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Chapter 8 
Vision Based SLAM in Mobile Robots* 

Abstract. This chapter is an extension of the previous chapter and it discusses 
how the previously discussed concept of SLAM for mobile robots can be actually 
implemented in real-life in an indoor environment. The system developed employs 
a two camera based vision system which successfully performs image feature 
identification and tracking.  

8.1   Introduction 

As mentioned in the previous chapter, the extended Kalman filter (EKF) based 
approach has been widely regarded as probably the most suitable approach for 
solving the simultaneous localization and mapping (SLAM) problem for mobile 
robots [1-7]. The basic strength of EKF in solving the SLAM problem lies in its 
iterative approach of determining the estimation and hence building of an 
augmented map of its surrounding environment through which the robot is 
directed to navigate through some waypoints. Here we assume that both the initial 
localization of the robot pose and the map to be built is unknown to us and we 
gradually build the map by considering it as an augmentation of estimated states, 
which are nothing but a collection of the positions of the features or landmarks in 
the environment, along with the robot’s pose. The estimations of these states are 
integrally associated with some uncertainties in these estimates and they are stored 
in the form of error covariance matrices. This EKF based SLAM algorithm has 
been discussed in detail in the previous chapter. In this chapter we shall now 
discuss how SLAM can be implemented in mobile robots employing vision based 
sensing.  

It is also well regarded that the real implementation of SLAM algorithm for 
practical environments to build meaningful maps is a difficult task. The accuracy 
of such a system largely depends on the sensors employed. As we already know, 
the wheel sensors suffer from wheel-slippage, sonar sensors are low resolution, 
not highly accurate systems, which also suffer from environmental disturbances, 
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infra red sensors can only be employed for short distances, laser range finders are 
expensive and slow in operation due to low update rate and the performance of 
GPS can suffer due to occlusion of line-of-sight to satellites and their accuracy 
and update rate may be slow. Hence, solid-state cameras and computers have 
emerged in recent times as an attractive, feasible, real-time solution for building 
such robot localization systems [3, 5]. They can also provide comparatively 
cheaper solution and they can provide great flexibility in interpreting the 
environment through which a robotic platform is needed to navigate. However, till 
date, not many works have been reported utilizing vision sensing based SLAM 
algorithms. The primary reason for that can be that the development of such 
systems and to make them meaningfully accurate in real-life is essentially a 
difficult task. 

The present chapter will give a detail description of a successful real-life 
implementation of SLAM algorithm for map development in an indoor 
environment [15], utilizing a popular differential drive mobile robot, called 
KOALA robot, which has also been described in previous chapters. An important 
highlighting feature of the developed scheme is that this stand-alone system 
utilizes a computer vision based sensing system for building the map. A two-
camera based vision system is utilized to perform feature identification, in frames 
grabbed, and track these features in subsequent frames. Such a system is essential 
for scene identification and obstacle recognition for a vision-based system that 
helps in developing suitable navigational algorithms, performing obstacle 
avoidance and/or developing a map of the environment where the robot is 
intended to carry out the navigation job. The feature tracking approach is based on 
minimization of the sum of squared intensity differences between the past and the 
current window, which determines whether a current window is a warped version 
of the past window. The system is also equipped with the 3D distance calculation 
module of the landmarks from the robot frame, which enables to determine the 
map of the location, storing current localization of the robot along with the co-
ordinates of the landmarks in the map. The system has been implemented in real-
life in our laboratory for waypoint-directed map development and the system 
could demonstrate high accuracy in map development in such indoor 
environments. 

8.2   The Dynamic State Model for the Differential Drive Koala 
Robot 

The details of the EKF based SLAM algorithm were already presented in section 
7.2. Now, to adapt this theory in the context of the KOALA robot, at first, the 
dynamic model is developed for the differential-drive based KOALA robot in this 
section. This can also be logically extended to other similar types of mobile robots 
too. Here, there are two independent variables governing motion of the vehicle  
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i.e. rotation of the left wheel of the motor and rotation of the right wheel of the 
motor. However, we consider two derived variables as primary variables and these 
are (i) linear translation of the geometric center of the robot and (ii) its rotation 
around the vertical axis through the geometric center. The rationale behind this 
domain changeover is because of the reason that an error is introduced if we 
choose ‘rotation’ as a variable, because of the severe deformation of tier during 
rotation. Such a problem will not arise in case of linear, translational motion, 
where the sources of errors or uncertainties are different e.g. incorrect calibration 
of wheel encoder, small slippage in wheel rotation etc. Here we assume that the 
robot will never be subjected to simultaneous commands of rotational motion and 
translational motion.  

Fig. 8.1. Schematic of the KOALA robot movement 

While developing the model, we should keep in mind that the robot always 
moves along a circular arc. The curvature is zero for linear, translational motion 
and the radius of curvature is zero for pure rotation. Figure 8.1 shows the 
schematic of a robot movement. Here 

sCBA =


                                                (8.1) 
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(8.2) and (8.3) enable us to obtain s and θ directly from the readings of the wheel 

encoders. Hence we obtain, 
θ

= s
r  and 

2
2

θ= sinrAC . Then AC can be 

decomposed into its x- and y-components, when the initial pose φ of the robot is 
known. Therefore we have: 
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The development of such a model gives rise to a logical problem under those 

situations when θ → 0°, because then ∞→
θ

= s
r . Hence, for θ < 5°, it is 

assumed that sAC = . Now, for D amount of linear displacement and θ amount 
of rotation of the KOALA robot, the dynamic model can be finalized using the 
following formulae: 
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Hence the Jacobians and the covariance matrix will be calculated as: 
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In our SLAM algorithm, the “observe” step is carried out using vision sensing. 
The basic version of the KOALA robot is originally procured with some built-in 
sensors, e.g. incremental wheel encoders and infrared (IR) sensors, and it has been 
later integrated with several accessories e.g. ultrasonic sensors, wireless radio 
modem, sensor scanning-tilt-pan system, vision system, servo motors for 
controlling four degrees of freedom, computing platform etc. All the integrations 
have been carried out in-house in our laboratory. Figure 8.2 shows the KOALA 
robot in its integrated form, used specifically for the purpose of performing vision 
based SLAM. 

         (a)                                                                 (b) 

Fig. 8.2. KOALA mobile robot, original procured with some built-in sensors, and later 
integrated in our laboratory with several accessories 

The vision-based sensing employs two webcams, as shown in Fig. 8.2(a), for 
real-life implementation, where the main objective is to implement a two camera 
based vision system for image feature selection, tracking of the selected features 
and the calculation of 3D distance of the selected features [16]. This feature 
identification is based on selection of suitable, candidate image patches or 
windows in captured frames from running videos acquired from each camera, that 
have high potential of tracking in subsequent frames. In real life, image patches 
having high edge information content are better candidates for tracking and hence 
such patches (considered as static in our system) are considered the best candidate 
landmarks for developing subsequent maps. The computation of correspondences 
between features in different views (for our system, the left snap and the right 
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snap i.e. the frames grabbed from the left camera and the right camera) is a 
necessary precondition to obtain depth information. The system first performs a 
feature identification algorithm in the frame grabbed from the left camera to 
identify some suitable rectangular patches or windows that are most suitable as 
trackable features (patches with sufficient texture) and then it attempts to track 
them in the frame grabbed from the right camera. The inspiration for developing 
such a image tracking system is obtained from the Kanade-Lucas-Tomasi (KLT) 
Tracker [10, 13]. It is always preferable to track a window or patch of image 
pixels instead of a single pixel because it is almost impossible to track a single 
pixel, unless it has a very distinctive brightness with respect to all its neighbors. At 
the same time the result can be confusing, because the intensity value of the pixel 
can also change due to noise. Hence N number of feature windows is selected, 
based on the intensity profile, by maintaining a minimum distance between the 
features in an image frame. For an image f(x, y), a two dimensional function, its 
gradient is a vector and the gradient of each window G is calculated along x-
direction and y-direction as:  
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The suitability of the choice of a window as a feature window is evaluated by 
computing the eigenvalues λ1 and λ2 of its G matrix and a feature window is 
accepted if 

 min (λ1, λ2) > λ                                            (8.9) 

where λ is a predefined threshold [14]. Two small eigenvalues mean a roughly 
constant intensity profile within the window. A large and a small eigenvalue 
correspond to a unidirectional texture pattern. On the other hand two large 
eigenvalues represent the corners or salt and pepper type texture [11][16].  

Once the features are selected, the next job is to follow or track these features 
from one frame to another frame in an image sequence [11-13]. Similar to [11], 
we compute the displacement dp = [dxp dyp]T of the center of a feature window 
that minimizes the sum of the squared difference in image intensities  between the 
windows of the two image frames under consideration. In case of the small inter-
frame motion, the motion of the features within two image frames can be 
approximated sufficiently accurately by a pure translation model. However, for 
bigger inter-frame motions, an affine model, comprising linear warping combined 
with pure translation, is known to provide better models. Here, the quality of the 
feature monitored during tracking is better with a dissimilarity measure that 
includes a deformation matrix that represents the linear warping based affine 
motion model as well as translations of feature within the frame. The point motion 
in the image can be described by 

 J(Axp + dp) = I(xp)                                          (8.10) 
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where, J is the current image, I is the original image, A = 1+D (1 is a 2x2 identity 
matrix and D is the deformation matrix) and dp is the translation vector.  Hence 
the dissimilarity can be computed utilizing w(xp), a weighting function (popularly 
chosen as unity or a  Gaussian function to emphasize the central portion of the 
window) as [11] 

 ε = 
W

[J(Axp + dp) – I(xp)]2 w(xp)dxp                            (8.11) 

The Newton-Raphson minimization between image intensities of two windows is 
employed to search for the new position of the center point of a feature window in 
a new frame in an iterative manner. The following system is needed to be solved 
to obtain dp: 

 Gdp=e                                                         (8.12) 

where ( )= dawTggG  ; G = second order weighted coefficient matrix (2×2),  

e = weighted intensity error vector (2×1)  ( e = (
W

(I – J) gwda), dp = displacement 

vector (2×1) (dp = [dxp dyp]T), and g = Gradient vector (2×1)  
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This iterative algorithm solves (8.12) by solving, in each iteration, for 
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image, where we are trying to perform the tracking, in that iteration, as xp_tracked = 
xp_tracked + dxp;   yp_tracked = yp_tracked + dyp.  

The 3D distance of the tracked landmarks can be obtained on the basis of data 
available about the geometry of the camera and the head used [3], [9], [14]. To get 
depth information in stereo vision, it is required that two lines of sight for the two 
cameras intersect at a scene point P and from this information the three-
dimensional coordinates of the observed scene point in the world co-ordinate 
system (WCS) can be obtained. Our distance calculation module is based on the 
pin-hole camera model used in Andrew J. Davison’s work [3]. It makes use of the 
well known camera calibration matrix and perspective projection equation and 
utilizes the “Midpoint of Closest Approach”. Figure 8.3 shows a front view of the 
active head designed and implemented in our laboratory where H = the vertical 
distance of the head center above the ground plane, I = the horizontal distance 
between the left and the right vergence axes, and c = the offset along either 
vergence axis between the intersections with the elevation axis and the camera 
optic axis. 
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Fig. 8.3. Front view of the active head designed in our laboratory with sensor-scanning-
pan-tilt system, two webcams and four servo motors for individual control of four degrees 
of freedom (pan control, tilt control, left vergence control and right vergence control) 

Once new landmarks or image patches are identified and tracked between left 
and right camera images they can be initialized in the map utilizing the usual 
procedure of new landmark initialization in our EKF-based SLAM algorithm. 
Similarly, identification and tracking of image patch(es) in left and right camera 
images, which was(were) also previously identified in images acquired for a past 
position of the robot, will constitute the re-observation step of our EKF-based 
SLAM algorithm. In this step, where the estimated position of this landmark is 
calculated according to the usual “Predict” step of the Kalman filter, it is further 
refined by performing the corresponding “Observe and Update” step of the 
Kalman filter algorithm.   

The steps followed for this vision-sensing based real-life implementation of 
EKF-SLAM algorithm is shown in Algo. 8.1. Here it can be seen that the robot is 
asked to move through some waypoints and it is directed to build a map of its 
surrounding. To perform this function, the robot is moved by a specified distance 
and it grabs several image frames to perform landmark observation as well as its 
own localization simultaneously. To build a map for both environment ahead of 
the robot, environment to its left and environment to its right, it is taking image 
shots both for 0° angular position of the pan-angle, for +θ° angular position of 
pan-angle and for -θ° angular position of pan-angle. Hence during the “observe” 



8.4   Real-Life Performance Evaluation 215
 

step of the EKF the robot identifies and acquires feature(s)/landmarks(s) from 
environment straight ahead of it, from environment to its left and from 
environment to its right. This procedure of moving the robot ahead, performing 
the “predict” step, using vision sensors in several pan directions to acquire and 
track landmarks, and to perform “correct and update” step of EKF algorithm is 
performed in an iterative fashion, until the last waypoint is reached. The map built 
in the last iteration is utilized as the final map built by the robot, to be used for 
some future tasks in the same environment. 

 

Step 1. Specify the waypoints through which the robot should navigate and 
initialize the robot pose. 

Step 2. Move the robot by a specified amount and perform the “predict” step of 
EKF. 

Step 3. Grab image frames from continuously running video sequences in left and 
right camera, for 0° angular position of the pan-angle, and perform 
feature identification, tracking and distance calculation of the tracked 
feature(s) from the robot. 

Step 4.  Repeat Step 3 for +θ° angular position of pan-angle. 
Step 5. Repeat Step 3 for -θ° angular position of pan-angle. 
Step 6. For new feature(s)/landmark(s) observed in step 3 - step 5, initialize them 

in the map. 
Step 7. For those feature(s)/landmark(s) observed in step 3 - step 5, which were 

observed earlier, perform the usual “observe and update” step of EKF, to 
refine the map already built. 

Step 8. Perform step 2 – step 7 until the robot reaches the last waypoint specified.  
Step 9. Store the last map built by the robot as the final map built for the 

environment. 

Algo. 8.1. The Real EKF-based SLAM algorithm implemented for the KOALA robot, 
using vision sensors, in an indoor environment (in our laboratory) 

8.4   Real-Life Performance Evaluation 

As we have mentioned previously, the KOALA robot is a 32 cm x 32 cm, six 
wheeled, and differential drive vehicle manufactured by K-team, Switzerland. It 
has already been mentioned that in KOALA, the hardware control is performed by 
an on- board microprocessor (16MHz Motorola 68331@ 22MHz) [8]. To add the 
four degrees of freedom to the robot system for pan, tilt, left vergence and right 
vergence control, we have developed a PIC 16F876A micro-controller based 
system that, in interrupt-driven mode, works in conjunction with the Motorola 
processor of the KOALA robot, in master-slave configuration. The development 
of such a PIC micro-controller based system for interfacing external add-on 
peripherals with a real mobile robot, is really helpful for adding flexibility for real 
life applications and this development was discussed in detail in chapter 2.  
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Fig. 8.4. The environment created through which the robot navigates and performs EKF-
SLAM algorithm 

Figure 8.4 shows the indoor environment created through which the robot is 
asked to navigate through several specified waypoints and build a map performing 
vision-based SLAM algorithm. To judge the performance of the system, a grid 
containing 100 squares was drawn on the maze with each square having a 
dimension of 20 cm × 20 cm i.e. a navigation domain of dimension 2 m × 2 m was 
explored. 

Figure 8.5 shows the GUI-based software developed in our laboratory for real-
life execution of the EKF-SLAM algorithm. Different frames in Fig. 8.5 show the 
landmarks identified during several iterations for incremental map building 
employing the EKF-SLAM algorithm and incorporation of these landmarks in the 
stored map. The “green line” shows the ideal path joining the waypoints through 
which the robot is asked to navigate. The “light blue triangle” represents the 
initial, starting pose of the robot and, as can be seen in Fig. 8.4, this initial pose for 
our implementation is considered as: ( ) ( )TT

xz 00100 ,,,, −=φ . For this real-

life implementation here, the notations z, x and φ are chosen in conformation with 
the notations used in [3] and hence the z-direction and x-direction correspond to 
the x-direction and y-direction respectively, as specified in our theories before. 
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During its navigation, the robot identifies landmarks in its surrounding 
environment and initializes their positions or refines their positions in the map. As 
the robot keeps moving forward, the number of landmarks identified, and hence, 
the size of the map, increases. The “red crosses” in the map show the 2D positions 
of the landmarks identified. Figure 8.5(d) shows the final map constructed at the 
end of the test-run of the KOALA robot.  

 
 
 
 
 
 

 

 
 

                              (a)                                                                 (b) 
 
 

 

 

 

 

                             (c)                                                                  (d) 

Fig. 8.5. Real-life landmark identification for map building in different steps of EKF-
SLAM algorithm 

Figure 8.6 shows the GUI-based form developed for capturing image frames in 
real-life, for some representative positions of the KOALA robot and 
demonstrating the performance of feature extraction and tracking algorithm, for 
meaningful identification of landmarks. The image patches identified in “red 
squares” are identified as new potential landmarks and the image patches 
identified in “green squares” are identified as re-observed landmarks. The form 
also displays the 3D distance calculated for each landmark tracked, from the robot.  
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               (c)                                                                    (d) 

Fig. 8.6. Sample examples of results of feature extraction, feature tracking and 3D distance 
calculation of the tracked features from the robot, for some representative positions of the 
KOALA robot, during its test run in the environment 
 

 
Figure 8.7 shows three sample situations of identifying and tracking 

features/landmarks in real environments. The “green line” on the maze and in 
vertical direction and the “red dots” help in pointing the actual landmark in the 
environment and in obtaining its true position. The hollow circle drawn in “light 
blue” shows the actual object corresponding to an image patch identified in the 
environment. The estimated positions of these landmarks in the map built, shown 
earlier in Fig. 8.5, show that there are small discrepancies between the true 2D 
positions and the estimated 2D positions for most of the landmarks in the map. 
However this is always understandable and can be appreciated for real-life 
experimentations. Table 8.1 shows these true and estimated positions, for the three 
sample landmarks under consideration, as shown in Fig. 8.7. 
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                     (c)                                                                (d) 

Fig. 8.7. Three sample situations of identifying and tracking landmarks in real 
environments 
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                          (e)                                                                (f) 

Fig. 8.7. (continued) 

Table 8.1. Performance comparison of the EKF-SLAM algorithm employing vision 
sensing, for three sample real-life landmarks, as shown in Fig. 8.7 

Sl. 
No. 

Landmark 
Description 

Estimated Position 
(cm) 

 True Position (cm)  

  z-coordinate x- coordinate z-coordinate x- coordinate 
1. Landmark in Fig. 

8.6(a) and Fig. 8.6(b) 
(bottom left corner of 
the keyboard image) 

-43 -26 -47 -27 

2. Landmark in Fig. 
8.6(c) and Fig 8.6(d) 
(corner of the letter 
‘A’ in UMAX box) 

-18 -18 -10 -23 

3. Landmark in Fig. 
8.6(e) and Fig. 8.6(f) 
(top right corner of 
the thick red line in 

the FOXIN box) 

4 70 2 74 

8.5   Summary 

In this chapter we described the theories of and successfully demonstrated a real-life 
implementation of the simultaneous localization and mapping problem (SLAM) of 
mobile robots for indoor environments, utilizing two web-cam based stereo-vision 
sensing mechanism. The system showed a successful implementation of an 
algorithm for image feature identification in frames grabbed from continuously 
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running videos on two cameras, installed on the active head integrated in-house with 
KOALA mobile robot, tracking of features/landmarks identified in a frame in 
subsequent frames and incorporation of these landmarks in the map created, 
utilizing a 3D distance calculation module implemented in real-life for calculation 
of co-ordinates of landmarks in WCS on the basis of the distances calculated of 
the landmarks from  the robot frames. The system could be successfully test-run in 
laboratory environments where our experimentations showed that there are very 
small deviations of the estimated landmark positions determined in the map from 
the actual positions of these landmarks in real-life. It is hoped that such successful 
implementations will inspire many readers to implement similar meaningful map 
building systems for more complex environments and also in outdoor situations.     
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