination of linear and quadratic cost in the constraint forces and
in the commands. The controller is computationally simple and robust to parameter
estimation errors, which make it well suited for high performance control of com-
plex robots with a large number of degrees of freedom, such as humanoid robots.
We present several applications of the controller to legged robots. Experimental
results show that for the same desired motion, the use of torque redundancy can
significantly improve the performance of the robot during locomotion. It is worth
mentioning that several additional applications and technical details of this work
can be found in [8].

2 Problem Formulation

We first consider the general problem of inverse dynamics for floating-base robots
under constraints. First we present the constraint model and its assumptions. Then
we present the control law recently derived by Mistry et al. [7] for legged robots and
that we will use in subsequent sections.

2.1 Rigid Body Dynamics Model

Assuming that the robot in contact with its environment obeys rigid body dynamics,
its equations of motion are
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Mq̈+h = ST τ+ Jc
Tλ (1)

under the k constraints
Jcq̈ = b(q, q̇) (2)

where q = [xT
j xT

b ]
T is the vector of joint positions (x j ∈ Rn) and base positions

and orientations (xb ∈ SE(3)), M ∈ R(n+6)×(n+6) is the rigid body dynamics inertia
matrix, h ∈ Rn+6 is a generalized force vector containing all the modeled forces,
including the Coriolis, centrifugal and gravitational forces as well as friction forces
in the joints. τ ∈ Rn is the actuation vector and S = [In×n 0n×6] ∈ Rn×(n+6) is
the joint selection matrix that characterize the under-actuation. Jc ∈ Rk×(n+6) is the
Jacobian of the k constraints with the λ ∈ Rk Lagrange multipliers that correspond
to the constraint forces.

Following the ideas from [15] we expressed the constraints in acceleration form
(i.e. as given in Eq. 2). Holonomic constraints can be expressed by differentiating
them twice and non-holonomic constraints by differentiating them once. We assume
in the following, without loss of generality, that Jc is full row rank, in the sense that
all constraints are linearly independent. If it is not the case then one can easily
find a reduced number of independent constraints, for example by using the SVD
decomposition of Jc.

Example 1. If we assume that the position of the point feet of a legged robot are
given by xc, then the constraints that the feet do not move relative to the ground can
be written as xc = constant or equivalently by ẋc = 0. Relating this to the motion
of the joints of the robot using the Jacobian of xc we have Jcq̇ = ẋc = 0, which we
differentiate once again to get Jcq̈ =−J̇cq̇.

We assume that the movement plan of the robot is expressed by desired joint accel-
erations that are constraint consistent, i.e., Equation (2) with q̈ = q̈d holds. These
accelerations will be satisfied if and only if they are of the form

q̈d = JG
c b+(I− JG

c Jc)q̈0 (3)

where JG
c can be any generalized inverse [2] of Jc, i.e. a matrix such that JcJG

c Jc =
Jc. Here, q̈0 is an arbitrary acceleration vector and (I− JG

c Jc) projects these accel-
erations into the null space of the constraints.

The general problem of inverse dynamics is then to compute the torques τ such
that they will achieve the desired accelerations q̈d . The range of unconstrained
movements lies in a n+6− k dimensional space while the dimension of the control
vector is n. Therefore we can distinguish three cases for inverse dynamics depending
on the number of constraints:

• k < 6, the system is underactuated since there are more dimensions of movement
than dimensions of actuation. There is at most one solution to the inverse dy-
namics problem: for a solution to exist, the desired accelerations must not only
be constraint consistent, they moreover need to be consistent with the dynamics
of Eq. (1). For example one can think of the case of no constraints, when a cat is
falling and cannot orient its body independently from moving its joints.
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• k = 6, the system is fully actuated. There is exactly one solution provided that the
desired accelerations are constraint consistent. This case is similar to the inverse
dynamics problem of a manipulator fixed to the ground.

• k > 6, the system is overconstrained. There is an infinite number of solutions
for τ that will achieve perfect tracking of q̈d . It is the case, for example, when a
humanoid has both feet flat on the ground, or with one foot and one hand in flat
contact with the environment or when a quadruped with point feet has more than
two feet on the ground.

In the following, we only consider the overconstrained case (k > 6) since it is the
only case where torque redundancy can be used to optimize constraint forces.

2.2 Inverse Dynamics Solution Using Orthogonal Projections

By using orthogonal projections, Mistry et al. [7] proposed recently an efficient way
to compute the inverse dynamics of a constrained under-actuated system without
the need to measure contact forces. More precisely the authors use the QR decom-
position of the constraint Jacobian Jc

T = Q
[
RT 0

]T
, where Q ∈ R(n+6)×(n+6) is an

orthogonal matrix (i.e. QQT = I) and R ∈ R6×6 is an upper triangular invertible
matrix. If we decompose Q = [Qc Qu] into the constrained, Qc ∈ R(n+6)×k, and un-
constrained, Qu ∈ R(n+6)×(n+6−k), components, the general solution for the inverse
dynamics torques given desired accelerations q̈d can be written as

τ(W,τ0) = QT
u ST QT

u (Mq̈d +h)+ (I−QT
u ST QT

u ST )W−1τ0 (4)

with generalized inverse

QT
u ST = W−1SQu(QT

u ST W−1SQu)
−1 (5)

where W ∈ Rn×n is a symmetric positive definite matrix and τ0 is an arbitrary in-
ternal torque – τ0 is premultiplied by a projection matrix that guarantees that τ0 can
only create internal forces, but no movement.

Moreover the resulting constraint forces can be predicted by

λ = R−1QT
c (Mq̈d +h−STτ) (6)

Remark 1. In the case where k= 6, there is only one solution and QT
u ST =(QT

u ST )−1

and the nullspace is empty. When k < 6, there is at most one solution and QT
u ST =

(QT
u ST )+, where ()+ denotes the Moore-Penrose generalized inverse and the null-

space is also empty.

We note that the torque control law τ(W,τ0) is parametrized by a weight matrix
and an internal torque vector. It is this parameterization that can be exploited to
resolve torque redundancy. One result that is already known is that τ0 = 0 leads
to the minimization of the cost τT Wτ at each instant of time [7]. We show in the
following how we can do the same for costs in the constraint forces.
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3 Minimization of Constraint Forces

In the previous section, we have presented an idealized way of describing constraints
using acceleration equalities. However using equalities offers a limited representa-
tional capability and cannot capture important aspects such as physical limitations
on the constraint forces that can be generated. For example, in the context of a
constraint that enforces a foot to stay on the ground, we cannot represent the fact
that ground reaction forces should be inside the cone of friction to avoid slipping,
which means that the ratio between forces tangential and normal to the contact must
satisfy an inequality. We can immediately see that including such inequalities for
the inverse dynamics problem will have the consequence that we will not be able
to solve the inverse dynamics problem without a (possibly complex) iterative opti-
mization algorithm. This is in contrast to the simple analytical solution presented in
Eq. (4).

Another solution would be to directly minimize a cost in the constraint forces
that would take into account those inequalities implicitly. If we can get the torque
distribution that minimizes such a cost, then, implicitly, it will try to find a solution
that tends to fulfill the inequalities. Another advantage is that one does not need to
know the exact model of the contact, e.g., the friction cone. For example minimizing
a cost that penalizes the tangential forces during contact will ensure that the robot
minimizes slipping for all sizes of friction cones, i.e., the controller will act as con-
servative as possible towards slipping. While it is possible that such an approach
finds a solution that violates the constraints even if a correct solution exists, we will
see in the next section that it is rarely a problem in practice. A detailed discussion
on limitations and advantages of this approach can be found in [8].

3.1 General Result

We now present the general result used to construct controllers that minimize any
combinations of linear and quadratic costs in the contacts and in the commands.

Theorem 1. The inverse dynamics controller (Eq.4) that minimizes the cost

1
2
τT Wττ+bT

τ τ+
1
2
λ T Wλλ +bT

λ λ (7)

is chosen by setting

W = Wτ +SWcST (8)

τ0 = −bτ +SWc(Mq̈+h)+Sbc (9)

where

Wc = Q
[

R−T WλR−1 0
0 I

]
QT , (10)

bc = Q
[

R−T

0

]
bλ , (11)
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JT
c = Q

[
R
0

]
is the QR decomposition of the constraint Jacobian and Wλ is such

that Wτ +SWcST is symmetric positive definite.

We omit the proof as it can be found in [8] with more technical details. The result
provides us with a way to directly and explicitly optimize at the same time both
command costs and constraint forces using torque redundancy. The result is very
general as it can be applied for any type of constraints expressed in the form of
Equation (2) and for any combination of linear and quadratic costs of those con-
straints. The result applies to any control system whose equations of motion can be
written as Equation (1) and is therefore not limited to legged robots.

Remark 2. In addition to its very nice computational properties, the formulation of
the inverse dynamics control as proposed in [7] is very convenient as we can use the
same orthogonal decomposition Q to derive the torque parametrization for optimal
distribution of constraint forces.

Now cost functions can be designed depending on the desired application in order
to manipulate the generated constraint forces and torques.

3.2 Examples of Optimization

In this section we discuss a few controllers that can be derived using the results of
the previous section and some of their properties relevant for applications.

3.2.1 Minimization of Tangential Contact Forces

To ensure proper contact with the ground, one has to guarantee that the ground
reaction forces stay within the friction cones. The friction cone is a purely geometric
constraint that is defined by a friction constant and the orientation of the contact
surface with the contacting foot. In the case of locomotion, to avoid slipping, one
would like to have the reaction forces as orthogonal to the constraint surface as
possible. In other words, the tangential forces should be minimized. Moreover in
the case of a flat foot on the ground, the resulting moment around the foot should
be as small as possible. The cost to optimize should therefore take into account
the orientation of the ground in order to redirect contact forces in a more desirable
direction.

In order to minimize the tangential forces and the moments around the foot, we
propose the following cost

Wλ =

⎡⎢⎣RT
leg1

Wleg1Rleg1 0
. . .

0 RT
legn

WlegnRlegn

⎤⎥⎦ (12)

with
Wlegi = diag(Ktx,Kty,1,Kmx,Kmy,Kmz) (13)
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where Rlegn is a rotation matrix that corresponds to the orientation of the surface
with respect to the inertial frame (i.e. it aligns the reaction forces and moments of a
foot with the orientation of the surface) . Ki are gains associated with the tangential
forces in x,y directions and the moments in x,y,z directions. Here we assume that
the z direction is normal to the ground.

Remark 3. In the case of point feet the matrix Wleg is reduced to its 3×3 upper-left
sub-matrix. The gains Kt and Km must be chosen with appropriate units such that
the summations in the cost are unit consistent. The exact values of the gains need to
be designed specific to the application.

3.2.2 Tracking Desired Contact Forces

Instead of only minimizing constraint forces, we can also manipulate the value of
these forces explicitly in order to create more interesting contacts. For example,
when one wants to manipulate the center of pressure of the feet during walking (in
a case where the feet are not co-planar) or to explicitly regulate force interaction in
specified directions. The previous results allow us to do that very easily. Assume we
have a desired interaction force vector λ d and we want the contact forces to follow
this desired force vector as close as possible. We can then minimize a weighted
square error that measures the performance in tracking

1
2
(λ −λ d)

T K(λ −λ d) (14)

where K is symmetric positive definite. Then, noticing that

1
2
(λ −λ d)

T K(λ −λ d) =
1
2
λ T Kλ +

1
2
λT

d Kλ d−λT
d Kλ (15)

we can create a controller that will optimally track those constraint forces in the
sense that it will minimize the tracking error by choosing the following controller
parameters

Wλ = K (16)

bλ = −λT
d K (17)

It is interesting since we can use the torque redundancy to explicitly manipulate
contact forces and track desired forces. The tracking performance will obviously
be dependent on the desired forces and the redundancy left in the nullspace of the
motion. It means that it will not be possible to track arbitrary forces, however we
are guaranteed to have an optimal performance in terms of the tracking cost.

4 Experimental Results

We now present some experiments in order to illustrate the advantages of using the
previously proposed redundancy resolution scheme. In the following, we apply our
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Fig. 1 The robots used in the simulations: left, SARCOS humanoids, right, Boston Dynamics
Little Dog

approach on two different simulated robots (Figure 1) using different optimization
criteria for the controller as well as a preliminary application on a real quadruped
robot.

4.1 Control of a Humanoid Robot

Our first results are shown on a simulation of the Sarcos humanoid robot (Figure 1)
which is a 34-DOFs human size torque controlled humanoid robot. The main objec-
tive of the experiment is to illustrate in simple examples how the inverse dynamics
controller can manipulate contact forces.

In the experiment, we keep the robot in a desired posture while minimizing tan-
gential ground reaction forces together with the moment generated around the feet
(as described in Section 3.2.1). We compare the resulting contact forces with the
original inverse dynamics controller that minimizes the total command cost τT τ . In
this static case, the contact forces are only generated through actuation and gravity.

We tested both controllers in two contexts: in a symmetric posture on a flat ter-
rain and on a terrain where the robot is stepping on a 10 cm box. The results of
the experiments are shown in Figure 2. We notice that on the flat surface, both con-
trollers generate similar contact forces and moments. However in the asymmetric
case, when the robot is on a step, we clearly see a difference in force and moment
distributions. The original controller generates unnecessary tangential forces and
moments to keep its posture while the other controller minimizes the contact con-
straints. We can clearly see the advantage of such a controller when stepping for
example on an object that is not bolted to the ground and could potentially move.

4.2 Simulation of Quadruped Locomotion

Next, we show the performance of our torque controller in a more dynamic situation
where we used a simulation of the LittleDog robot for quadruped locomotion. The
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(a) Flat terrain experiments
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(b) Step experiments

Fig. 2 Results of the first experiment with the humanoid simulation. We depict the contact
forces split into normal forces and absolute tangential forces (upper graphs) and show the 3
moments created around the feet (middle graph) and a snapshot of the posture of the robot in
each experiment. The regular inverse dynamics controller is plotted in blue and the controller
minimizing contact forces is plotted in red. For each experiment we set Ktx = Kty = 1000N−2

and Kmx = Kmy = Kmz = 2000Nm−2.
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planning of desired joint positions, velocities and accelerations is done following the
method proposed in [5]. We use a ZMP-based algorithm to plan the desired center of
gravity (COG) motion of the robot. The COG plan is completed with a world space
target for the position of the foot of the swing leg. These kinematic trajectories are
converted into joint space reference trajectories via an analytical inverse kinematics
model, which exists for this robot due to its 3 DOF legs.

In order to achieve asymptotically stable tracking of trajectories in joint space,
an error feedback command in joint-space is added to the feedforward command
computed by the inverse dynamics law. The resulting reference command, given
desired qd , q̇d and q̈d , is therefore

τ = τ(W,τ0)+PID(qd , q̇d) (18)

where PID corresponds to a joint space PID error feedback controller.
We use a physical simulation of the Little Dog robot (Fig. 1). In order to stay

as close as possible to reality, we simulate the controller as it would be executed
on the real robot. The real robot has an on-board controller running at 400 Hz that
generates the PID commands and can add a feedforward torque command (i.e. the
inverse dynamics torque in our case). The desired positions, velocities and feedfor-
ward commands are generated on a host computer in a different controller that is
running at 100 Hz. It must be noted that the inverse dynamics controller is therefore
running at a relatively slow bandwidth for torque control and is much slower than
the PID control loop. Therefore it can have a negative effect on the actual perfor-
mance of the simulated controllers as opposed to what would be produced by an
idealized or perfect model.

In order to show the performance of our method, we tested the locomotion of the
robot with the controller we proposed as compared to two other controllers. First the
original inverse dynamics controller that minimizes the total torque command τT τ ,
and second a PID controller without inverse dynamics but with gains twice as high
as the other controllers. The higher gains are required to maintain sufficient nominal
tracking performance.

We systematically tested the performance of locomotion for these three con-
trollers on a flat, level surface with different coefficients of static friction and on
a 0.25 radians sloped surface. For each of the experiments, we measured the track-
ing performance by computing the root mean square (RMS) tracking error in joint
space. Furthermore, the distribution of ground reaction forces at each leg is recorded
and the average amount of leg slipping per stance phase is computed.

In Figures 3 and 4, we illustrate the results of these experiments. We show the
results only for the front left leg since the results for the other legs are qualitatively
the same. We can notice that in all the experiments, the controller we proposed
always achieves the best performance in terms of both low tracking error and low
slipping. As expected, we see better tracking performance for both inverse dynamics
controllers with low PID gains as compared to the high-gain PID controller. We must
also note that, in addition, we realized a compliant control of the robots, which is
not possible for the PID controller.
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Fig. 3 Experiments on flat terrain. The figures on the left show the performance measures
for the 3 different controllers (cf. text). The figures on the right show the distribution of the
contact forces normal to the terrain as a function of the absolute value of the corresponding
tangential contact forces. The solid lines indicates the median of the distribution and the
dashed line the interquartile range of the distribution (i.e. 50 % of the distribution lies between
the dashed lines). For the controller minimizing contact forces we used Ktx = Kty = 10N−2

in all experiments.

On flat ground, our controller minimizing tangential forces leads to very little slip
(approx. 2mm), which for practical purposes can be viewed as negligible. There are
two sources that lead to this tracking error despite a perfect rigid body model used
in the controller and a deterministic simulation. First, the assumption of holonomic
ideal constraints is not fulfilled since the simulation uses a penalty method (i.e. a
spring-damper model) to model ground contact and friction. Second, there might be
some numerical inaccuracies building up due to numerical integration, even though
this can generally be assumed to be very small.

It should be noted that the amount of slip for the other controllers increases as
the friction coefficient is lowered and goes up to more than 1.5 cm for the lowest
chosen friction coefficient of 0.1. It seems that the PID controller degrades less than
the normal inverse dynamics when lowering friction.

We also see that the typical distribution of ground reaction forces is more verti-
cal for the controller optimizing the tangential forces and that the variation of this
distribution is also lower. We can therefore conclude that the controller generates
contact forces that are oriented more suitably for walking without slipping.
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Fig. 4 Experiments on the slope. The figures on the left show the performance measures
for the 3 different controllers (cf. text). The figures on the right show the distribution of the
contact forces normal to the terrain as a function of the absolute value of the corresponding
tangential contact forces. The solid lines indicates the median of the distribution and the
dashed line the interquartile range of the distribution (i.e. 50 % of the distribution lies between
the dashed lines). For the controller minimizing contact forces we used Ktx = Kty = 10N−2

in all experiments.

On the slope, the results of the performance measured by the slip are even more
distinct. The controller having optimal distribution of forces slips less than 6 mm
for a friction coefficient higher than 0.5, while the other controllers slip up to 2 to
3 times more for the same simulation conditions. We note that the robot controlled
using the original inverse dynamics controller was not able to climb slopes with
static friction lower than 0.42 (i.e. the robot would slip and eventually fall) while
the other controllers could climb a slope with static friction as low as 0.33. The
amount of slipping is still lower for the proposed controller but we note that the
high gain PID controller has similar performance for the lowest friction coefficient
– again we would like to point out that, however, the PID controller is not compliant
and rather stiff.

Again, the distribution of forces on the ground varies less and is more vertically
oriented in the case of the controller using the optimal distribution of forces.
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4.3 Application to Real Robot

In this section we present experiments with the real Little Dog robot. We ran the
locomotion controller with the original inverse dynamics controller minimizing the
torque command and with the new controller optimizing tangential ground reaction
forces. The terrain was composed of a level flat board and a slope of 0.46 radians,
which is higher than the experiments done in simulation – the actual robot turned out
to be more capable than our physical simulator. The controller was run at 3 different
speeds with a stepping period between 3 to 4 seconds. We were not able to see
significant behavioral differences, i.e. we could not see a case where one controller
was able to make the robot go up the slope while the other would not. However,
we consistently noticed that when using the controller minimizing the tangential
forces the robot would reach the top of the slope faster as can be seen in Figure 5.
We observed this behavior in all the experiments we ran. It is interesting since the
planned desired trajectories were the same for both controllers.

When looking at the amount of slipping, we can see a consistent decrease in the
amount of slipping with the controller using optimal distribution of contact forces,
as we show in Figure 6. The amount of slip is computed accurately thanks to a
motion capture system that tracks the position of the robot. We notice that the robot
is slipping on average 30% less when using the new controller.

We also looked at the distribution of contact forces when the robot was walking
on level ground (Figure 6). While this data has to be interpreted cautiously in view
of the high level of noise in the force measurements, we clearly see a trend for a
better distribution of forces when using the new proposed controller.

While we see a clear trend of improvement of locomotion on the real robot, this
improvement was not sufficient enough to be able to see the behavioral differences

Fig. 5 Snapshots of a typical experiment. The figure is organized as two rows of snapshot,
time going from left to right. There is approximately 2.5 seconds between each frame. For
each frame, the upper graph is the experiment using the controller with minimization of
tangential forces and the lower one corresponds to the controller minimizing the command
cost. We notice that due to a reduced amount of slipping, the robot using the minimization of
tangential forces reaches the top of the slope faster. The planned desired trajectories are the
same for both robots.
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controller

observed in simulation. However a few limitations of the robotic platform can ex-
plain the quality of the results:

• As we discussed in the previous section, our inverse dynamics controller is run-
ning at a 100Hz bandwidth on a host computer. Such a low bandwidth of control
clearly limits the possible performance of the robot. For example, on a modern
torque controlled humanoid robot such as the Sarcos humanoid, one can expect
a 1kHz bandwidth of control.

• There are no torque sensors on the robot to close a torque feedback loop – torque
control is inferred from current control. Therefore any error in the model convert-
ing torques into motor currents will have a negative impact on the actual torques
applied to the robot compared to the desired ones.

• The quality of the dynamics model can also play a role. We evaluated the dynam-
ics model of the robot in a similar way we did in the previous section, however it
turns out that the dynamics is mainly dominated by friction in the joints, which is
a local (decentralized) effect that cannot be re-distributed in a way as suggested
by our controller that exploits actuation redundancy. We note that in our experi-
ment roughly 40 to 50% of the total command is due to the PD controller, which
is rather high.

These limitations are not fundamental ones and can easily be overcome in more ad-
vanced robotic platforms with joint-level force sensing and high control bandwidth.
Our current results then suggest that the proposed controller should perform even
better on these platforms.

5 Conclusion

In this chapter we showed how torque redundancy could be exploited to optimize
contact forces in inverse dynamics controllers. The proposed redundancy resolution
scheme allows to minimize any combination of linear and quadratic costs in the
contact constraints and the commands. Given a desired trajectory, the controller is
optimal at each instant of time. The resulting controller is surprisingly simple as it
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merely involves the inclusion of a weighted pseudo-inverse and an internal torque
vector in the nullspace of the motion. It can therefore be implemented even on real-
time computing hardware with modest computational power. Moreover it can be
shown that the same controller can be used for whole-body controllers based on the
operational space control framework [8].

We proposed to use this result either to track desired contact force trajectories or
to minimize tangential contact forces during legged locomotion. Simulation results
show that, given desired trajectories, we can exploit torque redundancy to achieve
high tracking performance while guaranteeing a better distribution of contact forces
and therefore better locomotion on difficult terrains. This constitutes an interesting
complement to planning algorithms from the control point of view. Our results on
the Little Dog robot, which is not an ideal platform for torque control, also show
that the proposed controller is not a pure theoretical result but is realistic enough
to be used on real systems. Such results are very encouraging as we expect to see
much more improvement on a properly torque-controlled platform.
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Exploiting Heterogeneity in Robotic Networks

Nicola Bezzo, R. Andres Cortez, and Rafael Fierro

Abstract. In this chapter we consider the problem of coordinating robotic systems
with different dynamics, sensing and vision capabilities, to achieve a unison mission
goal. An approach that makes use of a heterogeneous team of agents has several ad-
vantages when cost, integration of capabilities, or possible large search areas need
to be investigated. A heterogeneous team allows for the robots to become “special-
ized” in their abilities and therefore accomplish sub-goals more efficiently which in
turn makes the overall mission more efficient. We first propose a prioritized search
algorithm combined with communication constraints to provide a decentralized pri-
oritized sensing control algorithm for a heterogenous sensor network that maintains
network connectivity. By specifying particular edge weights in the proximity graph,
we provide a technique for biasing particular connections within the heterogenous
sensor network. Then in the second part of the chapter we show a hierarchical ap-
proach to optimally allocate the tasks of a mission to specific agents. We develop a
decentralized algorithm based on artificial physics and potential functions to guide
the heterogeneous robotic network in the environment while maintaining connec-
tivity constraints. Simulations and an experimental result are provided to show the
applicability of the proposed frameworks.

1 Introduction

In recent years we have witnessed an increase in the use of mobile robots for dif-
ferent applications spanning from military to civilian operations. Search and rescue
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missions, disaster relief operations, and surveillance are just few examples of sce-
narios where the use of autonomous and intelligent robotic systems is preferred
over the use of human first responders. In such operations wireless communication
needs to be reliable over the robotic network to maneuver the unmanned vehicles
and transmit information. We are interested in heterogeneous robotic systems with
agents having different dynamics, sensing behaviors, and functionalities. For in-
stance, aerial vehicles have the capability to cover an area faster, while flying over
obstacles, but cannot have a detailed view of mines, caves, or buildings where line-
of-sight is lost. On the other hand, ground vehicles, like wheeled or multi-legged
robotic platforms, can explore a limited area but with much more accuracy. In this
work we exploit the cooperative coordination of ground and aerial robots to perform
operations impossible by using only a single type of agents. Specifically, here we
consider two scenarios. In the first case study, we create a theoretical approach to
build the connectivity links between communication relay and sensor agents. Then
we combine a prioritized search algorithm to send sensor agents to areas with a high
probability of having good information. In the second part of this chapter, we en-
vision a scenario, depicted in Fig. 1, in which an aerial vehicle carries a crawling
robot for fast deployment in a target place. After the crawling robot is deployed,
it explores an area inaccessible by the quadrotor (i.e., a cave, a mine, small target,
etc.). The aerial transportation system together with other mobile relays act as com-
munication transceivers to tether the signal between a fixed base station and the
exploring crawler on the ground.

When dealing with such systems, the communication within the network is
fundamentally important due to the uncertainties of the wireless channels. In this
chapter we pursue strategies to enhance the connectivity of a network made of
heterogeneous robotic agents and a fixed base station. We are motivated by those
situations where the communication infrastructure is not available or suddenly
discontinued (e.g., earthquakes, hurricanes, tornados, etc.) and in which the envi-
ronment is partially known. In such scenarios, it is necessary to have a fast deploy-
ment of communication nodes to cover and search unknown and possibly hazardous
areas.

(a) (b) (c)

Fig. 1 (a) A Hummingbird quadrotor [1] transporting a OctoRoACH crawling robot [2]; (b)
Deployment of the crawler using a quadrotor; and (c) An example of aerial mobile relay with
four directional antennas.
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1.1 Related Work

The use of heterogeneity in robotic applications is a recent topic of research that is
attracting several researchers because of the challenges created when dealing with
multi-agent systems having different dynamics, sensing, and manipulation capa-
bilities. Authors in [3] consider formally a heterogeneous system and analyze its
properties based on graph coloring techniques to assign colors to different types of
agents. Similar to the work presented in this chapter, the authors in [4] use agents
with different dynamics and capabilities to execute multiple missions in a decentra-
lized fashion considering task sequencing and a consensus-based technique.

Wireless communication in robotics is one of the main aspects to guarantee au-
tonomous and decentralized swarming behavior. The robotics and control commu-
nity are very active in investigating the integration of communication in robotics
applications, because the uncertainties found in wireless channels can compromise
the performance of the entire multi-agent system. For instance, the authors in [5, 6]
formally analyze the communication channel properties and use them to optimally
navigate autonomous agents to improve some communication performances such
as the Signal-to-Noise Ratio (SNR), Bit Error Rate (BER) and Capacity. In [7], the
authors propose a modified Traveling Salesperson Problem to navigate an underwa-
ter vehicle in a sensor field, using a realistic model for acoustic communication. In
[8], a Rician fading model for the communication channel is utilized in a pursuit-
evasion game with two mobile agents moving in a cluttered environment. In [9], the
authors optimize routing probabilities to ensure desired communication rates while
using a distributed hybrid approach. In [10], we tether a chain of mobile routers to
keep line of sight communication between a base station and a user that moves in a
concave environment. Authors in [11] show extensive experimental results in which
the communication throughput is optimized by making small variations in the po-
sitions of the mobile agents in the environment. A stop-time policy is proposed in
[6] to control a robot to adjust its speed based on wireless link quality. Authors in
[12] use aerial vehicles as relays to build the communication infrastructure for a
team of ground vehicles by designing a gradient based controller that incorporates
the Signal to Interference Ratio (SIR). In [13], the authors present a decentralized
framework to maintain a graph connected by using a gradient-based control. Also,
to demonstrate that the graph is connected the authors use the notion of algebraic
connectivity. Similarly to the work presented in this chapter, the authors in [14]
present a multi-agent system with interaction between aerial and ground vehicles
based on task assignment for complex missions. In [15], the researchers present a
set of algorithms to repair connectivity within a network of mobile routers and then
show outdoor experimental results to validate their algorithms, while, in [16] an
agent attempts to estimate the network topology by using only local information.
Work in [17] shows that a group of UAVs, by exploiting antenna diversity, follows
the gradient of the signal available in a certain environment.

In [18], the authors utilize a spring-mass system analogy together with graph
theory in order to demonstrate stability of a swarm of robots that move in a decen-
tralized fashion to cover an area while maintaining connectivity. Similar work using
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graph theory is proposed in [19], in which the author use the notion of Neighbor-
Every-Theta (NET) graph to build connections among the nodes of a homogeneous
network of mobile agents. More recently, the authors in [20] provide a survey about
graph connectivity in mobile robot swarms, discussing different approaches and al-
gorithms to maintain and optimize connectivity among mobile robot networks, from
a graph-theoretical point of view.

Finally, from a sensing perspective, authors in [21] present an optimization
framework to maneuver aerial vehicles equipped with cameras to perceive a certain
area based on field of view properties. In this chapter we use a similar optimiza-
tion approach to decide which agent or combination of agents need to be used to
accomplish a certain task, based on the environment knowledge, sensors and type
of vehicles available at the beginning of a mission.

The remainder of this chapter is organized as follows. In Section 2 we define
the heterogeneous system and formulate the connectivity problem considering relay
and sensor agents. Then we present the algorithms necessary to move the heteroge-
neous system using a prioritized search method. In Section 3 we analyze a similar
scenario but we use a task allocation algorithm and decentralize control laws based
on artificial physics and potentials to optimally move the heterogeneous system in
a partially known environment. In both case studies, we present simulation results
and for the second scenario also an experiment to validate the proposed framework.
Finally, we draw conclusions in Section 4.

2 Heterogeneous Connected Robotic System

In this section we formally give a definition of heterogeneous robotic network fol-
lowed by the problem formulation and connectivity constraints used to minimize
motion constraints.

Definition 1. (Heterogeneous System): A network of N robots is called hetero-
geneous if the members of the network are interconnected, act together toward a
common objective and produce results impossible to obtain by the action of homo-
geneous agents, and if the following conditions hold:

• one or more agents in the network have different motion dynamics with respect to
other agents in the system;
• one or more agents in the network have different sensing constraints with re-

spect to other agents in the systems, but all agents have wireless communication
capabilities.

2.1 Problem Formulation

We begin by considering a heterogeneous team of N agents consisting of Ng sen-
sing agents, which we will consider for this application as Unmanned Ground Ve-
hicles (UGVs), and Nr relay agents, which we will assume are Unmanned Aerial
Vehicles (UAVs), in two and three dimensions. Assume the Ng sensing agents are
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equipped with sensors capable of sensing an environmental phenomena within a fi-
nite radius Ss and communicating within a finite radius Cc(x) ≤ Ccmax that depends
on the position of the robots. Also let us assume that the Nr relay agents are capa-
ble of communicating over a finite radius Crc such that Crc > Ccmax i.e., the relay
robots are better equipped for communication than the sensing agents and the relay
robots’ communication range is not dependent on location. Let W denote the area
of interest and assume that W is a simple convex polygon with boundary ∂W , in-
cluding its interior. Define Cobs as the union of all obstacles in the region W , and
let Wofree = W \Cobs be the area within W that is free of obstacles. We define
the probability of detection map M(x), which reflects the probability of detecting
an environmental phenomena over the area to be searched [22]. The goal here is to
find the set of feasible policies for the heterogeneous network such that the sensing
agents are able to cover M(x) while maintaining connectivity among the network.

2.2 Communication Constraints

We formulate the connectivity constraint set for each particular communication link
possibility of our heterogeneous network based on the geometry of the communica-
tion radii. For the following definitions we will use B(x,r) to denote a closed ball
of radius r centered at x in R3.

Definition 2. (Relay/Sensor or Relay connectivity constraint set) Consider two
agents, one relay agent i located at position xi and one sensing or relay agent j
located at position x j such that the euclidean distance ||xi− x j|| ≤ Crc. Then the
connectivity constraint set of agent i with respect to agent j is

ϒdrs (xi,x j) =ϒdrr (xi,x j) = B
(

xi + x j

2
,
Crc

2

)
. (1)

Definition 3. (Sensor/Sensor connectivity constraint set) Consider two sensing
agents, one agent i located at position xi and one agent j located at position x j

such that ||xi−x j|| ≤ Cc. Then the connectivity constraint set of agent i with respect
to agent j is

ϒdss(xi,x j) = B
(

xi + x j

2
,
Cc

2

)
. (2)

Definition 4. (Connectivity constraint set for relay agent w.r.t. heterogeneous net-
work) Consider a group of agents containing both sensing and relay agents located
at X = {x1,x2, . . . ,xN }. Then the connectivity constraint set of relay agent i with
respect to all other agents in the group is

ϒdhr(xi,X ) = {p ∈ϒdrr(xi,x j)|q ∈ X \{xi} s.t. ||q− xi|| ≤ Crc}. (3)
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Definition 5. (Connectivity constraint set for sensor agent w.r.t. heterogeneous net-
work) Consider a group of agents containing both sensing and relay agents located
at X = {x1,x2, . . . ,xN }. Then the connectivity constraint set of a sensor agent i with
respect to all other agents in the group is

ϒdhs(xi,X ) =Λss∩Λsr. (4)

where
Λss = ∩n

j=1ϒss(xi,x j), where x j ∈ sensors, (5)

Λsr = ∩m
k=1ϒsr(xi,xk), where xk ∈ relays. (6)

The connectivity constraint sets of Definitions 2 - 5 describe the set of allowable
positions that each robot may take such that the communication network will remain
connected. Thus the connectivity constraint sets define the feasible motion for each
individual robot to remain connected with the network.

2.3 Heterogeneous Proximity Graph

Due to the heterogeneity of our sensor network, we must define an appropriate pro-
ximity graph. As a reminder, a proximity graph describes connections between a set
of vertexes based on their relative distances.

Definition 6. (Proximity Graph, [23]) Let Q⊂R
n. A proximity graph G associates

to a set of distinct points X = {x1, . . . ,xN } ⊂ Q, an undirected graph with vertex
set X and whose edge set is given by EG (X )⊆ {(xi,x j) ∈ X ×X |xi �= x j}.
We see that due to the heterogeneity of our network, the edge set of our proximity
graph should depend on the agent type. The following definition describes how the
edge set should be created for our heterogeneous proximity graph.

Definition 7. (Heterogeneous r(x)-disk graph)Two agents xi and x j are neighbors if
they are located within a distance r(x) = Cc if both xi and x j are sensing agents or
r(x) = Crc if one of the agents is a relay agent, i.e.,

(xi,x j) ∈ EGdisk(r(x))
(X ) (7)

if

{ ||xi− x j|| ≤ Cc and xi, x j both sensing agents
||xi− x j|| ≤ Crc and xi or x j is a relay agent.

(8)

In the Gdisk(r(x))(X ) graph, edges depend on the agent distances as well as agent
connection combinations.

The heterogeneous r(x)-disk proximity graph, Gdisk(r(x))(X ), allows us to repre-
sent the network topology of our heterogeneous system. It is seen that depending
on the configuration of the network there may exist heavy redundancy in the con-
nections. This redundancy comes at the cost of more constraints on each agent,
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therefore reducing the size of the set of possible inputs that guarantee connectivity.
This reduction stems from the fact of the intersection of multiple sets.

Let us now define the weighted complete graph which we will denote as G
throughout the rest of this section.

Definition 8. (Weighted Complete Graph, G ) Let Q ⊂ Rn. The weighted complete
graph G associates to a set of distinct points X = {x1, . . . ,xN } ⊂ Q an undirected
graph with vertex set X and whose edges e = (xi,x j) ∈ EG (X ) have the following
weights w(e),

w(e) =

{ ||xi− x j||+Crc if xi, x j both sensing agents
||xi− x j|| if xi or x j is a relay agent.

(9)

2.4 Minimizing Motion Constraints

Given a formal way of representing the motion constraints for each agent with re-
spect to the heterogeneous group, we are now left with trying to minimize the con-
straints (links) in such a way that we expand the input set the agents can choose
from, that still guarantees connectivity at the next time step. One solution is to take
Gdisk(x))(X ) and run a minimum spanning tree algorithm to determine a subgraph of
the r(x)-disk graph that has the minimum number of connections needed to remain
connected [24, 25].

2.4.1 Shaping the Network Configuration

To help bias relay/sensor connections over sensor/sensor connections with respect
to the Minimum Spanning Tree (MST) we now formulate a weighting factor for
sensor/sensor connections. From definitions (2) and (3) we see that the motion con-
straint set for relay/sensor connections is larger than sensor/sensor connections due
to a bigger communication radius. With the help of Fig. 2(a) we look at the scenario
of one relay and two sensing agents. In terms of the MST, all connections that have
a possibility of being biased can be broken down in this way. For ease of notation
we will refer to the MSTGdisk(r(p))

as just the MST.

Let ||xi−x j||= l, ||xi−xk||= l1 and ||x j−xk||= l2. Let us assume that l < l1 ≤
Crc and l2 ≤ Cc. From the construction of the MST, the solid edges between xi, x j,
and xk in Figs. 2(a-b) will be chosen since l+ l2 < l1 + l2 and l + l2 < l + l1.

Let ε > 0 denote the minimum distance between two sensing agents, i.e., physical
footprint. Under other circumstances ε can also be considered the threshold distance
where two sensing agents should communicate directly. To bias the relay/sensor
connection (dotted line) a weighting factor ξ1, must be constructed such that when

l2 = ε , ξ1l2 ≥ Crc. Defining ξ1 =
(

Crc
ε + δ1

)
with δ1 ≥ 0 we get the following
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ξ1l2 =

(
Crc

ε
+ δ1

)
l2,

ξ1l2 = Crc + δ1ε,
ξ1l2 ≥ Crc.

Therefore, with the connection weighting factor ξ1 we now have that l+ l1≤ l+ξ1l2
and l+ l1 ≤ l1 + ξ1l2.

Weighting the sensor/sensor connection (edge) by a factor of ξ1 allows us to bias
the MST to choose the relay/sensor connections.

(a) (b)

Fig. 2 (a) One relay agent (square) and two sensing agents (circle) used to formulate weight-
ing factor for sensor/sensor connections and (b) Example of the MST for thirteen agents with
no connection weights.

In a similar fashion we can bias relay/relay connections. This is advantageous
for certain mission objectives or when large amounts of data need to be transferred
directly to a relay node. It may not be efficient or even possible to send large amounts
of data through a sensing node to reach another relay node.

Using Fig. 3(a), as previously stated let us assume the minimum distance between
any two agents is ε > 0. Let us also assume that from Fig. 3(a) that l, l1, l2 < Crc and
for convenience assume l1 < l2 < l. From the point of view of the MST the solid
edges between xi, x j, and xk in Fig. 3(a) will be chosen since l1 + l2 < l1 + l and
l1 + l2 < l + l2.

To bias direct relay/relay connections (Fig. 3(a) dotted line), we use a weighting
factor ξ2 =

ε
l . Choosing ξ2 in this way insures that a direct relay/relay connection

will be chosen over the multi-hop connection by the MST algorithm in Fig. 3, i.e.,
relay→ sensor→ relay. This is seen from the fact that,

ξ2l =
ε
l

l,

ξ2l = ε.
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(a) (b)

Fig. 3 (a) Figure of two relay agents (squares) and one sensing agent (circle) used to formu-
late weighting factor for relay/relay connections and (b) Example MSTCW for thirteen agents
with both sensor/sensor and relay/relay connection weights. Notice the relay/sensor connec-
tions are chosen over sensor/sensor connections and relay/relay connections are chosen over
relay/sensor connections.

Therefore, now the distance between xi and xk is ε from the point of view of the
MST algorithm. Since the minimum distance of any two agents is ε , the MST will
choose the direct relay/relay link. Fig. 3(b) shows the network configuration using
both ξ1 and ξ2 as connection weights (MSTCW ).

2.5 Prioritized Sensing with Connectivity Constraints

In this section we combine our prioritized sensing behavior with the heterogeneous
connectivity constraints to create an algorithm that can send sensing agents to areas
with the highest possibility of having good information while also guaranteeing that
the heterogenous network will remain connected. We also evaluate the performance
of the heterogeneous algorithm against its homogeneous equivalent to determine the
usefulness of heterogeneity within our approach.

2.5.1 Feasible Motion Sets: Sensing Agents

To combine the prioritized sensing objective with the network connectivity con-
straints we need to merge our probability of detection map, (M(x)), and the con-
nectivity constraint sets we previously computed. To do this we refer back to the
prioritized sensing algorithm presented in [22], particularly the set Di, which is the
set of points within robot i’s Voronoi partition not occupied by obstacles. For ease
of notation let us defineϒi as the connectivity constraint set for robot i as described
in Section 2.2. Let us now define the feasible motion set, Mi, for robot i as the
following

Mi = Di∩ϒi. (10)
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The feasible motion set Mi for robot i is the set of points within its Voronoi partition
which is not occupied by obstacles and is limited to the points where network com-
munication links can be maintained. Now we have a set, Mi, which we can optimize
over, that will guarantee network connectivity throughout the search process. The
updated prioritized search algorithm which takes into account network connectivity
is outlined in Algorithm 1.

Algorithm 1. Prioritized Sensing with Connectivity Constraints
while t < tfinal do

for xi = 1, . . . ,Ng do
Calculateϒi from GMSTCW (Equations (1)-(4))
Determine Vi ∈ Q
Calculate Mi = Di∩ϒi
Optimize over Mi to determine an approximate maximum g̃∗ in Mi of M(x)
if g̃∗ is reachable then

gxi ⇐ g̃∗
else

g̃i
∗ = max(Y1, . . . ,YN−1) excluding g̃∗ that was previously calculated

end if
Calculate fi(xi,gxi ,d) in Mi with gxi set as the goal point.
ui =−k∇ fi(·) where k = |xi−gxi |
∀x ∈ Ss, M(x) = βM(x)
Exchange map information with neighbors in GMSTCW graph

end for
end while

In Algorithm 1 it is seen that when network connectivity is taken into considera-
tion, the set over which the probability of detection (POD) map is being optimized
may “shrink” due to the intersection of the two sets Di andϒi. This makes sense since
now the algorithm has to come to a compromise between the sensing objective and
the network connectivity objective.

2.5.2 Feasible Motion Sets: Relay Agents

Our approach to addressing connectivity maintenance of a sensor network is to con-
vert the network to a heterogeneous one by adding relay agents capable of better
communication capabilities. For this particular application we are assuming that
sensing agents are UGVs and relay agents are UAVs flying at a constant altitude. By
using these assumptions, relay agent collisions with sensing agents in the network
are not considered. Also, the relay agents communication range is considered to be
its projection on the two dimensional space.

For the motion planning of relay agents in the network, Algorithm 2 is used
to compute the centroid of each relay agents motion constraint set (MCSi). Each
relay agent i will move towards its respective centroid of its feasible motion set. By
construction, the centroid c∗i of each agents motion constraint set (MCSi) lives in
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the interior of its motion constraint set. Therefore by setting c∗i as the goal point
for each relay agent, the heterogeneous team should remain connected when each
goal point is reached by the respective agents. Algorithm 2 produces behavior of the
relay agents that acts to balance the network in terms of the distances between its
connected links. This is a desirable behavior in sensing/search problems because it
allows the network to “stretch” as sensing agents move towards the outer regions of
the search space. In essence, as a sensing agent moves towards uninvestigated areas
it “pulls” a relay agent with it in order to maintain the connectivity of the network.

Algorithm 2. Centroidal Behavior (gxi = c∗i )
while t < tfinal do

for i = 1, . . . ,Nr do
Calculate c∗i from MCSi (Equations (1)-(4))
gxi ⇐ c∗i
while Δ t < Ts do

ui(t) =−Kxi(t)
end while

end for
end while

2.6 Simulations

For the following simulation (Fig. 4(a), relay agents apply Algorithm 2 while sen-
sing agents apply Algorithm 1 .We implement the algorithms on a heterogeneous
network made up of 7 sensing agents and 4 relay agents. The search space is taken
to be 60m× 60m square area, with the communication ranges for the sensing agents,
Cc = 3m and Crc = 16m for the relay agents. The sensing agents in the network are
initialized in a random configuration with the relay agents situated at (-8m, -8m),
(-8m, 8m), (8m, -8m), (8m, 8m) such that the initial configuration of the heteroge-
neous network is connected. The sensing radius of the sensing agents are taken to
be 3m and the parameter that reflects the reduction of the probability of detection
map, β is taken to be 0.8. Each simulation lasts for 50 iterations of the algorithm,
approximately 120 seconds. Table 1 summarizes the results for five simulations.

Table 1 Heterogeneous Sensor Network (7 sensing, 4 relay agents): Prioritized Sensing

Simulation Number Average POD per m2 Max POD Value

1 0.0043 0.178
2 0.0104 0.337
3 0.0034 0.168
4 0.0031 0.124
5 0.0147 0.333



64 N. Bezzo, R.A. Cortez, and R. Fierro

(a) (b)

Fig. 4 Probability of Detection Map after 50 iterations of the algorithm for (a) a Heteroge-
neous System and (b) a Homogeneous System. Notice that in (a) most of the area has been
searched with exception to the upper left hand corner while in (b) just a small portion of the
workspace is covered.

Fig. 4(a) shows the reduced POD map, M(x), after 50 iterations of the algorithm
with seven sensing agents and four relay agents. Notice that most of the area has
already been searched and has been reduced to around 0.14. Finally in Fig. 4(b) we
assume there are no relay agents in the network but only seven sensing agents. We
can see that imposing the communication constraints directly on the network of sen-
sing agents prevents the prioritized sensing algorithm significantly. The main reason
is that the communication radius of the sensing agents is small compared to the area
they have to explore. Thus to use a heterogeneous sensor network is advantageous
when the area to explore is much larger than that of the communication range of the
sensing agents.

3 Optimal Deployment of Heterogeneous Systems

In this section we present a generalized approach to deploy a number of hetero-
geneous robotic agents and achieve a common mission goal in a fast and efficient
manner. We begin by building a task allocation function that considers the number
and type of agents available to perform a specific goal, taking into account the sen-
sing and communication constraints. Then we create a decentralized controller to
move the selected agents toward the goal while maintaining connectivity through
the use of mobile router relays. We assume that the heterogeneous system is com-
posed by Ng sensor agents, Na aerial transportation systems that can carry sensor
agents, and Nr aerial communication relays. The total number of robots in the sys-
tem is N = Ng +Na +Nr. Throughout the discussion we use the notation Ra to
symbolize an aerial relay and Rg for a ground sensor.

The problem we are solving in this section can be stated formally as follows:

Problem 1. Deployment of Heterogeneous Robotic Networks: Given a heteroge-
neous robotic network of N agents, L a leader agent chosen through optimization,
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and T a certain task to be accomplished within a specified area W ∈ R2, find a set
of feasible policies ui ∈U for the leader and the minimum number of robots (mobile
router relays) such that L is able to achieve the mission goal T while maintaining
connectivity all of the time with a fixed base station b.

The approach considered to solve this problem can be divided into two main
components:

• Mission planning strategy to decide which agents to be used during the mission;
and

• Communication analysis to maintain connectivity during the operation.

3.1 Mission Planning Optimization

We desire to achieve certain mission goals j that consist of exploring and sensing
a specific area T j centered in cν , to obtain as much information as possible with
minimum cost. We assume that the mission and the robotic agents are initially posi-
tioned in a planar workspace W ⊂ R2. Let xi ∈ X represent the state of each agent
with xi = (xi,yi,zi)

T the position of the robot i with respect to the base station b,
considered as the reference frame b = (xb,yb,0)T . We want to control the minimum
number of agents to accomplish a mission goal quickly while minimizing the energy
of the system.

If necessary, a relay agent can carry a sensor agent to help accomplishing a mis-
sion. By combining both an aerial and a ground vehicle together, like in Figs. 1(a-b),
we can create a better agent to take advantage of the qualities of both entities and
pass a big obstacle using the aerial vehicle and deploy the ground agent to explore
in more detail a target.

In order to create a proper task assignment among the heterogeneous robotic
system, we need to create an allocation function that considers the following factors:

• the quality of execution of a certain task. For instance a proper quality function
can be the sensing accuracy, the precision in moving toward a certain goal or the
quality of the communications;

• the cost of execution of a certain task. In this case we consider the power neces-
sary to drive/fly the vehicle to a certain location, the maximum speed and time to
accomplish a goal.

Therefore, combining these two cost functions, the main objective is to find a proper
controller u∗ that minimizes an utility function J(X ) with respect to the state space
X = {x1,x2, . . . ,xN }. We consider the following utility function

J(X ) =∑
i, j
(τi jci j +λi jhi j) (11)

subject to: x0
i = (x0

i ,y
0
i ,0) ∀i = 1 . . .N

xo = (xo,yo,zo) ∀o = 1 . . .O
∑ j τi j ≤ 1, ∑ j λi j ≤ 1 ∀i
∑i τi j = 1, ∑iλi j = 1 ∀ j

(12)
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where x0
i is the initial position of the robots and xo ∈ O is the position of the ob-

stacles that are known a priori. ci j and hi j are the cost functions and τi j and λi j

assignment variables that can take either 0 or 1 binary values. In particular, τi j = 1
if a certain task j is assigned to i considering the cost function ci j and it is 0 other-
wise. Similarly, λi j = 1 if the jth task is assigned to the ith agent considering the cost
function hi j.

The first cost function, ci j is defined as follows

ci j = lim
xi→cν

f (xi,T j,αi) (13)

with

f (xi,T j,αi) =

{
ki(xi− cν)2 if ||xi− cν ||>√αi

αi otherwise
, (14)

where αi value depends on the vision capabilities of the agent in consideration,
and the type of mission to be accomplished. ki depends on αi and describes the
perceptibility quality of an agent i. In general we assume that aerial relays Ra have a
limited perceptibility capability but are able to converge to a desired position faster,
while ground sensors Rg are slower but can perceive higher resolution details of the
environment. This behavior is represented by properly tuning ki and αi associated
with each agent. For instance kRa > kRg and αRa > αRg .

The second cost function is defined as

hi j = εi

(
χ i j

ofree

ẋi

)
(15)

with εi ≥ 0 a term that considers the power consumption of agent i per unit time.
χ i j

ofree is the obstacle free path between the position xi and the final position cν of
T j. Finally 0 ≤ ẋi ≤Mi is the velocity of agent i constrained above by a maximum
value Mi that depends on each agent dynamics. For instance an aerial robot Ra such
as a quadrotor is faster than a car like ground robot Rg, thus MRa ≥MRg .

Thus, by using this approach, we can decide the combination of agents to be
used to achieve a certain mission. We will denote this combination of agents as
leaders of the group as xL j = {τ1 jx1 +λ1 jx1, . . . ,τN jxN +λN jxN } if τi j �= λi j or
xL j = {τ1 jx1, . . . ,τN jxN } if τi j = λi j. For ease of discussion, through the remaining
of the chapter we will use the notation xL to refer to the position of the leader L.

3.2 Path Planning of the Heterogeneous System

The dynamics of the ith robotic agent can be approximated using the following
model

ẋi = vi, i = [1, . . . ,N ] (16)

v̇i = ui,
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where xi = [xi yi zi]
T ∈ R3 is the position vector of the ith agent relative to the

base station b, vi ∈ R3 and ui ∈ R3 denotes the velocity and acceleration (control
input), respectively, for each agent i ∈N .

3.2.1 Goal Potential

Once the task allocation is completed, one or a combination of more agents L is
deployed to reach the goal and accomplish the task, in a decentralized fashion. To
navigate the leader L toward its goal T ∈W , we can define an attractive potential
function centered in the target position.

For simplicity sake, we use the following quadratic weight function to represent
the goal attractive function:

ν(xL) =
Aν
2
‖xL− cν‖2, (17)

where Aν ∈ R+ determines the size of the quadratic range and cν ∈ R2 is the cen-
ter of the target attractive function. The relative attractive force is obtained by the
negative gradient of (17):

Fν(xL) =−∇xLν(xL) =−Aν(xL− cν), (18)

where Aν > 0 because we want an attractive field towards the center of the goal
function.

3.2.2 Local Sensing Behavior

The workspace, W , is populated with O known obstacles and No fixed polygonal
obstacles {O1, . . . ,ONo}, whose geometries and positions are assumed unknown. We
imagine a scenario in which the agents have limited knowledge of the environment
and the obstacles are detected locally when the robot moves to certain locations of
the workspace. Once an obstacle is detected we define a local workspace repulsive
potential field [26], in which the potential value approaches infinity as the robot
approaches the obstacle, and goes to zero if the robot is at a distance greater than ρ0

from the obstacle. Formally

WO,i =

{
1
2ηi

(
1

ρ(xi)
− 1

ρ0

)2
if ρ(xi)≤ ρ0

0 if ρ(xi)> ρ0

, (19)

where ρ(xi) is the shortest distance between the agent and any detected obstacle in
the workspace and ηi is a constant.

Then, the repulsive force is equal to the negative gradient of WO,i, or in formula
for ρ(xi)≤ ρ0 it is given by

FO,i = ηi

(
1

ρ(xi)
− 1
ρ0

)
1

ρ(xi)2∇ρ(xi), (20)
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where ∇ρ(xi) is the gradient of the minimum distance between the robot and the
closest detected obstacle.

3.2.3 Connectivity Maintenance

In our work the communications are simulated by spring interactions among the
agents of the network.

The dynamics of the ith robotic router among the total Nr available, follow the
model:

ui =

[
∑
j∈Si

κi j (li j− l0) d̂i j

]
− γiẋi, (21)

with i = 1, . . . ,Nr and i �= j,

where Si is the set of neighbor robots connected to the ith router and since we
are using a spring-mass model these links between agents are virtual springs;
li j = ‖xi− x j‖ is the length of the spring between robot i and j and l0 is the rest
spring length; d̂i j is the unit vector indicating the direction of the force of the vir-
tual spring between the robots and finally κi j and γi are the spring constant and the
damping coefficient respectively, between robots i and j . Note that l0 depends on
the two agents i and j. Specifically, within this work, two situations can occur:

• if Ci > C j, then l0 = ρi with ρi the maximum range of communication of agent i;
and

• if Ci = C j, then l0 = ρi = ρ j with ρi (ρ j) the maximum range of communication
of agent i ( j).

3.2.4 Routing Potential

The target to reach can be at a distance greater than the communication range within
a fixed base station, therefore, some mobile routers may be needed to maintain con-
nectivity and route information to the base station. While L explores the environment
attracted by the goal potential, it detects some obstacles along the path and starts to
build a map. Also at every step, a cumulative decreasing attractive potential is cre-
ated and transmitted to the group of mobile routers. This attractive function has the
following expression:

ϕ(xi)(t +Δ t) = min{ϕ(xi)(t),φ(xi)(t +Δ t)} (22)

with:

φ(xi)(t +Δ t) = Bφ − (t +Δ t)ζ
Aφ
2

e
−‖xi−xL‖2

�φ (23)

and
ϕ(xi)(t) = φ(xi)(t), (24)

where Aφ ∈ R+, �φ ∈ R+, 0 < ζ ≤ 1 and Bφ ≥ Aφ .
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Depending on the mission planning, the mobile routers are chosen based on the
minimum feasible distance between the leader and the base station, the type of
leader deployed, and the cost and quality of the communication service of the agents
available.

3.3 Controllers

By assembling together all the pieces described in the previous sections the general
control law for the leader follows

uL =

{
FO,L−∇xLν(xL) if ||xL− cν ||> εν
0 otherwise

, (25)

with εν small to ensure that the leader gets as close as possible to the target position.
Based on the optimization algorithm (11) if τi j �= λi j ∀i ∈N and a given mission
goal T j, two agents are necessary to optimally achieve T j, having a transportation
relay RaL moving a sensor agents RgL to the goal position. The combination re-
lay/sensor, that we denote by L = {aL,gL}, will move toward the goal attracted by
(18) and will stop to deploy RgL when the following constraint is satisfied.

Given B j = B(cν ,ρ j) the minimum ball of radius ρ j centered in the target posi-
tion cν that contains the object to visit, the control laws for the two agents RaL and
RgL are:

uaL =

{
uL if xL ∈W \B j

ui if xL ∈B j
, (26)

where W \B j is the portion of workspace excluded B j, ui is the control law for the
mobile routers and is defined in (28), and,

ugL =

{
0 if xL ∈W \B j

uL if xL ∈B j
, (27)

The control law for the mobile routers is given by:

ui =

{
Pi j− γiẋi−∇xiϕ(xi) if ||xL− cν ||> εν
Pi j− γiẋi otherwise

, (28)

with Pi j =
[
∑ j∈Si

κi j (li j− l0) d̂i j
]

Specifically, for the mobile router control law, if ||xL− cν || > εν and
||xL− b|| ≥ l0

2 , we create the following constraints:

• ∀m ∈ (SL ∩ Sb), with SL (Sb) the set of neighbor robots in communication range
with L (b), ∃ at least one m such that

||xm− xL|| ≤ l0
2
. (29)
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When such situation occurs, {m s.t. ||xm − xL|| = mini∈(SL∩Sb)(||xi − xL||)} is
used as the first mobile router in the chain between the base station b and the
leader L;

• if m chosen in the previous step moves a distance ||xm− xb|| ≥ l0
2 then another

node n is chosen with the same criterion given in the above step {n s.t. ||xn−
xm||=mini∈(Sm∩Sb)(||xi−xm||)}. This iteration is repeated until the leader reaches
its final position and doesn’t move.

Constraint (29) is imposed to achieve robustness in connectivity. Before stating for-
mally the robustness theorem, we give the following definition:

Definition 9. (Stem Graph) A stem is a graph in which two special nodes (a head
and a tail) are singled out. This particular tree has n total vertices of degree≤ 2 and
n− 1 edges; it is connected and contains no closed loops (cycles).

Based on Definition 9, the following theorem can be formulated:

Theorem 1. Given a stem graph G(V,E) in which each node vi ∈ V is a mobile
agent with spring-mass-damping dynamics (21) and thus each edge ei ∈ E is a vir-
tual spring connectivity link, if one node disappears from the graph (i.e., one agent
stops working) then we can guarantee that the graph is able to stay connected and
all nodes reach a new stable state.

Proof. In [26] we showed that a spring-mass system eventually reaches equilibrium
in which all agents have a null state (i.e., ẋ = 0). When this situation occurs, the
potential of each agent of the system is

Ui = ∑
j∈Si

1
2
κi j(||xi− x j||− l0)

2 ≥ 0 (30)

Given NbL the number of mobile routers in the chain between b and L, the total
potential of the system is given by:

Utot =
NbL

∑
i=1

Ui ≥ 0 (31)

If one node p, connected to m and n, disappears, because of the constraint in (29),
we will have that

U+
tot−U−tot ≤ 0 (32)

where U+
tot is the energy after p is removed from the chain and U−tot is the energy

before the network loses connection with p. This result is intuitive because we have
assumed that m and n are in communication range. Since lpm (and lpn) < lmn ≤ l0
we have that the energy after the switch is less than the energy before the switch,
bringing the network to a new more stable point while maintaining connectivity.
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3.4 Simulation Results

In this section we present a simulation result to demonstrate the use of the control
laws and optimization algorithm developed in this section. We create a partially
known environment in which we assume to know the position and shape of some
obstacles in the environment while other obstacles are detected only locally as the
agents move to achieve the mission goal.

We consider a heterogeneous group of mobile robots with the following classes of
agents available in the environment: 5 aerial transportation systems Rai (i= 1, . . . ,5)
with sensing footprint Sa and communication range area Ca. Each of these agents
can carry a ground sensor robot; 5 ground sensor robots Rgi (i = 1, . . . ,5) with sen-
sing footprint Sg < Sa and communication range area Cg ≤ Ca; 10 aerial communi-
cation relays Rri (i = 1, . . . ,10) with positioning capabilities (i.e., ability to estimate
their position in the workspace relative to b) and communication range area Cr =Ca.

Fig. 5(a) shows the simulation workspace W with the target to reach and the
types of agents available, as described above. Not all the agents are deployed du-
ring the mission, but just the minimum amount necessary to achieve a certain goal,
following the theoretical approach described in the previous sections.

Assumption 2. For simplicity we assume that both aerial transportation systems
and aerial relays can take off and land very fast, therefore we neglect the time de-
lay necessary for an aerial vehicle to reach a certain altitude. Also in this work we
make the aerial vehicles fly at a certain predefined altitude. In this way we see the
workspace as a two-layer space (ground and aerial layers) in which at the ground
level all obstacles are available and at the aerial level only fewer obstacles are per-
ceptible, as depicted in Fig. 5(b).

The goal of the simulation in Fig. 6 is to reach and explore the object located in
the far right corner of Fig. 6. Twenty robotic agents constituting the heterogeneous
system are available, clustered around the base station (bottom left of the figures).

(a) (b)

Fig. 5 (a) The environment used during the simulation presented in this section and (b) A 3-D
visualization of the operational layers of the heterogeneous robotic system.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Simulation result. (a)-(c) Deployment of a sensor agent Rg (bold square) using an
aerial transportation relay Ra (diamond). (d) and (e) show different moments about the explo-
ration of the target T before Rg is recovered by Ra.Through the mission a series of mobile
routers move behind the leader to maintain connectivity with a fixed base station (bottom left
of the figures). In (f-h) finally all the deployed agents return to the base station location.

After running the optimization algorithm, an aerial transportation relay Ra carry-
ing a ground sensor Rg is chosen to achieve the mission goal. Precisely Ra moves
attracted by potentials, toward T . Upon reaching destination, the sensor agent is de-
ployed to explore the target (Figs. 6(d) and (e)). While this operation is performed,
a chain of mobile router relays Rr is built behind the leader transportation system
to maintain connectivity with the base station (Figs. 6(a-e)). Note that the first two
rectangular obstacles, located in the bottom left of Fig. 6 are unknown, while the
large obstacle in the middle of the figure is known a priori and it is at a low altitude
allowing the aerial vehicles to fly over it (see Fig. 5(b)). At the end of the mission,
the sensor agent is attracted by potentials toward the transportation relay, as depicted
in Fig. 6(e) and all agents deployed in the mission are pulled toward the base station
position (Figs. 6(f-h)).

3.5 Experiment

An experiment has been performed using two quadrotors AscTec Hummingbird [1]
and a crawling robot OctoRoACH [2, 27]. One of the quadrotors has a structure
installed underneath its body allowing the crawler to sit while in flight (Fig. 1(a))
and to exit the structure when on the ground (Fig. 1(b)). The quadrotors are au-
tonomously controlled by VIs developed in LabVIEW in which the position con-
trollers (x, y, and z) and the yaw angle (ψ) controllers are implemented in each case
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Experimental result. (a)-(c) Deployment of a crawling robot via a quadrotor aerial
system, while a second quadrotor is used as a communication relay. Snapshots in (d) and (e)
show the quadrotors maintaining connectivity between the base station and the crawler that
is exploring the cave. In (f) a quadrotor rescues the ground robot. Note that snapshots (c) and
(f) belong to the same experiment but are taken from other angles for ease of viewing.

by applying a PID [28]. Figs. 7(a-c) show the deployment of a crawling robot by
means of a quadrotor relay in order to allow the exploration of a cave. A second
quadrotor is used to maintain connectivity between the nodes of the system during
the operation (Figs. 7(d-e)). Finally, at the end of the mission the quadrotor recovers
the crawler (Fig. 7(f)) and all the nodes convey to the base station location.

It is important to mention that communication connectivity is implemented by
maintaining a certain distance separation between the nodes of the system. During
the mission no agent gets disconnected and the nodes are able to cooperatively per-
form the assigned task.

4 Conclusions

In this chapter we have shown how to exploit heterogeneity to cooperatively coor-
dinate a robotic network and perform complex missions in which a homogeneous
system (i.e., robotic networks with same capabilities) has a limited performance.
We first address a prioritized sensing behavior with communication constraints for
a network made up of sensing agents and mobile communication relays. Precisely,
we show that by biasing the connections between sensing and relay agents we
can obtain a better coverage and connectivity. In the second part of the chapter,
we take advantage of several theoretical results to deploy the heterogeneous sys-
tem in the workspace while minimizing energy and achieving a certain goal in a
faster and a more accurate manner. We use optimal task assignment to select which
agent or combination of agents to deploy and a chain of mobile router relays to
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maintain connectivity among the network. Both simulations and the experimental
results demonstrate the applicability of the proposed strategies.
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Variational Analysis of Snakelike Robots

Gregory S. Chirikjian

Abstract. Snakelike robots have been employed in applications ranging from
search-and-rescue to minimally invasive surgical procedures, and may yet find new
applications in maintaining civil infrastructure and the repair of satellites. This chap-
ter reviews how variational methods have been used previously to analyze three
classes of snakelike robots: (1) hyper-redundant manipulators guided by backbone
curves; (2) flexible steerable needles; and (3) concentric tube continuum robots.
Both coordinate-dependent Euler-Lagrange formulations and coordinate-free Euler-
Poincaré approaches are discussed. Variational methods are used in the context of
hyper-redundant manipulators to constrain degrees of freedom and to provide a
means of redundancy resolution. In contrast, variational methods are used for non-
holonomic steerable needles, which have fewer actuatable degrees of freedom than
those in the task space, to generate optimal open-loop plans for the needle to fol-
low, and to model needle-tissue interactions. For concentric tube robots, variational
methods provide a means to determine equilibrium conformations dictated by the
principles of elastic mechanics. This chapter therefore illustrates by example how
variational methods are a natural tool for the analysis and planning of various kinds
of snakelike robots.

1 Introduction

The focus of this chapter is a review of variational methods as applied to snakelike
robots. This section provides a brief review of the literature on snakelike robots and
their application areas, and provides background mathematics used in the remainder
of the chapter.
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1.1 Literature Review

The study of snakelike robots, initiated by S. Hirose and collaborators in the early
1970s and summarized in [14], has multiple different facets. Snakelike locomotion
systems [20] have been designed for search and rescue [32]. Elastic-filament manip-
ulators have been used for positioning and orienting objects, as well as for nasal and
throat surgery [27]. Steerable needle concepts and associated nonholonomic plan-
ning have been proposed for minimally invasive biopsy and treatment procedures
[23, 2, 30, 29]. Continuum [5, 21] and concentric elastic tube robots [26, 13, 31]
have been proposed for a variety of tasks including medical procedures. And hyper-
redundant manipulators have been proposed for satellite servicing and inspection in
nuclear power plants.

The emphasis of this chapter is on snake robots with a fixed base. Therefore,
locomotion systems are not modeled here. Similar questions arise both in the re-
dundancy resolution of fully actuated, hyper-redundant, manipulators, and in the
mechanical analysis and planning of underactuated snakelike systems (flexible nee-
dles and active cannulae). In all cases the snakelike robotic device is described by a
backbone curve of the form

x(t) =
∫ t

0
[1+ ε(s)]u(s)ds (1)

for t ∈ [0,1]. Here t is a curve parameter and u(s) is a unit vector. When ε(s) ≡ 0,
the curve parameter becomes arclength. This backbone curve might represent the
centerline of a needle or cannula, or it might be an artificial construct to which a
highly articulated (hyper-redundant) manipulator is supposed to adhere, so as to
facilitate planning. For a hyper-redundant manipulator that is modular in nature, it
can be broken up into segments, and each segment can be identified with a piece of
backbone curve, [ti, ti+1]. The “fitting” of the actual device to the curve requires that
information about the orientation of reference frames attached to the curve at ti and
ti+1 also be provided. In principle, any smoothly evolving set of reference frames
of the form {R(t) | t ∈ [0,1]} will suffice, where R(t) = [u(t),n1(t),n2(t)], and u(t),
n1(t) and n2(t) are mutually orthogonal unit vectors, and u(t)×n1(t) = n2(t).

Then, the combination of backbone curve and evolving set of reference frames
can be written as a set of pairs

g(t) = (R(t),x(t)).

The position and orientation of a reference frame attached at t = ti+1 relative to t = ti
is then

[g(ti)]
−1 ◦ g(ti+1) =

(
[R(ti)]

T R(ti+1) , [R(ti)]
T (x(ti+1)− x(ti)

)
where ◦ denotes the composition of rigid-body motions (or equivalently, the multi-
plication of corresponding homogeneous transformation matrices). As the physical
robot moves, it is desirable that its joints stay near the middle of their range. For
this reason, “optimal” backbone curves that locally vary as little as possible while
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satisfying global end constraints were investigated [10, 11]. The following subsec-
tion reviews the variational methods that are applicable to this problem, and to all
of these systems.

1.2 Background Mathematics

Let q ∈ D⊂ Rn be a vector of local coordinates describing a region of the configu-
ration space of a system. The classical variational problem is that of extremizing a
functional of the form

I =
∫ t2

t1
f (q, q̇, t)dt (2)

subject to constraints of the form∫ t2

t1
hi(q, t)dt = Hi. (3)

The solution to this problem results from introducing Lagrange multipliers, λ =
[λ1, ...,λm]

T ∈ Rm and defining

L(q, q̇, t) = f (q, q̇, t)+
m

∑
i=1

λihi(q, t) (4)

so as to satisfy the Euler-Lagrange equation [4, 15, 16, 18]

d
dt

(
∂L
∂ q̇

)
− ∂L
∂q

= 0 (5)

as well as end constraints on q(t1) and q(t2), and the constraints in (3). Numerical
shooting methods can be used to refine the values of q̇(t1) and λ until a solution is
reached.

While the coordinate-dependent Euler-Lagrange approach has tremendous value
in engineering applications, in some scenarios the associated singularities cause
difficulties. For this reason, less-known coordinate-free approaches also have their
place. When the configuration space of a system (such as a rigid-body, or reference
frames attached to a snakelike robot) have the structure of a Lie group, the problem
can be formulated in terms of extremizing functionals of the form

I =
∫ t2

t1
f (g;g−1ġ; t)dt (6)

where g(t) is an element of a matrix Lie group G (such as the group of 3×3 rotation
matrices, SO(3), or 4×4 homogeneous transformations, SE(3)) and g−1ġ is simply
the product of the matrices representing g−1 and ġ, the latter of which is not an
element of G.
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Given a functional of the form equation (6), and constraint equations of the form∫ t2

t1
hk(g)dt = Hk (7)

The necessary conditions for extremizing (6) can then be written in terms of the
functions f and hk as

d
dt

(
∂ f
∂ξi

)
+

n

∑
j,k=1

∂ f
∂ξk

Ck
i j ξ j = Ẽr

i ( f +
m

∑
l=1

λlhl) (8)

where ξ = [ξ1, ...,ξn]
T contains the independent nonzero entries in the matrix g−1ġ

(e.g., angular velocities when G = SO(3), or infinitesimal twists when G = SE(3)),
and {Ck

i j | i, j,k = 1, ...,n} is a set of constants called the structure constants, which

are fixed for any given G and choice of extracting ξ ’s from g−1ġ. That is, if ξi =
(g−1ġ,Ei) where {Ei} is a basis for the Lie algebra of G, and (·, ·) is an inner product
on this Lie algebra. (Natural basis elements for SO(3) and SE(3) are described in
detail in [6, 7, 9].)

In this context

(Ẽr
i f )(g)

.
=

d
dt

f (g ◦ exp(tEi))

∣∣∣∣
t=0

is akin to a directional derivative. Equation (8) is a modified version of the Euler-
Poincaré equation [1, 24, 3, 17], which is a coordinate-free version of the Euler-
Lagrange equation in (5).

Both the Euler-Lagrange and Euler-Poincaré equations have been used in the
modeling of snakelike robots. A point that is often glossed over when these equa-
tions are applied is that (5) and (8) provide only necessary conditions for optimality.
And in general there is no guarantee that the resulting solution will be optimal in
the sense intended by the user. However, in some applications involving snakelike
robots, it can be shown that globally optimal solutions result from this formulation.

These globally optimal situations are discussed in the remainder of this chapter,
which is structured as follows: Section 2 discusses optimal backbone curve shapes
and reparameterizations. This forms the core of the chapter, as many of these meth-
ods are reused and applied in different ways in remaining sections. Section 3 dis-
cusses the variational modeling of concentric tube (active cannula) devices. Section
4 illustrates how these same methods can be applied in needle steering.

2 Optimal Hyper-Redundent Manipulator Backbone Curves

This section describes two kinds of variational problems related to backbone curves
of hyper-redundant manipulators. First, Section 2.1 discusses the globally optimal
reparameterization of given curves. Then, Section 2.2 formulates the coordinate-
free variational approach to generating backbone curves. And Section 2.3 derives
the corresponding variational equations. For more detailed treatments of the results
presented in this section see [8, 19, 7].
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2.1 Optimal Reparameterization

Suppose that an arc-length parameterized curve x(s) ∈ Rn is given, and that the
shape of this curve is desirable, but the temporal evolution of the position of a
particle along the curve is sought such that the integral of a a cost functional
f̃ (x, ẋ) = 1

2 ẋT G(x)ẋ should be minimized along the curve. From the chain rule,

ẋ = dx
ds ṡ, and so f (s, ṡ)

.
= f̃ (x(s), dx

ds ṡ) = 1
2

(
dx
ds

)T
G(x(s))

(
dx
ds

)
ṡ2 = 1

2 g(s)ṡ2.
Though the Euler-Lagrange equations only provide necessary conditions for op-

timality, this is a situation in which the structure of the function f (·) will guarantee
that the solution generated by the Euler-Lagrange equations is a globally optimal
solution.

f (s, ṡ, t) =
1
2

g(s)ṡ2

and s∗(t) denotes the solution obtained by the Euler-Lagrange equations of varia-
tional calculus, then the resulting cost is

J(s∗) =
(∫ 1

0
g

1
2 (s∗(t))ṡ∗dt

)2

=

(∫ 1

0
g

1
2 (s∗)ds∗

)2

.

This is because s∗(0) = 0 and s∗(1) = 1 and ds∗/dt > 0. Note that this means that
the value of the integral in the above expression for J(s∗) is independent of the path
s∗(t). This does not mean that J(s∗) itself is independent of s∗. Rather, it means
that after the form of the candidate optimal path obtained from the Euler-Lagrange
equation is substituted back into the cost functional the resulting value can be written
as

J(s∗) =
(∫ 1

0
g

1
2 (s)ds

)2

since the name of the variable of integration is irrelevant. Then from here if we
substitute any s(t) with ds/dt > 0, and use the Cauchy-Schwarz inequality(∫ 1

0
a(t)b(t)dt

)2

≤
(∫ 1

0
|a(t)|2 dt

)(∫ 1

0
|b(t)|2 dt

)
with a(t) = g

1
2 (s(t))ds/dt and b(t) = 1, it follows that

J(s∗)≤ J(s) (9)

for any possible s(t).
More generally, suppose that, for whatever reason, a globally minimal solution to

a variational optimization problem with f1(q, q̇, t) = 1
2 q̇T M(q)q̇ and q(0) and q(1)

specified has been solved via the Euler-Lagrange equations and minimization over
all resulting paths that connect the specified end points. This solution then can be
used to “bootstrap” a globally optimal solution to a larger variational problem in
which
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f2(q,θ, q̇, θ̇, t) =
1
2

q̇T M(q)q̇+
1
2
‖θ̇−B(q)q̇‖2

W (10)

where ‖B‖2
W = tr(BTW B) is the weighted Frobenius norm where W =W T > 0.

The Euler-Lagrange equations for the original variational problem are of the form

d
dt

(
∂ f1

∂ q̇

)
− ∂ f1

∂q
= 0 =⇒

M(q)q̈+
1
2
∂
∂q

(q̇T M(q)q̇) = 0. (11)

Let the solution to this system of equations subject to boundary conditions be de-
noted as q∗(t).

The Euler-Lagrange equations for the new system will be

d
dt

(
∂ f2

∂ q̇

)
− ∂ f2

∂q
= 0 =⇒

M(q)q̈− d
dt

[
BT (q)W (θ̇−B(q)q̇)

]
+

1
2
∂
∂q

(q̇T M(q)q̇)+
∂
∂q

[
q̇T BT (q)

]
W (θ̇−B(q)q̇) = 0 (12)

and

d
dt

(
∂ f2

∂ θ̇

)
− ∂ f2

∂θ
= 0 =⇒

θ̇−B(q)q̇ = a (13)

where a is a constant vector of integration. Substituting the right hand side of (13)
back into (12) and using the chain rule,

d
dt
(BT (q)W a) = q̇T ∂

∂q

[
BT (q)W a

]
=

∂
∂q

[
q̇T BT (q)

]
Wa,

means that (12) reduces to (11), and so the optimal solution for the “q-part” of the
problem again will be q∗(t). The right hand side of (13) means that the candidate
optimal solution for this new problem is

θ∗(t) = at +b+

∫ t

0
B(q∗(s))q̇∗(s)ds (14)

where a and b are constant vectors that can be matched to boundary values, and
q∗(t) is the solution to the original variational problem with cost f1(q, q̇, t). The
global optimality of the solution (q∗(t),θ∗(t)) is guaranteed by the assumption that
optimal q∗(t) is obtained a priori, and the global optimality of θ∗(t) in (14) can be
observed by substituting any θ(t) = θ∗(t)+ε(t) where ε(0) = ε(1) = 0 into the cost
function and observing that this never improves the cost.
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This class of problems can be viewed in a slightly different way by rewriting (10)
as

f (q,θ, q̇, θ̇, t) =
1
2

⎡⎣ q̇

θ̇

⎤⎦T ⎛⎝BT (q)W B(q) BT (q)W

WB(q) W

⎞⎠⎡⎣ q̇

θ̇

⎤⎦ . (15)

This means that if a quadratic cost can be decomposed in this way then the solution
to the larger problem will inherit the global optimality from the original problem.

As a concrete application of this class of problems, consider the problem of si-
multaneous curve reparameterization and optimal roll distribution. Start with an
initially arclength-parameterized curve x(s) for s ∈ [0,1], and frames defined us-
ing the Frenet-Serret apparatus. If the Frenet frames are (QFS(s),x(s)), then a
new set of smoothly evolving reference frames can be defined as (Q(t),x(t)) =
(QFS(s(t))R1(θ (s(t))),x(s(t))), where R1(θ ) is an added twist, or roll, of the Frenet
frames about the tangent. Given a cost of the form

C
.
=

1
2

∫ 1

0

{
1
2

r2tr(Q̇Q̇T )+ ẋ · ẋ
}

dt (16)

=
1
2

∫ 1

0

{
(r2κ2(s)+ 1)ṡ2 + r2(τ(s)ṡ+ θ̇)2}dt (17)

(where r is a specified constant with units of length, and κ(s) and τ(s) are respec-
tively the curvature and torsion of the curve), the goal is to find a simultaneous
reparameterization s = s(t), and θ (s(t)) so as to minimize C.

The integrand here is of the form in (10) with s taking the place of q and θ
taking the place of θ. Since the curve reparameterization problem (with the sec-
ond term in the integral set to zero) is a one-dimensional variational problem with
f (s, ṡ, t)= 1

2 g(s)(ṡ)2, global optimality is preserved. And from the discussion above,
this guarantees the global optimality of the composite problem.

As a result, the sorts of simultaneous curve reparameterization and optimal roll
distribution to satisfy end constraints obtained from variational calculus in [10, 11]
in the context of “hyper-redundant” (snakelike) robotic arms are in fact optimal.

2.2 Cases When the Euler-Poincaré Equation Gives Globally
Minimal Solutions

Given a cost function of the form

f (g,ξ, t) =
1
2
ξTWξ =

1
2

n

∑
i, j=1

wi jξiξ j

with W =W T > 0, the Euler-Poincaré equations are of the form

d
dt

(
n

∑
j=1

wi jξ j

)
+

n

∑
j,k=1

(
n

∑
l=1

wklξl

)
Ck

i jξ j = 0. (18)
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Let

Si
l j

.
=

n

∑
k=1

wklC
k
i j. (19)

If Si
l j =−Si

jl then ∑n
j,l=1 Si

l jξlξ j = 0 and (18) reduces to

W ξ̇= 0 =⇒ ξ(t) = ξ(0) =⇒ g(t) = g(0)◦ et
ˆξ(0).

This means that when these conditions hold the shortest path computed from varia-
tional calculus connecting g(0) = g0 and g(1) = g1 is

g(t) = g0 ◦ exp(t · log(g−1
0 ◦ g1)). (20)

Furthermore, this path will be globally optimal because of the structure of the cost
function. However, if Si

l j �= −Si
jl then (18) does not reduce and the path generated

by variational calculus is generally not this geometric one.

2.2.1 Extensible Backbone Curve Conformations

A nonuniform extensible elastic filament with unstretched length L has elastic en-
ergy of the form

E1 =

∫ L

0
F(ξ(s),s)ds where F(ξ(s),s) =

1
2
[ξ(s)− ξ0]

T K(s)[ξ(s)− ξ0]. (21)

Here ξ̂0 ∈ se(3) defines the local shape of the minimal energy conformation at each
value of curve parameter s, and K(s) is the 6×6 stiffness matrix that describes resis-
tance to change in each direction of infinitesimal motion. Off-diagonal terms in this
matrix describe couplings that have been observed experimentally. Both ξ̂(s) and ξ̂0

are body-fixed quantities in the sense that ξ̂(s) = g−1dg/ds and ξ̂0 = g−1
0 dg0/ds for

the one-dimensional set of reference frames g(s) and g0(s). Sometimes it is conve-
nient to define

k .
= Kξ0.

Given ξ0(s), it is possible to integrate the matrix differential equation

dg0

ds
= g0 ξ̂0(s)

subject to the initial condition g(0) = e (the identity element of SE(3) is the identity
matrix e = I4) for s ∈ [0,L] to obtain the minimal energy conformation rooted at
the identity. In the case when ξ0(s) is a constant vector, this will be a helix (with
circular arcs and line segments as special cases).
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Note that the independent variable is now a curve parameter, s, rather than time,
t. Here the curve parameter s is taken to be the curve parameter of the filament in its
undeformed (referential) conformation g0(s).1

2.2.2 Inextensible Backbone Curves

For arc-length-parameterized backbone curves

a(L) =
∫ L

0
u(s)ds and u(s) = R(s)e3. (22)

This can be viewed as the inextensible filament “growing” along the direction indi-
cated by the tangent for each value of arc length, s, up to a total length of L.

In this case the stiffness matrix, B, is 3× 3, and the resulting problem becomes
one of minimizing

I =
1
2

∫ L

0
[ω(s)−ω0]

T B[ω(s)−ω0]ds (23)

subject to the constraints (22). Here ω= (RT dR/ds)∨ and ω0 = (RT
0 dR0/ds)∨ are

angular velocities as seen in the body-fixed frame, where arclength s replaces time
as the independent variable.

Unlike the extensible problem, which was an unconstrained variational mini-
mization problem on SE(3), this is a constrained variational problem on SO(3), and
will therefore involve the use of Lagrange multipliers. The Euler-Poincaré equations
for both cases are worked out in the following section.

2.3 Resulting Variation Equations Describing Backbone Curves

Here the necessary conditions for coordinate-free variational minimization of the
energy functionals described in the previous section are established. This is a
straightforward application of the Euler-Poincaré equations. In the inextensible
and shearless case the group G = SO(3), and in the extensible case the group is
G = SE(3). In both cases there are six free degrees of freedom to specify the end
position and orientation of the elastic filament. In the extensible case these degrees
of freedom correspond to the six scalar components of the initial conditions ξ(0),
whereas in the inextensible case they correspond to three scalar initial conditions
ω(0) and three scalar Lagrange multipliers (components of λ) corresponding to the
three constraints that define a(L) in (22).

1 In the extensible case the curve parameter s can be viewed as the arc length in the refer-
ential (undeformed) conformation of the filament, which does not necessarily mean that s
will be arclength in the pushed forward (deformed) version of the filament. However, in
the inextensible model, s retains its role as arclength after deformation since deformations
are restricted to bending and twisting in that model.
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2.3.1 Inextensible Case

Considering the case of (23) with the kinematic constraint of inextensibility (22),
one writes Eq. (8) with f =U for i = 1,2,3 together as the vector equation

Bω̇+ω× (Bω−b) =

⎛⎝−λT Ae2

λT Ae1

0

⎞⎠ (24)

where a dot represents differentiation with respect to arclength s, λ∈R3 is the vector
of Lagrange multipliers necessary to enforce the vector constraint in Eq. (22), and
the right-hand-side of Eq. (24) results from the fact that

Er
i (λ

T Ae3) =
d
dt
λT A(I+ tEi)e3

∣∣∣∣
t=0

= λT AEie3 = λT A(ei× e3).

Eq. (24) is solved iteratively subject to the initial conditions ω(0) = μ which are
varied together with the Lagrange multipliers until a(L) and A(L) attain the desired
values. A(s) is computed from ω(s) in Eq. (24) by integrating the matrix differential
equation

Ȧ = A

(
3

∑
i=1

ωi(s)Ei

)
,

and a(L) is then obtained from Eq. (22). Numerical methods for updating μ and λ
so as to push the position and orientation of the distal end to specified values are
described in [19].

2.3.2 Extensible Rods

From (8) and (21) one can obtain the following Euler-Lagrange equation for the
extensible case:

Kξ̇+(Kξ−k)∧ξ= 0 (25)

where ∧ is the product of infinitesimal rigid-body motions defined by(
ω1

v1

)
∧
(
ω2

v2

)
=

(
ω2×ω1 + v2× v1

ω2× v1

)
.

This wedge operator is related to the ad operator as

ξ1∧ξ2 =−[ad(ξ2)]
Tξ1 (26)

where ξi = [ωT
i ,v

T
i ]

T , i = 1,2 and the matrix of ad operator is defined as

[ad(ξ)] =
(
ω̂ O

v̂ ω̂

)
.
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Eq. (25) is solved subject to the initial conditions ξ(0) = η∈R6. This, together with
the kinematic condition

ġ = g

(
6

∑
i=1

ξiEi

)
, (27)

is integrated for 0 ≤ s ≤ L to define g(ξ,L). From this point everything follows in
exactly the same way as for the inextensible case. For any fixed value of L ∈ R

+,
(25) and (27) can together be thought of as defining a mapping from R6 (the initial
conditions η) into SE(3). This mapping can be generated by numerically solving
these ordinary differential equations. It is not a one-to-one mapping, and finding all
values of initial conditions that map to a specific end position and orientation of the
filament is quite challenging [19].

3 Variational Methods in Concentric Tube Robots

Concentric-tube robots (or active canulae) consist of n concentric elastic tubes that
have been pre-bent. Several research groups have investigated these sorts of snake-
like robots, including [13, 31] and work referenced therein. One analysis method
that is applicable to these robots is a variational approach, as presented in [25]. In-
deed, the use of the Euler-Poincaré equations in this application follows in much
the same way as for the derivation of optimal backbone curves for hyper-redundant
manipulators. The tubes are essentially inextensible, and so the energy due to defor-
mation can be written as

E =
1
2

n

∑
i=1

∫ 1

0
[ωi(s)−ω∗i (s)]T Bi(s)[ωi(s)−ω∗i (s)]ds (28)

where ω∗i (s) describes the equilibrium shape of the ith tube which has 3×3 stiffness
matrix Bi(s). All tubes have the same length and initial and final positions and ori-
entations. As a result determining the equilibrium shape is a matter of determining
ω1(s) and the relative angles (and angular rates) that the other tubes exhibit relative
to this. As explained in [25],

ωi(s) = exp(−θi(s)E3)ω1(s)+ θ̇i(s)e3

where e3 = [0,0,1]T and E3 is the skew-symmetric matrix such that E3x = e3× x
and θi(s) is the amount of twist that each tube i = 2,3...,n undergoes relative to
tube 1, consistent with the boundary conditions imposed. Since the one-dimensional
rotations described by each of the θi are in SO(2), the Euler-Poincaré formulation
can be (and has been) employed successfully with

G = SO(3)× SO(2)× ·· · × SO(2)

to determine the equilibrium conformations.
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4 Variational Methods in Needle Steering

Two kinds of variational problems arise in steering of flexible needles in soft tis-
sues. First, when the tissue is firm and does not deform substantially as the needle is
inserted, the optimal control problem of how to push and twist the needle “as little
as possible” while still reaching the goal presents itself. Second, if the tissue is soft,
the question of how the potential energy in the needle and that in the tissue equili-
brate becomes a significant problem. Both of these issues are variational in nature,
and efforts that have already been published are reviewed, and future directions are
sketched here.

4.1 Kinematic Needle Steering

When a flexible needle with a sharp beveled tip is inserted into tissue, it has a ten-
dency to follow a roughly circular path. This resulted in a 3D version of a ‘unicycle’
model described in [23], and was extended to the ‘bicycle’ model in [29]. In the
unicycle model the reference frame attached to the needle tip executes a trajectory
of the form (

Ṙ ẋ
0T 0

)
=

(
R x
0T 1

)⎛⎜⎜⎝
0 −ω(t) 0 0

ω(t) 0 −κ 0
0 κ 0 v(t)
0 0 0 0

⎞⎟⎟⎠
where κ is the constant curvature of the path that a needle naturally wants to follow,
and (ω(t),v(t0) are the control inputs. See, for example, [22] for notation and [12]
an up-to-date survey of the field of flexible needle steering. The variational problem
then becomes that of minimizing the control cost

C1 =
1
2

∫ 1

0

{
c1(ω(t))2 + c2(v(t))

2}dt

subject to the boundary conditions g(0) = (I,0) and g(1) = gd (the desired target
frame). A practical problem that is encountered is the lack of repeatability of ob-
served needle-steering trajectories. Building on the prior work in [33], this has been
modeled as a stochastic version of the above kinematic constraint in [23], and prob-
abilistic methods on Lie groups have been employed to solve the problem [22, 28].

4.2 Soft-Tissue Effects

When the tissue into which the needle is inserted is soft, a tradeoff of elastic energy
takes place between the needle and the tissue. As a thought experiment, consider
the following scenario. An elastic needle is deformed so as to satisfy certain end
constraints. The shape of this needle will then be given by the equations in Section
2.3. Now imagine that the needle is held in place by an external field, and the ends
of the needle are capped with solid balls. Imagine further that a liquid polymer is
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then poured around the needle and its end caps and is allowed to harden without any
residual stress. If the external field is the released, an equilibrium will be reached by
the needle/endcaps and the surrounding material. The details of this equilibrium will
depend on the boundary conditions, material properties of the needle and surround-
ing environment, and the size and properties of the end caps. If the needle and end
caps are constrained to remain within a deformed version of the dumbbell-shaped
cavity that was formed when the imaginary polymer cured (without separation or
gaps, but with slipping allowed) then in the infinitesimal strain limit, the equilib-
rium will be described by finding the deformation field f(x) such that

1
2

∫ 1

0
k‖ d2

dt2 f(x(t))− d
dt

u(t)‖2dt =
1
2

∫
R3
‖1

2
((∇xf)T +∇xf)− I)‖2

Edx

where E is a weighting matrix that contains the same information as the elasticity
tensor of the medium, and k is the scalar bending stiffness of a needle with isotropic
cross section. In other words, the energy due to bending of the needle from its equi-
librium state should balance with the energy due to deformation of the medium.
The solution to this problem is again a variational problem. And this is one which
is challenging on its own, and in combination with understanding the mechanics of
interaction between the needle-tip and the medium.

5 Conclusions

Variational methods as a tool for modeling and planning of highly articulated and
flexible manipulators were reviewed. The broad range of applicability of these meth-
ods make them a potentially important tool for researchers studying redundant
manipulators. In the context of hyper-redundant manipulators, which have many
articulated degrees of freedom, variational methods are useful in defining slowly
varying backbone curves, as well as an optimal distribution of reference frames that
evolve along it. In the context of concentric-tube (active-cannula) robots, variational
methods provide the solution to the equilibrium conformations resulting from the
interaction of the tubes, and in needle-steering problems, the variational approach
provides a tool for planning trajectories.

Acknowledgements. This work was supported by NIH Grant R01EB006435 “Steering Flex-
ible Needles in Soft Tissue” (A. Okamura, PI).
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Robustness in the Presence of Task
Differentiation in Robot Ensembles

M. Ani Hsieh and T. William Mather

Abstract. In the last fifteen years, much interest has been focused on the deploy-
ment of large teams of autonomous robots for applications such as environmen-
tal monitoring, surveillance and reconnaissance, and automated parts inspection for
manufacturing. The objective is to leverage the team’s inherent redundancy to simul-
taneously cover wide regions and achieve massive parallelization in task execution
while remaining robust to individual failures. Despite recent successes, significant
challenges remain, in part, due to the difficulties associated with managing and coor-
dinating the various redundancies that exist in a large team of homogeneous agents.
In this chapter, we present an ensemble approach towards the design of distributed
control and communication strategies for the dynamic allocation of a team of robots
to a set of tasks. This approach uses a class of stochastic hybrid systems to model the
robot team dynamics as a continuous-time Markov jump process. The main advan-
tage is a lower-dimensional representation of the team dynamics that is amenable
to system-level analysis of the team’s performance in the presence of task differ-
entiation. We show how such analysis can be further used to design and optimize
individual robot control policies through simulations and experimental validation.

1 Introduction

In the last fifteen years, much interest has been focused on the deployment of large
teams of autonomous robots for applications such as environmental monitoring,
surveillance and reconnaissance, and automated parts inspection for manufacturing.
The objective is to leverage the team’s inherent redundancy to simultaneously cover
wide regions and achieve massive parallelization in task execution while remain-
ing robust to individual failures. Despite recent successes, significant challenges
remain, in part, due to the difficulties associated with managing and coordinating
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the various redundancies that exist in a large team of homogeneous agents. In this
chapter, we present an ensemble approach towards the design of distributed control
and communication strategies for the dynamic allocation of a team of robots to a set
of tasks. This approach uses a class of stochastic hybrid systems to model the robot
team dynamics as a continuous-time Markov jump process. The result is a lower-
dimensional representation of the team dynamics that is amenable to system-level
analysis of the team’s performance in the presence of task differentiation.

In our work, we consider the allocation of a team of robots to a collection of tasks
distributed within a workspace. Applications include automated warehouses where
inventory from the loading docks must be transported and stowed in their designated
locations or deploying robots to cover different regions with their sensors for moni-
toring or surveillance purposes. In these examples, the team must have the ability to
autonomously move from one task location to another, distribute themselves accord-
ingly among the various locales to ensure task completion or to provide appropriate
sensor coverage, all the while remaining robust to changes in the environment or
individual failures.

The assignment of robots to a collection of spatially distributed tasks is a variant
of the multi-task (MT) robots, single-robots (SR), time-extended assignment (TA)
problem [8]. In the multi-robot domain, market-based approaches have gain much
success [7, 25, 10, 5, 19, 15, 16] and can be further improved when learning is in-
corporated [4]. However, these methods often scale poorly in terms of team size and
number of tasks. Furthermore, these approaches often depend on timely communi-
cation of the various local cost and utility functions and thus may not be suitable
for situations when inter-agent wireless communication is unreliable or extremely
limited [6, 9].

In this chapter, we present an ensemble approach towards the modeling, analysis,
and design of distributed coordination strategies for the dynamic allocation of a team
of homogeneous robots to a collection of spatially distributed tasks. Our approach is
similar to existing work where macroscopic continuous models are used to describe
the dynamics of a robot swarm [20, 18, 14]. The technique builds upon the represen-
tation of the individual robot controllers as probabilistic finite state machines which
enables the approximation of team dynamics as a continuous-time Markov process
[20, 18, 13]. In [11, 13], macroscopic models were used to synthesize stochastic
agent-level control policies to enable the dynamic allocation of a team of robots
to multiple locales in predefined proportions without explicit inter-agent wireless
communication. Different from [18], the desired allocation was achieved through
the selection of the individual robot transition rates and were extended to account
for navigation delays in [1].

In our work, we assume a team of identical robots where the individual agent-
level control policy is given by a sequential composition of individual task con-
trollers. Different from existing work, we use the lower dimensional macroscopic
representation of the ensemble dynamics for analysis and controller synthesis. We
present two different approaches towards the design of stochastic transition rules
that enable the team to autonomously achieve a desired distribution across a collec-
tion of spatially distributed task. In the first approach, mean-field models are used to
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analyze and mitigate the effects of unexpected inter-robot interactions on the team’s
ability to maintain a desired allocation [21]. In the second approach, agent-level
control policies that can affect both the mean and the variance of the distribution is
obtained by modeling the team dynamics as a polynomial Stochastic Hybrid System
(pSHS) [17, 23].

The novelty of the contribution is a team-size invariant approach towards the
design of distributed agent-level control policies that can respond to robot failures
in a natural way and ensure a graceful degradation of the system. By providing a
systems-level view of the team dynamics, the inter-agent communication needs of a
desired coordination strategy can be more explicitly accounted for at the controller
synthesis stage. The rest of the chapter is organized as follows: Section 2 presents
the development of the macroscopic models for an ensemble of robots executing a
collection of tasks with deterministic task execution times. Section 3 describes the
analysis and design of our ensemble model derived distributed control strategies.
We conclude with a brief discussion of future work in Section 4.

2 Problem Formulation

Consider the deployment of N robots to M tasks each located within a different re-
gion in the workspace. In this section, we show how continuous macroscopic mod-
els can be obtained from a collection of individual robot controllers. The goal is
to use these models to design a decentralized control policy to enable the team to
autonomously distribute across the M tasks and maintain the desired allocation at
the various regions.

2.1 Single Robot Controller

Given a collection of {1, . . . ,M} tasks/sites, we use a directed graph, G = (V ,E ),
to model the pairwise precedence constraints between the tasks. Each task is repre-
sented by a vertex in V = {1, . . . ,M}. A directed edge exists between two vertices
(i, j) ∈ V ×V if task i must precede task j and we denote this relation as i ≺ j.
Then, the set of edges, E , is given by E = {∀(i, j) ∈ V ×V |i ≺ j}. We assume G
is a strongly connected graph, i.e., a directed path exists for any i, j ∈ V .

Given the M tasks, we denote the set of task controllers for each task as
{U1, . . . ,UM} and assume that the single robot controller is obtained through the
sequential composition of {U1, . . . ,UM} such that the precedence constraints speci-
fied by G are satisfied. We represent the robot controller as a finite state automaton
where each automaton state i is associated with a task controller Ui. Fig. 1(a) shows
an example robot controller where the arrows denote state transitions that satisfy the
constraints specified in G .

In this work, we consider the assignment/allocation of the team to M tasks/sites.
The team’s objective is to maintain the desired allocation of the robots across the
various regions. At each site, robots execute Ui for a pre-specified amount of time
τi. This represents the time required by a robot to complete the task at the given site.
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(a) Robot Controller

X1 X2

X3X4

(b) Ensemble Model

Fig. 1 (a) The robot controller. The robot changes controller states based on the guard con-
ditions. (b) Graphical representation of the equivalent chemical reaction network for a robot
ensemble executing the tasks.

Once the task has been completed, the robot must navigate to the next adjacent site
based on the constraints encoded in G . As such, we assume each robot has complete
knowledge of G , the ability to localize within the workspace, and is capable of
navigating from one task/site to another while avoiding collisions with other robots
in the workspace.

2.2 The Ensemble Model

For a team of N robots, each executing the same sequentially composed controller,
e.g., the one in Fig. 1(a), the ensemble dynamics can be modeled as a polyno-
mial stochastic hybrid system (pSHS). This enables us to derive lower dimensional
macroscopic models that describe the time evolution of the distribution of the team
across the various tasks/sites.

Let Xi(t) and X̄i denote the number of robots executing task i (or being site at
i) and the desired number of robots for task i respectively. Then the fraction of the
robots at site i is given by xi(t) = Xi(t)/N with x̄i denoting the desired fraction of
robots. The specification in terms of fractions rather than absolute numbers provides
a team size invariant formulation and is practical for scaling purposes. Since the
tasks are spatially distributed, the robots will move from one task to another and
must avoid collisions with other robots. The variability in robot arrival times at each
site is modeled using transition rates. For every edge ei j ∈ E , we assign constant
ki j > 0 such that ki j defines the transition probability per unit time for one agent
from site i to go to site j. Furthermore, we assume the ensemble dynamics is Markov
which will allow us to model the dynamics of the robot distribution as a set of linear
differential equations. It is important to note that in general ki j �= k ji.

2.2.1 Mean-Field Dynamics

It was shown in [13, 1] that the time evolution of the population fraction executing
task i can be modeled as a continuous-time Markov process in the absence of task
execution times, i.e.,
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d
dt

xi(t) = ∑
( j,i)∈E

k jix j(t)− ∑
(i, j)∈E

ki jxi(t). (1)

The task execution times can be incorporated by reformulating the above equation
as a delayed differential equation of the form

d
dt

xi(t) = ∑
( j,i)∈E

k jix j(t− τ j)− ∑
(i, j)∈E

ki jxi(t). (2)

We note that these models are mean-field descriptions of the team dynamics where
the system state is given by x(t) = [x1(t), . . . ,xM(t)]T . In [13, 2], the desired distri-
bution across the M sites was achieved by using (1) to optimize the ki j terms to meet
specific ensemble performance metrics.

2.2.2 Moment Dynamics

While the mean-field formulation provides a model of the time evolution of the
fractions of robots at each task location, it is possible to provide a different macro-
scopic description of the ensemble dynamics by considering the rates of change of
the various moments of the robot population distribution. Similar to the use of frac-
tions in the previous section, the specification in terms of the moments of the robot
population will also provide a team size invariant formulation. This is achieved by
describing the ensemble dynamics using a set of transition rules of the form:

Xi
ki j−→ Xj ∀ ei j ∈ E . (3)

The above expression represents a stochastic transition rule with ki j as the per unit
reaction rate and Xi(t) and Xj(t) as discrete random variables. In the robotics setting,
equation (3) implies that robots at site i will transition to site j with a rate of ki jXi.

In this formulation, the system states are the random variables Xi(t) with the state
vector given by X(t) = [X1(t), . . . ,XM(t)]T . Given the set of stochastic transition
rules in (3), the moment equations for the discrete random variable Xi is given by
the extended generator of the system [12]. For a real-valued function ψ(Xi), the
extended generator is an expression for the time derivative of the expected value of
ψ , i.e., d

dt E[ψ(Xi)] = E[Lψ(Xi)], and takes the form

Lψ(Xi) =

∑
j
[(ψ(Xi− 1)−ψ(Xi))wji +(ψ(Xi+ 1)−ψ(Xi))wi j] . (4)

The right hand side of (4) gives the continuous time derivatives of the system for
a discrete change in the state Xi. The expression [ψ(Xi− 1)−ψ(Xi)] represents the
change in ψ given a unit change in the discrete variable Xi, while wi j represents the
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frequency at which the change occurs. For the system given by (3), wi j = ki jXi. To
obtain the rate of the change of the expected value of Xi, d

dt E[Xi], we let ψ(Xi) = Xi

in (4). Similarly, to obtain d
dt E[X2

i ], we let ψ(Xi) = X2
i .

For the case when M = 2, the first and second moment dynamics for X1 are given
by

d
dt E[X1] = E

[
((X1+1)−X1)k21X2+((X1−1)−X1)k12X1

]
= k21E[X2]−k12E[X1]

d
dt E[X2

1 ] = E
[
((X1+1)2−X2

1 )k21X2+((X1−1)2−X2
1 )k12X1

]
= −2k12E[X2

1 ]+2k21E[X1X2]+k21E[X2]+k12E[X1].

When the wi j’s are linear with respect to the system state X, the moment equations
are closed. This means that the time derivative for the first moment of Xi, d

dt E[Xi], is
only dependent on the first moments of Xi for i = 1, . . . ,M, i.e., E[X1], . . . ,E[XM], the
second moments are dependent on the first and second moments, and so on and so
forth. This is important because when the moment equations are closed, the moment
dynamics can be expressed as a linear matrix equation.

In general, the ensemble moment dynamics for the system with M tasks/sites is
given

d
dt E[X ] = KE[X ]

d
dt E[XXT ] = KE[XXT ]+E[XXT ]KT +Γ (α,E[X ])

(5)

where [K]i j = k ji and [K]ii =−∑(i, j)∈E ki j. It is important to note that K is a Markov
process matrix and thus is negative semidefinite. This coupled with the conservation
constraint∑i Xi =N leads to exponential stability of the system given by (5) [11, 17,
23]. Each entry in the matrix of second moments is determined from the moment
closure methods shown above where the entries of Γ (α,E[X ]) are all linear with
respect to the ki j’s and the means E[X ]. For a system with two states, X1 and X2,
Γ (α,E[X ]) is defined as

Γ (α,E[X ]) =
[

k12E[X1]+k21E[X2] −k12E[X1]−k21E[X2]
−k12E[X1]−k21E[X2] k12E[X1]+k21E[X2]

]
.

Similar to the mean-field description, the ki j’s can be chosen to enable a team of
robots to autonomously maintain some desired mean steady-state distribution of
the team across the various tasks/sites [11, 13, 1]. In both formulations, the ki j’s
translate into a set of stochastic guard conditions for the single robot controllers.
The result is a set of decentralized agent-level control policies that allow the team
to maintain the steady-state mean of the ensemble distribution. Different from the
mean-field approach, the formulation of the ensemble dynamics in terms of the mo-
ments of the robot population enables us to synthesize distributed control strategies
to enable the team to maintain both the mean and the variance of the robot team dis-
tribution across the various tasks/sites. We describe the approaches in the following
sections.
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3 Methodology

Regardless of the approach, both (1) (or (2)) and (5) are macroscopic models of the
ensemble activity. In this section, we show how these models can be used to ana-
lyze the effects of uncertainty on the performance of the team of robots servicing a
collection of spatially distributed tasks. Furthermore, we will show how these mod-
els can be used to design distributed coordination strategies to improve the team’s
performance in the presence of the these uncertainties.

3.1 Characterizing and Filtering the Ensemble Noise

Berman et al. showed that when the task execution times are stochastic, the ensem-
ble dynamics given by (2) can be approximated using an equivalent expanded linear
system [1], i.e., a Multi-Pole approximation. This is achieved by introducing addi-
tional dummy transitions between states to approximate the effects of the stochastic
delay times. When delay times are deterministic or near deterministic, Mather et al.
showed that Padé approximants employed in the frequency domain do a better job
of capturing the effects of the delay in (2) [22].

To determine the effects of the deterministic (or near deterministic) delays on
the overall system performance, we can analyze (2) in the frequency domain [22].
In the frequency domain, the time delay is modeled as an exponential variable. As
the frequency increases, the output signal is delayed by more and more periods,
in effect, worsening the phase error. The advantage of the Padé approximation is
the ability to more accurately capture these effects while retaining the algebraic
structure of the differential equations, i.e., (2), in the frequency domain.

Consider the deployment of an ensemble of 10 robots moving in the plane to
2 distinct locations/sites. Initially, robots are randomly assigned to each of the two
sites. To simulate the execution of a task at a given site, each robot is tasked to circle
the site in a clockwise direction for a fixed time τi = τ . Once the task has been ex-
ecuted, the robot moves to the next site and performs the same task at the new site.
The variability in each robot’s site-to-site navigation times depends on the amount
of traffic on the road, which is affected by the number of collision avoidance ma-
neuvers each robot must execute. Fig. 2(a) shows the Fast Fourier Transform (FFT)
of the average output, e.g., xi in (2), of 54 agent-based simulations performed in US-
ARSim [24]. The frequency response of the agent-based simulations was obtained
by logging the population fractions at each site over time and applying the FFT to
these variables for each run. The FFT results were then averaged over all 54 runs.
The agent-based system exhibits a maximum gain at approximately 7.5 mHz while
both the Padé and Multi-Pole macroscopic models exhibit peaks at approximately
the same frequency. However, the Padé model shows larger gain [22].

The spurious frequency components shown in Fig. 2(a) manifest as oscillations in
the ensemble states in the time domain and is an effect of robots clustering together
as they travel from one site to another. These clusters form because too many robots
are traveling between tasks resulting in more collision avoidance maneuvers and
thus further delaying the arrival of robots at their next task. This leads to degraded
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(a) Ensemble Response

(b) Notch Filter Response

Fig. 2 (a) Top: Average of the FFT of the population fraction at site 2 obtained from 54 micro-
discrete simulations. Bottom: Magnitude portion of the Bode plots relating to the number of
Robots at building 2. For the 4th order Padé, and a 4th order Multi-Pole macro-continuous
systems. (b) Frequency response of the classical 2nd order notch filter and the delayed notch
filter given by Hτ(s) = 1

2 (1+e−sωτ ).
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performance as the average transit time between sites will increase due to these
traffic concerns. The Padé approximated macro-continuous model has the ability to
better predict the spurious frequency component that is present in the agent-based
simulations and can provide insight into the synthesis of agent-level controllers to
filter out these spurious frequencies [22].

In general, it is difficult to directly compare the macroscopic results with the
microscopic results. This is because the FFT of the system states only considers the
outputs of the system. The magnitude portion of the Bode plots, on the other hand,
gives the response of the ratio of the output to input of the system for all frequencies.
In other words, the macroscopic frequency response is based on a unity gain input
at all frequencies. The difference between the two plots is dependent on the form of
the noise input to the system and is related by the shape of the frequency spectrum
of the noise input to the system.

3.1.1 Distributed Filtering

To smooth the response of the system, a common approach is to implement a notch
filter to get rid of the spurious behavior. A notch selectively filters out a specific
frequency while leaving other frequency components unchanged, effectively reduc-
ing the gain of the single spurious frequency component. A typical 2nd order notch
controller has the transfer function H1(s) given by

H1(s) =
s2 + 2ζ1ωN +ω2

N

s2 + 2ζ2ωN +ω2
N

where ωN , ζ1, and ζ2 set the location and magnitude of the notch. However, careful
inspection of the closed-loop time domain equations suggest implementation of the
filter will require individual robots to estimate the higher order derivatives of the
populations at the various sites. Instead, we propose an approximate solution, where
the spurious frequency response can be removed without extra knowledge of the
system states by the individual robots.

This can be achieved by splitting the team into two sub-teams where one team
purposely adds an additional delay at a given site for each cycle path in G . This
approach can eliminate a frequency by adding a signal to a copy of itself, 180o

degrees out of phase. The transfer function for the proposed notch filter is Hτ(s) =
1
2 (1+ e−sωτ ). The advantage of this approach is that it can be implemented in a
completely distributed way without requiring any inter-agent communication. The
frequency response plot for this distributed delay notch filter and the classical 2nd

order filter are shown in Fig. 2(b). The difference is that the delay filter cancels every
odd harmonic of the primary notched frequency [21].

The addition of a single notch filter will suppress a single spurious population
behavior. If the task precedence graph has multiple cycles with spurious loops, mul-
tiple notches are required to eliminate spurious behavior. While introduction of a
delay into a system with feedback can be dangerous since it can lead to enough
phase lag to turn negative feedback into positive feedback resulting in unstable
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oscillations, the systems discussed here fall into a family of systems that are sta-
ble independent of delay [3]. Thus, no amount of extra phase delay can drive the
system unstable.

Fig. 3(a) shows the frequency response of the average of 50 agent-based sim-
ulations for a team of 10 with two tasks with and without the delay notch filter.
Our results show that the distributed notch filter suppressed the undesired frequency
component by 70%. Fig. 3(b) shows the frequency response of the average of three
experimental trials for a team of 10 robots with and without the delay notch filter.
Each experiment ran for roughly 45 to 50 minutes with the robots executing 750
state transitions.

3.2 Controlling the Ensemble Moment Dynamics

While the mean-field approach enables us to design decentralized coordination
strategies that can be implemented without any inter-agent wireless communica-
tion, it is limited since it can only affect the mean of the distribution. On the other
hand, the explicit modeling of the moment dynamics of the robot population distri-
bution using (5) gives the ability to devise ensemble feedback strategies that enables
the team to affect the mean, the variances, and any higher order moments of the en-
semble distribution.

As shown with equation (3), the rate in which agents in state Xi transition to Xj

depends on the population in state Xi. As such, the more agents in state Xi, the faster
they transition to Xj. However, Klavins recently showed that if we allow for both
positive and negative transition rates, it is possible to shape both the mean and the
variance of the ensemble distribution [17]. In other words, by introducing a negative
feedback rate, it is possible to slow the population growth at a given state and thus
affect the population variance in that state.

For the M state system described by (5), consider the following ensemble feed-
back controller

u =−KβE[X ] Ki j
β =

⎧⎪⎪⎨⎪⎪⎩
β ji ∀(i, j) ∈ E

−∑ (i, j)∈E β ji ∀i = j

0 otherwise

. (6)

Expression (6) can be seen as a form of linearizing feedback control that inhibits
transitions from Xi to Xj as Xj becomes larger than Xi. This results with the following
closed-loop moment dynamics

d
dt E[X ] =(Kα +Kβ )E[X ]

d
dt E[XXT ] =(Kα +Kβ )E[XXT ]+E[XXT ](Kα +Kβ )

T

+Γ (α,β ,E[X ]). (7)

The steady-state values of E[Xi] and E[XiXj] can be independently set by adjust-
ing parameters α and β . The above equations are obtained by simply substituting
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(a)

(b)

Fig. 3 (a) Frequency response results for the simulated system. This plot shows the average
response of 50 simulations of the unfiltered (no notch) system and 50 simulations of the
system with the delay notch filter. The system with the distributed filter shows a depression
in the frequency response at the active notching point. (b) Frequency response of the initial
experimental trials. The plots shows the frequency content of 3 averaged response for the
unfiltered and notched system. The peak, though small, is properly located according to the
transition times. The high peak at 6.1mHz in the notched response is due to the round trip
time if all agents went along the delay route that includes the τNOTCH delay.
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(a)

(b)

Fig. 4 These plots compare the steady state distributions and the convergence rate of the
system with and without ensemble feedback. Each left side plot shows the transient behavior
from an initial condition of X = [0,0,30]. The solid lines denote the numerical solutions of
the first moment dynamics and the data points are 10 representative stochastic simulation
runs. The right side plots are the steady state distributions represented as Gaussians.

ki j = αi j−βi j
Xj
Xi

in the reactions given by (3) and applying the extended generator
to ψ(Xi) = Xi [23].

The advantage of the proposed ensemble feedback strategy, over any other neg-
ative feedback strategy, is that it maintains the moment closure property for the
closed-loop system. This enables us to show that the close-loop moment dynamics
remain stable when βi jXj ≤ αi jXi [23]. When βi jXj > αi jXi, the system experiences
a backwards flow. As such, in practice, we restrict this rate to be greater than or
equal to zero. The addition of these saturation effects will slightly complicate the
stability analysis [23].

While the feedback strategy (6) gives robots in state Xi the ability to set their own
state transition rates to be independent from the number of robots Xi, it requires
robots at task i to know how many robots are at adjacent sites, i.e., robots in Xj

where ei j ∈ E . This differs from the delayed notch filter presented in Section 3.1
which can be implemented with no communication. As such, the implementation of
(6) will depend on the available communication infrastructure.
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(a)

(b)

Fig. 5 Probability distribution of the robot ensemble at each site, {X1,X2,X3}. (a) Without
ensemble feedback and (b) with ensemble feedback using local communication.

If we endow each task location with the computational capability to track the
number of robots at the site and the ability to communicate with adjacent task sites,
then the estimation of the ensemble states would be similar to having a single global
estimator. When individual robots arrive at a location, the information is updated
and broadcasted to all adjacent task sites. Fig. 4 shows the first moments of a three
state system (M = 3 tasks) over time with and without the ensemble feedback strat-
egy. Note how the system with ensemble feedback has both faster convergence and
smaller variance on its populations [23].

In practice, not only is it unreasonable to assume full and perfect communica-
tion among the robots, it is often unreasonable to assume full and perfect commu-
nication between the task sites. This is especially true when sites are distributed
across vast geographic regions or in situations where long-range communication is
difficult/impossible, e.g., underground/underwater environments. A distributed im-
plemention of (6) can be achieved through local inter-robot communication alone.
We assume robots have finite communication ranges and can only communicate
with other robots that are co-located at the same site and/or within each other’s
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communication range. As robots move from one site to another, they can exchange
information with other robots they encounter and construct their own estimates of
the population levels at the various sites. Fig. 5 shows the allocation of the 15 robots
to three task sites with and without the distributed implementation of the ensemble
feedback strategy.

4 Discussion and Outlook

In this chapter, we presented a method for synthesizing distributed ensemble feed-
back control strategies through the development and analysis of an appropriate
macroscopic description of the ensemble dynamics. In one case, mean-field models
allowed for the identification of the spurious interactions between robots as they
moved within a workspace executing a collection of spatially distributed tasks. The
macroscopic analysis lead to the development of a distributed filtering strategy that
could be implemented without requiring any inter-robot wireless communication
nor estimation of population variables. In a second case, moment closure techniques
where used to model the dynamics of a team of robots servicing a collection of spa-
tially distributed tasks. The analysis provided a linearizing ensemble feedback strat-
egy to enable the team to maintain the mean and the variance of the robot population
distribution across the various tasks.

The key advantage of this approach is a lower dimensional parameterization of
the ensemble dynamics that retains the salient features of the underlying agent-based
system. These techniques are particularly well-suited for analyzing the effects of un-
certain interactions on overall system performance in multi-agent robotic systems.
Specifically, these techniques enable the analysis of highly redundant systems in a
lower dimensional space while simultaneously retaining the systems-level view of
the dynamics. Furthermore, since interaction uncertainties can be explicitly encoded
in these models, the feedback strategies developed using these techniques would be
robust to any changes in population sizes.

Despite these advantages, further investigation is needed to determine the classes
of multi-agent coordination problems that are amenable to these macroscopic mod-
eling and controller synthesis techniques. Specifically, we are interested in inves-
tigating the viability of these techniques in modeling and controlling multi-agent
robotic systems executing highly coupled tasks. For any ensemble derived feedback
strategy, there is also the added challenge of determining the appropriate distributed
implementation. However, this presents an opportunity for network resource aware
synthesis of distributed coordination and control strategies for multi-agent systems.
We are interested in investigating ensemble controller synthesis techniques that can
take into account the trade-off between more precise control and the need for esti-
mating ensemble states.
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Cooperating Mobile Cable Robots:
Screw Theoretic Analysis

Xiaobo Zhou, Chin Pei Tang, and Venkat Krovi

Abstract. Cable robots form a class of parallel architecture robots with significant
benefits including simplicity of construction, large workspace, significant payload
capacity and end effector stiffness. While conventional cable robots have fixed
bases, we seek to explore inclusion of mobility into the bases (in the form of
gantries, and/or vehicle bases) which can significantly further enhance the capa-
bilities of cable robots. However, this also introduces redundancy and complexity
into the system which needs to be carefully analyzed and resolved. To this end, we
propose a generalized modeling framework for systematic design and analysis of
cooperative mobile cable robots, building upon knowledge base of multi-fingered
grasping, and illustrate it with a case study of four cooperating gantry mounted ca-
ble robots transporting a planar payload. We show its wrench closure workspace and
reconfiguration to extend the workspace, as well as redundancy resolution by opti-
mally repositioning the bases to maximize tension factor along a given trajectory.

1 Introduction

Cable driven parallel manipulators, also called cable-driven robots or cable robots,
are formed by attaching multiple cables (instead of articulated links) to an end-
effector/platform. They have significantly improved workspace as compared to con-
ventional rigid-link architectures, while possessing many of the desirable features
such as high payload-to-weight ratios, low inertial properties, low energy con-
sumption, ease of assembly/disassembly and reconfiguration. Overall low cost and

X. Zhou · V. Krovi
Department of Mechanical and Aerospace Engineering,
State University of New York at Buffalo, Buffalo, NY 14260 USA
e-mail: {xzhou9,vkrovi}@buffalo.edu

C.P. Tang
Caterpillar Global Mining Division, Denison TX 75020 USA
e-mail: nonholonomic@gmail.com
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reliability contribute to their deployment in many real-world applications, such as
heavy payload handling for manufacturing [1], extraterrestrial exploration [2], hap-
tics [3, 4], large scale radio telescopes [5], and load transport [6].

Cooperative payload manipulation using cables comes in two flavors: one class
of approaches focuses on fixed bases and varying cable lengths [1, 3, 7, 8] (i.e. con-
ventional cable robots); the other class is with fixed cable lengths and moving bases
for manipulating of objects [9] and payload manipulation and transportation on land
[10], sea [11], and in the air [12] (i.e. cable towing). In this work, we explore merg-
ing the two, i.e. coupling mobile bases with articulated-cable-arms together to create
composite mobile-cable collectives for the combined payload transportation and re-
configuration tasks (such as shown in Fig. 1). We call this type of cable robots with
moving bases cooperating mobile cable robots. While this combination potentially
could greatly increase the capability of cable robots, it also introduces redundancy
and complexity into the system. Hence, we will focus on developing a systematic
framework for design, analysis and control of such mobile cable robot collectives.

There are many challenges to the development of such a framework. Cable robot
systems can function only when the cables are in tension, which creates unilat-
eral constraints on the controlled-input rendering conventional control schemes de-
veloped for typical parallel robots incompatible. Workspace determination in the
presence of these unilateral constraints creates challenges that will be reviewed in
Section 2. Further, despite many parallels exist between the unilateral tension re-
quirements and unidirectional normal-force constraints arising in multi-fingered
hands and multi-legged walkers efforts to relate this wealth of literature to cable
robots have been very limited [13].

In modularly composed systems, both the nature of the individual modules as
well as their interactions can affect the overall system performance. Hence, a sys-
tematic (and preferably quantitative) framework for evaluation of the individual

(a) Tow trucks. (b) Tugboats.

(c) Aerial towing.

Payload

Forward Motion

(d) Composite system.

Fig. 1 Illustrative examples of mobile-agent teams tethered to a payload
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module- and system-level characteristics is desirable. This is an aspect that we ex-
amine in the context of cooperative payload transport by mobile cable robot col-
lectives in this chapter. To this end, we leverage the rich history and background
of analysis methods for constrained articulated mechanical systems. In particular,
a twist- and wrench-based analysis of in-parallel systems [14, 15] provides the un-
derlying framework for examining the performance of the cooperative system here.
The unique contributions of this chapter come from: (i) the constructive modeling
of the individual- and group-capabilities of the cooperating mobile cable robots;
(ii) systematic design evaluation of options such as attachment points choices and
mobile base positioning; (iii) redundancy resolution by optimal reconfiguration to
maximize tension factor along a desired trajectory.

2 Background

Besides the recent interest in multiple mobile agents, other forms of cooperative
multi-robot systems including multi-fingered hands and multi-legged vehicles have
been extensively studied in many contexts, as reviewed in [16]. Traditionally, such
systems have been modeled as articulated mechanical systems, with the characteris-
tic formation of closed kinematic chains. Apart from the structural classification
of Type I (legged) and Type II (multi-arm/multi-finger hand) systems, an alter-
nate functional classification into under-actuated, fully-actuated and redundantly-
actuated systems is also possible [16]. It is meaningful to exploit the redundancy in
the system to optimize secondary criteria, such as the contact/internal force distri-
bution, in addition to the performance of the motion tasks in multi-legged walkers
[17], multi-fingered hands [18] and multi-arm systems [19]. It is important to note
that most of these efforts have been addressed in a centralized control context - with
the notable exception of [20].

A cable robot with an n DOF end effector requires at least n+ 1 cables to fully
constrain the end-effector, leading to minimum limits of four cables for planar
robots and seven cables for the spatial case [3]. This also leads to a natural classifi-
cation into fully-, over- and under-constrained cable-robot systems. In the fully- and
over-constrained cable-robot systems, the posture (position/orientation) of the end-
effector can be completely determined by the given lengths of the cables and force
closure can be achieved [13]. The workspace determination [21, 22, 23, 24] poses
challenges - while the potentially-reachable workspace is a function of the geomet-
ric configuration (cable lengths, motor mounting position, cable attachment loca-
tion, etc.), not all postures may be feasible under positive-tension constraints. Hence
an additional functional workspace classification becomes possible [24, 7, 25]. In
[26], a generic method for determining wrench closure for a fully constrained cable
robot is presented. A measure of workspace quality named tension factor is pre-
sented in [27], which we will adopt as our optimization criteria. The similarities
between cable robots and other parallel architecture manipulators lead to system-
atic formulation of system performance from individual agent contribution, and we
explore this perspective next.
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3 Formulation

Using the matrix Lie Group representation of SE(3) based on the notation intro-
duced in [14], let {s} and {b} be the spatial and body fixed frames, the relative
pose of a rigid body may be expressed as gsb =

[Rsb psb
O 1

]
, where R ∈ SO(3) is a

rotation matrix and p ∈ R3 is a displacement vector. The body twists can be com-
puted as t˜bsb = g−1

sb ġsb. The body twist vector corresponding to this twist matrix can

be interpreted in terms of linear and angular velocities in body fixed coordinates
t˜bsb = b[vx,vy,vz,ωx,ωy,ωz]

T . Wrenches w˜ b
sb = b[ fx, fy, fz,τx,τy,τz]

T correspond to

co-vector fields and satisfy the virtual work relationship w˜ · t˜= 0. The adjoint trans-

formation Adg =
[

R p̂R
O R

]
and the co-adjoint transformation AdT

g−1 =
[

R O
p̂T R R

]
serves

to transform twists and wrenches between various frames of references.

3.1 Agent Twists

For each cooperating robot (they do not have to be identical), we treat the cable as
an articulated prismatic joint extending from its end-effector. Then it is a straight
forward process to derive its spatial twist. We can assign the preferred frames and
find its body twists of successive joints and then transform to a common frame
(for which we choose fixed world frame {F} here) to compose the agent’s spatial
Jacobian Js

i (qi):

F
[

0t˜n
]

i
= Js

i (qi)q̇i =

[
F

[
0t˜1
]

i
· · · F

[
n−1t˜n

]
i

]
, (1)

where qi are the joint space coordinates. This way, we can incorporate heteroge-
neous mobile agent collectives (such as shown in Fig. 1(d)) to perform cooperative
manipulation.

3.2 Payload Attachment Statics

Since the cables are firmly attached to the payload, there is no slipping. We note that
unlike finger pushing, cable pulling does not depend upon object’s shape/contact
normal direction, rather, it is the cable attachment point’s relative position with re-
spect to payload center of mass (COM) that matters. Thus, we define the cable
attachment contact frame {ci} to have the same orientation as the payload object
COM frame {o}, as shown in Fig. 2. The transformation from cable attachment

frame {ci} to payload frame {o} is given by goci =

[
Roci poci

O 1

]
, where Roci = I

since we choose attachment frame to have the same orientation as payload object
frame, and poci , which are all fixed, once the attachment locations are chosen.

The basis direction of the cable tension in contact frame {ci} is given by Bci , then
the cable wrench can be expressed in the payload object frame {o} via co-adjoint
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Fig. 2 Cable attachment contact model

transformation as ow˜ i = AdT
g−1

oci
Bci fi. Thus, in the payload object frame, the mapping

P from the space of the m cable tensions f to the object wrench w˜ o can be expressed
as

w˜ o = P fm×1 =

⎡⎣ | | | |
P1 P2 · · · Pm

| | | |

⎤⎦
6×m

⎡⎢⎢⎢⎣
f1

f2
...

fm

⎤⎥⎥⎥⎦ , (2)

where Pi = AdT
g−1

oci
Bci . Analogous to the grasp map, we call P the pulling map.

3.3 The Attachment Pulling Constraint

Now that we have both the agent Jacobian and payload attachment statics model,
we can write the pulling constraint in terms of relative velocity between attachment
contact frame {ci} and cable end frame {ei}. The constrained motion direction is
the cable pulling direction, which means:

BT
ci

t˜beici
= 0, (3)

where t˜beici
is the body twist between the payload attachment contact frame {ci} and

mobile agent cable end frame {ei}, expressed in {ci}.
Now we seek to rewrite the constraint (3) in known quantities, i.e. we wish to

relate payload velocity and agent velocity. We expand t˜beici
as:

t˜beici
= AdgciF

t˜beiF + t˜bFci
=−Adg−1

Fci
t˜sFei

+Adg−1
oci

t˜bFo, (4)

where the agent’s spatial twist t˜sFei
= Js

Fei
q̇i as derived earlier, and t˜bFo = ẋo is the

payload body twist.
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Fig. 3 Payload with 4 Agents (A,B,C,D)

Substituting (4) into (3), we get:

JT (qT,xo)q̇T = PT
o ẋo, (5)

where the team Jacobian and the pulling map:

JT =

⎡⎢⎣ Jt1 O
. . .

O Jtm

⎤⎥⎦ , PT
o =

⎡⎢⎣PT
1
...

PT
m

⎤⎥⎦=

⎡⎢⎣ BT
c1

Ad−1
goc1

...
BT

cm
Ad−1

gocm

⎤⎥⎦ , (6)

where Jti = BT
ci

Ad−1
gFci

Js
Fei

. We can rewrite the pulling constraint (5) into the form

Ap(q)q̇ = 0, where Ap = [JT , −PT ] and q = [qT
T , xT

o ]
T .

4 Planar Gantry Cable Robot Example

As an illustrating example of the process, for simplicity, we consider a planar pay-
load being manipulated by four cooperating gantry-type mobile-crane modules.
Each mobile cable robot agent consists of a linear gantry that can translate along
one axis with a mounted winch to control the cable length. The distal end of the
cable is assumed to be attached to the payload using a pin joint (for simplicity, al-
though a variety of other attachments are possible). Four such mobile cable robot
agents are assumed to be attached to a common payload as shown in Fig. 3.
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4.1 Formulation

4.1.1 Kinematics

Following the framework presented above, we show how to systematically derive
the equations. For this planar case:

Adg =

⎡⎣ R

[
py

−px

]
O 1

⎤⎦ , AdT
g−1 =

[
R 0

− [py − px]R 1

]
. (7)

The joints of each gantry cable agent are qi = [ l1i, θ2i, l3i ]
T , ∀i ∈ {A,B,C,D}. The

example reference frames for agent A are shown in Fig. 3, where the {3A} frame
is the cable end frame {eA} noted in Section 3. In each successive joint frame, the
body twists can be easily found as:

t˜b01i
=

⎡⎣ l̇1i

0
0

⎤⎦ , t˜b12i
=

⎡⎣ 0
0
θ̇2i

⎤⎦ , t˜b23i
=

⎡⎣ l̇3i

0
0

⎤⎦ . (8)

Then the spatial Jacobian of each agent can be found as:

Js
Fei =

⎡⎣cosφ0i y0i + l1i sinφ0i cos(φ0i +θ2i)
sinφ0i −x0i− cosφ0il1i sin(φ0i +θ2i)

0 1 0

⎤⎦ , (9)

where x0i, y0i, φ0i is the position and orientation of the gantry starting frame {0i}
in world fixed frame {F}.

4.1.2 Statics

As shown in Fig. 2, the transformation from cable attachment contact frame {ci}
to payload COM frame {o} is given by goci =

[
I poci

O 1

]
. The basis direction of the

cable tension in attachment contact frame {ci} is given by Bci = [−cosγi, sinγi, 0]T ,
where γi is the angle from {ei} to {ci}, then the cable wrench can be expressed in
the object frame {o} via co-adjoint transformation as:

ow˜ i = AdT
g−1

oci
Bci fi =

⎡⎣ −cosγi

sinγi

yoci cosγi + xoci sinγi

⎤⎦ fi . (10)

We can concatenate the four cable wrenches into:
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⎡⎣ Fx

Fy

Mz

⎤⎦=

⎡⎣ | | | |
PA PB PC PD

| | | |

⎤⎦
⎡⎢⎢⎣

fA

fB

fC
fD

⎤⎥⎥⎦ , (11)

where Pi = AdT
g−1

oci
Bci , ∀i = A, . . . ,D. This is the pulling map (2) that maps the cable

tension forces f to the object wrench w˜ o in the payload frame.

4.1.3 Pulling Constraint

The velocity level constraints can be developed by projecting the relative velocity
difference of the cable tip and the payload along the line of action of the cable
(which is the pulling direction). This relative velocity is now expected to be equal
to zero in order to avoid cable slack.

As derived in Section 3.3, for the pulling constraint (5) in body frame, we have:

Poi =

⎡⎣ −cos(φo−φ0i−θ2i)
sin(φo−φ0i−θ2i)

yci cos(φo−φ0i−θ2i)+ xci sin(φo−φ0i−θ2i)

⎤⎦ , (12)

and the team Jacobian is:

JT =

⎡⎢⎣Jt1 O
. . .

O Jtm

⎤⎥⎦ , (13)

where Jti = [−cosθ2i , cos(φ0i +θ2i)yo + sin(φ0i +θ2i)(x0i + cosφ0i l1i)− cos(φ0i +
θ2i)(y0i + l1i sinφ0i)− sin(φ0i + θ2i)xo + yci cos(φo− φ0i − θ2i) + xci sin(φo− φ0i −
θ2i), − 1].

4.2 Case Study 1: Wrench Closure Workspace and Its Quality

We now consider the ability of the system to both generate and resist arbitrary pay-
load wrenches (i.e. wrench closure). We use the simple planar example of an “L”
shaped payload manipulated by four gantry cable robots to showcase the bene-
fits of the systematic formulation. In particular, we will focus attention on using
quantitative metrics derived from this formulation to determine the wrench closure
workspace and its quality.

4.2.1 Wrench Closure Condition

For planar cases, it is possible to analytically determine the workspace such as
shown in [24]. Considering applicability to spatial cases, the numerical algorithm
presented in [26] can be used to determine wrench closure for general m > n cases
and it is relatively fast in computation. It basically says a necessary and sufficient
condition for wrench closure is a test vector such as pt =−∑n

i=1 pi can be positively
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spanned by another set of basis of the pulling map P. The algorithm itself is straight
forward, whose details can be found in [26].

We show a sample calculation of the workspace when the gantries are positioned
in the middle of their stroke and the attachment points are at the four tips of the
payload. We check for wrench closure condition across the workspace with the pay-
load orientation angle φ varying from−40 to 40 degrees. Fig. 4 shows the resulting
workspace.

4.2.2 Workspace Quality

Apart from simple wrench closure, it would be useful to know the quality of the
workspace. One measure is the tension factor(TF) as defined in [27]:

T F =
min(f)
max(f)

. (14)

Since cable tensions are positive, then 0 < T F ≤ 1. A larger T F means a more even
distribution of tensions in cables. It is shown that maximizing T F is equivalent to
the following linear optimization problem:

minimize
m

∑
i=1

fi

subject to Pf = 0

fi ≥ fimin > 0, (i = 1,2, . . . ,m)

(15)
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Fig. 4 Wrench closure workspace
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Figure 5 shows the quality of the workspace when the gantries are positioned in the
middle of their stroke and the attachment points are at the four tips of the payload.
The tension factors are represented by the relative size of the square markers. We
can see that due to the asymmetric payload shape, the workspace is irregular and its
quality in the sense of tension factors is even more limited. The high redundancy in
the base positioning allows us to optimize the design.

4.3 Case Study 2: Design Optimization

We first show a simple illustration of the idea. As can be easily seen, Fig. 6(a) is not
wrench closure. Intuitively, we have two design choices to make it wrench closure:
one is by changing attachment point location (as shown in Fig. 6(b)); and the other
is by moving the base location (as shown in Fig. 6(c)). While this is simply done by
inspection, in general, the selection of cable attachment point position/base location
for asymmetric payloads tends to be non-intuitive.

Next we perform design optimization based on our systematic formulation to the
example. The “L” shaped payload is assumed to be general with non uniform mass
density and thus its COM does not coincide with its geometric area center. It is in
circumstances such as this that the systematic formulation coupled with quantitative
analysis can be very useful for design and analysis.
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Fig. 5 Workspace tension factor (size of the cubes proportional to TF value)
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Fig. 6 Simple illustration of reconfiguration
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Fig. 7 Effect of cable attachment choice

4.3.1 Cable Attachment Choices

We first consider optimizing the cable attachment point locations on the payload.
The gantries are fixed at the center of their stroke, which essentially reduces our
model to the conventional fixed-base cable robot case.

The base gantries are immobilized at the mid point (l1i = 0.5, ∀i = A, . . . , D) of
their full stroke. The payload COM is at xo =−0.1, yo = 0.1,φo = 30◦. We perform
a parametric sweep to study the role of cable attachment positioning to payload on
the wrench closure condition of the pulling map, as shown in Fig. 7. Two of the
cable attachment points on the payload are held fixed at the tips while the other two
attachments can be repositioned anywhere along the corresponding sides (ycA and
xcB ).

The tension factors for each configuration is shown in Fig. 7(b). We set the ten-
sion factor to −1 to clearly represent wrench singular (not wrench closure) config-
uration. The attachment locations corresponding to optimal tension factor is shown
in Fig. 7(a).
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Fig. 8 Effect of base repositioning

4.3.2 Choices of Mobile Bases

It may be relatively inconvenient to change attachment points on the fly (i.e. re-
grasping); reconfiguring the mobile bases is more useful in practical situations.
Again, we perform a parametric sweep to study the role of base positioning on the
wrench closure of the pulling map. The cable attachment points on the payload are
held fixed at the four corner. Two of the base gantries are immobilized at the mid
point (l1C = 0.5, l1D = 0.5) of their full stroke, while the other two base gantries can
be repositioned anywhere along their full stroke (l1A and l1B ).

Fig. 8(b) showcases the tension factor plotted against the gantry positions (l1A and
l1B ). As a result, the pose that has the largest tension factor is shown in Fig. 8(a).
While the above results were shown in the form of parametric sweep results for
two design variables at a time, this was done solely for visual illustration. Various
optimization methods can now be systematically applied to a full fledged multi-
variable case which is shown next.

4.4 Case Study 3: Maintaining Optimal Tension Factor Along
Trajectory

In addition to the previous “static” design optimization of either attachment location
or base position, a more useful way would be to “dynamically” resolve the redun-
dancy by optimally reconfiguring the base gantry location along a desired trajectory
(such as the case in Fig. 9). This way, tension factor can be maintained the highest
possible all the time. This problem can be solved using “cascaded” optimization.
Basically we wrap an optimization of the four gantry positions on top of the opti-
mization of tension factor.

Different from conventional parallel robot singularities, there is no analytical so-
lution to wrench closure. Therefore conventional singularity avoidance techniques
using redundancy to optimize the smallest singular value are infeasible for the mo-
bile cable robots here. There is no analytical gradient, and numerical approximation
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Fig. 9 Reconfiguration to optimize tension factor along trajectory

is not a good solution due to high nonlinearity of the pulling map with respect to
configuration change. Either a pre-calculation/planning of trajectories to avoid sin-
gularity (which is computationally expensive) or reconfiguration along the way is
needed.

In case of wrench singular (not wrench closure) configurations of the mobile ca-
ble robots during the trajectory, two simple approaches can be used to resolve it: one
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is to perform a global optimization to find a feasible bases configuration, then in-
terpolate in the internal joint space to reach the feasible configuration and initialize
from there; the other is to perform a local search by exploratory moves of the mobile
bases which should be faster and possible if it is not far off. Also this might lead to a
local optimal tension factor, but it is acceptable in the case of trajectory tracking. To
ensure continuity, we also impose maximum velocity of gantry as an additional con-
straint to be practical, otherwise optimization results may drive the gantries all over
the place and thus causing discontinuity just to get the best tension factor. Higher
order of continuity can be achieved by imposing acceleration/jerk level constraints
to get a smoother result.

We note here in our case with only one redundant cable, the null space of the
pulling map has only one dimension. So the wrench closure condition in [26] and
tension factor in [27] can be simplified. It is straight forward to show wrench closure
is equivalent to requiring components of the null space vector to have same sign, and
tension factor is equivalent to the ratio of minimum and maximum of the absolute
values of the null space vector. This way, the lower level optimization is reduced
and thus saving us some computation time.

Here we show an example of transporting the payload along a desired trajectory
as shown in Fig. 9(a). The starting point is out of the wrench closure workspace for
the initial base configuration, which is also evident in Fig. 9(e), as the starting ten-
sion factor is −1 indicating non wrench closure. It can be seen from Fig. 9(b), after
a few exploratory steps, the gantry bases move to a feasible configuration, and then
afterwards the redundant gantry positions are optimized (using MATLAB Optimiza-
tion Toolbox) to maintain a configuration that yields the best possible tension factor
as shown in Fig. 9(e). We note that instead of performing optimization, planning
algorithms such as RRT may also be used for reaching an initial feasible configu-
ration. The resulting gantry position is shown in Fig. 9(c), cable length profile in
Fig. 9(d), and corresponding positive cable tensions in Fig. 9(f). We also note that
with high reconfigurability of mobile bases, wrench closure condition can actually
be relaxed (i.e. three mobile cable robots transporting payload) if it is not required
to exert/resist arbitrary wrench, as along as the configuration is able to exert certain
required dynamics forces/moments along a given trajectory. This aspect is currently
being pursued.

5 Discussion

The addition of base mobility provides cable robots greater flexibility, yet it requires
careful investigation. In this chapter we extend a systematic screw theoretic formula-
tion approach to the general cooperating cable robots on mobile bases. In particular,
creating a formalism for studying system level configuration by composing the con-
tributions of individual agents and thereby creating a parametric model is attractive.
Various parametric analysis including parameter sweeps, optimization and sensitiv-
ity analysis, can now be brought to aid design and analysis. Another benefit is the
ready extensibility of framework to full fledged spatial cases using this formalism.
Using this formulation also permits close linkage between grasping, walking and
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in general parallel robots, allowing for cross-pollination of results. Physical system
validation for cooperative ground mobile robots is currently underway.
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Deployment Algorithms for Dynamically
Constrained Mobile Robots

Sonia Martı́nez

Abstract. The use of unmanned vehicles in exploration and surveillance operations
has become evermore pervasive in today’s world. The development of cooperative
motion strategies has been fueled by this increasing demand. However, many dy-
namical models for these autonomous vehicles remain simple and are not accurate
representations of a vehicle where such cooperative motion strategies may be phys-
ically implemented. This paper reviews complementary solutions to the problem
of cooperative deployment of autonomous vehicles using multi-center functions. In
particular, vehicles are subject to three types of dynamic constraints, such as those
due to remaining power supplies, nonholonomic dynamics, and constraints due to
external environmental forces. Simulations illustrate the convergence properties of
the algorithms when applicable.

1 Introduction

The study of coordination mechanisms in multi-agent systems is relevant for both
the understanding of scientific phenomena and the development of new technolo-
gies. A main class of examples from nature is given by swarming in animal species
such as ant colonies, termites, flocking birds, and schooling fish. Emergence and
self-organization is also a characteristic of human politics, societies, and economic
groups. In these groups, each member makes decisions repeatedly based on local
information signals sent or left by other members of the group and the environment.
This decentralized process with no leaders yields complex emerging behaviors that
translate into robust and efficient global structures, patterns, or organizations.

Complex systems in biology and society can help us understand, model, and de-
sign large-scale engineered systems composed of autonomous and semi-autonomous
agents. Their potential advantages are those found in their biological counterparts—
robustness to failure thanks to system redundancy, and increased efficiency in the
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number and quality of the global tasks that can be accomplished. However, the re-
alization of multi-agent systems poses new challenges induced by scalability prob-
lems, agent heterogeneity, and intermittent interactions in uncertain, dynamically
changing environments.

Research in mobile robotics has helped enormously in the understanding of these
challenges through the study of several important benchmark problems including
rendezvous, formation control, deployment, and task assignment. In particular, the
problem of robot deployment to provide better coverage or task servicing in an envi-
ronment lends itself to geometric optimization formulations, which have been exten-
sively studied. An incomplete list of references on coverage includes [1, 2], based
on potential field methods, [3] using the theory of coverage point processes, [4]
making use of non-smooth analysis techniques, and [5, 6, 7] based on behavioral
control approaches. More recently, the robotics community is developing new non-
model based algorithms for coordinated deployment and map building [8].

An alternative, popular approach makes use of multi-center performance metrics
and Voronoi-based control algorithms to stabilize multi-robot systems to locally
optimal positions [9, 10]. This approach has been adapted to deal with non-convex
environments with obstacles [11, 12, 13], distributed environment learning [14, 15],
and equitable partitions [16, 17]. The resulting algorithms can be adapted so that
limited-range, distributed interactions are possible as well [18].

More recently, different researchers have started to reconsider the difficulties in-
troduced by vehicle dynamics. Coordination algorithms typically assume simple
dynamics for vehicles. The idea is to implement this strategy as a high-level plan,
together with low-level local motion plans that each vehicle uses to reconfigure to
the prescribed upper-level positions. If synchronization is possible, each vehicle can
wait for others to reach their positions before moving forward. However, in asyn-
chronous regimes this strategy can be just infeasible. On the other hand, dynamic
constraints may require a re-definition of the deployment objectives in order to pro-
duce more meaningful solutions. However, the inclusion of constraints in the coor-
dination objectives can impose additional computational and control challenges.

In this chapter, we review and summarize several extensions of Voronoi-based
deployment to account for different types of dynamical constraints. These include
power constraints, and vehicle controllable and uncontrollable dynamics. The paper
is organized as follows. In Section 2, we review the basic Lloyd’s algorithm to the
Locational Optimization problem for coverage control. In Section 3 we address the
problem of deployment under power limitation to vehicle motion. Section 4 adapts
Lloyd’s algorithm to deal with Dubin’s type of unicycles via a hybrid coordinated
motion law. Finally, Section 5 introduces a heuristic to deal with underactuated and
uncontrollable vehicles in river environments.

2 Benchmark Problem: Coverage Control

In this section, we present a basic coverage control problem formulation together
with gradient-based algorithmic solutions for unconstrained vehicle dynamics
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[9, 10]. Some of these will be extended in the following sections to account for
different types of dynamical constraints.

Basic coverage and task-assignment objectives can be formulated by a meaning-
ful class of Locational Optimization or multicenter performance metrics. Let Q⊆R2

be a convex, bounded environment, and φ : Q→R≥0 be a scalar field with bounded
support Q. Here, φ represents an a priori measure of information on Q—the higher
the value of φ(q), q ∈ Q, the more attention that should be afforded to q ∈ Q. Let
P = (p1, . . . , pn) denote the agent positions in Q. In the following, we interchange-
ably refer to the elements of the network as sensors, agents, vehicles, or robots. Let
f : R→ R be a non-decreasing and piecewise differentiable function relating the
Euclidean distance from pi to q ∈ Q, ‖pi− q‖, to coverage performance from pi on
q, for all i ∈ {1, . . . ,n}. For example, the function f can encode the signal-to-noise
ratio between a source with location q and the sensor located at pi. Or it can de-
fine the cost of servicing a location q by an agent placed at pi; e.g. the traveling
time from pi to q when moving on a straight line with constant velocity. With these
elements, a coverage metric can be defined as:

H (P) =
∫

Q
min

pi
f (‖pi− q‖)dq , (1)

where minpi f (‖pi− q‖) has the interpretation of the best coverage of q provided
by the multi-robot system. The minimization of this metric results into a minimum
average cost to cover Q using the multi-robot group.

For the purpose of defining a distributed algorithm that optimizes this metric, it
is helpful to restate (1) in terms of the individual contribution that each agent in
the network adds to H . For example, assume that f (x) = x2 for all i ∈ {1, . . . ,n}
and denote the associated H by Hcentr. Let V (P) = (V1, . . . ,Vn) be the so-called
Voronoi partition of Q, where

Vi = {q ∈ Q | ‖q− pi‖ ≤ ‖q− pi‖, ∀ j �= i} , ∀ i ∈ {1, . . . ,n}, (2)

satisfy ∪n
i=1 Vi = Q. Then H may be rewritten as

H (P)≡H (P,V (P)) =
N

∑
i=1

∫
Vi

‖q− pi‖2φ(q)dq . (3)

Given a region W ⊆ Q, one can define its mass and centroid, as follows:

MW =
∫

W
φ(q)dq , CMW =

∫
W

qφ(q)dq . (4)

It can be shown, see [19, 9], that if agents are in a centroidal Voronoi configuration;
that is, pi = CMVi for all i, then the cost function H is at a local minimum.

An alternative metric that considers flat and limited sensor footprints (resp. travel
ranges) R can be obtained by taking f (‖p−q‖) =−1[0,R)(‖p−q‖), which leads to:
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Harea(P) =−
∫
∪n

i=1 B(pi,R)
φ(q)dq, .

The minimization of this metric results into a maximization of the area covered by
the group of agents. This objective can be combined with the previous one, leading
to a mixed metric of the form Hmixed(P) = αHcentr +βHarea(P), for α , β ≥ 0.

Once a metric is chosen, a gradient-based distributed control algorithm can be
implemented by each agent to asymptotically reach the corresponding set of local
minima. The following law is a continuous-time version of the algorithm in [9]:

ṗi =−sat

(
∂Hcentr

∂ pi

)
=−MVi(CMVi−pi) , i ∈ {1, . . . ,n},

where the function sat(v) = v, if ‖v‖≤ 1, otherwise sat(v) = v
‖v‖ . Essentially, agents

need to be able to compute the regions Vi, and follow the corresponding centroid.
If Q is compact, agents will converge to centroidal locations. The corresponding
Voronoi regions may be computed by agents using information of a limited set of
other agents, the Delaunay neighbors. Thus, the algorithm is distributed in the sense
of the Delaunay graph. Correspondingly, the metrics Harea and Hmixed give rise to
algorithms that are distributed in the sense of the 2R-disk graph (for appropriate
α and β ). Discrete-time versions of these algorithms can be seen to be convergent
even if partial asynchronous behavior is permitted [9, 10].

A simulation of the above gradient algorithm is provided below.

Fig. 1 A simulation run of the gradient-based algorithm associated with Hcentr. The figure
on the left depicts robots’ initial positions. The figure on the right represents robots’ final
positions and correspond to centroidal Voronoi configurations.

3 Power-Limited Deployment

Power-aware algorithms have been the subject of extensive research in static sensor
networks and mobile middleware, see [20, 21]. However, there is limited work on
power constraints, and how these may affect cooperative control algorithms. For
instance, the final agent configurations provided by Figure 1 for a task assignment
objective do not seem reasonable when agents have different motion restrictions.

Here we describe a first approach [22] to deal with this problem in the context of
the Locational Optimization or multicenter type of metrics of Section 2. We assume
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that there is enough group redundancy so that the loss of a particular agent can
be afforded. This allows to account for energy limitations by means of a modified
performance metric of the form of (1) and associated generalized Voronoi partitions.

Let P = (p1, . . . , pn) be the positions of n robots in Q. The sensors have an asso-
ciated energy content Ei such that 0 ≤ Ei ≤ Emax, for all i ∈ {1, . . . ,n}. As agents
move, their energy reserve will decrease. We propose the following simple agent
dynamics in the augmented state (pi,Ei) ∈Q×R≥0:

ṗi = ui , Ėi =−gi(‖ ṗi‖) , (5)

where ṗi denotes the velocity of agent i such that ‖ ṗi‖ ∈ [0,vmax], ui is the control
input, and gi : [0,vmax]→ R≥0 is any increasing function such that gi(x) = 0 only
at x = 0. Intuitively, gi(x) captures the fact that energy expenditure increases as
velocity increases. This modeling assumption is based on the consideration that
power is consumed to change absolute speed and counteract drag forces; the latter
being the predominant force [22]. In the following, we will take gi(x) = g(x) = x2,
for all i ∈ {1, . . . ,n}, for simplicity.

Energy expenditure will affect the travel range that a sensor can cover with max-
imum velocity before running out of batteries. Suppose that agent i travels with
a maximum velocity ṗi(t) = (vmax,0)T ∈ R2. Then, the vehicle runs out of en-
ergy at time T (vmax) = Ei(0)/g(vmax). The associated travel range is the distance
R∗ = vmaxT (vmax). This motivates the use of a mixed type of performance metric as
in Section 2 that accounts for travel-range limits. Thus, we consider:

H (P,E) =
∫

Q
min

i∈{1,...,n}
fi(dEi(q, pi))φ(q)dq , (6)

where E = (E1, . . . ,En) are current energy levels of agents, the maps fi : R→ R

are non-decreasing functions associated with the travel cost of each agent i, and
dEi : Q×Q→R is a weighted (quasi) pseudo-metric function such as the following:

1. The power-weighted metric, dEi, pow(q, pi) = ‖q− pi‖2− (Ei)
2,

2. The multiplicatively-weighted metric, dEi, mult(q, pi) =
1

E2
i
‖q− pi‖2,

3. The additively-weighted metric, dEi, aw(q, pi) = ‖q− pi‖− (Ei)
2.

All these metrics lead to generalized Voronoi regions [19] whose size depends on
the relative energy content of neighboring robots:

V gen
i = {q ∈ Q |dEi(q, pi)≤ dEi(q, p j),∀ j �= i} , where dEi is a pseudometric.

Boundaries of these Voronoi regions are (1) straight lines for the power metric,
(2) circles of radii Ei, i ∈ {1, . . . ,n}, for the multiplicatively-weighted metric, and
(3) hyperbolic boundaries for the additively-weighted metric. Due to the difficulty
of representing and intersecting hyperbolic boundaries, we focus on the first two
types. As opposed to standard Euclidean Voronoi regions, these generalized regions
can be non-convex and their generators may lie outside them. If vehicles only have
a limited amount of energy to move using a maximum velocity, Ei, i ∈ {1, . . . ,n},
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we propose that in order for an agent i to be able to cover a point q ∈ Q, agent i
must be able to reach q with its current energy level. This leads to new assignment
regions for agents given by the intersection of Voronoi regions with circles of radii
Ei, i ∈ {1, . . . ,n}.

Let Bi(Ei) be a closed ball centered at pi with radius Ei. Then, the space that
can be covered by the robots to ∪n

i=1 Bi(Ei) ⊆ Q. The new limited-Voronoi regions
assigned to each agent are defined as follows:

V gen
LD, i = {q ∈ Q |dEi(q, pi)≤ dEi(q, p j),∀ j �= i and ‖q− pi‖ ≤ Ei} ,

where dEi is one of the pseudometrics above. Figure 2 compares limited-Voronoi
regions.
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Fig. 2 Figures from left to right: (i) Voronoi partition associated with the multiplicatively
weighted pseudometric, (ii) limited-range cells associated with the multiplicatively-weighted
pseudometric, (iii) limited-range cells associated with the power-weighted pseudometric

The computation of limited types of regions are spatially distributed over the
Delaunay graph and the third one over the 2Emax-disk graph. The new regions em-
phasize different energy levels of agents. The corresponding metrics for centroidal,
area, and mixed coverage are then given respectively as follows:

Hcentr(P,E) =
∫
∪n

i=1 Bi(Ei)
min

i∈{1,...,n}
{dEi(q, pi)}φ(q)dq ,

Harea(P,E) =
∫

Q
min

i∈{1,...,N}
(−1[0,Ei](‖q− pi‖))φ(q)dq =−

∫
∪n

i=1 Bi(Ei)
φ(q)dq ,

Hmixed(P,E) = κareaHarea(P,E)+κcentHcent(P,E) .

In particular, it is still possible to rewrite Hcentr(P,E) as follows:

Hcentr(P,E) =
n

∑
i=1

∫
V gen

LD, i

dEi(q, pi)φ(q)dq .

For any of these functions H , we can define a gradient descent control algorithm
for agents as follows:
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ṗi =−k∗(pi,Ei)sat

(
∂H

∂ pi

)
, k∗(pi,Ei) =

sat
(
∂H
∂ pi

)
·
(
∂H
∂ pi

)
2
∣∣sat
(
∂H
∂ pi

)∣∣2 ∂H
∂Ei

Ėi =−‖ ṗi‖2, i ∈ {1, . . . ,n}. (7)

That is, assuming that energy decreases according to ‖ ṗi‖2, we modulate the ve-
locity of agents via the gain k∗i while collectively decreasing the cost function H .
In this way, vehicles with lower energy will spend less in moving toward their goal
positions, while vehicles with larger energy will spend more. With this strategy, con-
trollability to critical positions is possible for those agents that have enough energy
to move. For the particular case of Hcentr(P,E), the algorithm makes agents follow
the centroids of the corresponding generalized Voronoi regions if they do not run
out of energy. Convergence is stated in the following theorem.

Theorem 1 (Critical configurations for centroidal coverage and MWVD, [23]).
The critical points of a gradient descent flow characterized by (7) using an objective
function Hcentr are configurations where each agent is either:

1. located at the centroid, pi = CMV gen
LD,i

,

2. has no energy, Ei = 0.

Agents approach these critical configurations as t→ ∞.

A simulation run of the energy-aware gradient-descent algorithm for a mixed metric
Hmixed is provided in Figure 3. Agents that need to travel further away, will even-
tually have smaller assigned regions. In this case vehicles end up at the centroids
of their regions. Similar convergence results can be established for the other cost
functions such as Harea. The number of agents that can run out of energy depends
on the initial agents’ positions, the density φ(q), and size of the environment. The
extension of these results to deal with asynchronous implementations can be done
in a similar way to [9].
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Fig. 3 Multi-robot system trajectories evolving under (7) for Hcentr. The final energy regions,
and final agent energy levels, are also shown here.
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4 Unicycle Vehicle Dynamics

Vehicles’ actuation can severely be affected by dynamical constraints on their po-
sitions and velocities. For example, the control laws of the previous section force
individual agents to move directly towards the centroid of their Voronoi regions;
however, this is not always possible. When vehicles are controllable, one can con-
sider vehicle dynamics into the design of coordination algorithms from the start.
This can help avoid severe performance degradation due to lack of synchronization.

In the following we introduce control algorithms that propel a class of non-
holonomic vehicles to centroidal Voronoi configurations while the minimization of
Hcentr is satisfied in certain sense. This results into a hybrid system that can be
analyzed via the novel theory of [24, 26]. Suppose that vehicles are deployed in
a convex, compact environment Q. Referencing Figure 4, each vehicle has con-
figuration variables (pi,θi) ∈ SE(2)Q, and a body coordinate frame with basis
ei,1 = (cosθi,sinθi) and ei,2 = (−sinθi,cosθi). We denote di = CMVi−pi as in
Figure 4 and define the angle Ωi ∈ [−π ,π ] to be the angle between ei,1 and di.
We assume the vehicles have bounded velocity and turning rate, |vi| ≤ vmax and
|ωi| ≤ ωmax respectively. Next, we introduce a Dubin’s type of nonholonomic vehi-
cles that we shall consider.

ei,1

ei,2

Ωi

CMVi

di

θi

pi

ei,1
ei,2

1
ωmax

di

θi

Ωi

CMVi

pi

ei,1

ei,2
1

ωmax

d̃i

θi

Ω̃i

CMVi

p̃i

Fig. 4 Vehicle with wheeled mobile dynamics (left). The variables are redefined for a vehicle
with fixed forward velocity and a left virtual center (middle). The non-active virtual center
quantities are shown with a tilde, ˜ (right).

Vehicles with Fixed Forward Velocity. Simple models for UAVs and underwater
gliders can be modeled as vehicles with constant forward velocity, constant altitude
and a minimum turning radius such as the following [25]:

ṗi = (cosθi,sinθi)
T , θ̇i = ωi ,

where ωi is the only input. Define the vehicle virtual center as its center of rota-
tion when the turning input is ±ωmax. These centers can be on either side of the
vehicle, and a strategy to switch virtual center locations will be introduced later.
Our coverage objective will be formulated in terms of the virtual center of each ve-
hicle to a desired centroid target. This target will be the centroid of the vehicle’s
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Voronoi region calculated using the virtual centers of all vehicles in the network.
Once the virtual center has arrived at the centroid, the vehicle will hover about it by
maintaining the maximum steering input±ωmax.

The virtual centers’ coordinates in the global frame are

pi
′ = pi± 1

ωmax
(−sinθi,cosθi)

T . (8)

with time derivative:

ṗi
′ = ṗi± 1

ωmax
(−(cosθi)θ̇i,−(sinθi)θ̇i)

T =

(
1∓ ωi

ωmax

)
(cosθi,sinθi)

T . (9)

Indeed, with ωi = ±ωmax, the vehicle is hovering since the virtual center remains
fixed, ṗ′i = 0. At any point in time, the current virtual center is chosen by a vehicle
to be located on either side of the direction of travel. To simplify notation, let a
current virtual center be p′i, and the opposite virtual center be p̃′i = p′i± 2

ωmax
ei,2. Let

d̃i = CMi(V (P))− p̃i and let Ω̃i denote the angle between ei,1 and d̃i, see Figure 4.
Each vehicle will either be in forward motion or hovering motion about one of

the centers. This will result into four possible modes of operation for each vehicle
depending on the center location: forward-left, hover-left, forward-right, and hover-
right. We enumerate each mode with the state li ∈ {1,2,3,4}, thus we describe each
agent by a state variable, xi ∈ SE(2)Q×{1,2,3,4}, and the multi-agent system state
by x = (x1, . . . ,xN) ∈R4N .

The choice of the center for each vehicle is based on the following observation.
Starting arbitrarily with a center position p′i, we propose that each vehicle can switch
to the other center, p̃i, only if the actual improvement in cost satisfies H (P,V (P))−
H (P̃,V (P̃))≥ β , where β ≥ 0 is a fixed constant, P = (p′1, . . . , p′i, . . . , p′n) and P̃ =
(p′1, . . . , p̃i, . . . p′n) considers the new virtual center position p̃i. This improvement
can be evaluated locally by each vehicle, by knowing Vi.

We now describe more precisely the hybrid system that formalizes the coop-
erative algorithm for the multi-UAV group. The system state-space is SE(2)Q ×
{1,2,3,4} ⊆ O = R

4N . First, the sets Ai,1, . . . , Ai,4 define the states where each
vehicle i can flow continuously in each of the four modes, and are given as follows:

(1) An individual vehicle can be in Ai,1 (resp. Ai,3) if the centroid is in front of the
left (resp. right) virtual center at p′i, and if p′i is not sufficiently close to CMi(V ). Ad-
ditionally, the improvement from switching between forward-left to forward-right
(resp. vice-versa) must be better than β . However, if the opposite virtual center p̃′i
is not in Q, then the vehicle may maintain its current virtual center despite violating
the improvement threshold β :

Ai,1={x ∈O | xi ∈ SE(2)Q×{1}, ei,1 ·di ≥ ε, Mi‖di‖2−Mi‖d̃i‖2 ≤ β , ‖di‖ ≥ ε}
∪{x ∈ O | xi ∈ SE(2)Q×{1}, ei,1 ·di ≥ ε, p̃′i ∈ Qc, ‖di‖ ≥ ε},

Ai,3={x ∈O | xi ∈ SE(2)Q×{3}, ei,1 ·di ≥ ε, Mi‖di‖2−Mi‖d̃i‖2 ≤ β , ‖di‖ ≥ ε}
∪{x ∈ O | xi ∈ SE(2)Q×{3}, ei,1 ·di ≥ ε, p̃′i ∈ Qc, ‖di‖ ≥ ε},
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(2) A vehicle can be in Ai,2 (resp. Ai,4) if CMi(V ) is behind the left (resp. right)
virtual center p′i, or if p′i is on the boundary Q and heading outwards, or if p′i is
sufficiently close to CMi(V ):

Ai,2 = {x ∈ O | xi ∈ SE(2)Q×{2}, ei,1 ·di ≤ ε, ‖di‖ ≥ ε} ∪
{x ∈ O | xi ∈ SE(2)Q×{2}, ei,1 · n̂in ≤ 0}∪{x∈ O | xi ∈ SE(2)Q×{2}, ‖di‖ ≤ ε},
Ai,4 = {x ∈ O | xi ∈ SE(2)Q×{4}, ei,1 ·di ≤ ε, ‖di‖ ≥ ε} ∪
{x ∈ O | xi ∈ SE(2)∂Q×{4}, ei,1 · n̂in ≤ 0}∪{x ∈O | xi ∈ SE(2)Q×{4}, ‖di‖ ≤ ε}.

The hysteresis variables 0 < ε < ε < ε serve to insure that Zeno effects do not
occur. Combining these sets together, the entire hybrid system flow set is A =⋂N

i=1 (Ai,1∪Ai,2∪Ai,3∪Ai,4). When the system configuration x∈A, the state evolves
under the ẋ = F(x), where F(x) is defined as follows. First, let Fi(x) with:

Fi,1(x) = (cosθi, sinθi,
2Ωiωmax

π
, 0)T , Fi,2(x) = (cosθi, sinθi, ωmax, 0)T ,

Fi,3(x) = (cosθi, sinθi,
2Ωiωmax

π
, 0)T , Fi,4(x) = (cosθi, sinθi,−ωmax, 0)T .

Then, F(x) = (F1(x), · · · , FN(x))T , Fi(x) = Fi,k(x) if and only if li = k ∈ {1,2,3,4}.
We now describe the set where discrete jumps can occur. We will consider:

1. Switching from forward-left to forward-right:

Bi,1 = {x ∈ O | xi ∈ SE(2)Q×{1}, ei,1 ·di ≥ ε, Mi(‖di‖2−‖d̃i‖2)≥ β , p̃i ∈ Q},
2. Switching from forward-right to forward-left:

Bi,2 = {x ∈ O | xi ∈ SE(2)Q×{3}, ei,1 ·di ≥ ε, Mi(‖di‖2−‖d̃i‖2)≥ β , p̃i ∈ Q},
3. Switching from forward-left to hover-left:

Bi,3 = {x ∈ O | xi ∈ SE(2)Q×{1}, ei,1 ·di ≤ ε}∪
{x ∈ O | xi ∈ SE(2)∂Q×{1},ei,1 · n̂in ≤−ε}∪{x ∈ O | xi ∈ SE(2)Q×{1}, ‖di‖ ≤ ε},

4. Switching from hover-left to forward-left:

Bi,4 = {x ∈ O | xi ∈ SE2Q×{2}, ei,1 ·di ≥ ε, ei,1 · n̂in ≥ 0, ‖di‖ ≥ ε}
5. Switching from forward-right to hover-right:

Bi,5 = {x ∈ O | xi ∈ SE(2)Q×{3}, ei,1 ·di ≤ ε}∪
{x ∈ O | xi ∈ SE(2)∂Q×{3},ei,1 · n̂in ≤−ε}∪{x ∈ O | xi ∈ SE(2)Q×{3}, ‖di‖ ≤ ε},

6. Switching from hover-right to forward-right:

Bi,6 = {x ∈ O | xi ∈ SE2Q×{4}, ei,1 ·di ≥ ε, ei,1 · n̂in ≥ 0, ‖di‖ ≥ ε}.
The switching domain is the union B =

⋃N
i=1
⋃6

k=1 Bi,k. The jump map G is then
defined as follows. First, let gi,1(x), . . . ,gi,6(x) be the maps for an individual vehicle
i. These maps are:
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gi,1(x) = (3, pi− 2
ωmax

ei,2,θi), gi,2(x) = (1, pi +
2

ωmax
ei,2,θi),

gi,3(x) = (2, pi,θi), gi,4(x) = (1, pi,θi),

gi,5(x) = (4, pi,θi), gi,6(x) = (3, pi,θi).

We combine the above functions for each vehicle and obtain

Gi(x) =
{
(x1, . . . ,gi,k(x), . . . ,xN) | x ∈ Bi,k, for k ∈ {1, . . . ,6}}.

The complete set-valued jump map is then G(x) =
⋃N

i=1 Gi(x).
Concisely, the hybrid system of unicycles is described as

ẋ = F(x), x ∈ A,

x+ ∈ G(x), x ∈ B.

It can be seen that the system satisfies the Basic Conditions of [26], Section VI. This
allows us to apply the hybrid LaSalle invariance theorem derived therein:

Theorem 2 (Goebel, Sanfelice, Teel [27]). Given a hybrid system (F,G,A,B) on a
state space O⊆ RM which satisfies the Basic Conditions, suppose that:

1. there is a V : O→ R, Lyapunov function continuous on O and Locally Lipschitz
on a neighborhood of A,

2. U ⊆ O is non-empty,
3. uA(x) = max f∈F(x)L fV (x)≤ 0, for all x ∈ A,
4. uB(x) = maxx+∈G(x)(V (x+)−V(x))≤ 0, for all x ∈ B.

Let x be precompact with range(x) ⊆ U . Then for some constant r ∈ V (U ), x ap-

proaches the largest weakly invariant set in V−1(r)∩U ∩
(

u−1
A (0)∪u−1

B (0)
)

.

A direct application of the above result leads to:

Theorem 3 (Kwok, Martı́nez [28]). Let U = O. Given the hybrid system for fixed
forward velocity vehicles defined above and with virtual center dynamics (9), any
precompact trajectory x(t, j) with rgex ∈U , will approach the set of points

M = {x ∈ O | ‖CMVi−p′i‖ ≤ ε, ∀ i ∈ {1, . . . ,n}} . (10)

The proof makes use of Hcentr(x1, . . . ,xN) = H( p′1, . . . , p′N) as a locally Lipschitz
Lyapunov function. It can be seen that (i) Ḣcentr(x) ≤ 0 for all x ∈ A and, that (ii)
Hcentr(x+) = Hcentr(x), for all x ∈ B. The proof follows from the analysis that the
only possible set that can contain the largest invariant set is M .

We present a simulation case below where vehicles have a fixed forward velocity
in Figure 5. All vehicles begin with random positions and orientations in the lower
left corner. They start with a left virtual center, but agent 5 switches to a right virtual
center early in the simulation. It can be seen how the vehicles navigate their virtual
centers to the centroids of their Voronoi cells. The plot in the right shows a plot of
the cost function minimization to a critical value.
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Fig. 5 Fixed forward velocity deployment simulation. The agents start in the lower left
corner and path lines are shown in the left figure with final positions and orientations shown
in the right figure. Virtual center locations are denoted by a dot.

5 Uncontrollable Vehicles in River Environments

It is generally assumed that vehicles have fully actuated, or at least controllable,
dynamics. However, potential applications may involve the deployment of vehicles
in hazardous environments where agents lack the actuation to counteract external
forces. Example applications include the deployment of micro-UAVs in wind or
gliders in a swift current. One can still aim to factor such significant environmental
dynamics into the cooperative control algorithms.

In this section we summarize the results found in [29, 30] for the deployment of
vehicles in fast flow environments. Assume the following kinematic model for each
of the agents:

ṗi = ui +V(pi) , (11)

where ui(t) is piecewise smooth, ‖ui‖ ≤ 1, and ‖V‖ > 1. Time-optimal trajectories
can only be obtained with maximum velocity, thus ui = (cosθi,sinθi)

T , see [31].
Our notion of coverage will be associated with the set of points that an agent can

travel to faster than other agents. First, let us recall the definition of reachable set:

Definition 1 (Reachable set). We define the reachable set, R(pi), of an agent at
position pi to be the set of points x ∈ X that an agent can reach in finite time starting
from the initial position pi and using a piecewise smooth control input ui(t) with
‖ui‖ ≤ 1. The T -limited reachable set, RT (pi), of an agent at position pi, is the set
of points that an agent can reach within time T using a piecewise smooth control
input ui(t) with ‖ui‖ ≤ 1.

Figure 6 shows two examples of reachable sets in an affine and constant flows.
A distributed algorithm for the deployment of agents in a flow environment can

be now based on the maximization of the following area coverage metric:

Harea(p1, . . . , pn) =
∫
⋃

RT (pi)
1dx . (12)

This must be done while taking into account the flow environment and how it af-
fects the dynamics of each agent. The consideration of other metrics is still possible,
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cT
vT

Fig. 6 Reachable sets in affine environments. The figure on the right corresponds to the T
reachable set of a vehicle moving with velocity v in a constant flow of magnitude V = (c,0).

however, external drifts give rise to generalized Voronoi regions with complex
boundaries; see [32, 33] for some initial work in this regard. In order to maximize
Harea, one can follow the next steps: (a) determine minimum time trajectories in the
flow environment, and (b) use knowledge of the properties of these optimal trajec-
tories to compute a gradient direction.

In order to find RT (pi), one must solve the following optimal control problem:

minimize: J =

∫ t f

0
1dt ,

subject to: ṗi = ui +V(pi) ,‖ui‖ ≤ 1 , (13)

pi(0)and pi(t f )given .

For a smooth flow field V , this is known as Zermelo’s problem, and a solution can
be found in [31]. The optimal solution is to consider a control input of the form

ui = (cosθi,sinθi) ,

θ̇i = sin2 θi
∂V2

∂x1
+ sinθi cosθi

(
∂V1

∂x1
− ∂V2

∂x2

)
− cos2 θi

∂V1

∂x2
. (14)

The minimum-time trajectories are obtained by using this input in combination
with (11). Note that a constant V produces straight-line optimal trajectories.

To obtain the T -limited boundary of RT (pi), one could integrate (11) using (14)
to time T starting at the agent location pi and initial heading θi(0)∈ [α−β− π

2 ,α+

β + π
2 ], where α = arctan(V2(x),V1(x)) and β = arcsin

(
1

‖V (x)‖
)

. The solutions for

various initial headings at time T could then be recorded and combined with the
solutions γ(t,−1) and γ(t,1) for t ∈ [0,T ]. Note that this procedure works well for
affine flows, for which optimal trajectories are well behaved. That is, the trajectories
do not intersect and they fill up the cone between the extreme optimal trajectories
γ(t,−1) and γ(t,1).

The consideration of piecewise constant flows changes the nature of optimal solu-
tions and reachable sets. We summarize some of their properties under the following
assumption.
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Assumption 1. The flow environment X may have obstacles and:

1. The flow V is piecewise constant. That is, X =
⋃m

k=1 Xk such that V|Xk
is constant

and satisfies ‖V|Xk
‖> 1 for all k.

2. The regions Xk, k ∈ {0, . . . ,m}, are separated by piecewise differentiable curves.
Let ψk,� : Xk →R be piecewise differentiable common boundary of Xk and X�.

3. Along the interface between two flows k and �, we consider any V (x) ∈
co{V|Xk

,V|X�
} for {x | ψk,�(x) = 0}.

Thus, the optimal paths in the interior of each Xk will be straight lines. As a path
reaches Xk, several situations may arise. We briefly describe these in the following.

Catalog of Optimal Trajectories. For simplicity, in this chapter we assume the
boundary of the environment X to be parallel to the flow in the inner region X , and
there will not be obstacles present.

For the case that a trajectory intersects a boundary between two flows, defined
by ψk,�(x) = 0, the intersection can again occur either transversely or tangen-
tially. Based on this, we classify trajectories into simple (transversal) or non-simple
(tangential) trajectories; see Figure 7. The transversal simple trajectories are non-
pathological and undergo a direction change at the interface, following an analogous
rule to that of the Snell’s law in physics:

Proposition 1 (Kwok, Martı́nez [34]). Let V− = (c1,c2)
T and V+ = (d1,d2)

T be
the flows in two neighboring regions, and α1, α2 be their respective flow orienta-
tions. Let ξ be the orientation of the normal vector of the smooth curve ψ(x) = 0 at
the point where the optimal trajectory crosses into the second flow region. A neces-
sary condition for an optimal trajectory across the interface of the two flow regions
requires that:

1+ ‖V−‖cos(θ−−α1)

sin(θ−− ξ ) =
1+ ‖V+‖cos(θ+−α2)

sin(θ+− ξ ) . (15)

Given (15), and a fixed heading θ−, the final heading satisfies

sinθ+ =
B±C

√
B2 +C2− 1

B2 +C2 , (16)

where B = 1+‖V−‖cos(θ−−α1)
sin(θ−−ξ ) cosξ − d2 and C = 1+‖V−‖cos(θ−−α1)

sin(θ−−ξ ) sinξ + d1.

B2

1

B1

5

3

4

2

6

7

x
p0

Fig. 7 Example of simple trajectories (left figure) and of non-simple trajectories (right figure)
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However, the application of (15) can also result in a trajectory (non-simple tra-
jectory) that travels along the boundary between two different flows; see Figure 7,
right picture. The use of the same result can also give a way to compute a heading
back into the first region. When an agent is moving along a flow boundary, and it is
possible to switch back into the first region, the agent may choose to switch back at
any time, making this process indeterminate. However, the result above dictates that
there is only one possible outgoing heading back into the first flow region. Further-
more, it is possible for these trajectories that flow along boundaries and later return
to intersect other trajectories that remained in the original flow region. For com-
pleteness, the following result summarizes necessary conditions for the incoming
and outgoing angles for these cases.

Proposition 2 (Kwok, Martı́nez [34]). Assume two flow regions defined by the pa-
rameters ‖V−‖,α1 and ‖V+‖,α2, respectively, separated by an interface whose nor-
mal angle is ξ . If it is possible for an agent to flow along the boundary under the
second flow, then θ+ satisfies

θ+ ∈
{
ξ ± arccos [−‖V+‖sin(α2 + ξ )] ,−ξ ± arccos[‖V+‖sin(α2 + ξ )]

}
. (17)

Let D = 1+‖V+‖cos(θ+−α2)
sin(θ+−ξ ) . Then, the incoming heading resulting in flow along the

boundary, if it exists, satisfies

θ− = arctan

[‖V−‖sinα1−Dcosξ
‖V−‖cosα1 +Dsinξ

]
± arccos

(
−1√

(‖V−‖sinα1−Dcosξ )2 +(Dsinξ + ‖V−‖cosα1)2

)
. (18)

Knowledge about these trajectories can be used to derive a gradient-ascent algorithm
that aims to maximize Harea. We begin by taking the gradient of Harea with respect
to pi in order to obtain a set directions each agent must travel in.

Proposition 3 (Kwok, Martı́nez [34]). Given the area objective (12), let

Åi = ∂RT (pi)∩
⎛⎝ ⋃

j∈Ni,flow

RT (p j)

⎞⎠c

∩X , (19)

the set of points in ∂RT (pi) is not in the interior of neighboring reachable sets.
Then the gradient with respect to pi is:

∂H

∂ pi
=

∫
Åi

n̂T
out(ζi)

∂ζi

∂ pi
dζi , (20)

where ζi : S→ R2 is a parametrization of ∂RT (pi), and n̂out : R2 → R2 is the unit
outward-pointing normal vector at ζi.
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For piecewise constant flows, ∂ζi
∂ pi

can analytically be computed using the previous
analysis of the course changes of optimal trajectories in flows; see [34]. We can
further analyze the algorithm

ṗi =
∂Harea

∂ pi
, i ∈ {1, . . . ,n} , (21)

above for the special case of a single constant flow field. For a constant flow the gra-
dient according to (20) becomes ∂Harea

∂ pi
=
∫

Åi
n̂T

out(ζi)dζi. This result has an intuitive

interpretation. In order to maximize area covered, agents move towards locations
that are not occupied by other agents’ reachable sets. Now the following can be
proven:

Proposition 4 (Kwok, Martı́nez [34])

1. For a constant flow field, V = c, if no regions intersect the boundaries ∂X, then
Harea is non-decreasing if agents use the control law (21).

2. For constant flows, if the flow boundaries are parallel with the flow direction
and X is unbounded (the flow domain is an infinitely long strip), then Harea is
maximized by (21).

Other flow cases make difficult the analysis of the evolution of Harea, similarly to
what happens with time-dependent coverage functions. The current strategy makes
agents follow the direction of maximum ascent of Harea. However, one can imagine

0 20 40 60

100

200

300

400

t

Fig. 8 The central “eye” of the storm is treated as an obstacle, or equivalently a “no-fly zone.”
The simulation snapshots occur for t = 0 (top left), t = 20 (top right), and t = 60 (bottom left).
A plot of the total reachable area is shown in the bottom right.
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situations in which the value of Harea decreases despite of this if, for example,
boundaries of X become closer and closer. The following is a simulation showing
how Harea oscillates around a given value when the flow regions force vehicles into
a bounded region; see Figure 8.

6 Conclusions

This chapter summarized several results concerning the deployment of vehicles sub-
ject to dynamic constraints. In general, the algorithms are distributed over the asso-
ciated Delaunay graphs or, in r -disk graphs with r sufficiently large. The algorithms
provide convergence guarantees to the set of local minima of different classes of Lo-
cational Optimization or multicenter metrics. Dynamic constraints were dealt with
in essentially three ways: (i) in a soft manner, by modifying the Locational Op-
timization metric and working with easy-to-compute generalized Voronoi regions,
and (ii) by resorting to controllability properties of the vehicles, and (iii) by using
the dynamic constraints in the definition of generalized regions assigned to each
vehicle. In general, dynamic constraints will lead to involved generalized Voronoi
regions, whose boundary is hard to compute and represent, as it reduces to the so-
lution of an optimal control problem. We are currently investigating how this can
be alleviated by considering upper and lower approximations of Voronoi regions,
which can be refined to any degree at a higher computational expense. By defining
an algorithm that allows each agent follow the direction of an approximated gradient
using the lower Voronoi region approximation, it can be seen how local minima can
still be reached. We are exploring this in the context of constant river environments
in the manuscript [35] with Voronoi regions given by hyperbolas, but we believe the
approach can be extended to general cost functions.

Acknowledgements. This work surveys partially the thesis work of the graduate student
Andrew N. Kwok. Andrew defended his thesis in January 2011 and was funded by grants
NSF CNS-0930946, NSF CAREER CMMI-0643679.
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Kalman Smoothing for Distributed Optimal
Feedback Control of Unicycle Formations

Ross P. Anderson and Dejan Milutinović

Abstract. In many multi-agent control problems, the ability to compute an opti-
mal feedback control is severely limited by the dimension of the state space. In this
work, deterministic, nonholonomic agents are tasked with creating and maintaining
a formation based on observations of their neighbors, and each agent in the forma-
tion independently computes its feedback control from a Hamilton-Jacobi-Bellman
(HJB) equation. Since an agent does not have knowledge of its neighbors’ future
motion, we assume that the unknown control to be applied by neighbors can be
modeled as Brownian motion. The resulting probability distribution of its neigh-
bors’ future trajectory allows the HJB equation to be written as a path integral over
the distribution of optimal trajectories. We describe how the path integral approach
to stochastic optimal control allows the distributed control problems to be written
as independent Kalman smoothing problems over the probability distribution of the
connected agents’ future trajectories. Simulations show five unicycles achieving the
formation of a regular pentagon.

1 Introduction

The focus of this work is on formation control, in which each agent, a robotic non-
holonomic vehicle, in a team is tasked with attaining and maintaining pre-specified
distances from the agents in its neighborhood. Problems of this type are beginning
to demonstate their significance and potential impact in a variety of applications in
both the public and private sector [3, 22, 29, 35]. Nonholonomic vehicle formations,
in particular, have attracted much attention [1, 7, 8, 9, 31, 32, 33], but these studies
have typically relied on stability analyses, or on ad-hoc artificial potential functions
or navigation functions.
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Alternatively, the formation control problem may be defined as an optimal feed-
back control problem. To compute an optimal feedback control, one must solve the
Hamilton-Jacobi-Bellman (HJB) equation, which is a nonlinear partial differential
equation (PDE). However, the computational complexity of solving the PDE grows
exponentially with the size of the team, and this severely limits the effectiveness
of conventional techniques of stochastic optimal control. A number of promising
approaches to address this so-called “curse of dimensionality” have been proposed,
including reinforcement learning [36], neurodynamic programming [4], and approx-
imate dynamic programming [30], just to name a few.

In this work, we approach the problem of formation control based on the path
integral formulation of stochastic optimal control [17]. We explicitely take into ac-
count the fact that although agents may be capable of observing or receiving the cur-
rent state of their neighbors, the future trajectories of these neighbors will seldom
be known exactly, since they individually compute their control based on their own
available information and observations. From this point of view, the distributed for-
mation control problem is inherently stochastic, and not only due to unpredictable
neighbors. In addition, the control is a function of an agent’s noisy observations,
and it must also deal with agent model uncertainties and environmental uncertain-
ties (e.g., wind). Along these lines, this work considers the problem of controlling
one agent based on observations of its neighbors and the probability of their future
motion. This probability distribution arises from an assumption that the unknown
control of an agent can be modeled as Brownian motion [15], so that based on the
system kinematics, we can infer the probability of finding the relative state x to all
neighbors in an interval (x,x+ dx) at a particular future time [40].

Perhaps more importantly, this probability distribution over future system trajec-
tories can be used to statistically infer the probability distribution of the control,
and, hence, the optimal control. When an agent’s neighbors are treated as non-
deterministic, one can consider that agent’s optimal control to be the action that min-
imizes the expected value of the accumulated cost with respect to the distribution of
neighbors’ future trajectories (see [20] and references therein for a more precise in-
terpretation in terms of minimization of Kullback-Leibler divergence). Along these
lines, the path integral (PI) formulation of stochastic optimal control [16, 19, 18]
transforms the problem of solving the HJB equation into an estimation problem on
the distribution of optimal trajectories in continuous state space [39].

The path integral approach is made possible by the relation between the solutions
to optimal control PDEs and the probability distribution of stochastic differential
equations [27, 44] (see [24, 25, 26, 28] for an analogous approach in the open-loop
control case), and it has shown great potential for systems with large state space. For
example, Theodorou et al. [37, 38] have examined the the link between reinforce-
ment learning and the path integral method for motor control and robotics, while van
den Broek et al. [5, 6] and Wiegerinck et al. [41, 42] apply the path integral frame-
work to multi-agent systems. In the latter, the agents exhibit explicitly-stochastic
kinematics and cooperatively compute their control from a marginalization of the
joint probability distribution of the group’s system trajectory.
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(x,y)

(xm,ym)
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Δxm

Δym
ϕm

θ

θm

Fig. 1 Diagram of the AiF moving at direction θ and at a distance r to the neighbor m. The
turning rate and acceleration of the neighbor are unknown.

In this chapter, we develop a method to apply the path integral approach to
fully-distributed multi-agent systems by constructing a fast-switching process that
randomly select a single neighboring agent from which the optimal control may be
inferred. We also establish a connection between the optimal feedback control prob-
lem for multi-agent systems and nonlinear Kalman smoothing algorithms, which
allows each agent to independently compute its control in real-time.

This chapter is organized as follows. Section 2 introduces the formation con-
trol problem as viewed by a single agent in the group and describes a way to pa-
rameterize the kinematic model so that the resulting HJB equation solution can be
represented as a path integral. Section 3 reviews the path integral formulation of
stochastic optimal control. Section 4 presents a duality between stochastic optimal
feedback control and Kalman smoothing algorithms. Section 5 illustrates our meth-
ods with a simulated five-agent formation, and conclusions are in Section 6.

2 Control Problem Formulation

In this section we formulate the optimal feedback control problem for unicycle for-
mations and describe a way to manipulate the model kinematics into a form that
allows the HJB equation solution to be described by a path integral.

2.1 Preliminary Kinematic Model

In the problem formulation, each agent is modeled as a unicycle, which moves in
the direction if its heading angle θ at a speed v:

dx(t) = vcosθdt (1)

dy(t) = vsinθdt (2)

dθ (t) = ωdt (3)

dv(t) = udt, (4)

where u is the feedback acceleration control and ω is the feedback turning rate
control.



148 R.P. Anderson and D. Milutinović

Each agent independently computes its respective control based on observations
of its M neighbors, labeled m = 1, . . . ,M. To this end, we focus on the system state
as viewed by one agent, which we call the agent-in-focus, or AiF for short. Define
Δxm = xm− x and Δym = ym− y as the Cartesian components of the distance from
the AiF to the neighbor m (Fig. 1). These states evolve as:

dΔxm(t) =−vcos(θ )dt + vm cos(θm)dt (5)

dΔym(t) =−vsin(θ )dt + vm sin(θm)dt, (6)

where vm is the speed of neighbor m. Although the kinematics of the neighboring
vehicles are identical, their turning rate control and acceleration control are un-
known. Based on the motivation of the previous section, we assume that the turning
rate and acceleration controls of neighbor m can be modeled as Wiener processes
with mutually independent increments dwθ ,m and dwv,m, and intensities σθ and σv,
respectively:

dθm = σθdwθ ,m (7)

dvm = σvdwv,m. (8)

Finally, introducing the distance from the AiF to the neighbor m as
rm =

√
Δx2

m +Δy2
m and the angle to the neighbor m as ϕm = tan−1(Δym/Δxm), we

arrive at a preliminary model for the AiF and a single neighbor m:

drm(t) =−vcos(ϕm−θ )dt + vm cos(ϕm−θm)dt (9)

dϕm(t) =
v

rm
sin (ϕm−θ )dt− vm

rm
sin(ϕm−θm)dt (10)

dθ (t) = ωdt (11)

dθm(t) = σθdwθ ,m (12)

dv(t) = udt (13)

dvm(t) = σvdwv,m. (14)

Note that this system, when augmented to account for M neighbors, would have
a two-dimensional control u = [ω ,u]T , but that the stochastic process w(t) =[
wθ ,1, . . . ,wv,M

]T
would be of dimension M.

2.2 Switching Kinematic Model

Since the AiF will be drawing from the random processes describing its neighbors
kinematics as a source from which to compute its control, we wish to devise a way
to connect the random motion in (12) and (14) to the controls in (11) and (13). In
particular, for reasons that will become more clear in Section 3, any controlled state
should be affected by just one Wiener process, and vice versa. In the model devel-
oped in the previous section, this is not the case since there is a two dimensional
control u and M dimensional stochastic process. In order to manipulate the model
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into such a form, we introduce a second, faster time scale t/ε , for a small ε > 0,
and we assume that in each infinitesimal time increment in this faster time scale,
the AiF is using the relative state to just one neighbor m to compute its control,
and that the choice of neighbor m switches randomly among the M neighbors at a
fast rate. It will turn out [43] that under a sufficiently fast secondary time scale, the
randomly-switching model to be developed in this section is equivalent to (9)-(14).

Let us define the difference in heading angle γ = θ −θm and difference in speed
κ = v− vm. Then we can obtain (Appendix 1) the following model, one for each of
M neighbors.

drm(t) =−
(

1
M

M

∑
j=1

(E(κ j))+ vm(0)

)
cos

(
ϕm− 1

M

M

∑
j=1

(E(γ j)))−θm(0)

)
dt

+(−(κm−E(κm))+ vm(0))cos(ϕm +(γm−E(γm))−θm(0))dt (15)

dϕm(t) =

(
1
M

M

∑
j=1

(E(κ j))+ vm(0)

)
sin

(
ϕm− 1

M

M

∑
j=1

(E(γ j))−θm(0)

)
dt

− 1
rm

(−(κm−E(κm))+ vm(0))sin(ϕm +(γm−E(γm))−θm(0))dt

(16)

dγm(t) =
(

Mωdt−
√

Mσθdwθ ,m

)
δξ (t/ε),m (17)

dκm(t) =
(

Mudt−
√

Mσvdwm

)
δξ (t/ε),m. (18)

When taking into account all M neighbors of the AiF, the system state is defined
through a concatenation of the model (15)-(18), one for each neighbor m= 1, . . . ,M.

The fast switching behavior [11] is captured by an ergodic Markov chain ξ (t/ε)
with a fast time scale ε > 0, taking on values in {1,2, . . . ,M}. We assume that this
chain is independent of the Wiener process w(t) affecting the neighbors’ heading
angles and speeds in (7)-(8). The Kronecker deltas δ in (17)-(18), therefore, select
the pair of “actively evolving” states among the M states in [γ1, . . . ,γM,κ1, . . . ,κM]T .
In other words, if ξ (t/ε) = M− 1, for example, only the states γM−1 and κM−1

evolve as in (17) and (18), while all other relative heading angle and relative speed
states have zero increment (dγm = dκm = 0). In this case, the AiF is using the random
motion of neighbor M− 1 to compute its control.

The evolution equation for M neighbors may now be written in a more general
stochastic differential equation for the state vector x(t):

dx(t) = f (x)dt +Biudt +Γidw, (19)

where f (x) describes the deterministic motion in states (15)-(16), and the matrices
Bi and Γi in the state ξ (t/ε) = i and state vector x(t) are constructed as:



150 R.P. Anderson and D. Milutinović

Bi = M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
...

...
0 0

δi1 0
...

...
δi,M 0

0 δi1
...

...
0 δi,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r1, . . . ,rM,ϕ1, . . . ,ϕM

κ1, . . . ,κM

γ1, . . . ,γM

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1
...

rm

ϕ1
...
ϕM

γ1
...
γM

κ1
...
κM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Γi =−
√

M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
...

. . .
...

0 . . . 0

σθ�i 0

0 σv�i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
r1, . . . ,rM,ϕ1, . . . ,ϕM

γ1, . . . ,γM

κ1, . . . ,κM

(20)

where �i = diag([δi,1, . . . ,δi,M]).
The transition probabilities from state ξ (t/ε) = i to ξ (t/ε) = j are defined in

terms of a M×M generator matrix Q(t)/ε

P(ξ (t +Δ t) = j | ξ (t) = i) = qi j + o(Δ t), j �= i, (21)

and we choose

qi j(t) = 1, j �= i (22)

qii(t) =−(M− 1), (23)

so that the chain has an equal probability of transitioning into any of the M states. It
is well known that in the limit of ε→ 0, the evolution of a switching model like (19)
under fast Markov switching ξ (t/ε) converges weakly to an average, or homoge-
nized, model [11, 21]. Because of the symmetry of the transition probabilities (21),
the switching model (15)-(18) then converges weakly the same kinematics as the
original model (9)-(12). However, unlike the original model, the switching model
has the advantage that BiBT

i ∝ ΓiΓ T
i ∀i, which will become important in Section 3.

Therefore, we seek to control the state of x(t) as described by the switching kine-
matic model (19).
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2.3 Cost Functional

In our control approach, the agents create and maintain a formation described by
a vector of nominal distances. From the perspective of the AiF, these distances are
μ = [μ1, . . . ,μM]T , and it computes its respective feedback control u from a cost
functional of the form:

J(x, t,ξ ) = min
u

E

{∫ t f

t

(
1
2
(h(x(s))− μ)T A(h(x(s))− μ)+ 1

2
uT Ru

)
ds

}
,

where h(x(t)) = [r1(t), . . . ,rM(t)]T is the vector of distances to each neighbor of the
AiF, and R is the penalty on control, i.e., turning rate and acceleration control. The
nominal distances μ are assumed to be constant over the planning horizon, but any
change in μ could reflect the inclusion of dynamic formation changes. We define
the general state cost k(x),

k(x) = (h(x)− μ)T A(h(x)− μ), (24)

to yield the cost-to-go function for the AiF

Ji(x, t)≡ J(x, t,ξ = i) = min
u

E

⎧⎨⎩
t f∫

t

1
2

(
k(x(s))+u(x(s))T Ru(x(s))

)
ds

⎫⎬⎭ . (25)

3 Path Integral Construction

In this section the path integral representation of the switching kinematics model
is derived. We begin with the (stochastic) Hamilton-Jacobi-Bellman equation for
the model (19) and cost functional (25), which, for the state of the fast-switching
Markov chain is ξ (t/ε) = i, is

0 = ∂t Ji +min
u

{
( f +Biu)T∂xJi +

1
2

Tr
(
ΓiΓ T

i ∂ 2
x Ji
)

+
1
2

k(x)+
1
2

uT Ru+
Q(t)
ε

J(x, t)(i)
}
, i = 1, . . . ,M, (26)

where

Q(t)
ε

J(x, t)(i) =
1
ε ∑j �=i

qi j(t)(Jj(x, t)− Ji(x, t)) . (27)

We have chosen zero terminal cost (at t = t f ) for this system of PDEs,

Ji(x, t f ) = φ(x) = 0, ∀i, ∀x, (28)
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and added reflective boundary conditions to constrain the speed of agents to remain
between vLB ≤ v≤ vUB:

∂xJi(x, t) · n̂ = 0, ∀i, ∀t, x ∈ V (29)

V =
{

x :
1
M

M

∑
j=1

(E(κ j))+ vm(0) = vLB

⋃ 1
M

M

∑
j=1

(E(κ j))+ vm(0) = vUB⋃
−(κm−E(κm))+ vm(0) = vLB⋃
−(κm−E(κm))+ vm(0) = vUB

}
, (30)

at the domain normals n̂.
The HJB equation is typically solved numerically (see [23], for example), which

is impossible for a problem of this size. However, we can exploit the structure of the
formation control problem to formulate the HJB PDE solution as a solution to an
equivalent estimation problem through a path integral representation.

The optimal control u(x, t, i) that minimizes (26) is

u(x, t, i) =−R−1BT
i ∂xJi(x, t), (31)

which, when substituted back into the HJB equation, yields:

0 = ∂t Ji + f T∂xJi− 1
2
(∂xJi)

T BiR
−1BT

i ∂xJi

+
1
2

Tr
(
ΓiΓ T

i ∂ 2
x Ji
)
+

1
2

k(x(t))+
Q(t)
ε

J(x, t)(i). (32)

A logarithmic transformation [10] is applied for each state i:

Ji(x, t) =−λ logΨi(x, t), (33)

yielding a new PDE

1
Ψi
∂tΨi =

1
2λ

k(x)− f T

Ψi
∂xΨi− 1

2Ψi
Tr
(
ΓiΓ T

i ∂ 2
xΨi
)− Q(t)

ε
logΨ(x, t)(i)

− λ
2Ψ2

i

(∂xΨi)
T BiR

−1BT
i ∂xΨi +

1
2

1

Ψ2
i

(∂xΨi)
T ΓiΓ T

i ∂xΨi. (34)

In the relative model (17)-(18), it can be seen that the states γm(t) and κm(t) col-
lectively describe the evolution of the difference between the AiF control and the
unknown control of a neighbor. This suggests that we might be able to compute a
control that can, in some sense, compensate for the uncertainty associated with a
neighbor’s control. Moreover, this implies that a large disturbance in the relative
states (i.e., (17)-(18)) likely requires a greater control input, and conversely, that
non-actuated states must be noiseless. Because of this, we assume that the noise in
the controlled components is inversely proportional to the control penalty, or
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ΓiΓ T
i = λBiR

−1BT
i , ∀i. (35)

This selects the value of the control penalty that we shall use in the sequel as

R = diag
(
λσ−2

θ ,λσ−2
v

)
. (36)

From (36), the quadratic terms on the second line of (34) cancel, and the remaining
PDE forΨi is

∂tΨi =
1

2λ
k(x)Ψi− f T∂xΨi− 1

2
Tr
(
ΓiΓ T

i ∂ 2
xΨi
)−Ψi

Q(t)
ε

logΨ(x, t)(i). (37)

Note that this cancellation is only possible in the switching model.
Next, it is shown in Appendix 2 that a first order asymptotic approximation to

(37), denotedΨ0(x, t), is independent of the state i of the chain ξ (t/ε), and that this
approximation satisfies the following linear PDE:

∂tΨ0(x, t) =− f T∂xΨ0(x, t)− 1
2

Tr
(
Σ∂ 2

xΨ0
)
+

1
2λ

k(x)Ψ0(x, t) (38)

=−
(

f T ∂x +
1
2

Tr
(
Σ∂ 2

x
)− 1

2λ
k(x)
)
Ψ0 (39)

=−HΨ0(x, t), (40)

where

Σ =
1
M

M

∑
j=1

ΓjΓ T
j (41)

is the average of the covariance of the stochastic disturbances in the switching model
(15)-(18). The boundary conditions become

Ψ0(x, t f ) = exp(0) = 1, ∀x (42)

∂xΨ0(x, t) · n̂ = 0, ∀t, x ∈ V . (43)

This could be numerically solved backward in time from the terminal condition.
However, the Feynman-Kac equations [27, 44] connect certain linear differential
operators, H included, to adjoint operators that describe the evolution of a forward
diffusion process beginning from the current state x̃(t0) = x̃0 = x and ending at
x̃N = x̃(tN) = x̃(t f ).

In expected value, the solution to (40) is

Ψ0(x̃0, t0) = Ep(χ |x̃0)

⎧⎨⎩exp

⎛⎝− 1
2λ

tN∫
t0

k(x(s))ds

⎞⎠⎫⎬⎭ , (44)

where x̃(t) satisfies the path integral-associated, uncontrolled dynamics (cf. (19))
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dx̃(t) = f (x̃(t))dt +
√
Σdw (45)

x̃(t0) = x. (46)

Note that since the process x̃(t) is uncontrolled, the expected values of the relative
states γm and κm reduce to θ (0)− θm(0) and v(0)− vm(0), respectively. This sim-
plifies the passive components of the uncontrolled model, i.e., f (·) in (15)-(16), to
the following form, one for each neighbor m:

drm(t) =−κ(0)cos(ϕm−θ (0))dt− (κm− vm(0))cos(ϕm + γm−θ (0))dt (47)

dϕm(t) = κ(0)sin(ϕm−θ (0))dt +
1
rm

(κm− vm(0)) sin(ϕm + γm−θ (0))dt (48)

The expectation in (44) is taken with respect to the distribution p(χ |x̃0) of sample
paths χ that begin at x̃0 = x and evolve as (45). By discretizing the interval [t0, tN ]
into N intervals of equal length Δ t, t0 < t1 < .. . < tN , we can write a sample of the
discretized trajectory χ i

N as

χ i
N =

(
x̃i

1, . . . , x̃
i
N

)
,

which is sampled from

χ i
N ∼ p(χN |x̃0) = p(x̃1, . . . , x̃N |x̃0).

Under this discretization in time, the solution (44) can be written as

Ψ0(x̃0, t0) = lim
Δ t→0

∫
dχN p(χN |x̃0)exp

[
− Δ t

2λ

N

∑
k=1

k(x̃k)

]
, (49)

where dχN =
N
∏

k=1
dx̃k and where p(χN |x̃0) is the probability of a discretized sample

path, conditioned on the starting state x̃0, given by

p(χN |x̃0) =
N−1

∏
k=0

p(x̃k+1|x̃k). (50)

Since, in the uncontrolled process (45), the noise is Gaussian with zero mean and
covariance Σ , the transition probabilities may be written as

p(x̃k+1|x̃k) =
1√

2π |Σ |Δ t
exp

(
− 1

2Δ t
(x̃k+1

−x̃k− f (x̃k)Δ t)T Σ−1 (x̃k+1− x̃k− f (x̃k)Δ t)
)
. (51)

We can then write the probability of a complete trajectory as
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p(χN |x̃0) ∝ exp

(
−Δ t

2

N−1

∑
k=0

(
x̃k+1− x̃k

Δ t
− f (x̃k)

)T

Σ−1
(

x̃k+1− x̃k

Δ t
− f (x̃k)

))
.

(52)

The path integral representation of Ψ0(x̃0, t0) is obtained from equations (49-52),
and can be written as an exponential of an “action” [14] S(χN |x̃0) along the time-
discretized sample trajectory (x̃1, . . . , x̃N):

Ψ0(x̃0, t0) =
1

|2πΣΔ t|N/2
lim
Δ t→0

∫
dχNexp(−S(χN|x̃0)) (53)

S(x̃1, . . . , x̃N |x̃0) =
N

∑
k=1

Δ t
2λ

k(x̃k)

+
N−1

∑
k=0

1
2Δ t

(x̃k+1− x̃k−Δ t f (x̃k))
T

×Σ−1 (x̃k+1− x̃k−Δ t f (x̃k)) . (54)

From (31), (33), the optimal control is given by

u(x̃0, t0, i) = lim
Δ t→0

λR−1BT
i ∂x̃0

logΨ0

= lim
Δ t→0

∫
dχNP(χN |x̃0)uL(χN |x̃0, i)

= lim
Δ t→0

EP(χN |x̃0) {uL(χN |x̃0, i)} (55)

= EP(χ |x̃0) {uL(χ |x̃0, i)}

where limΔ t→0 P(χN |x̃0) = P(χ |x̃0) is the probability of an optimal trajectory:

P(χN |x̃0) ∝ e−S(χN |x̃0), (56)

and the local controls uL(χN |x̃0) are

uL(χN |x̃0, i) =
1
M

Bi
x̃1− x̃0

Δ t
, (57)

where the Bi selects a pair (γm,κm) based on the corresponding value of ξ (t/ε), as
in (20). Then (55) is

u(x, i) =
1
M

Bi
EP(χN |x̃0) {x̃1}− x

Δ t
. (58)

In the formulation, after computing u(x(t), t) = u(x̃0, t0), each agent executes only
the first increment of that control, at which point the optimal control is recom-
puted for the next time horizon

[
t0, t f

]
=
[
t, t + t f

]
. In other words, after comput-

ing EP(χN |x̃0) {x̃1}, the AiF applies the control u as chosen by the Bi in (58) to its
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t = 0,
ξ (0)

t = ε ,
ξ (ε)

t = 2ε ,
ξ (2ε)

t0 t1 t2
. . .

tM−1 t f

ε

t0 t1 t2
. . .

tM−1 t f

ε

t0 t1 t2
. . .

tM−1 t f

ε

Δ t

Fig. 2 Receding-horizon timing. At t = 0, the AiF computes EP(χN |x̃0) {x̃1}, and randomly

chooses a value for ξ . The control applied is the ξ th component of (58). In the next time step
ε , the process repeats.

heading angle and speed. Then the problem repeats with a random selection of ξ
(see Fig. 2).

The result of this section is a PDF (49) of the system trajectories, including their
costs, that is marginalized over each infinitesimal temporal increment of the pro-
cess under consideration. The optimal control (58) applied by the AiF in state x
is estimated from this trajectory PDF once the joint probability P(χN |x̃0) has been
computed, a nontrivial task to be discussed in the following section.

4 Computing the Control with Kalman Smoothers

In this section we present our approach that estimates the hidden state of a nonlinear
stochastic process, which corresponds to the maximally-likely trajectory under state
and control costs, using appropriately-chosen noisy measurements.

In general, the marginalization (49) is difficult to evaluate. If one were able to
sample K trajectories from the distribution P(χN |x̃0), approximation of the posterior
distribution, i.e., the optimal control (55), would only require a quick calculation:

u(x) =
1
K

K

∑
i=1

u(i)
L (x̃1, . . . , x̃N |x̃0),

Along these lines, previous works based on the path integral approach to stochastic
optimal control use Markov Chain Monte Carlo (MCMC) techniques [12] to sample
from P(x̃1, . . . , x̃N |x̃0). Although MCMC techniques can be used to generate sam-
ples of the maximally-likely trajectory, we find them to be slow in practice due to
the high dimension of this problem (χN ∈ R

6NM).
Moreover, is is not necessary to sample the entire distribution P(χN |x̃0) since

only the value of x̂1 ≡ EP(χN |x̃0) {x̃1} is needed. Note that this estimate is the first
infinitesimal increment of the optimal trajectory χ∗N :
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χ∗N = argmax
χN

{P(χN |μ , x̃0)}

∝ argmax
χN

{P(μ |χN)P(χN |x̃0)} .

In this work, we treat the temporal discretization of the optimal trajectory χ∗N as the
hidden state of a stochastic process, where measurements are related to the system
goal μ (24). The optimal control can then be computed from the optimal estimate x̂1

of the expected value P(χN |x̃0) {x̃1} given the process and measurements over a fixed
interval t1, . . . , tN . Therefore, we define the following nonlinear smoothing problem.

Nonlinear Smoothing Problem:
Given measurements yk = y(tk) for tk = t1, . . . , tN = t f , where tk+1− tk = Δ t, com-
pute the estimate x̂1:N of the hidden state x̃1:N from the nonlinear state-space model:

x̃k+1 = x̃k +Δ t f (x̃k)+ εk (59)

yk = h(x̃k)+ηk, (60)

where f (·) and h(·) are as in Section 2, and εk and ηk are independent multivariate
Gaussian random variables with zero mean and covariances:

E
(
εkεT

k

)
= Δ tΣ (61)

E
(
ηkηT

k

)
=

λ
Δ t

A−1. (62)

The smoothing is initialized from x̃0 = x, the current state of the system as viewed
by the AiF. Measurements yk are always exactly yk = μ . If μ is expected to change
over time (e.g., a dynamic formation), then yk = μk.

Note that only the estimate x̂1 is needed to compute the control. The measurement
noise in the estimation problem (62) is related to the instantaneous state costs (24),
and the process noise (61) is related to the instantaneous control costs (25).

To show that the estimation of x̂1 can be computed based on the nonlinear
smoothing, we write the probability of an estimated hidden state x̂k in the filtering
algorithm predication/update steps [13], which is proportional to the measurement
likelihood p(yk|x̂k) and the predicted state p(x̂k|x̂k−1):

p(x̂k|x̂k−1) ∝ p(yk|x̂k)p(x̂k|x̂k−1),

where

p(yk|x̂k)≡ p(μk|x̂k) = N
(
h(x̂k),ηkηT

k

)
∝ exp

{
− Δ t

2λ
(h(x̂k)− μ)T A(h(x̂k)− μ)

}
= exp

{
−Δ t

2λ
k(x̂k)

}
(63)
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and

p(x̂k|x̂k−1) = N (x̂k−1 +Δ t f (x̂k−1),Δ tΣ)

∝ exp

{
− 1

2Δ t
(x̂k− x̂k−1−Δ t f (x̂k−1))

T

×Σ−1 (x̂k− x̂k−1−Δ t f (x̂k−1))
}
. (64)

Comparing the right hand sides of (63-64) with (54), it can be seen that the problm
of estimating x̂1 is equivalent to the estimation of x̂1 in the smoothing problem.

The most-likely trajectory originating from state x̂0, that is, the hidden states x̂k,
k = 1, . . . ,N, can be found by filtering and then smoothing the process given the
measurements μk using a nonlinear smoother, such as an Extended Kalman RTS
Smoother (EKF-RTS) or Unscented Kalman RTS Smoother (UKF-RTS) [34]. A
nonlinear Kalman smoothing algorithm assumes that the increments given by (63)
and (64) are to some extent Gaussian, but the algorithm is sufficiently fast to be
applied in real-time by each unicycle in a potentially large group with an even larger
state space, motivating its use in this work.

The control to be applied in the current state x is given by (58), using the x̂1 esti-
mated by the smoother. After this increment, the process repeats. When the smooth-
ing is complete and agents have applied their computed control, each agent must
then observe the actual states of its neighbors so that the next iteration begins with
the correct initial condition. In practice, the controller/smoother must be capable
of efficiently filtering and smoothing over the horizon

[
t0, t f

]
. The computational

complexity of such a smoother is analyzed in [34].
The effect of scaling parameter λ becomes clear in in the dual estimation formu-

lation. For λ � 1, the measurement noise is large, and the smoother will place more
weight on its predictions. Consequently, the passive components of the system f (·)
will dominate, and less control will be applied. Similarly, for λ � 1, the smoother
will trust the measurements, and a greater amount of control will be applied. The
net effect is that λ decides the fraction of the process noise in the original control
problem that is propagated into the estimation problem.

Recall that the spatial boundary condition (43) constrains the speeds of the agents
within upper and lower limits, i.e. to remain outside the set V . In the context of the
smoothing problem, this requires that the probability of a filter prediction, measure-
ment update, or smoothing update to be zero if the estimate enters the boundary V .
To deal with such a problem, the smoothing algorithm should be capable of handling
inequality constraints. Several algorithms of this type exist (see [2], for example),
but in order to keep computation time at a minimum, we instead employ a more
straightforward approach. After each prediction step, if the current estimate x̂k is in
violation of the constraints, the estimate is projected in a least-squares sense to lie
inside the contraint boundaries using Matlab’s lsqlin. The same method is also
applied if the estimate violates the speed constraints during any of the update or
smoothing steps.
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Fig. 3 Five agents, starting from random initial positions and a common speed v = 2.5 [m/s],
must achieve a regular pentagon formation by an individually-optimal choice of acceleration
and turning rate, without any active communication

5 Results

In this section, we apply the methods to a formation control problem in which five
agents achieve the formation of a regular pentagon. Each agent is individually es-
timating the hidden optimal trajectory based on the relative kinematics of all of its
neighbors. The instantaneous state cost (24) penalizes the mean squared distance
from the unicycle to all of its M = 4 neighbors in excess of the side length of the
pentagon (5 [m]) or the diagonal of the pentagon, depending on the relative config-
uration of the pentagon encoded in μ .

The system and control algorithm parameters were chosen as λ = 1, σθ = σv =
0.1, t f = 30 s, A = 0.1I4×4, vLB = 1 [m/s], vUB = 3 [m/s], and Δ t = Δε = 0.1 s.
The control was computed from the result of a Discrete-time Unscented Kalman
Rauch-Tung-Striebel Smoother [34]. Fig. 3 shows the trajectories of all agents,
while the the inter-agent distances can be seen in Fig. 4. With an initial speed of 2.5
[m/s], the agents never hit their limiting speeds vLB or vUB. Once the pentagon has
formed, the agents’ heading angles are not equal, and the formation rotates. Without

t [s]

r m
n

[m
]

0

20

20 40 60 80 100 120

5

10

15

Fig. 4 Inter-agent distance rmn as a function of time. The two radii correspond to the objec-
tive pentagon side length (5 [m]) and the pentagon’s diagonal ( 5

2 (1+
√

5) ≈ 8.1 [m]). The
pentagon continues to rotate after forming.
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Fig. 5 Transition from a pentagon to a line. The initial condition is the final frame of Fig. 3.

a goal of alignment among the agents, each agent is anticipating the pentagon to
rotate (in expected value), and it computes its control so as to maintain its nominal
distances in the rotating pentagon.

A dynamic formation was then created by modifying the nominal distances μ
during simulation. In Fig. 5, after the pentagon had formed, the formation distances
were redefined so that the formation morphed into a line.

6 Discussion

This work considers the problem of unicycle formation control in a distributed op-
timal feedback control setting. Since this gives rise to a system with a high di-
mensional state space, we exploit the stochasticity inherent in distributed multi-
agent control problems and apply the path integral approach in order to compute the
control. The uncertainty in turning rates and accelerations of an agent’s neighbors
are modeled as stochastic processes, and a fast switching kinematic model links
this stochasticity to an agent’s control, allowing the optimal control problem to be
framed as an estimation problem.

Each agent computes its optimal control in real-time by applying a nonlinear
Kalman smoothing algorithm. The measurement noise and process noise of the
smoothing problem are created using the structure of the cost function and stochastic
kinematics. Aside from mutual observations among agents, the formation is created
and maintained without any communication among them.

A number of other goals, e.g., alignment of heading angle, are possible through
a simple change in the cost function. More complex aspects of multi-agent forma-
tion control, such as collision avoidance and dynamic communication networks, for
example, could be handled by a robust smoothing algorithm and will be explored in
future research.
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Appendix 1

Here we derive the switching model (15)-(18) from the original model (9)-(14).
First, note that the relative angle and relative speed satisfy

γm(t) = (θ (0)−θm(0))+

t∫
0

ω(x(s))ds−
t∫

0

σθdwm,θ (65)

κm(t) = (v(0)− vm(0))+

t∫
0

u(x(s))ds−
t∫

0

σvdwm,v, (66)

from which we may obtain

E(γm) = θ (0)−θm(0)+

t∫
0

ωdt (67)

E(γm)− γm =
∫
σθdwm,θ (68)

E(κm) = v(0)−κm(0)+

t∫
0

udt (69)

E(κm)−κm =

∫
σvdwm,v. (70)

Then the heading angles and speeds of the AiF and its neighbor m can both be
encoded into γm and κm by the relations:

θ (t) = E

⎧⎨⎩γm(t)+θm(0)+

t∫
0

σθdwm,θ

⎫⎬⎭= E(γm(t))+θm(0) (71)

θm(t) =−(γm−E(γm(t)))+θm(0) (72)

v(t) = E

⎧⎨⎩κm(t)+ vm(0)+

t∫
0

σθdwm,v

⎫⎬⎭= E(κm(t))+ vm(0) (73)

vm(t) =−(κm−E(κm(t)))+ vm(0). (74)

We assume that only one pair (γm,κm) evolves at a time. Introducing δξ (t/ε),m as the
Kronecker delta selecting the evolution of the pair m, we would have that
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dγm(t) = (ωdt−σθdwθ ,m)δξ (t/ε),m (75)

dκm(t) = (udt−σvdwm)δξ (t/ε),m. (76)

However, we wish for the average evolution of the states to be the same as in the
original problem formulation. Since each pair m is selected with frequency M−1, we
write the evolution of these relative states as

dγm(t) =
(

Mωdt−
√

Mσθdwθ ,m

)
δξ (t/ε),m (77)

dκm(t) =
(

Mudt−
√

Mσvdwm

)
δξ (t/ε),m. (78)

Next, we substitute (72) and (74) into θm(t) and vm(t), respectively, in the kinematic
model for rm(t) and ϕm(t). Finally, we also substitute the averages for θ (t) and v(t):

θ (t) =
1
M

M

∑
j=1

(E(γ j(t))+θm(0)) =
1
M

M

∑
j=1

(E(γ j(t)))+θm(0) (79)

v(t) =
1
M

M

∑
j=1

(E(κ j(t))+ vm(0)) =
1
M

M

∑
j=1

(E(κ j(t)))+ vm(0). (80)

Appendix 2

Here we develop a first approximation to (37), reproduced here:

∂tΨi =
1

2λ
k(x)Ψi− f T∂xΨi− 1

2
Tr
(
ΓiΓ T

i ∂ 2
xΨi
)−Ψi

Q(t)
ε

logΨ (x, t)(i).

This derivation follows closely to that in Chapter 11 of [43].
We seek to find an approximation to Ψi(x, t), and begin with an asymptotic ex-

pansion to Ji(x, t) of the form

Ji(x, t) = A0(x, t, i)+ εA1(x, t, i)+B0(x,τ, i)+ εB1(x,τ, i), i = 1, . . . ,M

where τ = (t f − t)/ε is a stretched-time variable, the Ak(·)’s are outer expansion
terms, and Bk(·)’s are terminal layer correction terms. The expansion terms are
matched at terminal condition (28) with

A0(x, t f , i)+B0(x,0, i) = φ(x) = 0 (81)

A1(x, t f , i)+B1(x,0, i) = 0. i = 1, . . . ,M (82)

From (33), define the transformed expansion terms as

ak(x, t, i) = exp(−Ak(x, t, i)/λ ) (83)

bk(x,τ, i) = exp(−Bk(x,τ, i)/λ ), i = 1, . . . ,M, k = 0,1. (84)
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Substituting the outer expansion terms ak(·) into (37) and collecting terms by pow-
ers of ε , we obtain

ε0 : Q(t)a0(x, t, ·)(i) = 0 (85)

ε1 : ∂t a0(x, t, i) =
1

2λ
k(x)a0(x, t, i)− f T∂xa0(x, t, i)− 1

2
Tr
(
ΓiΓ T

i ∂ 2
x a0(x, t, i)

)
− a0(x, t, i)Q(t) loga1(x, t, ·)(i). (86)

Writing a0(x, t) = [a0(x, t,1), . . . ,a0(x, t,M)]T , we have from (85) that

Q(t)a0(x, t) = 0.

Then from (22)-(23), the rank of Q(t) is M−1, implying that the null-space of Q(t)
is one dimensional and spanned by a vector of all ones, �= [1, . . . ,1]T . Then a0(x, t)
must be independent of i, and so

a0(x, t) =Ψ0(x, t)�. (87)

Note that this condition on Q(t) further implies the existence of a quasi-stationary
distribution [43] ν(t) = [ν1(t), . . . ,νM(t)] with the properties that ∑M

i=1 νi = 1 and
ν(t)Q(t) = 0. Substituting (87) into (86), left multiplying by νi, and summing over
i gives

M

∑
i=1

νi∂tΨ0(x, t) =
M

∑
i=1

νi
1

2λ
k(x)Ψ0(x, t)−

M

∑
i=1

νi f T ∂xΨ0(x, t)

−
M

∑
i=1

νi
1
2

Tr
(
ΓiΓ T

i ∂ 2
xΨ0(x, t)

)−Ψ0(x, t)
M

∑
i=1

νiQ(t) loga1(x, t, ·)(i).
(88)

The properties of ν(t) cause the last term to drop out, and the νi’s in the first three
sums add to one.

∂tΨ0(x, t) =
1

2λ
k(x)Ψ0(x, t)− f T∂xΨ0(x, t)−

M

∑
i=1

νi
1
2

Tr
(
ΓiΓ T

i ∂ 2
xΨ0(x, t)

)
. (89)

Next, since Γi selects the ith pair of (γ±m ,κ±m ) and multiplies them by
√

M, the re-
maining sum represents a consolidation of the diffusion terms associated with each
of the pairs (γ±m ,κ±m ). Then in light of the chosen symmetry of Q(t) (22)-(23), this
sum reduces to an average diffusion with covariance

Σ =
1
M

M

∑
i=1

ΓiΓ T
i ,

which is (41), andΨ0(x, t) satisfies
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∂tΨ0(x, t) =
1

2λ
k(x)Ψ0(x, t)− f T∂xΨ0(x, t)− 1

2
Tr
(
Σ∂ 2

xΨ0(x, t)
)
. (90)

which is (37), and with terminal conditionΨ0(x, t f ) = exp(φ(x)) = 1, which is (42).
Next we consider the terminal correction terms bk(x,τ, i). Rewriting the original

PDE in the timescale of τ ,

−1
ε
∂τΨi =

1
2λ

k(x)Ψi− f T∂xΨi− 1
2

Tr
(
ΓiΓ T

i ∂ 2
xΨi
)−Ψi

Q(t f − ετ)
ε

logΨ (x, t)(i),

i = 1, . . . ,M
(91)

and expanding Q(·) around t f ,

Q(t f − ετ)≈ Q(t f )− (ετ) Q′(t)
∣∣
t=t f

, (92)

we can obtain, using the same method as before,

∂τb0(x,τ, i) = b0(x,τ, i)Q(t f ) logb0(x,τ, ·)(i). (93)

From (81) and (42), this implies that b0(x,τ, i) = 1 for all time and states i. We do
not derive asymptotic error bounds here.
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Algorithm with Optimality Bounds

Glenn Wagner and Howie Choset

Abstract. Multirobot path planning is difficult because the full configuration space
of the system grows exponentially with the number of robots. Planning in the joint
configuration space of a set of robots is only necessary if they are strongly coupled,
which is often not true if the robots are well separated in the workspace. Therefore,
we initially plan for each robot separately, and only couple sets of robots after they
have been found to interact, thus minimizing the dimensionality of the search space.
We present a general strategy called subdimensional expansion, which dynamically
generates low dimensional search spaces embedded in the full configuration space.
We also present an implementation of subdimensional expansion for robot config-
uration spaces that can be represented as a graph, called M*, and show that M* is
complete and finds minimal cost paths.

1 Introduction

Multirobot systems are attractive for surveillance, search and rescue, and warehouse
automation applications. Unfortunately, the flexibility and redundancy that make
multirobot systems appealing also make assigning robots to tasks and planning col-
lision free paths to perform those tasks difficult. In this work, we describe a novel
method, called subdimensional expansion, for efficiently generating collision free
paths for multiple robots [17]. Subdimensional expansion initially assumes that a
path can be found for each robot to the goal in the robots’ individual configuration
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Fig. 1 A conceptual vi-
sualization of a variable
dimensionality search space
for five robots (a). Initially
each robot is constrained
to its individually optimal
path, represented by a single
line, but when robots 1 and 2
collide (b), the local dimen-
sionality of the search space
must be increased, as rep-
resented by a square. When
three robots collide while
following their individually
optimal paths (c), the local
dimensionality of the search
space must be increased
further, represented by the
cube, to include all local
paths of the three robots.

(a)

(b) (c)

space, without coordinating with other robots. When the paths of multiple robots
intersect, the joint configuration space of those robots is locally constructed and
planning occurs in this joint space. Once coordination is no longer necessary, plan-
ning reverts to the low dimensional individual spaces until the goal is reached or
another collision is found (Fig 1).

2 Prior Work

Multirobot path planning algorithms can be divided into two categories: coupled and
decoupled [11]. A coupled algorithm seeks to find a path in the full configuration
space of a system [1, 2, 6], which grows exponentially with the number of robots.
As a result, coupled planners may be guaranteed to find an optimal path, but are
computationally infeasible for systems of many robots.

On the other hand, decoupled algorithms search one or more low dimensional
search spaces, which represent a portion of the full configuration space [5,8,12,13,
15]. Searching a lower dimensional representation reduces the computational cost
of finding a path, but the representation may not capture some or all of the solutions
to the planning problem. As a result, decoupled algorithms generally produce results
more quickly, but the quality or existence of the solution is not guaranteed.
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Ideally, a multirobot path planner would combine the scalability of decoupled
approaches with the completeness and optimality guarantees of a coupled approach.
Some prior work seeks to inherit the benefits of both approaches by dynamically
fitting the degree of coupling to the specific problem to be solved. Krishna et al.
developed an approach for decentralized dynamic coupling of robots for velocity
planning [10]. In their algorithm, robots first try to resolve a potential collision by
independently altering their velocity. If this does not succeed, the robots involved in
the collision cooperate to find a safe velocity schedule. If this also fails, they recruit
uninvolved robots to alter their velocities to allow for a solution to be found. This
approach will never change the spatial path the robots follow, and thus is neither
complete nor optimal.

Clark et al. introduced dynamic networks, which explicitly search configuration
spaces of varying sizes [4]. Joint plans are computed for groups of robots capable of
mutual communication. Paths are re-planned whenever a new robot joins the group.
This approach will lead to unnecessary coupling, as not all robots that can commu-
nicate need to cooperate to find a safe path, and only considers local interactions.

Van den Berg et al. [16] developed a planning time algorithm to find a coupling
strategy that minimizes the size of the largest set of coupled robots needed to guar-
antee that a solution will be found. The robots are constrained to move sequentially.
Cycles in these constraints can be used to find sets of robots for which coupled plan-
ning is necessary. This approach is non-ideal due to the restrictions it places on robot
motion, which results in non-optimal paths, and the global nature of the coupling it
performs.

There has also been work in the machine learning community to determine when
coupling multiple robots is necessary. Kok et al. [9] presented an approach which
performs Q-learning for robots individually, but stores statistics for the reward of the
joint actions that are explored. If these statistics indicate that coordinating actions at
a specific space is beneficial, then the algorithm starts learning coordinated actions
at that state. This approach has the benefit of being able to handle tasks besides
basic path planning, such as capturing targets that required coordinated action by
multiple pursers. Melo and Veloso [14] developed a Q-learning algorithm that adds
a ‘coordinate’ action to the set of actions available to each robot, which uses the state
of the nearest neighboring robot to help choose the action to perform. Coordination
between robots only occurs when a robot learns to take the coordinate action.

3 Problem Statement

The objective of subdimensional expansion is to find an optimal collision free path
for a set of n robots, ri, i∈ I = {1, . . . ,n}, in a common workspace W . We denote the
start configuration of each robot in its individual configuration space as qi

s ∈Qi. The
start configuration of all robots can be described as a point in the full configuration
space qs ∈ Q =∏n

i=1 Qi. The goal configuration for each robot is denoted qi
f ∈ Qi,

while the joint goal configuration is denoted q f ∈Q. The optimal collision free path
from qs to q f is denoted π∗(qs,q f ).
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The cost f (π) of the path π in the full configuration space is assumed to be the
sum of the costs f i(π i)≥ 0 of the paths π i of the individual robots, i.e.,

f (π(qk,ql)) =∑
i∈I

f i(π i(qi
k,q

i
l)) π i(qi

k,q
i
l)⊂ Qi, (1)

where π(qi,q j) represents a path from qi to q j.
A collision function is defined to represent collisions between robots ri and r j,

Ψ i j(q) =

{ {i, j}, A(qi)∩A(q j) �= /0
/0, otherwise

. (2)

where A(qi) is the subset of W occupied by ri when located at qi ∈ Qi. We define
a global collision function Ψ : Q→ I, which is the union of all pairwise collision
functions.

Ψ (q) =
⋃

i�= j∈I

Ψ i j(q). (3)

The collision function is “overloaded” to apply to paths,Ψ (π(.)) =
⋃

q∈π(.)Ψ (q).

4 Subdimensional Expansion

Multirobot systems which obey (1) and (3) have a natural decoupling between indi-
vidual robots. (1) guarantees that no joint path can be cheaper than the path found
by optimizing for each robot separately, which is thus a good starting point for mul-
tirobot path planning. The individual paths are combined to form a joint path for the
entire system. When robot-robot collisions are found along the joint path, planning
is locally coupled for the involved robots while uninvolved robots proceed indepen-
dently, which is sufficient to guarantee that a path will be found due to the form
of (3). Subdimensional expansion is a method for encoding the dynamic coupling
into the geometry of the search space, thereby allowing conventional algorithms to
search the necessary portions of the joint configuration space.

Q# is the variably dimensional search space embedded in Q constructed by subdi-
mensional expansion. Note that Q# is dynamically constructed as a planner searches
Q#. The simultaneous construction and search of Q# continues until a path is found
or determined to be impossible. The construction of Q# is guided by information
about robot-robot collisions found by the planner. Thus, the search space is tailored
to the specific problem at hand, allowing the search of a low dimensional space
while also guaranteeing the optimal path will be found.

4.1 Approach

Each robot starts with its own individually optimal policy φ i : Qi → T Qi which
maps the position of a robot to its motion. φ i is chosen such that the path induced
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Fig. 2 Representation of
a search tree and resultant
collision sets. Ovals rep-
resent configurations in Q.
Arrows represent searched
path from the higher to the
lower configuration. Gray
ovals correspond to states
with robot-robot collisions.
The set contained inside the
oval represents the collision
set. Since there is a searched
path from qk to qn, qo, and
qp, Ck contains all robots
which collide at the afore-
mentioned state. Since the
planner has not found a path
from qq to any state with a
collision, Cq is empty.

by obeying φ i from any point qi
k ∈ Qi is an optimal path to qi

f ∈ Qi, and is denoted

πφ i
(qi

k,q
i
f ). The joint path generated by all robots obeying their individually optimal

policies is denoted πφ (qk,q f ) =∏i∈I πφ
i
(qi

k,q
i
f ).

At each instant during the search, the planner initially takes the optimistic view
that the individually optimal path from qk will be collision free, without specific
information to the contrary. The planner maintains a collision set Ck for each qk ∈Q,
which is the set of robots for which the optimistic view at qk has been invalidated.
Let π(qk) be the set of paths the planner has searched that pass through qk. Then Ck

is defined as
Ck =

⋃
π∈π(qk)

Ψ (π) (4)

The collision set Ck thus consists of all robots ri for which the planner has found a
path from qk to a collision containing ri (Figure 2).

Initially, Q# is πφ (qs,q f ), with each robot restricted to following its individually

optimal path. When the planner finds a collision, it expands Q# by locally allowing
the robots involved in the collision to deviate from their individually optimal poli-
cies. Naturally, the set of robots not in the collision set, C̄ = I \C remain restricted
to their individually optimal paths, in line with the optimistic belief that this portion
of the path is collision free. These constraints are encoded in the geometry of the
search space Q# by proper choice of the tangent space TqkQ# of Q# at qk.

TqkQ# = tC̄k (qk)×∏
j∈Ck

T
q j

k
Q j (5)
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where tC̄k (qk) ∈ T
q

C̄k
k

QC̄k is tangent to the joint individually optimal path for the

robots in C̄k. Q# is then grown differentially along Tqk Q# from qk, expanding
into a higher dimensional space when the collision set is large, or along the one-
dimensional individual optimal path when the collision set is empty.

4.2 M*

M* is an implementation of subdimensional expansion for cases where the configu-
ration space of each robot ri can be represented by a directed graph Gi = {V i,Ei}. V i

is the set of vertices in Gi that represent positions in Qi, while Ei is the set of directed
edges ei

kl which represent valid transitions connecting vi
k ∈ V i to vi

l ∈ V i. We make
no assumption about the representation used, so Gi may be an approximate cellular
decomposition, a generalized Voronoi diagram, or other graph representation of the
configuration space. The full configuration space of the system is represented by
the graph G = {V,E}=∏i∈I Gi. The Cartesian product of two graphs, Gi×G j, has
the vertex set V i×V j, and the edge ekl is in the edge set if ei

kl ∈ Ei and e j
kl ∈ E j.

The vertex in G which represents the start configuration of the system is denoted vs,
while the goal configuration is denoted v f .

Representing the configuration space as a graph converts the path planning prob-
lem into a graph search problem. This allows us to base M* on A*, a complete
and optimal graph search algorithm [7]. Recall that A* maintains an open list of
vertices vk to explore. These are sorted based on the sum of the cost of the cheap-
est path π(vs,vk) and a heuristic cost, which is a lower bound on the cost of any
path π(vk,v f ). At each iteration, the most promising vertex, vk, from the open list is
expanded. For each neighbor vl of vk, A* checks whether reaching vl via vk is the
cheapest path found thus far to vl . If so, vl is added to the open list. This continues
until v f is expanded, indicating that an optimal path to the goal has been found.

M* is similar to A*, however the expansion step is a little different: M* only con-
siders the limited neighbors of vk, a subset of the neighbors of vk in G, determined
by Ck, providing the benefit of only exploring the “necessary” subspace of the con-
figuration space. The set of limited neighbors V̂k is the set of vertices vl which can be
reached from vk while moving each robot ri ∈ C̄k according to its individually opti-
mal policy φ i(vi

k), where vi
k is the position of ri when the system is at vk. Conversely,

the robots r j ∈Ck are allowed to move to any neighbor of v j
k in Q j

V̂k =

{
vl |∀i ∈ I, vi

l s.t.
{ ei

kl ∈ Ei, i ∈Ck

vi
l = φ i(vi

k), i /∈Ck

}
(6)

If Ψ (vk) �= /0, we set V̂k = /0, to prevent M* from considering paths which pass
through collisions.

Information about collisions must be passed back along all searched paths that
reach them. To this end, the planner maintains a backpropagation set for each vertex
vk, which is the set of all vertices vl that were expanded while vk was in V̂l. The
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Algorithm 1. backprop(vk,Cl ,open):
vk- vertex in the backpropagation set of vl

Cl- the collision set of vl

open- the open list for M*

if Cl �⊂Ck then
Ck ←Ck

⋃
Cl

if ¬(vk ∈ open) then
open.append(vk) {If the collision set changed, we will need to re-expand vk}

for vm ∈ vk.back set do
{Iterate over the backpropagation set}
backprop(vm,Ck,open)

backpropagation set is thus the set of neighbors of vk through which the planner has
found a path to vk. The planner propagates information about a collision at vk by
adding Ck =Ψ (vk) to Cl for each vl in the backpropagation set of vk. The planner
then adds Cl to the collision set of each vertex in the backpropagation set of vl , and
repeats this process until a collision set is encountered which contains Ck. Since V̂l

is dependent on Cl , changing Cl adds new paths through vl to the search space. As a
result, vl must be added back to the open list so that these new paths can be searched
(See Algorithm 1).

Finally, since f (πφ (vk,v f )) is a lower bound on the cost of all paths π(vk,v f ),
we use it as the heuristic function for M*. Denote the heuristic function

h(vk) = f (πφ (vk,v f ))≤ f (π∗(vk,v f )). (7)

M* is described in algorithm 2.
We developed two variants of M*, inflated M* and recursive M* (rM*). In-

flated M* multiplies the heuristic by inflation factor ε > 1 to find a suboptimal
path quickly. rM* is a hierarchical planner that breaks the path planning problem
into multiple sub-problems, by separating the planning for non-interacting groups
of mutually interfering robots. A sub-planner is recursively generated for each such
group to find a path for the colliding robots to the goal. Sub-planners continue to
be generated for smaller groups of colliding robots until the collision involves every
robot handled by the sub-planner.

4.3 Graph-Centric Description

The description of M* in 4.2 provides a local description of the search process,
which is useful for implementation. However, the local description makes proving
the global properties of M* difficult. We now present an alternative description of
M* which better captures the global properties, but is not appropriate for implemen-
tation.

When examining algorithm 2 we see that M* differs from A* in the existence
of the backprop function, and the neighbors added to the open list during the
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Algorithm 2. Pseudocode for M*

for all vk ∈V do
vk.cost←MAXCOST
Ck ← /0

vs.cost← 0
vs.back ptr = /0
open = {vs}
while True do

open.sort() {Sort in ascending order by v.cost + h(v)}
vk = open.pop(0)
if vk = vs then

{We have found a solution}
return back track(vk) {Reconstruct the optimal path by following vk.back ptr}

ifΨ (vk) �= /0 then
CONTINUE {Skip vertices in collision}

for vl ∈ V̂k do
vl .back set.append(vk) {Add vk to the back propagation list}
Cl ←Cl

⋃
Ψ (vl)

{Update collision sets, and add vertices whose collision set changed back to open}
backprop(vk,Cl ,open)
if vk.cost+ f (ekl)< vl .cost then

{We have found a cheaper path to vl}
vl .cost← vk.cost+ f (ekl)
vl .back ptr← vk {Keep track of the best way to get here}

return No path exists

expansion of a vertex. The backprop function only has a non-trivial result when
a new path to one or more collisions is found. Therefore, M* behaves exactly like
A* running on a graph G# where the neighbors of vk in G# are the vertices in V̂k,
until a new robot-robot collision is found. By thinking of M* as alternating between
running A* on G# and updating G# based on partial results, we can exploit the opti-
mality and completeness of A* to prove similar properties of M*.

G# consists of three subgraphs: G′, Ĝ, and Gφ . G′ is the portion of G# which has
been searched by M*, Ĝ represents the limited neighbors of the vertices in G′ and
Gφ connects the vertices in Ĝ to v f by obeying φ .

G′ = {V ′,E ′} represents the portion of G which has been searched by M*. V ′ is
the set of vertices which have been added to the open list. E ′ consists of the directed
edges ekl connecting each vertex vk which has been expanded by M* to the vertices
vl ∈ V̂k. Since G′ represents all paths which have been explored by the planner, we
can use G′ to define the collision set

Ck =

{
Ψ (vk)

⋃
vl s.t. ∃π(vk,vl )⊂G′Ψ (vl) vk ∈G′

/0 vk /∈G′ (8)
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If vk /∈G′, then M* has never visited vk. Thus in accordance with the optimistic view
that vk and πφ (vk,v f ) are collision free, Ck is set to the empty set until vk is added
to the open list.

Ĝk represents the portion of the graph which will be explored when vk is ex-
panded, and is the graph formed from vk, its limited neighbors V̂k, and the edges
connecting vk to the vertices in V̂k. Let Ĝ =

⋃
vk∈G′ Ĝk.

Since Ck = /0 for all vk which are not in G′, we know that the search from vk ∈ Ĝ
will be constrained to πφ (vk,v f ) as long as this path lies entirely outside of G′. Let

the graph Gφ
k represent the portion of πφ (vk,v f ) from vk to the first vertex along the

path in G′, or v f if πφ (vk,v f ) never reenters G′.
G# can now be defined as

G# = G′
⋃

vk∈G′

⎛⎝Ĝk

⋃
vl∈Ĝk\G′

Gφ
l

⎞⎠ (9)

As a result of the definitions of G′, Ĝ and Gφ , vertices and edges shift from Gφ to
Ĝ, and from Ĝ to G′ as M* searches G#. See Figure 3 for an illustration of how
the subgraphs change over time. However, G# as a whole only changes when the
collision set of a vertex in G# changes.

4.4 Completeness and Cost-Optimality

A path planning algorithm is complete if it is guaranteed to either find a path or
to determine that no path exists in finite time [3]. M* will be shown to be both
complete and will find a minimal cost path. As demonstrated in 4.3, M* can be
treated as alternating between running A* search on G# and modifying G# based on
the partial search results. Since A* is complete and cost optimal [7], M* is complete
and cost optimal if G# will contain π∗(vs,v f ) after a finite number of modifications
or, if π∗(vs,v f ) does not exist, G# will be modified at most a finite number of times.

We start by assuming that no solution exists, and show that M* will terminate in
finite time without returning a path. G# is only modified when the collision set of at
least one vertex in G# is modified. Each modification adds one or more robot to the
collision set, thus each collision set can be modified at most n− 1 times, as the first
modification must add at least two robots. Therefore, G# can be modified at most
(n− 1) ∗ |G| times. A* will expand each vertex in a graph at most once [7]. Thus,
M* will always terminate in finite time.

M* will never return a path containing a robot-robot collision. A vertex vk at
which a robot-robot collision takes place can only have outneighbors if vk /∈ G′.
However, before a path through vk can be returned, vk must be added to G′, which
will trigger a modification of G# that removes the outneighbors of vk. Therefore, M*
will never return a path containing a robot-robot collision. Thus M* will correctly
determine that no valid path exists in finite time.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3 The above figure shows how G′ and G# evolve in the configuration space of two one-
dimensional robots. Vertices are represented as circles, with arrows representing directed
edges. G′ is denoted by solid lines, while G#\G′ is shown as dashed lines. G\G# is repre-
sented by dotted lines, with edges suppressed for clarity. A vertex is given a bold outline
when it is expanded, while filled circles represent vertices with known robot-robot collisions.
vs is in the upper left, while v f is in the bottom right. In (a), (b), and (c), the most promising
vertex in the open list is expanded, until a collision is found. Ĝ is updated to reflect the new
collision sets in (d). Gφ is then updated in (e). In (f) a vertex is re-expanded, having been
added back to the open list when its collision set was changed. (g), (h), and (i) see the most
promising vertices in the open list expanded, until vF is expanded, indicating that a path has
been found.
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Next, assume that a path from vs to v f exists. We will show that M* will find
π∗(vs,v f ) as long as one of two cases is always true. We will then prove that one of
these two cases must always hold. Assume that G# always contains either

Case 1: an optimal, collision free path, π∗(vs,v f ), or
Case2: a path π(vs,vc) s.t. f (π(vs,vc))+h(vc)≤ f (π∗(vs,v f )), and ∃ vd ∈ π(vs,vc)
s.t.Ψ (vc) �⊂Cd

If case 1 holds, running A* on G# will find π∗(vs,v f ), unless there exists a
cheaper path π̃(vs,v f ) ⊂ G#. By the definition of π∗(.), there must be a ver-
tex vk ∈ π̃(vs,v f ) s.t.Ψ (vk) �= /0, and by (7) f (π̃(vs,vk)) + h(vk) < f (π∗(vs,v f )).
vk /∈ G′, as otherwise it would have no outneighbors, which implies Ck = /0. As a
result, vk fulfills the roles of both vc and vd in the definition of case 2. Therefore M*
will find π∗(vs,v f ) if case 1 holds, unless case 2 also holds.

If case 2 holds, then vc will be added to G′ before A* finds any path to v f that
costs more than f (π∗(vs,v f )) [7]. Adding vc to G′ will modify Cd , which will in
turn change G# to reflect the new V̂d and restart A* search. Therefore, M* will never
return a suboptimal path as long as case 2 holds.

For case 2 to hold, there must be at least one vertex vd such that Cd is a strict
subset of I. G# can be modified at most (n− 1) ∗ |G| times before all collision sets
are equal to I. Therefore, case 2 can only hold for a finite number of modifications
to G#. By hypothesis, either case 1 or case 2 holds, which implies that within finite
time only case 1 will be true. M* will thus find π∗(vs,v f ) in finite time.

We will now show that case 1 or case 2 must always hold. We proceed by showing
that we can always find a path π ′(vk,v f ), f (π(vk,v f )) ≤ f (π∗(vk,v f )) under the
restriction that the robots in C̄k obey their individually optimal policies.

First note that, by the form of (3), if π∗(vk,v f ) exists, then for any subset of
robots, Ω ⊂ I, there exists an optimal, collision free path π∗Ω (vΩk ,vΩf ), which may
not be the same as the paths taken by the robots in Ω in π∗(vk,v f ). Therefore a path

π ′(vk,v f ) = π∗Ck(vCk
k ,vCk

f )×πφ C̄k (vC̄k
k ,vC̄k

f ) can be constructed which costs no more
than f (π∗(vk,v f )).

f (π ′(vk,v f )) = fCk (π∗Ck(vCk
k ,vCk

f ))+ ∑
j∈C̄k

f j(πφ
j
(v j

k,v
j
f )) (10)

= min
πCk (v

Ck
k ,v

Ck
f ) s.t.Ψ (πCk (v

Ck
k ,v

Ck
f ))= /0

fCk (πCk(vCk
k ,vCk

f ))+min ∑
j∈C̄k

f j(π j(v j
k,v

j
f ))

(11)

= min
π(vk,v f ) s.t.Ψ (πCk (v

Ck
k ,v

Ck
f ))= /0

f (π(vk,v f )) (12)

≤min
π(vk,v f ) s.tΨ (πCl (v

Cl
k ,v

Cl
f ))= /0,Ck⊂Cl

f (π(vk,v f )) (13)

≤minπ(vk,v f ) s.t.Ψ (π(vk,v f ))= /0 f (π(vk,v f )) (14)

≤ f (π∗(vk,v f )) (15)
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The successor vl of vk along π ′(vk,v f ) is in V̂k by (6). Furthermore, Cl ⊂Ck by (8),
so by (13) and (14)

f (π ′(vk,vl))+ f (π ′(vl ,v f ))≤ f (π ′(vk,v f ))≤ f (π∗(vk,v f )) (16)

Using the above two facts, a path π ′′(vs,v f ) ∈G# can be constructed which satisfies
case 1 or case 2. Starting from vs, the successor of the m’th vertex vm ∈ π ′′(vs,v f ) is
the successor of vm in π ′(vm,v f ). Applying (16) backwards from the last vertex from
v f to vs guarantees that f (π ′′(vs,v f ))≤ f (π ′I(vs,v f ))≤ f (π∗(vs,v f )). If π ′′(vs,v f )=
π∗(vs,v f ) then case 1 is satisfied. Otherwise, there is a vertex vk ∈ π ′′(vs,v f ) such
thatΨ (vk) �= /0. By construction,Ψ (vk) �⊂Cl , where vl is the predecessor of vk. By
(7), f (π ′′(vs,vk))+ h(vk) ≤ f (π ′′(vs,v f )) ≤ f (π∗(vs,v f )), so case 2 is satisfied. It
has now been shown that case 1 or case 2 must always hold. Therefore M* will
find π∗(vs,v f ), if it exists, in finite time. Since M* is guaranteed to find the optimal
collision free path, or to determine that no valid path exists in finite time, M* is
complete and optimal with respect to f (π(.)).

5 Results

We tested the path planning performance of M* and its variants with randomly
assigned goals. Our simulations were run on a Core i7 processor at 2.8 GHz with 12
Gb of RAM. All simulations are implemented in unoptimized Python. We chose a
square, four-connected grid with a density of 104 cells per robot as our workspace,
allowing the number of robots to vary without changing the level of congestion.
Each cell in the workspace has an independent 35% chance of being an obstacle.
Start and goal positions for each robot are chosen randomly, but such that a path
always exists from the start position of a robot to its goal position (Figure 4). Each
robot incurred a cost of one for each time step for which it was not at its goal. We
tested 100 random environments for a given number of robots, and each trial was
given at most five minutes to find a solution.

The time required to find solutions using A* shows the expected exponential
growth with the number of robots. M* and rM* show performance substantially su-
perior to A* ,which was unsuccessful for problems involving more than 6 robots.
rM* has roughly three times the success rate of M* for the non-inflated case at 10
robots. Using an inflated heuristic, rM* has a greater performance increase, with run
times of approximately one and a half orders of magnitude less than basic M* for
systems of 20 robots, and scaling to twice as many robots with reasonable success
rates (Figure 5). Most importantly, the time to solution plots for inflated rM* are
sublinear on a logarithmic axis. This indicates that for the environments we inves-
tigated, the average computational cost of rM* grows sub-exponentially with the
number of robots.
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Fig. 4 A typical configura-
tion for a 40 robot test run.
Circles represent start posi-
tions of the robots, squares
represent obstacles, and
crosses represent goal po-
sitions. We tested 100 such
randomly generated envi-
ronments for each number
of robots.

Fig. 5 We plot the percent of trials in which each algorithm was able to find a solution within 5
minutes, and the 10’th, 50’th, and 90’th percentile of times required to find a solution for A*,
M*, and recursive M* with both non-inflated and inflated heuristics. The time to solution plots
flatten out when a sufficient number of trials are halted by the time limit. A* and inflated A* are
only simulated to 8 robots, because they always timed out for 7 or more robots. To allow A*,
M*, and rM* to be plotted over similar domains, we assumed that A* and inflated A* would
always time out for systems of 9 and 10 robots. Inflated M* and inflated rM* were able to solve
20 and 40 robot problems respectively, which is reflected in the domains of their plots.
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6 Conclusions

We present a general approach to multirobot path planning, called subdimensional
expansion, and an implementation for graph search, called M*. We demonstrate
that M* can scale to problems involving large numbers of robots, while maintaining
completeness and bounded suboptimality. These results illustrate the advantage of
tailoring the search space to the individual problem being solved.

One weakness of M* is that search will fail if a sufficient number of robots are
concentrated at a single choke point, as this will force M* to search an excessively
high dimensional space. One possible solution is to couple the path planning prob-
lem with the task assignment problem, and to avoid task assignments which require
passing through said choke points. Our preliminary results indicate that such cou-
pling can dramatically reduce the time required to find solutions, as well as reduce
the cost of the resultant path compared to the optimal path for a task assignment
found without considering robot-robot interactions.

Subdimensional expansion can be applied to path planning algorithms besides
A*. In general, subdimensional expansion can be applied to nearly any path plan-
ning algorithm that produces a search tree which can be used to define collision sets.
In particular, subdimensional expansion can be applied to RRTs and PRMs [18].
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Individual Control of Redundant Skeletal
Muscles Using an Exoskeleton Robot

Jun Ueda and Ming Ding

Abstract. Individual muscle control involves the use of an exoskeleton to in-
duce specific muscle activation patterns during the wearer’s voluntary movement.
A pneumatically powered wearable exoskeleton has been developed for the upper
extremities. It is comprised of multiple pneumatic artificial muscles, force transduc-
ers, and custom-designed software that utilize a musculoskeletal model to predict
and modify the wearer’s muscle activities (e.g. activation level, torque). The inter-
action with such a wearable robot induces muscle activities that may not be achieved
in the standard exercise environment. The software uses a computational algorithm
to plan an adequate motor-task by modeling not only a complex coupling between
multiple muscles and joints, but also the optimization principle in the neuromuscular
system that coordinates redundant muscles.

1 Introduction

Neurological disorders, such as stroke, spinal cord injury (SCI), Parkinson’s dis-
ease, and multiple sclerosis (MS), affect a number of individuals every year [16].
According to World Health Organization, approximately 15 million individuals suf-
fer stroke each year [16]. Such neurological disorders are widely seen or diagnosed
among senior citizens as well as veterans. A huge amount of lost productivity is ex-
pected in the world due to such neurological disorders. Several countries across the
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world are currently experiencing an aging population and are anticipating losses in
productivity due to age related neurological disorders. Consequently, there is a need
for healthcare technologies that help senior citizens find neuromotor impairments
at an early stage to prevent further functional losses. In addition, medical advances
are saving more lives in the battlefield, which in turn has created a greater push for
technologies to rehabilitate the wounded soldiers that are returning home.

The authors’ project is intended to be a preliminary step toward diagnosis and
rehabilitation of neuromotor disorders. The project involved the development of a
robotic device that is designed and programed to induce a specific muscle activa-
tion pattern in a wearer. This robotic device modulates muscle activities based on a
mathematical solution of the human-robot physical interaction. Healthy individuals
modulate muscle activation patterns according to intended movement and environ-
ment. In contrast, neurological patients with movement disorders have problems in
movement control due primarily to their inability to modulate their muscle activation
pattern in an appropriate manner [5, 11, 21, 9]. The modulation of muscle activa-
tion patterns in patients is expected to be different from those in healthy subjects;
the characteristics of the modulation are expected to be dependent on the degree of
impairment in movement disorders.

The ultimate goal of this research is to quantitatively characterize the inability
of patients by applying unique load compensation from a wearable robot. Detection
and diagnosis of potentially serious movement disorders by using a robotic device
would enable us to choose an appropriate treatment at an early stage, which would
lead to the reduction of medical expenses. To accomplish these objectives, the mech-
anisms of redundant muscle coordination during human-robot physical interaction
need to be investigated and understood. The authors’ approach is to mathematically
formulate this control problem based on the Optimization Principle in the neuromus-
cular system [19, 6, 18]. Computed forces applied by a wearable robot would alter
the coordination of individual muscles in the wearer and induce a specific muscle
adjustment.

This approach is different from approaches in the literature that apply force to
an end-point to guide the end-point along a trajectory [20]. Note that this robot-
assisted muscle isolation technology is a comprehensive concept; neuromuscular
function test, therapeutic training, power-assisting, and muscle fitness training, can
be boiled down to a single question:

How can we determine an adequate exercise that induces a desired change in a target
muscle force in a pinpointed manner?

More specifically, the goal is to determine an adequate magnitude and direction of
force that a subject must exert for a desired effect. With the current state of the
art, procedures rely heavily on therapists’ knowledge [12, 2]. The proposed ap-
proach addresses this issue and provides a computational method by integrating
the robot and human models for planning an adequate motor-task. Induced muscle
activity would help a clinician differentiate muscle activation patterns in patients
from stereotypical patterns in healthy adults.
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This chapter intends to give an overview of the individual muscle control method-
ology as implemented with an exoskeleton. First, the concept and a possible appli-
cation to muscle function testing will be presented. Second, the exoskeleton robot
system and its system configuration will be explained. Third, the mathematical for-
mulation and closed-form solution will be given. Fourth, some experimental results
for healthy volunteers will be presented. Finally, limitations and future work will be
discussed.

2 Concept

As shown in Fig. 1, an exoskeleton applies joint torques to a subject via multiple
interfaces attached to the upper limb while a subject performs a motor task. In this
case, the subject applies a force to a handle via the robots’ end effector. From an
observation of a muscle activity that is different from what is expected in a healthy
muscle, one would expect impairment in the observed muscle. The above discus-
sion implies the need for inducing a specific muscle activation pattern in persons.
The use of a wearable exoskeleton-type robot is well-suited to obtain a wider va-
riety of muscle activity data than performing conventional motor tasks; a patient is
asked to perform a task (e.g., pushing a handle) by opposing the exoskeleton robot
as the robot assists or resists the movement by applying a various combination of
forces/torques against the joints. Because of this physical interaction between the
robot and person, a desired muscle activation pattern is expected to be induced in
subject’s muscles. Our previous study confirmed that the interaction with a robot
can induce muscle activities that may not be achieved in the standard exercise envi-
ronment, thus increasing the breadth of tests that can be used for diagnostic testing
[24].

3 Muscle Control Exoskeleton

Figure 2 (a) shows a proof-of-concept wearable exoskeleton robot. Figure 1 (b)
shows its schematic diagram. Although the robotic device is referred to as an “ex-
oskeleton,” this particular device, unlike other exoskeleton mechanisms, does not
have any rigid links. Instead, the device has 8 flexible pneumatic actuators for the
sake of safety. This robot is capable of applying torques to 3 joints with a total of 4
degrees of freedom: flexion/extension of the elbow joint, supination/pronation of
the forearm, flexion/extension of the wrist joint, and radial and ulnar deviation
of the wrist. Adjustment holes on the actuator attachments provide the adaptability
to different body sizes. Each actuator is equipped with a force transducer to apply
force feedback control. To analyze the physical interaction between the robot and
wearer at the level of muscles, a musculoskeletal human model of the upper-right
limb with 51 muscles [23] has been developed and integrated with a dynamic model
of the robot (see Figures 1 (c) and (d)).

The overall system configuration is shown in Fig. 3(a). The system composed of
4 modules: human posture measurement module, muscle force estimation module,



186 J. Ueda and M. Ding

[2] Motor-task planning by individual 
muscle control algorithm

Time

E
M

G

Time

E
M

G

Expected muscle ac�vity
(if normal)

Measured muscle ac�vity

[4] Evaluation of 
muscle activity[3] Robot-assisted Motor Task

(1) Patient’s posture
(2) Patient’s movement
(3) Robot’s resistance forces
(4) Expected muscle activity 

Electromyography

Diagnos�c informa�on
on neurological disorder

[1] Designation of desired 
changes in target muscles

Inverse solution of human-robot 
physical interaction

Tip force

Torques from 
exoskeleton

Fig. 1 Concept of individual muscle control for neuromuscular function test by using an
exoskeleton: [Step1] Determine target muscles of interest and designate desired changes.
[Step2] The physiology-based optimality criterion checks the feasibility of given changes
in target muscle forces. The force that the subject must to exert to the handle is calculated.
Control commands to the exoskeleton robot are calculated. [Step3] Exoskeleton robot applies
joint torques against the subject. Subjects perform a force-matching task to match the hand-
force with the instructed force by a monitor by opposing the exoskeleton robot. Electromyo-
graphic measurement equipment records muscle activities. [Step4] The physical interaction
induces a desired muscle activation pattern in subject’s muscles. Comparisons between the
recorded muscle activation pattern and stereotypical (normal) pattern predicted by the mus-
culoskeletal human model will be made.
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Fig. 2 Exoskeleton and Human Kinematic Models: (a) robot developed at Georgia Tech;
(b) the robot assists/resists 4 degrees of freedom in the human arm; 1 DOF for the flex-
ion/extension of the elbow joint, 1 DOF for the supination/pronation of the forearm, and 2
DOF for the flexion/extension and adduction/abduction of the wrist joint, by using 10 pneu-
matic artificial actuators; (c) 51 Muscles modeled in the musculoskeletal model (not all of
them are labeled); (d) Joint condiguration.

muscle force control module, and power-assisting device control module. A graph-
ical user interface provides an easy operation to designate desired forces for target
muscles, and to view the resultant distribution of the muscle forces.

Posture Measurement Module. A target posture is measured by a motion cap-
ture system (Mac3D system, Motion Analysis Corporation). Measurement software
(EvaRT) reproduces the posture of the subject from 3 dimensional positions of the
markers attached on the subject and measures each of the joint angles.
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Muscle Force Estimation Module. Joint torques are calculated by substituting the
obtained joint data from the musculoskeletal human model. The skeletal model pro-
vides the moment arms and lengths of muscles. Then a physiologically based crite-
rion of muscle forces [19] estimates the human muscle forces for a given posture.
This estimation is solved as a quadratic programming problem using MATLAB.

Muscle Force Control Module. An operator designates desired muscle forces for
target muscles using a graphical user interface as shown in Fig. 3(b). The ratio of
change of target muscles is designated based on the nominal muscle forces specified
by a slide bar interface.

Device Control Module. The human joint torques, when assisted, are calculated
from the resultant muscle forces. By subtracting the resultant human joint torques
from the nominal joint torques, the torques that need to be generated by the power-
assisting device are calculated. This device control module calculates the pressure
for each pneumatic actuator to realize the resultant torques. The pressure reference
commands are then sent to electropneumatic regulators and execute the assist.

Posture measurement Muscle Force Controller Power-assisting Device Control

Marker Positions

P(x,y,z)

Eva-RT SDK Server

Data Acquisition 

Server

Motion capture device

Muscle Force Estimation

Data Acquisition 

Client

Musculoskeletal Model

Nominal Muscle Forces

Graphical User 

Interface

Desired Muscle Forces

Feasibility analysis

Actuator Driving-forces

Device Controller

Air Pressure 

Commands

EMG recorder

Compressor

Electromagnetic 
valves

(a) Individual muscle control algorithm

(b) Graphical user interface

Fig. 3 System configuration [14]
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4 Optimization Principle in the Neuromuscular System

Individual muscle-force control during static tasks is considered. It is assumed that a
subject does not change his/her posture during a task and all muscle contractions are
isometric. The dynamics of the body and exoskeleton robot are neglected. This is
primarily due to the difficulties in verifying non-isometric contractions by the mea-
surement of electromyographic signals. Consider a human musculoskeletal model
that has M joints and N muscles. The static equation of this musculoskeletal system
(e.g., see Fig. 1 (c) and (d)) is given by

τττh = ggg(θθθ)+ JJJ(((θθθ )))T FFF− τττa = AAA(((θθθ ))) fff

=

⎡⎢⎣ a11 · · · a1N
...

. . .
...

aM1 · · · aMN

⎤⎥⎦
⎡⎢⎣ f1

...
fN

⎤⎥⎦ . (1)

where τττh ∈ ℜM is a vector of human joint torques, θθθ = [θ1, · · · ,θM ]T ∈ ℜM is a
vector of joint angles, FFF = [Fx,Fy,Fz]

T is translational force at the tip, JJJ(((θθθ ))) is the
Jacobian between the joints and end-point, ggg(θθθ ) is the gravity force, τττa ∈ℜM is the
joint torque applied by the exoskeleton robot, AAA ∈ℜM×N is the moment-arm matrix
of the muscles, and fff = [ f1, · · · , fN ]

T ∈ℜN is the human muscle force vector. The
element ai j of AAA represents the moment arm of muscle j for joint i. ai j = 0 is given if
f j does not affect on joint i. Note f j ≥ 0 ( j = 1, · · · ,N) because muscle contraction
cannot generate negative forces. ggg(θθθ ), JJJ(((θθθ ))), and AAA(((θθθ ))) for a given posture θθθ can
be calculated by the musculoskeletal model in Fig. 1. To simplify the problem, no
upper-bound is assumed for τττa.

The human body is a redundant system, having more muscles than the number of
joints, i.e., N >> M. This fact makes the prediction of muscle forces fff by knowing
joint torques τττh an ill-posed problem. A number of muscle-force prediction meth-
ods have been presented based on the optimization principle in the neuromuscular
system [19, 3, 4, 18]. In the literature that deals with isometric or relatively slow
motions, the cost functions have a general form comprised of the sum of muscular
stress or force raised to a power. The static optimization method can be formulated
as follows.

Minimize u( fff ) =
N
∑
j=1

c j f r
j (2)

subject to

{
τττh = ggg(θθθ )+ JJJ(((θθθ )))T FFF− τττa = AAA(((θθθ ))) fff

0≤ f j ≤ fmax j( j = 1, · · · ,N)
(3)

where u( fff ) is a cost function, c j’s are weighting factors, and r is an integer number.
It should be noted that arguments still exist on the choice of the weighting factors c j

and the integer r of the power [19, 3, 4, 18]. There are still arguments and criticism
of the neurological background of this muscle force prediction; however, the effec-
tiveness of this approach for predicting stereotyped motor performances has been
reported in the literature.
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5 Problem Formulation

The proposed individual muscle control requires us to solve the inverse problem of
the aforementioned muscle force prediction in (2) to control N muscles by adjusting
M joint torque inputs. Note that this inverse solution is not straightforward since
any induced muscle activation pattern must satisfy the physiology-based optimality
criterion. The first condition in (3) represents the balance of joint torques. The sec-
ond condition means that each muscle can only “pull”, exerting positive contracting
force limited by its maximum voluntary force. Mathematically, this can be treated as
finding an adequate equality constraint for the joint torques such that desired mus-
cle forces are obtained as a result of the cost function minimization. As described
earlier, the exoskeleton robot device merely modifies human joint torques, which is
equivalent to the modification of the first equality condition in (3).

Let fff 0 be the nominal muscle forces obtained in Step 1 in Fig. 1 when perform-
ing a nominal task. The human force vector fff 0 may be permutated according to
three groups of muscles: target muscles, non-target muscles, and inactive muscles.
Let Ñ ≤ N be the number of the active muscles, and N− Ñ be the number of the
inactive muscles. The active muscles have elements with nonzero values in fff 0, and
the inactive muscles have zeros. The active muscle group consists of target muscles
fff t ∈ℜNt and non-target muscles fff n ∈ℜNn where Nt +Nn = Ñ. Without the loss of
generality, the order of the N muscles may be permutated according to these three
groups for the simplicity of description.

fff
 
=

⎡⎣ fff t
fff n

000

⎤⎦ · · · target muscles
· · ·non-target muscles
· · · inactive muscles

(4)

The above permutation for fff is also applied to the moment-arm matrix AAA accord-
ingly:

AAAT =

⎡⎣ AAAt

AAAn

AAAv

⎤⎦ · · · target muscles
· · ·non-target muscles
· · · inactive muscles

(5)

Hereafter these permutated vectors and matrices will be used.
The desired muscle forces fff td are given as follows by explicitly specifying the

change ratio for each of the target muscles:

fff td = diag([γ1,γ2, · · · ,γNt ]) fff t0 (6)

where γ j(> 0) is the change ratio of the j-th target muscle. Hereafter the subscript
d denotes the desired muscle forces, and 0 denotes the nominal muscle forces. Let
the total external torque τττex ∈ℜM be

τττex = JJJT FFF− τττa. (7)
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Equation (7) shows how the joint toques can be adjusted by applying τττa from the
robot and by performing a motor task exerting FFF at the tip. Note that there is a
certain freedom in choosing FFF and τττa for a given τττex.

The problem to realize fff td can be formulated as follows.

Perfect Individual Muscle Control Problem� �

Find FFF and τττa in (3) such that the solution of (2) includes a desired muscle
activation pattern for the target muscles, fff td , i.e.,

[ fff T
td , fff T

nd,000
T ]T = argmin

fff (τττex)

u( fff )

with minimum changes in non-target muscle forces, i.e., | fff nd− fff n0| → min.
� �

6 KKT Conditions

For simplicity, the condition on the upper-bounds of muscle forces is neglected and
only the condition 0≤ f j is considered. The feasibility of the individual muscle force
control is analyzed as a constrained optimization problem. Since fff is a solution of
(2), it must satisfy Kuhn-Tucker theorem [17, 1]:

∇u( fff )+
M

∑
i=1

μi∇hi( fff )+
N

∑
j=1

λ j∇g j( fff ) = 0, (8)

hi( fff ) = 0 (i = 1, · · · ,M), (9)

λ jg j( fff ) = 0,λ j ≥ 0,g j( fff )≤ 0 ( j = 1,2, · · · ,N), (10)

where hi( fff ) = τi− aaaT
i fff and g j( fff ) =− f j . aaaj ∈ℜN is a column vector of AAA. Recall

q j �
∂u( fff )
∂ f j

= rc j f j
r−1,( j = 1, · · · ,N) (11)

∂hi( fff )
∂ f j

= ai j, (12)

∂g j1

∂ f j2
=

{
−1, j1 = j2
0, j1 �= j2

. (13)

Therefore, (8) is written as

qqq = w( fff ) = AAATμ+λλλ (14)
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where qqq = [q1, · · · ,qN ]
T , μμμ = [μ1, · · · ,μM]T , and λλλ = [λ1, · · · ,λN ]

T . w(∗) is a func-
tion that converts the muscle force vector fff to a new vector qqq, i.e., qqq = w( fff ), where
the j-th elements of qqq is given by

q j �
∂u( fff )
∂ f j

= rc j f j
r−1,( j = 1, · · · ,N). (15)

From (10), λ j = 0 if f j > 0. Using (4) and (5), (14) can be rewritten as⎡⎣qqqt
qqqn
000

⎤⎦=

⎡⎣AAAt

AAAn

AAAv

⎤⎦μμμ+

⎡⎣ 000
000
λλλ v

⎤⎦ . (16)

For the normal muscle force fff 0(= w−1(qqq0)), (16) is given as

qqq0 = AAATμμμ0 +λλλ 0 →
⎡⎣qqq0t

qqq0n
000

⎤⎦=

⎡⎣AAAt

AAAn

AAAv

⎤⎦μμμ0 +

⎡⎣ 000
000
λλλ 0v

⎤⎦ . (17)

Similarly, for the desired muscle force fff d(= w−1(qqqd)),

qqqd = AAATμμμd +λλλ d →
⎡⎣qqqdt

qqqdn
000

⎤⎦=

⎡⎣AAAt

AAAn

AAAv

⎤⎦μμμd +

⎡⎣ 000
000
λλλ dv

⎤⎦ . (18)

7 Solution of Perfect Individual Muscle Control by Using an
Ideal Exoskeleton

The authors have analyzed so-called ideal individual muscle control [23, 24] with
assumptions that (1) fff td is physiologically realizable and (2) the exoskeleton robot
has means to adjust all of the joints involved in a task, i.e., τττh is fully modifiable
by τττex, and a combination of FFF and τττa always exists that realizes a given τττex. A
lack of means to apply joint toques may result in errors in individual muscle forces.
This issue has been partly addressed in [22] and will be further examined in future
publications.

Since the number of control inputs (i.e., the number of the elements of τττex) is,
in general, less that the number of muscles, the priority-based approach is applied.
The first priority is to perfectly realize the desired forces fff td of the target muscles.
The second priority is to minimize the changes of the non-target muscles since the
non-target muscle forces will be influenced by the first-priority muscle control due
to the physical coupling among the muscles.
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Theorem: Perfect individual muscle control [24]� �

The external torque τττex is obtained as

τττex =
[
AAAT

t AAAT
n

]
w−1

([
AAAt

AAAn

]
ααα
)

(19)

where fff = w−1(qqq) is the inverse function of w(∗). Also, ααα is given as ααα =
AAA+

t [w( fff td)−w( fff t0)]+ (III−AAA+
t AAAt)βββ , where III is the identity matrix, and βββ is

a free parameter that represents the remaining redundancy for controlling the
non-target muscles as the second priority. To minimize the influence on the
non-target muscles in terms of the root-mean-square (RMS) change, βββ may be
given as βββ =

[−AAAn(III−AAA+
t AAAt)

]+
AAAnAAA+

t [w( fff td)−w( fff t0)].
� �

The computed net joint torque in (19) is realized by an appropriate choice of FFF
and τττa (see (7)). It should be noted that (7) and (19) imply the necessity of the use
of an exoskeleton-type robot; the sole application of the subject’s voluntary force
(i.e., the choice of the three parameters in FFF = [Fx,Fy,Fz]

T for conventional motor
tasks) may not be sufficient in terms of the number of control degrees of freedom
when M > 3. The existence of ααα for a given fff td can be checked by the following
three feasibility conditions.

Feasibility conditions for perfect individual muscle control� �

1. fff td for the target muscles is perfectly realized if

rank( AAAt ) = rank(
[
AAAt , w( fff td)−w( fff t0)

]
). (20)

2. The inactive muscles keep inactive if

−AAAv

[
AAAt

AAAn

]+ [
qqqt0
qqqn0

]
−AAAvααα > 0. (21)

3. The resultant muscle forces of the non-target muscles remain positive if

AAAnααα+w( fff n0)> 0. (22)
� �
If all of the conditions are not satisfied, the control of the designated target muscles
for given fff td is not physiologically realizable, i.e., the violation of the Optimality
Principle. If not feasible, the target muscle forces or the choice of the target muscles
must be modified.

Proof: Let μμμd = μμμ0 +ααα,λλλ dv = λλλ 0v−AAAvααα where ααα is a control input vector in the
Kuhn-Tucker form. qqqd can be represented as
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qqqd =

⎡⎣qqqdt
qqqdn
000

⎤⎦=
⎡⎣qqq0t

qqq0n
000

⎤⎦+
⎡⎣AAAt

AAAn

AAAv

⎤⎦ααα
=

⎛⎝⎡⎣AAAt

AAAn

AAAv

⎤⎦μμμ0+

⎡⎣ 000
000
λλλ 0v

⎤⎦⎞⎠+
⎛⎝⎡⎣AAAt

AAAn

AAAv

⎤⎦ααα+
⎡⎣ 000

000
−AAAvααα

⎤⎦⎞⎠
=

⎡⎣AAAt

AAAn

AAAv

⎤⎦ (μμμ0 +ααα)+

⎡⎣ 000
000

λλλ 0v−AAAvααα

⎤⎦ (23)

The first row of (23) provides the condition to perfectly realize the desired forces
for the target muscles, i.e.,

Δqqqt = qqqtd− qqqt0 = w( fff td)−w( fff t0) = AAAtααα. (24)

A solution for ααα exists if the following condition holds:

rank( AAAt ) = rank(
[
AAAt w( fff td)−w( fff t0)

]
) (25)

which gives the condition 1).
In order not to induce any forces in inactive muscles, λλλ dddvvv > 000 must be satisfied.

Therefore,

λλλ dv = λλλ 0v−AAAvααα

= −AAAv

[
AAAt

AAAn

]+ [
qqq0t
qqq0n

]
−AAAvααα > 000 (26)

which gives the condition 2).
To maintain non-target muscles positive, i.e., fff nd , the condition is obtained from

the second row of (23) as follows:

w( fff nd) = AAAnααα+w( fff n0)> 000 (27)

which gives the condition 3).
The solution of (24) is given by

ααα = AAA+
t [w( fff td)−w( fff t0)]+ (III−AAA+

t AAAt)βββ (28)

where βββ is a free parameter that indicates the redundancy of the solution; βββ deter-
mines the distribution of resultant non-target muscle forces while maintaining the
complete realization of desired forces for target muscles. Note that the choice of
βββ is generally arbitrary. One reasonable choice may be to minimize the change of
non-target muscles. The change of non-target muscles is represented by
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Δqqqn = w( fff nd)−w( fff n0) = AAAnααα
= AAAn{AAA+

t [w( fff td)−w( fff t0)]+ (I−AAA+
t AAAt)βββ}

= AAAnAAA+
t [w( fff td)−w( fff t0)]− [−AAAn(I−AAA+

t AAAt)]βββ
(29)

The following βββ may minimize ||Δqqqn|| to avoid unnecessary influences on the non-
target muscles:

βββ = [−AAAn(III−AAA+
t AAAt)]

+AAAnAAA+
t [w( fff td)−w( fff t0)] (30)

Note that the resultant ααα must satisfy (22). The following changes are created for
the target and non-target muscles at the level of individual muscles

w−1
([

qqqdt
qqqdn

]
−
[

qqq0t
qqq0n

])
= w−1

([
AAAt

AAAn

]
ααα
)
. (31)

Therefore, the application of the torques represented by (19) realizes target muscle
forces.

8 Violation of the Feasibility Conditions

According to the optimization principle in the neuromuscular system, any distribu-
tion of muscle forces must not violate the physiology-based optimization criterion;
achievable changes in muscles are not completely arbitrary, but physiologically real-
izable muscle activation patterns need to be specified. However, this designation of
physiologically realizable muscle forces is not easy due to the presence of a number
of muscles and intricate coupling between joint-torques and muscle-forces [13, 8].
An operator may give a muscle activation pattern that is not physiologically real-
izable. An inappropriate choice of fff td violates the condition (20) and may result
in producing errors in target muscles even if the exoskeleton robot is capable of
controlling all of the joint torques:

rank( AAAt ) �= rank(
[
AAAt , w( fff td)−w( fff t0)

]
). (32)

Instead of finding a solution that perfectly realizes a desired muscle activation pat-
tern, it is desirable that a computational algorithm finds a quasi-optimized input that
can minimize the errors in individual muscle forces. This approach can be repre-
sented by || fff td − fff t || → min. It is still possible to determine ααα by using (28) such
that the norm of the error in the target muscles is minimized, i.e., ||qqqtd−qqqt || →min,
with first priority and the norm of the error in the non-target muscles is minimized
with second priority, i.e., ||qqqn− qqqn0|| → min. In a practical usage, a certain magni-
tude of error may be accepted since force generation in biological systems produces
certain variability. The relaxation of (21) will be presented in our future publication.
The condition (22) would not be relaxed since positive muscle force generation is
due to the biomechanism of skeletal muscles.
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9 Experiment

The brachialis muscle (BRA), brachioradialis muscle (BRD), and flexor carpi ul-
naris muscle (FCU) are chosen as target muscles. Biceps muscle is chosen as a
representative non-target muscle. A total of 11 tasks with various desired ratios of
change shown in Table 1 were tested for the posture shown in Fig. 4 by maintaining
the elbow angle approximately 90 degrees with holding a weight of 3 kg. Since the
brachialis muscle and brachioradialis muscle are known to be anatomically coupled,
these muscles are treated as one group and the same ratios of change were given.
Tasks I and J assist only Flexor Carpi Ulnaris muscle, Tasks C and G assist only
brachialis and brachioradialis muscles, and other trials are the mixture of assisting
and resisting for the three target muscles.

The individual muscle control algorithm computed robot torques that realize
these desired changes in the three target muscles and minimize the change in the
non-target muscles. Table 2 shows the robot torques of the elbow and wrist joints.
Due to the antagonistic arrangement of pneumatic actuators in this exoskeleton, only
4 actuators are controlled at the same time.

A total of eight healthy male volunteers were involved in the experiment. Sub-
jects were asked to repeat each trial five times with a rest between trials. Recorded
electromyographic signals of the four muscles for five seconds were filtered and
rectified. Figure 5 shows the results. White bars show desired changes of the target
muscles and black bars show measured changes of electromyographic signals.

It has been reported that the magnitude of electromyographic signals is approxi-
mately, but not strictly, proportional to isometric contraction force. Therefore, only

F
Fig. 4 Snapshot of the experiment: The exoskeleton robot applies computed torques against 4
joints from the elbow and wrists. A subject is asked to hold a weight of 3 by maintaining the el-
bow angle approximately 90 degrees. Surface electromyographic signals of brachialis (BRA),
brachioradialis (BRD), flexor carpi ulnaris (FCU) and biceps muscles are measured. [7]
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Table 1 Desired change rates of target muscle force

Task BRA & BRD FCU BIC
A ×50% ×50% ×101%
B ×50% ×75% ×101%
C ×50% ×100% ×101%
D ×50% ×125% ×101%
E ×75% ×50% ×101%
F ×75% ×75% ×101%
G ×75% ×100% ×101%
H ×75% ×125% ×101%
I ×100% ×50% ×100%
J ×100% ×75% ×100%
K ×100% ×100% ×100%

Table 2 Target joint torque [Nm]

Task τelbow τwrist1
∗ τwrist2

∗∗
A -1.27 -0.15 -0.22
B -1.15 -0.05 -0.08
C -1.02 0.05 0.07
D -0.90 0.16 0.21
E -0.76 -0.18 -0.26
F -0.64 -0.08 -0.12
G -0.51 0.03 0.03
H -0.39 0.13 0.18
I -0.25 -0.21 -0.29
J -0.12 -0.10 -0.14
K 0.00 0.00 0.00
∗ Dorsal and palmar flexion joint of the wrist
∗∗ Radial and ulnar flexion joint of the wrist

the observed tendencies of the changes are discussed here. For example, a compari-
son between Task A and C indicates that the flexor carpi ulnaris (FCU) muscle and
the group of brachialis (BRA) and brachioradialis (BRD) muscles can be controlled
separately. A comparison between Tasks G and I indicates a similar result. In this
experiment, the changes in the non-target muscle, biceps muscle (BIC), were also
strictly zero as shown in Figure 5 (k). However, these errors were smaller overall
than the changes in the target muscles. These observations support the efficacy of
the individual muscle control algorithm. In contrast, there is still an issue in the
accuracy of control. For example, no significant difference was observed between
Tasks A and B or between Tasks E and F. This is partly because of the difficulty of
precise force application against the body by using a wearable device.
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(k) Changes of non-target muscle (BIC)

Fig. 5 Experimental results [7]

10 Conclusion

An overview of the individual muscle control methodology by using an exoskeleton
has been presented. One of the future goals is to examine the age-associated and
disease-associated muscle adjustments induced by the physical interaction between
a person and a wearable exoskeleton-type robot device with integrated individual
muscle controlling capability. There are still technical and scientific challenges that
need to be overcome for practical and clinical use. The mathematical structure of
the individual muscle control needs to be better understood. Specifically, the ob-
tained feasibility conditions are restrictive and need to be relaxed. More muscle
activity data need to be collected and compared for various motor tasks to identify
the applicability as well as the performance limit. The collected data must then be
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interpreted from clinical perspectives. With further development, we imagine that a
portable device will be developed for home use or in non-medical facilities.
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Appendix

Crowninshield’s Static Optimization
Crowninshield’s method [19] is a special case presented in (2) that predicts human
muscle forces by minimizing a physiologically based criterion u( fff ):

u( fff ) =
N
∑
j=1

(
f j

PCSA j

)r

→min (33)

subject to

{
τττh = AAA fff

fmin j ≤ f j ≤ fmax j( j = 1, · · · ,N)
,

where PCSA j is the physiological cross sectional area (PCSA), and fmax j = ε ·
PCSA j is the maximum muscle force of the j-th muscle. In this paper, ε =
0.7× 106[N/m2] is given according to [10]. PCSA j’s are given according to [15].
fmin j = 0,∀ j and r = 2 are used. See [19] for the choice of r.



Synthesizing Redundancy Resolution Criteria
of the Human Arm Posture in Reaching
Movements

Zhi Li, Hyunchul Kim, Dejan Milutinović, and Jacob Rosen

Abstract. The aim of this work is to characterize the regularity and variability of
human arm movements. The arm posture is quantified by a swivel angle that is ex-
perimentally measured when a healthy subject is reaching for targets in a spherical
workspace. It is shown that without specific instruction, a subject moving his/her
arm tends to use a consistent arm posture with small variations when reaching the
same target position, regardless of whether the subject is moving toward or away
from the target. This observed posture consistency indicates that human motor con-
trol chooses a unique arm posture associated to a 3D hand position. From the per-
spective of posture consistency, this work further examines the posture predictions
based on two hypotheses on human arm control strategies: one that maximizes the
movement efficiency towards the head, particularly toward the mouth; and the other
that minimizes the power consumption in joint space. The arm posture predictions
based on these two control strategies are compared and the prediction errors for each
control strategy are analyzed.

1 Introduction

The study of human arm movements is complex due to the kinematic redundancy
in the human arm. The human arm processes seven degrees of freedom (DOFs)
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while tasks in three-dimensional (3D) space only require six DOFs to be specified.
A healthy human motor system provides natural resolutions to the inverse kinemat-
ics of the arm, with its control of the extra DOF outperforming that of wearable
robotic arms (e.g., upper limb exoskeletons). Existing research has been focused on
characterizing human arm movements in order to reveal a control strategy of the
healthy human motor system, and to facilitate the design and control of upper limb
exoskeletons. Enhanced synergy between the human arm and upper limb exoskele-
tons is expected to benefit applications such as the rehabilitation of stroke patients
via upper limb exoskeletons [39, 25].

1.1 Characteristics of Human Arm Movements

Research on the characterization of human arm movements falls into two categories:
from the perspective of regularity, the movements of healthy human arms demon-
strate significant similarity when completing daily-life tasks, within and across hu-
man individuals; from the perspective of variability, it has be observed that the arm
movements of each human individual are not exactly the same even when repeating
the same task. These characteristics, namely regularity and variability universally
exist in human movement, including human arm movement. Both of them con-
tribute to the higher performance of the human arm, compared to that of existing
robotic arms.

Regularity in Human Arm Movements: For decades, continuous research efforts
on the regularity of human movements intended to reveal the control strategy of the
healthy human motor system. According to Donders’ law, the central nervous sys-
tem (CNS) chooses a unique eye orientation for each gaze direction. When applied
to human arm movements, Donders’ law predicts that every position of the hand in
3D space naturally corresponds to a unique posture of the arm, which can be param-
eterized by joint angles at the shoulder and elbow. The unique pointing direction
of the human arm corresponding to a given hand position (denoted by r) can be
expressed by a rotation axis n and a rotation angle α [17].

r = tan
α
2

n (1)

However, there have been experimental results that contradicted Donders’ law. The
law is obeyed more strictly for pointing movements with straight arms than for
pointing movements with less restriction. According to Soechting et al [53], the arm
posture corresponding to a given hand location is not independent of its previous
posture. Furthermore, it has been confirmed that Donders’s law is violated in some
3D space tasks [29]. The upper arm torsion varies widely when the pointing target is
specified, yet the variation of torsion can be reduced by specifying the elbow angle.
Note that while Donders’s law is partially valid for reaching/pointing movements, it
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is generally invalidated by grasping experiments [57, 54]. Due to the limited motion
range at the wrist, the posture of the upper arm is strongly affected by hand orienta-
tion and therefore the violation of Donders’s law is significant. Without restricting
the precise orientation of the hand, Donders’ law might still be applicable to the arm
motions [9].

The posture consistency in reaching movements of the human arm revealed by
Donders’s law results in a category of posture-based movement planning strategies.
These movement planning strategies assume that there exists an optimal final pos-
ture for each target position at the end of the trajectory. This assumption contradicts
the prediction of trajectory-based movement planning strategies, which may lead to
various arm postures at the end of the trajectory. It was proposed that posture-based
strategies plan the movements at a kinematic level, while trajectory-based strategies
plan the movements at a dynamic level [43]. Other approaches of combining move-
ment planning at kinematic and dynamic levels with the posture at the end of the
trajectory are described in [18, 22]

Variability in Human Arm Movements: Variability is another universal charac-
teristic of the motor control of human arm movements [63, 66]. Early experimental
studies (e.g. recording of hammering movements by Bernstein [5]) in human motor
control find that human movements do not repeat in exactly the same way for the
same task, even with intention. It has been found that this variability can be used
as a signature to distinguish skilled from unskilled task performance. A lower level
of the variability may indicate the existence of control, while its absence may indi-
cate diseases [34]. The redundancy in the human motor system may contribute to
the variability of human movements, though it is not necessarily the source of the
variability [13, 31, 59].

1.2 Redundancy Resolution Based on Performance Optimization

By controlling redundant degrees of freedom, the resolution of inverse kinemat-
ics or inverse dynamics can satisfy additional task-based constraints and/or achieve
an optimized performance. Existing research has considered performance optimiza-
tion from the perspectives of manipulability, energy consumption, smoothness of
movement, task accuracy and control complexity. Task-based redundancy resolu-
tions are more straightforward since the control of the extra DOFs can be gen-
erally achieved by integrating the task-dependent constraints into an augmented
Jacobian matrix [7, 50, 51]. The redundancy resolutions based on performance opti-
mization tend to be more flexible, given that there are many performance indices in
consideration.

Manipulability Performance: At a singular configuration, a manipulator can only
execute motion and/or resist wrenches in limited directions. Keeping the manipula-
tor away from its singularities is convenient for task operation in general, and this
can be achieved either by mechanical design and/or motion planning.
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Manipulability was originally defined either as the distance from the singular-
ity [2], or as the efficiency of velocity/force transmission [6]. The Jacobian matrix,
denoted as J (or the matrix JJT if J is a lower-rectangular matrix), has been used
to quantify manipulability. Singular value decomposition (SVD) can be applied to
the Jacobian matrix of manipulators, in order to construct the manipulability ellip-
soid [45]. Possible manipulability indices for performance optimization are mostly
based on the measures of the manipulability ellipsoid. The radii of the manipulabil-
ity ellipsoid are frequently considered, either for the maximum/minimum singular
values, or for their ratio (e.g., condition number [3], isotropy [1]). The determinant
of the Jacobian matrix or dynamic Jacobian is also considered, resulting in perfor-
mance indices such as manipulability and dynamic manipulability [67, 68].

The directions of the principle axes of the manipulability ellipsoid have rarely
been considered as manipulability performance indices. It is worth noting that the
direction of the principle axes indicate the movement efficiency of a manipulator
configuration. For a given uniform effort (measured by joint velocity) in all the
applicable directions in the joint space, the most efficient movement in task space is
in the direction of the major principle axis of the manipulability ellipsoid, while the
least efficient movement in task space is in the direction of the minor principle axis.
With regards to global manipulability, indices such as condition number, isotropy
can be integrated for the measurements of the workspace [14, 27].

Energy Performance: Minimization of energy, either in joint space or task space,
implies that the final arm posture depends on both the initial arm posture and the
trajectory. As a consequence, the arm postures for a given 3D hand position are not
unique. It has been shown that energy minimization can not account for the average
behavior of the arm movement [36], of eye movements [16] and of some full-body
movements (e.g., standing up from a chair [37]). However, the consideration of
energy performance can not be ruled out given the effects of dynamics. Instead, it
should be integrated into other performance considerations such as the smoothness
of motion, which reduces energy consumption by penalizing joint torque [62, 35],
muscle forces [37], or time-derivatives of end-effector acceleration (i.e. jerk) [19,
11, 60, 52].

Smoothness of Movement: The idea of optimization for the smoothness of move-
ment was first introduced as the minimization of jerk [19, 11], to account for the
straight path and bell-shaped velocity of task-space trajectories in reaching move-
ments, as well as for trajectories of ”via-point” tasks, in which the hand is instructed
to pass a sequence of positions. For arbitrary arm movements, minimizing the jerk
along the trajectory accurately predict the speed profile of the trajectory [60] com-
pared to the 2/3 power law [56, 64, 46]. The minimization of jerk has been also
extended to account for movements in grasping tasks [52]. An alternative of jerk
minimization in task space is to minimize the jerk in the joint space [65].
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Performance optimization for the smoothness of motion can also be achieved at
a dynamic level by minimizing the time-derivative of joint torque [62, 35]. This
minimization also accounts for the slight asymmetry observed in some via-point
tasks [62, 35], which cannot be addressed by kinematic motion strategies that ignore
the nonlinear arm dynamics.

Task Accuracy: Motor noise is considered to contribute to the variance of end-
effector position across repetitions of the same task. It is know that motor noise is
dependent on control, with its magnitude proportional to muscle activations [58, 55,
47]. As a consequence, the choice of control signals will affect the variability of a
movement.

Within an open-loop control framework, the control strategy of minimizing the
variance intends to optimize a sequence of muscle activations, for reduced variances
in the end-effector positions and improved task accuracy [15]. The minimum vari-
ance model produces an accurate prediction of eye movements at the level of mus-
cle activations, yet its prediction accuracy is not clear for human arm movements.
Movements with longer durations can not be addressed by minimum-variance con-
trol, since the movement variability is strongly affected by sensory feedback, which
is not considered in open-loop control [44].

However, considering the universal existence of the motor noise in biological
systems, it makes sense to assume that there exists a general control strategy so that
the relation between a trajectory and its velocity profile can be addressed.

Control Complexity: Control strategies yield different performance in the pres-
ence of noise, even if the averaged behavior is the same [59]. Optimal feedback
controllers can resolve the redundancy in real-time according to the minimum in-
tervention principle: make no effort to correct deviations away from the average
behavior unless the task performance is affected.

As demonstrated in [59], the minimal intervention principle pushes the state vec-
tor orthogonally to the redundant direction, in which performance is maintained and
corresponding states are equivalent to each other. In the redundant direction, which
has been quantified as an ”uncontrolled manifold”, the probability distribution of
observed states scatters in a wider range, compared to the non-redundant direction.
A wide range of behaviors [59, 5, 48, 49, 26] have provided evidence of the minimal
intervention principle.

Integrating Multiple Criteria for a Better Estimation of the Arm Posture: Ex-
isting hypotheses, either working collaboratively or individually, have not been able
to fully predict the natural movements of human arms. However, the integration
of multiple hypotheses for better prediction can help in understanding the control
strategy of natural human arm movements. In this case, the challenge of formulat-
ing a cost function is that performance indices have different units, and therefore it
is not trivial to combine them in a single criterion. Having this in mind, a appro-
priately chosen intermediate variable may help the integration of different indices
into a single criterion. As shown in [23], the swivel angle is chosen as the interme-
diate variable, to merge two performance indices of different units (manipulability
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and energy). However, the chosen intermediate variable may have different levels of
sensitivity to changes in different performance indices.

The optimization of a comprehensive cost function that integrates various types
of performance indices cannot be simply extended from the optimization of a single
performance index, particularly with the presence of noise and disturbance in the
implementation of the movement plan [42, 11]. The optimization of a single perfor-
mance index along a deterministic trajectory can be constrained by task-dependent
constraints, such as end-effector position, velocity and acceleration specified for the
beginning or ending state. Such constraints are not valid for stochastic problems, in
which the final state is affected by noise.

2 Kinematic and Dynamic Modeling of the Human Arm

2.1 Kinematic Modeling of the Human Arm

The kinematics and dynamics of the human arm during activities of daily living
(ADL) have been studied to determine specifications for exoskeleton design (Fig-
ure 1) [40][38]. Articulation of the exoskeleton is achieved by seven single-axis
revolute joints which support 99% of the range of motion required to perform
daily activities [40]. Three revolute joints are responsible for shoulder abduction-
adduction, flexion-extension and internal-external rotation. A single rotational joint
is employed at the elbow, creating elbow flexion-extension. Finally, the lower
arm and hand are connected by a three-axis spherical joint resulting in wrist
pronation-supination, flexion-extension, and radial-ulnar deviation. As a human-
machine interface (HMI), four six-axis force/torque sensors (ATI Industrial Au-
tomation, model-Mini40) are attached to the upper arm, the lower arm, the hand and
the tip of the exoskeleton [32]. The force/torque sensor at the tip of the exoskeleton
allows measurement of interactions between the exoskeleton and the environment.

2.1.1 Forward Kinematics

This section derives the forward kinematics for the upper limb exoskeleton.

Base Rotation for Singularity Avoidance: The bases of the two robotic arms of
the upper limb exoskeleton are rotated according to Table 1, in order to move the
singularity out of the range of the daily movements of the human arm.

Table 1 Base rotation of upper limb exoskeleton

about X-axis (θX ) about Y-axis (θY ) about Z-axis (θZ)
Left arm 132.5◦ 45◦ 90◦
Right arm 132.5◦ −45◦ 90◦
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Fig. 1 The upper limb exoskeleton with seven DOFs, supporting 99% of the range of motion
required to preform daily activities

The transformation matrix for base rotation can be represented as Equation (2).
Note that sinθi is denoted as si, cosθi is denoted as ci, sinαi is denoted as sαi, cosαi

is denoted as cαi.

Tbase = Rotx(θX)Rotz(θY )Rotz(θZ)

=

⎡⎢⎢⎣
1 0 0 0
0 cθX −sθX 1
0 sθX cθX 1
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

cθY 0 sθY 1
0 1 0 0
−sθY 0 cθY 1

0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

cθZ −sθZ 0 1
sθZ cθZ 0 1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (2)

For the left arm,

Tbase =

⎡⎢⎢⎣
0.0000 −0.7071 0.7071 0
−0.6756 −0.5213 −0.5213 0
0.7373 −0.4777 −0.4777 0

0 0 0 1.0000

⎤⎥⎥⎦ , (3)

for the right arm,

Tbase =

⎡⎢⎢⎣
0.0000 −0.7071 −0.7071 0
−0.6756 0.5213 −0.5213 0
0.7373 0.4777 −0.4777 0

0 0 0 1.0000

⎤⎥⎥⎦ . (4)



208 Z. Li et al.

Denavit-Hartenberg (DH) Parameters: The Denavit-Hartenberg (DH) parame-
ters of the upper limb exoskeleton (shown in Table 2) are derived in the standard
method defined by [8].

Table 2 Denavit-Hartenberg (DH) Parameters for upper limb exoskeleton

Robot i−1 i αi ai di θi

Left 0 1 π/2 0 0 θ1 +π−32.94◦
Arm 1 2 π/2 0 0 θ2 +π/2−28.54◦

2 3 π/2 0 0 θ3 +π−53.6◦
3 4 π/2 0 L1 θ4
4 5 −π/2 0 0 θ5−π/2
5 6 −π/2 0 L2 θ6 +π/2
6 7 π/2 0 0 θ7 +π

Right 0 1 π/2 0 0 θ1−32.94◦
Arm 1 2 π/2 0 0 θ2−π/2−28.54◦

2 3 −π/2 0 0 θ3−π−53.6◦
3 4 −π/2 0 −L1 θ4
4 5 π/2 0 0 θ5 +π/2
5 6 −π/2 0 −L2 θ6 +π/2
6 7 π/2 0 0 θ7 +π

Note that L1 and L2 are the length of the upper and lower arms, respectively.
By direct kinematics, we can derive the transformation matrix 0

7T , which includes
the position and the orientation of the wrist of the exoskeleton with respect to the
base frame:

base
7 T = Tbase ·01 T ·12 T ·23 T ·34 T ·45 T ·56 T ·67 T =

⎡⎢⎢⎣
r11 r12 r13 Pwx

r21 r22 r23 Pwy

r31 r32 r33 Pwz

0 0 0 1

⎤⎥⎥⎦ (5)

For reaching movements, the three DOFs at the wrist are not considered. Therefore,
the forward kinematics that involves four DOFs of the human arm (three DOFs at
the shoulder and one DOF at the elbow) becomes:

base
7 T = Tbase ·01 T ·12 T ·23 T ·34 T ·45 T (6)

2.1.2 Inverse Kinematics

With the specification of the transformation matrix 0
7T , the inverse kinematics of the

exoskeleton can be derived for the left and the right arms, respectively. The redun-
dant DOF of the human arm can be constrained by specifying the elbow position
(Pe = [Pex,Pey,Pez]

T ).
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Based on shoulder position Ps, elbow position Pe, and wrist position Pw, θ4 can
be derived as:

W = ||Pw−Ps|| (7)

c4 =
L2

1 +L2
2−W2

2L1L2
(8)

s4 =
√

1− c2
4 (9)

θ4 = π−Atan2(s4,c4) (10)

The transformation matrix 3
4T and its inverse 3

4T−1 can be found based on θ4.
The transformation matrix without the base rotation, denoted base

7 T , can be found
by:

0
7T = T−1

0 ·base
7 T =

⎡⎢⎢⎣
r
′
11 r

′
12 r

′
13

0
7Pwx

r
′
21 r

′
22 r

′
23

0
7Pwy

r
′
31 r

′
32 r

′
33

0
7Pwz

0 0 0 1

⎤⎥⎥⎦ (11)

Thus, the wrist position with respect to the rotated base is 0
7Pw = [07Pwx,

0
7 Pwy,

0
7 Pwz]

T .
Similarly, the elbow position with respect to the rotated base, denoted by 0

7Pe =
[07Pex,

0
7 Pey,

0
7 Pez]

T , is: ⎡⎢⎢⎣
0
7Pex
0
7Pey
0
7Pez

1

⎤⎥⎥⎦ = T−1
0 ·

⎡⎢⎢⎣
base
7 Pex
base
7 Pey
base
7 Pez

1

⎤⎥⎥⎦ (12)

Note that 0
7Pe =

0
4 Pe and

0
4T = 0

1T ·12 T ·23 T ·34 T =

⎡⎢⎢⎣
0
4Pex

0
4R 0

4Pey
0
4Pez

0 0 0 1

⎤⎥⎥⎦=

⎡⎢⎢⎣
L1c1s2

0
4R L1c2

L1s1s2

0 0 0 1

⎤⎥⎥⎦ (13)

For the both arms,

c2 =
0
4Pey

L1
(14)

For the left arm,

s2 =
√
(1− c2

2) (15)

for the right arm,
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s2 =−
√
(1− c2

2) (16)

Thus, θ2 can be resolved as:

θ2 = Atan2(s2,c2)− (π/2− 28.54◦) (17)

To resolve θ1, for the both arms,

c1 =
0
4Pex

L1s2
(18)

s1 =
0
4Pez

L1s2
(19)

Thus, for the left arm,

θ1 = Atan2(s1,c1)− (π− 32.94◦) (20)

for the right arm,

θ1 = Atan2(s1,c1)+ 32.94◦ (21)

The transformation matrices 0
1T and 1

2T and their inverses 0
1T−1 and 1

2T−1 can be
found accordingly.

Thus, the wrist position with respect to Frame 2, denoted 2
7Pw = [27Pwx,

2
7 Pwy,

2
7 Pwz]

T ,
can be found:

2
7T = 1

2T−1 ·01 T−1 ·07 T =

⎡⎢⎢⎣
2
7Pwx

2
7R 2

7Pwy
2
7Pwz

0 0 0 1

⎤⎥⎥⎦ (22)

For the left arm,

2
7Pw =

⎡⎣ −L2c3s4

−L1−L2c4

−L2s3s4

⎤⎦ (23)

for the right arm,

2
7Pw =

⎡⎣ −L2c3s4

−L1−L2c4

L2s3s4

⎤⎦ (24)
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To resolve θ3, for the both arms,

c3 =
2
7Pwx

−L2s4
(25)

For the left arm,

s3 =
2
7Pwz

L2s4
(26)

θ3 = Atan2(s3,c3)− (π− 53.6◦)− 2π (27)

for the left arm,

s3 =
2
7Pwz

−L2s4
θ3 = Atan2(s3,c3)+ (π+ 53.6◦) (28)

The transformation matrix 2
3T and its inverse 2

3T−1 can be found accordingly.
θ5, θ6 and θ7 can be derived from the transformation matrices from Frame 4 to

Frame 7 4
7T .

4
7T = 3

4T−1 ·23 T−1 ·12 T−1 ·01 T−1 ·07 T =

⎡⎢⎢⎣
4
7r11

4
7r12

4
7r13

4
7Pwx

4
7r21

4
7r22

4
7r23

4
7Pwy

4
7r31

4
7r32

4
7r33

4
7Pwz

0 0 0 1

⎤⎥⎥⎦ (29)

For the left arm,

4
7T = 3

4T−1 ·23 T−1 ·12 T−1 ·01 T−1 ·07 T

=

⎡⎢⎢⎣
c5c6c7− s5s7 −c7s5− c5c6s7 c5s6 0
−c7s6 s6s7 c6 L2

−c5s7− c6c7s5 c5c7− c6s5s7 −s5s6 0
0 0 0 1

⎤⎥⎥⎦ (30)

for the right arm,

4
7T = 3

4T−1 ·23 T−1 ·12 T−1 ·01 T−1 ·07 T

=

⎡⎢⎢⎣
c5c6c7− s5s7 −c7s5− c5c6s7 c5s6 0

c7s6 −s6s7 −c6 L2

c5s7 + c6c7s5 c5c7− c6s5s7 s5s6 0
0 0 0 1

⎤⎥⎥⎦ (31)

Thus, for the left arm,
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c6 = 4
7r23 (32)

s6 =
√

1− c2
6 (33)

c5 =
4
7r13

s6
(34)

s5 = −
4
7r33

s6
(35)

c7 = −
4
7r21

s6
(36)

s7 =
4
7r22

s6
(37)

for the right arm,

c6 = −4
7r23 (38)

s6 =
√

1− c2
6 (39)

c5 = −
4
7r13

s6
(40)

s5 = −
4
7r33

s6
(41)

c7 = −
4
7r21

s6
(42)

s7 = −
4
7r22

s6
(43)

For the left arm,

θ5 = Atan2(s5,c5)+π/2 (44)

θ6 = Atan2(s6,c6)−π/2 (45)

θ7 = Atan2(s7,c7)−π+ 2π (46)

for the right arm,

θ5 = Atan2(s5,c5)−π/2 (47)

θ6 = Atan2(s6,c6)−π/2 (48)

θ7 = Atan2(s7,c7)−π+ 2π (49)

For reaching movements, the four DOFs in consideration (three DOFs at the shoul-
der and one DOF at the elbow) can be resolved based on the wrist position Pw and
the elbow position Pe: θ4 is resolved according to Equation (10); θ1 and θ2 are re-
solved according to Equations (13) to (21). With regards to θ3,
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For the left arm,

2
5Pw =

⎡⎣ −L2c3s4

−L1−L2c4

−L2s3s4

⎤⎦ (50)

for the right arm,

2
5Pw =

⎡⎣ −L2c3s4

−L1−L2c4

L2s3s4

⎤⎦ (51)

Therefore, θ3 can be resolved as Equations (25) to (28).

2.2 Jacobian Matrix

The Jacobian matrix denotes the mapping from joint space to task space at the ve-
locity level.

Ṗw = Jθ̇ (52)

For the seven-DOF arm model involving wrist orientation,

Ṗw = J3×7θ̇ (53)

where θ = [θ1,θ2,θ3,θ4,θ5,θ6,θ7]
T , and

J3×7 =
[
J1 J2 J3 J4 0 0 0

]
(54)

The arm model for reaching movements only involves four DOFs and therefore

Ṗw = J3×4θ̇ (55)

where θ = [θ1,θ2,θ3,θ4]
T and

J4×7 =
[
J1 J2 J3 J4

]
(56)

For the right arm, given that

Pw =

⎡⎣L2(s4(s1s3− c1c2c3)+ c1c4s2)+L1c1s2

L1c2 +L2(c2c4 + c3s2s4)
L1s1s2−L2(s4(c1s3 + c2c3s1)− c4s1s2)

⎤⎦ (57)

we have

J1 =

⎡⎣L2(s4(c1s3 + c2c3s1)− c4s1s2)−L1s1s2

L1c2 +L2(c2c4 + c3s2s4)
L2(s4(s1s3− c1c2c3)+ c1c4s2)+L1c1s2

⎤⎦ (58)
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J2 =

⎡⎣L2(s4(s1s3 + c1c3s2)+ c1c2c4)+L1c1c2

−L1s2−L2(c4s2− c2c3s4)
L1c2s1−L2(s4(c1s3− c3s1s2)− c2c4s1)

⎤⎦ (59)

J3 =

⎡⎣L2(s4(c3s1 + c1c2s3)+ c1c4s2)+L1c1s2

L1c2 +L2(c2c4− s2s3s4)
L1s1s2−L2(s4(c1c3− c2s1s3)− c4s1s2)

⎤⎦ (60)

J4 =

⎡⎣L2(c4(s1s3− c1c2c3)− c1s2s4)+L1c1s2

L1c2−L2(c2s4− c3c4s2)
L1s1s2−L2(c4(c1s3 + c2c3s1)+ s1s2s4)

⎤⎦ (61)

For the left arm, given that

Pw =

⎡⎣L2(s4(s1s3− c1c2c3)+ c1c4s2)+L1c1s2

L1c2 +L2(c2c4 + c3s2s4)
L1s1s2−L2(s4(c1s3 + c2c3s1)− c4s1s2)

⎤⎦ (62)

we have

J1 =

⎡⎣−L2(s4(c1s3− c2c3s1)+ c4s1s2)−L1s1s2

L1c2 +L2(c2c4 + c3s2s4)
L1c1s2−L2(s4(s1s3 + c1c2c3)− c1c4s2)

⎤⎦ (63)

J2 =

⎡⎣L1c1c2−L2(s4(s1s3− c1c3s2)− c1c2c4)
−L1s2−L2(c4s2− c2c3s4)

L2(s4(c1s3 + c3s1s2)+ c2c4s1)+L1c2s1

⎤⎦ (64)

J3 =

⎡⎣L1c1s2−L2(s4(c3s1− c1c2s3)− c1c4s2)
L1c2 +L2(c2c4− s2s3s4)

L2(s4(c1c3 + c2s1s3)+ c4s1s2)+L1s1s2

⎤⎦ (65)

J4 =

⎡⎣L1c1s2−L2(c4(s1s3 + c1c2c3)+ c1s2s4)
L1c2−L2(c2s4− c3c4s2)

L2(c4(c1s3− c2c3s1)− s1s2s4)+L1s1s2

⎤⎦ (66)

2.3 Redundancy Representation by Swivel Angle

In addition to the elbow position, the extra degree of freedom can be constrained
by specifying the swivel angle. When the arm is not straight, the positions of the
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shoulder (Ps), the elbow (Pe) and the wrist (Pw) form a triangle. With the spherical
joins at both the shoulder and wrist, the elbow position Pe can only rotate around
the vector (Pw−Ps) (see Figure 2). A local coordinate system at the center of the
elbow circle (Pc) gives a reference for measuring the swivel angle (φ ) of the elbow.
A normal vector that points in the direction of (Pw−Ps) is defined as:

n =
Pw−Ps

||Pw−Ps|| (67)

A normalized vector projected onto the plane orthogonal to n is given by:

u =
a− (a ·n)n
||a− (a ·n)n|| (68)

where a is the vector to be projected. Badler and Torlani [4] suggest that a should be
[0,0,−1]T . This selection has real physical meaning. When φ is equal to zero, the
elbow is at its lowest possible point. The last vector of the coordinate system (v), is
found by taking the cross product of n and u. Vectors n, u and v form an orthogonal
coordinate system, where u and v are in the plane of the elbow circle (Figure 2(b)).
The radius (R) and center (Pc) of the circle are easily found through geometry.

cos(α) =
L2

1−L2
2−||Pw−Ps||2

−2L2
2||Pw−Ps|| (69)

sin(α) =
√

1− cos(α) (70)

R = L1 sin(α) (71)

Pc = Ps +L1 cos(α) ·n (72)

, where L1 and L2 are the lengths of the upper and lower arm segments (Figure 2(a)).
The position of the elbow can now be expressed as a parametrization of φ [61].

Pe = R [cos(φ)u+ sin(φ)v]+Pc (73)

2.4 Dynamic Modeling of the Human Arm

The dynamic models of the left and right human arms are built up by integrating
the kinematic model with the estimates of mass, the center of mass and the mo-
ment of inertia. Dynamic models of the human arm are rendered via the Autolev
package [12], which generates the motion equation by Kane’s method [20]. Each
arm model processes seven DOFs (three DOFs for the shoulder, three DOFs for
the wrist and one DOF for the elbow motion), with the frame setup in accordance
with the EXO-UL7. Since the analysis of reaching movements in free space does
not specify the wrist posture, the orientation of the hand in the dynamic model is
pre-specified by locking the three DOFs at the wrist joint.



216 Z. Li et al.

P
s

P
e

P
w

P
c

�

(a)

P
e

P
c

u

v

�

(b)

Fig. 2 Swivel angle

Given the initial condition of the human arm, the dynamic model can respond to
external forces (such as gravity) and provide an analytical calculation of the joint
space variables (i.e., joint angles, velocities and accelerations), as well as the kinetic
energy and potential energy. The analytical calculation of joint torque is integrated
in the dynamic model and can be extracted to compute work in the joint space. The
dynamic model can also respond to external joint torques and generate the resulting
joint space values accordingly.

Shoulder

Elbow

Wrist

Hand

43.6%43.6%

43.0%

56.4%

57.0%

50.6%

49.4%

Arm

Forearm

Center of Mass

Fig. 3 The distribution of the center of mass (COM) for the human arm segments [41]

The estimation of the mass, the center of mass and the moment of inertia of each
arm segment is required to customize the dynamic model for each subject. Figure 3
shows the distribution of the center of mass (COM) for the human arm segments. On
average, the human arm contributes 4.8% of the total body weight. The mass of arm
segments and their inertia matrices are calculated based on the weight of subjects
according to the regression equations in [30].
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3 Swivel Angle Estimation for Reaching Movements

3.1 Criterion I: Swivel Angle Estimation Using a
Biologically-Based Kinematic Constraint

Given the role of the head as a cluster of sensing organs and the importance of arm
manipulation to deliver food to the mouth, we hypothesize that the swivel angle is
determined by the human motor control system to efficiently retract the hand to the
head region. This hypothesis is supported by intracortical stimulation experiments
that evoked coordinated forelimb movements in conscious primates [10][33]. It has
been reported that each stimulation site produced a stereotyped posture in which the
arm moved to the same final position regardless of its posture in the initial stimula-
tion. In the most complex example, the monkey formed a frozen pose with the hand
in a grasping position in front of the open mouth. This implies that during the arm
movement toward an actual target, the virtual target point at the head can be set for
the potential retraction of the palm to the virtual target as shown in Figure 4.

Manipulability Ellipsoid: According to the above notion of efficient arm move-
ments toward a virtual target at the head, the redundancy of the human arm can be
closely associated with the manipulability ellipsoid. Let Pm denote the virtual target
position at the center of the head in Figure 5(a). When we consider the combinations

of joint velocities satisfying the condition in which Σn
i=1θ̇i

2
= 1, the hand velocity

as a function of the joint velocity is described by an ellipsoid that defines the arm’s
scaled Jacobian. The longest principle axis of the manipulability ellipsoid (i.e., the
major principle axis) defines the direction of the highest sensitivity where the end
effector velocity varies in response to the joint space velocity (see Figure 5(b)) [28].
Assuming that the virtual hand movement follows the shortest path connecting Pw

to Pm, the swivel angle is chosen such that the projection of the major principle axis
of the manipulability ellipsoid onto (Pm−Pw) is maximized.

Fig. 4 Virtual destination is at the head, which is a cluster of feedback sensors



218 Z. Li et al.

Lemma 1. Given the inequality ‖Pw−Ps‖> ‖Pw−Pe‖, the major principle axis of
the manipulability ellipsoid is coplanar with plane S, defined by Pw, Pe and Ps, and
its magnitude σ1 is expressed as

σ1 =
√
λ1 =

√
((L2

ws +L2
we)+ (L2

ws+L2
we)c1)/2 (74)

c1 =
√

1− c2, c2 = 4L2
weL2

ws sin2ϕ/(L2
ws +L2

we)
2

(a) (b)

(c) (d)

Fig. 5 The new coordinate system composed of Pw, Pe, Ps and Pm. (a) Each element Ji in the
Jacobian matrix is defined with respect to the newly defined frame on the shoulder where the
x axis is defined as (Pw−Ps)/‖Pw−Ps‖ and the y axis sits on the plane S composed of Pw, Pe

and Ps. The new frame on the shoulder is defined for the convenience of the calculation. (b)
Manipulability ellipsoid at the wrist position. u1,u2 and u3 indicate the three principle axes
of the ellipsoid with magnitudes σ1,σ2 and σ3. (c) The direction of the largest manipulability
(i.e., vector u1) projected on the (Pm−Pw)/‖Pm−Pw‖ is marked as an arrow along (Pm−
Pw) and its magnitude can be represented as ‖u1‖cos(α)cos(β ). (d) It shows the specific
elbow position for the given wrist position that maximizes the manipulability projected on
the direction from the hand toward the virtual target. In this configuration, Pm,Ps,Pe and Pw

are on the same plane.
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Proof. As the human arm moves, the wrist position Pw and elbow position Pe change
and therefore a time-varying Plane ’S’ can be defined by three points Ps, Pe and Pw.
As shown in Figure 5(a), a frame attached to the time-varying Plane S, with its origin
located at Ps. The x-axis, denoted by ω1, is defined along the vector |Pw−Ps|, while
the z-axis, denoted by ω3, is orthogonal to the plane S’. Accordingly, the y-axis,
denoted by ω2 is within the time-varying Plane S. With Pe as the origin of the frame
of elbow flexion, θ4 represents the elbow flexion within the Plane S, with ω4 as the
axis to rotate about.

The relationship between the end-effector velocity Ṗ = [Ṗwx Ṗwy Ṗwz]
T and joint

velocity θ̇ = [θ̇1 θ̇2 θ̇3 θ̇4] is defined as:

Ṗ = Jθ̇ = [J1 J2 J3 J4]θ̇
= J1θ̇1 + J2θ̇2 + J3θ̇3 + J4θ̇4 (75)

Ji =

{
ωi× (Pw−Ps), i = 1,2,3
ωi× (Pw−Pe), i = 4

(76)

Note that J1 = ωi× (Pw−Ps) = x× (Ps−Pw) = 0. Therefore, we have

Ṗ = +J2θ̇2 + J3θ̇3 + J4θ̇4 (77)

With respect to the time-varying Plane S, the attached frame has its x-axis, y-axis,
and z-axis in a fixed direction, i.e., x = ω1 = [1,0,0]T , y = ω2 = [0,1,0]T and
z = ω3 = [0,0,1]T . ω4 is in parallel with ω3 and therefore we have ω4 = [0,0,1]T .
Using the cross product, the direction of Ji for i = 2,3,4 can be determined: J2 is
in the direction [0,0,−1]T ; J3 is in the direction [0,1,0]T ; the direction of J4 is per-
pendicular to Pw−Pe and ω4 and therefore in the Plane S, as shown in Figure 5(a).
Here, we define the angle between J3 and J4 as ϕ . Since all the ωis are unit vectors,
the magnitude of Ji can be determined:

||Ji||=
{||Pw−Ps||, i = 1,2,3
||Pw−Pe||, i = 4

(78)

Based on the above definitions, we can explicitly express each vector of the Jacobian
matrix with respect to the frame attached to Plane S:

J1 = [0,0,0]T (79)

J2 = ||Pw−Ps|| · [0,0,−1]T (80)

J3 = ||Pw−Ps|| · [0,1,0]T (81)

J4 = ||Pe−Ps|| · [−sinϕ ,cosϕ ,0]T (82)
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Thus, the Jacobian matrix is:

J =

⎛⎝0 0 0 −Lwe sinϕ
0 0 Lws Lwe cosϕ
0 −Lws 0 0

⎞⎠ (83)

where Lws = ||Pw−Ps|| and Lwe = ||Pe−Ps||.
By singular value decomposition, we can find J=UΣVT , where U= [u1,u2,u3]

T ,
Σ = diag(σ1,σ2,σ3) and V = [v1,v2,v3]

T . The vectors ui determine the direction of
principle axes of the manipulability ellipsoid, and σi determine the radii, as shown
in Figure 5(b). By resolving det(JJT −λ I) = 0, we can obtain σi =

√
λi. Based on

Sarrus’s rule, the eigen-values λi can be found as:

λ1,2 =
(L2

ws +L2
we)± (L2

ws+L2
we)c1

2
,(λ1 > λ2) (84)

λ3 = L2
ws (85)

with

c1 =
√

1− c2 (86)

c2 =
4L2

wsL
2
we sinϕ2

(L2
ws +L2

we)
2 (87)

Note that 0 < c1 < 1 and 0 < c2 < 1 and therefore λ1,2 are not complex numbers.
Knowing that λ1 > λ2, the following proof will show λ1 > λ3 and therefore the
eigen-vector u1 corresponding to λ1 is the longest eigen-vector.

case1: Lws ≥ Lwe

λ1−λ3 =
(L2

ws +L2
we)+ (L2

ws+L2
we)c1

2
−L2

ws

≥ (L2
we−L2

ws)+ (L2
ws+L2

we)cmin1

2

=
(L2

we−L2
ws)+ (L2

ws+L2
we)
√

1− cmax2

2

=
(L2

we−L2
ws)+

√
(L2

ws +L2
we)

2− 4L2
wsL2

we

2

=
(L2

we−L2
ws)+

√
(L2

ws−L2
we)

2

2
= 0 (88)

where cmin1 is the minimum of c1; cmax2 is the maximum of c2 and

cmax2 =
max(4L2

weL2
ws sin(ϕ)2)

(L2
ws +L2

we)
2 =

4L2
weL2

ws

(L2
ws +L2

we)
2 (89)
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case2: Lws < Lwe

λ1−λ3 =
(L2

ws +L2
we)+ (L2

ws +L2
we)c1

2
−L2

ws

≥ (1+ cmin1)(L2
ws +L2

we)

2
−L2

ws

≥ (L2
ws +L2

we)

2
−L2

ws

=
(L2

we−L2
ws)

2
≥ 0 (90)

λ1 > λ3 for all the possible Lws, corresponding to wrist positions for the reaching
movements of the human arm. Thus, we can conclude that the longest eigen-vector
of the manipulability ellipsoid is u1, corresponding to the largest eigen-value of

σ1 =
√
λ1 =

√
((L2

ws +L2
we)+ (L2

ws +L2
we)c1)/2 (91)

The direction of the longest eigen-vector can be found by:

(J ·JT )X = λX (92)

where X = [x1,x2,x3]
T .

(J ·JT )X =

⎛⎝ L2
we sinϕ2 −L2

we cosϕ sinϕ 0
−L2

we cosϕ sinϕ L2
ws +L2

we cosϕ2 0
0 0 L2

ws

⎞⎠⎛⎝x1

x2

x3

⎞⎠= λ1

⎛⎝x1

x2

x3

⎞⎠
(93)

Therefore

(L2
we sinϕ2−λ1)x1 = L2

we cosϕ sinϕx2

L2
we cosϕ sinϕx1 = (L2

ws +L2
we cosϕ2−λ1)x2

L2
wsx3 = λ1x3 (94)

For the solution, we have

x1 = x1

x2 = −λ1−L2
we sinϕ2

L2
we cosϕ sinϕ

x1

x3 = 0 (95)

Due to the joint limit, 0◦ < ϕ < 90◦. When ϕ = 0◦, the arm is fully extended and
therefore at its singular position; ϕ = 90◦ cannot be achieved since upper and the
lower arms can not fully overlap each other.
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Note that

λ1−L2
we sinϕ2 =

(L2
ws +L2

we)+ (L2
ws +L2

we)c1− 2L2
we sinϕ2

2

=

(L2
ws +L2

we)+ (L2
ws +L2

we)

√
1− 4L2

wsL2
we sinϕ2

(L2
ws+L2

we)
2 − 2L2

we sinϕ2

2

≥
(L2

ws +L2
we)+ (L2

ws +L2
we)

√
1− 4L2

wsL2
we

(L2
ws+L2

we)
2 − 2L2

we sinϕ2

2

=
(L2

ws +L2
we)+ ||L2

ws−L2
we||− 2L2

we sinϕ2

2

=
(L2

ws−L2
we)+ ||L2

ws−L2
we||+ 2L2

we cosϕ2

2

≥ 2L2
we cosϕ2

2
= L2

we cosϕ2 ≥ 0 (96)

With 0 < cosϕ ≤ 1 and 0≤ sinϕ < 1,

− λ1−L2
we sinϕ2

L2
we cosϕ sinϕ

x1 ≤− L2
we cosϕ2

L2
we cosϕ sinϕ

=− 1
tanϕ

< 0 (97)

The direction of u1 is as shown in Figure 5(c).

Optimization of Swivel Angle Using Movement Efficiency: The control of the
extra DOF in the human arm, specified by the swivel angle φ , can be optimized for
best movement efficiency. The proposed biologically-based hypothesis considers
the human head (particularly the position of human mouth) as the virtual target for
human arm movements. Thus, an optimum swivel angle can be determined such that
the projection of the major principle axis u1 on the vector Pm−Pw is maximized for
a given wrist position, since in the direction of the major principle axis, the Jacobian
matrix provides the most efficient mapping from joint space velocity to task space
velocity.

φ = argmax
α ,β∈[0 π/2]

[uT
1 (Pm−Pw)]

= argmax
α ,β∈[0 π/2]

[‖u1‖‖Pm−Pw‖cos(α)cos(β )] (98)

By Equation (98), the brute force method is used to explore all the possible swivel
angles for a wrist position, to determine the optimum swivel angle. Figure 5(c)
demonstrates the geometry of finding the projection of u1 on Pm−Pw. In Figure 5(c),
α denotes the angles between (Pm − Pw) and plane S; β denotes the angle be-
tween u1 and the projection of (Pm−Pw) onto S. The component of u1 projected
onto (Pm−Pw) is represented by ‖u1‖cos(α)cos(β ), marked by the green arrow.
It is expected that Equation (98) is maximized when α = 0◦, regardless of the
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β determined by the given wrist position; when α = 0◦, plane S is coplanar with
the plane composed by Pm, Ps and Pw, as shown in Figure 5(d). The optimum swivel
angle following the proposed hypothesis can be determined given the positions of
Pm, Pw and Ps. Define f = Pw−Pm and f

′
to be the projection of f on the direction of

Pw−P
′
c. Since f

′
is parallel to vector Pe(φ)−Pc when α = 0◦, the optimum swivel

angle is estimated as:

φkin = arctan2(n · (f′ ×u), f
′ ·u) (99)

This algorithm provides a real-time estimate of the swivel angle and therefore a
real-time solution to the inverse kinematics of the human arm. The performance of
the φest estimation has been evaluated in [24] and compared to a dynamic model
in [23]. This chapter intends to examine this algorithm (referred to as Criterion
I in the following section) in a more general experimental setup, in comparison
with another swivel angle estimation algorithm which addresses the effect of the
dynamics of the human arm.

3.2 Criterion II: Swivel Angle Estimation by a Dynamic
Constraint

According to [24], the biologically-based swivel angle estimation algorithm using
purely kinematic constraints can provide a good estimation. However, the effect of
dynamics on human arm movements cannot be underestimated. [23] integrates a
dynamic criterion in order to provide an improved estimation of swivel angles and
to reveal the effect of the dynamics on human arm movements. The dynamic cri-
terion, proposed in [21] and referred to as Criterion II in the following sections,
resolves the inverse kinematics by minimizing the magnitude of total work done by
joint torques for each time step. It has generated satisfactory predictions of the joint
space trajectory for the fundamental motions of the human arm, such as shoulder
adduction/abduction, shoulder flexion/extension, shoulder internal/external and el-
bow flexion/extension. Note that there exist other dynamic criteria which can also
be used to improve the estimation performance.

Optimization of Swivel Angles by Minimizing Work in Joint Space: For reach-
ing movements in a 3D workspace, the wrist position of the human arm can be
uniquely defined by three variables in the task space, while in the joint space there
are four joint angles (three for the shoulder motion and one for the elbow mo-
tion) available for configuration. Accordingly, the relationship between movements
and muscle forces in a musculoskeletal model is based on the four dynamic equa-
tions [21]:

T = MQ̈+C
(
Q, Q̇

)
+G(Q) (100)

In Equation (100), Q̈ = [q̈1, q̈2, q̈3, q̈4] and Q̇ = [q̇1, q̇2, q̇3, q̇4], where qi represents
the joint angle for the i-th DOF. M, C

(
Q, Q̇

)
and G(Q) represent the matrix of the
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moment of inertia, the centrifugal/coriolis forces and the gravity force respectively.
The external force is represented by E and this is regarded as zero in this paper
since the given task does not involve interacting with an external load. The active
and passive joint torque rendered by musculotendinous forces are represented by T .
The calculation of work in the joint space for each time step depends on (1) the joint
torques and (2) the difference in joint angles. Therefore, the work in the joint space
during the movement interval [tk, tk+1] can be computed for two different conditions.
The dynamic constraint adopted in this chapter is from the original work done by
[30]. Here, we briefly include the essential parts of the algorithm for the integrity of
the chapter.

if Ti,tk ·Ti,tk+1 > 0,

Wi =
(Ti,tk +Ti,tk+1) ·Δqi

2
(101)

where Ti,tk and Ti,tk+1 are the joint torques of the i-th joint at the time tk and tk+1.
Δqi = (qi,tk+1 − qi,tk) is the difference of the i-th joint angle during the time interval
[tk, tk+1].

When Ti,tk ·Ti,tk+1 < 0,

Wi =
(|Δqi|− hi) ·Ti,tk+1

2
− hi ·Ti,k

2
(102)

where hi = (|Ti,tk | · |Δqi|)/|Ti,tk+1 −Ti,tk | and denotes the difference of the i-th joint
angle from qi,tk to the value corresponding to zero crossing of joint torque.

To minimize the work done in joint space at each time step (E.g. |W |tk,tk+1 for
the time interval [tk, tk+1]), the swivel angle of the human arm for a specified wrist
position is optimized by the following cost function:

C = |W |tk,tk+1 =
4

∑
i=1
|Wi|tk ,tk+1 (103)

where |Wi|tk,tk+1 denotes the work done by the i-th joint.

4 Experiments

4.1 Experiment Setup

3D Spherical Workspace: A 3D spherical workspace is set up in order to examine
the swivel angle estimation performance of the above two criteria in more general
conditions. This spherical workspace, with its center denoted by the green point
in Figure 6, is calculated as a part of the surface of a virtual sphere. The calculated
target locations, denoted by blue marks, fall within a red circle, whose size is limited
by the width of the back frame of the experiment table. By varying the radius of the
virtual sphere, the spherical workspace can be resized, resulting in a new distribution
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(a) Simulation of a 3D spherical workspace. (b) Experimental setup.

Fig. 6 3D spherical workspace: (a) targets (shown as blues points) are arranged on the sur-
face of a virtual sphere, the center of which is shown as the green point; (b) the spherical
workspace is installed on the back frame of a table customized for reaching and grasping
experiments

(a) Top view (b) Front view

Fig. 7 Experiment setup for reaching movements in a 3D spherical workspace

of target locations and a different target density. The spherical workspace is installed
on the back frame of an experiment table customized for reaching and grasping
experiments.

To maximize the use of the back frame of the experiment table, this experiment
allocates the radius of the virtual sphere to be slightly larger than the width of the
back frame. The origin of the virtual sphere (as well as the shoulder of the subject)
is equidistant between the left and right boundaries of the frame (Figure 7(a)). With
an adjustable chair, the right shoulder of a subject can be aligned at the height of the
center of the virtual sphere. As shown in Figure 7(b), the center of the virtual sphere
and the shoulder of the subject overlap in the front view.
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Fig. 8 Targets involved in reaching experiments, marked by green circles

The spherical workspace is evenly discritized and 44 targets are allocated with the
same interval in both the vertical direction (i.e. along the z-axis) and the horizontal
direction (i.e. along the x-axis). Each target is numbered by its row and column.

Subjects: This experiment involves five healthy volunteer right-handed subjects
(three males and two females; age range 22-38 years old; average age 28 years
old) without any clinical symptoms or any history of motor, sensory or neurological
disorders. The subjects are naive as to the purpose the experiment, and are only
instructed to perform point to point reaching movements in a naturally self-paced
way.

Experiment Protocol: In this experiment, subjects are expected to conduct eight
sessions of reaching movements with their right arms. The targets involved in this
experiment are 25, 33, 38, 52, 59, 83, 88, and 96, as shown in Figure 8. Each of the
eight sessions chooses an involved target to be the destination (i.e. the end target) of
the reaching movements for the whole session. In each session, a subject iteratively
starts from one of all the other involved targets and reaches to the end target of that
session, according to the trial sequence denoted in Equation (104). Each session
consists of five repetitions of seven different reaching movements (35 trials in total).

5 repeats×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Session 1 : 33→ 25, 38→ 25, 52→ 25, 59→ 25, 83→ 25, 88→ 25, 96→ 25
Session 2 : 25→ 33, 38→ 33, 52→ 33, 59→ 33, 83→ 33, 88→ 33, 96→ 33
Session 3 : 25→ 38, 33→ 38, 52→ 38, 59→ 38, 83→ 38, 88→ 38, 96→ 38
Session 4 : 25→ 52, 33→ 52, 38→ 52, 59→ 52, 83→ 52, 88→ 52, 96→ 52
Session 5 : 25→ 59, 33→ 59, 38→ 59, 52→ 59, 83→ 59, 88→ 59, 96→ 59
Session 6 : 25→ 83, 33→ 83, 38→ 83, 52→ 83, 59→ 83, 88→ 83, 96→ 83
Session 7 : 25→ 88, 33→ 88, 38→ 88, 52→ 88, 59→ 88, 83→ 88, 96→ 88
Session 8 : 25→ 96, 33→ 96, 38→ 96, 52→ 96, 59→ 96, 83→ 96, 88→ 96

(104)
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During the experiment, a subject sits in a chair with a straight back support. The
placement of the chair enables the subject to point at the targets with comfort and
with his/her elbow flexed to roughly 90◦ (as shown in Figure 6(b)). The height of
the chair is adjustable such that the right shoulder of the subject is aligned with the
height of the center of the spherical workspace. The right arm is free for pointing
movements, but the body of the subject is bounded to the chair back, in order to
minimize shoulder displacement. During the pointing movements, the subject is
asked to keep the pointing finger in line with the forearm to minimize wrist flexion.

The subjects are instructed to point with the tip of the index finger at their own
paces. At the beginning of each trial, a subject is informed of the targets that the
trajectory starts with and ends at, i.e., the start target and end target. After receiving
a ”start” command, the subject points his/her index finger from the start target to the
end target.

A motion capture system records an individual file for each trial, starting from the
time when the subject puts his/her index finger on the start target and ending after
the index finger becomes steady at the end target. To avoid the effect of fatigue, the
subject can take a rest after completing each session and can take a rest during a
session if he/she feels like it.

5 Results and Discussion

This section presents the results of the swivel angle estimation based on different
criteria, and compares them with the measurements of swivel angles from the reach-
ing experiment. The performance of different swivel angle estimation algorithms is
evaluated and compared using their estimation errors at targets and during move-
ments.

Figure 9 provides an example of the swivel angle profiles of a subject reaching
between two targets: moving forward from Target 1 to Target 7, and moving back-
ward from Target 7 to Target 1. Note that when the measured swivel angle (the blue
lines in Figure 9), which denotes the arm postures of the subject in the experiment,
is approximately symmetric for moving forward and backward between the two tar-
gets. This symmetry of the arm postures is better addressed in the swivel estimation
by Criterion I (the green lines), than that by Criterion II.

Section 5.1 examines the swivel angle profiles of all the trials for each subject.
The experimentally measured swivel angle demonstrates posture consistency for
each individual subject, i.e. the same subject tends to use the same arm posture
(measured by the swivel angle) to reach for a target, regardless of whether the sub-
ject is moving toward or moving away from the target. In addition, reaching move-
ments are symmetric when comparing the profiles of measured swivel angles for
the reaching movements between the same two targets and in opposite directions.
The posture consistency and trajectory symmetry are related. Particularly, the pos-
ture consistency is an important characteristic of human arm movements, such that
the swivel angle estimation of a good control strategy for human arm movements
should be able to address it.
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(a) From Target 1 to Target 7 (b) From Target 7 to Target 1

(c) From Target 1 to Target 7 (d) From Target 7 to Target 1

Fig. 9 Figure 9(a) and Figure 9(b) show the experimentally measured swivel angle profiles
and the estimated swivel angle profiles by different criteria; Figure 9(c) and Figure 9(d) are
the profiles of joint angles correspondingly. In all the figures, the blue lines are the measured
swivel angle profiles, the green lines are the profiles of the swivel angle estimated based on
criterion I (the efficiency of arm movement), and the red lines are the profiles of swivel angle
estimated based criterion II (minimizing work in the joint space).

5.1 Posture Consistency in Human Arm Movements

Posture Consistency: The Regularity in Human Arm Movements: Posture con-
sistency is an interesting characteristic of human arm movements. Without any spe-
cific instructions or manipulation intentions, a subject moving his/her arm in free
space tends to use the same arm posture to reach the same position, regardless of
whether the subject is moving toward or away from the target.

Posture consistency is important because it implies that for reaching movements
in a free space, a unique redundancy resolution corresponding to a unique arm pos-
ture is associated with each wrist position. Among all the hypotheses of control
strategies for human arm movements, a control strategy that addresses posture con-
sistency can be systematically adjusted to achieve improved estimation accuracy,
while control strategies that do not address posture consistency may not represent
the characteristics of human arm movements.
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To study the arm postures at each target, we define the swivel angle that a subject
takes when he/she moves away from the target as the ”start posture”, and the swivel
angle that a subject takes when he/she moves toward the target as the ”end posture”.
Figure 10 presents the statistics of target postures for each subject, showing that at
each target the start and the end postures are very close to each other.

Figure 11 shows the statistics of averaged posture differences measured during
the experiment for each subject. The averaged posture difference ‖φstart − φend‖
is computed for each involved target, as the difference between the averaged start

(a) Subject 1. (b) Subject 2.

(c) Subject 3. (d) Subject 4.

(e) Subject 5.

Fig. 10 Swivel angle difference between the start and the end postures
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Fig. 11 Posture consistency measured in the experiments. Each subject had a median aver-
age posture difference of less than 5◦ across all targets, and the maximum average posture
difference was less than 10◦ for any target.

Fig. 12 Posture consistency by Criterion I. Each subject had a median average posture dif-
ference of less than 3◦ across all targets, and the maximum average posture difference was
less than 5◦ for any target.

posture at a target and the averaged end posture at the same target. As shown in
Figure 11, all subjects have a median of the averaged posture difference (across all
targets) of less than 5◦, and the maximum of the averaged posture difference for any
target was less than 10◦.

The average posture difference can also be calculated for the estimated target
postures according to the different estimation criteria. The average predicted posture
differences for each subject are generally smaller in Figure 12 than in Figure 13. It
can be concluded that posture consistency is addressed better by Criterion I than by
Criterion II. Under Criterion I all subjects have a median of the averaged posture
difference less than 3◦, and the maximum of the averaged posture difference across
all subjects is less than 5◦, while using Criterion II all subjects have a median of the
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Fig. 13 Posture consistency by Criterion II. Each subject had a median average posture dif-
ference of less than 15◦ across all targets, and the maximum average posture difference was
less than 35◦ for any target.

averaged posture difference less than 15◦, and the maximum of the averaged posture
difference is less than 35◦. Criterion I has a better performance than Criterion II on
posture consistency.

Analysis of Systematic Errors in Swivel Angle Estimation: Figure 14 demon-
strates the systematic error in swivel angle estimation by different criteria, and for
start and the end posture, respectively. φexp is the average swivel angle measured
in the experiment, while φest and φdyna are the average swivel angle estimated by
Criterion I and Criterion II, respectively. Note that the perfect posture consistency
demonstrated in Figure 14(b) is because Criterion II intentionally uses the measured
swivel angle as the initial value to start its estimation.

Both Figure 14(a) and Figure 14(c) show that the systematic error of swivel an-
gle estimation based on Criterion I can be related to the horizontal position of tar-
gets with respect to shoulder location. In general, Criterion I tends to overestimate
the swivel angle and therefore expects higher elbow position than the experimen-
tal measurements; however, given targets of the same height, the overestimation is
more significant for targets to the left of the shoulder than for the targets to the right
of the shoulder. Note that in the workspace, target 3, 5 and 7 (called ”right targets”)
are to the right of shoulder, target 2, 4, 6 (called ”left targets”) are to the left of
shoulder, and target 1 and 8 (called ”middle targets”) are aligned with the shoulder.
The systematic overestimation related to the horizontal position of the targets can be
found by comparing target postures at the left target and at right target of the same
height in pairs (e.g., target 2 VS target 3, target 4 VS target 5; and target 6 VS target
7). Note that the arm postures at target 1 are more overestimated than at target 8.

The systematic estimation error of Criterion I may be explained by the following
fact: when reaching to the targets to the right of shoulder, the right arm moves in
free space and therefore the effect of gravity is more significant, while reaching to
the targets to the left of the shoulder, the movements of right arm will be blocked
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(a) Criterion I: start posture. (b) Criterion II: start posture.

(c) Criterion I: end posture. (d) Criterion II: end posture.

Fig. 14 Systematic error in swivel angle estimation for different criteria

by the torso and the lap. The effect of gravity is partially countered by the force
produced by joint limits and workspace constraints.

In general, Criterion II tends to underestimate the swivel angle and expect lower
elbow positions compared to those measured in the experiments. Figure 14(d) shows
that the underestimation of swivel angles is related to the heights of targets with
respect to the height of the shoulder, targets 1, 2, and 3 (called ”higher targets”)
are above the shoulder, targets 6, 7, and 8 (called ”lower targets”) are below the
shoulder, and targets 4 and 5 (called ”middle targets”) are aligned at the same height
as the shoulder. In Figure 14(d), it is shown that the swivel angles at the higher
targets and middle target 4 are more underestimated, while the lower targets and
middle target 5 may be slightly underestimated, with the estimated swivel angles
close to measured swivel angles.

5.2 Estimation Error during Reaching Movements

As noted in the experimental protocol, each subject conducted five repeats of each
trajectory (i.e. reaching movements starting from the same target and ending at the
same target). The estimation performance of different criteria are further evaluated
by the standard deviation of estimation errors during the movements.
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(a) Good swivel angle estimation. (b) Bad swivel angle estimation.

Fig. 15 Example of the different performance of swivel angle estimation. pTJ is calculated
by first-order regression to represent how well the estimated swivel angle fits the measured
swivel angle along a trajectory. In (a) PTJ = 0.92, indicating the estimated swivel angle fits
the measured swivel angle well; in (b) PTJ = −0.66, indicating the estimated swivel angle
does not fit the measured swivel angle.

Figure 15 shows examples of evaluating the performance of a criterion on the
swivel angle estimation along a trajectory. For different trajectories created by the
same subject, the same criterion may produce swivel angle estimations that are bet-
ter for some trajectories than for others. The evaluation of estimation performance
is conducted by linear regression of the estimated swivel angle versus the measured
swivel angle along a trajectory. The slope of linear regression (pTJ) shows how
much the estimated swivel angle fits the measured swivel angle. In the best case, the
slope of linear regression is supposed to be 1, indicating that the estimated swivel
angle fits the measured swivel angle all along the trajectory.

As shown in Figure 16, all the trajectories of reaching movements are further
categorized by the slope pT J of the first order regression of the measured swivel
angles with respect to the estimated swivel angles along a trajectory. In Figure 16,
the targets are numbered in sequence and trajectories are denoted by colored vectors:
trajectories with pTJ <−0.6 are in red; trajectories with pTJ > 0.6 are in green; and
trajectories with 0.6 < pT J < 0.6 are in yellow. The estimation performance at each
target, measured by MEANTarget and calculated by averaging the absolute values of
the estimation errors at a target, are also categorized and marked by different colors.

The targets with MEANTarget < 10◦ are green, the targets with MEANTarget > 20◦
are red, and the targets with 10◦ < MEANTarget < 20◦ are yellow. By comparing the
estimation performance of the two criteria, it can be found that Criterion II outper-
forms Criterion I, indicating that the control strategy for human arm movements
has is linked to energy, which is mostly related to the effect of gravity. Therefore,
a pure kinematic model such as Criterion I can not estimate the swivel angle very
well by itself. On the other hand, the estimation performance of Criterion I shows
the blocking effect of the human body on human arm movements, particularly for
the trajectories with poor swivel angle estimation (the cluster on the left side of the
workspace, mostly related to Target 4). (Note that when reaching to Target 4, the
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(a) Subject 1. (b) Subject 1.

(c) Subject 3. (d) Subject 4.

(e) Subject 5.

Fig. 16 Criterion I: categorization of reaching movement trajectories by estimation per-
formance. The performance of estimation is evaluated by the slope pTJ of the first
order regression between measured swivel angles and estimated swivel angles along a tra-
jectory. Colored vectors connecting targets denote the corresponding trajectories of move-
ments: trajectories with pT J < −0.6 are in red; trajectories with pT J > 0.6 are in green;
and trajectories with 0.6 < pTJ < 0.6 are in yellow. The estimation performance at each
target, measured by MEANTarget and calculated by averaging the absolute values of estima-
tion errors at a target, are also categorized and marked by different colors: the targets with
MEANTarget < 10◦ are green, the targets with MEANTarget > 20◦ are red, and the targets with
10◦ < MEANTarget < 20◦ are yellow.
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(a) Subject 1. (b) Subject 1.

(c) Subject 3. (d) Subject 4.

(e) Subject 5.

Fig. 17 (Continue Figure 16) Criterion II: categorization of reaching movement trajectories
by estimation performance

right human arm is blocked by torso to the largest extent.) The estimation perfor-
mance of Criterion I also demonstrates the effect of gravity, since the poor estima-
tion of target posture happens for the lower targets on the right of the workspace (i.e.
Target 5 and Target 7). There, the human arm moves in free space, and the measured
swivel angles are much lower than the estimated swivel angles.
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Comparing Figure 16 and Figure 17, Criterion II demonstrates a better perfor-
mance for the estimation of arm postures at targets and along trajectories. This ex-
perimental result may seem to contradict the results of [23], in which Criterion I
provided a better swivel angle estimation than Criterion II. However, this appar-
ent contradiction can be explained by the difference in the experimental protocol.
In [23], the targets are on the surface of the table and on frames, and the subjects are
asked to touch the targets slightly with their hands. During the experiments, subjects
touched the targets with the finger pads of the three middle fingers. The orientation
of the hand affected the elbow position and resulted in a larger swivel angle. In addi-
tion to the hand orientation, the subjects avoided collision with the table surface and
therefore chose higher elbow positions unconsciously. In addition, note that under
Criterion II, the swivel angle estimation algorithm takes the measured swivel angle
at the start target as an initial condition, which contributes to a higher performance
of swivel angle estimation for the whole trajectory. At the same time, Criterion I
estimates the initial swivel angle and does not require measuring the initial swivel
angle.

6 Conclusion

Posture consistency is an important characteristic of human arm movements. With-
out intent to manipulate, a subject tends to use the same arm posture to reach the
same target in a 3D free space, regardless of whether the subject is moving toward
or moving away from the target. This regularity in human arm movements, previ-
ously revealed by Donders’ law, is confirmed by the experimental data presented in
this chapter. The subjects involved in the reaching experiments have their posture
difference median at the targets smaller than 5◦, and posture difference maximum
across all the targets less than 10◦. This posture consistency implies that given the
kinematic redundancy in the human arm, human motor control chooses a unique
arm posture associated with a 3D hand position.

Previously proposed control strategies for controlling the redundant degree of
freedom provide different predictions of the arm postures corresponding to the same
wrist position in a 3D space. This chapter examined the arm posture predictions of
two control strategies: one that maximizes the movement efficiency towards the
head, particularly toward the mouth (Criterion I); and the other that minimizes the
energy consumption in joint space at each time step (Criterion II). The predictions
of arm postures by the two control strategies are compared and the prediction er-
rors for each control strategy are analyzed: posture consistency is a better addressed
by Criterion I, while Criterion II has smaller estimation error along the arm move-
ment trajectories and therefore demonstrates better performance when predicting
the ”movement trend”. Further work will evaluate arm posture predictions based
on other criteria or based on their combinations to achieve improved arm posture
predictions.
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