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Chapter 7 
Simultaneous Localization and Mapping 
(SLAM) in Mobile Robots* 

Abstract. This chapter first introduces the concept of SLAM for navigation of 
mobile robots and then describes the extended Kalman filter (EKF) based SLAM 
algorithms in detail. Next we consider a more complex scenario where this EKF 
based SLAM algorithm is implemented in presence of incorrect knowledge of 
sensor statistics and discuss how fuzzy or neuro-fuzzy supervision can help in 
improving the estimation performance in such situations. In this context, we  
also discuss how evolutionary optimization strategies can be employed to 
automatically learn the free parameters of such neuro-fuzzy supervisors.  

7.1   Introduction 

The simultaneous localization and mapping (SLAM) problem has attracted 
significant attention from the research communities of the autonomous vehicles 
and mobile robots in the past two decades. The SLAM problem, essentially, 
consists of estimating the unknown motion of a moving platform iteratively, in an 
unknown environment and, hence, determining the map of the environment 
consisting of features (also known as landmarks) and the absolute location of the 
moving platform on the basis of each other’s information [1]. This is known as a 
very complex problem as there is always the possibility that both the vehicle’s 
pose estimate and its associated map estimates become increasingly inaccurate in 
absence of any global position information [2]. This situation arises when a 
vehicle does not have access to a global positioning system (GPS). Hence the 
complexity of the SLAM problem is manifold and requires a solution in a high 
dimensional space due to the mutual dependence of vehicle pose and the map 
estimates [3]. 

                                                           
* This chapter is based on: 

  1) “A neuro-fuzzy assisted extended Kalman filter-based approach for Simultaneous 
Localization and Mapping (SLAM) problems,” by Amitava Chatterjee and Fumitoshi 
Matsuno, which appeared in  IEEE Transactions on Fuzzy Systems, vol. 15, issue 5, pp. 
984-997, October 2007. © 2007 IEEE and 

  2) Amitava Chatterjee, “Differential evolution tuned fuzzy supervisor adapted extended 
kalman filtering for SLAM problems in mobile robots,” Robotica, vol. 27, issue 3, pp. 
411-423, May 2009, reproduced with permission from Cambridge University Press. 
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One of the oldest and popular approaches to solve the SLAM problem employs 
Kalman filter based techniques. Until now extensive research works have been 
reported employing EKF to address several aspects of the SLAM problem [1], [4-
12]. Several successful applications of SLAM algorithms have been developed for 
indoor applications [13, 14], outdoor applications [7], underwater applications 
[15], underground applications [16] etc. An EKF based approach estimates and 
stores the robot pose and the feature positions within the map of the environment 
in the form of a complete state-vector and the uncertainties in these estimates are 
stored in the form of error covariance matrices. These covariance matrices also 
include cross-correlation terms signifying cross-correlation among feature/ 
landmark estimates. However, one of the well-known problems with the classical 
full EKF-based SLAM approach is that the computational burden becomes 
significantly high in the presence of a large number of features, because both the 
total state vector and the total covariance matrix become large in size. The later 
variations of researches on EKF based SLAMs have identified this problem as a 
key area and several improvements have so far been proposed [7, 9, 17-19]. 
Another key problem associated with EKF-based SLAM is the data association 
problem, which arises because several landmarks in the map may look similar. In 
those situations, different data association hypotheses can give rise to multiple, 
distinct looking maps and Gaussian distribution cannot be employed to represent 
such multi-modal distributions. This problem is usually solved by restricting the 
algorithm to associate the most likely data association, given the current robot 
map, on the basis of single measurement [1] or on the basis of multiple 
measurements [20]. The method of utilizing multiple measurements is a more 
robust method. Although several other data association algorithms have so far 
been developed, e.g. those in [21, 22], these algorithms have less significance as 
they cannot be implemented in real-time.   

Some alternative approaches to solve SLAM problems have also been proposed 
which intend to implement some numerical algorithms, rather than employing the 
rigorous statistical methods as in EKF. Some of these schemes are based on the 
Bayesian approaches which can dispense with the important assumption in EKF 
(i.e. the uncertainties should be modeled by Gaussian distributions). Several such 
algorithms have been developed employing Sequential Monte Carlo (SMC) 
methods that employ the essence of particle filtering [2], [3], [23], [24]. Particle 
filtering technique can do away with a basic restriction of EKF algorithm that 
introduces an additional uncertainty by performing linearization of nonlinear 
models. However, in particle filtering based methods, it is expected that one 
should employ large number of particles so that it can contain a particle that can 
very closely resemble the true pose of the vehicle/robot at each sampling time 
instant [25]. How to develop an efficient SLAM algorithm, employing particle 
filtering with small enough number of particles, constitutes an important area of 
modern-day research. A significant leap in this direction is taken by the 
FastSLAM1.0 and FASTSLAM2.0 algorithms, which have successfully solved 
the issue of dimensionality for particle filter based SLAM problems [26]. Several 
other SLAM algorithms have also been successfully developed employing scan-
matching technique where the map can efficiently be built by a graph of spatial 
relations amongst reference frames [7], [27]. 
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It has been shown previously that the performance of an EKF process depends 
largely on the accuracy of the knowledge of process covariance matrix (Q) and 
measurement noise covariance matrix (R).  An incorrect a priori knowledge of Q 
and R may lead to performance degradation [28] and it can even lead to practical 
divergence [29]. Hence adaptive estimation of these matrices becomes very 
important for online deployment. In [28], Mehra has reported a pioneering work 
on adaptive estimation of noise covariance matrices Q and R for Kalman filtering 
algorithm, based on correlation-innovations method, that can provide 
asymptotically normal, unbiased and consistent estimates of Q and R [35]. This 
algorithm is based on the assumption that noise statistics is stationary and the 
model under consideration is a time invariant one. Later several research works 
have been reported in the same direction, employing classical approaches, which 
have attempted adaptive estimation of Q and R [30-35]. In [30], a combination of 
an iterative algorithm and a stochastic approximation algorithm has been proposed 
to estimate Q and R. In [32] and [33], the problem domain has been expanded to 
allow time-variance in estimation of Q and R. A wonderful practical application 
of [28] has been reported in [34].  

In the last ten years or so, there have also been several adaptive Kalman 
filtering algorithms proposed which employ fuzzy or neuro-fuzzy based 
techniques [36]-[39]. In [38], an input-output mapping problem, where output is 
corrupted by measurement noise, is solved by employing a neuro-fuzzy network to 
determine AR parameters of each operating point dependant ARMA model and 
then employing Kalman filter for the equivalent state-space representation of the 
system. In [36], fuzzy logic has been employed for simultaneous adaptive 
estimations of Q and R and in [37], fuzzy logic is employed to adapt the R matrix 
only, for a Kalman filter algorithm. In real world situations, it is quite perceptible 
that these information matrices, in the form of Q and R, may not be accurately 
known. Then the performance of the SLAM problem may get affected 
significantly.  

The present chapter will first introduce the EKF-based stochastic SLAM 
algorithm in detail. Then the chapter will explore those situations for SLAM 
problems where the noise statistics information for the sensor is not known 
accurately. In those situations, we shall describe how neuro-fuzzy assisted EKF 
based SLAM algorithms can be effectively utilized [44, 45]. This will detail how a 
neuro-fuzzy model can be employed to assist the EKF-based SLAM algorithm to 
estimate R adaptively in each iteration. The chapter will also discuss how the free 
parameters of the neuro-fuzzy model can be learned using popular evolutionary 
optimization algorithms, for example, particle swarm optimization (PSO) [40] and 
differential evolution. The fuzzy adapted Kalman filter algorithms discussed in 
this chapter essentially implement a much complicated and sophisticated system 
compared to its predecessors mainly in two aspects:  

i) For the SLAM problem, the situation is essentially very complex as the 
sizes of the state vector and hence the covariance matrix are time varying in 
nature. This is because, during the process of navigation, new landmarks are 
initialized in the state vector at different time instants (and, under some 
specific conditions, some existing landmarks may even be deleted) and 
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hence these vector and matrix sizes will keep changing. The sizes of these 
matrices usually grow.   

ii) The approaches discussed in this chapter uses a generalized method of 
learning the neuro-fuzzy model automatically. This is in stark contrast with 
previously developed systems which use carefully, manually chosen 
parameters for the fuzzy system(s) under consideration.  

The chapter concludes with a detail, in-depth analysis of these SLAM algorithms 
where the results are presented for a variety of environmental situations i.e.  with 
varying number of feature/landmark points and with several incorrectly known 
measurement noise statistics values.  

7.2   Extended Kalman Filter (EKF) Based Stochastic SLAM 
Algorithm 

A. Hypotheses 

• The features under consideration are assumed to be 2-D point features 
• The features are assumed to remain static i.e. they do not change their 

positions with time, in the map built 
• There are uncertainties in control inputs, the steering angle command (s) and 

the velocity at which the rear wheel is driven (w), and these uncertainties are 
modeled using Gaussian distributions 

• It is assumed that there is no uncertainty in the starting pose of the robot 
• The incremental movement of the robot, between two successive sampling 

instants, is assumed to be linear in nature 
• There are uncertainties in the range (r) and bearing (θ) measurements, and 

these uncertainties are modeled using Gaussian distributions 
• The features are only characterized by their 2-D positions and no other 

characteristics, e.g. shape etc., is considered in this work 

B. The Algorithm 
An overview of the feature-map based SLAM employing EKF algorithm is 
presented now. An excellent description of the algorithm can also be obtained in 
[6], [7]. An EKF is employed for state estimation in those situations where the 
process is governed by nonlinear dynamics and/or involves nonlinear 
measurement relationships. The method employs linearization about the filter’s 
estimated trajectory, which is continuously updated in accordance with the state 
estimates obtained from the measurements [43]. The state transition can be 
modeled by a nonlinear function f(•) and the observation or measurement of the 
state can be modeled by a nonlinear function h(•), given as: 

kkkk quxfx +=+ ),(1                                         (7.1)  

and 

111 )( +++ += kkk rxhz                                      (7.2) 



7.2   Extended Kalman Filter (EKF) Based Stochastic SLAM Algorithm 171
 

where xk is the (n × 1) process state vector at sampling instant k, zk is the (m × 1) 
measurement vector at sampling instant k and uk is the control input. The random 
variables qk and rk represent Gaussian white process noise and measurement noise 
respectively and Pk, Qk and Rk represent the covariance matrices for xk, qk and rk 
respectively.   

In case of the SLAM problem, the state vector x is composed of the vehicle 
states xv and the landmarks’ states xm. Hence the estimates of the total state vector 
x, maintained in the form of its mean vector x̂ and the corresponding total error 

covariance matrix P, is given as: 
TT
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where vx̂ = the mean estimate of the robot/vehicle states (represented by its pose), 

Pv = error covariance matrix associated with vx̂ , 

mx̂ = mean estimate of the feature positions and 

Pm = error covariance matrix associated with mx̂ . 

The robot/vehicle pose is defined with respect to an arbitrary base Cartesian 
coordinate frame. The features or landmarks are considered to be 2-D point 
features. It is assumed that there are n such static, point features observed in the 
map. Then, 
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The map is defined in terms of the position estimates of these static features and 
Pvm in (7.4) maintains the robot-map correlation. The off-diagonal elements of Pm 
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signify the cross-correlation and hence interdependence of information among the 
features themselves. The system is initialized assuming that there is no observed 
feature as yet, the base Cartesian coordinate frame is aligned with the robot’s 
starting pose and there is no uncertainty in the starting pose of the robot. 
Mathematically speaking, 0xx == vˆˆ  and P = Pv = 0.  

As the robot starts moving, vx̂ and Pv become non-zero values. In subsequent 

iterations, when the first observation is carried out, new features are expected to 
be initialized and mx̂ and Pm appear for the first time. This increases the size of x̂ 

and P and the entries of x̂  vector and P matrix are re-calculated. This process is 
continued iteratively. 

i) Time Update (“Predict”) Step 
Here, it is assumed that the control input vector u, under the influence of which 
the robot moves, is constituted of two control inputs, the steering angle command 

(s) and the velocity at which the rear wheel is driven (w). Hence, Tsw ][   u = . So 

the state estimates can be obtained by employing wheel encoder odometry and the 
robot kinematic model. The control inputs w and s must be considered with their 
uncertainties involved (e.g. uncertainties due to wheel slippage, incorrect 
calibration of vehicle controller) and these are modeled as Gaussian variations in 
w and s from their nominal values.  Hence, the prediction step calculates the 
projections of the state estimates and the error covariance estimates from sampling 
instant k to (k+1), given as: 
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where fv estimates the robot pose on the basis of the motion model and the control 
inputs. Based on the odometric equation of the mobile robot under consideration 
here, which assumes that the incremental movement of the robot is linear in 
nature, fv can be represented as [42]: 
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where, WB represents the wheelbase of the robot and Δt is the sampling time.  The 
Jacobians and Uk, the covariance matrix of u are given as: 
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Here, mx̂ and Pm in (7.9) and (7.10) remain constant with time, as the features are 

assumed to remain stationary with time. 

ii) Measurement Update (“Correct”) Step 
Let us assume that we observe a feature, which already exists in the feature map, 

whose position is denoted by that of the ith feature i.e. )ˆ ,ˆ ( ii yx . For the system 

under consideration [7], [42], it is assumed that the feature observation is carried 
out using 2-D scanning range laser (SICK PLS), a range-bearing sensor, which 
nowadays is very popular in mobile robot navigation, for distance measurement. It 
is assumed that the laser range scanner is mounted on the front bumper of the 
vehicle and the laser returns a 180° planar sweep of range measurements in 0.5° 
intervals. The range resolution of such a popular sensor is usually about ±50 mm. 
In this context, it should be mentioned that the vehicle is also assumed to be 
equipped with wheel and steering encoders. The distance measured, in polar form, 
gives the relative distance between each feature and the scanner (and hence the 
vehicle). Let this feature be measured in terms of its range (r) and bearing (θ) 
relative to the observer, given as: 

Tr ]   [ θ=z     (7.15) 

The uncertainties in these observations are again modeled by Gaussian variations 
and let R be the corresponding observation/measurement noise covariance matrix 
given as: 
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where we assume that there is no cross-correlation between the range and bearing 
measurements. In the context of the map, the measurements can be given as: 
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Now the Kalman gain Wi can be calculated assuming that there is correct 

landmark association between z and )ˆ ,ˆ ( ii yx and the following computations can 

be resorted to: 
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where iν denotes the innovation of the observation for this ith landmark and Si the 

associated innovation covariance matrix. The Jacobian 
1+

∇
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Hence, the a posterior augmented state estimate and the corresponding covariance 
matrix are updated as: 

111
ˆ

1
ˆ

++
+−

+=+
+

k
i

k
ikk

νWxx    (7.22) 

T

1k
i

k
i

k
ikk +++

−−
+=+

+ WSWPP
1111

  (7.23) 

Here it should be remembered that in addition to the process and measurement 
uncertainties, there is an additional uncertainty due to linearization involved in the 
formulation of an EKF. The “time update” and “measurement update” equations 
are obtained by employing linearization of nonlinear functions f(•) and h(•) about 
the point of the state mean. This linearization is obtained by employing a Taylor 
series like expansion and neglecting all terms which are of higher order than the 
first order term in the series. This manner of approximating a nonlinear system by 
a first order derivative introduces this additional source of uncertainty in EKF 
algorithm. In fact, for highly nonlinear functions, these linearized transformations 
cannot sufficiently accurately approximate correct covariance transformations and 
this may lead to highly inconsistent uncertainty estimate. Under those situations 
unscented transform may provide more accurate results. 

iii) Initialization of a new feature and deletion of an old feature 
During this iterative procedure of performing prediction and update steps 
recursively, it is very likely that observations of new features are made time to 
time. Then these new features should be initialized into the system by 
incorporating their 2-D position coordinates in the augmented state vector and 
accordingly modifying the covariance matrix. These features, identified by the 
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LRS, may correspond to points, lines, corners, edges etc. In this work, we have 
considered that the features are point like features, each representing a unique 
distinct point in the two-dimensional map of the environment. Resorting to the 
mathematical computations as shown in [7], these new +

kx̂  and +
kP can be 

calculated as: 
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Here ),ˆ( zxf vf is employed to convert the polar observation z to the base 

Cartesian coordinate frame. The Jacobians are calculated as: 
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The deletion of unreliable features is a relatively simple matter. We only need to 
delete the relevant row entries from the state vector and the relevant row and 
column entries from the covariance matrix. 

Now, it is quite common that when an observation step is carried out, there will 
be multiple number of landmarks visible at the same time and hence, several 
independent observations will be carried out. In our system, we have assumed that 

a batch of such observations is available at once (i.e. T
nnrr ] , [ ,1,1 θθ =z ) 

and updates are carried out in batches. This is in conformation with the arguments 
placed in [7] which indicate that an EKF algorithm tends to perform better update 
steps for SLAM algorithms, if the innovation vector ν consists of multiple 
observations simultaneously. Hence, in the context of this batch mode of 
observation and update procedure, the corresponding SLAM algorithm is based on 
composite ν, S and W vectors/matrices and the sizes of these vectors/matrices 
keep changing with time because at any instant of observation, the total number of 
visible landmarks keep changing. 

 



176 7   Simultaneous Localization and Mapping (SLAM) in Mobile Robots
 

7.3   Neuro-fuzzy Assistance for EKF Based SLAM 

Most of the works reported in the area of adaptive Kalman filters have so far 
concentrated on utilizing new statistical information from innovation sequence to 
correct the estimation of the states. Our approach for adapting the EKF is based on 
the innovation adaptive estimation (IAE) approach, which was originally proposed 
in [28] and later utilized in combination with fuzzy logic in [37]. The basic 
concept relies on determining the discrepancy between a new measurement zk and 

its corresponding predicted estimation kẑ , at any arbitrary kth instant, and 

utilizing this new information to correct the estimations/predictions already made. 
The adaptation strategy is based on the objective of reducing mismatch between 
the theoretical covariance of the innovation sequences (Sk) and the corresponding 

actual covariance of the innovation sequences ( InnkĈ ). In our SLAM algorithm, 

Sk is calculated using (7.19) where the right hand side of the equation is made 

consistent with the concept of batch mode of observation and update. InnkĈ  can 

be calculated as: 

 InnkĈ = νk νk
T     (7.27) 

where νk denotes the augmented innovation sequence, made consistent with the 
batch mode. According to [37], this covariance should be calculated on the basis of 
a moving average of νk νk

T over an appropriate moving estimation window of size 
M. However, for the SLAM problem, the size of the augmented νk keeps changing 
from time to time. This is because it is dependent on the number of landmarks 
observed in any given observation and update step, which were all observed at 

least once before. Hence we employ (7.27) to calculate InnkĈ  rather than using a 

moving average. Therefore, the mismatch at the kth instant, is given as: 

kInnkInnk SCC −=Δ ˆˆ    (7.28) 

Our objective is to minimize this mismatch employing fuzzy logic. This is carried 
out, by employing a one-input-one-output neuro-fuzzy system for each diagonal 

element of the InnkĈΔ  matrix. These fuzzy rules are employed to adapt the R 

matrix, so that the sensor statistics is adapted for subsequent reduction in 

mismatch InnkĈΔ . The complete EKF-based SLAM algorithm, employing the 

neuro-fuzzy assistance, is presented in algo. 7.1. The system is designed with a 
sampling time of 25 msec. between successive control input signals. 
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1. IF All waypoints are traversed, THEN Stop ENDIF. 
2. Compute distance of the robot from the current waypoint.  

     IF (distance < minimum distance allowed from any waypoint), 
          THEN switch to next waypoint as the current waypoint ENDIF. 

3. Compute change in steering angle (Δs) to point towards the current waypoint 
and then, new value of steering angle (s) (satisfying the constraints of max. rate of 
steering change (Δsmax) and max. steering angle (smax)). 
4. Move the robot and determine its actual pose. 
5. Perform EKF prediction step, in accordance with (7.7) to (7.10). 
6. IF (Time_for_Observation is TRUE), THEN go to step 7. ELSE go to step 1. 
ENDIF. 
7. Determine the set of visible landmarks from the current actual robot position. 
Compute actual range-bearing observation for each of them. Separate those 
observations based on already observed landmarks and newly observed landmarks 
(if any). 
8. Predict range-bearing observations, for already observed landmarks in step 7, 
on the basis of augmented total state vector, predicted in step 5. 
9. Compute augmented innovation sequence (ν) for already observed landmarks, 
on the basis of actual and predicted observations, employing (7.14), adapted for 
batch-mode situations.  
10. Compute corresponding augmented measurement noise covariance matrix R 
(utilizing the original [2 × 2] R matrix) and augmented linearized observation 
model h, adapted for batch-mode situations. 
11. Compute augmented S, on the basis of the augmented R and h and employing 
(7.15), adapted for batch-mode situations. 
12. Update the a posterior state estimate vector and error covariance matrix, 
according to (7.18) and (7.19). 

13. Compute InnkĈ  and InnkĈΔ , according to (7.23) and (7.24) respectively, 

and determine the size of InnkĈΔ , i.e. ]ˆˆ[ , colsrows CC ΔΔ . 

14. Determine the absolute maximum value of mismatch among the range 

observations ( mismatchrangeInnk __ĈΔ ) and the bearing observations 

( mismatchbearingInnk __ĈΔ ) separately from the corresponding diagonal entries of 

the InnkĈΔ  matrix. 

15. FOR  j = 1 to rowsĈΔ ,  

Normalize the corresponding diagonal entry ),(ˆ jjInnkCΔ  by the 

appropriate 

mismatchrangeInnk __ĈΔ  or mismatchbearingInnk __ĈΔ . 
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Determine the corresponding ),( jjRΔ  output from the NFS, with the 

normalized ),(ˆ jjInnkCΔ  input to it. 

ENDFOR 

16. Determine 2
rσΔ  as a mean of those ),( jjRΔ entries, which correspond to 

range measurements. 

17. Determine 2
θσΔ  as a mean of those ),( jjRΔ entries, which correspond to 

bearing measurements. 

18. Adapt the original 2×2 R matrix as: Rk = Rk-1 + 








Δ
Δ

2

2

0

0

θσ
σ r . 

19. IF (new feature(s) observed in step 7),  
THEN augment state vector and error covariance matrix, according to (7.20), 

(7.21) and (7.22). 
ENDIF 

20. Go to step 1. 
 

Algo. 7.1. The neuro-fuzzy assisted EKF based SLAM algorithm 

From algo. 7.1, it can be seen that each Neuro-Fuzzy System (NFS) employs a 
nonlinear mapping of the form: )),((),( ˆ jjfjj InnkNFS CR Δ=Δ  where ),( jjRΔ  

corresponds to an adaptation recommended for the corresponding diagonal 
element of the augmented measurement noise covariance matrix R matrix, 
computed according to the batch-mode situation. This augmented matrix is 
calculated each time an iteration enters into the observe and update step and its 
size is determined on the basis of the total landmarks visible in the observe step. 
To make it consistent with the batch of observed landmarks that were already 
visited at least once earlier, the size of this augmented R is [2zf × 2zf] where zf is 
the number of landmarks observed in that iteration, which were also observed 
earlier. This augmented R is formed utilizing the original [2 × 2] R matrix and this 
is formulated as: 
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Here, 2
rσ  and 

2
θσ  correspond to the sensor statistics computed for that iteration. 

It can be seen that the augmented R matrix comprises of diagonal elements only 
and all the off-diagonal elements are considered to be zero. This is in 
conformation with our assumptions presented beforehand, in section 7.2, that the 
range and the bearing measurements are independent of each other and there is no 
cross-correlation between these measurements.  The size of this augmented R 
matrix keeps changing in different iterations, as the number of already visited 
landmarks observed again in a given iteration keeps varying from iteration to 

iteration. The size of this augmented R is consistent with that of the InnkĈ  and 

hence, InnkĈΔ . 

With the idea of implementing the same NFS for each and every diagonal 
element of the augmented R matrix, we employ normalized input for each NFS. 
The NFS practically employs three fuzzy IF-THEN rules of the form: 

 IF ),(ˆ jjInnkCΔ  is N  THEN ),( jjRΔ  = w1,             

IF ),(ˆ jjInnkCΔ is Z  THEN ),( jjRΔ = w2    and 

IF ),(ˆ jjInnkCΔ is P  THEN ),( jjRΔ  = w3.    

w1, w2 and w3 indicate the amount of fuzzy adaptation recommended in form of a 
diagonal element of the ΔR matrix, depending on the nature of the fuzzified 
mismatch in the corresponding diagonal element of the InnkĈΔ  matrix. 

However, the order of mismatch may be different for range and bearing 
observations and this may depend on how poorly (or accurately) the sensor 
statistics for range and bearing observations are individually known. Hence we 
employ normalized inputs corresponding to range and bearing observations 

separately, on the basis of appropriate computations of mismatchrangeInnk __ĈΔ  

and mismatchbearingInnk __ĈΔ , as given in algo. 7.1. Then with these normalized 

inputs, the NFS enables us to compute ),( jjRΔ  for each diagonal entry. Finally 

we compute the adaptations i.e. 2
rσΔ  and 2

θσΔ  required for the original [2 × 2] 

R matrix on the basis of appropriate means, separately computed from the arrays 
of ),( jjRΔ  entries for range and bearing observations. This adapted original [2 

× 2] R matrix is kept ready for the next appropriate iteration, when EKF will enter 
the observation and update step, and will be utilized for subsequent formation of 
augmented R matrix and so on. Then, each observation and update step is 
concluded by augmenting the state vector and the corresponding covariance 
matrix, by employing (7.24)-(7.26), if there are new feature(s) observed during 
this observation step. 
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7.4   The Neuro-fuzzy Architecture and Its Training 
Methodology Employing Particle Swarm Optimization 
(PSO) 

7.4   The Neuro-fuzzy Architecture and Its Training  Methodology  

7.4.1   Architecture of the Neuro-fuzzy Model 

The neuro-fuzzy model has been developed as a one-input-one-output system. The 
four-layer architecture is shown in Fig. 7.1. Let ui

l and Oi
l respectively denote the 

input to and output from the ith node of the lth layer.  

1w

Σ
3w

2w

N

Z

P

K

Π ΔRk(j,j)ΔCInnk(j,j)

 

Fig. 7.1. Four-layer architecture of the proposed neuro-fuzzy system. (Reproduced from 
[44] with permission from the IEEE. ©2007 IEEE.). 

1) Layer 1: Input Layer 
This layer comprises a single node, signifying the single input variable. The input-
output relation of this node is: 

O1 = u1 = ),(ˆ jjInnkCΔ                                             (7.30) 

2) Layer 2: Membership Function Layer 
Here, the input variable is fuzzified employing three Membership Functions 
(MFs), negative (N), zero (Z) and positive (P). Figure 7.2 shows these MFs where 
Nv and Nb respectively denote the right vertex and right base points of the MF N, 
Zbl, Zvl, Zvr and Zbr respectively denote the left base, left vertex, right vertex and 
right base points of the MF Z and  Pb and Pv respectively denote the left base and 
left vertex points of the MF P. The output of the ith MF is given as:  

Oi
2 = μi(u

1) = μi( ),(ˆ jjInnkCΔ )                              (7.31) 

3) Layer 3: Defuzzification layer 
This layer performs defuzzification where the defuzzified output is calculated as 
an weighted average of all its inputs. Hence the output from the solitary node in 
this layer can be calculated as: 
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Fig. 7.2. Membership functions employed in Fig. 7.1. (Reproduced from [44] with 
permission from the IEEE. ©2007 IEEE.). 

4) Layer 4: Output Layer 
This layer performs a suitable scaling for the defuzzified output. The input-output 
relationship of the node in this layer is given as: 

344 OKuKO ∗=∗=             (7.33) 

7.4.2   Training the Neuro-fuzzy Model Employing PSO 

This neuro-fuzzy model is trained to determine the suitable free parameters of the 
system i.e. the parameters of the MFs, the output consequence singletons and the 
output gain. However, the training cannot be accomplished in the conventional 
supervised mode, as the exact desired output, for a given input, is not quantitatively 
known. Hence, normal backpropagation kind of training methodology cannot be 
resorted to and it is suitable to apply stochastic global optimization algorithms for 
such systems in an unsupervised manner. There are several such candidate 
algorithms available now. In this section we describe how PSO can be suitably 
employed for this purpose. PSO is a relatively new algorithm [40], [41], that is 
based on the swarm behaviors of birds or fishes. The training of the neuro-fuzzy 
system is accomplished as a high-dimensional metaheuristic optimization problem, 
where the objective is to optimize a fitness function ),,( 21 nfit xxxf   on the 

basis of the values of the variables nxxx ,, 21 .  

In a PSO problem, several such candidate solutions of nxxx ,, 21  are 
created in a multi-dimensional space (called “particles”) and the suitability of each 
of them is evaluated in each iteration. For the problem under consideration here, 
each such potential “particle” is formed as a 12-dimensional vector x = 

[ 1221   xxx  ]T, as shown in Fig. 7.3. Each “particle” i is characterized by the 

vectors denoting its position (xi) and its velocity (vi) at the current time step. In 
order to pursue the optimum of the fitness function (ffit), velocity vi and hence 
position xi of each particle is adjusted in each time step. The updated velocity  
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in each time step vinew is a function of three major components: the old velocity 
vector of the same particle (viold), difference of the ith particle’s best position 
found so far (called pi) and the current position (xi) (called the “cognitive” 
component) and difference of the best position of any particle within the context 
of the topological neighborhood of ith particle found so far (called pg) and current 
position of the ith particle (xi) (called the “social” component) [40, 41]. Each of 
the last two components is stochastically weighted so that the updating in the 
velocity of each particle will cause enough oscillations, allowing each particle to 
search for a better pattern within the problem space. Hence, the velocity and 
position update relations, in the dth dimension, are given as:  

vidnew =     vidold + ϕi(pid – xid) + ϕg(pgd – xgd)                       

          IF (vidnew > vdmax) THEN vidnew = vdmax  ENDIF                                                   

IF (vidnew < -vdmax) THEN vidnew = -vdmax  ENDIF                                                  

         xidnew = xidold + vidnew                                                                              

         vidold = vidnew                                                                                           

         xidold = xidnew                                                                                         (7.34) 

ϕi and ϕg are responsible for introducing stochastic weighting and they are given 
as ϕi = ci*rand1( ) and ϕg = cg*rand2( ). rand1( ) and rand2( ) are two random 
functions in [0, 1] and ci and cg are positive constants. A popular choice for ci and 
cg is ci = cg = 2. This traditional PSO model shows quick, aggressive convergence 
during the early phase but often encounters problem in fine tuning the search to 
determine the supreme solution. Hence, in our algorithm we have employed an 
improved version of this PSO algorithm that utilizes a judicious mix of aggressive, 
coarse updating during early iterations and fine updating during later iterations 
[40]. Hence the velocity update rule is given as 

vidnew = witer (vidold) + ϕi(pid – xid) + ϕg(pgd – xid)        (7.35) 

with the position update rule remaining unchanged as given before. w is called the 
inertia weight which is initially kept high and then gradually decreased over the 
iterations so that it can initially introduce coarse adjustment in velocity updating 
and gradually fine changes in velocity updating takes over. In our algorithm, we 
have utilized linearly adaptable inertia weight and witer gives the value of the 
inertia weight at that given iteration. The iterative process is continued until the 
optimization process yields a satisfactory result. This is evaluated on the basis of 
whether the value of ffit falls below the specified maximum allowable value or 
whether the maximum number of iterations has been reached.  A detailed 
description of the PSO algorithm is available in [40, 41].  
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Nv Nb Zbl Zvl Zvr Zbr Pb Pv w1 w2 w3 K
 

Fig. 7.3. Detailed configuration of each 12-dimensional “particle” employed by PSO. 
(Reproduced from [44] with permission from the IEEE. ©2007 IEEE.). 

In our approach, the objective of the neuro-fuzzy assistance to the EKF based 
SLAM is to improve the estimation performance as much as possible. This means 
we should try and minimize the discrepancy between actual covariance and the 
theoretical covariance of the innovation sequence over the entire set of 
observation instants, during the movement of the vehicle/robot, as much as 
possible. Hence the fitness function is formulated on the basis of: a) computing 
the mean-square value of all the diagonal entries of the ΔCInnk matrix at any given 
observation instant, b) storing such mean-square values for each observation 
instant during an on-going iteration and c) computing a mean of all such mean-
square values for all observation instants at the end of a complete iteration. 
Mathematically this can be shown as: 
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where Nobs denotes the total number of observation instants in a given iteration and 
JC_nobs denotes the total number of diagonal elements of ΔCInnk matrix when the 
nobsth observation is made.  

In the context of adapting a meaningful NFS, the positions of each “particle”, at 
the end of each iteration, are subjected to several constraints. Most of these 
constraints are implemented to maintain specific shapes chosen for the MFs 
(usually trapezoidal, which as a special case can become triangular) and also to 
ensure that there is some overlapping between the stretches of consecutive MFs. 
Another constraint included is that, for each MF, its control points (starting from 
left to right) should be chosen in a monotonically nondecreasing fashion. This will 
ensure that all regions, within the universe of discourse of the input for the NFS, 
will remain covered by at least one MF. These constraints are implemented as: 

 IF ( Nb < Nv) THEN  Nb = Nv ENDIF 
  IF ( Zvl < Zbl) THEN  Zvl = Zbl ENDIF 
  IF ( Zvr < Zvl) THEN  Zvr = Zvl ENDIF 
  IF ( Zbr < Zvr) THEN  Zbr = Zvr ENDIF 
  IF (Pv < Pb) THEN  Pv = Pb ENDIF 

  IF ( Nb < Zbl) THEN  Nb = Zbl ENDIF 
 IF ( Zbr < Pb) THEN  Zbr = Pb ENDIF          (7.37) 
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Another constraint is implemented to signify that the scaling employed in the 
output layer of the NFS is employed for magnitude scaling only, and hence it 
cannot be employed for changing polarity. It means that K cannot become 
negative. 

7.4.3   Performance Evaluation 

To evaluate the performance of the proposed system, we have considered various 
environments, which are available in [42]. In fact the packages available in [42] 
should serve as an excellent platform for learning and analysis of existing Kalman 
filter and particle filter based SLAM algorithms. Researchers can develop their 
own algorithms and can compare their performance vis-à-vis these algorithms. 
Several benchmark environments are available there and we have tested our 
algorithm in these simulated environments with their associated given vehicle 
motion model. The environment is usually specified in such a manner where a 
vehicle/robot is supposed to navigate through some waypoints and in the process 
should be able to acquire the map of the environment with several configurations 
of feature/landmark points. In the present scheme, we consider three such 
environments as specified in [42]. In each case we have the identical scene of 
ideal robot movement where the robot path is specified by 17 waypoints. 
However, each environment consists of varied number of landmarks to impose 
several degrees of complexities and the three environments under consideration 
consist of 35, 135 and 497 landmarks respectively. The uncertainties in control 
inputs are specified as: σw = 0.3 m/sec. and σs = 3 deg. An observation step and 
the associated update step is carried out after eight consecutive prediction steps, 
identical with the EKF based algorithm in [42]. This follows a popular notion in 
EKF-based SLAM community, where instead of employing an observation and 
update step after each prediction step, one computes several consecutive 
prediction steps, and then takes corrective action by one observation and update 
step. This helps in reducing the computational burden of the SLAM algorithm. In 
algo. 7.1, this is indicated by the Time_for_Observation flag, which is set TRUE 
for one iteration, after each 8 successive iterations. 

The performance of the proposed system is compared with a conventional 
EKF-based SLAM system where the Q and R matrices are kept static throughout 
the experiment. The proposed algorithm starts with the same Q and R matrices, 
but it keeps adapting the R matrix according to the proposed scheme. According 
to the data available from [42], the EKF based algorithm works perfectly when 
sensor statistics are known as: 1.0=rσ  m. and 1=θσ deg. First we consider 

the situation where the sensor statistics are wrongly considered as: 0.2=rσ  m. 
and 1.0=θσ deg. In each figure, the firm lines shown in green, depict the actual 

path traversed by the robot, while the firm lines shown in black, depict the SLAM 
estimated path traversed based on estimated states of robot poses in each sampling  
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instant or iteration. The stars (∗) depict the actual landmark positions, which are 
stationary in the environment. The crosses (+) depict the positions of these 
landmarks estimated at the end of the test run. Obviously, the performance of the 
system will be superior, if the estimated robot path and actual path match as far as 
possible and the estimated landmark positions and their actual positions coincide 
as far as possible. Figure 7.4(a) to Fig. 7.4(c) shows the performance of the 
conventional EKF-based SLAM for three different environment situations. It can 
be seen that the performance is acceptable when there are small number of 
landmarks in the environment. However, the performance became really bad when 
the landmarks became denser and both the estimations of the robot pose at 
different instants and the map acquired degraded significantly as the EKF 
estimations are quite distant from the original robot positions and the map 
situation. Figure 7.5(a) to Fig. 7.5(c) show the situations when the neuro-fuzzy 
assisted EKF-based SLAM is employed for identical environments. It can be seen 
that the neuro-fuzzy assistance could improve the situation dramatically and the 
estimates of the robot states as well as acquisition of the map was quite stable for 
all three different environments with varied number of landmarks. In all these 
environments, the robot position estimates follow the actual robot positions 
closely and the estimation of the stationary landmark positions also closely 
matches with their actual positions in the environments. 

The scheme was further tested for another situation where the sensor statistics 
are wrongly considered in opposite directions and they are considered as 

01.0=rσ  m. and 0.3=θσ deg. Then the same set of algorithms was employed 

for identical set of environments. Figure 7.6(a) to Fig. 7.6(c) show the 
performances of the conventional EKF-based SLAM and Fig. 7.7(a) to Fig. 7.7(c) 
show the corresponding performances of the neuro-fuzzy assisted EKF-based 
SLAM algorithms. In these case studies, the EKF-based SLAM shows a different 
trend in performance. As we can see, the estimation performance is worst for the 
environment containing small number of landmarks. However, with increase in 
landmarks, the estimations became more accurate and for the situation with 497 
landmarks, the performance of the EKF-based SLAM was quite satisfactory. On 
the other hand, the neuro-fuzzy assisted EKF showed uniformly stable 
performance for each environment with quite accurate estimations of robot poses 
and feature positions for each environment situation. Each result, shown in Fig. 
7.5(a) to Fig. 7.5(c) and Fig. 7.7(a) to Fig. 7.7(c), for the neuro-fuzzy assisted EKF 
based SLAM depicts one sample run conducted. For each of these six specific 
situations of two case studies, we conducted 10 individual runs. It was found that, 
for each given situation, results obtained with each of 10 individual runs, were 
very close to each other. These case studies further prove that the neuro-fuzzy 
assistance can vastly improve the degrading performance of the traditional EKF 
algorithm in several situations, when the sensor statistics are wrongly known. In 
these situations, the performance of the conventional EKF becomes highly 
unreliable. However, presence of neuro-fuzzy assistance can help the EKF to  
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maintain a stable performance and this performance has been shown robust 
enough over several environment situations, with several wrong knowledge of 
sensor statistics. 

For the neuro-fuzzy assisted EKF based SLAM, the training of the neuro-fuzzy 
system, for each case study as described before, was carried out in offline situation 
on the basis of the data gathered by the robot for a given environment situation. 
For our experimentation, we implemented the training procedure, for each case 
study, for the environment containing 135 landmarks. Once the training of the 
neuro-fuzzy system was completed (on the basis of a given configuration of  
the landmarks) and the free parameters of the NFS were suitably determined, the 
trained NFS-based EKF was implemented for robot navigation through the 
waypoints for several configuration of landmarks as described before (i.e. 
environments with 35, 135 and 497 landmarks). Table 7.1 details these parameters 
employed for the PSO algorithm employed for training the NFS. Here, the 
dimensions of each particle, which are employed to learn the control points of the 
MFs of the NFS (i.e. [ 821   xxx  ]), are all initialized with their positions within 

the range [-1, 1]. This is done in conformation with the normalization procedure 
that works in conjunction with the NFS. The prospective weights associated with 
the layer 3 of the NFS (denoted by the dimensions x9, x10 and x11 of the PSO 
algorithm) are all initialized with their positions within the range [-2, 2]. The 
prospective gain K associated with the layer 4 of the NFS (denoted by  
the dimension x12 of the PSO algorithm) is initialized with its position within the 
range [0, 2], because it is assumed that K is a non-negative quantity. Each time, 
the termination criterion for the PSO algorithm was set for a maximum number of 
iterations (maxiter) of 20. For the case study with initial sensor information 

0.2=rσ  m. and 1.0=θσ deg, the learned parameters of the NFS at the 

completion of the training procedure are: 

[ 1221   xxx  ] = [-0.2008 –0.0626 –0.0626 –0.0626 0.0820 0.5961 0.3224 

0.4002 –0.0086 1.5801 –0.9729 0.0011] 

and for the case study with initial sensor information 01.0=rσ  m. and 

0.3=θσ  deg., the learned parameters of the NFS are: 

[ 1221   xxx  ] = [-0.4570 0.5242 0.4805 0.9741 0.9741 0.9741 –0.4290 

0.2413 –0.0024 –0.8762 1.3561 0.2907].  

In each case, it can be seen that these learned parameters satisfied those 
constraints presented in (7.37).  
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Fig. 7.4. Conventional EKF-based SLAM performance for case study I ( 0.2=rσ  m. 

and 1.0=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks in the 

environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.). 
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Fig. 7.4. (continued) 
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(a) 

Fig. 7.5. Neuro-fuzzy assisted EKF-based SLAM performance for case study I 
( 0.2=rσ  m. and 1.0=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks 

in the environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.). 
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Fig. 7.5. (continued) 
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(b) 

Fig. 7.6. Conventional EKF-based SLAM performance for case study II ( 01.0=rσ  m. 

and 0.3=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks in the 
environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.). 
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Fig. 7.6. (continued) 
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(a) 

Fig. 7.7. Neuro-fuzzy assisted EKF-based SLAM performance for case study II 
( 01.0=rσ m. and 0.3=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks 

in the environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.). 
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Fig. 7.7. (continued) 
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Table 7.1. The PSO parameters employed 

Sl. No. Parameter descriptions Parameter values for 
case study (i) 

Parameter values for 
case study (ii) 

1 No. of particles (N) 40 40 
2 No. of dimensions (D) 12 12 
3 Initial inertia weight (Winitial) 0.9 0.9 
4 Slope of inertia weight (ΔW) 2.5e-4 2.5e-4 
5 Initialization range for MFs (x1, 

x2, … x8) 
[-1, 1] [-1, 1] 

6 Initialization range for weight 
factors (x9, x10, x11) 

[-2, 2] [-2, 2] 

7 Initialization range for gain (x12) [0, 2] [0, 2] 
8 Maximum permissible velocity 

for MFs  
(v1max, v2max, … v8max) 

0.3 0.1 

9 Maximum permissible velocity 
for weight factors (v9max, v10max, 
v11max) 

1.0 0.5 

10 Maximum permissible velocity 
for gain (v12max) 

1.0 0.5 

7.5   Training a Fuzzy Supervisor Employing Differential 
Evolution (DE) Based Optimization 

7.5   Training a Fuzzy Supervisor Employing Differential Evolution  

In the previous section we demonstrated how PSO can be utilized to train a 
fuzzy/neuro-fuzzy supervisor for successful supervision of an EKF based SLAM 
system. Logically speaking, the idea can be extended to employ other evolutionary 
algorithms too for similar fuzzy/neuro-fuzzy based supervision purpose. Hence we 
implemented a similar fuzzy supervisor employing differential evolution (DE), 
another popular evolutionary algorithm known, for similar types of problems [45]. 
In DE, like many other population based global optimization methods, several 
candidate solutions, each containing a possible solution vector for the optimization 
problem under consideration, are created simultaneously in the multi-dimensional 
search space and each one of them is individually evaluated in terms of its fitness 
function, which indicates the degree of suitability of that particular candidate 
solution to evolve as the best possible solution. This process is continued in an 
iterative fashion, where new vectors, i.e. possible candidate solutions, are created 
from the candidate solutions in the previous generation, in quest for generation of 
better and better solutions, which can be quantitatively evaluated by fitter and fitter 
fitness function values. Several mathematical strategies can be employed to create 
new candidate vectors for the current generation, based on the old candidate vectors 
of the previous generation. At the end of each generation, the candidate solution 
providing the fittest fitness function value (usually the minimum value) emerges as 
the best possible solution. This iterative process continues until the fittest fitness 
function value (usually the minimum value) for the best solution vector in a 
generation falls below the maximum permitted fitness function value for that 
optimization process or when the maximum number of generations is reached.  

Let us consider that, in the basic variant of DE, utilized for minimizing a cost 
function f(x) on the basis of D-dimensional x, NP number of such candidate 



194 7   Simultaneous Localization and Mapping (SLAM) in Mobile Robots
 

solutions of ( )Dxxx ,, 21  are created in the D-dimensional space and the 

suitability of each of them is evaluated in each generation G. The initial 
population is generated in a random fashion and the objective is that the generated 
vectors should try to cover the entire search space as far as practicable. Each ith 
vector for the (G+1)th generation is created by adding the weighted difference 
between two population vectors to a third vector, all these three vectors pertaining 
to the Gth generation. This can be shown by the following formula [46],[47]: 

, , , ,( )i G r G r G r Gν x F x x+ = + −
1 2 31                        (7.38) 

where NPi ,,2,1 = . Here [ ]NPrrr ,1,, 321 ∈  and they are all mutually 

different. F is a constant weighting factor and usually [ ]2,0∈F . This factor 

influences the amplification of the difference )( ,, 32 GrGr xx − .  

To increase diversity in the newly generated vector, the method of crossover is 
introduced. This crossover operation generates a new vector ui,G+1, from the newly 
generated perturbed vector νi,G+1 and the old vector xi,G. In the basic variant of DE, 
this new vector is generated as [11,12]: 

( )1,1,21,11, ,, ++++ = GDiGiGiGi uuuu   with 

[ ]
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∈
++=

= +
+ Djotherallforx
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Gji

DDGji
Gji ,1

1

,

1,
1,

ν      (7.39) 

Here, n is a randomly chosen integer, [ ]Dn ,1∈ , and it determines the starting 

index for the crossover. The length or duration of crossover, in this basic variant 
of DE, is also an integer drawn from the interval [1,D], and is based on the chosen 
crossover probability, [ ]1,0∈CR . These n and L values are chosen afresh for 

each ui,G+1. 
Now, if the new vector ui,G+1 can yield a smaller value for the fitness function, 

then this vector becomes the new xi,G+1 for the (G+1)th generation. Otherwise we 
keep xi,G+1= xi,G. 

7.5.1   Performance Evaluation 

The performance of DE optimized fuzzy supervisor based solution for the SLAM 
problems has also been tested by creating an environment in simulation, utilizing 
the package available in [42], as done in our previous set of case studies. For the 
new set of case studies, we consider a different environment and two sets of 
incorrect knowledge of sensor statistics as: (a) 01.0=rσ  m. and 

0.10=bσ deg. and (b) 01.0=rσ  m. and 0.15=bσ deg. For these situations, 
the performances exhibited by the conventional EKF-based SLAM [42] are shown 
in Fig. 7.8(a) and Fig. 7.8(b). It can be seen that the estimated robot path deviates 
a lot from the ideal path and also the estimated positions of many landmarks are 
quite far away from their actual positions. However, when our DE-optimized 
fuzzy supervisor based system was employed for each of these two case studies, 
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the fuzzy supervision could improve the performance quite markedly, in each 
case, as depicted in Fig. 7.9(a) and Fig. 7.9(b). For the fuzzy supervised algorithm, 
the estimated robot paths deviated much less from the ideal robot paths. In this 
scheme, the free parameters of the fuzzy supervisor are learnt by implementing 
differential evolution with D = 11 and employing binomial crossover. The variety 
of the DE algorithm employed is a popular variant, known as the “DE/rand/1” 
scheme [46], [47]. However, this variant differs slightly from the original 
“DE/rand/1” scheme, because here the random selection of vectors is performed 
by shuffling the array containing the population so that a given vector does not get 
chosen twice in the same term contained in the perturbation expression [48]. It can 
also be seen that, for each case study, the estimated positions of the landmarks are 
in closer agreement with their actual positions, than the systems utilizing 
conventional EKF-based SLAM algorithms.  

The results shown in Fig. 7.9 are obtained in the implementation phase, using 
the fuzzy supervisors trained by the DE algorithm, with the chosen control 
parameters NP = 20, F = 0.1, CR = 0.5. Like most other stochastic global 
optimization methods, the performance of the differential evolution strategy too 
varies with the choice of these free parameters. Hence proper choice or fitting of 
these parameters is crucial. According to the general guidelines proposed in [46], 
for many applications, choices of NP = 10*D, F ∈ [0.5, 1] and CR ∈ [0, 1] but 
much lower than 1, are considered to be good choices. Among these factors, F is 
considered to be the most crucial control parameter and NP and CR are considered 
less crucial ones. Hence, in order to find the best performance of DE, it was 
considered to carry out simulations for various values of these control parameters 
and to observe their corresponding performances, for the case study with sensor 
statistics ( 01.0=rσ  m. and 0.15=bσ deg.). At first, NP and CR are kept 
fixed at 20 and 0.5 respectively and varied F for a number of values in the range 0 
to 1 and for each case the fuzzy supervisor was trained separately.  Although, 
according to the general guideline NP should have been chosen as 10*11=110, 
this would have increased the computational burden of the training procedure 
enormously. Hence, with the objective of keeping the computational burden 
reasonably low, the optimization procedure was attempted with an NP value of 20.  
Here when F was varied, it was found that better and better performance of the 
overall system could be achieved in the implementation phase if we use smaller 
values of F. It was found that the best performance was achieved with F = 0.1 and 
with lower values of F the performance degraded a little while with higher values 
of F the degradation was significant. Figure 7.10(a) to Fig. 7.10(c) show the 
corresponding performances of the system in the implementation phase with  
the trained fuzzy supervision for F = 0.05, F = 0.1 and F = 0.5. Figure 7.11 shows 
the RMS errors in estimating x̂ , in the implementation phase, at each sampling 
instant with an incremental movement of the robot, for this series of case studies 
with five representative values of F. It can be easily concluded that the training 
process conducted with F = 0.1 produced the best result for these 
experimentations. 

With this value of F, then one can proceed to determine the most suitable 
values of NP and CR. Keeping F = 0.1 and CR = 0.5, we varied NP for a series of 
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values. The objective was to obtain a reasonable performance with as small a 
value of NP as practicable, so that the computational burden is kept minimum. 
Figure 7.12 shows the RMS errors in estimating x̂ , in the implementation phase, 
at each sampling instant with an incremental movement of the robot, for this series 
of case studies with three representative values of NP = 15, 20 and 25. It was 
found that the best performance is obtained with NP = 20 and the performance 
degrades if we either increase or decrease the value of NP. Hence a value of NP = 
20 was chosen for the training procedure. Next keeping F = 0.1 and NP = 20, CR 
was varied for a series of values. It was found that the variation of CR was not that 
critical in varying the training performance of the scheme. Figure 7.13 shows the 
similar plotting of RMS errors in estimating x̂ , for this series of case studies with 
three representative values of CR = 0.4, 0.5 and 0.6. It was found that the best 
performance was obtained with CR = 0.5 although performances for other values 
of CR were quite similar in nature. Hence it could be concluded that the best set of 
control parameters of the DE for the training procedure of the fuzzy supervisor is 
obtained as NP = 20, F = 0.1 and CR = 0.5. Hence, using these parameters the 
fuzzy supervisor was trained for each case study of sensor statistics i.e. (a) with 
( 01.0=rσ  m. and 0.10=bσ deg.) and (b) with ( 01.0=rσ  m. and 

0.15=bσ deg.). Figure 7.9(a) and Fig. 7.9(b) showed the performances of those 

case studies, in the implementation phase. 
In the next phase, we present a performance comparison between the fuzzy 

supervisor tuned by DE and the fuzzy supervisor tuned by PSO. The performance 
comparison is demonstrated for the sample case study with sensor statistics 
( 01.0=rσ  m. and 0.15=bσ deg.). The popular version of PSO, employed 

using linearly decreasing inertia weight, as described in (7.35), is used for this 
purpose. To make as uniform comparison between the DE based and the PSO 
based tuning algorithms for our problem as practicable, the following factors are 
taken into consideration: (i) identical number of candidate solutions or particles 
for each algorithm (i.e. 20), (ii) identical value of maximum number of iterations 
or generations for which the optimization algorithm is run each time (taken as 10 
in this work) and (iii) identical range of initialization of each corresponding 
dimension of the initial population for each optimization algorithm. The PSO with 
inertia weight variation is normally known to perform well for benchmark 
optimization functions with initial inertia weight, Winitial, of 0.9 and slope of 
inertial weight of 2.5e-4. For our case study, we implemented PSO with Winitial = 
0.9 and employed a series of both slow decrease and aggressive decrease in inertia 
weight. Figure 7.14 shows the corresponding performance of the PSO algorithm in 
terms of the RMS errors in estimating x̂ , in the implementation phase, at each 
sampling instant with an incremental movement of the robot, for this series of case 
studies when the PSO-based training procedure was conducted with slope of 
inertia weight having values 2.0e-4, 2.5e-4, 5.0e-4, 4e-2 and 5e-2. It was found 
that the best performance was indeed obtained with the universally known 
superior value of 2.5e-4. Figure 7.15 shows a similar comparison of estimation 
performance for the best PSO-tuned and best DE-tuned fuzzy supervisors for the  
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Fig. 7.8. Performance of the conventional EKF-based SLAM under incorrect knowledge of 
sensor statistics: (a) with ( 01.0=rσ  m. and 0.10=bσ deg.) and (b) with 

( 01.0=rσ  m. and 0.15=bσ deg.) 
 



198 7   Simultaneous Localization and Mapping (SLAM) in Mobile Robots
 

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

 
(a) 

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s
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Fig. 7.9. Performance of the Fuzzy supervised EKF-based SLAM, in implementation 
phase, under incorrect knowledge of sensor statistics: (a) with ( 01.0=rσ  m. and 

0.10=bσ deg.) and (b) with ( 01.0=rσ  m. and 0.15=bσ deg.) 

 
 
 



7.5   Training a Fuzzy Supervisor Employing Differential Evolution 199
 

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

 
 

(a) 

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

 
(b) 

 
Fig. 7.10. The implementation performance of the fuzzy supervised EKF-based SLAM, 
when the DE-based training was carried out with NP = 20, CR = 0.5, and (a) F = 0.05, (b) F 
= 0.1, and (c) F = 0.5 
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Fig. 7.10. (continued) 
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Fig. 7.11. The estimation performance of the fuzzy supervised EKF-based SLAM, in the 
implementation phase, when the DE-based training was carried out with NP = 20, CR = 0.5, 
and (a) F = 0.05, (b) F = 0.08, (c) F = 0.1, (d) F = 0.15, and (c) F = 0.5 



7.5   Training a Fuzzy Supervisor Employing Differential Evolution 201
 

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

sampling instant

R
M

S
 e

rr
or

c 

a 

b 

 

Fig. 7.12. The estimation performance of the fuzzy supervised EKF-based SLAM, in the 
implementation phase, when the DE-based training was carried out with F = 0.1, CR = 0.5, 
and (a) NP = 15, (b) NP = 20, and (c) NP = 25 
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Fig. 7.13. The estimation performance of the fuzzy supervised EKF-based SLAM, in the 
implementation phase, when the DE-based training was carried out with F = 0.1, NP = 20, 
and (a) CR = 0.4, (b) CR = 0.5, and (c) CR = 0.6 
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Fig. 7.14. The estimation performance of the fuzzy supervised EKF-based SLAM, in the 
implementation phase, when the PSO-based training was carried out with the slope of 
inertia weight chosen as (a) 2.0e-4, (b) 2.5e-4, (c) 5.0e-4, (d) 4e-2, and (e) 5e-2 
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Fig. 7.15. Comparison of the estimation performance of the fuzzy supervised EKF-based 
SLAM, in the implementation phase, when the fuzzy supervisor is trained by (a) DE 
algorithm and (b) PSO algorithm 
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adaptive EKF based SLAM algorithm, for the case study under consideration. It 
can be seen that the performance of the DE tuned algorithm gave less RMS errors 
in estimation, at most of the sampling instants. This procedure helps us 
demonstrating the usefulness of employing a DE-tuned fuzzy supervision for EKF 
based SLAM problems. However we would like to generally remark that this 
performance may vary depending on the environment chosen and the sensor 
statistics considered. 

7.6   Summary 

The present chapter discussed the importance of SLAM in the context of mobile 
robot navigation and, at first, described the extended Kalman filter based SLAM 
algorithms in detail. Next we considered the degradation in system performance 
when a priori knowledge of the sensor statistics is incorrect and showed how 
fuzzy/neuro-fuzzy assistance or supervision can significantly improve the 
performance of the algorithm. Usually, EKF is known as a good choice for SLAM 
algorithms when the associated statistical models are well known. However, the 
performance can become significantly unpredictable and degrading when the 
knowledge of such statistics is inappropriate. The fuzzy/neuro-fuzzy supervisor 
based system proposes to start the system with the wrongly known statistics and 
then adapt the R matrix, online, on the basis of a fuzzy/neuro-fuzzy system that 
attempts to minimize the mismatch between the theoretical and the actual values 
of the innovation sequence. The free parameters of the neuro-fuzzy system are 
automatically learned employing an evolutionary optimization based training 
procedure. The chapter showed how two popular contemporary evolutionary 
optimization techniques, namely, PSO and DE, can be utilized successfully for 
this purpose. The performance evaluation is carried out for several benchmark 
environment situations with several wrong knowledge of sensor statistics. While 
the conventional EKF based SLAM showed unreliable performance with 
significant degradation in many situations, the fuzzy/neuro-fuzzy assistance could 
improve this EKF’s performance significantly and could provide robust, accurate 
performance in each sample situation in each case study. 
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