
A. Chatterjee et al.: Vision Based Autonomous Robot Navigation, SCI 455, pp. 167–206.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 7
Simultaneous Localization and Mapping
(SLAM) in Mobile Robots*

Abstract. This chapter first introduces the concept of SLAM for navigation of
mobile robots and then describes the extended Kalman filter (EKF) based SLAM
algorithms in detail. Next we consider a more complex scenario where this EKF
based SLAM algorithm is implemented in presence of incorrect knowledge of
sensor statistics and discuss how fuzzy or neuro-fuzzy supervision can help in
improving the estimation performance in such situations. In this context, we
also discuss how evolutionary optimization strategies can be employed to
automatically learn the free parameters of such neuro-fuzzy supervisors.

7.1 Introduction

The simultaneous localization and mapping (SLAM) problem has attracted
significant attention from the research communities of the autonomous vehicles
and mobile robots in the past two decades. The SLAM problem, essentially,
consists of estimating the unknown motion of a moving platform iteratively, in an
unknown environment and, hence, determining the map of the environment
consisting of features (also known as landmarks) and the absolute location of the
moving platform on the basis of each other’s information [1]. This is known as a
very complex problem as there is always the possibility that both the vehicle’s
pose estimate and its associated map estimates become increasingly inaccurate in
absence of any global position information [2]. This situation arises when a
vehicle does not have access to a global positioning system (GPS). Hence the
complexity of the SLAM problem is manifold and requires a solution in a high
dimensional space due to the mutual dependence of vehicle pose and the map
estimates [3].

* This chapter is based on:

 1) “A neuro-fuzzy assisted extended Kalman filter-based approach for Simultaneous
Localization and Mapping (SLAM) problems,” by Amitava Chatterjee and Fumitoshi
Matsuno, which appeared in IEEE Transactions on Fuzzy Systems, vol. 15, issue 5, pp.
984-997, October 2007. © 2007 IEEE and

 2) Amitava Chatterjee, “Differential evolution tuned fuzzy supervisor adapted extended
kalman filtering for SLAM problems in mobile robots,” Robotica, vol. 27, issue 3, pp.
411-423, May 2009, reproduced with permission from Cambridge University Press.

168 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

One of the oldest and popular approaches to solve the SLAM problem employs
Kalman filter based techniques. Until now extensive research works have been
reported employing EKF to address several aspects of the SLAM problem [1], [4-
12]. Several successful applications of SLAM algorithms have been developed for
indoor applications [13, 14], outdoor applications [7], underwater applications
[15], underground applications [16] etc. An EKF based approach estimates and
stores the robot pose and the feature positions within the map of the environment
in the form of a complete state-vector and the uncertainties in these estimates are
stored in the form of error covariance matrices. These covariance matrices also
include cross-correlation terms signifying cross-correlation among feature/
landmark estimates. However, one of the well-known problems with the classical
full EKF-based SLAM approach is that the computational burden becomes
significantly high in the presence of a large number of features, because both the
total state vector and the total covariance matrix become large in size. The later
variations of researches on EKF based SLAMs have identified this problem as a
key area and several improvements have so far been proposed [7, 9, 17-19].
Another key problem associated with EKF-based SLAM is the data association
problem, which arises because several landmarks in the map may look similar. In
those situations, different data association hypotheses can give rise to multiple,
distinct looking maps and Gaussian distribution cannot be employed to represent
such multi-modal distributions. This problem is usually solved by restricting the
algorithm to associate the most likely data association, given the current robot
map, on the basis of single measurement [1] or on the basis of multiple
measurements [20]. The method of utilizing multiple measurements is a more
robust method. Although several other data association algorithms have so far
been developed, e.g. those in [21, 22], these algorithms have less significance as
they cannot be implemented in real-time.

Some alternative approaches to solve SLAM problems have also been proposed
which intend to implement some numerical algorithms, rather than employing the
rigorous statistical methods as in EKF. Some of these schemes are based on the
Bayesian approaches which can dispense with the important assumption in EKF
(i.e. the uncertainties should be modeled by Gaussian distributions). Several such
algorithms have been developed employing Sequential Monte Carlo (SMC)
methods that employ the essence of particle filtering [2], [3], [23], [24]. Particle
filtering technique can do away with a basic restriction of EKF algorithm that
introduces an additional uncertainty by performing linearization of nonlinear
models. However, in particle filtering based methods, it is expected that one
should employ large number of particles so that it can contain a particle that can
very closely resemble the true pose of the vehicle/robot at each sampling time
instant [25]. How to develop an efficient SLAM algorithm, employing particle
filtering with small enough number of particles, constitutes an important area of
modern-day research. A significant leap in this direction is taken by the
FastSLAM1.0 and FASTSLAM2.0 algorithms, which have successfully solved
the issue of dimensionality for particle filter based SLAM problems [26]. Several
other SLAM algorithms have also been successfully developed employing scan-
matching technique where the map can efficiently be built by a graph of spatial
relations amongst reference frames [7], [27].

7.1 Introduction 169

It has been shown previously that the performance of an EKF process depends
largely on the accuracy of the knowledge of process covariance matrix (Q) and
measurement noise covariance matrix (R). An incorrect a priori knowledge of Q
and R may lead to performance degradation [28] and it can even lead to practical
divergence [29]. Hence adaptive estimation of these matrices becomes very
important for online deployment. In [28], Mehra has reported a pioneering work
on adaptive estimation of noise covariance matrices Q and R for Kalman filtering
algorithm, based on correlation-innovations method, that can provide
asymptotically normal, unbiased and consistent estimates of Q and R [35]. This
algorithm is based on the assumption that noise statistics is stationary and the
model under consideration is a time invariant one. Later several research works
have been reported in the same direction, employing classical approaches, which
have attempted adaptive estimation of Q and R [30-35]. In [30], a combination of
an iterative algorithm and a stochastic approximation algorithm has been proposed
to estimate Q and R. In [32] and [33], the problem domain has been expanded to
allow time-variance in estimation of Q and R. A wonderful practical application
of [28] has been reported in [34].

In the last ten years or so, there have also been several adaptive Kalman
filtering algorithms proposed which employ fuzzy or neuro-fuzzy based
techniques [36]-[39]. In [38], an input-output mapping problem, where output is
corrupted by measurement noise, is solved by employing a neuro-fuzzy network to
determine AR parameters of each operating point dependant ARMA model and
then employing Kalman filter for the equivalent state-space representation of the
system. In [36], fuzzy logic has been employed for simultaneous adaptive
estimations of Q and R and in [37], fuzzy logic is employed to adapt the R matrix
only, for a Kalman filter algorithm. In real world situations, it is quite perceptible
that these information matrices, in the form of Q and R, may not be accurately
known. Then the performance of the SLAM problem may get affected
significantly.

The present chapter will first introduce the EKF-based stochastic SLAM
algorithm in detail. Then the chapter will explore those situations for SLAM
problems where the noise statistics information for the sensor is not known
accurately. In those situations, we shall describe how neuro-fuzzy assisted EKF
based SLAM algorithms can be effectively utilized [44, 45]. This will detail how a
neuro-fuzzy model can be employed to assist the EKF-based SLAM algorithm to
estimate R adaptively in each iteration. The chapter will also discuss how the free
parameters of the neuro-fuzzy model can be learned using popular evolutionary
optimization algorithms, for example, particle swarm optimization (PSO) [40] and
differential evolution. The fuzzy adapted Kalman filter algorithms discussed in
this chapter essentially implement a much complicated and sophisticated system
compared to its predecessors mainly in two aspects:

i) For the SLAM problem, the situation is essentially very complex as the
sizes of the state vector and hence the covariance matrix are time varying in
nature. This is because, during the process of navigation, new landmarks are
initialized in the state vector at different time instants (and, under some
specific conditions, some existing landmarks may even be deleted) and

170 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

hence these vector and matrix sizes will keep changing. The sizes of these
matrices usually grow.

ii) The approaches discussed in this chapter uses a generalized method of
learning the neuro-fuzzy model automatically. This is in stark contrast with
previously developed systems which use carefully, manually chosen
parameters for the fuzzy system(s) under consideration.

The chapter concludes with a detail, in-depth analysis of these SLAM algorithms
where the results are presented for a variety of environmental situations i.e. with
varying number of feature/landmark points and with several incorrectly known
measurement noise statistics values.

7.2 Extended Kalman Filter (EKF) Based Stochastic SLAM
Algorithm

A. Hypotheses

• The features under consideration are assumed to be 2-D point features
• The features are assumed to remain static i.e. they do not change their

positions with time, in the map built
• There are uncertainties in control inputs, the steering angle command (s) and

the velocity at which the rear wheel is driven (w), and these uncertainties are
modeled using Gaussian distributions

• It is assumed that there is no uncertainty in the starting pose of the robot
• The incremental movement of the robot, between two successive sampling

instants, is assumed to be linear in nature
• There are uncertainties in the range (r) and bearing (θ) measurements, and

these uncertainties are modeled using Gaussian distributions
• The features are only characterized by their 2-D positions and no other

characteristics, e.g. shape etc., is considered in this work

B. The Algorithm
An overview of the feature-map based SLAM employing EKF algorithm is
presented now. An excellent description of the algorithm can also be obtained in
[6], [7]. An EKF is employed for state estimation in those situations where the
process is governed by nonlinear dynamics and/or involves nonlinear
measurement relationships. The method employs linearization about the filter’s
estimated trajectory, which is continuously updated in accordance with the state
estimates obtained from the measurements [43]. The state transition can be
modeled by a nonlinear function f(•) and the observation or measurement of the
state can be modeled by a nonlinear function h(•), given as:

kkkk quxfx +=+),(1 (7.1)

and

111)(+++ += kkk rxhz (7.2)

7.2 Extended Kalman Filter (EKF) Based Stochastic SLAM Algorithm 171

where xk is the (n × 1) process state vector at sampling instant k, zk is the (m × 1)
measurement vector at sampling instant k and uk is the control input. The random
variables qk and rk represent Gaussian white process noise and measurement noise
respectively and Pk, Qk and Rk represent the covariance matrices for xk, qk and rk
respectively.

In case of the SLAM problem, the state vector x is composed of the vehicle
states xv and the landmarks’ states xm. Hence the estimates of the total state vector
x, maintained in the form of its mean vector x̂ and the corresponding total error

covariance matrix P, is given as:
TT

m
T
v]ˆ ˆ[ˆ xxx = (7.3)

 







=

m
T
vm

vmv

PP

PP
P (7.4)

where vx̂ = the mean estimate of the robot/vehicle states (represented by its pose),

Pv = error covariance matrix associated with vx̂ ,

mx̂ = mean estimate of the feature positions and

Pm = error covariance matrix associated with mx̂ .

The robot/vehicle pose is defined with respect to an arbitrary base Cartesian
coordinate frame. The features or landmarks are considered to be 2-D point
features. It is assumed that there are n such static, point features observed in the
map. Then,

T
vvvv yx]ˆ ˆ ˆ[ˆ ϕ=x (7.5),

















=
222

222

222

vvvvvv

vvvvvv

vvvvvv

yx

yyyyx

xyxxx

v

ϕϕϕϕ

ϕ

ϕ

σσσ
σσσ
σσσ

P (7.6),

T
nnm yxyx]ˆ ˆ ˆ ˆ[ˆ 11=x (7.7)

and























=

2222

2222

2222

2222

11

11

111111

111111

nnnnnn

nnnnnn

nn

nn

yyyxyyyx

yxxxxyxx

yyxyyyyx

yxxxyxxx

m

σσσσ
σσσσ

σσσσ
σσσσ








P (7.8)

The map is defined in terms of the position estimates of these static features and
Pvm in (7.4) maintains the robot-map correlation. The off-diagonal elements of Pm

172 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

signify the cross-correlation and hence interdependence of information among the
features themselves. The system is initialized assuming that there is no observed
feature as yet, the base Cartesian coordinate frame is aligned with the robot’s
starting pose and there is no uncertainty in the starting pose of the robot.
Mathematically speaking, 0xx == vˆˆ and P = Pv = 0.

As the robot starts moving, vx̂ and Pv become non-zero values. In subsequent

iterations, when the first observation is carried out, new features are expected to
be initialized and mx̂ and Pm appear for the first time. This increases the size of x̂

and P and the entries of x̂ vector and P matrix are re-calculated. This process is
continued iteratively.

i) Time Update (“Predict”) Step
Here, it is assumed that the control input vector u, under the influence of which
the robot moves, is constituted of two control inputs, the steering angle command

(s) and the velocity at which the rear wheel is driven (w). Hence, Tsw][u = . So

the state estimates can be obtained by employing wheel encoder odometry and the
robot kinematic model. The control inputs w and s must be considered with their
uncertainties involved (e.g. uncertainties due to wheel slippage, incorrect
calibration of vehicle controller) and these are modeled as Gaussian variations in
w and s from their nominal values. Hence, the prediction step calculates the
projections of the state estimates and the error covariance estimates from sampling
instant k to (k+1), given as:














=















 −
+==−

+
m

k
k

vv

m

k
v

kkk x

uxf

x

x
uxfx

ˆ

)ˆ,ˆ(

ˆ
1

ˆ
)ˆ,ˆ(1

ˆ (7.9)





















∇

∇∇∇+∇∇

=−
+

m
T

kvm
k

v

kvm
k

v

T

k
uk

k

T

k
k

v
k

v

k PPxf

Pxf fUuf
vxfPxf

P
)(1

 (7.10)

where fv estimates the robot pose on the basis of the motion model and the control
inputs. Based on the odometric equation of the mobile robot under consideration
here, which assumes that the incremental movement of the robot is linear in
nature, fv can be represented as [42]:



























∗Δ∗+

+∗Δ∗+

+∗Δ∗+

==

























−
+

−
+

−
+

=−
+

WB
k

s
t

k
w

k
v

k
vk

st
k

w
k

v
y

k
vk

st
k

w
k

v
x

k
k

vv

k
v

k
v

y

k
v

x

k
v

)sin(
ˆ

)ˆsin(ˆ

)ˆcos(ˆ

)ˆ,ˆ(

1
ˆ

1
ˆ

1
ˆ

1
ˆ

ϕ

ϕ

ϕ

ϕ

uxfx (7.11)

7.2 Extended Kalman Filter (EKF) Based Stochastic SLAM Algorithm 173

where, WB represents the wheelbase of the robot and Δt is the sampling time. The
Jacobians and Uk, the covariance matrix of u are given as:

)ˆ,ˆ(
k

k
v

k
v

k
v

k
v

ux

x

f

xf
∂

∂

=∇
(7.12),

)ˆ,ˆ(
k

k
v

k

k
v

k
ux

u

f

uf
∂

∂

=∇
(7.13), 








=

2

2

0

0

s

v

σ
σ

U

(7.14)

Here, mx̂ and Pm in (7.9) and (7.10) remain constant with time, as the features are

assumed to remain stationary with time.

ii) Measurement Update (“Correct”) Step
Let us assume that we observe a feature, which already exists in the feature map,

whose position is denoted by that of the ith feature i.e.)ˆ ,ˆ (ii yx . For the system

under consideration [7], [42], it is assumed that the feature observation is carried
out using 2-D scanning range laser (SICK PLS), a range-bearing sensor, which
nowadays is very popular in mobile robot navigation, for distance measurement. It
is assumed that the laser range scanner is mounted on the front bumper of the
vehicle and the laser returns a 180° planar sweep of range measurements in 0.5°
intervals. The range resolution of such a popular sensor is usually about ±50 mm.
In this context, it should be mentioned that the vehicle is also assumed to be
equipped with wheel and steering encoders. The distance measured, in polar form,
gives the relative distance between each feature and the scanner (and hence the
vehicle). Let this feature be measured in terms of its range (r) and bearing (θ)
relative to the observer, given as:

Tr] [θ=z (7.15)

The uncertainties in these observations are again modeled by Gaussian variations
and let R be the corresponding observation/measurement noise covariance matrix
given as:









=

2

2

0

0

θσ
σ rR (7.16)

where we assume that there is no cross-correlation between the range and bearing
measurements. In the context of the map, the measurements can be given as:





















−
−

−

−+−

==

k
k

k

kk

v
v

x
i

x

v
y

i
y

v
y

i
y

v
x

i
x

ki
k

i ϕ̂)
ˆˆ

ˆˆ
arctan(

2)ˆˆ(2)ˆˆ(

)ˆ(ˆ xhz (7.17)

174 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

Now the Kalman gain Wi can be calculated assuming that there is correct

landmark association between z and)ˆ ,ˆ (ii yx and the following computations can

be resorted to:

)1
ˆ(11

−
+−+=

+ kikki
xhzν (7.18)

k
T

k
k

kk
i

RxhPxhS +
+

∇−
++

∇=
+ 1111

 (7.19)

1

111
1

−
++

∇−
+=

+ k
i

T

k
k

k
i

SxhPW (7.20)

where iν denotes the innovation of the observation for this ith landmark and Si the

associated innovation covariance matrix. The Jacobian
1+

∇
k

xh is given as:

−

+
∂

∂
=

+
∇

1
ˆ1

k
k

i

k x
x

h

xh (7.21)

Hence, the a posterior augmented state estimate and the corresponding covariance
matrix are updated as:

111
ˆ

1
ˆ

++
+−

+=+
+

k
i

k
ikk

νWxx (7.22)

T

1k
i

k
i

k
ikk +++

−−
+=+

+ WSWPP
1111

 (7.23)

Here it should be remembered that in addition to the process and measurement
uncertainties, there is an additional uncertainty due to linearization involved in the
formulation of an EKF. The “time update” and “measurement update” equations
are obtained by employing linearization of nonlinear functions f(•) and h(•) about
the point of the state mean. This linearization is obtained by employing a Taylor
series like expansion and neglecting all terms which are of higher order than the
first order term in the series. This manner of approximating a nonlinear system by
a first order derivative introduces this additional source of uncertainty in EKF
algorithm. In fact, for highly nonlinear functions, these linearized transformations
cannot sufficiently accurately approximate correct covariance transformations and
this may lead to highly inconsistent uncertainty estimate. Under those situations
unscented transform may provide more accurate results.

iii) Initialization of a new feature and deletion of an old feature
During this iterative procedure of performing prediction and update steps
recursively, it is very likely that observations of new features are made time to
time. Then these new features should be initialized into the system by
incorporating their 2-D position coordinates in the augmented state vector and
accordingly modifying the covariance matrix. These features, identified by the

7.2 Extended Kalman Filter (EKF) Based Stochastic SLAM Algorithm 175

LRS, may correspond to points, lines, corners, edges etc. In this work, we have
considered that the features are point like features, each representing a unique
distinct point in the two-dimensional map of the environment. Resorting to the
mathematical computations as shown in [7], these new +

kx̂ and +
kP can be

calculated as:
















=+

),ˆ(

ˆ
ˆ

k
k

vf

k
k zxf

x
x (7.24)





























∇∇+∇∇∇∇

∇

∇

=+

T

k
z

k
k

z

T

k
vk

v
k

vk
vm

k
vk

v
k

v

T

k
v

T

k
vmmk

T
vm

T

k
vk

v
k

vm
k

v

k

ffR
f

fffP
f

fP
f

fP
f

f

ffPPP

ffPPP

P
 (7.25)

Here),ˆ(zxf vf is employed to convert the polar observation z to the base

Cartesian coordinate frame. The Jacobians are calculated as:

),ˆ(
k

k
v

k
v

f

k
v

zx
x

f

f
f

∂

∂
=∇ ,

),ˆ(
k

k
v

k

f

k
z

zx
z

f

f
f

∂

∂
=∇ (7.26)

The deletion of unreliable features is a relatively simple matter. We only need to
delete the relevant row entries from the state vector and the relevant row and
column entries from the covariance matrix.

Now, it is quite common that when an observation step is carried out, there will
be multiple number of landmarks visible at the same time and hence, several
independent observations will be carried out. In our system, we have assumed that

a batch of such observations is available at once (i.e. T
nnrr] , [,1,1 θθ =z)

and updates are carried out in batches. This is in conformation with the arguments
placed in [7] which indicate that an EKF algorithm tends to perform better update
steps for SLAM algorithms, if the innovation vector ν consists of multiple
observations simultaneously. Hence, in the context of this batch mode of
observation and update procedure, the corresponding SLAM algorithm is based on
composite ν, S and W vectors/matrices and the sizes of these vectors/matrices
keep changing with time because at any instant of observation, the total number of
visible landmarks keep changing.

176 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

7.3 Neuro-fuzzy Assistance for EKF Based SLAM

Most of the works reported in the area of adaptive Kalman filters have so far
concentrated on utilizing new statistical information from innovation sequence to
correct the estimation of the states. Our approach for adapting the EKF is based on
the innovation adaptive estimation (IAE) approach, which was originally proposed
in [28] and later utilized in combination with fuzzy logic in [37]. The basic
concept relies on determining the discrepancy between a new measurement zk and

its corresponding predicted estimation kẑ , at any arbitrary kth instant, and

utilizing this new information to correct the estimations/predictions already made.
The adaptation strategy is based on the objective of reducing mismatch between
the theoretical covariance of the innovation sequences (Sk) and the corresponding

actual covariance of the innovation sequences (InnkĈ). In our SLAM algorithm,

Sk is calculated using (7.19) where the right hand side of the equation is made

consistent with the concept of batch mode of observation and update. InnkĈ can

be calculated as:

 InnkĈ = νk νk
T (7.27)

where νk denotes the augmented innovation sequence, made consistent with the
batch mode. According to [37], this covariance should be calculated on the basis of
a moving average of νk νk

T over an appropriate moving estimation window of size
M. However, for the SLAM problem, the size of the augmented νk keeps changing
from time to time. This is because it is dependent on the number of landmarks
observed in any given observation and update step, which were all observed at

least once before. Hence we employ (7.27) to calculate InnkĈ rather than using a

moving average. Therefore, the mismatch at the kth instant, is given as:

kInnkInnk SCC −=Δ ˆˆ (7.28)

Our objective is to minimize this mismatch employing fuzzy logic. This is carried
out, by employing a one-input-one-output neuro-fuzzy system for each diagonal

element of the InnkĈΔ matrix. These fuzzy rules are employed to adapt the R

matrix, so that the sensor statistics is adapted for subsequent reduction in

mismatch InnkĈΔ . The complete EKF-based SLAM algorithm, employing the

neuro-fuzzy assistance, is presented in algo. 7.1. The system is designed with a
sampling time of 25 msec. between successive control input signals.

7.3 Neuro-fuzzy Assistance for EKF Based SLAM 177

1. IF All waypoints are traversed, THEN Stop ENDIF.
2. Compute distance of the robot from the current waypoint.

 IF (distance < minimum distance allowed from any waypoint),
 THEN switch to next waypoint as the current waypoint ENDIF.

3. Compute change in steering angle (Δs) to point towards the current waypoint
and then, new value of steering angle (s) (satisfying the constraints of max. rate of
steering change (Δsmax) and max. steering angle (smax)).
4. Move the robot and determine its actual pose.
5. Perform EKF prediction step, in accordance with (7.7) to (7.10).
6. IF (Time_for_Observation is TRUE), THEN go to step 7. ELSE go to step 1.
ENDIF.
7. Determine the set of visible landmarks from the current actual robot position.
Compute actual range-bearing observation for each of them. Separate those
observations based on already observed landmarks and newly observed landmarks
(if any).
8. Predict range-bearing observations, for already observed landmarks in step 7,
on the basis of augmented total state vector, predicted in step 5.
9. Compute augmented innovation sequence (ν) for already observed landmarks,
on the basis of actual and predicted observations, employing (7.14), adapted for
batch-mode situations.
10. Compute corresponding augmented measurement noise covariance matrix R
(utilizing the original [2 × 2] R matrix) and augmented linearized observation
model h, adapted for batch-mode situations.
11. Compute augmented S, on the basis of the augmented R and h and employing
(7.15), adapted for batch-mode situations.
12. Update the a posterior state estimate vector and error covariance matrix,
according to (7.18) and (7.19).

13. Compute InnkĈ and InnkĈΔ , according to (7.23) and (7.24) respectively,

and determine the size of InnkĈΔ , i.e.]ˆˆ[, colsrows CC ΔΔ .

14. Determine the absolute maximum value of mismatch among the range

observations (mismatchrangeInnk __ĈΔ) and the bearing observations

(mismatchbearingInnk __ĈΔ) separately from the corresponding diagonal entries of

the InnkĈΔ matrix.

15. FOR j = 1 to rowsĈΔ ,

Normalize the corresponding diagonal entry),(ˆ jjInnkCΔ by the

appropriate

mismatchrangeInnk __ĈΔ or mismatchbearingInnk __ĈΔ .

178 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

Determine the corresponding),(jjRΔ output from the NFS, with the

normalized),(ˆ jjInnkCΔ input to it.

ENDFOR

16. Determine 2
rσΔ as a mean of those),(jjRΔ entries, which correspond to

range measurements.

17. Determine 2
θσΔ as a mean of those),(jjRΔ entries, which correspond to

bearing measurements.

18. Adapt the original 2×2 R matrix as: Rk = Rk-1 + 








Δ
Δ

2

2

0

0

θσ
σ r .

19. IF (new feature(s) observed in step 7),
THEN augment state vector and error covariance matrix, according to (7.20),

(7.21) and (7.22).
ENDIF

20. Go to step 1.

Algo. 7.1. The neuro-fuzzy assisted EKF based SLAM algorithm

From algo. 7.1, it can be seen that each Neuro-Fuzzy System (NFS) employs a
nonlinear mapping of the form:)),((),(ˆ jjfjj InnkNFS CR Δ=Δ where),(jjRΔ

corresponds to an adaptation recommended for the corresponding diagonal
element of the augmented measurement noise covariance matrix R matrix,
computed according to the batch-mode situation. This augmented matrix is
calculated each time an iteration enters into the observe and update step and its
size is determined on the basis of the total landmarks visible in the observe step.
To make it consistent with the batch of observed landmarks that were already
visited at least once earlier, the size of this augmented R is [2zf × 2zf] where zf is
the number of landmarks observed in that iteration, which were also observed
earlier. This augmented R is formed utilizing the original [2 × 2] R matrix and this
is formulated as:





























=

2

2

2

2

2

2

000

000

0

0

000

00000

 augmented

θ

θ

θ

σ
σ

σ
σ

σ
σ











r

r

r

R
 (7.29)

7.3 Neuro-fuzzy Assistance for EKF Based SLAM 179

Here, 2
rσ and

2
θσ correspond to the sensor statistics computed for that iteration.

It can be seen that the augmented R matrix comprises of diagonal elements only
and all the off-diagonal elements are considered to be zero. This is in
conformation with our assumptions presented beforehand, in section 7.2, that the
range and the bearing measurements are independent of each other and there is no
cross-correlation between these measurements. The size of this augmented R
matrix keeps changing in different iterations, as the number of already visited
landmarks observed again in a given iteration keeps varying from iteration to

iteration. The size of this augmented R is consistent with that of the InnkĈ and

hence, InnkĈΔ .

With the idea of implementing the same NFS for each and every diagonal
element of the augmented R matrix, we employ normalized input for each NFS.
The NFS practically employs three fuzzy IF-THEN rules of the form:

 IF),(ˆ jjInnkCΔ is N THEN),(jjRΔ = w1,

IF),(ˆ jjInnkCΔ is Z THEN),(jjRΔ = w2 and

IF),(ˆ jjInnkCΔ is P THEN),(jjRΔ = w3.

w1, w2 and w3 indicate the amount of fuzzy adaptation recommended in form of a
diagonal element of the ΔR matrix, depending on the nature of the fuzzified
mismatch in the corresponding diagonal element of the InnkĈΔ matrix.

However, the order of mismatch may be different for range and bearing
observations and this may depend on how poorly (or accurately) the sensor
statistics for range and bearing observations are individually known. Hence we
employ normalized inputs corresponding to range and bearing observations

separately, on the basis of appropriate computations of mismatchrangeInnk __ĈΔ

and mismatchbearingInnk __ĈΔ , as given in algo. 7.1. Then with these normalized

inputs, the NFS enables us to compute),(jjRΔ for each diagonal entry. Finally

we compute the adaptations i.e. 2
rσΔ and 2

θσΔ required for the original [2 × 2]

R matrix on the basis of appropriate means, separately computed from the arrays
of),(jjRΔ entries for range and bearing observations. This adapted original [2

× 2] R matrix is kept ready for the next appropriate iteration, when EKF will enter
the observation and update step, and will be utilized for subsequent formation of
augmented R matrix and so on. Then, each observation and update step is
concluded by augmenting the state vector and the corresponding covariance
matrix, by employing (7.24)-(7.26), if there are new feature(s) observed during
this observation step.

180 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

7.4 The Neuro-fuzzy Architecture and Its Training
Methodology Employing Particle Swarm Optimization
(PSO)

7.4 The Neuro-fuzzy Architecture and Its Training Methodology

7.4.1 Architecture of the Neuro-fuzzy Model

The neuro-fuzzy model has been developed as a one-input-one-output system. The
four-layer architecture is shown in Fig. 7.1. Let ui

l and Oi
l respectively denote the

input to and output from the ith node of the lth layer.

1w

Σ
3w

2w

N

Z

P

K

Π ΔRk(j,j)ΔCInnk(j,j)

Fig. 7.1. Four-layer architecture of the proposed neuro-fuzzy system. (Reproduced from
[44] with permission from the IEEE. ©2007 IEEE.).

1) Layer 1: Input Layer
This layer comprises a single node, signifying the single input variable. The input-
output relation of this node is:

O1 = u1 =),(ˆ jjInnkCΔ (7.30)

2) Layer 2: Membership Function Layer
Here, the input variable is fuzzified employing three Membership Functions
(MFs), negative (N), zero (Z) and positive (P). Figure 7.2 shows these MFs where
Nv and Nb respectively denote the right vertex and right base points of the MF N,
Zbl, Zvl, Zvr and Zbr respectively denote the left base, left vertex, right vertex and
right base points of the MF Z and Pb and Pv respectively denote the left base and
left vertex points of the MF P. The output of the ith MF is given as:

Oi
2 = μi(u

1) = μi(),(ˆ jjInnkCΔ) (7.31)

3) Layer 3: Defuzzification layer
This layer performs defuzzification where the defuzzified output is calculated as
an weighted average of all its inputs. Hence the output from the solitary node in
this layer can be calculated as:









=

=

=

=
∗

=
∗

=
3

1

1

3

1

1

3

1

2

3

1

2

3

)(

)(

i
i

i
ii

i
i

i
ii

u

wu

O

wO
O

μ

μ
 (7.32)

7.4 The Neuro-fuzzy Architecture and Its Training Methodology 181

-1.0 1.0

1
N : Negative

Z : Zero

P : Positive

N Z P

Nv NbZbl ZbrZvl Zvr Pb Pv
0

Fig. 7.2. Membership functions employed in Fig. 7.1. (Reproduced from [44] with
permission from the IEEE. ©2007 IEEE.).

4) Layer 4: Output Layer
This layer performs a suitable scaling for the defuzzified output. The input-output
relationship of the node in this layer is given as:

344 OKuKO ∗=∗= (7.33)

7.4.2 Training the Neuro-fuzzy Model Employing PSO

This neuro-fuzzy model is trained to determine the suitable free parameters of the
system i.e. the parameters of the MFs, the output consequence singletons and the
output gain. However, the training cannot be accomplished in the conventional
supervised mode, as the exact desired output, for a given input, is not quantitatively
known. Hence, normal backpropagation kind of training methodology cannot be
resorted to and it is suitable to apply stochastic global optimization algorithms for
such systems in an unsupervised manner. There are several such candidate
algorithms available now. In this section we describe how PSO can be suitably
employed for this purpose. PSO is a relatively new algorithm [40], [41], that is
based on the swarm behaviors of birds or fishes. The training of the neuro-fuzzy
system is accomplished as a high-dimensional metaheuristic optimization problem,
where the objective is to optimize a fitness function),,(21 nfit xxxf  on the

basis of the values of the variables nxxx ,, 21 .

In a PSO problem, several such candidate solutions of nxxx ,, 21 are
created in a multi-dimensional space (called “particles”) and the suitability of each
of them is evaluated in each iteration. For the problem under consideration here,
each such potential “particle” is formed as a 12-dimensional vector x =

[1221 xxx ]T, as shown in Fig. 7.3. Each “particle” i is characterized by the

vectors denoting its position (xi) and its velocity (vi) at the current time step. In
order to pursue the optimum of the fitness function (ffit), velocity vi and hence
position xi of each particle is adjusted in each time step. The updated velocity

182 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

in each time step vinew is a function of three major components: the old velocity
vector of the same particle (viold), difference of the ith particle’s best position
found so far (called pi) and the current position (xi) (called the “cognitive”
component) and difference of the best position of any particle within the context
of the topological neighborhood of ith particle found so far (called pg) and current
position of the ith particle (xi) (called the “social” component) [40, 41]. Each of
the last two components is stochastically weighted so that the updating in the
velocity of each particle will cause enough oscillations, allowing each particle to
search for a better pattern within the problem space. Hence, the velocity and
position update relations, in the dth dimension, are given as:

vidnew = vidold + ϕi(pid – xid) + ϕg(pgd – xgd)

 IF (vidnew > vdmax) THEN vidnew = vdmax ENDIF

IF (vidnew < -vdmax) THEN vidnew = -vdmax ENDIF

 xidnew = xidold + vidnew

 vidold = vidnew

 xidold = xidnew (7.34)

ϕi and ϕg are responsible for introducing stochastic weighting and they are given
as ϕi = ci*rand1() and ϕg = cg*rand2(). rand1() and rand2() are two random
functions in [0, 1] and ci and cg are positive constants. A popular choice for ci and
cg is ci = cg = 2. This traditional PSO model shows quick, aggressive convergence
during the early phase but often encounters problem in fine tuning the search to
determine the supreme solution. Hence, in our algorithm we have employed an
improved version of this PSO algorithm that utilizes a judicious mix of aggressive,
coarse updating during early iterations and fine updating during later iterations
[40]. Hence the velocity update rule is given as

vidnew = witer (vidold) + ϕi(pid – xid) + ϕg(pgd – xid) (7.35)

with the position update rule remaining unchanged as given before. w is called the
inertia weight which is initially kept high and then gradually decreased over the
iterations so that it can initially introduce coarse adjustment in velocity updating
and gradually fine changes in velocity updating takes over. In our algorithm, we
have utilized linearly adaptable inertia weight and witer gives the value of the
inertia weight at that given iteration. The iterative process is continued until the
optimization process yields a satisfactory result. This is evaluated on the basis of
whether the value of ffit falls below the specified maximum allowable value or
whether the maximum number of iterations has been reached. A detailed
description of the PSO algorithm is available in [40, 41].

7.4 The Neuro-fuzzy Architecture and Its Training Methodology 183

Nv Nb Zbl Zvl Zvr Zbr Pb Pv w1 w2 w3 K

Fig. 7.3. Detailed configuration of each 12-dimensional “particle” employed by PSO.
(Reproduced from [44] with permission from the IEEE. ©2007 IEEE.).

In our approach, the objective of the neuro-fuzzy assistance to the EKF based
SLAM is to improve the estimation performance as much as possible. This means
we should try and minimize the discrepancy between actual covariance and the
theoretical covariance of the innovation sequence over the entire set of
observation instants, during the movement of the vehicle/robot, as much as
possible. Hence the fitness function is formulated on the basis of: a) computing
the mean-square value of all the diagonal entries of the ΔCInnk matrix at any given
observation instant, b) storing such mean-square values for each observation
instant during an on-going iteration and c) computing a mean of all such mean-
square values for all observation instants at the end of a complete iteration.
Mathematically this can be shown as:

obs

N

n nobsC

J

j
Innk

fit N

J

jj

f

obs

obs

nobsC




=

=

Δ

= 1 _

1

2

)

)],([

(

_

C
 (7.36)

where Nobs denotes the total number of observation instants in a given iteration and
JC_nobs denotes the total number of diagonal elements of ΔCInnk matrix when the
nobsth observation is made.

In the context of adapting a meaningful NFS, the positions of each “particle”, at
the end of each iteration, are subjected to several constraints. Most of these
constraints are implemented to maintain specific shapes chosen for the MFs
(usually trapezoidal, which as a special case can become triangular) and also to
ensure that there is some overlapping between the stretches of consecutive MFs.
Another constraint included is that, for each MF, its control points (starting from
left to right) should be chosen in a monotonically nondecreasing fashion. This will
ensure that all regions, within the universe of discourse of the input for the NFS,
will remain covered by at least one MF. These constraints are implemented as:

 IF (Nb < Nv) THEN Nb = Nv ENDIF
 IF (Zvl < Zbl) THEN Zvl = Zbl ENDIF
 IF (Zvr < Zvl) THEN Zvr = Zvl ENDIF
 IF (Zbr < Zvr) THEN Zbr = Zvr ENDIF
 IF (Pv < Pb) THEN Pv = Pb ENDIF

 IF (Nb < Zbl) THEN Nb = Zbl ENDIF
 IF (Zbr < Pb) THEN Zbr = Pb ENDIF (7.37)

184 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

Another constraint is implemented to signify that the scaling employed in the
output layer of the NFS is employed for magnitude scaling only, and hence it
cannot be employed for changing polarity. It means that K cannot become
negative.

7.4.3 Performance Evaluation

To evaluate the performance of the proposed system, we have considered various
environments, which are available in [42]. In fact the packages available in [42]
should serve as an excellent platform for learning and analysis of existing Kalman
filter and particle filter based SLAM algorithms. Researchers can develop their
own algorithms and can compare their performance vis-à-vis these algorithms.
Several benchmark environments are available there and we have tested our
algorithm in these simulated environments with their associated given vehicle
motion model. The environment is usually specified in such a manner where a
vehicle/robot is supposed to navigate through some waypoints and in the process
should be able to acquire the map of the environment with several configurations
of feature/landmark points. In the present scheme, we consider three such
environments as specified in [42]. In each case we have the identical scene of
ideal robot movement where the robot path is specified by 17 waypoints.
However, each environment consists of varied number of landmarks to impose
several degrees of complexities and the three environments under consideration
consist of 35, 135 and 497 landmarks respectively. The uncertainties in control
inputs are specified as: σw = 0.3 m/sec. and σs = 3 deg. An observation step and
the associated update step is carried out after eight consecutive prediction steps,
identical with the EKF based algorithm in [42]. This follows a popular notion in
EKF-based SLAM community, where instead of employing an observation and
update step after each prediction step, one computes several consecutive
prediction steps, and then takes corrective action by one observation and update
step. This helps in reducing the computational burden of the SLAM algorithm. In
algo. 7.1, this is indicated by the Time_for_Observation flag, which is set TRUE
for one iteration, after each 8 successive iterations.

The performance of the proposed system is compared with a conventional
EKF-based SLAM system where the Q and R matrices are kept static throughout
the experiment. The proposed algorithm starts with the same Q and R matrices,
but it keeps adapting the R matrix according to the proposed scheme. According
to the data available from [42], the EKF based algorithm works perfectly when
sensor statistics are known as: 1.0=rσ m. and 1=θσ deg. First we consider

the situation where the sensor statistics are wrongly considered as: 0.2=rσ m.
and 1.0=θσ deg. In each figure, the firm lines shown in green, depict the actual

path traversed by the robot, while the firm lines shown in black, depict the SLAM
estimated path traversed based on estimated states of robot poses in each sampling

7.4 The Neuro-fuzzy Architecture and Its Training Methodology 185

instant or iteration. The stars (∗) depict the actual landmark positions, which are
stationary in the environment. The crosses (+) depict the positions of these
landmarks estimated at the end of the test run. Obviously, the performance of the
system will be superior, if the estimated robot path and actual path match as far as
possible and the estimated landmark positions and their actual positions coincide
as far as possible. Figure 7.4(a) to Fig. 7.4(c) shows the performance of the
conventional EKF-based SLAM for three different environment situations. It can
be seen that the performance is acceptable when there are small number of
landmarks in the environment. However, the performance became really bad when
the landmarks became denser and both the estimations of the robot pose at
different instants and the map acquired degraded significantly as the EKF
estimations are quite distant from the original robot positions and the map
situation. Figure 7.5(a) to Fig. 7.5(c) show the situations when the neuro-fuzzy
assisted EKF-based SLAM is employed for identical environments. It can be seen
that the neuro-fuzzy assistance could improve the situation dramatically and the
estimates of the robot states as well as acquisition of the map was quite stable for
all three different environments with varied number of landmarks. In all these
environments, the robot position estimates follow the actual robot positions
closely and the estimation of the stationary landmark positions also closely
matches with their actual positions in the environments.

The scheme was further tested for another situation where the sensor statistics
are wrongly considered in opposite directions and they are considered as

01.0=rσ m. and 0.3=θσ deg. Then the same set of algorithms was employed

for identical set of environments. Figure 7.6(a) to Fig. 7.6(c) show the
performances of the conventional EKF-based SLAM and Fig. 7.7(a) to Fig. 7.7(c)
show the corresponding performances of the neuro-fuzzy assisted EKF-based
SLAM algorithms. In these case studies, the EKF-based SLAM shows a different
trend in performance. As we can see, the estimation performance is worst for the
environment containing small number of landmarks. However, with increase in
landmarks, the estimations became more accurate and for the situation with 497
landmarks, the performance of the EKF-based SLAM was quite satisfactory. On
the other hand, the neuro-fuzzy assisted EKF showed uniformly stable
performance for each environment with quite accurate estimations of robot poses
and feature positions for each environment situation. Each result, shown in Fig.
7.5(a) to Fig. 7.5(c) and Fig. 7.7(a) to Fig. 7.7(c), for the neuro-fuzzy assisted EKF
based SLAM depicts one sample run conducted. For each of these six specific
situations of two case studies, we conducted 10 individual runs. It was found that,
for each given situation, results obtained with each of 10 individual runs, were
very close to each other. These case studies further prove that the neuro-fuzzy
assistance can vastly improve the degrading performance of the traditional EKF
algorithm in several situations, when the sensor statistics are wrongly known. In
these situations, the performance of the conventional EKF becomes highly
unreliable. However, presence of neuro-fuzzy assistance can help the EKF to

186 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

maintain a stable performance and this performance has been shown robust
enough over several environment situations, with several wrong knowledge of
sensor statistics.

For the neuro-fuzzy assisted EKF based SLAM, the training of the neuro-fuzzy
system, for each case study as described before, was carried out in offline situation
on the basis of the data gathered by the robot for a given environment situation.
For our experimentation, we implemented the training procedure, for each case
study, for the environment containing 135 landmarks. Once the training of the
neuro-fuzzy system was completed (on the basis of a given configuration of
the landmarks) and the free parameters of the NFS were suitably determined, the
trained NFS-based EKF was implemented for robot navigation through the
waypoints for several configuration of landmarks as described before (i.e.
environments with 35, 135 and 497 landmarks). Table 7.1 details these parameters
employed for the PSO algorithm employed for training the NFS. Here, the
dimensions of each particle, which are employed to learn the control points of the
MFs of the NFS (i.e. [821 xxx ]), are all initialized with their positions within

the range [-1, 1]. This is done in conformation with the normalization procedure
that works in conjunction with the NFS. The prospective weights associated with
the layer 3 of the NFS (denoted by the dimensions x9, x10 and x11 of the PSO
algorithm) are all initialized with their positions within the range [-2, 2]. The
prospective gain K associated with the layer 4 of the NFS (denoted by
the dimension x12 of the PSO algorithm) is initialized with its position within the
range [0, 2], because it is assumed that K is a non-negative quantity. Each time,
the termination criterion for the PSO algorithm was set for a maximum number of
iterations (maxiter) of 20. For the case study with initial sensor information

0.2=rσ m. and 1.0=θσ deg, the learned parameters of the NFS at the

completion of the training procedure are:

[1221 xxx ] = [-0.2008 –0.0626 –0.0626 –0.0626 0.0820 0.5961 0.3224

0.4002 –0.0086 1.5801 –0.9729 0.0011]

and for the case study with initial sensor information 01.0=rσ m. and

0.3=θσ deg., the learned parameters of the NFS are:

[1221 xxx ] = [-0.4570 0.5242 0.4805 0.9741 0.9741 0.9741 –0.4290

0.2413 –0.0024 –0.8762 1.3561 0.2907].

In each case, it can be seen that these learned parameters satisfied those
constraints presented in (7.37).

7.4 The Neuro-fuzzy Architecture and Its Training Methodology 187

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(a)

-100 -50 0 50 100
-100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(b)

Fig. 7.4. Conventional EKF-based SLAM performance for case study I (0.2=rσ m.

and 1.0=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks in the

environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.).

188 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

-100 -50 0 50 100

-100

-80

-60

-40

-20

0

20

40

60

80

100

metres

m
et

re
s

(c)

Fig. 7.4. (continued)

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(a)

Fig. 7.5. Neuro-fuzzy assisted EKF-based SLAM performance for case study I
(0.2=rσ m. and 1.0=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks

in the environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.).

7.4 The Neuro-fuzzy Architecture and Its Training Methodology 189

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(b)

(c)

Fig. 7.5. (continued)

190 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

-100 -50 0 50 100
-100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(a)

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

100

metres

m
et

re
s

(b)

Fig. 7.6. Conventional EKF-based SLAM performance for case study II (01.0=rσ m.

and 0.3=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks in the
environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.).

7.4 The Neuro-fuzzy Architecture and Its Training Methodology 191

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(c)

Fig. 7.6. (continued)

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(a)

Fig. 7.7. Neuro-fuzzy assisted EKF-based SLAM performance for case study II
(01.0=rσ m. and 0.3=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks

in the environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.).

192 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(b)

(c)

Fig. 7.7. (continued)

7.5 Training a Fuzzy Supervisor Employing Differential Evolution 193

Table 7.1. The PSO parameters employed

Sl. No. Parameter descriptions Parameter values for
case study (i)

Parameter values for
case study (ii)

1 No. of particles (N) 40 40
2 No. of dimensions (D) 12 12
3 Initial inertia weight (Winitial) 0.9 0.9
4 Slope of inertia weight (ΔW) 2.5e-4 2.5e-4
5 Initialization range for MFs (x1,

x2, … x8)
[-1, 1] [-1, 1]

6 Initialization range for weight
factors (x9, x10, x11)

[-2, 2] [-2, 2]

7 Initialization range for gain (x12) [0, 2] [0, 2]
8 Maximum permissible velocity

for MFs
(v1max, v2max, … v8max)

0.3 0.1

9 Maximum permissible velocity
for weight factors (v9max, v10max,
v11max)

1.0 0.5

10 Maximum permissible velocity
for gain (v12max)

1.0 0.5

7.5 Training a Fuzzy Supervisor Employing Differential
Evolution (DE) Based Optimization

7.5 Training a Fuzzy Supervisor Employing Differential Evolution

In the previous section we demonstrated how PSO can be utilized to train a
fuzzy/neuro-fuzzy supervisor for successful supervision of an EKF based SLAM
system. Logically speaking, the idea can be extended to employ other evolutionary
algorithms too for similar fuzzy/neuro-fuzzy based supervision purpose. Hence we
implemented a similar fuzzy supervisor employing differential evolution (DE),
another popular evolutionary algorithm known, for similar types of problems [45].
In DE, like many other population based global optimization methods, several
candidate solutions, each containing a possible solution vector for the optimization
problem under consideration, are created simultaneously in the multi-dimensional
search space and each one of them is individually evaluated in terms of its fitness
function, which indicates the degree of suitability of that particular candidate
solution to evolve as the best possible solution. This process is continued in an
iterative fashion, where new vectors, i.e. possible candidate solutions, are created
from the candidate solutions in the previous generation, in quest for generation of
better and better solutions, which can be quantitatively evaluated by fitter and fitter
fitness function values. Several mathematical strategies can be employed to create
new candidate vectors for the current generation, based on the old candidate vectors
of the previous generation. At the end of each generation, the candidate solution
providing the fittest fitness function value (usually the minimum value) emerges as
the best possible solution. This iterative process continues until the fittest fitness
function value (usually the minimum value) for the best solution vector in a
generation falls below the maximum permitted fitness function value for that
optimization process or when the maximum number of generations is reached.

Let us consider that, in the basic variant of DE, utilized for minimizing a cost
function f(x) on the basis of D-dimensional x, NP number of such candidate

194 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

solutions of ()Dxxx ,, 21 are created in the D-dimensional space and the

suitability of each of them is evaluated in each generation G. The initial
population is generated in a random fashion and the objective is that the generated
vectors should try to cover the entire search space as far as practicable. Each ith
vector for the (G+1)th generation is created by adding the weighted difference
between two population vectors to a third vector, all these three vectors pertaining
to the Gth generation. This can be shown by the following formula [46],[47]:

, , , ,()i G r G r G r Gν x F x x+ = + −
1 2 31 (7.38)

where NPi ,,2,1 = . Here []NPrrr ,1,, 321 ∈ and they are all mutually

different. F is a constant weighting factor and usually []2,0∈F . This factor

influences the amplification of the difference)(,, 32 GrGr xx − .

To increase diversity in the newly generated vector, the method of crossover is
introduced. This crossover operation generates a new vector ui,G+1, from the newly
generated perturbed vector νi,G+1 and the old vector xi,G. In the basic variant of DE,
this new vector is generated as [11,12]:

()1,1,21,11, ,, ++++ = GDiGiGiGi uuuu  with

[]



∈
++=

= +
+ Djotherallforx

Lnnjfor
u

Gji

DDGji
Gji ,1

1

,

1,
1,

ν (7.39)

Here, n is a randomly chosen integer, []Dn ,1∈ , and it determines the starting

index for the crossover. The length or duration of crossover, in this basic variant
of DE, is also an integer drawn from the interval [1,D], and is based on the chosen
crossover probability, []1,0∈CR . These n and L values are chosen afresh for

each ui,G+1.
Now, if the new vector ui,G+1 can yield a smaller value for the fitness function,

then this vector becomes the new xi,G+1 for the (G+1)th generation. Otherwise we
keep xi,G+1= xi,G.

7.5.1 Performance Evaluation

The performance of DE optimized fuzzy supervisor based solution for the SLAM
problems has also been tested by creating an environment in simulation, utilizing
the package available in [42], as done in our previous set of case studies. For the
new set of case studies, we consider a different environment and two sets of
incorrect knowledge of sensor statistics as: (a) 01.0=rσ m. and

0.10=bσ deg. and (b) 01.0=rσ m. and 0.15=bσ deg. For these situations,
the performances exhibited by the conventional EKF-based SLAM [42] are shown
in Fig. 7.8(a) and Fig. 7.8(b). It can be seen that the estimated robot path deviates
a lot from the ideal path and also the estimated positions of many landmarks are
quite far away from their actual positions. However, when our DE-optimized
fuzzy supervisor based system was employed for each of these two case studies,

7.5 Training a Fuzzy Supervisor Employing Differential Evolution 195

the fuzzy supervision could improve the performance quite markedly, in each
case, as depicted in Fig. 7.9(a) and Fig. 7.9(b). For the fuzzy supervised algorithm,
the estimated robot paths deviated much less from the ideal robot paths. In this
scheme, the free parameters of the fuzzy supervisor are learnt by implementing
differential evolution with D = 11 and employing binomial crossover. The variety
of the DE algorithm employed is a popular variant, known as the “DE/rand/1”
scheme [46], [47]. However, this variant differs slightly from the original
“DE/rand/1” scheme, because here the random selection of vectors is performed
by shuffling the array containing the population so that a given vector does not get
chosen twice in the same term contained in the perturbation expression [48]. It can
also be seen that, for each case study, the estimated positions of the landmarks are
in closer agreement with their actual positions, than the systems utilizing
conventional EKF-based SLAM algorithms.

The results shown in Fig. 7.9 are obtained in the implementation phase, using
the fuzzy supervisors trained by the DE algorithm, with the chosen control
parameters NP = 20, F = 0.1, CR = 0.5. Like most other stochastic global
optimization methods, the performance of the differential evolution strategy too
varies with the choice of these free parameters. Hence proper choice or fitting of
these parameters is crucial. According to the general guidelines proposed in [46],
for many applications, choices of NP = 10*D, F ∈ [0.5, 1] and CR ∈ [0, 1] but
much lower than 1, are considered to be good choices. Among these factors, F is
considered to be the most crucial control parameter and NP and CR are considered
less crucial ones. Hence, in order to find the best performance of DE, it was
considered to carry out simulations for various values of these control parameters
and to observe their corresponding performances, for the case study with sensor
statistics (01.0=rσ m. and 0.15=bσ deg.). At first, NP and CR are kept
fixed at 20 and 0.5 respectively and varied F for a number of values in the range 0
to 1 and for each case the fuzzy supervisor was trained separately. Although,
according to the general guideline NP should have been chosen as 10*11=110,
this would have increased the computational burden of the training procedure
enormously. Hence, with the objective of keeping the computational burden
reasonably low, the optimization procedure was attempted with an NP value of 20.
Here when F was varied, it was found that better and better performance of the
overall system could be achieved in the implementation phase if we use smaller
values of F. It was found that the best performance was achieved with F = 0.1 and
with lower values of F the performance degraded a little while with higher values
of F the degradation was significant. Figure 7.10(a) to Fig. 7.10(c) show the
corresponding performances of the system in the implementation phase with
the trained fuzzy supervision for F = 0.05, F = 0.1 and F = 0.5. Figure 7.11 shows
the RMS errors in estimating x̂ , in the implementation phase, at each sampling
instant with an incremental movement of the robot, for this series of case studies
with five representative values of F. It can be easily concluded that the training
process conducted with F = 0.1 produced the best result for these
experimentations.

With this value of F, then one can proceed to determine the most suitable
values of NP and CR. Keeping F = 0.1 and CR = 0.5, we varied NP for a series of

196 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

values. The objective was to obtain a reasonable performance with as small a
value of NP as practicable, so that the computational burden is kept minimum.
Figure 7.12 shows the RMS errors in estimating x̂ , in the implementation phase,
at each sampling instant with an incremental movement of the robot, for this series
of case studies with three representative values of NP = 15, 20 and 25. It was
found that the best performance is obtained with NP = 20 and the performance
degrades if we either increase or decrease the value of NP. Hence a value of NP =
20 was chosen for the training procedure. Next keeping F = 0.1 and NP = 20, CR
was varied for a series of values. It was found that the variation of CR was not that
critical in varying the training performance of the scheme. Figure 7.13 shows the
similar plotting of RMS errors in estimating x̂ , for this series of case studies with
three representative values of CR = 0.4, 0.5 and 0.6. It was found that the best
performance was obtained with CR = 0.5 although performances for other values
of CR were quite similar in nature. Hence it could be concluded that the best set of
control parameters of the DE for the training procedure of the fuzzy supervisor is
obtained as NP = 20, F = 0.1 and CR = 0.5. Hence, using these parameters the
fuzzy supervisor was trained for each case study of sensor statistics i.e. (a) with
(01.0=rσ m. and 0.10=bσ deg.) and (b) with (01.0=rσ m. and

0.15=bσ deg.). Figure 7.9(a) and Fig. 7.9(b) showed the performances of those

case studies, in the implementation phase.
In the next phase, we present a performance comparison between the fuzzy

supervisor tuned by DE and the fuzzy supervisor tuned by PSO. The performance
comparison is demonstrated for the sample case study with sensor statistics
(01.0=rσ m. and 0.15=bσ deg.). The popular version of PSO, employed

using linearly decreasing inertia weight, as described in (7.35), is used for this
purpose. To make as uniform comparison between the DE based and the PSO
based tuning algorithms for our problem as practicable, the following factors are
taken into consideration: (i) identical number of candidate solutions or particles
for each algorithm (i.e. 20), (ii) identical value of maximum number of iterations
or generations for which the optimization algorithm is run each time (taken as 10
in this work) and (iii) identical range of initialization of each corresponding
dimension of the initial population for each optimization algorithm. The PSO with
inertia weight variation is normally known to perform well for benchmark
optimization functions with initial inertia weight, Winitial, of 0.9 and slope of
inertial weight of 2.5e-4. For our case study, we implemented PSO with Winitial =
0.9 and employed a series of both slow decrease and aggressive decrease in inertia
weight. Figure 7.14 shows the corresponding performance of the PSO algorithm in
terms of the RMS errors in estimating x̂ , in the implementation phase, at each
sampling instant with an incremental movement of the robot, for this series of case
studies when the PSO-based training procedure was conducted with slope of
inertia weight having values 2.0e-4, 2.5e-4, 5.0e-4, 4e-2 and 5e-2. It was found
that the best performance was indeed obtained with the universally known
superior value of 2.5e-4. Figure 7.15 shows a similar comparison of estimation
performance for the best PSO-tuned and best DE-tuned fuzzy supervisors for the

7.5 Training a Fuzzy Supervisor Employing Differential Evolution 197

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(a)

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(b)

Fig. 7.8. Performance of the conventional EKF-based SLAM under incorrect knowledge of
sensor statistics: (a) with (01.0=rσ m. and 0.10=bσ deg.) and (b) with

(01.0=rσ m. and 0.15=bσ deg.)

198 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(a)

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(b)

Fig. 7.9. Performance of the Fuzzy supervised EKF-based SLAM, in implementation
phase, under incorrect knowledge of sensor statistics: (a) with (01.0=rσ m. and

0.10=bσ deg.) and (b) with (01.0=rσ m. and 0.15=bσ deg.)

7.5 Training a Fuzzy Supervisor Employing Differential Evolution 199

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(a)

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(b)

Fig. 7.10. The implementation performance of the fuzzy supervised EKF-based SLAM,
when the DE-based training was carried out with NP = 20, CR = 0.5, and (a) F = 0.05, (b) F
= 0.1, and (c) F = 0.5

200 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(c)

Fig. 7.10. (continued)

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

sampling instants

R
M

S
 e

rr
or

e

c a

d

b

Fig. 7.11. The estimation performance of the fuzzy supervised EKF-based SLAM, in the
implementation phase, when the DE-based training was carried out with NP = 20, CR = 0.5,
and (a) F = 0.05, (b) F = 0.08, (c) F = 0.1, (d) F = 0.15, and (c) F = 0.5

7.5 Training a Fuzzy Supervisor Employing Differential Evolution 201

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

sampling instant

R
M

S
 e

rr
or

c

a

b

Fig. 7.12. The estimation performance of the fuzzy supervised EKF-based SLAM, in the
implementation phase, when the DE-based training was carried out with F = 0.1, CR = 0.5,
and (a) NP = 15, (b) NP = 20, and (c) NP = 25

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

sampling instants

R
M

S
 e

rr
or

b a

c

Fig. 7.13. The estimation performance of the fuzzy supervised EKF-based SLAM, in the
implementation phase, when the DE-based training was carried out with F = 0.1, NP = 20,
and (a) CR = 0.4, (b) CR = 0.5, and (c) CR = 0.6

202 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

sampling instants

R
M

S
 e

rr
or

a

c
d

e
b

Fig. 7.14. The estimation performance of the fuzzy supervised EKF-based SLAM, in the
implementation phase, when the PSO-based training was carried out with the slope of
inertia weight chosen as (a) 2.0e-4, (b) 2.5e-4, (c) 5.0e-4, (d) 4e-2, and (e) 5e-2

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

sampling instants

R
M

S
 e

rr
or

 a

 b

Fig. 7.15. Comparison of the estimation performance of the fuzzy supervised EKF-based
SLAM, in the implementation phase, when the fuzzy supervisor is trained by (a) DE
algorithm and (b) PSO algorithm

7.6 Summary 203

adaptive EKF based SLAM algorithm, for the case study under consideration. It
can be seen that the performance of the DE tuned algorithm gave less RMS errors
in estimation, at most of the sampling instants. This procedure helps us
demonstrating the usefulness of employing a DE-tuned fuzzy supervision for EKF
based SLAM problems. However we would like to generally remark that this
performance may vary depending on the environment chosen and the sensor
statistics considered.

7.6 Summary

The present chapter discussed the importance of SLAM in the context of mobile
robot navigation and, at first, described the extended Kalman filter based SLAM
algorithms in detail. Next we considered the degradation in system performance
when a priori knowledge of the sensor statistics is incorrect and showed how
fuzzy/neuro-fuzzy assistance or supervision can significantly improve the
performance of the algorithm. Usually, EKF is known as a good choice for SLAM
algorithms when the associated statistical models are well known. However, the
performance can become significantly unpredictable and degrading when the
knowledge of such statistics is inappropriate. The fuzzy/neuro-fuzzy supervisor
based system proposes to start the system with the wrongly known statistics and
then adapt the R matrix, online, on the basis of a fuzzy/neuro-fuzzy system that
attempts to minimize the mismatch between the theoretical and the actual values
of the innovation sequence. The free parameters of the neuro-fuzzy system are
automatically learned employing an evolutionary optimization based training
procedure. The chapter showed how two popular contemporary evolutionary
optimization techniques, namely, PSO and DE, can be utilized successfully for
this purpose. The performance evaluation is carried out for several benchmark
environment situations with several wrong knowledge of sensor statistics. While
the conventional EKF based SLAM showed unreliable performance with
significant degradation in many situations, the fuzzy/neuro-fuzzy assistance could
improve this EKF’s performance significantly and could provide robust, accurate
performance in each sample situation in each case study.

Acknowledgement. This work was partially supported by JSPS Postdoctoral Fellowship for
Foreign Researchers in Japan. This work was also partially supported by All India Council for
Technical Education under RPS scheme (Grant No. 8023/BOR/RPS-89/2006-07).

References

[1] Dissanayake, M.W.M.G., Newman, P., Clark, S., Durrant-Whyte, H.F.: A solution
to the simultaneous localization and map building (SLAM) problem. IEEE Tran.
Robotics and Automation 17(3), 229–241 (2001)

[2] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: An improved
particle filtering algorithm for simultaneous localization and mapping that provably
converges. In: Proc. 18th International Joint Conference on Artificial Intelligence
(IJCAI), Acapulco, Mexico (2003)

204 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

[3] Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with Rao-
Blackwellized particle filters by adaptive proposals and selective resampling. In:
Proc. of the IEEE International Conference on Robotics and Automation (ICRA),
Barcelona, Spain, pp. 2443–2448 (2005)

[4] Smith, R., Cheeseman, P.: On the representation and estimation of spatial
uncertainty. International Journal of Robotics Research 5(4) (1986)

[5] Moutarlier, P., Chatila, R.: Stochastic multisensory data fusion for mobile robot
location and environment modeling. In: 5th Int. Symposium on Robotics Research,
Tokyo (1989)

[6] Davison, A.J.: Mobile Robot Navigation Using Active Vision. PhD Thesis, Univ. of
Oxford (1998)

[7] Bailey, T.: Mobile Robot Localization and Mapping in Extensive Outdoor
Environments. PhD Thesis, Univ. of Sydney (2002)

[8] Davison, A.J., Murray, D.W.: Simultaneous localization and map-building using
active vision. IEEE Tran. Pattern Analysis and Machine Intelligence 24(7), 865–880
(2002)

[9] Guivant, J., Nebot, E.: Optimization of the simultaneous localization and
map-building algorithm and real-time implementation. IEEE Tran. Robotics and
Automation 17(3), 242–257 (2001)

[10] Guivant, J., Nebot, E.: Solving computational and memory requirements of feature-
based simultaneous localization and mapping algorithms. IEEE Tran. Robotics and
Automation 19(4), 749–755 (2003)

[11] Williams, S.B., Newman, P., Dissanayake, G., Durrant-Whyte, H.: Autonomous
underwater simultaneous localization and map building. In: Proc. IEEE
International Conference on Robotics and Automation, San Francisco, CA, vol. 2,
pp. 1792–1798 (2000)

[12] Chong, K.S., Kleeman, L.: Feature-based mapping in real, large scale environments
using an ultrasonic array. International Journal of Robotic Research 18(2), 3–19
(1999)

[13] Bosse, M., Leonard, J., Teller, S.: Large-scale CML using a network of multiple
local maps. In: Leonard, J., Tardós, J.D., Thrun, S., Choset, H. (eds.) Workshop
Notes of the ICRA Workshopon Concurrent Mapping and Localization for
Autonomous Mobile Robots (W4), Washington, DC. ICRA Conference (2002)

[14] Thrun, S., Fox, D., Burgard, W.: A probabilistic approach to concurrent mapping
and localization for mobile robots. Machine Learning 31, 29–53 (1998); also
appeared in Autonomous Robots 5, 253–271 (joint issue)

[15] Williams, S., Dissanayake, G., Durrant-Whyte, H.F.: Towards terrain-aided
navigation for underwater robotics. Advanced Robotics 15(5) (2001)

[16] Thrun, S., Hähnel, D., Ferguson, D., Montemerlo, M., Triebel, R., Burgard, W.,
Baker, C., Omohundro, Z., Thayer, S., Whittaker, W.: A system for volumetric
robotic mapping of abandoned mines. In: Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA (2003)

[17] Castellanos, J.A., Montiel, J.M.M., Neira, J., Tardós, J.D.: The SPmap: A
probabilistic framework for simultaneous localization and map building. IEEE
Transactions on Robotics and Automation 15(5), 948–953 (1999)

[18] Paskin, M.A.: Thin junction tree filters for simultaneous localization and mapping.
In: Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI), Acapulco, Mexico (2003)

References 205

[19] Thrun, S., Koller, D., Ghahramani, Z., Durrant-Whyte, H., Ng, A.Y.: Simultaneous
mapping and localization with sparse extended information filters. In: Boissonnat,
J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Proceedings of the Fifth
International Workshop on Algorithmic Foundations of Robotics, Nice, France
(2002)

[20] Neira, J., Tardós, J.D.: Data association in stochastic mapping using the joint
compatibility test. IEEE Transactions on Robotics and Automation 17(6), 890–897
(2001)

[21] Shatkay, H., Kaelbling, L.: Learning topological maps with weak local odometric
information. In: Proceedings of IJCAI 1997. IJCAI, Inc. (1997)

[22] Araneda, A.: Statistical inference in mapping and localization for a mobile robot. In:
Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith,
A.F.M., West, M. (eds.) Bayesian Statistics 7. Oxford University Press, Oxford
(2003)

[23] Montemerlo, M., Thrun, S.: Simultaneous localization and mapping with unknown
data association using Fast SLAM. In: Proc. IEEE International Conference on
Robotics and Automation (ICRA), Taipei, Taiwan (2003)

[24] Hu, W., Downs, T., Wyeth, G., Milford, M., Prasser, D.: A modified particle filter
for simultaneous robot localization and Landmark tracking in an indoor
environment. In: Proc. Australian Conference on Robotics and Automation
(ACRA), Canberra, Australia (2004)

[25] Frese, U., Larsson, P., Duckett, T.: A multilevel relaxation algorithm for
simultaneous localization and mapping. IEEE Tran. Robotics 21(2), 196–207 (2005)

[26] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored
solution to the simultaneous localization and mapping problem. In: Proceedings of
the AAAI National Conference on Artificial Intelligence, Edmonton, Canada, AAAI
(2002)

[27] Lu, F., Milios, E.: Globally consistent range scan alignment for environment
mapping. Autonomous Robots 4, 333–349 (1997)

[28] Mehra, R.K.: On the identification of variances and adaptive Kalman filtering. IEEE
Tran. Automatic Control AC-15(2), 175–184 (1970)

[29] Fitzgerald, R.J.: Divergence of the Kalman filter. IEEE Tran. Automatic Control
AC-16(6), 736–747 (1971)

[30] Sinha, N.K., Tom, A.: Adaptive state estimation for systems with unknown noise
covariances. International Journal of Systems Science 8(4), 377–384 (1977)

[31] Bellanger, P.R.: Estimation of noise covariance matrices for a linear time-varying
stochastic process. Automatica 10, 267–275 (1974)

[32] Dee, D.P., Cohn, S.E., Dalcher, A., Ghil, M.: An efficient algorithm for estimating
noise covariances in distributed systems. IEEE Tran. Automatic Control AC-30(11),
1057–1065 (1985)

[33] Reynolds, R.G.: Robust estimation of covariance matrices. IEEE Tran. Automatic
Control 32(9), 1047–1051 (1990)

[34] Morikawa, H., Fujisaki, H.: System identification of the speech production process
based on a state-space representation. IEEE Trans. Acoust., Speech, Signal
Processing ASSP-32, 252–262 (1984)

[35] Noriega, G., Pasupathy, S.: Adaptive estimation of noise covariance matrices in
real-time preprocessing of geophysical data. IEEE Trans. Geoscience and Remote
Sensing 35(5), 1146–1159 (1997)

206 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

[36] Kobayashi, K., Cheok, K.C., Watanabe, K., Munekata, F.: Accurate differential
global positioning system via fuzzy logic Kalman filter sensor fusion technique.
IEEE Tran. Industrial Electronics 45(3), 510–518 (1998)

[37] Loebis, D., Sutton, R., Chudley, J., Naeem, W.: Adaptive tuning of a Kalman filter
via fuzzy logic for an intelligent AUV navigation system. Control Engineering
Practice 12, 1531–1539 (2004)

[38] Wu, Z.Q., Harris, C.J.: An adaptive neurofuzzy Kalman filter. In: Proc. 5th
International Conference on Fuzzy Sets and Systems FUZZ-IEEE 1996, vol. 2, pp.
1344–1350 (September 1996)

[39] Sasiadek, J.Z., Wang, Q., Zeremba, M.B.: Fuzzy adaptive Kalman filtering for
INS/GPS data fusion. In: Proc. 15th International Symposium on Intelligent Control
(ISIC 2000), Rio, Patras, Greece (July 2000)

[40] Clerc, M., Kennedy, J.: The particle swarm-explosion, stability and convergence in
a multidimensional complex space. IEEE Tran. Evolutionary Computation 6(1), 58–
73 (2002)

[41] Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In:
Proceedings of the 1999 Congr. Evolutionary Computation, pp. 1945–1950. IEEE
Service Center, Piscataway (1999)

[42] http://www.acfr.usyd.edu.au/homepages/academic/tbailey/
software/software.html

[43] Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman
Filtering, 3rd edn. John Wiley and Sons, USA (1997)

[44] Chatterjee, A., Matsuno, F.: A neuro-fuzzy assisted extended Kalman filter-based
approach for Simultaneous Localization and Mapping (SLAM) problems. IEEE
Transactions on Fuzzy Systems 15(5), 984–997 (2007)

[45] Chatterjee, A.: Differential evolution tuned fuzzy supervisor adapted extended
kalman filtering for SLAM problems in mobile robots. Robotica 27(3), 411–423
(2009)

[46] Storn, R.: On the usage of differential evolution for function optimization (1996)
[47] Storn, R., Price, K.: Minimizing the real functions of the ICEC 1996 contest by

differential evolution (1996)
[48] http://www.icsi.berkeley.edu/~storn/code.html

(last accessed June 24, 2008)

	Simultaneous Localization and Mapping (SLAM) in Mobile Robots
	Introduction
	Extended Kalman Filter (EKF) Based Stochastic SLAMAlgorithm
	Neuro-fuzzy Assistance for EKF Based SLAM
	The Neuro-fuzzy Architecture and Its TrainingMethodology Employing Particle Swarm Optimization(PSO)
	Architecture of the Neuro-fuzzy Model
	Training the Neuro-fuzzy Model Employing PSO
	Performance Evaluation

	Training a Fuzzy Supervisor Employing DifferentialEvolution (DE) Based Optimization
	Performance Evaluation

	Summary
	References

