
A. Chatterjee et al.: Vision Based Autonomous Robot Navigation, SCI 455, pp. 47–82. 
springerlink.com                                           © Springer-Verlag Berlin Heidelberg 2013 

Chapter 3  
Vision-Based Mobile Robot Navigation Using 
Subgoals* 

Abstract. This chapter discusses how a vision based robot navigation scheme can 
be developed, in a two-layered architecture, in collaboration with IR sensors. The 
algorithm employs a subgoal based scheme where the attempt is made to follow 
the shortest path to reach the final goal and also simultaneously achieve the 
desired obstacle avoidance. The algorithm operates in an iterative fashion with the 
objective of creating the next subgoal and navigating upto this point in a single 
iteration such that the final goal is reached in minimum number of iterations, as 
far as practicable.  

3.1   Introduction 

Recent advances in technologies in the area of robotics have made enormous 
contributions in many industrial and social domains. Nowadays numerous 
applications of robotic systems can be found in factory automation, surveillance 
systems, quality control systems, AGVs (autonomous guided vehicles), disaster 
fighting, medical assistance etc. More and more robotic applications are now 
aimed at improving our day-to-day lives, and robots can be seen more often than 
ever before performing various tasks in disguise [1]. For many such applications, 
autonomous mobility of robots is a mandatory key issue. Many modern robotic 
applications now employ computer vision as the primary sensing mechanism. As 
mentioned earlier in this book, vision system is considered as a passive sensor and 
possesses some fundamental advantages over the active sensors such as infrared, 
laser, and sonar sensors. Passive sensors such as cameras do not alter the 
environment by emitting lights or waves in the process of acquiring data, and also 
the obtained image contains more information (i.e. substantial, spatial and 
temporal information) than active sensors [2]. Vision is the sense that enables 
humans to extract relevant information about the physical world, and 
appropriately it is the sense that we, the humans, rely on most. Computer vision 
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techniques capable of extracting such information are continuously being 
developed and more and more real-time vision-based navigation systems for 
mobile robots are being implemented now.  

Vision based Robot navigation is defined as the technique that guides a mobile 
robot to a desired destination, or along a desired path in an environment, by 
avoiding static (and may be dynamic) obstacles primarily using vision sensor [3], 
[4]. In this chapter, we describe the real-life implementation of a mobile robot 
navigation scheme, where vision sensing is employed as primary sensor for path 
planning and IR sensors are employed as secondary sensors for actual navigation 
of the mobile robot with obstacle avoidance capability in a static or dynamic 
indoor environment. As described previously, the popular choices for the creation 
of the environment maps can be grid-based [5, 6, 7], topological map [8, 9], 
hybrid map [10] etc. The mapless navigation systems are those that use no explicit 
representation at all of the space in which navigation is to take place and they 
rather resort to recognizing objects found in the environment or to tracking or 
avoiding those objects by generating motion commands based on visual 
observations [11, 12].  Several research works have so far been reported to acquire 
knowledge about the environment using camera(s) in stereo vision [13, 14], 
trinocular vision [15], omni-directional or panoramic vision [16, 17], and 
monocular vision [18, 19]. Each such solution in mobile robot navigation has its 
own advantages and disadvantages. In those situations where the knowledge of the 
map is available, an important problem in navigation is the path planning for 
intelligent control or guidance of the mobile robot. The popular general 
approaches for path planning can be based on roadmap, cell decomposition, 
potential field etc. [20]. They differ in how the connectivity graphs are constructed 
and their representations. Obviously, without any a priori knowledge of an 
environment, it is almost impossible to determine the true shortest path for 
navigation, among all possible paths. It is potentially possible to determine such 
paths by employing standard graph-search techniques, such as Dijkstra’s 
algorithm [21] and A* algorithm [22]. 

As mentioned earlier, in this chapter we describe a goal driven approach for 
mobile robot navigation, using vision based sensing and IR sensor based 
navigation [28, 29]. This two-layer based approach attempts to determine the 
shortest path of navigation between the start point and the known goal point, given 
a static or dynamic environment, in presence of obstacles. In the first layer, vision 
acts as the primary sensing system to acquire image of the environment, for 
subsequent path planning. A series of image processing operations is performed 
on the acquired image and then a gradient descent based algorithm is employed to 
compute the shortest path between the present position of the robot and the goal, 
avoiding obstacles [26]. This shortest path is employed to generate a subgoal and 
this information is then locally utilized to navigate the robot, utilizing IR sensor 
based guidance. This second layer of IR sensor based robot navigation attempts to 
guide the robot to the subgoal, even if the environment changes dynamically. 
Once the robot reaches the subgoal, the two-layer based algorithm is again 
activated to generate a new subgoal and to navigate the robot till this new subgoal  
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is reached. This process is repeated iteratively until the final goal is reached. This 
method simultaneously attempts to attain two objectives. Based on vision sensing, 
it attempts to implement a shortest path planning algorithm in a bid to reach the 
goal, avoiding obstacles, as fast as it can. Then, if the environment undergoes a 
change during navigation and obstacle information gets updated, then IR sensor 
based guidance equips the robot with the capability of handling the changed 
environment so that the robot can still navigate safely. The periodic usage of 
vision based updating of the environment, subsequent path planning and then IR 
based actual navigation helps to guide the robot to adapt its navigation temporally 
with dynamic variations in the environment and still attempt to reach the goal in 
shortest time, as quickly as practicable. This algorithm was implemented in  
our laboratory, for the KOALA robot [23], creating several real-life like 
environments. The results showed the usefulness of the proposed algorithm. The 
algorithm is described in detail in subsequent sections of this chapter. 

3.2   The Hardware Setup 

The KOALA robot was described in detail in the previous chapter. Still we 
recapitulate salient features of the KOALA robot to provide a brief introduction of 
the hardware setup utilized for this real-life implementation carried out. KOALA 
is a small (32 cm x 32 cm) six wheeled, differential drive vehicle manufactured by 
K-team, Switzerland [23]. The KOALA robot used in our laboratory is equipped 
with 16-proximity/ambient IR sensors, four ultrasonic sensors and wheel 
encoders. We have integrated two complete vision systems along with the 
KOALA robot in our Electrical Measurement and Instrumentation Laboratory, 
Electrical Engineering Department, Jadavpur University, Kolkata. The vision 
system is so developed that it can work either with a stereo vision system 
employing two cameras (as described in the previous chapter) or it can employ a 
single camera based system. The algorithm that we describe now is based on 
employing a single wireless camera for monocular vision. In KOALA, the 
hardware control is performed by an on- board microprocessor (Motorola 68331@ 
operating frequency 22MHz) [23]. Figure 3.1(a) shows a snapshot of the mobile 
robot with four ultrasonic sensors and the vision system, integrated in our 
laboratory, employing a single vision sensor. The ultrasonic sensors can detect 
obstacles over a wide range from 15 cm to 300 cm, and the IR sensors will 
provide a range of measurements from 5 cm to 20 cm. Our system utilizes single 
vision sensor comprising a JMK wireless camera (WS-309AS) with A/V receiver 
and a Frontech USB (TV Box) frame grabber, which is used for acquiring a 
running video stream. Figure 3.1(b) shows the vision system in schematic form. 
The entire system is developed with an objective of providing a low-cost solution 
which should prove attractive for the industrial community. This monocular vision 
system is developed with two degrees of freedom to provide pan control and tilt 
control. To add two degrees of freedom (DOFs) for this vision-system, a PIC 
(16F876A) microcontroller based system is developed in our laboratory for  
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pan-control and tilt-control of the single-camera based robot system [24]. Here, 
the main onboard Motorola microcontroller acts as the master and the  
PIC microcontroller acts as a slave. The software, developed in interrupt driven 
mode, communicates with the mobile robot through the RS232C port. Figure 3.2 
shows a snapshot of the user-interface developed in the PC side that can  
interact with the user. The main serial mode of communication is handled by 
passing ASCII message strings between the PC and the Motorola processor in the 
robot. 

 

 

Fig. 3.1(a). The KOALA robot, equipped with sonar and IR sensors and integrated with a 
single camera based vision system  

The RS 232C serial link set-up between the PC and the robot is always set at 8 
bit data, 1 start bit, 2 stop bits and no parity mode. To give an example, the 
message string for RC servo action to provide pan or tilt control, sent from the  
PC end, comprise ‘Z’ as the identifier character, followed by <i>, which 
corresponds to the servomotor id for which position command is prepared (i = 1, 
2), followed by the sign, given in <s>, for position command (‘+’ or ‘-’) and then 
the two digit actual position command, in degree (this can vary from -900 to +900). 
Every ASCII message string is terminated, as usual, by using carriage return, 
<CR>.  
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Fig. 3.1(b). The block diagram of the vision system 

 

 

Fig. 3.2. Snapshot of the user-interface developed, that can interact with the user 
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3.3   A Two-Layer, Goal Oriented Navigation Scheme 

Figure 3.3 shows the complete proposed navigation algorithm in a flow chart 
form. A wireless camera, as shown in Fig. 3.1(a), is used to capture a running 
video stream of the environment in front of the KOALA robot. An image frame 
can be acquired from this video stream for further processing at any point of  
time. This acquired image frame is first processed to make the image suitable for 
further processing, by employing a series of image processing operations like 
image filtering, edge detection and image segmentation. Then the shortest path  

 

 
Fig. 3.3. Flow chart for the proposed navigation algorithm 
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generation algorithm is employed for this processed image, using the goal 
information, available a priori. Next the shortest path generated is utilized to 
determine the next subgoal. This entire procedure constitutes layer 1 of the 
algorithm and is implemented in high level in a PC using Visual Basic (VB) 
platform. This subgoal information is next transferred to layer 2 where the 
KOALA robot is actually navigated towards the subgoal using obstacle avoidance 
capability so that the robot can be useful even in a dynamically changing 
environment. The navigation in layer 2 is performed using several IR sensors, 
connected at the front face and side faces of the KOALA robot. Once the subgoal 
is reached, the control is transferred back to layer 1 so that the next subgoal can be 
generated and actual navigation can be performed in layer 2. This process of local 
path planning, followed by actual navigation, is continued in an iterative fashion, 
until the final goal is reached. The algorithm in layer 2 for actual navigation is 
implemented by developing a C program whose cross-compiled version (a .s37 
file) is downloaded in the Motorola processor of the KOALA robot. This .s37 
program communicates with the VB program in the PC end, in the interrupt driven 
mode, in real life. The .s37 program generated from the C program written, is also 
equipped with the facility of providing support from VB based PC end for a pool 
of protocol commands for commanding the KOALA robot. These commands are 
originally only available for execution from a terminal emulator available with the 
KOALA robot package. We developed a system where all the KOALA robot 
protocol commands and our additional navigation algorithms are supported by the 
C program developed, so that the entire system can be completely controlled from 
the VB platform in the PC end. 

3.4   Image Processing Based Exploration of the Environment in 
Layer 1 

Image processing is a form of signal processing where the input signals are images 
and the output could be a transformed version of the input. The proposed system 
employs a map building method based on image segmentation, for vision based 
navigation for mobile robot in an indoor environment, with the assumption that 
the surface is uniform. The following steps are implemented as follows [27]: 

A. Acquire the image from the wireless camera 
The camera, mounted at the center of the pan-tilt system of the robot, keeps 
acquiring a running video stream of the environment ahead of it. From this video 
stream, an image frame can be acquired for further processing. Figure 3.4(a) 
shows such an acquired image. 

 
B. Employ low-pass filtering on the acquired image 
The acquired image is then low pass filtered to reduce noise. This causes a 
smoothing or blurring effect on the neighboring pixels. The system is developed 
using the popular arithmetic mean filter to perform low pass filtering. This 
arithmetic mean filter is utilized using a 5×5 matrix, centered on each pixel, whose 
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intensity is computed as the average value of the pixels under the influence of the 
filter matrix. 

 
C. Detect edges in the filtered image by Canny edge detection 
An edge physically signifies a boundary between two regions with relatively 
distinct gray-level properties. The technique of edge-based segmentation signifies 
isolation of desired objects from a scene using different types of gradient 
operators. Edges of the image in our work are detected by using canny edge 
detection method.  Figure 3.4(b) shows the edge image of the processed filtered 
version of the acquired image. 

 
D. Process the edge image to thicken and link the edges 
The edge image contains many small broken edges. To make any edge image a 
meaningful one, one needs to link nearby edges to bridge gaps and they can be 
thickened to make their presence distinct. Thickening can be performed by a 
morphological operation called dilation by a structuring element that is used to 
grow selected regions of foreground pixels in images. Dilation is normally applied 
to binary images, and it produces another binary image as output. This dilation 
operation “thickens” or “grows” objects in a binary image and the shape of 
thickening can be controlled by a suitable choice of the structuring element shape, 
used to perform dilation of the image. The concept of linking edges and thickening 
them by dilation in an edge image can also be performed by a suitable low pass 
filtering scheme with a suitable choice of the filter mask. This operation is carried 
out in this work by using geometric mean filtering. The geometric mean filter is 
member of a set of nonlinear mean filters, which are efficient in removing 
Gaussian type noise and preserving edge features than the arithmetic mean filter. 
Figure 3.4(c) shows the edge linked and thickened image. 

 
E. Perform region growing segmentation on the thickened edge image 
Once the thickening is done, the image is segregated into regions. To find the 
obstructed zone and unobstructed zone in the image, region growing based 
segmentation is performed on the thickened image. Region growing is a simple 
but efficient region-based image segmentation method and it is classified as one of 
the pixel-based image segmentation schemes which involves the selection of 
initial seed points. This approach to segmentation examines the neighboring pixels 
of the initial “seed points” and determines if the pixel should be added to the seed 
point or not. Region growing is done by examining properties of each such block 
created and merging them with adjacent blocks that satisfy some criteria (similar 
gray-level pixel values, texture etc). The seed point needed for performing region 
growing is chosen near the bottom center of the image. This point ‘S’ is shown in 
Fig. 3.4(c). Now the image is scanned along all the vertical lines from bottom to 
top. The point at which the floor area ends is regarded as the obstacle. All regions 
before the obstacles are free zone. All regions beyond the obstacles are termed the 
hidden zone. Figure 3.4(d) shows the unobstructed zone (free space) with green 
color and the hidden zone with yellow color. Next the obstructed zone is marked 
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in red and Fig. 3.4(e) shows all these three regions. This entire process is 
continuous and the obstacle information gets continuously updated. 

 
F. Transform the region grown image to the floor region 
The entire grown up region updated with obstacle information is now transformed 
from image plane to floor region. In order to calculate a distance in the 3D 
coordinates using single camera, we assume that all the objects have contact at the 
bottom and interpret it in two dimensional coordinates. Figure 3.5 shows the 
relationship that, given the elevation of the camera and the elevation angle, how 
any point on the image plane can be directly mapped on the floor, relative to the 
position of the camera [25]. Here the robot/camera 3D coordinate frame is 
assumed with the corresponding notations shown in Fig. 3.5. This coordinate 
frame is assumed attached to present pose of the robot/camera, at any instant of 
time. This coordinate transformation mechanism allows one to determine the free 
points and the obstructed points in the world coordinate system (WCS) from the 
image acquired by the camera. Hence, with reference to Fig. 3.5, any point with 
coordinates ( vu, ) in the image plane can be transformed to the coordinates in the 

two dimensions ),( yx cc
 in the robot/camera coordinate frame as:  
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Once this transformation is employed, one can obtain the actual position of a point 
( )yx ,  on the floor, given this ),( yx cc  and the present pose of the 

robot ( )φ
RRR yx ,, . Figure 3.4(f) shows the floor with obstacle information. The 

transformed floor region is in trapezoidal form. Then this floor plane image is 
copied to the 500 pixel x 500 pixel map which is 20m x 20m as a working space 
for the robot. Figure 3.6(a) shows a snapshot of the map created and Fig. 3.6(b) 
shows a snapshot with the floor image in the grid map. In Fig. 3.6(b), the  
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trapezoidal floor region is shown in green color and the obstacle information is 
shown in red color. The above process of transformation is continuous even when 
the robot is in motion and it updates the new obstacle information in the map 
when it is in motion. 

 

   
      (a)              (b) 

    
     (c)             (d) 

   

(e)             (f) 

Fig. 3.4. (a) Image acquired by the wireless camera, (b) detected edge image, (c) thickened 
image, (d) region grown image, (e) image with the obstacle information, and (f) trapezoidal 
floor image  
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Fig. 3.5. Relationship between the image coordinate and the mobile robot coordinate 

 

Fig. 3.6(a). A snapshot of the software developed for creating map 
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Fig. 3.6(b). A snapshot of the map updated with obstacle information 

3.5   Shortest Path Computation and Subgoal Generation 

In mobile robot navigation it should be an important objective to determine the 
optimum path between the present robot location and the goal point, so that the 
robot can reach the destination in minimum time, avoiding obstacles, as far as 
practicable. The present work employs a heuristic gradient based method which is 
based on grid-map for finding the shortest path [26]. Algorithm 3.1 shows this 
algorithm in detail. The initial and the final positions of the robot are known a 
priori with the obstacle information determined from the previous steps. Now the 
coordinates along the shortest path are determined by using steepest descent 
method. The steepest decent algorithm uses the gradient function to determine the 
direction in which a function is decreasing most rapidly. Each successive iteration 
of the algorithm moves along this direction for a specified step size and then 
recomputes the gradient to determine the new direction of travel. This heuristic 
approach employed here can be easily understood if a land is considered with 
known obstacles and the initial point and final point on it. The land surface is 
assumed frictionless such that, say, at the starting point, if we start pouring sand 
on the ground, it spreads towards all possible paths, similar to dispersion of  a 
fluid in all possible directions. It is obvious that one cannot pass through the 
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obstacles. In each iteration, we assume that a fixed amount of sand is poured and 
we let it spread. We set a time index to every point on the ground, equal to the 
iteration number, when the sand reaches a pre-assumed height. So the earlier the 
height is reached, the smaller is this index. Such a pre assumed height and a fixed 
amount of sand dispersed are chosen so as to avoid saturation in value within any 
finite considerable region. Hence a travel time matrix (H) can be calculated 
employing the finite element diffusion method and this H matrix is iteratively 
updated, until a termination criterion is met. At the end of this procedure, those 
entries in H which still contain zeros correspond to the obstacle cells. Next, the 
gradient descent based procedure is employed to determine the coordinates of the 
points on the shortest path by starting from the goal point and finally arriving at 
the present robot location. For this, the gradient matrices of H in x- and  
y-directions, i.e. Hx and Hy, are calculated and based on them the new co-

ordinates of the next point on the shortest path are computed, utilizing the last 
point obtained on the shortest path. The algorithm always proceeds backwards 
starting from the goal point. This method is an efficient one and it operates in an 
iterative fashion. Figure 3.7 shows a sample environment where the shortest path 
is computed between the initial and the goal point in the map.  
 
 
BEGIN 
1. Obtain the Occupancy grid matrix (M), the start point (x_start, y_start), and the 

goal point (x_goal, y_goal). ( )ji,M = 0 denotes a free cell and ( )ji,M  = 1 

denotes an obstacle cell. 
2. Create diffusion matrix (W) and Travel Time Matrix (H) and make them of 
same size as M.     Initialize W0 = H0 = 0.  
3. Set W0 (x_start, y_start) = 1. 
4. Set diffusion constant ( )diffconst and maximum number of iterations without 

updates ( )maxupdateno __ . Initialize number of iterations ( )countiter _  

and number of iterations without updates ( )countiterupdateno ___ . 

5. WHILE ( )maxupdatenocountiterupdateno _____ <  

 5.1. 1__ += countitercountiter . 

 5.2. Diffuse cells downwards: 
 Witer_count(i,j) = Witer_count(i,j) + diffconst * Witer_count(i+1,j) 
       i = 1,2,…,(W_ROWS –1); j = 1,2,…,W_COLS;    
  5.3. Diffuse cells upwards:  
  Witer_count(i,j) = Witer_count(i,j) + diffconst * Witer_count(i-1,j) 
        i = 2,3,…,W_ROWS; j = 1,2,…,W_COLS;    
   5.4. Diffuse cells towards right: 
   Witer_count(i,j) = Witer_count(i,j) + diffconst * Witer_count(i,j+1) 
        i = 1,2,…,W_ROWS; j = 1,2,…,(W_COLS-1);    
   5.5. Diffuse cells towards left:  
   Witer_count(i,j) = Witer_count(i,j) + diffconst * Witer_count(i,j-1) 
        i = 1,2,…,W_ROWS; j = 2,3,…,W_COLS;    
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5.6. Make Witer_count(i,j) = 0, if M(i,j) = 1;  
i = 1,2,…,W_ROWS; j = 1,2,…,W_COLS;    

5.7. If any Witer_count(i,j) becomes greater than the height for the first time, then 
make corresponding Hiter_count(i,j) = iter_count.  

5.8. Count sum_countiter_count as the sum of those entries in W matrix at present 
with value > 1. 

5.9. IF 
1 

  11

+=

<− −

count_iter_update_nocount_iter_update_no

count_sumcount_sum )count_iter(count_iter THEN  

 ENDIF 
ENDWHILE 

6. All ( )ji,H  point still equal to zero are the obstacle points. Set these points to a 

high value i.e. one more than their adjacent neighbor which one have the highest 
value (steep gradient for    obstacle occupied points). 
7. Create shortest path coordinate vectors ord_rowsh_path_co  and 

ord_colsh_path_co and initialize the first point: 

( ) ;_1 goalx=ord_rowsh_path_co ( ) goaly _1 =ord_colsh_path_co . 

Set µ . 
8. Compute gradient matrices of H matrix in x-direction (∇Hx) and y- direction 
(∇Hy). 
9. ∇Hx = -∇Hx; ∇Hy = -∇Hy; path_index =1; path_flag =1; 
10. WHILE (path_flag =1)  

10.1. Compute del_row by interpolation using the ∇Hy matrix. 
10.2. Compute del_col by interpolation using the ∇Hx  matrix. 
10.3. Compute the coordinates of the next point on the shortest path: 

( ) ( )

col_delrow_del

row_del
*

index_pathindex_path

22

1

+
μ

+=+ ord_rowsh_path_coord_rowsh_path_co
 

( ) ( )

col_delrow_del

col_del
*

index_pathindex_path

22

1

+
μ

+=+ ord_colsh_path_coord_colsh_path_co
 

10.4. IF (initial point is reached) THEN 
   path_flag = 0; 
            ENDIF 
ENDWHILE 

11. Reverse vectors ord_rowsh_path_co and ord_col.sh_path_co   

END 
 
 

Algorithm 3.1. The shortest path generation algorithm employing obstacle avoidance 
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Fig. 3.7. A sample shortest path computed for an environment 

Once the shortest path is determined, we need to find the corner points nearer to 
an obstacle. To find the corner points, we take three consecutive points on the path 
and find the cosine of the angle between the two line segments joining the first 
two and last two points. If this value falls below a given threshold, then the middle 
of these three points is considered as a corner point, otherwise we move to the 
next subsequent point and again compute the cosine of the new angle. This 
process is continued until the suitable corner point is obtained. This corner point is 
stored as the next subgoal point for navigation. For example, in Fig. 3.7, when A1, 
A2, A3 are the three points under consideration, then the cosine of the angle 
between the line segments 21 AA  and 32 AA  is very high (above the chosen 
threshold). So A2 is not considered as a corner point. In this process, we keep 
moving forward, and when we reach the three consecutive points B1, B2, B3, the 
angle between the line segments 21 BB  and 32 BB  is large enough so that 
the cosine of the angle is below the chosen threshold. Then B2 is considered as a 
corner point. 
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3.6   IR Based Navigation in Layer 2 

Once the subgoal point is determined, the control will be passed from layer 1 to 
layer 2. As soon as the new subgoal information is passed, the robot updates its 
present pose ( )φ

RRR yx ,, , based on incremental wheel encoder information, 

and determines the new steering angle, based on its present pose and the subgoal 
information. Ideally this is the angle by which the robot should turn and proceed at 
a constant speed to reach the subgoal, in a static scenario. This is because the 
subgoal belongs to the set of points which were generated from the shortest path 
generation algorithm, employing obstacle avoidance. However, in a dynamic  
 

 
(a) 

 
(b) 

Fig. 3.8(a). IR sensor arrangements of the KOALA robot [23] 
Fig. 3.8(b). Measured values of the IR sensor readings, by placing a 1.5 cm wide obstacle 
in front of sensor (R0) at a distance of 10 cm. 
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scenario, after the last time the vision based mapping subroutine was activated, a 
new obstacle may have arrived or an old obstacle’s position may have been 
changed. This may result in obstruction along the ideal path of travel between the 
robot and the subgoal. To cope with this dynamic environment, the navigation is 
guided by 16 IR sensors, mounted symmetrically along the periphery of the 
KOALA robot.  

These IR sensors are densely populated in front and sparsely populated at the 
two sides of the robots.  Figure 3.8(a) shows the sensor arrangement of the mobile 
robot and Fig. 3.8(b) shows a typical situation for the measured values of the 
sensors, by placing a 1.5 cm wide obstacle in front of the front sensor (R0) at a 
distance of 10 cm from the robot front face. For navigation, these 16 IR sensors 
scan the environment. Depending on these sensor readings, the system calculates 
the obstacle regions and free regions ahead of the robot. From these calculations 
the traversable area is determined. For determining the traversable area, separate 
thresholds are set for each of the 16 sensors, with the maximum priority given to 
the front sensors (R0 – R3, L0 – L3). For each sensor, if its reading exceeds its 
threshold, it means the direction ahead of it is obstructed, else the direction ahead 
is considered free for traversal. Now, depending on these readings, there can be 
traversable areas both to the left and to the right of the present pose of the robot. 
The decision of whether the robot should turn left or right is taken based on which 
direction will mean that the robot has to undertake the shorter detour with respect 
to its ideal direction of travel. Once the detour direction is determined, the speed 
of the robot is determined based on the IR sensor readings in that direction. When 
the robot travels a predetermined distance, the entire IR based scanning and 
determination of the new detour direction of traversal is reactivated and this 
procedure is continued until the robot reaches the subgoal or its closest vicinity. 
Then the robot stops and the control is transferred back to layer 1. 

3.7   Real-Life Performance Evaluation 

The performance evaluation has been carried out, for vision based navigation, in 
our laboratory, utilizing several environments. Here we present the results for four 
such experiments, two each in static and dynamic environments. 

Case Study – I 
The initial pose of the robot is (0, 0, 0) and the goal point is (2, 0). There lies an 
object between the robot and the goal position. It should be mentioned here that 
for the robot system which is equipped with a pan-tilt mechanism with its 
corresponding degrees of freedom, in this work, the pan angle and the tilt angle 
are suitably initialized for a particular environment and then they are kept fixed, 
for all subsequent experiments. Initially these two angles are so chosen for the 
robot system developed so that the monocular camera, in each frame, covers a 
reasonably large floor and environment area. The system is hence equipped  
with the flexibility where these angles can be suitably initialized depending  
on the environment where this navigation system is going to be implemented. 
Figure 3.9(a) shows the image frame acquired from the video stream of the camera  
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(a)                                                                      (b) 

    
                         (c)                                                                      (d) 

   
                         (e)                                                                      (f) 

Fig. 3.9. (a): The image acquired, (b)-(f): sequence of image processing caried out in layer 
1. (b): edge image; (c): thickened edge image; (d): region grown image; (e): image with 
free, obstacle, and hidden regions and (f): trapezoidal floor image. 
 

 
and Figs. 3.9(b)–3.9(f) show the sequence of image processing steps, when the 
robot is in initial position. The edge of the face of the obstacle on the ground, 
viewed by the robot in  front of it when the robot is at its initial pose, actually 
extends from (0.9, 0.3) to (0.9, -0.85). Figure 3.10 shows the snapshot of the grid  
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Fig. 3.10. The initial grid map 

map with the obstacle information and free region. Here the shortest path is 
calculated and the layer 2 of the robot navigation algorithm is updated with the 
subgoal information. The algorithm calculates the subgoal 1 as (0.81, 0.33). When 
the control is transferred to layer 2, the robot navigates using IR sensor based 
guidance, upto subgoal 1. The robot actually stops at (0.819, 0.332) which has 
very small discrepancy with the calculated subgoal. Figure 3.11 shows the 
snapshot of the grid map when the robot reaches the first subgoal point. This grid 
map is developed when the control is transferred back to layer 1 and vision based 
processing is carried out once more. Figures 3.12(a)-3.12(d) show the results of 
image processing steps, when the robot is at the first subgoal point. These results 
are used for IR based navigation once more. This sequential process is continued 
to reach the final goal point. Figure 3.13 shows the grid map when the robot  
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reached the destination. The robot finally stops at (1.963, 0.024) which is 
extremely close to the specified goal (2,0). Figure 3.14 shows the complete 
navigation path traversed by the robot, starting from the initial point and reaching 
the goal point, in presence of the obstacle, following the shortest possible path. 
Figure 3.15(a) shows the response of IR sensors on the right side of the robot (R0, 
R3) during navigation and fig. 15(b) shows the corresponding responses for the IR 
sensors on the left side of the robot (L0, L3). It can be seen that the reading of the 
R3 sensor reaches a high value when the robot is in the vicinity of the obstacle. As 
the robot crosses the obstacle and proceeds towards the goal point, the reading of 
the R3 sensor gradually decreases. 

 

 

Fig. 3.11. The grid map, when the robot reaches the first subgoal 
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        (a)                                                                 (b) 

   
                         (c)                                                                 (d) 

Fig. 3.12. (a)-(d). Results of image processing at subgoal 1. (a): the acquired image; (b): 
edge image; (c): thickened edge image, and (d): image with three distinct regions. 

Case Study – I1 
Here again the initial pose of the robot is (0, 0, 0) and the new goal point is (3, 0). 
Now two objects are introduced between the robot and the goal position. Figure 
3.16(a) shows the image frame acquired at the initial position of the robot and 
Figs. 3.16(b)–3.16(f) show the results of subsequent image processing steps in 
layer 1. Figure 3.17 shows the snapshot of the initial grid map with the obstacle 
information and free region. Next the shortest path is calculated and the layer 2 of 
the robot navigation algorithm is implemented with this subgoal information. 
Figure 3.18 shows the snapshot of the grid map when the robot reaches the first 
subgoal point. When the robot reaches subgoal 1, the control is transferred back to 
layer 1. The system again performs the vision based processing, as shown in Fig. 
3.19 and Fig. 3.20 shows the grid map when the robot reaches subgoal 2, using IR  
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Fig. 3.13. The grid map, when the robot reaches the final goal point 
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Fig. 3.14. The robot navigation path traversed 
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(b) 

Fig. 3.15. Variation of (a) response of L0 & L3 IR sensors with time and (b) response of R0 
& R3 IR sensors with time, for case study I 
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(a)             (b) 

     
(c)             (d) 

 

   
     (e)             (f) 

Fig. 3.16. (a): The image acquired, (b)-(f): results of image processing steps in layer 1. (b): 
edge image; (c): thickened edge image; (d): region grown image; (e): image with free, 
obstacle and hidden regions and (f): trapezoidal floor  image. 
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Fig. 3.17. The initial grid map 

 
Fig. 3.18. The grid map, when the robot reaches the first subgoal 
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based navigation in layer 2. This iterative process is continued until the robot 
reaches the final goal. Figure 3.21 shows the grid map when the robot reaches the 
final goal point. Figure 3.22 shows the complete path of traversal of the robot for 
this static environment and shows that the robot reaches the goal satisfactorily. 
Figure 3.23 shows the variations of four IR sensors, R0, R3, L0, and L3, readings 
when the robot navigates towards its destination. 

 
 

    

     (a)                      (b) 

     

     (c)                      (d) 

Fig. 3.19 (a)-(d). Results of image processing at subgoal 1. (a): the captured image; (b): 
edge image; (c): thickened edge image, and (d): image with three distinct regions. 
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Fig. 3.20. The grid map, when the robot reaches the second subgoal 

 
Fig. 3.21. The grid map, when the robot reaches the final goal point  
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Fig. 3.22. The robot navigation path traversed, in case study I 

 
Case Study – III 
In the next two case studies, we demonstrate the utility of the proposed system in 
case of a dynamically changing environment. Here, for an environment similar to 
that considered in case study I, the robot starts from an initial pose (0, 0, 0), with a 
bid to reach the goal point (2,0), in presence of an obstacle between the robot and 
the goal position. However, after the robot starts its IR based navigation towards 
subgoal 1, determined using vision based image processing in layer 1 at the initial 
position of the robot, followed by the determination of the subgoal 1 utilizing the 
shortest path algorithm, the position of obstacle 1 is shifted. The new position of 
the obstacle is now shown in Fig. 3.24 where it is moved nearer to the robot and it 
is shifted towards the left of the robot, with reference to its initial pose. Because of 
this dynamic variation in the environment, the robot takes a detour towards its left 
but was still able to avoid the obstacle and reach its subgoal. The subsequent 
activations of the iterative algorithm show that the robot reaches its final goal 
almost perfectly, once more. Figure 3.24 shows this navigation of the robot in the 
dynamic environment. Figure 3.25(a) and Fig. 3.25(b) show the IR sensor 
readings, in front of the robot. It can be seen that the reading of R0 and L0 receive 
a sudden kick when the obstacle is moved in the dynamic environment.  
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Fig. 3.23. Variation of (a) response of R0 and R3 IR sensors and (b) response of L0 and L3 
IR sensors during navigation, for case study II 

 

(a) 

(b) 
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Here it should be mentioned that if there arises an exceptional situation where 
the dynamically changing object arrives exactly on a subgoal, then, according to 
the algorithm, the IR-sensor based actual navigation guidance mechanism will 
ensure that the robot will stop at the shortest distance from the subgoal, satisfying 
obstacle avoidance or collision requirement. 
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Fig. 3.24. The robot navigation path traversed in a dynamic environment 

Case Study – IV 
This situation is similar to case study II, but with both obstacles being made 
dynamic in nature. Here also, after the robot start traversing towards subgoal 1, 
avoiding obstacle 1 whose position was determined from the vision based image 
processing in layer 1, the position of the obstacle 1 was suddenly changed. It was 
brought closer to the robot and more towards its left, making partial dynamic 
blockage of the free region of traversal. Similarly, when the robot was attempting 
to traverse a shortest path avoiding obstacle 2, suddenly the position of the 
obstacle 2 was changed by bringing it closer to the robot. However the robot was 
able to undertake the required detour in its IR based navigation in each such 
situation and was able to reach the final goal satisfactorily, as shown in Fig. 3.26.  
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(b) 

Fig. 3.25. Variation of (a) response of R0 and R3 IR sensors and (b) response of L0 and L3 
IR sensors during navigation in the dynamic environment, for case study III 
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Figure 3.27(a) and 3.27(b) show the readings of the IR sensors R0, R3, L0, and 
L3. It can be seen that here also the readings of L0 and R0 receive two sudden 
kicks, when the two obstacle positions are changed.  
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Fig. 3.26. The robot navigation path traversed in a dynamic environment 



3.7   Real-Life Performance Evaluation 79
 

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

R
ig

ht
 s

en
so

r 
re

ad
in

g

Time (s)

 R0
 R3

 
(a) 

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

L
ef

t s
en

so
r 

re
ad

in
g

T ime (s)

 L0
 L3

 
(b) 

Fig. 3.27. Variation of (a) response of R0 and R3 IR sensors and (b) response of L0 and L3 
IR sensors during navigation in the dynamic environment, for case study IV 
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3.8   Summary 

In this chapter we described how a two-layered, goal oriented, vision based robot 
navigation scheme can be developed. The system employs vision based analysis of 
the environment in layer 1, which employs several image processing functions and 
a shortest path generation algorithm, to determine the next subgoal for navigation, 
with the objective of reaching the final destination as fast as possible, avoiding 
obstacles. This subgoal information is utilized by the robot in layer 2 to navigate 
in dynamic environments, utilizing a set of IR sensors, avoiding obstacles, to 
reach the subgoal or its closest vicinity. This two-layered algorithm is utilized 
iteratively to create the next subgoal and navigate upto it, so that the final goal is 
reached sufficiently quickly. This chapter has showed a successful implementation 
of how to hybridize the shortest path algorithm with camera based image 
processing to enhance the quality of vision based navigation of mobile robots in 
the real world, so that, the robot can reach its goal (known a priori), following the 
shortest practical path, avoiding obstacles. The robustness of the system is further 
ensured by the IR-sensor guided navigation, which helps the robot to adapt its 
navigation, based on any possible change in obstacle positions in a dynamic 
environment. This algorithm is implemented for several environments created for 
indoor navigation in our laboratory. It has been demonstrated that the KOALA 
robot could achieve its task, each time, satisfactorily, for both static environments 
and dynamic environments.  

The developed programs comprise high-end programs developed in VB 
platform which communicate, in real-time, with the processor of the robot system, 
where cross-compiled versions of custom-designed C programs are downloaded. 
However, in the real implementation phase, the entire system is run from the high-
end VB platform in a PC through a user-friendly GUI developed, so that it can be 
easily utilized by some common users. 

For high illumination situations the algorithm is expected and has been 
demonstrated to provide satisfactory performance. However, for low illumination 
situations, the reflections of the obstacles on the floor may look dark enough (as is 
shown in the case of Figs. 3.4(a)-3.4(e)) so that the edge image may contain some 
edges corresponding to reflections on the floor. Hence these reflections may be 
interpreted as obstacle and this reduces the free zone computed. However, 
according to the algorithm, in these exceptional cases, the shortest path computed 
may be a little longer than the true shortest path but still safe and robust navigation 
of the robot avoiding obstacles towards the goal will be ensured. 

The present system is developed where the robot pose in real environment is 
estimated by odometry using only incremental wheel encoder information. This 
suffices well for indoor applications with uniform floors, for which the system is 
primarily developed. The experiments conducted sufficiently demonstrate that the 
robot reaches the goal in real world, under these conditions, for a variety of 
environmental configurations. However, the accuracy of this system may suffer in 
outdoor environments due to problems like wheel slippage etc. One can undertake 
such future works into consideration which will attempt to adapt this system  
for outdoor environments too and this may be accomplished by additionally 
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integrating e.g. extended Kalman filter based algorithms for robot localization, 
along with the current system developed. 
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