
A. Chatterjee et al.: Vision Based Autonomous Robot Navigation, SCI 455, pp. 101–142.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 5
Sample Implementations of Vision-Based
Mobile Robot Algorithms

Abstract. This chapter presents a detailed, step-by-step demonstration of how
vision-based navigation modules can be actually implemented in real life, under
32-bit Windows environment. These lessons start with a simple development of
capturing image frames from a running video and then gradually proceeds to more
complex tasks of incorporating image processing capabilities e.g. filtering
techniques, contrast enhancement, adaptive thresholding etc. Then the lessons
demonstrate how to extract path for the robot from such images and how a rule-
based approach can be utilized to determine left and right wheel speed settings of
a differential drive system.

5.1 Introduction

In this chapter Visual Basic based software programming is presented in a step-
by-step fashion. Ten lessons are developed for PC based vision-based navigation
programming. Low-cost webcam is used for capturing streaming video.

Visual Basic version 6 (VB6) [1-2] is used for windows based programming.
The first lesson ‘Lesson 1’ demonstrates how to capture image frames from

streaming video from a low-cost webcam and examine pixel (picture element)
values with the help of mouse pointer. RGB (Red-Green-Blue) to gray-scale
conversion is also done in a pixel-by-pixel manner. A ‘Format’ menu is provided
for selecting the image frame size to 160x120. Windows 32-bit API (Application
Programming Interface) calls [3] are adopted for faster processing.

The second lesson ‘Lesson 2’ demonstrates how to process captured image
frames from streaming video. Options are provided for RGB to gray-scale
conversion and subsequent low-pass filtering [4].

The third lesson ‘Lesson 3’ shows the method of contrast enhancement by
histogram stretching technique [4] under poor lighting conditions.

The fourth lesson ‘Lesson 4’ introduces geometric-mean filter [4] to smooth
and suppress image detail to simplify the extraction of required white path for
navigation.

The fifth lesson ‘Lesson 5’ applies an adaptive threshold operation to extract
white path under varying illumination conditions. A selectable reference pixel
determines the centre of path to be extracted.

102 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

The sixth lesson ‘Lesson 6’ introduces a cleaning operation to remove
unwanted objects detected during threshold operation.

The next lesson ‘Lesson 7’ introduces an option for selection of path color
white or black. For black path color option, the gray-scale image frame is first
converted to negative image, so that black objects become white and then
processed as usual as discussed in ‘Lesson 6’.

The eighth lesson ‘Lesson 8’ is targeted for white or black path finding for
navigation with a fixed reference pixel.

The next lesson ‘Lesson 9’ introduces a rule-based approach to determine left
and right wheel speed settings of a differential drive system for navigation.
Pictorial representation of navigation direction is done with appropriate image file.

Finally in the last lesson ‘Lesson 10’ sound output is added to draw attention
during navigation.

Source codes are available for Visual Basic version 6 and Visual Basic dot net
version 2010 compiler from ‘http://extras.springer.com’.

Executable codes are also provided for testing the performance of programs
when compilers are not available with the reader. Only run-time executables are
needed which are freely available from Microsoft.

5.2 Lesson 1

Objective: To develop a VB6 program to capture webcam streaming video.
Following steps summarize the program development.

1. All necessary Application Programming Interface (API) calls are declared in
‘Webcam1.bas’ module. It is necessary to include this module in ‘Form1’ of
the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to preview
streaming video at 30 frames per second and ‘Picture2’ to capture image from
streaming video as clipboard data at a regular interval of 10mS with the help
of ‘Timer1’ control.

4. Two command buttons, namely, ‘Capture’ and ‘Close’ are added under
‘Form1’ to control image capturing process. The command button names are
‘cmdCapture’ and ‘cmdClose’ respectively.

5. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

6. Any captured pixel may be examined with the mouse pointer over ‘picture2’
image. The mouse cursor is changed to ‘cross’ to facilitate pixel examination.

7. Pixel color is obtained through the ‘GetPixel’ API call.
8. Red (R), Green (G) and Blue (B) vales are obtained from ‘Color’ by calling

three functions ‘GetRed’, ‘GetGreen’ and ‘GetBlue’ functions as follows:
GetRed = Color And 255, GetGreen = (Color And 65280) \ 256 and GetBlue
= (Color And 16711680) \ 65535.

9. Three text boxes, namely, ‘Text1’, ‘Text2’ and ‘Text3’ are added to examine
8-bit Red (R), Green (G) and Blue (B) values of the selected pixel.

5.2 Lesson 1 103

10. Two text boxes, namely, ‘Text4’ and ‘Text5’, are incorporated to monitor ‘X’
and ‘Y’ coordinates of the selected pixel.

11. A text box ‘Text6’ is added to view 8-bit gray value of the selected pixel from
its RGB values according to the formula: gray = 0.2125 * red + 0.7154 *
green + 0.0721 * blue.

12. A second timer ‘Timer2’ control is added to remove textbox data within
10mS when the mouse pointer is not positioned over ‘Picture2’ picture box.

Following text shows the listing of ‘Webcam1.bas’ module.

Global Const WS_CHILD As Long = &H40000000
Global Const WS_VISIBLE As Long = &H10000000
Global Const WM_USER = 1024
Global Const WM_CAP_DRIVER_CONNECT = WM_USER + 10
Global Const WM_CAP_SET_PREVIEW = WM_USER + 50
Global Const WM_CAP_SET_PREVIEWRATE = WM_USER + 52
Global Const WM_CAP_DRIVER_DISCONNECT As Long = WM_USER + 11
Global Const WM_CAP_DLG_VIDEOFORMAT As Long = WM_USER + 41
Global Const WM_CAP_GET_FRAME As Long = 1084
Global Const WM_CAP_COPY As Long = 1054
Global Const WM_CAP_SET_SCALE As Integer = WM_USER + 53
Global Const SWP_NOMOVE As Integer = 2
Global Const SWP_NOZORDER As Integer = 4
Global Const HWND_BOTTOM As Integer = 1

Declare Function SendMessage Lib "user32" Alias "SendMessageA" _
 (ByVal hwnd As Long, ByVal wMsg As Long, ByVal wParam As _
 Long, ByVal lParam As Long) As Long
Declare Function capCreateCaptureWindow Lib "avicap32.dll" Alias _

"capCreateCaptureWindowA" (ByVal a As String, ByVal b As Long, _
ByVal c As Integer, ByVal d As Integer, ByVal e As Integer, _
ByVal f As Integer, ByVal g As Long, ByVal h As Integer) As Long

Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _
ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, _
ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long

Declare Function GetPixel Lib "gdi32" (ByVal hdc As Long, _
 ByVal x As Long, ByVal y As Long) As Long

104 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘Form1’ code.

Dim hwdc As Long
Dim startcap As Boolean
Dim mflag As Boolean

Private Sub cmdCapture_Click()
 hwdc = capCreateCaptureWindow("Webcam Vision System", WS_CHILD _
Or WS_VISIBLE, 0, 0, 160, 120, Picture1.hwnd, 0)
 If (hwdc <> 0) Then
 Clipboard.Clear
 If SendMessage(hwdc, WM_CAP_DRIVER_CONNECT, 0, 0) Then
 SendMessage hwdc, WM_CAP_SET_SCALE, True, 0
 SendMessage hwdc, WM_CAP_SET_PREVIEWRATE, 30, 0
 SendMessage hwdc, WM_CAP_SET_PREVIEW, 1, 0
 SetWindowPos hwdc, HWND_BOTTOM, 0, 0, 160, 120, SWP_NOMOVE _

 Or SWP_NOZORDER
 startcap = True
 cmdCapture.Enabled = False
 cmdClose.Enabled = True
 Timer1.Enabled = True
 Menu1.Enabled = True
 Picture2.Visible = True
 Label1.Visible = True
 Label2.Visible = True
 Label3.Visible = True
 Label4.Visible = True
 Label5.Visible = True
 Label6.Visible = True

5.2 Lesson 1 105

 Label7.Visible = True
 Label9.Visible = True
 Label11.Visible = True
 Text1.Visible = True
 Text2.Visible = True
 Text3.Visible = True
 Text4.Visible = True
 Text5.Visible = True
 Text6.Visible = True

Else
 MsgBox ("No Webcam found!")
 startcap = False

End If
End If

End Sub

Private Sub cmdClose_Click()
 If startcap = True Then
 SendMessage hwdc, WM_CAP_DRIVER_DISCONNECT, 0, 0
 startcap = False
 cmdCapture.Enabled = True
 cmdClose.Enabled = False
 Timer1.Enabled = False
 Menu1.Enabled = False
 Picture2.Visible = False
 Label1.Visible = False
 Label2.Visible = False
 Label3.Visible = False
 Label4.Visible = False
 Label5.Visible = False
 Label6.Visible = False
 Label7.Visible = False
 Label9.Visible = False
 Label11.Visible = False
 Text1.Visible = False
 Text2.Visible = False
 Text3.Visible = False
 Text4.Visible = False
 Text5.Visible = False
 Text6.Visible = False
 End If
End Sub

106 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

Private Sub Form_Load()
 If App.PrevInstance = True Then End ' multiple instances are not allowed
 cmdCapture.Enabled = True
 cmdClose.Enabled = False
 Picture1.AutoSize = True
 Picture2.AutoSize = True
 Timer1.Interval = 10
 Timer2.Interval = 10
 Menu1.Enabled = False
 mflag = False
 Picture2.Visible = False
 Picture2.MousePointer = 2 ' cross cursor
 Label1.Visible = False
 Label2.Visible = False
 Label3.Visible = False
 Label4.Visible = False
 Label5.Visible = False
 Label6.Visible = False
 Label7.Visible = False
 Label9.Visible = False
 Label11.Visible = False
 Text1.Visible = False
 Text2.Visible = False
 Text3.Visible = False
 Text4.Visible = False
 Text5.Visible = False
 Text6.Visible = False
End Sub

Private Function GetRed(ByVal Color As Long)
 GetRed = Color And 255
End Function

Private Function GetGreen(ByVal Color As Long)
 GetGreen = (Color And 65280) \ 256
End Function

Private Function GetBlue(ByVal Color As Long)
 GetBlue = (Color And 16711680) \ 65535
End Function

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, _
 x As Single, y As Single)
 mflag = False ' mouse pointer in form but not in picture box
End Sub
Private Sub Menu1_Click()

5.2 Lesson 1 107

 If startcap = True Then
 SendMessage hwdc, WM_CAP_DLG_VIDEOFORMAT, 0, 0
 End If
End Sub

Private Sub Picture2_MouseMove(Button As Integer, Shift As Integer, _
 x As Single, y As Single)
 Dim Color As Long
 Dim red As Byte
 Dim blue As Byte
 Dim green As Byte
 Dim gray As Byte
 Dim xp As Long
 Dim yp As Long

 xp = x / Screen.TwipsPerPixelX
 yp = y / Screen.TwipsPerPixelY
 Color = GetPixel(Picture2.hdc, xp, yp)
 red = GetRed(Color)
 green = GetGreen(Color)
 blue = GetBlue(Color)
 gray = 0.2125 * red + 0.7154 * green + 0.0721 * blue
 Text1.Text = red
 Text2.Text = green
 Text3.Text = blue
 Text4.Text = xp
 Text5.Text = yp
 Text6.Text = gray
 mflag = True ' mouse pointer in picture box
End Sub

Private Sub Timer1_Timer()
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture2.Picture = Clipboard.GetData
 SendMessage hwdc, WM_CAP_SET_PREVIEW, 1, 0
End Sub

Private Sub Timer2_Timer()
 If mflag = False Then ' no mouse pointer in picture box
 Text1.Text = ""
 Text2.Text = ""
 Text3.Text = ""
 Text4.Text = ""

108 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 Text5.Text = ""
 Text6.Text = ""
 End If
End Sub

To execute the program the capture button has to be pressed. If any webcam is

available then preview is available in picture box ‘Picture1’. If the size of the
captured image does not fit in the picture box ‘Picture2’ then the image size has to
be changed to 160x120 by activating the ‘Format’ menu.

If no webcam is available then a message box will appear with a message “No
webcam found!”

5.3 Lesson 2

Objective: To develop a VB6 program to capture and process webcam streaming
video for conversion to gray scale image and subsequent low-pass image filtering.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam2.bas’ module. It is
necessary to include this module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from captured image at the same rate with
the help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. Pixel array is processed according to option controls ‘Option1’ or ‘Option2’.
8. If ‘Option1’ is selected then pixel array is processed as gray scale image

with the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’
through ‘SetBitmapBits’ API call.

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’
and then displayed in ‘Picture2’.

5.3 Lesson 2 109

 Option1 Option2

 Gray Gray + low-pass

Following text shows the listing of ‘Webcam2.bas’ module.

Global Const WS_CHILD As Long = &H40000000
Global Const WS_VISIBLE As Long = &H10000000
Global Const WM_USER = 1024
Global Const WM_CAP_DRIVER_CONNECT = WM_USER + 10
Global Const WM_CAP_SET_PREVIEW = WM_USER + 50
Global Const WM_CAP_SET_PREVIEWRATE = WM_USER + 52
Global Const WM_CAP_DRIVER_DISCONNECT As Long = WM_USER + 11
Global Const WM_CAP_DLG_VIDEOFORMAT As Long = WM_USER + 41
Global Const WM_CAP_GET_FRAME As Long = 1084
Global Const WM_CAP_COPY As Long = 1054
Global Const WM_CAP_SET_SCALE As Integer = WM_USER + 53
Global Const SWP_NOMOVE As Integer = 2
Global Const SWP_NOZORDER As Integer = 4
Global Const HWND_BOTTOM As Integer = 1

Declare Function SendMessage Lib "user32" Alias "SendMessageA" (ByVal hwnd _

As Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As_
Long) As Long Declare Function capCreateCaptureWindow Lib _
"avicap32.dll" Alias "capCreateCaptureWindowA" (ByVal nWindowName _
As String, ByVal nStyle As Long, ByVal nx As Integer, ByVal ny As Integer, _
ByVal nWidth As Integer, ByVal nHeight As Integer, ByVal nHwnd As Long, _
ByVal nId As Integer) As Long

Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _
ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, _
ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long

Declare Function GetObject Lib "gdi32" Alias "GetObjectA" (ByVal hObject _
 As Long, ByVal nCount As Long, lpObject As Any) As Long
Declare Function GetBitmapBits Lib "gdi32" (ByVal hBitmap As Long, _
 ByVal dwCount As Long, lpBits As Any) As Long
Declare Function SetBitmapBits Lib "gdi32" (ByVal hBitmap As Long, _
 ByVal dwCount As Long, lpBits As Any) As Long

110 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘Form1’ code.

Dim hwdc As Long
Dim startcap As Boolean
Private Type Bitmap
 bmType As Long
 bmWidth As Long
 bmHeight As Long
 bmWidthBytes As Long
 bmPlanes As Integer
 bmBitsPixel As Integer
 bmBits As Long

End Type
Dim Pbytes() As Byte, Pinfo As Bitmap
Dim x As Long, y As Long

Private Sub Form_Load()
 If App.PrevInstance = True Then End
 Picture1.AutoSize = True
 Picture2.AutoSize = True
 Picture1.ScaleMode = vbPixels
 Picture2.ScaleMode = vbPixels
 Timer1.Interval = 10

hwdc = capCreateCaptureWindow("Webcam Vision System", WS_CHILD _

Or WS_VISIBLE, 0, 0, 160, 120, Picture1.hwnd, 0)

5.3 Lesson 2 111

If (hwdc <> 0) Then
 Clipboard.Clear
 If SendMessage(hwdc, WM_CAP_DRIVER_CONNECT, 0, 0) Then
 SendMessage hwdc, WM_CAP_SET_SCALE, 1, 0
 SendMessage hwdc, WM_CAP_SET_PREVIEWRATE, 30, 0
 SendMessage hwdc, WM_CAP_SET_PREVIEW, 1, 0
 SetWindowPos hwdc, HWND_BOTTOM, 0, 0, 160, 120, _
 SWP_NOMOVE Or SWP_NOZORDER
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetObject Picture1.Picture, Len(Pinfo), Pinfo
 ReDim Pbytes(0 To (Pinfo.bmBitsPixel \ 8) - 1, 0 To Pinfo.bmWidth - 1, _
 0 To Pinfo.bmHeight - 1)
 Picture2.height = Picture1.height
 Picture2.width = Picture1.width
 Timer1.Enabled = True
 startcap = True
Else
 MsgBox "No Webcam found!", OK, ""
 startcap = False
 Unload Me
End If

Else
Unload Me

End If
End Sub

Private Sub Gray(width As Long, height As Long)

 Dim G As Byte
 For x = 0 To width - 1
 For y = 0 To height - 1
 G = 0.2125 * CDbl(Pbytes(2, x, y)) + 0.7154 * CDbl(Pbytes(1, x, y)) + _
 0.0721 * CDbl(Pbytes(0, x, y))
 Pbytes(2, x, y) = G 'Red
 Pbytes(1, x, y) = G 'Green
 Pbytes(0, x, y) = G 'Blue
 Next y
Next x

End Sub

Private Sub Lowpass(width As Long, height As Long)
 Dim R As Long
 Dim c, d, e, f As Long
 For x = 0 To width - 1
 For y = 0 To height - 1

112 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 c = x - 1
 d = x + 1
 e = y - 1
 f = y + 1
 If c < 0 Then c = width - 1
 If d = width Then d = 0
 If e < 0 Then e = height - 1
 If f = height Then f = 0
 R = Pbytes(2, x, e)
 R = R + CLng(Pbytes(2, c, y))
 R = R + 2 * CLng(Pbytes(2, x, y))
 R = R + CLng(Pbytes(2, d, y))
 R = R + CLng(Pbytes(2, x, f))
 R = R / 6 '3x3 low pass
 Pbytes(2, x, y) = R
 Pbytes(1, x, y) = R
 Pbytes(0, x, y) = R
 Next y
Next x

End Sub

Private Sub Form_Terminate()
If startcap = True Then
 SendMessage hwdc, WM_CAP_DRIVER_DISCONNECT, 0, 0
 startcap = False
 Timer1.Enabled = False
End If

End Sub

Private Sub Form_Unload(Cancel As Integer)
If startcap = True Then
 SendMessage hwdc, WM_CAP_DRIVER_DISCONNECT, 0, 0
 startcap = False
 Timer1.Enabled = False
End If

End Sub

Private Sub Menu_Click()
If startcap = True Then
 SendMessage hwdc, WM_CAP_DLG_VIDEOFORMAT, 0, 0
End If

End Sub

Private Sub Timer1_Timer()
Timer1.Enabled = False
SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
SendMessage hwdc, WM_CAP_COPY, 0, 0

5.4 Lesson 3 113

Picture1.Picture = Clipboard.GetData
GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _

 Pbytes(0, 0, 0)
If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight
If Option2.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
End If
SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
Picture2.Refresh
Picture2.Picture = Picture2.Image
Timer1.Enabled = True

End Sub

Low-pass filtering is performed with a 2-D FIR filer mask of size 3x3 as stated
below:

Circular 2-D convolution is performed with the above mask to preserve the image
size before and after filtering with minimum amount of distortion.

If the size of the captured image does not fit in the picture box then the image
size has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam
is available then a message box will appear with a message “No webcam found!”

5.4 Lesson 3

Objective: To develop a VB6 program to capture and process webcam streaming
video for conversion to gray scale image, low-pass image filtering and contrast
enhancement.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam3.bas’ module, same as
‘Webcam2.bas’, as mentioned in Lesson 2. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from captured image at the same rate with the
help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

114 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. Pixel array is processed according to option controls ‘Option1’, ‘Option2’ or
‘Option3’.

8. If ‘Option1’ is selected then pixel array is processed as gray scale image with
the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ through
‘SetBitmapBits’ API call.

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’
and then displayed in ‘Picture2’.

10. If ‘Option3’ is selected then array is low-pass filtered as in step 9 and then
processed for contrast enhancement using histogram stretching technique with
the help of procedure ‘Contrast’ and then displayed in ‘Picture2’.

Option1 Option2 Option3

Gray Gray + low-pass Gray + low-pass + contrast

Following figure shows the ‘Form1’ layout.

5.4 Lesson 3 115

Following text shows the listing of ‘Contrast’ and ‘Timer1’ procedure code.
For rest of the code refer to Lesson 2.

Private Sub Contrast(width As Long, height As Long)

 Dim R As Long 'histogram stretching
 Dim pmax, pmin As Long
 pmax = 0
 pmin = 255
 For x = 0 To width - 1
 For y = 0 To height - 1
 If pmax <= CLng(Pbytes(2, x, y)) Then pmax = Pbytes(2, x, y)
 If pmin >= CLng(Pbytes(2, x, y)) Then pmin = Pbytes(2, x, y)
 Next y
 Next x
 For x = 0 To width - 1
 For y = 0 To height - 1
 R = Pbytes(2, x, y)
 If pmax > pmin Then R = (((R - pmin) * 255) / (pmax - pmin)) + pmin / 4
 If R < 0 Then R = 0
 If R > 255 Then R = 255
 Pbytes(2, x, y) = R
 Pbytes(1, x, y) = R
 Pbytes(0, x, y) = R
 Next y
 Next x

End Sub

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If Option2.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option3.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 End If

116 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Timer1.Enabled = True
End Sub

If the size of the captured image does not fit in the picture box then the image size
has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam is
available then a message box will appear with a message “No webcam found!”

5.5 Lesson 4

Objective: To develop a VB6 program to capture and process webcam streaming
video for conversion to gray scale image, low-pass filtering, contrast enhancement
and geometric-mean filtering.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam4.bas’ module, same as
‘Webcam3.bas’, as mentioned in Lesson 3. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from captured image at the same rate with the
help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. Pixel array is processed according to option controls ‘Option1’, ‘Option2,
‘Option3’ or ‘Option4’.

8. If ‘Option1’ is selected then pixel array is processed as gray scale image with
the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ through
‘SetBitmapBits’ API call.

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’
and then displayed in ‘Picture2’.

5.5 Lesson 4 117

10. If ‘Option3’ is selected then array is low-pass filtered as in step 9 and then
processed for contrast enhancement using histogram stretching technique with
the help of procedure ‘Contrast’ and then displayed in ‘Picture2’.

11. If ‘Option4’ is selected then array is processed for contrast enhancement as in
step 10 and then processed for geometric-mean filtering with the help of
procedure ‘Geometricmean’ and then displayed in ‘Picture2’. Options are
provided for increasing the number of cascaded Geometric-mean filters and
the size of mask for each filter.

Option1 Option2 Option3

Gray Gray + low-pass Gray + low-pass + contrast

Option4

Gray + low-pass + contrast + geometric-mean

Following figure shows the ‘Form1’ layout.

118 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

Following text shows the listing of ‘Geometricmean’ and ‘Timer1’ procedure
code. For rest of the code refer to Lesson 3.

Private Sub Geometricmean(width As Long, height As Long, Size As Long)

 Dim R, S As Long
 Dim i, j As Long
 Dim c, d As Long
 Dim w1, h1 As Long
 If Size < 3 Then Size = 3
 If Size > 7 Then Size = 7
 If (Size And 1) = 0 Then Size = Size + 1 'even to odd conversion
 S = Size * Size
 w1 = width - 1
 h1 = height - 1
 For x = 0 To w1
 For y = 0 To h1
 R = 1
 For i = 0 To Size - 1
 For j = 0 To Size - 1
 c = x + i - ((Size - 1) / 2)
 If c < 0 Then c = width + c
 If c > w1 Then c = c - w1
 d = y + j - ((Size - 1) / 2)
 If d < 0 Then d = height + d
 If d > h1 Then d = d - h1
 R = R * CLng(Pbytes(2, c, d))
 Next j
 Next i
 R = R ^ (1# / S)
 If R > 255 Then R = 255
 Pbytes(2, x, y) = R
 Pbytes(1, x, y) = R
 Pbytes(0, x, y) = R
 Next y
 Next x
End Sub

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight

5.6 Lesson 5 119

 If Option2.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option3.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option4.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 End If
 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Timer1.Enabled = True
End Sub

If the size of the captured image does not fit in the picture box then the image size
has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam is
available then a message box will appear with a message “No webcam found!”

5.6 Lesson 5

Objective: To develop a VB6 program to capture and process webcam streaming
video for conversion to gray scale image, low-pass filtering, contrast
enhancement, geometric-mean filtering and an adaptive threshold operation to
extract white path from the captured image under varying illumination conditions.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam5.bas’ module, same as
‘Webcam4.bas’, as mentioned in Lesson 4. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from captured image at the same rate with the
help of ‘Timer1’ control.

120 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. Pixel array is processed according to option controls ‘Option1’, ‘Option2,
‘Option3’, ‘Option4’ or ‘Option5’.

8. If ‘Option1’ is selected then pixel array is processed as gray scale image with
the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ through
‘SetBitmapBits’ API call.

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’
and then displayed in ‘Picture2’.

10. If ‘Option3’ is selected then array is low-pass filtered as in step 9 and then
processed for contrast enhancement using histogram stretching technique with
the help of procedure ‘Contrast’ and then displayed in ‘Picture2’.

11. If ‘Option4’ is selected then array is processed for contrast enhancement as in
step 10 and then processed for geometric-mean filtering with the help of
procedure ‘Geometricmean’ and then displayed in ‘Picture2’. Options are
provided for increasing the number of cascaded Geometric-mean filters and
the size of mask for each filter.

12. If ‘Option5’ is selected then an adaptive threshold operation is performed
with the help of the procedure ‘Adaptive Threshold’ and then displayed in
‘Picture2’. First the white line width around a reference pixel [at the nominal
position (80,110)] is determined with the procedure ‘WhiteLineWidth’. If
both left and right path width around the reference pixel are found be less
than ‘MIN_PATH_WIDTH’ value then a parameter ‘delta’ is adjusted to
increase the path width by decreasing the threshold value within a range
‘delta_max’. Then the procedure ‘Threshold’ computes new image and the
above sequence of operations repeats until a valid white path is obtained.

Option5

Gray + low-pass + contrast + geometric-mean + threshold

5.6 Lesson 5 121

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘AdaptiveThreshold’, ‘WhiteLineWidth’,
‘Threshold’ and ‘Timer1’ procedure code. For rest of the code refer to Lesson 4.

Private Sub AdaptiveThreshold(width As Long, xr As Long, yr As Long)
 Dim i As Integer
 WhiteLineWidth width, xr, yr

If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then

 delta = delta + 0.2
 If delta > delta_max Then
 delta = delta_max
 Else
 GoTo atc
 End If
 If delta < 1# Then delta = 1#
 End If
 delta = delta - 0.5
atc:
 i = Pbytes(2, xr, yr)
 If i > (255 - (2 * delta)) Then
 If i > (255 - delta) Then i = (255 - delta)
 Threshold Picture1.ScaleWidth, Picture1.ScaleHeight, i - CInt(delta), _
 i + CInt(delta)
 Else
 Threshold Picture1.ScaleWidth, Picture1.ScaleHeight, 255, 255
 End If

End Sub

122 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

Private Sub WhiteLineWidth(width As Long, xr As Long, yr As Long)
 Dim pcl1, pcl2, pcl3, pcr1, pcr2, pcr3 As Integer
 PixelCountLeft = 0: PixelCountRight = 0
 y = yr
 pcl1 = 0: pcr1 = 0
 For x = xr To 0 Step -1
 If Pbytes(2, x, y) > 250 Then
 pcl1 = pcl1 + 1
 End If
 Next x
 For x = (xr + 1) To (width - 1)
 If Pbytes(2, x, y) > 250 Then
 pcr1 = pcr1 + 1
 End If
 Next x
 y = yr - 1
 pcl2 = 0: pcr2 = 0
 For x = xr To 0 Step -1
 If Pbytes(2, x, y) > 250 Then
 pcl2 = pcl2 + 1
 End If
 Next x
 For x = (xr + 1) To (width - 1)
 If Pbytes(2, x, y) > 250 Then
 pcr2 = pcr2 + 1
 End If
 Next x
 y = yr + 1
 pcl3 = 0: pcr3 = 0
 For x = xr To 0 Step -1
 If Pbytes(2, x, y) > 250 Then
 pcl3 = pcl3 + 1
 End If
 Next x
 For x = (xr + 1) To (width - 1)
 If Pbytes(2, x, y) > 250 Then
 pcr3 = pcr3 + 1
 End If
 Next x

 PixelCountLeft = (pcl1 + pcl2 + pcl3) / 3
 PixelCountRight = (pcr1 + pcr2 + pcr3) / 3
End Sub

5.6 Lesson 5 123

Private Sub Threshold(width As Long, height As Long, lv As Long, hv As Long)
 Dim R As Long
 For x = 0 To width - 1
 For y = 0 To height - 1
 R = Pbytes(2, x, y)
 If R < lv Then R = 0
 If R >= hv Then R = 255
 Pbytes(2, x, y) = R
 Pbytes(1, x, y) = R
 Pbytes(0, x, y) = R
 Next y
 Next x

End Sub

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If Option2.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option3.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option4.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 End If
 If Option5.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i

124 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 End If
 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) + 2, _
 Val(Text3.Text) + 2), RGB(255, 0, 0), B
 Timer1.Enabled = True

End Sub

If the size of the captured image does not fit in the picture box then the image size
has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam is
available then a message box will appear with a message “No webcam found!”

5.7 Lesson 6

Objective: To develop a VB6 program to capture and process webcam streaming
video for conversion to gray scale image, low-pass filtering, contrast
enhancement, geometric-mean filtering, adaptive threshold and a cleaning
operation to extract white path and remove unwanted objects from the captured
image under varying illumination conditions.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam6.bas’ module, same as
‘Webcam5.bas’, as mentioned in Lesson 5. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from captured image at the same rate with the
help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. Pixel array is processed according to option controls ‘Option1’, ‘Option2,
‘Option3’, ‘Option4’, ‘Option5’ or ‘Option6’.

5.7 Lesson 6 125

8. If ‘Option1’ is selected then pixel array is processed as gray scale image with
the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ through
‘SetBitmapBits’ API call.

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’
and then displayed in ‘Picture2’.

10. If ‘Option3’ is selected then array is low-pass filtered as in step 9 and then
processed for contrast enhancement using histogram stretching technique with
the help of procedure ‘Contrast’ and then displayed in ‘Picture2’.

11. If ‘Option4’ is selected then array is processed for contrast enhancement as in
step 10 and then processed for geometric-mean filtering with the help of
procedure ‘Geometricmean’ and then displayed in ‘Picture2’. Options are
provided for increasing the number of cascaded Geometric-mean filters and
the size of mask for each filter.

12. If ‘Option5’ is selected then an adaptive threshold operation is performed
with the help of the procedure ‘Adaptive Threshold’ and then displayed in
‘Picture2’. First the white line width around a reference pixel [at the nominal
position (80,110)] is determined with the procedure ‘WhiteLineWidth’. If
both left and right path width around the reference pixel are found be less
than ‘MIN_PATH_WIDTH’ value then a parameter ‘delta’ is adjusted to
increase the path width by decreasing the threshold value within a range
‘delta_max’. Then the procedure ‘Threshold’ computes new image and the
above sequence of operations repeats until a valid white path is obtained.

13. If ‘Option6’ is selected then an additional cleaning operation is performed to
remove unwanted objects with the help of the procedure ‘Clean’ and then
displayed in ‘Picture2’.

Option6

Gray + low-pass + contrast + geometric-mean + threshold + clean

126 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘Clean’ and ‘Timer1’ procedure code. For

rest of the code refer to Lesson 5.

Private Sub Clean(width As Long, height As Long, yr As Long)
 Dim R, xr, xref, xwidth As Long
 Dim PB As Long
 Dim bl_flag As Boolean
 bl_flag = False
 xref = 0
 xwidth = 0
 If PixelCountLeft >= MIN_PATH_WIDTH Or PixelCountRight >= _
 MIN_PATH_WIDTH Then
 For x = 0 To width - 1
 R = Pbytes(2, x, yr)
 If R > 240 Then
 If xref = 0 Then xref = x
 End If
 If R > 240 And xref > 0 Then xwidth = xwidth + 1
 Next x
 xr = xref + (xwidth / 2)
 For y = height - 1 To (yr + 1) Step -1
 For x = 0 To width - 1
 Pbytes(2, x, y) = 0
 Pbytes(1, x, y) = 0
 Pbytes(0, x, y) = 0
 Next x
 Next y
 For y = yr To 0 Step -1
 For x = xr To 0 Step -1

5.7 Lesson 6 127

 R = Pbytes(2, x, y)
 If bl_flag = True Then GoTo m1
 If R < 240 Then
 PB = x
 If PB = xr Then bl_flag = True
 GoTo m1
 End If
 Next x
m1:
 For x = PB To 0 Step -1
 Pbytes(2, x, y) = 0
 Pbytes(1, x, y) = 0
 Pbytes(0, x, y) = 0
 Next x

 For x = (xr + 1) To width - 1
 R = Pbytes(2, x, y)
 If bl_flag = True Then GoTo m2
 If R < 240 Then
 PB = x
 If PB = (xr + 1) Then bl_flag = True
 GoTo m2
 End If
 Next x
m2:
 For x = PB To width - 1
 Pbytes(2, x, y) = 0
 Pbytes(1, x, y) = 0
 Pbytes(0, x, y) = 0
 Next x

 xref = 0
 xwidth = 0
 For x = 0 To width - 1
 R = Pbytes(2, x, y)
 If R > 240 Then
 If xref = 0 Then xref = x
 End If
 If R > 240 And xref > 0 Then xwidth = xwidth + 1
 Next x
 If xwidth = 0 Then bl_flag = True
 For x = 0 To width - 1
 If bl_flag = True Then
 Pbytes(2, x, y) = 0
 Pbytes(1, x, y) = 0
 Pbytes(0, x, y) = 0
 End If

128 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 Next x
 Next y
 End If
End Sub

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If Option2.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option3.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option4.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 End If
 If Option5.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 End If
 If Option6.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)

5.8 Lesson 7 129

 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text),
 Val(Text3.Text)
 Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text)
 End If
 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) _
 + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B
 Timer1.Enabled = True
End Sub

If the size of the captured image does not fit in the picture box then the image size
has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam is
available then a message box will appear with a message “No webcam found!”

5.8 Lesson 7

Objective: To develop a VB6 program to capture and process webcam streaming
video for conversion to gray scale image, low-pass filtering, contrast
enhancement, geometric-mean filtering, adaptive threshold and clean operations
along with a selection of white/black path color for vision based navigation.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam7.bas’ module, same as
‘Webcam6.bas’, as mentioned in Lesson 6. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from captured image at the same rate with the
help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

130 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

7. ‘Shape1’ displays the color of the path (white or black) as selected with the
‘cmdWhiteBlack’ button.

8. Captured image is converted to negative with the help of procedure ‘Negative’
if black path is selected according to step 7. Then this image is processed
according to the option selection (‘Option1’ to ‘Option6’) as described in
lesson 6.

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘cmdWhiteBlack’, ‘Negative’ and ‘Timer1’
procedure code. For rest of the code refer to Lesson 6.

Private Sub cmdWhiteBlack_Click()
 If sflag = False Then
 sflag = True
 Else
 sflag = False
 End If
 If sflag = False Then Shape1.FillColor = vbWhite
 If sflag = True Then Shape1.FillColor = vbBlack
End Sub

Private Sub Negative(width As Long, height As Long)
 Dim R As Long
 For x = 0 To width - 1
 For y = 0 To height - 1
 R = 255 - Pbytes(2, x, y) 'Invert
 Pbytes(2, x, y) = R
 Pbytes(1, x, y) = R
 Pbytes(0, x, y) = R

5.8 Lesson 7 131

 Next y
 Next x
End Sub

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 If Option1.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option2.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option3.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option4.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 End If
 If Option5.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 End If

132 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 If Option6.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), _
 Val(Text3.Text)
 Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text)
 End If
 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2) _
 - (Val(Text2.Text) + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B
 Timer1.Enabled = True
End Sub

If the size of the captured image does not fit in the picture box then the image size
has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam is
available then a message box will appear with a message “No webcam found!”

5.9 Lesson 8

Objective: To develop a VB6 program to capture and process webcam streaming
video for vision based navigation along with a selection of white/black path color.
Inference is drawn on whether path is available or not.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam8.bas’ module, same as
‘Webcam7.bas’, as mentioned in Lesson 7. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from the captured image at the same rate with
the help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5.9 Lesson 8 133

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. ‘Shape1’ displays the color of the path (white or black) as selected with the
‘cmdWhiteBlack’ button.

8. Captured image is converted to negative with the help of procedure ‘Negative’
if black path is selected according to step 7. Then this image is processed
according to the option 6 of Lesson 7.

9. Then white line width around a fixed reference pixel [at position (80,110)] is
determined with the procedure ‘WhiteLineWidth’. If both left and right path
width around the reference pixel are found be less than
‘MIN_PATH_WIDTH’ value then ‘No path’ inference is drawn, otherwise
‘Path found’ inference is drawn and shown in a text box.

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘Timer1’ procedure code. For rest of the

code refer to Lesson 7.

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)

134 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text)
 WhiteLineWidth Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) _
 + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B
 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then
 Text5.Text = "No path"
 Else
 Text5.Text = "Path found"
 End If
 Timer1.Enabled = True
End Sub

If the size of the captured image does not fit in the picture box then the image size
has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam is
available then a message box will appear with a message “No webcam found!”

5.10 Lesson 9

Objective: To develop a VB6 program to capture and process webcam streaming
video for vision based navigation along with a selection of white/black path color.
Inference is drawn on whether path is available or not. Appropriate rules are
applied to determine different navigational directions and speed parameters for
differential drive.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam9.bas’ module, same as
‘Webcam8.bas’, as mentioned in Lesson 8. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

5.10 Lesson 9 135

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from the captured image at the same rate with
the help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. ‘Shape1’ displays the color of the path (white or black) as selected with the
‘cmdWhiteBlack’ button.

8. Captured image is processed according to Lesson 8. If path is found then
appropriate navigational direction (‘forward’ or ‘turn-left’ or ‘turn-right’) and
the corresponding speed parameters for differential drive are determined with
three rules. A picture box shows the direction of navigation.

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘Timer1’ procedure code. For rest of the

code refer to Lesson 8.

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData

136 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If blkflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text)
 WhiteLineWidth Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) _
 + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B

 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then

 Text5.Text = "No path"
 Else
 Text5.Text = "Path found"
 End If
 If PixelCountLeft >= MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then
 Text6.Text = 0: Text7.Text = 50 'turn left
 Text8.Text = "Turn left"
 Picture3.Picture = LoadPicture("turn_left.jpg")
 End If
 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight >= _
 MIN_PATH_WIDTH Then
 Text6.Text = 50: Text7.Text = 0 'turn right
 Text8.Text = "Turn right"
 Picture3.Picture = LoadPicture("turn_right.jpg")
 End If
 If PixelCountLeft >= MIN_PATH_WIDTH And PixelCountRight >= _
 MIN_PATH_WIDTH Then
 Text6.Text = 100: Text7.Text = 100 'forward
 Text8.Text = "Forward"
 Picture3.Picture = LoadPicture("forward.jpg")
 End If

5.11 Lesson 10 137

 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then
 Text6.Text = 0: Text7.Text = 0 'no path - idle
 Text8.Text = ""
 Picture3.Picture = LoadPicture("blank.jpg")
 End If
 Timer1.Enabled = True
End Sub

Following image files are used to indicate direction of navigation.

 Forward.jpg turn_left.jpg turn_right.jpg

If the size of the captured image does not fit in the picture box then the image

size has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam
is available then a message box will appear with a message “No webcam found!”

5.11 Lesson 10

Objective: To develop a VB6 program to capture and process webcam streaming
video for vision based navigation along with a selection of white/black path color.
Inference is drawn on whether path is available or not. Appropriate rules are
applied to determine different navigational directions and speed parameters for
differential drive. Sound output is added to draw attention.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam10.bas’ module. It is
necessary to include this module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from the captured image at the same rate with
the help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

138 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

7. ‘Shape1’ displays the color of the path (white or black) as selected with the
‘cmdWhiteBlack’ button.

8. Captured image is processed according to Lesson 9. If path is found then
appropriate navigational direction (‘forward’ or ‘turn-left’ or ‘turn-right’) and
the corresponding speed parameters for differential drive are determined with
three rules. A picture box shows the direction of navigation.

9. Sound output is activated through ‘sndPlaySound’ API call with appropriate
‘wave’ file.

Following text shows the listing of ‘Webcam10.bas’ module.

Global Const WS_CHILD As Long = &H40000000
Global Const WS_VISIBLE As Long = &H10000000
Global Const WM_USER = 1024
Global Const WM_CAP_DRIVER_CONNECT = WM_USER + 10
Global Const WM_CAP_SET_PREVIEW = WM_USER + 50
Global Const WM_CAP_SET_PREVIEWRATE = WM_USER + 52
Global Const WM_CAP_DRIVER_DISCONNECT As Long = WM_USER + 11
Global Const WM_CAP_DLG_VIDEOFORMAT As Long = WM_USER + 41
Global Const WM_CAP_DLG_VIDEOCOMPRESSION As Long = _
 WM_USER + 46
Global Const WM_CAP_DLG_VIDEODISPLAY As Long = WM_USER + 43
Global Const WM_CAP_DLG_VIDEOSOURCE As Long = WM_USER + 42
Global Const WM_CAP_GET_FRAME As Long = 1084
Global Const WM_CAP_COPY As Long = 1054
Global Const WM_CAP_SET_SCALE As Integer = WM_USER + 53
Global Const SWP_NOMOVE As Integer = 2
Global Const SWP_NOZORDER As Integer = 4
Global Const HWND_BOTTOM As Integer = 1
Global Const SND_ASYNC = 1
Global Const SND_LOOP = 8
Global Const SND_NODEFAULT = 2
Global Const SND_SYNC = 0
Global Const SND_NOSTOP = 16
Global Const SND_MEMORY = 4

Declare Function SendMessage Lib "user32" Alias "SendMessageA" (ByVal hwnd _

As Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As Long) _
As Long Declare Function capCreateCaptureWindow Lib "avicap32.dll" Alias _
"capCreateCaptureWindowA" (ByVal nWindowName As String, ByVal nStyle _
As Long, ByVal nx As Integer, ByVal ny As Integer, ByVal nWidth As Integer, _
ByVal nHeight As Integer, ByVal nHwnd As Long, ByVal nId As Integer) As Long

Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _
ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, _
ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long

5.11 Lesson 10 139

Declare Function GetObject Lib "gdi32" Alias "GetObjectA" (ByVal hObject As Long, _
ByVal nCount As Long, lpObject As Any) As Long

Declare Function GetBitmapBits Lib "gdi32" (ByVal hBitmap As Long, ByVal dwCount _
As Long, lpBits As Any) As Long

Declare Function SetBitmapBits Lib "gdi32" (ByVal hBitmap As Long, ByVal dwCount _
As Long, lpBits As Any) As Long

Declare Function sndPlaySound Lib "winmm.dll" Alias "sndPlaySoundA" _
(ByVal lpszSoundName As String, ByVal uFlags As Long) As Long

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘Timer1’ procedure code. For rest of the
code refer to Lesson 9.

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)

 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If blkflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i

140 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text)
 WhiteLineWidth Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)

 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) _
 + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B

 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then

If Text5.Text <> "No path" Then sndPlaySound "No path.wav", _
SND_ASYNC Or SND_NODEFAULT

 Text5.Text = "No path"
 Else

If Text5.Text <> "Path found" Then sndPlaySound "Path found.wav", _
 SND_ASYNC Or SND_NODEFAULT

 Text5.Text = "Path found"
 End If

 If PixelCountLeft >= MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then
 Text6.Text = 0: Text7.Text = 50 'turn left
 Text8.Text = "Turn left"
 Picture3.Picture = LoadPicture("turn_left.jpg")
 End If
 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight >= _
 MIN_PATH_WIDTH Then
 Text6.Text = 50: Text7.Text = 0 'turn right
 Text8.Text = "Turn right"
 Picture3.Picture = LoadPicture("turn_right.jpg")
 End If
 If PixelCountLeft >= MIN_PATH_WIDTH And PixelCountRight >= _
 MIN_PATH_WIDTH Then
 Text6.Text = 100: Text7.Text = 100 'forward
 Text8.Text = "Forward"
 Picture3.Picture = LoadPicture("forward.jpg")
 End If

5.12 Summary 141

 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then
 Text6.Text = 0: Text7.Text = 0 'no path - idle
 Text8.Text = ""
 Picture3.Picture = LoadPicture("blank.jpg")
 End If
 Timer1.Enabled = True
End Sub

Two pre-recorded wave files ‘Nopath.wav’ and ‘Pathfound.wav’ are used to play
when needed through PC sound card interface. The PC sound recorder program
may be used to create these wave files.

If the size of the captured image does not fit in the picture box then the image
size has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam
is available then a message box will appear with a message “No webcam found!”

5.12 Summary

Ten lessons are presented in a step-by-step manner to develop programming skill
for implementing vision-based navigation applications under 32-bit Windows
environment.

Lesson 1: This demonstrates how to capture image frames from streaming video
from a low-cost webcam and examine pixel values with the help of mouse pointer.

Lesson 2: This demonstrates how to process captured image frames from
streaming video with two processing options covering color to gray-scale
conversion and low-pass filtering.

Lesson 3: The method of contrast enhancement by histogram stretching technique
is added to improve contrast under poor lighting conditions.

Lesson 4: The geometric-mean filter is added to smooth and suppress image
detail.

Lesson 5: An adaptive threshold operation in introduced to extract white path
under varying illumination conditions.

Lesson 6: A cleaning operation is provided to remove unwanted objects detected.

Lesson 7: Here an option is added for selection of path color white or black.

Lesson 8: Modified for white or black path searching for navigation with
reference to a fixed pixel.

Lesson 9: Introduces a rule-based approach to determine left and right wheel
speed settings of a differential drive system for navigation.

Lesson 10: Here sound output is added to draw attention during navigation.

142 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

References

[1] Balena, F.: Programming Microsoft Visual Basic 6. Microsoft Press (1999)
[2] Mandelbrot Set International Ltd., Advanced Microsoft Visual Basic 6. Microsoft

Press (1998)
[3] Appleman, D.: Dan Appleman’s Win32 API Puzzle Book and Tutorial for Visual

Basic Programmers. Apress (1999)
[4] Gonzalez, Woods: Digital Image Processing. Prentice Hall (2002)

	Sample Implementations of Vision-Based Mobile Robot Algorithms
	Introduction
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5
	Lesson 6
	Lesson 7
	Lesson 8
	Lesson 9
	Lesson 10
	Summary
	References

