

Studies in Computational Intelligence 455

Editor-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

For further volumes:
http://www.springer.com/series/7092

Amitava Chatterjee, Anjan Rakshit,
and N. Nirmal Singh

Vision Based Autonomous
Robot Navigation

Algorithms and Implementations

ABC

Authors
Dr. Amitava Chatterjee
Electrical Engineering Department
Jadavpur University
West Bengal
Kolkata
India

Prof. Dr. Anjan Rakshit
Electrical Engineering Department
Jadavpur University
West Bengal
Kolkata
India

Dr. N. Nirmal Singh
Electronics and Communication
Engineering Department
V V College of Engineering
Tuticorin District
TamilNadu
Tisaiyanvilai
India

Additional material to this book can be downloaded from http://extras.springer.com

ISSN 1860-949X e-ISSN 1860-9503
ISBN 978-3-642-33964-6 e-ISBN 978-3-642-33965-3
DOI 10.1007/978-3-642-33965-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012949068

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

“Vision Based Autonomous Robot Navigation: Algorithms and Implementations”
is devoted to the theory and development of autonomous navigation of mobile
robots using computer vision based sensing mechanism. The conventional robot
navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser
sensors etc., suffer several drawbacks related to either the physical limitations of
the sensor or incur high cost. Vision sensing has emerged as a popular alternative
where cameras can be used to reduce the overall cost, maintaining high degree of
intelligence, flexibility and robustness.

The introductory chapter details the basic concepts of autonomous navigation
of mobile robots and the utility of using vision as the sensing mechanism in this
context is highlighted. Here a broad categorization of research activities pertaining
to vision-based navigation in indoor and outdoor environments is presented. This
is followed by an introduction of different broad modalities of obstacle detection
and avoidance. In the next chapter, the book discusses how real-life interfacing of
external peripherals with a readymade mobile robot can be successfully achieved.
Here a detail description of interfacing of such peripherals with the KOALA robot
using serial communication in interrupt driven mode is provided. In the next
chapter, a vision based robot navigation strategy is detailed, where a subgoal
based scheme is employed to follow the shortest path to reach the final goal and
also simultaneously achieve the desired obstacle avoidance. This strategy employs
a two layer architecture where vision sensor operates in layer 1 and IR sensor
based obstacle avoidance scheme operates in layer 2.

The next chapter discusses how a low-cost robot can be indigenously developed
in the laboratory with special functionalities. Special emphasis is put on
development of two microcontroller based sensor systems for the robot in this
regard: (i) an IR range finder system that can be developed with dynamic range
enhancement capability and (ii) an optical proximity detector system developed
utilizing the principle of switching mode synchronous detection technique. This is
followed by the next chapter which presents, in a step-by-step manner, gradually
progressing from easier modules to more complex modules, how vision-based
navigation subroutines can be actually implemented in real-life, under 32-bit
Windows environment.

The next two chapters deal with incorporation of fuzzy logic in the context
of mobile robot navigation. Among these, the first one discusses how a vision
based navigation scheme can be developed for indoor path/line tracking. Here
fuzzy vision-based navigation is hybridized with a fuzzy IR-based obstacle
avoidance mechanism. The next chapter first introduces the concept of EKF-based
SLAM for mobile robots. Then it discusses a more complex scenario where fuzzy

VI Preface

or neuro-fuzzy supervision can be effectively utilized to improve performance for
EKF based SLAM in presence of incorrect or uncertain knowledge of sensor
statistics. The last chapter discusses how a two camera based vision system can be
implemented in reality for SLAM in an indoor environment.

Kolkata, West Bengal, India Amitava Chatterjee
September 2012 Anjan Rakshit
 N. Nirmal Singh

Contents

1 Mobile Robot Navigation ... 1
1.1 Autonomous Mobile Robot Navigation ... 1
1.2 Why Vision in Navigation? .. 1
1.3 Vision-Based Navigation ... 3

1.3.1 Vision Based Indoor Navigation .. 4
1.3.1.1 Map-Based Navigation ... 4
1.3.1.2 Map-Building-Based Navigation 4
1.3.1.3 Mapless Navigation .. 5

1.3.2 Vision Based Outdoor Navigation .. 6
1.4 State of the Art ... 6
1.5 Obstacle Detection and Avoidance ...12
1.6 Summary ...14
References ...14

2 Interfacing External Peripherals with a Mobile Robot 21

2.1 Introduction ...21
2.2 PIC Microcontroller Based System for Interfacing a Vision System

 with a Ready-Made Robot ..23
2.3 The Integrated System Employing KOALA Robot with a PC

 and a Vision System ...34
2.4 Real-Life Performance Evaluation ..39
2.5 Summary ...45
Acknowledgement... 45
References ...45

3 Vision-Based Mobile Robot Navigation Using Subgoals 47

3.1 Introduction ...47
3.2 The Hardware Setup ..49
3.3 A Two-Layer, Goal Oriented Navigation Scheme52
3.4 Image Processing Based Exploration of the Environment in Layer 153
3.5 Shortest Path Computation and Subgoal Generation58
3.6 IR Based Navigation in Layer 2 ..62
3.7 Real-Life Performance Evaluation ..63
3.8 Summary ...80
Acknowledgement... 81
References ...81

VIII Contents

4 Indigenous Development of Vision-Based Mobile Robots 83
4.1 Introduction ...83
4.2 Development of a Low-Cost Vision Based Mobile Robot84
4.3 Development of Microcontroller Based Sensor Systems

 for Such Robots ...85
4.3.1 IR Range Finder System with Dynamic Range Enhancement 85

4.3.1.1 The Dynamic Range Enhancement Algorithm..................88
4.3.1.2 Experimental Results ..89

4.3.2 Optical Proximity Detectors Using Switching-Mode Synchronous
 Detection Technique ... 89

4.3.2.1 PIC Microcontroller Based Optical Proximity
 Detector ..90

4.3.2.2 Switching Mode Synchronous Detection (SMSD)
 Technique ..94

4.3.2.3 Experimental Results ..96
4.4 The Intranet-Connectivity for Client-Server Operation97
4.5 Summary ...99
References ...100

5 Sample Implementations of Vision-Based Mobile Robot Algorithms 101
5.1 Introduction .. 101
5.2 Lesson 1 .. 102
5.3 Lesson 2 .. 108
5.4 Lesson 3 .. 113
5.5 Lesson 4 .. 116
5.6 Lesson 5 .. 119
5.7 Lesson 6 .. 124
5.8 Lesson 7 .. 129
5.9 Lesson 8 .. 132
5.10 Lesson 9 .. 134
5.11 Lesson 10 .. 137
5.12 Summary ... 141
References .. 142

6 Vision Based Mobile Robot Path/Line Tracking 143

6.1 Introduction .. 143
6.2 A Preview of the Proposed Scheme .. 144
6.3 A Fuzzy System for Vision Based Robot Navigation 146
6.4 The IR-Sensor Based Obstacle Avoidance by Employing a Fuzzy
 Algorithm ... 155
6.5 Real-Life Performance Evaluation ... 158
6.6 Summary ... 165
Acknowledgement .. 165
References .. 165

Contents IX

7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots 167
7.1 Introduction .. 167
7.2 Extended Kalman Filter (EKF) Based Stochastic SLAM Algorithm 170
7.3 Neuro-fuzzy Assistance for EKF Based SLAM 176
7.4 The Neuro-fuzzy Architecture and Its Training Methodology
 Employing Particle Swarm Optimization (PSO) 180

7.4.1 Architecture of the Neuro-fuzzy Model 180
7.4.2 Training the Neuro-fuzzy Model Employing PSO 181
7.4.3 Performance Evaluation .. 184

7.5 Training a Fuzzy Supervisor Employing Differential Evolution
 (DE) Based Optimization ... 193

7.5.1 Performance Evaluation .. 194
7.6 Summary ... 203
Acknowledgement .. 203
References .. 203

8 Vision Based SLAM in Mobile Robots .. 207
8.1 Introduction .. 207
8.2 The Dynamic State Model for the Differential Drive Koala Robot 208
8.3 Vision Sensing Based Image Feature Identification, Feature Tracking
 and 3D Distance Calculation for Each Feature 211
8.4 Real-Life Performance Evaluation ... 215
8.5 Summary ... 220
Acknowledgement .. 221
References .. 221

Index ... 223

A. Chatterjee et al.: Vision Based Autonomous Robot Navigation, SCI 455, pp. 1–20.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 1
Mobile Robot Navigation

Abstract. This chapter introduces the basic concepts of autonomous navigation of
mobile robots and the utility of using vision as the sensing mechanism in
achieving the desired objectives. The chapter discusses the broad categories of
vision-based navigation in indoor and outdoor environments. Different prominent
directions of research in this context are introduced and also different broad
modalities of obstacle detection and avoidance are presented.

1.1 Autonomous Mobile Robot Navigation

Advances in recent technologies in the area of robotics have made enormous
contributions in many industrial and social domains in recent times. Nowadays
numerous applications of robotic systems can be found in factory automation,
surveillance systems, quality control systems, AGVs (autonomous guided
vehicles), disaster fighting, medical assistance etc. More and more robotic
applications are now aimed at improving our day-to-day lives, and robots are now
caught in sight more often than ever before performing various tasks in disguise
[1]. For many such applications, autonomous mobility of robots is a mandatory
key issue [100]. Autonomous mobile robots are robots which can perform desired
tasks in structured or unstructured environments without continuous human
guidance. A fully autonomous mobile robot has the ability to:

• Gain information about the environment.
• Work for an extended period without human intervention.
• Move either all or part of itself throughout its operating environment without

human assistance.
• Avoid situations that are harmful to people, property, or itself, unless those

are part of its design specifications.

An autonomous mobile robot may also learn or gain new capabilities like adjusting
strategies for accomplishing its task(s) or adapting to changing surroundings.

1.2 Why Vision in Navigation?

Vision is the sense that enables us, humans, to extract information about the
physical world, and, appropriately, it is the sense that humans rely on the most. In
recent past, computer vision techniques capable of extracting such information are

2 1 Mobile Robot Navigation

continuously being developed and refined. Vision processing is computationally
intensive, but as faster and lower priced processors being developed, the
development of real-time vision-based navigation systems for mobile robots is
becoming a reality for a variety of complicated jobs and more research works are
being focused in this domain now, than ever before [100].

The other sensors that are used for navigation include infrared sensors, sonar
sensors, laser range finders, the position sensing device (PSD) sensors and inertial
sensors. Infrared sensors have limited usage; they are very often used as proximity
detectors and the main shortcoming of using them as range finders lies in their
limited range and their susceptibility to ambient light interference. IR sensors are
also known for their non-linear behavior and their reflectance dependency on the
surface of a target [2]. Sonar sensors are computationally affordable and their data
are simple to read, but the reliability of their data is low due to the environmental
disturbances. The sonar range finder measures the distance to an object, but has
poor angular resolution due to its wide beam width [3]. Laser range finders
provide better reliability, instantaneous measurement, superior range accuracy,
and precise angular resolution than sonar, with finer directional resolution, but at
much higher cost. Laser-based sensors can extract information more than distance
only. For example, laser scanners are often used to extract topological information
making the best use of its ability to identify the textures of an object’s surface and
its precise range approximation. The laser range finder has a disadvantage that the
scan may be prone to missing transparent objects, such as glasses and windows.
Inertial navigation sensors such as accelerometers and gyroscopes provide
orientation and trajectory measurements of the moving vehicles, but provide no
information about the obstacles in the environment that the vehicle is traversing.
GPS is one of the most popular aiding tools in navigation systems in use today.
GPS provides real time absolute or relative position data, but the accuracy and
bandwidth are limited compared to the typical requirements of relative proximity
operation. The performance of GPS can suffer by occlusion of line-of-sight to
satellites and their accuracy and update rate may be slow [4]. These range-based
sensors have difficulties in detecting small or flat objects on the ground. These
sensors are also unable to distinguish between difference types of ground surfaces.
While small objects and different types of grounds are difficult to detect with
range-based sensors, they can in many cases be easily detected with a passive
sensor, like camera. A vision system is considered as a passive sensor and has the
fundamental advantages over the active sensors that are considered as active
sensors such as infrared, laser, and sonar sensors [5]. Passive sensors such as
cameras do not alter the environment by emitting lights or waves in acquiring
data, and also the obtained image contains more information (i.e. substantial,
spatial and temporal information) than active sensors. All these sensors acquire
less information about the physical environment than a camera can potentially,
and with the continued growth of faster and cheaper computing power, that
potential is now being tapped for designing real-world vision based navigational
systems. Cameras are cheap to purchase, with even the most expensive cameras
being relatively affordable. Hence vision as a sensing mechanism for mobile
robots offers very attractive potential for solution.

1.3 Vision-Based Navigation 3

1.3 Vision-Based Navigation

Vision based robot navigation is defined as the technique that guides a mobile
robot to a desired destination, or along a desired path in an environment, by
avoiding static (and may be dynamic) obstacles, primarily using vision sensor
[100]. In general, vision-based robots have a vision system that perceives the
external environments. Traditionally there are five main components in a vision
system of an autonomous vision-based robot [6].

1. Maps. The system requires some internal representation or knowledge of the
external environment in order to perform goal driven tasks.

2. Data Acquisition. The system collects images from a camera.
3. Feature Extraction. The feature extraction stage extracts significant features

from input images such as edge, texture and colour.
4. Landmark Recognition. The system searches for possible matches between

the features in the observed images and the expected landmarks pre-stored in
memory with respect to some preset criteria.

5. Self-Localisation. The self-localisation stage calculates the robot’s current
position as a function of detected landmarks and its previous position. The
system then derives the path for the robot to traverse. This traversal can be
reactive to avoid obstacles only and/or it can be goal driven.

The navigation problem of a mobile robot can be, most often, divided into four
subproblems [7]:

1. World perception. It senses the world, symbolizing it into features.
2. Path planning. It uses the features to create an ordered sequence of objective

points that the robot must attain.
3. Path generation. Then the goal is to obtain a path through the sequence of

objective points.
4. Path tracking. It is the responsibility of the controller so that the mobile robot

can follow the intended path.

Generally, vision-based robotic systems with the ability of obstacle detection and
avoidance are relatively complicated to develop, since extracting information from
a stream of the images of the site, consisting of the robot and the obstacles, can be
a complex task to achieve desired real-time performance, with as little computing
processing as possible. The problem of moving a robot through an unknown
environment has attracted much attention over the past two decades. A robot may
encounter obstacles of all forms that must be bypassed in an intelligent manner.
Accordingly, a substantial research effort focuses on the use of computer vision to
achieve vision-based autonomous mobile robotic systems capable of navigation by
logically acting on the sensed data to avoid such obstacles. The primary aim of
most of these research efforts is to locate hindering obstacles, both stationary and
movable, so that the suitable robot path can be planned to bypass these objects
and, finally, to act according to the resultant plan. Navigation in both indoor and

4 1 Mobile Robot Navigation

outdoor environments using vision sensing has evolved as two major research
areas in the mobile robotics community.

1.3.1 Vision Based Indoor Navigation

The vision based indoor navigation schemes can be broadly classified into three
groups: i) map-based navigation, ii) map-building based navigation, and iii)
mapless navigation [6].

1.3.1.1 Map-Based Navigation

In map-based navigation, the system has an a priori knowledge about the
environment and the navigation system works with the knowledge of this map.
These environment maps are provided in form of geometric models, topological
maps, or sequence of images [8, 9, 10]. Early methods containing these maps had
several degrees of details regarding the environment and were provided in form of
“occupancy map”, “virtual force fields”, or “S-map” [11]. These methods were
very prone to sensor errors and this problem was later addressed in the works of
[12]. They made the very important suggestion to consider a tolerance about the
uncertainties in sensor measurement [12]. These methods were called “absolute
localization” and these research problems were later modified to solve for
“incremental localization”. Here it is assumed that an approximate knowledge
about the location of the robot is available and it is incrementally refined during
navigation process, as observations are made with the vision tool, and necessary
actions are taken for subsequent navigation. The FINALE [13] system is based on
this concept where a geometrical representation of space and a statistical
uncertainty model for the location of the robot is used and a Kalman-filter based
approach is employed to update the mean and the covariance matrix of the robot
position, when a landmark is matched with an image feature. Another class of
approach was based on topological representation of space where one can employ
bank of neural networks, as in NEURO-NAV [14], or a more sophisticated version
of NEURO-NAV employing supervisory fuzzy controller, called FUZZY-NAV
[15]. However, map-based navigation methods suffer from the disadvantage that it
is not easy to generate a model or map, specially metric maps, of the environment.

1.3.1.2 Map-Building-Based Navigation

Map-building based navigation procedures attempt to take care of this problem
where the robots start with no a priori information about the environment, they
explore the environment at first and build an internal description and then they
proceed with the task of navigation, using that internal description. Most of the
works in this domain utilize approaches based on topological representation of
space, e.g. [16] and [17], and address several issues like how to construct a node
in a graph-based description of space, how to distinguish between several
neighboring nodes, how to consider the effect of sensor uncertainty etc. However,
a chief drawback of these methods is the difficulty in recognizing those nodes,

1.3 Vision-Based Navigation 5

which were previously visited. Other approaches in this domain include the works
involving occupancy-grid-based representation [18, 19], works employing
panoramic view [20], and works which try to incorporate both the good features of
occupancy-grid-based and topology-based approaches [21]. There are some other
types of map-building navigation systems also described in literature, for example
visual sonar [22] or local map-based system [23]. These systems collect data of
the environment as they navigate and build a local map that is used as a support
for on-line safe navigation. This local map includes information about specific
obstacles and free space data of a reduced portion of the environment, which is
usually a function of the camera field-of-view.

1.3.1.3 Mapless Navigation

Mapless navigation approaches fall in an even more ambitious category, where the
navigation process starts and continues without any map. These kind of navigation
procedures may also be called reactive navigation where important information
about the environment are extracted online through observation, feature or
landmark identification (usually in form of natural objects like walls, desks,
doorways, corners etc.) and feature tracking and the navigation algorithm takes its
decision as a “reaction” to these relevant, meaningful information extracted. Some
of the traditionally popular approaches among these techniques employ optical-
flow based techniques [24] and appearance-based techniques [25], [26]. Optical-
flow based methods mimic the visual behavior of bees where the motion of the
robot is determined on the basis of the difference in velocity between the image
seen with left eye of the robot and the image seen with the right eye of the robot.
The robot moves toward the side whose image changes with smaller velocity.
Further modifications of the basic method in [24] have shown development of
optical flow based navigation systems utilizing depth information and also more
sophisticated systems employing stereo heads with pan, tilt and vergence control.
Some authors have proved that the combination of stereo vision, to obtain accurate
depth information, and optical flow analysis, provides better navigation results
[27, 28]. In [29], stereo information is combined with the optical flow from one of
the stereo images, to build an occupancy grid and perform a real time navigation
strategy for ground vehicles. On the other hand, appearance-based methods thrive
on memorizing the environment by storing a series of images, usually created
from subwindows extracted from down-sampled camera images, and then, at any
given time, an image taken is scanned across all these templates to find out
whether the image matches with any of the stored ones. If the match is found, then
a corresponding control action is taken for suitable navigation. The main focus
here is on improving the way the images are recorded in the training phase, as well
as on the subsequent image matching process. There are two main approaches for
environment recognition without using a map [30]:

(i) model based approaches which utilize pre-defined object models to
recognize features in complicated environments and self-localize in it, and

6 1 Mobile Robot Navigation

(ii) view-based approaches where no features are extracted from the pre-
recorded images. The self-localization is performed using image matching
algorithms.

1.3.2 Vision Based Outdoor Navigation

These are systems that use no explicit representation at all about the space in
which navigation is to take place, but rather resort to recognizing objects found in
the environment or to tracking those objects by generating motions based on
visual observations. The outdoor navigation fall in two sub groups based on the
level of structure of the environment: (i) outdoor navigation in structured
environment, and (ii) outdoor navigation in unstructured environment. In many
cases, mapping representations adapted in the indoor navigation are not much
reliable for outdoor navigation, as they include large scenarios, with enormous
physical area, and hence the amount of information to represent the environment
increases immeasurably. The outdoor navigation in structured environments refers
to road following which has the ability to detect the lines of the road and navigate
consistently. In contrast with the structured indoor spaces, outdoors are in most
cases, composed of gravel, gardens, walkways and streets. Most of these elements
present different colors and textures and it is convenient to use these features for
outdoor navigation. The first step to identify navigation regions is classifying
portions of the terrains into classes, according to the visual information. One of
the most outstanding efforts in road following, reported till now, is the NAVLAB
project [31, 32]. The NAVLAB road following algorithm has three phases: in the
first phase, a combination of color and texture pixel classification is performed by
utilizing a Gaussian distribution for each road and non-road pixels; in the second
phase, a Hough transform and a subsequent voting process is applied to road
pixels, to obtain the road vanishing point and orientation parameters; finally,
pixels are classified again according to the determined road edges. This
classification procedure is repeated for the next image in order to have a system
adaptable to changing road conditions. Many works have been reported with
related concept for road detection and following in structured environment [33-
36]. Supporting vision information with GPS data in outdoor environments is
another possibility of increasing reliability in position estimation [37]. In recent
works, authors have also proposed to combine the concept of feature tracking with
stereo 3D environment reconstruction. In [38], stereo vision is used in a novel
navigation strategy applicable to unstructured outdoor environments. This system
is based on a new, faster and more accurate corner detector method. In this
method, detected features are 3D positioned and tracked using normalized mean-
squared differences and correlation measurements.

1.4 State of the Art

Numerous research works have been conducted in the field of vision based mobile
robotics, till now, and most studies are concerned with detecting obstacles,

1.4 State of the Art 7

mapping a surrounding environment, planning safe routes, and navigating a
doorway. In this section some of the different navigation approaches that have so
far been used in vision based navigation, with and without a priori environmental
information, based on visual information provided by the camera, are outlined.

The “Stanford Cart” is one of the well known vision-based mobile robot
projects [39], implemented quite some time back. The system utilized a video
camera mounted on a mobile platform, the video signal was broadcast to a remote
computer which then processed and controlled the motion of the robot via radio
signals. The system used a planner for obstacle avoidance and path determination.
Once images of the complete scene of the environment were received, the system
could process them. The processing time was reported to be as long as 1-2 hours.
Once the image processing was completed, a planned path was produced which
guided the robot around obstacles. The problems encountered by this system were
largely due to the length of time the system spent processing the information. For
example, the shadows moved, causing the robot to make errors in its maps. These
drawbacks were later addressed, by incorporating the idea of using image
segmentation, using an interest-operator, to detect distinctive features in an
environment [40].

In early 1990’s, Horswill developed a robot called POLLY [41, 42], which
navigated using monochrome vision and was operated in a restricted environment
with constant color. POLLY used a topology-like map in its navigation, which
comprised a set of landmarks, that it used to localise itself. The landmarks were a
set of individual snapshots taken from a particular location in the office
environment. Landmark or place recognition was carried out by matching every
landmark with live video data, in order to determine where the robot was currently
located. In this work, it was suggested that this was, in effect, a local navigation
strategy, equivalent to the method of artificial potential fields. Therefore, the robot
was prone to be trapped in local minima. The approach utilized in this work
mainly involved four steps: (i) smooth the image, (ii) Determine the average pixel
value from a foreground trapezium, (iii) use this as floor and then label every pixel
by starting from the bottom of the image and scanning up each column until there
is a mismatch, (iv) the height of columns indicates the distance to obstacles,
referred as the Radial Depth Map. The main problem with this methodology was
that at times it misinterpreted shadows as obstacles. This was mainly due to the
simple nature of the robot’s vision processing system. The processing was based
on a simple extraction of textureless floor in an image, determining the available
free space to travel. In later years, researchers have also proposed mobile robot
navigation schemes with only one camera [43, 44]. Research work employing
occupancy gird based map building framework and a feature position detection
algorithm, that processes the colour RGB image sequence on-line from a single
camera, has also been proposed [45]. This system, instead of implementing
matching approaches, computes probabilities of finding objects at every location.
The algorithm starts with detecting the edges of objects boundaries in the current
frame using the Harris edge and corner detectors. In the beginning of the image
sequence, the edge features are added to the occupancy grid map, which are
scanned to determine the peaks. The detected features are back projected from the

8 1 Mobile Robot Navigation

2D image plane, considering all the potential locations at any depth. The
positioning module of the system computes the position of the robot using
odometry data combined with image feature extraction. Color or gradient from
edges and features from past images help to increase the confidence one can have
in the presence of an object in a certain location. The size of the grid cells was set
to 25 × 25 mm for experiments carried out in indoor environments. The robot was
allowed to move 100 mm between consecutive images. Using a single camera,
only forward information was acquired, and this amount of information was found
sufficient for indoor navigation purpose and was found very cost effective.
Majority of the other works using single camera, for indoor unknown
environment, have focused on the center following and wall following methods
[46]. A corridor center method for wheel chair mobile robot navigation using a
single USB camera and a laptop is reported recently [47]. In this work, the size of
the acquired image is 320 x 240 pixels, the frontal field-of-view is 60 cm at the
bottom and 20 m at the top, with a moving speed of 0.823 Km/h. This method also
used Hough transform to detect the boundary lines of the corridor and the walls.
The robot moves at the center of the corridor when there is no obstacles in the
corridor. The obstacle detection used here is based on an improved version of
Ulrich’s method [95]. The improvements incorporated are to omit the false
detection of obstacles, caused by the influence of the lighting. In [47], if any
obstacle is detected, then the obstacle avoidance or stop movement is decided
based on the size of the obstacle, distance of the mobile robot from the obstacle,
and the width of the corridor, which is determined from the 2D position in the real
space and the arbitrary position in the image. Another work has been reported
based on qualitative approach, which uses a single off-the-shelf, forward looking
camera with no calibration, which can perform both indoor and outdoor navigation
[1]. In this work the approach is based on teach-replay method, where, during the
teaching phase, a human guides the robot along the path which it should traverse,
manually. During the teaching phase, the robot selects and tracks the feature
points using Kanade-Lucas-Tomasi (KLT) feature tracker [48] and stores then in
a database. During the replay phase, an attempt is made to establish a
correspondence between the feature point coordinates of the current image, with
those of the first image taken during the teaching phase, based on which the
turning commands are determined. A similar type of human experience based
navigation algorithm using teaching-replay technique has also been developed
using stereo vision [49].

In stereo vision, one can measure distance information with two or more
cameras, as well as using ultrasonic sensor. However the processing cost becomes
complex when two or more cameras are used. Several works in mobile robot
navigation have so far been reported by using two or more cameras [50-54]. To
obtain the depth information by the use of two cameras, it is necessary to have
some data about the geometry of the camera and the head used. To obtain depth
information in stereo vision, it is required that the two lines of sight for the two
cameras intersect at the scene point P for which the depth information is to be
processed. Stereo camera based systems are useful for feature identification,
tracking of features and the distance calculation of 3D feature points in real time,

1.4 State of the Art 9

for the purpose of navigation. The concept relies heavily on selection/extraction of
image points/features from a snap acquired and subsequently tracking of it (them)
in subsequent snaps for the same scene, acquired from a different location and/or
with a different orientation. No feature based vision system can work unless good
features can be identified and tracked [55]. It is very important to obtain the 3D
coordinates of image features which can facilitate the calculation of distance
between the selected feature(s) in the image plane and the focal point of the
camera in the field of robotics. This is very important for robot localization and
scene interpretation. Recently, some methods to measure the distance between the
feature or object and a camera have been developed using a fisheye stereo vision
[56], monocular camera [57], the integration of vision and ultrasonic sensors [58],
biologically inspired saliency Maps (SMs) [59] that receive preprocessed input
from feature Detectors (FDs) etc. In [59], the interaction between the FDs of both
cameras and SMs support the detection of corresponding landmarks in both
images and allow the estimation of their direction and distance. A neural network
maps the seven given identifiers (the X and Y positions of the landmark in both
images, two camera pan angles and one common camera tilt angle) to the direction
and distance of the landmark. A grid-based map building method, by using stereo
vision, was developed for LAGR robot for outdoor navigation [60]. In addition to
the vision sensor, inertial navigation unit, GPS receiver, and front bump switch
were incorporated for sensing purpose. Here the map-building method mainly
involves the following steps:

1. Grab the images using a pair of color camera.
2. 3D representation is determined by matching patches in the two images from

the relative geometry of the camera.
3. Each coordinate point is transformed to find the instantaneous pitch and roll

of the robot, as estimated by the robots inertial navigation and yaw from the
local frame into the global frame.

4. A derivative operation is applied to the terrain map to find the abrupt changes
in the slope.

5. The global map is updated with new measurement including the terrain and
derivative estimates.

Recently, a successful stereo vision based algorithm was developed for NASA’s
Mars Exploration Rover, for autonomous navigation in potentially hazards terrain
[61]. The processing steps involved in this project are: (i) the image received from
the camera is down sampled to 256 x 256 pixels for reducing the computation
time, (ii) then the pair of image is processed by projection of epipolar line of an
object in the first image to the same object on the other image horizontally, (iii)
then the laplacian of the two images were computed, and, were correlated to select
the potential match within a disparity range and the procedure was repeated for all
the pixels in the images, so that if the estimate of these pixels fails in matching, it
will be discarded, and (iv) finally, each disparity value can be mapped to a 3D
representation using the geometric camera model.

10 1 Mobile Robot Navigation

Utilization of Omni-directional vision is also an important part in developing
vision-based mobile robot navigation strategies. It can provide a 3600 view of the
environment, in image form, for any arbitrary position of the robot. This vision
system uses fish eye cameras and panoramic cameras. They have the advantage of
possessing the full field-of-view but the associated disadvantage of incurring high
cost and the complexity in the development of vision algorithms, based on the
geometry of the particular type of the camera chosen. Several works have also
been reported using omni-directional vision for navigation [62-65], mostly using
the optical flow based navigation techniques.

Optical flow is the measure of visual motion induced by the movement of
surfaces in a scene with respect to the camera. Computationally, the most common
representation of optical flow is a 2D vector field in the image space, where each
vector describes the motion of a point in one image to its location in the next. In a
vision-guided robot, optical flow is largely induced by the motion of the camera as
the robot moves. Many of the works in optical flow methods are corridor centering
approaches, based on the observation in flying honey bees, as mentioned earlier. It
was observed that the direction and speed of the flight of the honey bees is directly
coupled with the visual motion induced by its motion relative to the environment
[66, 67]. The corridor navigation of mobile robots, based on optical flow, is
achieved using different types of cameras with different placement. For example,
in [68], a wide angle, forward-facing active camera was used to achieve corridor
centering. Here optical flow was computed in the left and right peripheral thirds of
the image. By balancing the maximal flow in both thirds, the robot attempted to
maintain a centered path between walls and obstacles. Here the camera gaze
direction was used to counter the rotation of the robot during directional
adjustments. In [69, 70], different methodologies were utilized to compute the
difference of the average horizontal optical flow from two cameras placed at 900
to the heading direction, on either side of the robot. In this method, in contrast to
[68], no compensatory measures were taken to counter rotational flow. Instead,
restrictions on steering keep the induced rotational effects to a minimum. To cope
with absence of texture (e.g. a doorway or no wall), a unilateral sustaining
behavior is used to maintain a constant distance from the side wall, which can still
provide sufficient texture from which optical flow can be estimated.

Optical flow using correlation-based techniques is similar in nature to disparity
mapping using stereo vision. The difference is that in optical flow the images are
separated temporally, whereas, for stereo vision, they are separated spatially.
Unfortunately, the task of correlating images for optical flow gets complicated by
the fact that robots in real world are may be subject to vibrations. This means that,
unlike stereo vision, the search for corresponding image patches cannot be
restricted to the same horizontal scan line [71, 72]. Other flow techniques for
robot navigation with continuous motion have also been proposed using gradient-
based methods [73-75].

Visual navigation techniques based on optical flow have proved to be
especially useful for unmanned aerial vehicles because optical flow gives the
scene qualitative characteristics that cannot be extracted in detail from a single
low quality image. Within this research framework, a significant effort has been

1.4 State of the Art 11

devoted to imitate animal behavior, as far as the use and processing of apparent
motion is concerned. Unmanned aerial vehicles with camera eye consisted of an
array of photoreceptors, each one connected to an electronic Elementary Motion
Detector (EMD), which was able to calculate the local optical flow at its particular
position [76]. Contrast on optical flow calculations determined the presence of
obstacles, while identifying the EMD polar coordinates, that produced the changes
in optical flow measures, permitted to construct a local map with the location of
the obstacles. In [77], an unmanned aerial vehicle was also implemented with a
camera eye, assembled with an array of photosensors and their corresponding
EMDs. The information obtained from the set of EMDs, was used to determine
the presence of obstacles. Furthermore, when the unmanned aerial vehicle flew at
a constant speed and altitude, a reference optical flow distribution was calculated
from the equation that models the velocity of the artificial retina. To follow the
terrain, the system varied thrust and rudders positions to adjust the online
computed optical flow with the optical flow reference.

Line navigation is another type of landmark based navigation that has been
widely used in the industries. Line navigation can be thought of as a continuous
following of a landmark, although in most cases the sensor used in this system
needs to be very close to the line, so that the range of the vehicle is limited to the
immediate vicinity of the line. These techniques can be popularly employed for
industrial automation tasks and vehicles using them are generally called
Automatic Guided Vehicles (AGVs). An automated guided vehicle can navigate
in prespecified paths where the work is monotonous such as in factory, hospital,
and office building [78]. In earlier times, cable magnetic tape guidance was the
preferred choice for line navigation. But the main disadvantage of this method was
the cost involved and the difficulty in relocating the paths which leads navigation
using line recognition. One of the successful early approaches of vision based line
following navigations is based on image processing by extracting a white line
from the background of the image acquired and it varies with respect to the
vehicles movement [79]. In this work, a TV camera was used for acquiring the
environmental information. The position of the vehicle is determined by
correlating the field pattern changes while in movement with the predetermined
path in the path planner accordingly providing the steering command to the robot
motor. Similarly vehicle navigation based on preexisting landmarks with signs and
lines were reported in [80, 81].

Another area, which has attracted significant research attention, is simultaneous
localization and mapping (SLAM), also known as concurrent mapping and
localization (CML), where a mobile robot can build a map of an environment and
at the same time use this map to deduce its location. Initially, both the map and the
vehicle position are not known, the vehicle has a known kinematic model and it is
moving through the unknown environment, which is populated with artificial or
natural landmarks. A simultaneous estimation of both robot and landmark
locations is carried out based on observation of landmarks. The SLAM problem
involves finding appropriate representation for both the observation and the
motion models [82]. Most of the SLAM approaches are oriented towards indoor,
well structured and static environment [83-87] and give metric information

12 1 Mobile Robot Navigation

regarding the position of the mobile robot and of the landmarks. A few works
have also been attempted for dynamic scenarios and for outdoor environments [88,
89]. In the earlier stages of mapping algorithms using sonar and vision sensors on
large experimental areas, it was noticed that there were storage problems for
specifically e.g. long straight walls. As a mobile robot moves, errors in the
odometry information arising from wheel slippage, non-uniform floor surface, and
poorly calibrated tick-information causes the position information provided by the
odometry to increasingly deviate from its true position. Features detected from
these positions would be built into the map relative to the position of the robot,
hence the positions of features would also drift away from their true positions.
Algorithms have been developed to correct for this motion drift such as [90] and
[91] who proposed to store correlations between each feature and robot position.
One of the first vision based solution for SLAM problems was proposed in [90]
which employed an extended Kalman filter (EKF)-based approach. Although
EKF-based approaches are more common for these problems, they are based on
the basic assumption that the sensor and process uncertainties can be modeled as
Gaussian distributions. However, physical systems can have significant departure
from these assumptions. One of the main drawbacks of the EKF and the KF
implementations is the fact that for long duration missions, the number of
landmarks will increase and, eventually, computer resources will not be sufficient
to update the map in real-time. This scaling problem arises because each landmark
is correlated to all other landmarks. The Compressed Extended Kalman Filter
(CEKF) [87] algorithm significantly reduces the computational requirement
without introducing any penalties in the accuracy of the results. A CEKF stores
and maintains all the information gathered in a local area with a cost proportional
to the square of the number of landmarks in the area. This information is then
transferred to the rest of the global map with a cost that is similar to full SLAM
but in only one iteration. To overcome these problems, recently some efforts in the
area of vision-based SLAM are directed in utilizing particle filtering based
approaches [92, 93]. However, particle filtering is essentially a slow process and
hence its real-time implementation can cause significant problems.

1.5 Obstacle Detection and Avoidance

Obstacle avoidance is one of the important steps in the role of most mobile robot
navigation, schemes. Obstacle detection is the process of discriminating between
the floor (also called the ground plane) and an object resting on the floor, i.e.
separating the floor pixels from the obstacle pixels in the camera image. Collision
avoidance is a steering behavior that enables a robot to roam around without
colliding with obstacles. As the present book is based on vision-based navigation,
the discussions here will be restricted to those works where the steering decisions
are made based on computer vision. Many works described before have the ability
of obstacle avoidance with the support of other conventional sensors. There are
also several methods adapted for obstacle avoidance with monocular image
features, stereo vision based detection, optical flow method, and vision based
potential field method. In [94], an autonomous obstacle detection method for

1.5 Obstacle Detection and Avoidance 13

mobile robots, using single monocular camera image, has been proposed. This
system basically comprises three vision modules for obstacle detection. The three
modules of vision processing are based on brightness gradients, RGB, and HSV
and they generate a coarse image-based representation, called obstacle boundary.
The outputs of these three modules were combined into a single obstacle boundary
and this information is utilized to generate the turning commands. The purpose of
utilizing three modules is that at any circumstances, two of the modules will
be suitable for detecting the boundary. This method has been tested for two
simulated Mars environments at JPL (Jet Propulsion Laboratory). However, the
disadvantage of this system is that it failed when the obstacles were outside the
field-of- view of the camera.

Another strategy for obstacle avoidance is based on appearance based method
for structured environments [95]. This system is based on three assumptions: (i)
the obstacles differ in appearance from the ground, (ii) the ground is relatively
flat, and (iii) all the obstacles should be in touch with the ground. The system uses
an image resolution of 320 x 260 pixels in colour. The main process comprises
four steps:

1. Filter the colour image using a 5 x 5 gaussian, mask.
2. Transform the filtered colour image to HIS colour space.
3. The pixels inside the trapezoidal area are histogrammed for hue and

intensity.
4. All pixels of the filtered image are compared to the hue and intensity

histograms. If the histogram’s bin value at the pixel’s hue and pixel’s
intensity value is below the threshold, then it is classified as obstacle.

This system has three operating modes: regular, adaptive and assistive. Each of
these modes is well suited for a specific situation. In adaptive mode, the system
can cope up with the changes in the illumination and in the assistive mode, the
robot is equipped for tele operation.

Another method of obstacle detection and avoidance, by using visual sonar, is
proposed in [96]. In this method, a single camera is mounted on the robot and each
camera image pixel is classified into floor pixels, other known objects or unknown
objects, based on their colour classes. The image is scanned with reference to the
robot with a linear spacing of 50. An object is identified if there exists a
continuous set of pixels in a scan which corresponds to the same colour class. The
unknown obstacle is detected when unknown colour classes occur together. The
distance between the robot and the image is calculated using the difference in the
colour class value at the nearest intersecting pixel point of the object and the floor
colour. A local map is created with the distance of objects from the robot, with the
limited field-of-view of the camera. The new visual information is updated every
time a new object information appears in the field-of-view of the camera. This
vision algorithm is implemented in the AIBO robot. Another method of obstacle
detection and avoidance with the combination of single camera and ultrasonic
sensor is reported in [97]. In this work, the obstacle detection is carried out using
canny edge detection method in vision, and the obstacle avoidance is carried out
using limit-cycle and nearness diagram navigation method.

14 1 Mobile Robot Navigation

In stereo vision based obstacle detection methods, the main idea lies in
capturing two images of the environment at the same time. The position of an
obstacle can be determined by inverse perspective mapping [98]. In inverse
perspective mapping, the pixels of the two images are mapped to the ground
plane, as if they all represented points on the ground. The obstacle positions are
calculated using the difference of two images, because the difference signifies the
presence of an obstacle. The drawback of this method is that it is essentially a
computation heavy procedure. Obstacle detection and avoidance for outdoor
environments, based on the computation of disparity from the two images of a
stereo pair of calibrated cameras, was also reported in [99]. In this work, the
system assumed that objects protrude high from the ground, and the surface
should be flat, distinguishable from the background in the intensity image. Every
point above the ground is configured as a potential object and projected onto the
ground plane, in a local occupancy grid, called instantaneous obstacle map (IOM).
The commands to steer the robot are generated according to the positions of
obstacles in this instantaneous obstacle map computed.

1.6 Summary

This chapter has introduced the fundamental concepts of autonomous mobile robot
navigation using vision. Different broad categories of vision-based navigation are
discussed and the research efforts worldwide, in the present day context, in these
fields, are summarized.

References

[1] Chen, Z., Birchfield, S.T.: Qualitative Vision-Based Mobile Robot Navigation. In:
Proc. IEEE International Conference on Robotics and Automation (ICRA),
Orlando, Florida (May 2006)

[2] Benet, G., Blanes, F., Simo, J.E., Perez, P.: Using infrared sensors for distance
measurement in mobile robots. Robotics and Autonomous Systems 40, 255–266
(2002)

[3] Flynn, A.M.: Combining sonar and infrared sensors for mobile robot navigation.
The International Journal of Robotics Research 7(6), 5–14 (1988)

[4] Saeedi, P., Lawrence, P.D., Lowe, D.G., Jacobsen, P., Kusalovic, D., Ardron, K.,
Sorensen, P.H.: An autonomous excavator with vision-based track-slippage. IEEE
Transaction on Control Systems Technology 13(1), 67–84 (2005)

[5] Bertozzi, M., Broggi, A., Fascioli, A.: Vision-based intelligent vehicles: state of
the art and perspectives. Robotics and Autonomous Systems 32, 1–16 (2000)

[6] DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)

[7] Shin, D.H., Singh, S.: Path generation for robot vehicles using composite clothoid
segments. The Robotics Institute, Internal Report CMU-RI-TR-90-31. Carnegie-
Mellon University (1990)

References 15

[8] Lebegue, X., Aggarwal, J.K.: Generation of architectural CAD models using a

mobile robot. In: Proc. IEEE International Conference on Robotics and
Automation (ICRA), pp. 711–717 (1994)

[9] Lebegue, X., Aggarwal, J.K.: Significant line segments for an indoor mobile robot.
IEEE Transactions on Robotics and Automation 9(6), 801–815 (1993)

[10] Egido, V., Barber, R., Boada, M.J.L., Salichs, M.A.: Self-generation by a mobile
robot of topological maps of corridors. In: Proc. IEEE International Conference on
Robotics and Automation (ICRA), Washington, pp. 2662–2667 (May 2002)

[11] Borenstein, J., Everett, H.R., Feng, L. (eds.): Navigating Mobile Robots: Systems
and Techniques. A. K. Peters, Wellesley (1996)

[12] Atiya, S., Hanger, G.D.: Real-time vision based robot localization. IEEE
Transactions on Robotics and Automation 9(6), 785–800 (1993)

[13] Kosaka, A., Kak, A.C.: Fast vision-guided mobile robot navigation using model-
based reasoning and prediction of uncertainties. Computer Vision, Graphics, and
Image Processing – Image Understanding 56(3), 271–329 (1992)

[14] Meng, M., Kak, A.C.: Mobile robot navigation using neural networks and
nonmetrical environment models. IEEE Control Systems, 30–39 (October 1993)

[15] Pan, J., Pack, D.J., Kosaka, A., Kak, A.C.: FUZZY-NAV: A vision-based robot
navigation architecture using fuzzy inference for uncertainty. In: Proc. IEEE
World Congress Neural Networks, vol. 2, pp. 602–607 (July 1995)

[16] Yamauchi, B., Beer, R.: Spatial learning for navigation in dynamic environments.
IEEE Transactions on Systems, Man, and Cybernetics: Part B 26(3), 496–505
(1996)

[17] Zimmer, U.R.: Robust world-modeling and navigation in real world. In: Proc.
Third International Conference Fuzzy Logic, Neural Nets, and Soft Computing,
vol. 13(2-4), pp. 247–260 (October 1996)

[18] Borenstein, J., Koren, Y.: The vector-field histogram-fast obstacle avoidance for
mobile robots. IEEE Transactions on Robotics and Automation 7(3), 278–288
(1991)

[19] Elfes, A.: Sonar-based real-world mapping and navigation. IEEE Journal of
Robotics and Automation 3(6), 249–265 (1987)

[20] Yagi, Y., Kawato, S., Tsuji, S.: Real-time ominidirectional image sensor (COPIS)
for vision guided navigation. IEEE Transactions on Robotics and
Automation 10(1), 11–22 (1994)

[21] Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation.
Artificial Intelligence 99(1), 21–71 (1998)

[22] Martin, M.C.: Evolving visual sonar: Depth from monocular images. Pattern
Recognition Letters 27(11), 1174–1180 (2006)

[23] Gartshore, R., Palmer, P.: Exploration of an unknown 2D environment using a
view improvement strategy. Towards Autonomous Robotic Systems, 57–64
(2005)

[24] Santos-victor, J., Sandini, G., Curotto, F., Garibaldi, S.: Divergent stereo for robot
navigation: learning from bees. In: Proc. IEEE CS Conference Computer Vision
and Pattern Recognition (1993)

[25] Ohno, T., Ohya, A., Yuta, S.: Autonomous navigation for mobile robots referring
pre-recorded image sequence. In: Proc. IEEE International Conference on
Intelligent Robots and Systems, vol. 2, pp. 672–679 (November 1996)

16 1 Mobile Robot Navigation

[26] Jones, A.D., Andersen, C., Crowley, J.L.: Appearance based processes for visual
navigation. In: Proc. IEEE International Conference on Intelligent Robots and
Systems, pp. 551–557 (September 1997)

[27] Talukder, A., Goldberg, S., Matties, L., Ansar, A.: Real-time detection of moving
objects in a dynamic scene from moving robotic vehicles. In: Proc. IEEE
International Conference on Intelligent Robots and Systems (IROS), Las Vegas,
Nevada, pp. 1308–1313 (October 2003)

[28] Talukder, A., Matties, L.: Real-time detection of moving objects from moving
vehicles using dense stereo and optical flow. In: Proc. IEEE International
Conference on Intelligent Robots and Systems (IROS), Sendai, pp. 3718–3725
(October 2004)

[29] Braillon, C., Usher, K., Pradalier, C., Crowley, J.L., Laugier, C.: Fusion of stereo
and optical flow data using occupancy grid. In: Proc. IEEE International
Conference on Intelligent Robots and Systems (IROS), Beijing, pp. 2302–2307
(October 2006)

[30] Matsumoto, Y., Ikeda, K., Inaba, M., Inoue, H.: Visual navigation using
omnidirectional view sequence. In: Proc. IEEE International Conference on
Intelligent Robots and Systems (IROS), Kyongju, Korea, pp. 317–322 (October
1999)

[31] Thorpe, C., Herbert, M.H., Kanade, T., Shafer, S.A.: Vision and Navigation for
the Carnegie-Mellon Navlab. IEEE Transactions on Pattern Analysis and Machine
Intelligence 10(3), 362–372 (1988)

[32] Thorpe, C., Kanade, T., Shafer, S.A.: Vision and Navigation for the Carnegie-
Mellon Navlab. In: Proc. Image Understand Workshop, pp. 143–152 (1987)

[33] Broggi, A., Berte, S.: Vision-based road detection in automotive systems: A real-
time expectation-driven approach. Journal of Artificial Intelligence Research 3(6),
325–348 (1995)

[34] Ghurchian, R., Takahashi, T., Wang, Z.D., Nakano, E.: On robot self navigation in
outdoor environments by color image processing. In: Proc. International
Conference on Control, Automation, Robotics and Vision, pp. 625–630 (2002)

[35] Jung, C.R., Kelber, C.R.: Lane following and lane departure using a linear-
parabolic model. Image and Vision Computing 23(13), 1192–1202 (2005)

[36] Schneiderman, H., Nashman, M.: A discriminating feature tracker for vision-based
autonomous driving. IEEE Transactions on Robotics and Automation 10(6), 769–
775 (1994)

[37] Mejias, L.O., Saripalli, S., Sukhatme, G.S., Cervera, P.C.: Detection and tracking
of external features in an urban environment using an autonomous helicopter. In:
Proc. IEEE International Conference on Robotics and Automation (ICRA),
Barcelona, pp. 3972–3977 (April 2005)

[38] Saeedi, P., Lawrence, P.D., Lowe, D.G.: Vision-based 3-D trajectory tracking for
unknown environments. IEEE Transaction on Robotics 22(1), 119–136 (2006)

[39] Moravec, H.P.: The stanford cart and the CMU rover. Proc. IEEE 71(7), 872–884
(1983)

[40] Thorpe, C.: FIDO: Vision and navigation for a mobile robot. PhD dissertation,
Department of computer science, Carnegie Mellon University (December 1984)

[41] Horswill, I.: Visual collision avoidance by segmentation. In: Proc. IEEE
International Conference on Intelligent Robots and Systems, Germany, pp. 902–
909 (September 1994)

References 17

[42] Horswill, I.: Specialzation of Perceptual Processes. PhD thesis, Massachusetts
Institute of Technology (1995)

[43] Ohya, A., Kosaka, A., Kak, A.: Vision-based navigation by a mobile robot with
obstacle avoidance using single-camera vision and ultrasonic sensing. IEEE
Transactions on Robotics and Automation 14(6), 969–978 (1998)

[44] Aider, O.A., Hoppenot, P., Colle, E.: A model-based method for indoor mobile
robot localization using monocular vision and straight-line correspondences.
Robotics and Autonomous Systems 52, 229–246 (2005)

[45] Gartshore, R., Aguado, A., Galambos, C.: Incremental map building using
occupancy grid for an autonomous monocular robot. In: Proc. Seventh
International Conference on Control, Automation, Robotics and Vision
(ICARCV), Singapore, pp. 613–618 (December 2002)

[46] Murillo, A.C., Kosecka, J., Guerrero, J.J., Sagues, C.: Visual door detection
integrating appearance and shape cues. Robotics and Autonomous Systems 56,
512–521 (2008)

[47] Saitoh, T., Tada, N., Konishi, R.: Indoor mobile robot navigation by center
following based on monocular vision. In: Computer Vision, pp. 352–366. In-teh
Publishers

[48] Birchfield, S.: KLT: An implementation of the Kanade- Lucas-Tomasi feature
tracker, http://www.ces.clemson.edu/~stb/klt/

[49] Kidono, K., Miura, J., Shirai, Y.: Autonomous visual navigation of a mobile robot
using a human guided experience. Robotics and Autonomous Systems 40(23),
124–132 (2002)

[50] Murray, D., Little, J.J.: Using real-time stereo vision for mobile robot navigation.
Autonomous Robots 8, 161–171 (2000)

[51] Davison, A.J.: Mobile robot navigation using active vision. PhD thesis (1998)
[52] Ayache, N., Faugeras, O.D.: Maintaining representations of the environment of a

mobile robot. IEEE Transactions on Robotics and Automation 5(6), 804–819
(1989)

[53] Olson, C.F., Matthies, L.H., Schoppers, M., Maimone, M.W.: Rover navigation
using stereo ego-motion. Robotics and Autonomous Systems 43(4), 215–229
(2003)

[54] Konolige, K., Agrawal, M., Bolles, R.C., Cowan, C., Fischler, M., Gerkey, B.:
Outdoor Mapping and Navigation using Stereo Vision. In: Proc. International
Symposium on Experimental Robotics (ISER), Brazil, pp. 1–12 (July 2006)

[55] Shi, J., Tomasi, C.: Good Features to Track. In: Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 1994), Seattle, pp. 593–600
(June 1994)

[56] Nishimoto, T., Yamaguchi, J.: Three dimensional measurements using fisheye
stereo vision. In: Proc. SICE Annual Conference, Japan, pp. 2008–2012
(September 2007)

[57] Yamaguti, N., Oe, S., Terada, K.: A Method of distance measurement by using
monocular camera. In: Proc. SICE Annual Conference, Japan, pp. 1255–1260
(July 1997)

[58] Chou, T.N., Wykes, C.: An integrated ultrasonic system for detection, recognition
and measurement. Measurement 26, 179–190 (1999)

18 1 Mobile Robot Navigation

[59] Conradt, J., Simon, P., Pescatore, M., Verschure, P.F.M.J.: Saliency Maps
Operating on Stereo Images Detect Landmarks and Their Distance. In:
Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 795–800. Springer,
Heidelberg (2002)

[60] Wooden, D.: A guide to vision-based map-building. IEEE Robotics and
Automation Magazine, 94–98 (June 2006)

[61] Goldberg, S.B., Maimone, M.W., Matthies, L.: Stereo vision and rover navigation
software for planetary exploration. In: Proc. IEEE Aerospace Conference
Proceedings, USA, vol. 5, pp. 5025–5036 (March 2002)

[62] Fialaa, M., Basub, A.: Robot navigation using panoramic tracking. Pattern
Recognition 37, 2195–2215 (2004)

[63] Gasper, J., Santos- Victor, J.: Vision-based navigation and environmental
representations with an omnidirectional camera. IEEE Transactions on Robotics
and Automation 16(6), 890–898 (2000)

[64] Winters, N., Santos-victor, J.: Ominidirectional visual navigation. In: Proc. IEEE
International Symposium on Intelligent Robotic Systems (SIRS), pp. 109–118
(1999)

[65] Gasper, J., Winters, N., Santos-victor, N.: Vision-based navigation and
environmental representation with an ominidirectional camera. IEEE Transtations
on Robotics and Automation 16(6), 890–898 (2000)

[66] Srinivasan, M.V.: An image-interpolation technique for the computation of optic
flow and Egomotion. Biological Cybernetics 71(5), 401–415 (1994)

[67] Srinivasan, M.V., Zhang, S.: Visual navigation in flying insects. International
Review of Neurobiology 44, 67–92 (2000)

[68] Coombs, D., Roberts, K.: Centering behaviour using peripheral vision. In: Proc.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
USA, pp. 440–445 (June 1993)

[69] Sandini, G., Santos-Victor, J., Curotto, F., Garibaldi, S.: Robotic bees. In: Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Yokohama, Japan, vol. 1, pp. 629–635 (1993)

[70] Santos-Victor, J., Sandini, G.: Divergent stereo in autonomous navigation: From
bees to robots. International Journal of Computer Vision 14(2), 159–177 (1995)

[71] Lourakis, M.I.A., Orphanoudakis, S.C.: Visual Detection of Obstacles Assuming a
Locally Planar Ground. In: Chin, R., Pong, T.-C. (eds.) ACCV 1998. LNCS,
vol. 1352, pp. 527–534. Springer, Heidelberg (1997)

[72] Camus, T.: Real-time quantized optical flow. Real-Time Imaging 3(2), 71–86
(1997)

[73] Lucas, B., Kanade, T.: An iterative image registration technique with an
application to stereo vision. In: Proc. DARPA Image Understanding Workshop,
pp. 121–130 (1984)

[74] Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 13,
185–203 (1981)

[75] Nagel, H.: On the estimation of optical flow: relations between different
approaches and some new results. Artificial Intelligence 33(3), 299–324 (1987)

[76] van der Zwaan, S., Santos-Victor, J.: An insect inspired visual sensor for the
autonomous navigation of a mobile robot. In: Proc. Seventh International
Sysposium on Intelligent Robotic Systems, Portugal (July 1999)

References 19

[77] Netter, T., Franceschini, N.: A robotic aircraft that follows terrain using a
neuromorphic eye. In: Proc. IEEE International Conference on Intelligent Robots
and Systems (IROS), Switzerland, vol. 1, pp. 129–134 (Septemper 2002)

[78] Zhang, H., Yuan, K., Mei, S., Zhou, Q.: Visual navigation of automated guided
vehicle based on path recognition. In: Proc. Third International Conference on
Machine Learning and Cybernectics, Shanghai, pp. 26–29 (August 2004)

[79] Ishikawa, S., Kuwamoto, H., Ozawa, S.: Visual navigation of an autonomous
vehicle using white line recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 10(5), 743–749 (1988)

[80] Beccari, G., Caselli, S., Zanichelli, F., Calafiore, A.: Vision-based line tracking
and navigation in structured environments. In: Proc. IEEE International
Symposium on Computational Intelligent in Robotics and Automation, USA, pp.
406–411 (July 1997)

[81] Ismail, A.H., Ramli, H.R., Ahmad, M.H., Marhaban, M.H.: Vision-based system
for line following mobile robot. In: Proc. IEEE Symposium on Industrial
Electronics and Applications (ISIEA), Malaysia, pp. 642–645 (October 2009)

[82] Durrant-White, H., Bailey, T.: Simultaneous localization and mapping. IEEE
Robotics and Automation Magazine 13(2), 99–108 (2006)

[83] Zunino, G., Christensen, H.I.: Simultaneous localization and mapping in domestic
environments. Multisensor Fusion and Integration for Intelligent Systems, 67–72
(2001)

[84] Bosse, M., Newman, P., Leonard, J., Teller, S.: Slam in large-scale cyclic
environments using the atlas framework. International Journal of Robotics
Research 23(12), 1113–1139 (2004)

[85] Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A
solution to the simultaneous localization and map building (slam) problem. IEEE
Transactions on Robotics and Automation 17(3), 229–241 (2001)

[86] Estrada, C., Neira, J., Tardos, J.D.: Hierarchical SLAM: Real-time accurate
mapping of large environments. IEEE Transactions on Robotics 21(4), 588–596
(2005)

[87] Guivant, J.E., Nebot, E.M.: Optimization of the simultaneous localization and
map-building algorithm for real-time implementation. IEEE Transactions on
Robotics and Automation 17(3) (June 2001)

[88] Andrade-Cetto, J., Sanfeliu, A.: Concurrent map building and localization on
indoor dynamic environment. International Journal of Pattern Recognition and
Artificial Intelligence 16(3), 361–374 (2002)

[89] Liu, Y., Thrun, S.: Results for outdoor-SLAM using sparse extended information
filters. In: Proc. IEEE Conference on Robotics and Automation (ICRA), Taipei,
pp. 1227–1233 (September 2003)

[90] Davison, A.J., Murray, D.: Simultaneous localization and map-building using
active vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence 24(7), 865–880 (2002)

[91] Newman, P., Bosse, M., Leonard, J.: Autonomous feature-based exploration. In:
Proc. International Conference on Robotics and Automation (ICRA), Taipei,
vol. 1, pp. 1234–1240 (September 2003)

[92] Sim, R., Elinas, P., Griffin, M., Little, J.J.: Vision based SLAM using the Rao-
Blackwellized particle filter. In: Proc. IJCAI Workshop Reasoning with
Uncertainty in Robotics, Edinburgh, Scotland (July 2005)

20 1 Mobile Robot Navigation

[93] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: An
improved particle filtering algorithm for simultaneous localization and mapping
that provably converges. In: Proc. 18th International Joint Conference on Artificial
Intelligence (IJCAI), Acapulco, Mexico, pp. 1151–1156 (August 2003)

[94] Lorigo, L.M., Brooks, A., Grimson, W.E.L.: Visually-guided obstacle avoidance
in unstructured environments. In: Proc. IEEE Conference on Intelligent Robots
and Systems, France (1997)

[95] Ulrich, I., Nourbakhsh, I.: Appearance-based obstacle detection with monocular
colour vision. In: Proc. AAAI Conference on Artificial Intelligence, USA (July
2000)

[96] Lenser, S., Veloso, M.: Visual Sonar: Fast obstacle avoidance using monocular
vision. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, Las Vegas, pp. 886–891 (2003)

[97] Kim, P.G., Park, C.G., Jong, Y.H., Yun, J.H., Mo, E.J., Kim, C.S., Jie, M.S.,
Hwang, S.C., Lee, K.W.: Obstacle Avoidance of a Mobile Robot Using Vision
System and Ultrasonic Sensor. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC
2007. LNCS, vol. 4681, pp. 545–553. Springer, Heidelberg (2007)

[98] Bertozzi, M., Broggi, A., Fascioli, A.: Real-time obstacle detection using stereo
vision. In: Proc. VIII European Signal Processing Conference, Italy, pp. 1463–
1466 (September 1996)

[99] Badal, S., Ravela, S., Draper, B., Hanson, A.: A practical obstacle detection and
avoidance system. In: Proc. 2nd IEEE Workshop on Application of Computer
Vision, pp. 97–104 (1994)

[100] Nirmal Singh, N.: Vision Based Autonomous Navigation of Mobile Robots. Ph.D.
Thesis, Jadavpur University, Kolkata, India (2010)

A. Chatterjee et al.: Vision Based Autonomous Robot Navigation, SCI 455, pp. 21–46.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 2
Interfacing External Peripherals with a Mobile
Robot*

Abstract. This chapter discusses how real-life interfacing of external peripherals
with a ready-made mobile robot can be successfully achieved. Such a system is
hoped to be useful for those research scenarios where, many-a-time, because of the
fund constraints, a complete robot system cannot be procured with all its accessories
and sensor systems. This chapter discusses how such interfacing can be achieved for
the KOALA robot using serial communication in interrupt driven mode.

2.1 Introduction

Real-life mobile robots, nowadays, come equipped with several sensors and other
accessories which add sophistication and flexibility and help in developing overall
capability and intelligence of the system. On many occasions, incorporation of
more degrees of automation requires interfacing add-on peripheral devices, which
are required to be driven in real life. The robot issues commands for these sensors
and accessories time-to-time and these peripheral devices are required to serve the
robot’s requests, conforming to the demands of a real-time system. Hence a
successful development of an integrated system, utilizing the robot core with the
add-on components, requires the development of sophisticated interrupt-driven
software routines. At present several robotic platforms are available at the disposal
of the researchers of the robotic community all over the world, with different
degrees of automation. Almost all of them are equipped with several sensors and
other accessories with the necessary software support for their intra/inter-
communication in real-time. However, these robotic platforms are not that user-
friendly, if the user wishes to connect add-on sensors or other accessories as
peripheral devices, those are not supported/marketed by the same manufacturing
company. Usually the technical knowhow of interfacing such external devices
with the mobile robots are also not available, as these details are not provided by
the manufacturers, even for those add-on sensors which come along with their
robot packages.

* This chapter is based on: “A PIC Microcontroller system for Real-Life Interfacing of

External Peripherals with a Mobile Robot,” by N. Nirmal Singh, Amitava Chatterjee,
and Anjan Rakshit, published in International Journal of Electronics, vol. 97, issue 2, pp.
139-161, 2010. Reprinted by permission of the publisher (Taylor & Francis Ltd,
http://www.tandf.co.uk/journals).

22 2 Interfacing External Peripherals with a Mobile Robot

In recent times, PIC microcontroller based systems have found popular real-life
applications in several research domains e.g. hardware implementation of the
artificial neural network (ANN) model of varicap diode [1], Petri-net based
distributed systems for process and condition monitoring [2], development of a
double beam modulation system popularly employed in atomic collision
experiments [3], hardware implementation of a recurrent neural network model
[4], reactive power control of a fuzzy controlled synchronous motor [5] etc. The
architecture of PIC microcontrollers is based on a modified Harvard RISC
instruction set [6], [1]. These are getting popular day-by-day as they can provide
excellent low-cost solutions with state-of-the-art performance. They can provide
satisfactory performance because the transfer of data and instruction takes place
on separate buses. These processors are also capable of providing increased
software code efficiency and simultaneous execution of current instruction with
fetching of the next instruction [1]. In this chapter, we shall discuss in detail the
development of a PIC microcontroller based system to interface external
peripherals with a popular mobile robot available for the research community in
the market [10], [11]. The mobile robot under consideration will be KOALA robot
from K-team S.A., Switzerland. The KOALA robot procured in our Electrical
Measurement and Instrumentation laboratory of the Electrical Engineering
Department, Jadavpur University, Kolkata, India, was equipped with incremental
encorders, ultrasonic sensors and IR sensors only. However, as our main objective
is to use vision sensing for navigation of the KOALA mobile robot, the need was
felt to develop and externally integrate and interface a vision sensing system with
the robot. Hence the initial research effort was directed to add both stereo-vision
facility (comprising two cameras) and mono-vision facility (comprising a single
camera) separately with the KOALA robot. This equips the robot with the
flexibility of incorporating a two-camera based system or a mono-camera based
system for navigation. In this chapter we discuss the addition of stereo-vision
facility where four degrees of freedom (DOFs) are added for a vision-system,
integrated from outside, with the KOALA robot. The PIC microcontroller based
system is developed for pan-control, tilt-control, left-vergence control and right-
vergence control of the robot system. The software, developed in interrupt driven
mode, is described in detail, which should help other users to develop similar
integrated systems. This concept can help to keep complete flexibility at the
researcher’s/developer’s disposal and, at the same time, cost incurred can get
drastically reduced. In fact, the main motivation of this research effort was that we
could not afford to buy the KOALA robot package with complete integrated
vision system due to budgetary constraint and hence the integration of vision
system with the KOALA robot was performed by ourselves, in our laboratory. It is
sincerely hoped that this effort should encourage other researchers within the
robotics community to develop such interrupt-driven systems themselves, which
they can utilize to interface stand-alone peripheral devices with other robotic
packages as well. This should help in developing low-cost robotic platform with
high degrees of sophistication and, although the present system interfaces four
peripheral devices (namely four RC servo motors for the four DOFs), the logic can
be extended for many more such peripheral devices.

2.2 PIC Microcontroller Based System for Interfacing a Vision System 23

2.2 PIC Microcontroller Based System for Interfacing a Vision
System with a Ready-Made Robot

2.2 PIC Microcontroller Based System for Interfacing a Vis ion System

The proposed system employs a PIC 16F876A microcontroller for interfacing the
KOALA robot, in real time, with a vision system. The objective here is to
interface four RC servomotors [7] with the KOALA mobile robot in real life
which can add four degrees of freedom (DOFs) to the vision system, integrated in-
house with the KOALA robot. Figure 2.1 shows the complete system where the
vision system is integrated with the KOALA robot in our laboratory. It contains
the basic KOALA robot with in-built sensors, like infra red sensors and
incremental encoder. To increase the capability of the robot system, two ultrasonic
sensors and two cameras are additionally integrated to provide the capability of
stereo vision. However, as mentioned earlier, the vision-based navigation system
developed using KOALA robot is also separately equipped with the capability of
mono-camera vision. There is only one significant difference between the system
developed using stereo-vision and the system developed using mono-vision. In the
case of mono-vision, there is only one camera placed at the center of the active
head system and the system utilizes only two DOFs, for pan-control and tilt
control. The integrated vision system is so developed that it has the flexibility of
controlling four DOFs for stereo vision and two DOFs for mono-vision. Hence, to
add extensive flexibility to the vision system, a pan-tilt system is integrated with
four servomotors. Figure 2.2 shows the schematic diagram of PIC microcontroller
board used to drive four servomotors [7].

Fig. 2.1. Complete vision system with KOALA robot

24 2 Interfacing External Peripherals with a Mobile Robot

Fig. 2.2. Schematic diagram of the PIC 16F876A based board for interfacing KOALA
robot with four servomotors (Y: Yellow; R: Red; B: Black)

Fig. 2.3. Actual photograph of the PIC microcontroller board employed

2.2 PIC Microcontroller Based System for Interfacing a Vision System 25

These four RC servomotors are employed for pan and tilt control of the
complete vision system and individual vergence control for each of left camera
and right camera. The PIC 16F876A microcontroller receives signal from the

Motorola 68331 processor at three input pins, select, clock and data. The 68331
works in SPI master mode and the PIC 16F876A works in SPI slave mode. Figure
2.3 shows the actual photograph of the PIC microcontroller board employed. It is
placed in a vertical position against the support of the pan-tilt system, to make the
integrated system rugged enough.

As mentioned earlier, this system is employed with PIC 16F876A
microcontroller, which is a 28 pin plastic dual-in-line package (PDIP). The key
features of the PIC 16F876A microcontroller include [6] 8k flash program
memory, 368 bytes data memory and 256 bytes of EEPROM data memory. The
operating frequency can vary from DC to 20 MHz and there are provisions for 14
interrupts. PIC 16F876A contains three I/O ports (namely A, B, C), three timers,
two analog comparators and five input channels for 10-bit A/D mode. The serial

Fig. 2.4. Pin diagram of the 28-pin PDIP PIC 16F876A microcontroller [6]

26 2 Interfacing External Peripherals with a Mobile Robot

communications can take place using MSSP and USART. Figure 2.4 shows the
pin diagram of the 28-pin PDIP PIC 16F876A microcontroller.

Algorithm 2.1 describes the algorithm for the main PIC microcontroller based
program for interfacing external peripherals for real life operation (RC
servomotors of the vision system, in this case) with the KOALA robot. This algo.
2.1 describes how the data direction register of PORTB, A/D control register,
MSSP control register, INTCON register, PIE1 register and PIR1 registers should
be programmed and in which sequence. The system is always initialized so that
each RC servo motor is kept initialized at its neutral position and it waits for a
suitable input drive command. The system then enables synchronous serial port
interrupt and for the PIC microcontroller, the SPI is set in slave mode. Then,
depending on interrupt-service-flag content, the corresponding RC servo motor is
driven for the specified command. Then the interrupt-service-flag is reset so that it
can be made set next time a new interrupt request is placed. Key technical features
of the KOALA mobile robot include [8] Motorola 68331 processor with an
operating frequency of 22 MHz. The RAM capability of the robot is one Mbyte
and the flash capability is one Mbyte. The robot is not equipped with any ROM.
KOALA robot is equipped with DC motors with incremental encoders for its
motion. A DC motor coupled with the wheel through a 58.5:1 reduction gear is
responsible for movement of every wheel. The main processor of the KOALA
robot is equipped with the facility of direct control on the motor power supply.
The pulses of the incremental encoder can be read by this processor. The RS232
serial link communication is always set at 8 bit, 1 start bit, 2 stop bits and no
parity mode. Baud rate can be changed from 9600 baud to 115200 baud. The robot
is equipped with 12 digital inputs, 4 CMOS/TTL digital outputs, 8 power digital
outputs and 6 analog inputs. The basic module of the robot is equipped with 16
infra-red (IR) proximity and light sensors. These IR sensors embed an IR LED and
a receiver. They are manufactured by Texas Instruments (type TSL252) and they
can be used for ambient light measurements and reflected light measurements. The
output is obtained as an analog value which is converted by a 10 bit ADC. Hence,
with this basic arrangement of the KOALA robot, the vision system is integrated,
utilizing two cameras, a pan-tilt system, four RC servo motors and the PIC
microcontroller based board, used to build the modified robot.

The Motorola MC68331 is a 32-bit microcontroller, equipped with high data-
manipulation capabilities with external peripherals [9]. This microcontroller
contains a 32-bit CPU, a system integration module, a general-purpose timer
(GPT) and a queued serial module (QSM). An important advantage of this
MC68331 unit is that it has low power consumption. The CPU is based on the
industry-standard MC68000 processor, incorporating many features of MC68010
and MC68020 processors, with so added unique capabilities of high-performance
controller applications. A moderate level of CPU control can be achieved utilizing
the 11-channel GPT. These GPT pins can also be configured for general-purpose
I/O. The QSM comprises two serial interfaces: (i) the queued serial peripheral
interface (QSPI) and (ii) the serial communication interface (SCI). The QSPI
provides easy peripheral expansion or interprocessor communication.

2.2 PIC Microcontroller Based System for Interfacing a Vision System 27

1. Initialize PORT B.
2. Set data direction register corresponding to PORTB such that pin 4-pin 7

of PORTB are configured as digital output.
3. Set the content of A/D control register 1 such that all pins of the A/D port

are configured as digital I/Os.
4. Set angular position commands to keep each RC servo motor in neutral

position i.e. 00 position.
5. Set the content of Master Synchronous Serial Port (MSSP) control register

1 (in SPI mode) such that (i) synchronous serial port is enabled and SCK,
SDO, SDI, and are configured as serial port pins and (ii) SPI is set in
Slave mode with pin control enabled.

6. Set the content of MSSP status register (in SPI mode) such that the SPI
clock select bit is set.

7. Set the content of peripheral interrupt enable register 1 such that
synchronous serial port (SSP) interrupt is enabled.

8. Set the content of INTCON register to enable all unmasked peripheral
interrupts and globally all unmasked interrupts.

9. Reset the SSP interrupt flag bit of PIR1 register to signify that no SSP
interrupt condition has occurred initially.

10. IF interrupt_service_flag is set,

THEN

Check the RC servo motor ID for which interrupt occurred.
Combine contents of 8-bit registers, data-hi and data-lo, to
prepare 16-bit angular position command for that servo motor.
Reset the interrupt_service_flag.

ENDIF

11. Set j=1.
12. FOR j=1 to 4,

Make the corresponding RBx pin of PORTB high, which
provides command to RC servo motor (j).
Keep this RBx pin high for a duration of time, calculated as a
function of its corresponding angular position command.

 Then set this RBx pin low.
ENDFOR

13. Keep each of RB4-RB7 pins low, for a duration of 20 ms.
14. Clear CPU watchdog.
15. Go to step 10.

Algo. 2.1. Algorithm for the main PIC microcontroller based program for interfacing
external peripherals, in real life

28 2 Interfacing External Peripherals with a Mobile Robot

The algo. 2.1 runs in conjunction with the algo. 2.2, an algorithm developed for
synchronous serial interrupt routine. This is a complex and highly sophisticated
procedure followed for external peripheral applications in real life. Here the
algorithm states how the input drive command is read to perform the specified
drive command. The angular position command is composed of two bytes and the
high-byte and the low-byte information are transmitted in serial fashion. In fact
the first information sent is the RC servo motor id which is required to be driven
and this is followed serially by the high-byte and the low-byte of the position
command, specifying by how much the RC servo motor should rotate. Figure 2.2
shows that PIC 16F876A uses an external clock of 20MHz frequency. This is the
maximum allowable operating frequency for PIC 16F876A processor and the
highest permissible value has been utilized to achieve satisfactory performance in
this specific application. The PIC processor utilizes three input signals, select (for
triggering), clock (for clock signal) and data (for input data waveform to
determine a motor drive and its corresponding angular position drive). The PIC
processor output is taken from the four pins of the PORTB, which individually
produce angular position commands for each RC servomotor.

1. IF count_flag=0,

THEN
Read the content of the SSP receive/transmit buffer
register as the RC servo motor id.

ENDIF
2. IF count_flag=1,

THEN
Read the content of the SSP receive/transmit buffer
register as ‘data hi’, the high byte of the angular
position command.

ENDIF
3. IF count_flag=2,

THEN
Read the content of the SSP receive/transmit buffer
register as ‘data lo’, the low byte of the angular
position command.

ENDIF
4. Increment count_flag by 1.
5. IF count_flag >2,

THEN
Reset count_flag as 0.
Set the interrupt_service_flag.

ENDIF
6. Reset the SSP interrupt flag bit of PIR1 register.

Algo. 2.2. Algorithm for synchronous serial interrupt service routine

2.2 PIC Microcontroller Based System for Interfacing a Vision System 29

In algo. 2.1, steps 1-9 are employed, for initialization purpose. In the beginning
the PORTB is initialized, which is a bidirectional port, of 8 bit width [6].The
corresponding data direction register for PORTB is called TRISB. Now, by
properly setting the bits of the TRISB register, one can make each corresponding
Port B pin, a pin for digital input or digital output. In this work, PORTB is so
programmed that its higher four pins, i.e. pin 4 – pin 7 (called RB4-RB7), are
configured as digital output. These four pins are used to produce angular position
commands for the four servomotors.

Another important module for PIC microcontrollers is the Analog-to-Digital
(A/D) converter module. For PIC 16F876A, this module has 5 inputs. Here, this
module produces a 10-bit digital number as output for a given analog input signal.
This A/D module has four registers i) A/D result high register (ADRESH), ii) A/D
result low register (ADRESL), iii) A/D control register 0 (ADCON0) and iv) A/D
control register 1 (ADCON1). The ADCON1 register can be used to configure the
port pins as analog inputs or as digital I/O. Figure 2.5 shows the description of the
ADCON1 register [6]. For the system developed, A/D port configuration control
bits are so programmed that these port pins are all configured as digital I/O.

In PIC 16F876A, the serial communication with other peripheral or
microcontroller devices is handled by the Master Synchronous Serial Port (MSSP)
module. This MSSP is a serial interface which can communicate with serial
EEPROMs, ADCs, shift registers etc. The MSSP can operate either in the Serial
Peripheral Interface (SPI) mode or Inter-integrated Circuit (I2C) mode. In this
work, the system is developed in SPI mode, where 8 bits of data can be
transmitted and received simultaneously in a synchronous manner. The MSSP
module uses a status register (SSPSTAT) and two control registers (SSPCON and
SSPCON2), in SPI mode of operation. There are two other registers in SPI mode
of operation, namely, serial receive/transmit buffer register (SSPBUF) and MSSP
shift register (SSPSR). Among these registers, SSPSR is not directly accessible
and can only be accessed by addressing the SSPBUF register. In this system, the
PIC 16F876A processor works in slave mode and the Motorola 68331 processor in
KOALA robot acts in master mode. Figure 2.6(a) and fig. 2.6(b) show the details
of the SSPSTAT and SSPCON register. Typically, three pins are utilized for
communication: i) Serial Data Out (SDO), ii) Serial Data In (SDI) and iii) serial
Clock (SCK). When SPI slave mode of operation is active, a fourth pin, slave
select () is also used. In the SPI mode of operation, SSPCON register is so
programmed that the SSPEN bit is made high, which enables the serial port and
configures SCK, SDO, SDI and () pins as serial port pins. Similarly
SSPM3:SSPM0 bits are so programmed that the PIC processor is configured in
SPI slave mode, with its clock being assigned to the SCK pin. Hence, in Fig. 2.2, select corresponds to the pin, clock signal arrives at SCK pin and data arrives
at SDI pin. The SSPSTAT register is so programmed that the CKE bit is made
high. This ensures that the transmission of data occurs on transition from active to
idle clock state. Figure 2.7 shows the SPI Master/Slave connection programmed

30 2 Interfacing External Peripherals with a Mobile Robot

in this system to interface the Motorola processor with the PIC processor. As the
PIC processor is programmed in slave mode, in receive operations, SSPSR and
SSPBUF together create a double-buffered receiver. Here SSPSR shift register is
used to shift data in or out (MSB first) and SSPBUF is the buffer register in which
data bytes are either written or data bytes are read from it.

ADFM ADCS2 - - PCFG3 PCFG2 PCFG1 PCFG0

bit 7 bit 0
bit 7 : ADFM (A/D Result Format Select Bit)
bit 6 : ADCS2 (A/D Conversion Clock Select Bit)
bit 5-4 : Unimplemented
bit 3-0 : PCFG3-PCFG0 (A/D Port Configuration Control Bit)

Fig. 2.5. The description of the ADCON1 register [6]

SMP CKE D/A P S R/W UA BF

bit 7 bit 0
bit 7 : SMP (Sample bit)
bit 6 : CKE (SPI Clock select bit)
bit 5 : D/A (Data/Address bit)
bit 4 : P (Stop bit)
bit 3 : S (Start bit)
bit 2 : R/W (Read/Wrıte bit information)
bit 1 : UA (Update Address bit)
bit 0 : BF (Buffer Full status bit)

 (Receive mode only)

Fig. 2.6 (a).

WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0

bit 7 bit 0
bit 7 : WCOL (Write collision detect bit)
 (Transmit mode only)
bit 6 : SSPOV (Receive overflow indicator bit)
bit 5 : SSPEN (Synchronous serial port enable bit)
bit 4 : CKP (clock polarity select bit)
bit 3 : SSPM3-SSPM0 (Synchronous serial port mode select bits)

Fig. 2.6(b).

Fig. 2.6(a) & (b). The details of the SSPSTAT and SSPCON register (SPI mode) [6]

2.2 PIC Microcontroller Based System for Interfacing a Vision System 31

Fig. 2.7. SPI Master/Slave connection programmed in our system

PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE

bit 7 bit 0
bit 7 : PSPIE (Parallel slave port read/write interrupt enable bit)
bit 6 : ADIE (A/D converter interrupt enable bit)
bit 5 : RCIE (USART Receive interrupt enable bit)
bit 4 : TXIE (USART Transmit interrupt enable bit)
bit 3 : SSPIE (SSP interrupt enable bit)
bit 2 : CCP1IE (Interrupt enable bit)
bit 1 : TMR2IE (TMR2 to PR2 match interrupt enable bit)
bit 0 : TMR1IE (TMR1 overflow interrupt enable bit)

Fig. 2.8(a)

GIE PEIE TMROIE INTE RBIE TMROIF INTF RBIF
bit 7 bit 0
bit 7 : GIE (Global interrupt enable bit)
bit 6 : PEIE (Peripheral interrupt enable bit)
bit 5 : TMR0IE (TMR0 overflow interrupt enable bit)
bit 4 : INTE (RB0/INT External interrupt enable bit)
bit 3 : RBIE (RB Port change interrupt enable bit)
bit 2 : TMR0IF (TMR0 overflow interrupt flag bit)
bit 1 : INTF (RB0/INT External interrupt flag bit)
bit 0 : RBIF (RB Port change interrupt flag bit)

Fig. 2.8(b)

Fig. 2.8(a) & (b). Details of PIE1 and INTCON register respectively

32 2 Interfacing External Peripherals with a Mobile Robot

Next, the SSPIE bit of the PIE1 register is made high to enable synchronous
serial port (SSP) interrupt. The PIE1 register contains the individual enable bits
for the peripheral interrupts. Here it should be kept in mind that the PEIE bit of the
INTCON register must be set to enable any unmasked peripheral interrupt. This
INTCON register is very important from the user program point of view, because
it contains several enable and flag bits for TMR0 register overflow, RB port
change and external RB0/INT pin interrupts. Figure 2.8(a) and Fig. 2.8(b) present
detail descriptions of PIE1 and INTCON registers. In the program, both PEIE and
GIE bits of the INTCON register are kept set. It should be kept in mind that
irrespective of the states of the GIE bit and the corresponding enable bit, interrupts
flag bits are set when an interrupt condition occurs. Hence it is the responsibility
of the developer, while writing the user software, that the appropriate interrupt
flag bits must be reset before an interrupt is enabled. Hence initially the SSPIF bit
of the PIR1 register is reset to signify that no SSP interrupt condition has occurred
and the system is kept ready to enable the SSP interrupt. The PIR1 register is a
special register that contains the individual flag bits for the peripheral interrupts.
Hence, the user software must be so written that, before enabling a specific
interrupt, the corresponding flag bit in the PIR1 register must be reset. Figure 2.9
shows the details of the PIR1 register.

Once the initialization phase is completed, steps 10-15 in the main program,
described in algo. 2.1, execute an infinite loop, in conjunction with the serial
interrupt service routine, given in algo. 2.2. Within the interrupt routine, the PIC
processor waits for data written/transmitted by the Motorola processor in SPI
master mode. Figure 2.10 shows the form of SPI write received. The waveforms
show data write of one byte and this process is repeated for each byte written i.e.
each byte received by the PIC processor. The system is so programmed that each
data bit can be latched either on rising edge or falling edge of the clock signal. The
data transfer is always initiated by the Motorola processor in master mode, by
sending the SCK signal. When the pin of the PIC processor is low, then
transmit and receive operations are enabled. Then, in the slave mode, the SPI
module will be reset if the pin is set high, or by clearing the SSPEN bit. In our
system, this SPI module is reset by forcing pin to high. The SSPBUF holds the
data that was written to the SSPSR until the received data is ready. As mentioned

PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF

bit 7 bit 0
bit 7 : PSPIF (Parallel slave port read/write interrupt flag bit)
bit 6 : ADIF (A/D Converter interrupt flag bit)
bit 5 : RCIF (USART Receive interrupt flag bit)
bit 4 : TXIF (USART Transmit interrupt flag bit)
bit 3 : SSPIF (Synchronous serial port (SSP) interrupt flag bit)
bit 2 : CCP1IF (CCP1 interrupt flag bit)
bit 1 : TMR2IF (TMR2 to PR2 match interrupt flag bit)
bit 0 : TMR1IF (TMR1 overflow interrupt flag bit)

Fig. 2.9. Details of the PIR1 registe

2.2 PIC Microcontroller Based System for Interfacing a Vision System 33

Fig. 2.10. SPI Mode waveform (slave mode)

earlier, data is received byte by byte, and, for each byte received, once the eight
bits of the data have been received, that byte is moved to the SSPBUF register.
This operation is marked by making the buffer full detect bit (BF) and the
interrupt flag bit (SSPIF) high. Hence this double buffering scheme enables to
start receiving new data byte before completely reading the data byte that was just
received. The sequence of data bytes transmitted by the Motorola processor and
hence received, in this serial interrupt mode, by the PIC processor, is programmed
as:

a) Send data byte with RC servomotor ID (between 1 and 4).
b) Allow a delay of 10 ms.
c) Send the high data byte corresponding to the angular position command

for that specific RC servomotor ID.
d) Allow a delay of 10 ms.
e) Send the low data byte corresponding to the angular position command

for the same RC servo motor.

In each of steps (a), (c) and (e), the content of SSPBUF register is read in different
temporary variables. When a sequence of (a) to (e) is completed, a complete
information transmission cycle takes place. This is marked by setting a temporary
flag variable (interrupt_service_flag) in the software. The user program must also
reset the SSP interrupt flag bit (SSPIF) of the PIR1 register before returning from
the Interrupt Service Routine. Once this interrupt_service_flag is set in the main
program, the high byte and the low byte of the RC servo motor position command
are combined to create an appropriate position command and a corresponding
drive command is sent to the RC servo motor. For each RC servo motor, this
digital drive is given by driving the corresponding pin signal high for a certain
period and then forcing the same pin signal low for a certain period. The high
signal period of 1.5 ms corresponds to an angular command of 00, 1 ms
corresponds to -900 and 2 ms to +900. For all intermediate angle commands, a

34 2 Interfacing External Peripherals with a Mobile Robot

proportional timing signal of high duration is sent. This high signal is always
followed by a low signal of a fixed duration of 20 ms. Figure 2.11 shows the
output waveform generated at each of RB4, RB5,RB6 and RB7 pins of the PIC
16F876A processor.

Fig. 2.11. Output waveform generated at RB4, RB5, RB6 and RB7 pins of the PIC
16F876A processor

As mentioned, in this implementation the SPI mode is utilized and not I2C
mode for serial communication. It is well known that I2C mode is more flexible
with the facility of multi-drop bus type architecture but the system becomes more
complicated with higher degree of sophistication involved. On the other hand, SPI
mode is suited for only single drop, point-to-point architecture and the system is
less complicated. The SPI mode is more suitable for the system developed here as
a point-to-point communication with the KOALA robot is needed only and it
helps to keep the system less complicated, specially for real-life communication.

2.3 The Integrated System Employing KOALA Robot with a
PC and a Vision System

Figure 2.12 shows the complete integrated system with a PC-based KOALA robot
that communicates with the RC servo motors of the vision system, through
the PIC 16F876A microcontroller based board. The PIC microcontroller
communicates with four external peripherals, those are four servomotors of the
vision system. These four servomotors are employed for pan control, tilt control,

2.3 The Integrated System Employing KOALA Robot with a PC and a Vision System 35

vergence control of the left camera and vergence control of the right camera of the
vision system. The addition of these four degrees of freedom (DOFs) to the vision
system and their efficient control adds flexibility and high degree of automation to
the entire integrated system.

A PC based system is also developed for communication with the KOALA
mobile robot. This is a GUI based system developed that communicates with the
robot by sending ASCII strings of commands and it can also accept sensor
readings returned from the robot. Figure 2.13 shows a snapshot of the form
developed that interacts with the user. The user is provided with the provision of
keying in the driving command which is sent in serial mode of transmission. The
GUI based system transmits the ASCII string typed, in serial mode, when the
‘Send’ button is clicked. The system can also display whatever data is received
from the robot in a different display box. This display box can help us to check
whether the system under control is performing the commanded task in a desired
manner.

For the KOALA robot end, another C program is developed and its cross-
compiled version (with .s37 extension) is downloaded in the Motorola processor.
This .s37 program also communicates with the VB program in the PC end in the
interrupt mode where it always expects a driving command, sent in form of an
ASCII message and serves this driving command in a highly sophisticated
manner. For this serial communication mode, the host PC plays the role of the
master and the KOALA robot plays the role of the slave. Every interaction
between the host PC and the KOALA, which is configured as a remote terminal
unit (RTU), takes place in the following manner [8]:

• A user defined ASCII string, terminated by a carriage return (CR), is sent by
the host PC to the robot.

• If the host PC command the robot to acquire and send some sensor readings
(e.g. IR sensors, ultrasonic sensors etc), the KOALA robot responds by
sending back the sensor readings in form of an ASCII message, terminated by
a carriage return (CR).

Figure 2.14 shows a simple example of a .c example program written for the
KOALA robot to turn around. Figure 2.15 shows the sequence to be followed so
that this program, developed in PC, can be cross compiled to generate an .s37 file
and can be downloaded in the Motorola processor of the KOALA robot.

The KOALA robot, in its basic package, already supports a pool of tools and
protocol commands, where one can open a terminal emulator in the host PC, with
the serial communication protocol set, and one can execute the protocol
commands. These protocol commands include very useful commands like set
speed (‘D’), read speed (‘E’), read A/D input (‘I’), read management sensors
(‘M’), read proximity sensors (‘N’) etc. However, in addition to these KOALA
supported commands, other protocol commands are also created to communicate
with peripherals integrated additionally. Hence, a whole pool of protocol
commands is created, to bring uniformity in the way the robot is going to be
commanded from the host PC. These commands include some commands which

36 2 Interfacing External Peripherals with a Mobile Robot

Fig. 2.12. The integrated system employing KOALA Robot with a PC and a vision system

Fig. 2.13. Snapshot of the form developed that interacts with the user

2.3 The Integrated System E

Fig. 2.14. An exam

Fig. 2.15. A block diagram
download the cross compiled

Employing KOALA Robot with a PC and a Vision System 3

mple .c program for turning the KOALA robot around

m representation of the sequence of operations followed
d version of a .c program

37

to

38 2 Interfacing External Peripherals with a Mobile Robot

Table 2.1. Command protocol for serial communication between host PC and KOALA
Robot

Nature of command Command Protocol (ASCII Message
string)

 Command class

Set KOALA Motor Speed <D><s><ddd><s><ddd><CR> KOALA Equivalent
command

Set KOALA position
reached

<C><s><ddddd><s><ddddd><CR> - do -

Request IR proximity
sensor data

<N><CR>

Request IR ambient light
sensor data

<O><CR> - do -

Request ultrasonic sensor
data

<I><CR> - do -

Request the speed of the
motors

<E><CR> - do -

Set the position of the
motor

<G><CR> - do -

Request the position of the
motor

<H><CR> - do -

Set RC Servo motor
position command

<Z><i><s><dd><CR> Add-on Peripheral
Interface Command

are equivalent versions of KOALA supported commands and the remaining
commands are created additionally within the scope of this work, to communicate
with the add-on peripherals. Another important point to be kept in mind is that
when the KOALA supported commands are executed from the terminal emulator
in PC, it goes to the monitor program module in the robot processor and performs
its designated function. However, when a .s37 program is downloaded in the
Motorola processor to communicate with the PC side and also the PIC
microcontroller side, then it will not be possible to activate the monitor program
from the terminal emulator. Hence it is very important to bring all robot protocol
commands under one roof (i.e. activated from the VB program and executed by
the .s37 program). Hence the C program written for the KOALA robot had to
include actions for all such ASCII request messages, sent from the PC end. The
sample list of commands and their formats of ASCII messages sent by the host are
presented in Table 2.1.

2.4 Real-Life Performance Evaluation 39

In this Table 2.1, e.g., to set KOALA motor speed, one can start with the
identifier character ‘D’, followed by speed of each motor, set as a three digit
number (KOALA is a differential drive system). The speed command for ‘motor
0’ is followed by the speed command of ‘motor 1’. As the polarity of speed of
each individual motor in the KOALA robot can be set separately for forward
motion or backward motion, each speed information for individual motor is
preceded by a sign, shown as <s> in the command protocol. This is set as ‘+’ for
forward motion of the motor and as ‘-’ for backward motion of the motor. When
the Motorola processor receives this ASCII message string, the .s37 program
developed performs a suitable decoding of the string and executes the command
by driving each motor of the KOALA robot according to the protocol command.
Similar actions are performed for each KOALA equivalent command, issued from
the PC end, as an ASCII message string.

However, when the Motorola processor receives the ASCII message string
corresponding to the add-on Peripheral Interface Command, it suitably decodes
the protocol command and sends appropriate drive command to the PIC processor.
In this situation, the Motorola processor acts in master mode and the PIC
processor acts in slave mode, as shown previously in Fig. 2.7. The message string
for this action, sent from the PC end, comprise ‘Z’ as the identifier character,
followed by <i>, which corresponds to the servomotor id for which position
command is prepared (i can vary from 1 to 4), followed by the sign, given in <s>,
for position command (‘+’ or ‘-’) and then the two digit actual position command,
in degree (this can vary from -900 to +900). Every ASCII message string is
terminated, as usual, by using carriage return, <CR>. Once this string is received
by the Motorola processor, it decodes the string to produce a byte information for
motor id and a word information for the corresponding angular position command
(1500 μs for 00; 1000 μs for -900; 2000 μs for +900; proportional interpolated
timing values for each intermediate angular command). This word information is
then decomposed to separately produce corresponding high byte information and
low byte information.

2.4 Real-Life Performance Evaluation

The performance evaluation has been carried out for all the protocol commands by
experimentally issuing ASCII message commands from the host PC terminal (i.e.
from the VB end) to the KOALA robot through serial communication. Before
starting the experimental evaluation, the calibration of each RC servo motor is
separately individually tested and software corrections are introduced for each of
them to take care of small offsets. A series of experiments has been carried out to
test that the integrated robotic system actually performs the task commanded by
the ASCII message string. Some of these sample experimental cases are described
below.

40 2 Interfacing External Peripherals with a Mobile Robot

In one sample case, for testing the driving motion, the robot was commanded to
move in forward direction with a small uniform speed for both robots. Figure 2.16
shows the snapshot of the GUI-based system at the PC end where we issued the
ASCII message string “D+002+002”. It was found that the robot moved in
conformity with the command issued. Similarly these commands were tested with
higher motor speed commands, with negative motion commands for reverse
movement and with differential drive commands for each motor. It was found that
the integrated robotic system showed ordered behavior in accordance with each
command issued.

Another set of case studies was performed, where the two-way serial
communication between the host PC and the KOALA robot was tested. In these
experiments, the robot was commanded to acquire sensor readings and then return
them to the host PC end. The ASCII command ‘N’ was issued from the PC end to
acquire the readings of all the sixteen infrared proximity sensors, placed around
the robot. The infrared sensors are used for a range of 5 cm. to 20 cm. The output
of each measurement given by an infrared sensor is an analog value, which is
digitized by a 10 bit ADC. An obstacle of 5 cm. width was placed in front of the
IR sensors L0 and R0 (the two IR sensors which are directly at the axial heading
positions of the robot) at two different distances of 5 cm. and 20 cm. respectively.
In conformity with the actual situation, the sensor readings returned gave higher
values for smaller distances. When the distance was only 5 cm. the reading
returned by both L0 and R0 are 1023, the maximum possible value. The readings
of the other IR sensors are also obtained in form of a string and displayed at the
host PC end, as shown in Fig. 2.17(a). It can be seen that for the other IR sensors,
for this given position of the obstacle, the readings obtained were smaller as the
distance between each sensor and the obstacle was more than the distance of
the obstacle from each of L0 and R0. When the distance between the obstacle and
the heading direction of the robot was increased to 20 cm., the readings obtained
from L0 and R0 were 253 and 348, as is shown in Fig. 2.17(b), and accordingly,
the readings obtained from other sensors were also significantly reduced in values.
Similarly, the readings of the two ultrasonic sensors were obtained by issuing
ASCII ‘I’ command from the PC end. These sensors can be used for obstacle
detection over a range of 15 cm. to 300 cm. The corresponding analog output of
the sonar sensor varies in the range 0 volt to 4.096 volts. A corresponding
mapping in the digital form is carried out in the range 0-1023 where the zero
corresponds to 0 volts (minimum distance) and 1023 correspond to 4.096 volts
(maximum distance). The readings obtained for two sample case studies, where
the robot was placed in front of a wall at a distance of 100 cm. and 200cm.
respectively, are shown in Fig. 2.18(a) and Fig. 2.18(b) respectively. When the
wall was at a distance of 100 cm, the values of the sonar sensors returned were
403 and 417. Similarly, when the wall was at a distance of 200 cm, the values of
the sonar sensors returned were much higher, found to be 885 and 895.

2.4 Real-Life Performance Evaluation 41

Fig. 2.16. Snapshot of the GUI based system, when the integrated robotic system is
commanded for a driving motion in forward direction

Fig. 2.17(a).

Fig. 2.17(a) & (b). Snapshot of the GUI based system, when the integrated robotic system
is commanded to acquire IR sensor values, at a distance of 5 cm. and 20 cm. respectively,
from an obstacle of 5 cm. width

42 2 Interfacing External Peripherals with a Mobile Robot

Fig. 2.17(b).

Fig. 2.17(a) & (b). (continued)

Another very important set of experimentations carried out was for the add-on
peripheral interface command, where the serial command issued from the host PC
end (acting in master mode) starts with the ASCII character identifier ‘Z’. This
command is received by the Motorola processor of the KOALA robot in slave
mode and subsequently the Motorola processor (now acting in master mode)
commands each servomotor, initiating serial communication through the PIC
microcontroller board, where PIC 16F876A processor acts in slave mode. Figure
2.19(a) shows the initial condition, where each servomotor is at its neutral
position. Then four commands, ‘Z1+45’, ‘Z2+45’, ‘Z3+45’, and ‘Z4+45’, were
issued, separately, sequentially, so that each servomotor for vergence control of
left camera, vergence control of right camera, pan control, and tilt control, is
commanded to rotate by an angle of 45°, in a sequence. Fig. 2.19(b)-2.19(e) show
the snapshots of the system acquired after issuing each such command from the
host PC end. These experimentations show that these add-on peripherals,
integrated with the KOALA robot, are successfully interfaced for real life
applications and could be suitably commanded from the host PC end, as desired.
Table 2.2 shows the time delay in issuing a command from the PC-end (where the
user issues the command) and each RC servo-motor performing its function

2.4 Real-Life Performance Evaluation 43

Fig. 2.18(a).

Fig. 2.18(b).

Fig. 2.18(a) & (b). Snapshot of the GUI based system, when the integrated robotic system
is commanded to acquire ultrasonic sensor values, at a distance of 100 cm. and 200 cm.
respectively, from the wall

44 2 Interfacing External Peripherals with a Mobile Robot

(a)

(b)

(c)

(d)

(e)

Fig. 2.19(a). Snapshot of the system configuration under initialized condition i.e. each of
the four servomotors is at 00 angular position (called the neutral position)

Fig. 2.19(b)-2.19(e). Snapshots of the system position for angular commands of 450 given
to each of the RC servomotors for vergence control of left camera, vergence control of right
camera, pan control and tilt control, each command issued from the PC end sequentially

Table 2.2. Sensing and reacting delay time for RC servo motors

Degrees of
freedom

Angular
command
issued
(degree)

Sensing and
Reacting delay
time (seconds)

Left vergence axis

90 0.433

45 0.200

Right vergence
axis

90 0.433

45 0.200

Pan axis
90 0.633

45 0.333

Tilt axis
90 0.400

45 0.300

completely as commanded. The experimentations were carried out for each RC
servo motor with two angular commands i.e. 45o and 90o. It can be seen that the
left vergence, right vergence and tilt axis showed very similar sensing and reacting
delays. The pan axis showed a little more delay in real life compared to the other
three degrees of freedom.

2.5 Summary 45

2.5 Summary

In this chapter, we discussed and demonstrated in detail how a PIC
microcontroller based system can be developed for real-life interfacing of external
peripherals with a ready-made mobile robot, in this case the KOALA robot. For
the system described here, the serial communication is developed in interrupt
driven mode, where the KOALA processor acts in master mode and the PIC
processor acts in slave mode. A complete integrated system is developed in house
in our laboratory employing a PC, the KOALA robot, the PIC microcontroller
based board and a two-camera based vision system. Here the PIC microcontroller
based system serves four external peripherals, i.e. four RC servomotors, included
to control four degrees of freedom of the vision system. The complete system
works under the control of a PC-based GUI system, where the system at PC end
acts in master mode and performs serial communication, under interrupt driven
mode, with the Motorola processor in KOALA robot, acting in slave mode.

The developed system demonstrated how real-life add-on peripherals can be
integrated from outside with a basic robotic platform to enhance capability and
sophistication of the integrated system, developed at a much lesser cost. The
concept presented here can be extended for adding many other external
peripherals and the concept should also be useful for other real mobile robots. It is
also hoped that a detailed discussion on development of such systems, as
presented in this chapter should help other researchers in Robotics community to
develop similar integrated systems. This should be quite useful in the research
domain, as usually these technical knowhow of integrating sensors and other
components within an integrated robotic platform remains with the manufacturer
and usually it is not available in public domain. It should also be mentioned that
although all experimentations shown here are carried out for two-camera based
system, the system is equally applicable for a mono-camera based system, where
the camera can be placed at the center of the active head and, in that case,
controlling only two DOFs (for pan and tilt only) will be enough.

Acknowledgement. The work described in this chapter was supported by University Grants
Commission, India, under Major Research Project Scheme (Grant No. 32-118/2006(SR)).

References

[1] Turkoglu, I.: Hardware implementation of varicap diode’s ANN model using PIC
microcontrollers. Sensors and Actuators A: Physical 138, 288–293 (2007)

[2] Frankowiak, M.R., Grosvenor, R.I., Prickett, P.W.: A Petri-net based distributed
monitoring system using PIC microcontrollers. Microprocessors and
Microsystems 29, 189–196 (2005)

[3] O’Neill, R.W., Greenwood, J.B., Gradziel, M.L., Williams, D.: Microcontroller
based double beam modulation system for atomic scattering experiments.
Measurement Science and Technology 12, 1480–1485 (2001)

[4] Hung, D.L., Wang, J.: Digital hardware realization of a recurrent neural network for
solving the assignment problem. Neurocomputing 51, 447–461 (2003)

46 2 Interfacing External Peripherals with a Mobile Robot

[5] Colak, I., Bayindir, R., Sefa, I.: Experimental study on reactive power compensation
using a fuzzy logic controlled synchronous motor. Energy Conversion Management
45(15-16), 2371–2391 (2004)

[6] PIC 16F876A Data sheet, 28/40/44- Pin Enhanced Flash Microcontrollers.
Microchip Technology Inc. (2003)

[7] HS-322, H.R.: Servo Motor manual, HITEC RCD KOREA Inc. (2002)
[8] KOALA User Manual, Version 2.0(silver edition). K-team S.A., Switzerland (2001)
[9] MC68331 User Manual, MOTOROLA, INC. (1996)

[10] Nirmal Singh, N., Chatterjee, A., Rakshit, A.: A PIC Microcontroller system for
Real-Life Interfacing of External Peripherals with a Mobile Robot. International
Journal of Electronics 97(2), 139–161 (2010)

[11] Nirmal Singh, N.: Vision Based Autonomous Navigation of Mobile Robots. Ph.D.
Thesis, Jadavpur University, Kolkata, India (2010)

A. Chatterjee et al.: Vision Based Autonomous Robot Navigation, SCI 455, pp. 47–82.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 3
Vision-Based Mobile Robot Navigation Using
Subgoals*

Abstract. This chapter discusses how a vision based robot navigation scheme can
be developed, in a two-layered architecture, in collaboration with IR sensors. The
algorithm employs a subgoal based scheme where the attempt is made to follow
the shortest path to reach the final goal and also simultaneously achieve the
desired obstacle avoidance. The algorithm operates in an iterative fashion with the
objective of creating the next subgoal and navigating upto this point in a single
iteration such that the final goal is reached in minimum number of iterations, as
far as practicable.

3.1 Introduction

Recent advances in technologies in the area of robotics have made enormous
contributions in many industrial and social domains. Nowadays numerous
applications of robotic systems can be found in factory automation, surveillance
systems, quality control systems, AGVs (autonomous guided vehicles), disaster
fighting, medical assistance etc. More and more robotic applications are now
aimed at improving our day-to-day lives, and robots can be seen more often than
ever before performing various tasks in disguise [1]. For many such applications,
autonomous mobility of robots is a mandatory key issue. Many modern robotic
applications now employ computer vision as the primary sensing mechanism. As
mentioned earlier in this book, vision system is considered as a passive sensor and
possesses some fundamental advantages over the active sensors such as infrared,
laser, and sonar sensors. Passive sensors such as cameras do not alter the
environment by emitting lights or waves in the process of acquiring data, and also
the obtained image contains more information (i.e. substantial, spatial and
temporal information) than active sensors [2]. Vision is the sense that enables
humans to extract relevant information about the physical world, and
appropriately it is the sense that we, the humans, rely on most. Computer vision

* This chapter is adopted from Measurement, vol. 44, issue 4, May 2011, N. Nirmal Singh,

Avishek Chatterjee, Amitava Chatterjee, and Anjan Rakshit, “A two-layered subgoal
based mobile robot navigation algorithm with vision system and IR sensors,” pp. 620-
641, © 2011, with permission from Elsevier.

48 3 Vision-Based Mobile Robot Navigation Using Subgoals

techniques capable of extracting such information are continuously being
developed and more and more real-time vision-based navigation systems for
mobile robots are being implemented now.

Vision based Robot navigation is defined as the technique that guides a mobile
robot to a desired destination, or along a desired path in an environment, by
avoiding static (and may be dynamic) obstacles primarily using vision sensor [3],
[4]. In this chapter, we describe the real-life implementation of a mobile robot
navigation scheme, where vision sensing is employed as primary sensor for path
planning and IR sensors are employed as secondary sensors for actual navigation
of the mobile robot with obstacle avoidance capability in a static or dynamic
indoor environment. As described previously, the popular choices for the creation
of the environment maps can be grid-based [5, 6, 7], topological map [8, 9],
hybrid map [10] etc. The mapless navigation systems are those that use no explicit
representation at all of the space in which navigation is to take place and they
rather resort to recognizing objects found in the environment or to tracking or
avoiding those objects by generating motion commands based on visual
observations [11, 12]. Several research works have so far been reported to acquire
knowledge about the environment using camera(s) in stereo vision [13, 14],
trinocular vision [15], omni-directional or panoramic vision [16, 17], and
monocular vision [18, 19]. Each such solution in mobile robot navigation has its
own advantages and disadvantages. In those situations where the knowledge of the
map is available, an important problem in navigation is the path planning for
intelligent control or guidance of the mobile robot. The popular general
approaches for path planning can be based on roadmap, cell decomposition,
potential field etc. [20]. They differ in how the connectivity graphs are constructed
and their representations. Obviously, without any a priori knowledge of an
environment, it is almost impossible to determine the true shortest path for
navigation, among all possible paths. It is potentially possible to determine such
paths by employing standard graph-search techniques, such as Dijkstra’s
algorithm [21] and A* algorithm [22].

As mentioned earlier, in this chapter we describe a goal driven approach for
mobile robot navigation, using vision based sensing and IR sensor based
navigation [28, 29]. This two-layer based approach attempts to determine the
shortest path of navigation between the start point and the known goal point, given
a static or dynamic environment, in presence of obstacles. In the first layer, vision
acts as the primary sensing system to acquire image of the environment, for
subsequent path planning. A series of image processing operations is performed
on the acquired image and then a gradient descent based algorithm is employed to
compute the shortest path between the present position of the robot and the goal,
avoiding obstacles [26]. This shortest path is employed to generate a subgoal and
this information is then locally utilized to navigate the robot, utilizing IR sensor
based guidance. This second layer of IR sensor based robot navigation attempts to
guide the robot to the subgoal, even if the environment changes dynamically.
Once the robot reaches the subgoal, the two-layer based algorithm is again
activated to generate a new subgoal and to navigate the robot till this new subgoal

3.2 The Hardware Setup 49

is reached. This process is repeated iteratively until the final goal is reached. This
method simultaneously attempts to attain two objectives. Based on vision sensing,
it attempts to implement a shortest path planning algorithm in a bid to reach the
goal, avoiding obstacles, as fast as it can. Then, if the environment undergoes a
change during navigation and obstacle information gets updated, then IR sensor
based guidance equips the robot with the capability of handling the changed
environment so that the robot can still navigate safely. The periodic usage of
vision based updating of the environment, subsequent path planning and then IR
based actual navigation helps to guide the robot to adapt its navigation temporally
with dynamic variations in the environment and still attempt to reach the goal in
shortest time, as quickly as practicable. This algorithm was implemented in
our laboratory, for the KOALA robot [23], creating several real-life like
environments. The results showed the usefulness of the proposed algorithm. The
algorithm is described in detail in subsequent sections of this chapter.

3.2 The Hardware Setup

The KOALA robot was described in detail in the previous chapter. Still we
recapitulate salient features of the KOALA robot to provide a brief introduction of
the hardware setup utilized for this real-life implementation carried out. KOALA
is a small (32 cm x 32 cm) six wheeled, differential drive vehicle manufactured by
K-team, Switzerland [23]. The KOALA robot used in our laboratory is equipped
with 16-proximity/ambient IR sensors, four ultrasonic sensors and wheel
encoders. We have integrated two complete vision systems along with the
KOALA robot in our Electrical Measurement and Instrumentation Laboratory,
Electrical Engineering Department, Jadavpur University, Kolkata. The vision
system is so developed that it can work either with a stereo vision system
employing two cameras (as described in the previous chapter) or it can employ a
single camera based system. The algorithm that we describe now is based on
employing a single wireless camera for monocular vision. In KOALA, the
hardware control is performed by an on- board microprocessor (Motorola 68331@
operating frequency 22MHz) [23]. Figure 3.1(a) shows a snapshot of the mobile
robot with four ultrasonic sensors and the vision system, integrated in our
laboratory, employing a single vision sensor. The ultrasonic sensors can detect
obstacles over a wide range from 15 cm to 300 cm, and the IR sensors will
provide a range of measurements from 5 cm to 20 cm. Our system utilizes single
vision sensor comprising a JMK wireless camera (WS-309AS) with A/V receiver
and a Frontech USB (TV Box) frame grabber, which is used for acquiring a
running video stream. Figure 3.1(b) shows the vision system in schematic form.
The entire system is developed with an objective of providing a low-cost solution
which should prove attractive for the industrial community. This monocular vision
system is developed with two degrees of freedom to provide pan control and tilt
control. To add two degrees of freedom (DOFs) for this vision-system, a PIC
(16F876A) microcontroller based system is developed in our laboratory for

50 3 Vision-Based Mobile Robot Navigation Using Subgoals

pan-control and tilt-control of the single-camera based robot system [24]. Here,
the main onboard Motorola microcontroller acts as the master and the
PIC microcontroller acts as a slave. The software, developed in interrupt driven
mode, communicates with the mobile robot through the RS232C port. Figure 3.2
shows a snapshot of the user-interface developed in the PC side that can
interact with the user. The main serial mode of communication is handled by
passing ASCII message strings between the PC and the Motorola processor in the
robot.

Fig. 3.1(a). The KOALA robot, equipped with sonar and IR sensors and integrated with a
single camera based vision system

The RS 232C serial link set-up between the PC and the robot is always set at 8
bit data, 1 start bit, 2 stop bits and no parity mode. To give an example, the
message string for RC servo action to provide pan or tilt control, sent from the
PC end, comprise ‘Z’ as the identifier character, followed by <i>, which
corresponds to the servomotor id for which position command is prepared (i = 1,
2), followed by the sign, given in <s>, for position command (‘+’ or ‘-’) and then
the two digit actual position command, in degree (this can vary from -900 to +900).
Every ASCII message string is terminated, as usual, by using carriage return,
<CR>.

3.2 The Hardware Setup 51

Fig. 3.1(b). The block diagram of the vision system

Fig. 3.2. Snapshot of the user-interface developed, that can interact with the user

52 3 Vision-Based Mobile Robot Navigation Using Subgoals

3.3 A Two-Layer, Goal Oriented Navigation Scheme

Figure 3.3 shows the complete proposed navigation algorithm in a flow chart
form. A wireless camera, as shown in Fig. 3.1(a), is used to capture a running
video stream of the environment in front of the KOALA robot. An image frame
can be acquired from this video stream for further processing at any point of
time. This acquired image frame is first processed to make the image suitable for
further processing, by employing a series of image processing operations like
image filtering, edge detection and image segmentation. Then the shortest path

Fig. 3.3. Flow chart for the proposed navigation algorithm

3.4 Image Processing Based Exploration of the Environment in Layer 1 53

generation algorithm is employed for this processed image, using the goal
information, available a priori. Next the shortest path generated is utilized to
determine the next subgoal. This entire procedure constitutes layer 1 of the
algorithm and is implemented in high level in a PC using Visual Basic (VB)
platform. This subgoal information is next transferred to layer 2 where the
KOALA robot is actually navigated towards the subgoal using obstacle avoidance
capability so that the robot can be useful even in a dynamically changing
environment. The navigation in layer 2 is performed using several IR sensors,
connected at the front face and side faces of the KOALA robot. Once the subgoal
is reached, the control is transferred back to layer 1 so that the next subgoal can be
generated and actual navigation can be performed in layer 2. This process of local
path planning, followed by actual navigation, is continued in an iterative fashion,
until the final goal is reached. The algorithm in layer 2 for actual navigation is
implemented by developing a C program whose cross-compiled version (a .s37
file) is downloaded in the Motorola processor of the KOALA robot. This .s37
program communicates with the VB program in the PC end, in the interrupt driven
mode, in real life. The .s37 program generated from the C program written, is also
equipped with the facility of providing support from VB based PC end for a pool
of protocol commands for commanding the KOALA robot. These commands are
originally only available for execution from a terminal emulator available with the
KOALA robot package. We developed a system where all the KOALA robot
protocol commands and our additional navigation algorithms are supported by the
C program developed, so that the entire system can be completely controlled from
the VB platform in the PC end.

3.4 Image Processing Based Exploration of the Environment in
Layer 1

Image processing is a form of signal processing where the input signals are images
and the output could be a transformed version of the input. The proposed system
employs a map building method based on image segmentation, for vision based
navigation for mobile robot in an indoor environment, with the assumption that
the surface is uniform. The following steps are implemented as follows [27]:

A. Acquire the image from the wireless camera
The camera, mounted at the center of the pan-tilt system of the robot, keeps
acquiring a running video stream of the environment ahead of it. From this video
stream, an image frame can be acquired for further processing. Figure 3.4(a)
shows such an acquired image.

B. Employ low-pass filtering on the acquired image
The acquired image is then low pass filtered to reduce noise. This causes a
smoothing or blurring effect on the neighboring pixels. The system is developed
using the popular arithmetic mean filter to perform low pass filtering. This
arithmetic mean filter is utilized using a 5×5 matrix, centered on each pixel, whose

54 3 Vision-Based Mobile Robot Navigation Using Subgoals

intensity is computed as the average value of the pixels under the influence of the
filter matrix.

C. Detect edges in the filtered image by Canny edge detection
An edge physically signifies a boundary between two regions with relatively
distinct gray-level properties. The technique of edge-based segmentation signifies
isolation of desired objects from a scene using different types of gradient
operators. Edges of the image in our work are detected by using canny edge
detection method. Figure 3.4(b) shows the edge image of the processed filtered
version of the acquired image.

D. Process the edge image to thicken and link the edges
The edge image contains many small broken edges. To make any edge image a
meaningful one, one needs to link nearby edges to bridge gaps and they can be
thickened to make their presence distinct. Thickening can be performed by a
morphological operation called dilation by a structuring element that is used to
grow selected regions of foreground pixels in images. Dilation is normally applied
to binary images, and it produces another binary image as output. This dilation
operation “thickens” or “grows” objects in a binary image and the shape of
thickening can be controlled by a suitable choice of the structuring element shape,
used to perform dilation of the image. The concept of linking edges and thickening
them by dilation in an edge image can also be performed by a suitable low pass
filtering scheme with a suitable choice of the filter mask. This operation is carried
out in this work by using geometric mean filtering. The geometric mean filter is
member of a set of nonlinear mean filters, which are efficient in removing
Gaussian type noise and preserving edge features than the arithmetic mean filter.
Figure 3.4(c) shows the edge linked and thickened image.

E. Perform region growing segmentation on the thickened edge image
Once the thickening is done, the image is segregated into regions. To find the
obstructed zone and unobstructed zone in the image, region growing based
segmentation is performed on the thickened image. Region growing is a simple
but efficient region-based image segmentation method and it is classified as one of
the pixel-based image segmentation schemes which involves the selection of
initial seed points. This approach to segmentation examines the neighboring pixels
of the initial “seed points” and determines if the pixel should be added to the seed
point or not. Region growing is done by examining properties of each such block
created and merging them with adjacent blocks that satisfy some criteria (similar
gray-level pixel values, texture etc). The seed point needed for performing region
growing is chosen near the bottom center of the image. This point ‘S’ is shown in
Fig. 3.4(c). Now the image is scanned along all the vertical lines from bottom to
top. The point at which the floor area ends is regarded as the obstacle. All regions
before the obstacles are free zone. All regions beyond the obstacles are termed the
hidden zone. Figure 3.4(d) shows the unobstructed zone (free space) with green
color and the hidden zone with yellow color. Next the obstructed zone is marked

3.4 Image Processing Based Exploration of the Environment in Layer 1 55

in red and Fig. 3.4(e) shows all these three regions. This entire process is
continuous and the obstacle information gets continuously updated.

F. Transform the region grown image to the floor region
The entire grown up region updated with obstacle information is now transformed
from image plane to floor region. In order to calculate a distance in the 3D
coordinates using single camera, we assume that all the objects have contact at the
bottom and interpret it in two dimensional coordinates. Figure 3.5 shows the
relationship that, given the elevation of the camera and the elevation angle, how
any point on the image plane can be directly mapped on the floor, relative to the
position of the camera [25]. Here the robot/camera 3D coordinate frame is
assumed with the corresponding notations shown in Fig. 3.5. This coordinate
frame is assumed attached to present pose of the robot/camera, at any instant of
time. This coordinate transformation mechanism allows one to determine the free
points and the obstructed points in the world coordinate system (WCS) from the
image acquired by the camera. Hence, with reference to Fig. 3.5, any point with
coordinates (vu,) in the image plane can be transformed to the coordinates in the

two dimensions),(yx cc
 in the robot/camera coordinate frame as:

()θθ ELEL
c vf

uh
x cossin +

=

()
()θθ

θθ
ELEL

ELEL

c fv

fvh
y

sincos

cossin

+
−

=

where
h = height of the camera optical center from base plane

f = focal length of the camera

θ EL = elevation angle of the camera

)zone Dead(
min

A
c

y =

B
c

y =
max

2min

C
cx =

2max

D
cx =

Once this transformation is employed, one can obtain the actual position of a point
()yx , on the floor, given this),(yx cc and the present pose of the

robot ()φ
RRR yx ,, . Figure 3.4(f) shows the floor with obstacle information. The

transformed floor region is in trapezoidal form. Then this floor plane image is
copied to the 500 pixel x 500 pixel map which is 20m x 20m as a working space
for the robot. Figure 3.6(a) shows a snapshot of the map created and Fig. 3.6(b)
shows a snapshot with the floor image in the grid map. In Fig. 3.6(b), the

56 3 Vision-Based Mobile Robot Navigation Using Subgoals

trapezoidal floor region is shown in green color and the obstacle information is
shown in red color. The above process of transformation is continuous even when
the robot is in motion and it updates the new obstacle information in the map
when it is in motion.

 (a) (b)

 (c) (d)

(e) (f)

Fig. 3.4. (a) Image acquired by the wireless camera, (b) detected edge image, (c) thickened
image, (d) region grown image, (e) image with the obstacle information, and (f) trapezoidal
floor image

3.4 Image Processing Based Exploration of the Environment in Layer 1 57

Fig. 3.5. Relationship between the image coordinate and the mobile robot coordinate

Fig. 3.6(a). A snapshot of the software developed for creating map

58 3 Vision-Based Mobile Robot Navigation Using Subgoals

Fig. 3.6(b). A snapshot of the map updated with obstacle information

3.5 Shortest Path Computation and Subgoal Generation

In mobile robot navigation it should be an important objective to determine the
optimum path between the present robot location and the goal point, so that the
robot can reach the destination in minimum time, avoiding obstacles, as far as
practicable. The present work employs a heuristic gradient based method which is
based on grid-map for finding the shortest path [26]. Algorithm 3.1 shows this
algorithm in detail. The initial and the final positions of the robot are known a
priori with the obstacle information determined from the previous steps. Now the
coordinates along the shortest path are determined by using steepest descent
method. The steepest decent algorithm uses the gradient function to determine the
direction in which a function is decreasing most rapidly. Each successive iteration
of the algorithm moves along this direction for a specified step size and then
recomputes the gradient to determine the new direction of travel. This heuristic
approach employed here can be easily understood if a land is considered with
known obstacles and the initial point and final point on it. The land surface is
assumed frictionless such that, say, at the starting point, if we start pouring sand
on the ground, it spreads towards all possible paths, similar to dispersion of a
fluid in all possible directions. It is obvious that one cannot pass through the

3.5 Shortest Path Computation and Subgoal Generation 59

obstacles. In each iteration, we assume that a fixed amount of sand is poured and
we let it spread. We set a time index to every point on the ground, equal to the
iteration number, when the sand reaches a pre-assumed height. So the earlier the
height is reached, the smaller is this index. Such a pre assumed height and a fixed
amount of sand dispersed are chosen so as to avoid saturation in value within any
finite considerable region. Hence a travel time matrix (H) can be calculated
employing the finite element diffusion method and this H matrix is iteratively
updated, until a termination criterion is met. At the end of this procedure, those
entries in H which still contain zeros correspond to the obstacle cells. Next, the
gradient descent based procedure is employed to determine the coordinates of the
points on the shortest path by starting from the goal point and finally arriving at
the present robot location. For this, the gradient matrices of H in x- and
y-directions, i.e. Hx and Hy, are calculated and based on them the new co-

ordinates of the next point on the shortest path are computed, utilizing the last
point obtained on the shortest path. The algorithm always proceeds backwards
starting from the goal point. This method is an efficient one and it operates in an
iterative fashion. Figure 3.7 shows a sample environment where the shortest path
is computed between the initial and the goal point in the map.

BEGIN
1. Obtain the Occupancy grid matrix (M), the start point (x_start, y_start), and the

goal point (x_goal, y_goal). ()ji,M = 0 denotes a free cell and ()ji,M = 1

denotes an obstacle cell.
2. Create diffusion matrix (W) and Travel Time Matrix (H) and make them of
same size as M. Initialize W0 = H0 = 0.
3. Set W0 (x_start, y_start) = 1.
4. Set diffusion constant ()diffconst and maximum number of iterations without

updates ()maxupdateno __ . Initialize number of iterations ()countiter _

and number of iterations without updates ()countiterupdateno ___ .

5. WHILE ()maxupdatenocountiterupdateno _____ <

 5.1. 1__ += countitercountiter .

 5.2. Diffuse cells downwards:
 Witer_count(i,j) = Witer_count(i,j) + diffconst * Witer_count(i+1,j)
 i = 1,2,…,(W_ROWS –1); j = 1,2,…,W_COLS;
 5.3. Diffuse cells upwards:
 Witer_count(i,j) = Witer_count(i,j) + diffconst * Witer_count(i-1,j)
 i = 2,3,…,W_ROWS; j = 1,2,…,W_COLS;
 5.4. Diffuse cells towards right:
 Witer_count(i,j) = Witer_count(i,j) + diffconst * Witer_count(i,j+1)
 i = 1,2,…,W_ROWS; j = 1,2,…,(W_COLS-1);
 5.5. Diffuse cells towards left:
 Witer_count(i,j) = Witer_count(i,j) + diffconst * Witer_count(i,j-1)
 i = 1,2,…,W_ROWS; j = 2,3,…,W_COLS;

60 3 Vision-Based Mobile Robot Navigation Using Subgoals

5.6. Make Witer_count(i,j) = 0, if M(i,j) = 1;
i = 1,2,…,W_ROWS; j = 1,2,…,W_COLS;

5.7. If any Witer_count(i,j) becomes greater than the height for the first time, then
make corresponding Hiter_count(i,j) = iter_count.

5.8. Count sum_countiter_count as the sum of those entries in W matrix at present
with value > 1.

5.9. IF
1

 11

+=

<− −

count_iter_update_nocount_iter_update_no

count_sumcount_sum)count_iter(count_iter THEN

 ENDIF
ENDWHILE

6. All ()ji,H point still equal to zero are the obstacle points. Set these points to a

high value i.e. one more than their adjacent neighbor which one have the highest
value (steep gradient for obstacle occupied points).
7. Create shortest path coordinate vectors ord_rowsh_path_co and

ord_colsh_path_co and initialize the first point:

() ;_1 goalx=ord_rowsh_path_co () goaly _1 =ord_colsh_path_co .

Set µ .
8. Compute gradient matrices of H matrix in x-direction (∇Hx) and y- direction
(∇Hy).
9. ∇Hx = -∇Hx; ∇Hy = -∇Hy; path_index =1; path_flag =1;
10. WHILE (path_flag =1)

10.1. Compute del_row by interpolation using the ∇Hy matrix.
10.2. Compute del_col by interpolation using the ∇Hx matrix.
10.3. Compute the coordinates of the next point on the shortest path:

() ()

col_delrow_del

row_del
*

index_pathindex_path

22

1

+
μ

+=+ ord_rowsh_path_coord_rowsh_path_co

() ()

col_delrow_del

col_del
*

index_pathindex_path

22

1

+
μ

+=+ ord_colsh_path_coord_colsh_path_co

10.4. IF (initial point is reached) THEN
 path_flag = 0;
 ENDIF
ENDWHILE

11. Reverse vectors ord_rowsh_path_co and ord_col.sh_path_co

END

Algorithm 3.1. The shortest path generation algorithm employing obstacle avoidance

3.5 Shortest Path Computation and Subgoal Generation 61

Fig. 3.7. A sample shortest path computed for an environment

Once the shortest path is determined, we need to find the corner points nearer to
an obstacle. To find the corner points, we take three consecutive points on the path
and find the cosine of the angle between the two line segments joining the first
two and last two points. If this value falls below a given threshold, then the middle
of these three points is considered as a corner point, otherwise we move to the
next subsequent point and again compute the cosine of the new angle. This
process is continued until the suitable corner point is obtained. This corner point is
stored as the next subgoal point for navigation. For example, in Fig. 3.7, when A1,
A2, A3 are the three points under consideration, then the cosine of the angle
between the line segments 21 AA and 32 AA is very high (above the chosen
threshold). So A2 is not considered as a corner point. In this process, we keep
moving forward, and when we reach the three consecutive points B1, B2, B3, the
angle between the line segments 21 BB and 32 BB is large enough so that
the cosine of the angle is below the chosen threshold. Then B2 is considered as a
corner point.

62 3 Vision-Based Mobile Robot Navigation Using Subgoals

3.6 IR Based Navigation in Layer 2

Once the subgoal point is determined, the control will be passed from layer 1 to
layer 2. As soon as the new subgoal information is passed, the robot updates its
present pose ()φ

RRR yx ,, , based on incremental wheel encoder information,

and determines the new steering angle, based on its present pose and the subgoal
information. Ideally this is the angle by which the robot should turn and proceed at
a constant speed to reach the subgoal, in a static scenario. This is because the
subgoal belongs to the set of points which were generated from the shortest path
generation algorithm, employing obstacle avoidance. However, in a dynamic

(a)

(b)

Fig. 3.8(a). IR sensor arrangements of the KOALA robot [23]
Fig. 3.8(b). Measured values of the IR sensor readings, by placing a 1.5 cm wide obstacle
in front of sensor (R0) at a distance of 10 cm.

3.7 Real-Life Performance Evaluation 63

scenario, after the last time the vision based mapping subroutine was activated, a
new obstacle may have arrived or an old obstacle’s position may have been
changed. This may result in obstruction along the ideal path of travel between the
robot and the subgoal. To cope with this dynamic environment, the navigation is
guided by 16 IR sensors, mounted symmetrically along the periphery of the
KOALA robot.

These IR sensors are densely populated in front and sparsely populated at the
two sides of the robots. Figure 3.8(a) shows the sensor arrangement of the mobile
robot and Fig. 3.8(b) shows a typical situation for the measured values of the
sensors, by placing a 1.5 cm wide obstacle in front of the front sensor (R0) at a
distance of 10 cm from the robot front face. For navigation, these 16 IR sensors
scan the environment. Depending on these sensor readings, the system calculates
the obstacle regions and free regions ahead of the robot. From these calculations
the traversable area is determined. For determining the traversable area, separate
thresholds are set for each of the 16 sensors, with the maximum priority given to
the front sensors (R0 – R3, L0 – L3). For each sensor, if its reading exceeds its
threshold, it means the direction ahead of it is obstructed, else the direction ahead
is considered free for traversal. Now, depending on these readings, there can be
traversable areas both to the left and to the right of the present pose of the robot.
The decision of whether the robot should turn left or right is taken based on which
direction will mean that the robot has to undertake the shorter detour with respect
to its ideal direction of travel. Once the detour direction is determined, the speed
of the robot is determined based on the IR sensor readings in that direction. When
the robot travels a predetermined distance, the entire IR based scanning and
determination of the new detour direction of traversal is reactivated and this
procedure is continued until the robot reaches the subgoal or its closest vicinity.
Then the robot stops and the control is transferred back to layer 1.

3.7 Real-Life Performance Evaluation

The performance evaluation has been carried out, for vision based navigation, in
our laboratory, utilizing several environments. Here we present the results for four
such experiments, two each in static and dynamic environments.

Case Study – I
The initial pose of the robot is (0, 0, 0) and the goal point is (2, 0). There lies an
object between the robot and the goal position. It should be mentioned here that
for the robot system which is equipped with a pan-tilt mechanism with its
corresponding degrees of freedom, in this work, the pan angle and the tilt angle
are suitably initialized for a particular environment and then they are kept fixed,
for all subsequent experiments. Initially these two angles are so chosen for the
robot system developed so that the monocular camera, in each frame, covers a
reasonably large floor and environment area. The system is hence equipped
with the flexibility where these angles can be suitably initialized depending
on the environment where this navigation system is going to be implemented.
Figure 3.9(a) shows the image frame acquired from the video stream of the camera

64 3 Vision-Based Mobile Robot Navigation Using Subgoals

(a) (b)

 (c) (d)

 (e) (f)

Fig. 3.9. (a): The image acquired, (b)-(f): sequence of image processing caried out in layer
1. (b): edge image; (c): thickened edge image; (d): region grown image; (e): image with
free, obstacle, and hidden regions and (f): trapezoidal floor image.

and Figs. 3.9(b)–3.9(f) show the sequence of image processing steps, when the
robot is in initial position. The edge of the face of the obstacle on the ground,
viewed by the robot in front of it when the robot is at its initial pose, actually
extends from (0.9, 0.3) to (0.9, -0.85). Figure 3.10 shows the snapshot of the grid

3.7 Real-Life Performance Evaluation 65

Fig. 3.10. The initial grid map

map with the obstacle information and free region. Here the shortest path is
calculated and the layer 2 of the robot navigation algorithm is updated with the
subgoal information. The algorithm calculates the subgoal 1 as (0.81, 0.33). When
the control is transferred to layer 2, the robot navigates using IR sensor based
guidance, upto subgoal 1. The robot actually stops at (0.819, 0.332) which has
very small discrepancy with the calculated subgoal. Figure 3.11 shows the
snapshot of the grid map when the robot reaches the first subgoal point. This grid
map is developed when the control is transferred back to layer 1 and vision based
processing is carried out once more. Figures 3.12(a)-3.12(d) show the results of
image processing steps, when the robot is at the first subgoal point. These results
are used for IR based navigation once more. This sequential process is continued
to reach the final goal point. Figure 3.13 shows the grid map when the robot

66 3 Vision-Based Mobile Robot Navigation Using Subgoals

reached the destination. The robot finally stops at (1.963, 0.024) which is
extremely close to the specified goal (2,0). Figure 3.14 shows the complete
navigation path traversed by the robot, starting from the initial point and reaching
the goal point, in presence of the obstacle, following the shortest possible path.
Figure 3.15(a) shows the response of IR sensors on the right side of the robot (R0,
R3) during navigation and fig. 15(b) shows the corresponding responses for the IR
sensors on the left side of the robot (L0, L3). It can be seen that the reading of the
R3 sensor reaches a high value when the robot is in the vicinity of the obstacle. As
the robot crosses the obstacle and proceeds towards the goal point, the reading of
the R3 sensor gradually decreases.

Fig. 3.11. The grid map, when the robot reaches the first subgoal

3.7 Real-Life Performance Evaluation 67

 (a) (b)

 (c) (d)

Fig. 3.12. (a)-(d). Results of image processing at subgoal 1. (a): the acquired image; (b):
edge image; (c): thickened edge image, and (d): image with three distinct regions.

Case Study – I1
Here again the initial pose of the robot is (0, 0, 0) and the new goal point is (3, 0).
Now two objects are introduced between the robot and the goal position. Figure
3.16(a) shows the image frame acquired at the initial position of the robot and
Figs. 3.16(b)–3.16(f) show the results of subsequent image processing steps in
layer 1. Figure 3.17 shows the snapshot of the initial grid map with the obstacle
information and free region. Next the shortest path is calculated and the layer 2 of
the robot navigation algorithm is implemented with this subgoal information.
Figure 3.18 shows the snapshot of the grid map when the robot reaches the first
subgoal point. When the robot reaches subgoal 1, the control is transferred back to
layer 1. The system again performs the vision based processing, as shown in Fig.
3.19 and Fig. 3.20 shows the grid map when the robot reaches subgoal 2, using IR

68 3 Vision-Based Mobile Robot Navigation Using Subgoals

Fig. 3.13. The grid map, when the robot reaches the final goal point

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Obstacle

Goal pointInitial point

y-
co

or
di

na
te

 (m
)

x-coordinate (m)
Fig. 3.14. The robot navigation path traversed

3.7 Real-Life Performance Evaluation 69

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800
L

ef
t s

en
so

r
re

ad
in

g

Time (s)

 L0
 L3

(a)

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

R
ig

ht
 s

en
so

r
re

ad
in

g

Time (s)

 R0
 R3

(b)

Fig. 3.15. Variation of (a) response of L0 & L3 IR sensors with time and (b) response of R0
& R3 IR sensors with time, for case study I

70 3 Vision-Based Mobile Robot Navigation Using Subgoals

(a) (b)

(c) (d)

 (e) (f)

Fig. 3.16. (a): The image acquired, (b)-(f): results of image processing steps in layer 1. (b):
edge image; (c): thickened edge image; (d): region grown image; (e): image with free,
obstacle and hidden regions and (f): trapezoidal floor image.

3.7 Real-Life Performance Evaluation 71

Fig. 3.17. The initial grid map

Fig. 3.18. The grid map, when the robot reaches the first subgoal

72 3 Vision-Based Mobile Robot Navigation Using Subgoals

based navigation in layer 2. This iterative process is continued until the robot
reaches the final goal. Figure 3.21 shows the grid map when the robot reaches the
final goal point. Figure 3.22 shows the complete path of traversal of the robot for
this static environment and shows that the robot reaches the goal satisfactorily.
Figure 3.23 shows the variations of four IR sensors, R0, R3, L0, and L3, readings
when the robot navigates towards its destination.

 (a) (b)

 (c) (d)

Fig. 3.19 (a)-(d). Results of image processing at subgoal 1. (a): the captured image; (b):
edge image; (c): thickened edge image, and (d): image with three distinct regions.

3.7 Real-Life Performance Evaluation 73

Fig. 3.20. The grid map, when the robot reaches the second subgoal

Fig. 3.21. The grid map, when the robot reaches the final goal point

74 3 Vision-Based Mobile Robot Navigation Using Subgoals

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Obstacle 2

Obstacle 1

goal pointinitial point

y-
co

or
di

na
te

 (m
)

x-coordinate (m)
Fig. 3.22. The robot navigation path traversed, in case study I

Case Study – III
In the next two case studies, we demonstrate the utility of the proposed system in
case of a dynamically changing environment. Here, for an environment similar to
that considered in case study I, the robot starts from an initial pose (0, 0, 0), with a
bid to reach the goal point (2,0), in presence of an obstacle between the robot and
the goal position. However, after the robot starts its IR based navigation towards
subgoal 1, determined using vision based image processing in layer 1 at the initial
position of the robot, followed by the determination of the subgoal 1 utilizing the
shortest path algorithm, the position of obstacle 1 is shifted. The new position of
the obstacle is now shown in Fig. 3.24 where it is moved nearer to the robot and it
is shifted towards the left of the robot, with reference to its initial pose. Because of
this dynamic variation in the environment, the robot takes a detour towards its left
but was still able to avoid the obstacle and reach its subgoal. The subsequent
activations of the iterative algorithm show that the robot reaches its final goal
almost perfectly, once more. Figure 3.24 shows this navigation of the robot in the
dynamic environment. Figure 3.25(a) and Fig. 3.25(b) show the IR sensor
readings, in front of the robot. It can be seen that the reading of R0 and L0 receive
a sudden kick when the obstacle is moved in the dynamic environment.

3.7 Real-Life Performance Evaluation 75

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

R
ig

ht
 s

en
so

r
re

ad
in

g

Time (s)

 R0
 R3

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400
 L0
 L3

L
ef

t s
en

so
r

re
ad

in
g

Time (s)

Fig. 3.23. Variation of (a) response of R0 and R3 IR sensors and (b) response of L0 and L3
IR sensors during navigation, for case study II

(a)

(b)

76 3 Vision-Based Mobile Robot Navigation Using Subgoals

Here it should be mentioned that if there arises an exceptional situation where
the dynamically changing object arrives exactly on a subgoal, then, according to
the algorithm, the IR-sensor based actual navigation guidance mechanism will
ensure that the robot will stop at the shortest distance from the subgoal, satisfying
obstacle avoidance or collision requirement.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Obstacle 1 shifted position

Obstacle 1 position

Goal point
Initial pointy-

co
or

di
na

te
 (m

)

x-coordinate (m)

Fig. 3.24. The robot navigation path traversed in a dynamic environment

Case Study – IV
This situation is similar to case study II, but with both obstacles being made
dynamic in nature. Here also, after the robot start traversing towards subgoal 1,
avoiding obstacle 1 whose position was determined from the vision based image
processing in layer 1, the position of the obstacle 1 was suddenly changed. It was
brought closer to the robot and more towards its left, making partial dynamic
blockage of the free region of traversal. Similarly, when the robot was attempting
to traverse a shortest path avoiding obstacle 2, suddenly the position of the
obstacle 2 was changed by bringing it closer to the robot. However the robot was
able to undertake the required detour in its IR based navigation in each such
situation and was able to reach the final goal satisfactorily, as shown in Fig. 3.26.

3.7 Real-Life Performance Evaluation 77

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

R
ig

ht
 s

en
so

r
re

ad
in

g

Time (s)

 R0
 R3

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

L
ef

t
se

ns
or

 r
ea

di
ng

Time (s)

 L0
 L3

(b)

Fig. 3.25. Variation of (a) response of R0 and R3 IR sensors and (b) response of L0 and L3
IR sensors during navigation in the dynamic environment, for case study III

(a)

78 3 Vision-Based Mobile Robot Navigation Using Subgoals

Figure 3.27(a) and 3.27(b) show the readings of the IR sensors R0, R3, L0, and
L3. It can be seen that here also the readings of L0 and R0 receive two sudden
kicks, when the two obstacle positions are changed.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Obstacle 2 shifted position

Obstacle 2

Obstacle 1 shifted position

Obstacle 1

Goal pointInitial point

y-
co

or
di

na
te

 (m
)

x-coordinate (m)

Fig. 3.26. The robot navigation path traversed in a dynamic environment

3.7 Real-Life Performance Evaluation 79

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

R
ig

ht
 s

en
so

r
re

ad
in

g

Time (s)

 R0
 R3

(a)

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

L
ef

t s
en

so
r

re
ad

in
g

T ime (s)

 L0
 L3

(b)

Fig. 3.27. Variation of (a) response of R0 and R3 IR sensors and (b) response of L0 and L3
IR sensors during navigation in the dynamic environment, for case study IV

80 3 Vision-Based Mobile Robot Navigation Using Subgoals

3.8 Summary

In this chapter we described how a two-layered, goal oriented, vision based robot
navigation scheme can be developed. The system employs vision based analysis of
the environment in layer 1, which employs several image processing functions and
a shortest path generation algorithm, to determine the next subgoal for navigation,
with the objective of reaching the final destination as fast as possible, avoiding
obstacles. This subgoal information is utilized by the robot in layer 2 to navigate
in dynamic environments, utilizing a set of IR sensors, avoiding obstacles, to
reach the subgoal or its closest vicinity. This two-layered algorithm is utilized
iteratively to create the next subgoal and navigate upto it, so that the final goal is
reached sufficiently quickly. This chapter has showed a successful implementation
of how to hybridize the shortest path algorithm with camera based image
processing to enhance the quality of vision based navigation of mobile robots in
the real world, so that, the robot can reach its goal (known a priori), following the
shortest practical path, avoiding obstacles. The robustness of the system is further
ensured by the IR-sensor guided navigation, which helps the robot to adapt its
navigation, based on any possible change in obstacle positions in a dynamic
environment. This algorithm is implemented for several environments created for
indoor navigation in our laboratory. It has been demonstrated that the KOALA
robot could achieve its task, each time, satisfactorily, for both static environments
and dynamic environments.

The developed programs comprise high-end programs developed in VB
platform which communicate, in real-time, with the processor of the robot system,
where cross-compiled versions of custom-designed C programs are downloaded.
However, in the real implementation phase, the entire system is run from the high-
end VB platform in a PC through a user-friendly GUI developed, so that it can be
easily utilized by some common users.

For high illumination situations the algorithm is expected and has been
demonstrated to provide satisfactory performance. However, for low illumination
situations, the reflections of the obstacles on the floor may look dark enough (as is
shown in the case of Figs. 3.4(a)-3.4(e)) so that the edge image may contain some
edges corresponding to reflections on the floor. Hence these reflections may be
interpreted as obstacle and this reduces the free zone computed. However,
according to the algorithm, in these exceptional cases, the shortest path computed
may be a little longer than the true shortest path but still safe and robust navigation
of the robot avoiding obstacles towards the goal will be ensured.

The present system is developed where the robot pose in real environment is
estimated by odometry using only incremental wheel encoder information. This
suffices well for indoor applications with uniform floors, for which the system is
primarily developed. The experiments conducted sufficiently demonstrate that the
robot reaches the goal in real world, under these conditions, for a variety of
environmental configurations. However, the accuracy of this system may suffer in
outdoor environments due to problems like wheel slippage etc. One can undertake
such future works into consideration which will attempt to adapt this system
for outdoor environments too and this may be accomplished by additionally

References 81

integrating e.g. extended Kalman filter based algorithms for robot localization,
along with the current system developed.

Acknowledgement. The work described in this chapter was supported by University
Grants Commission, India under Major Research Project Scheme (Grant No. 32-
118/2006(SR)).

References

[1] Chen, Z., Birchfield, S.T.: Qualitative vision-based mobile robot navigation. In:
Proc. of the IEEE International Conference on Robotics and Automation (ICRA),
Orlando, Florida (May 2006)

[2] Bertozzi, M., Broggi, A., Fascioli, A.: Vision-based intelligent vehicles: state of the
art and perspectives. Robotics and Autonomous Systems 32, 1–16 (2000)

[3] Shin, D.H., Singh, S.: Path generation for robot vehicles using composite clothoid
segments. The Robotics Institute, Internal Report CMU-RI-TR-90-31, Carnegie-
Mellon University (1990)

[4] DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)

[5] Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. Artificial
Inteligence Magazine 9, 61–74 (1988)

[6] Elfes, A.: Sonar-based real-world mapping and navigation. IEEE Journal of
Robotics and Automation 3(6), 249–265 (1987)

[7] Jensfelt, P., Christensen, H.I.: Pose tracking using laser scanning and minimalistic
environmental models. IEEE Transactions on Robotics and Automation 17, 138–147
(2001)

[8] Yamauchi, B., Beer, R.: Spatial Learning for navigation in dynamic environments.
IEEE Transactions on System, Man, and Cybernetics, Part B 26(3), 634–648 (1995)

[9] Pierce, D., Kuipers, B.: Learning to explore and build maps. In: Proc. of the Twelfth
National Conference on Artificial Intelligence, Menlo Park, pp. 1264–1271. AAAI,
AAAI Press/MIT Press (July 1994)

[10] Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation.
Artificial Intelligence 99, 21–71 (1998)

[11] Santos-Victor, J., Sandini, G., Curotto, F., Garibaldi, S.: Divergent stereo for robot
navigation: Learning from Bees. In: Proc. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, New York, pp. 434–439 (June 1993)

[12] Kim, D., Nevatia, R.: Recognition and localization of generic objects for indoor
navigation using functionality. Image and Vision Computing 16(11), 729–743
(1998)

[13] Murray, D., Little, J.J.: Using real-time stereo vision for mobile robot navigation.
Autonomous Robots 8, 161–171 (2000)

[14] Davison, A.J.: Mobile robot navigation using active vision. PhD thesis (1998)
[15] Ayache, N., Faugeras, O.D.: Maintaining representations of the environment of a

mobile robot. IEEE Transactions on Robotics and Automation 5(6), 804–819 (1989)
[16] Fialaa, M., Basub, A.: Robot navigation using panoramic tracking. Pattern

Recognition 37, 2195–2215 (2004)
[17] Gasper, J., Santos- Victor, J.: Vision-based navigation and environmental

representations with an omnidirectional camera. IEEE Transactions on Robotics and
Automation 16(6), 890–898 (2000)

82 3 Vision-Based Mobile Robot Navigation Using Subgoals

[18] Ohya, A., Kosaka, A., Kak, A.: Vision-based navigation by a mobile robot with
obstacle avoidance using single-camera vision and ultrasonic sensing. IEEE
Transactions on Robotics and Automation 14(6), 969–978 (1998)

[19] Li, M.H., Hong, B.H., Cai, Z.S., Piao, S.H., Huang, Q.C.: Novel indoor mobile robot
navigation using monocular vision. Engineering Applications of Artificial
Intelligence, 1–18 (2007)

[20] Latombe, J.: Robot Motion Planning. Kulwer, Norwell (1991)
[21] Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische

Mathematik 1, 269–271 (1959)
[22] Nilsson, N.J.: Principles of Artificial Intelligence. Tioga Publishing Company

(1980)
[23] KOALA User Manual, Version 2.0(silver edition), K-team S.A., Switzerland (2001)
[24] Singh, N.N., Chatterjee, A., Rakshit, A.: A PIC microcontroller-based system for

real-life interfacing of external peripherals with a mobile robot. International Journal
of Electronics 97(2), 139–161 (2010)

[25] Kim, P.G., Park, C.G., Jong, Y.H., Yun, J.H., Mo, E.J., Kim, C.S., Jie, M.S.,
Hwang, S.C., Lee, K.W.: Obstacle Avoidance of a Mobile Robot Using Vision
System and Ultrasonic Sensor. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC
2007. LNCS, vol. 4681, pp. 545–553. Springer, Heidelberg (2007),
doi:10.1007/978-3-540-74171-8.

[26] http://www.mathworks.com/matlabcentral/fileexchange/
8625-shortest-path-with-obstacle-avoidance-ver-1-3

[27] http://atalasoft-imgx-controls-sdk.software.informer.com/
[28] Nirmal Singh, N., Chatterjee, A., Chatterjee, A., Rakshit, A.: A two-layered subgoal

based mobile robot navigation algorithm with vision system and IR sensors.
Measurement 44(4), 620–641 (2011)

[29] Nirmal Singh, N.: Vision Based Autonomous Navigation of Mobile Robots. Ph.D.
Thesis, Jadavpur University, Kolkata, India (2010)

A. Chatterjee et al.: Vision Based Autonomous Robot Navigation, SCI 455, pp. 83–100.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 4
Indigenous Development of Vision-Based
Mobile Robots

Abstract. In this chapter we shall discuss how a low-cost robot can be
indigenously developed in the laboratory with special functionalities. Especially,
the development of two types of PIC microcontroller based sensor systems that
can be integrated with a robot will be discussed in detail in this regard. One of
them will be the development of an IR range finder system that can be developed
with dynamic range enhancement capability. The second one will be the
development of an optical proximity detector system which utilizes the principle
of switching mode synchronous detection technique.

4.1 Introduction

In the phase of implementing the vision based algorithms with the KOALA robot
(the version of KOALA that was procured by us), it was found that the KOALA
robot operates under certain constraints, as given below:

• The communication between PC/Laptop and KOALA robot takes place by
means of RS232. However, most of the present day PCs/Laptops do not have
any serial interface and hence they require a separate USB-to-serial converter,
to operate in conjunction with the KOALA robot.

• For a PC-KOALA combination, high-speed data transfer is not possible.
• KOALA I/O interface is limited.
• KOALA does not have any provision for USB interface.
• Low-cost USB webcam cannot be connected to KOALA directly.
• Image processing cannot be accomplished with KOALA’s low-end processor.

This requires a separate on-board Laptop or a PC with wireless camera
interface. This makes the arrangement become complex and bulky.

Hence, a robot is developed indigenously in our laboratory, with an aim to
overcome the above drawbacks and the functionalities and capabilities of this
robot are described in detail in this chapter.

84 4 Indigenous Development of Vision-Based Mobile Robots

4.2 Development of a Low-Cost Vision Based Mobile Robot

As described in the beginning of this chapter, a mobile robot setup is indigenously
developed, with an aim to provide a low-cost solution to the industrial community
[14]. Figure 4.1 shows the actual robot in its front view and bottom view. Figure
4.2 shows the block diagram representation of the robot. The robot developed is a
two-wheeled, differential drive system. The robot is equipped with six IR
proximity sensors, one IR range sensor system, and a laptop. The proximity
sensors provide Boolean signals, where each sensor gets activated if the robot is
sufficiently close to an obstacle, or remains deactivated otherwise. The IR sensor
based system adds a degree of freedom to the system as its angular position is
controlled by a servo motor. This enables the IR sensor to scan the front and the
side of the robot environment at eleven angular positions, from left to right. A
laptop is mounted on the robot system so that the robot becomes a stand-alone,
self-sufficient system. The laptop comprises 4GB solid-state HD, 1GB RAM, with
Windows XP SP2 operating system. The laptop is free from any moving parts and
it communicates with the robot base through a USB link. The robot base is
energized (5V, 1A) from the laptop through two USB cables and no separate
power source is needed for the mobile robot operation. All the RC servos
employed are power controlled for energy saving. The left and right wheel
encoders (4-pulses/rotation) are developed using hall-effect switches. The laptop
camera with auto-focus serves as the mono-vision sensor of the robot system. The
robot uses the webcam of the laptop as its mono-vision sensor. The IR range
sensor system is specially developed for obstacle detection and avoidance, which
employs a microcontroller (PIC 12F683) based system, also indigenously
developed, with an aim to enhance the dynamic range of the range finder system.
The system employs a Visual Basic based robot control program and navigation is
performed using vision and IR range sensors. The system is also equipped with a
Wi-fi link for wireless remote monitoring and supervision.

(a)
(b)

Fig. 4.1. The mobile robot, developed indigenously, in its (a) front view and (b) bottom
view

4.3 Development of Microcontroller Based Sensor Systems for Such Robots 85

ASUS EEE PC
Laptop

USB link
Mobile robot base

Processor: PIC18F4550

Right wheel
RC servo

Left wheel
RC servoEncoder

Encoder

6 IR
proximity
sensors

RC servo
scanner

IR range
sensor

Processor:
PIC12F683

Fig. 4.2. The schematic diagram of the mobile robot

4.3 Development of Microcontroller Based Sensor Systems for
Such Robots

This robot developed is made equipped with three special functionalities. The
robot comprises two special types of sensor systems developed with indigenous
concepts: (a) infrared (IR) sensors with the capability of dynamic range
enhancement [2] and (b) optical proximity detectors using switching-mode
synchronous detection technique [15]. These sensor systems are developed using
PIC microcontrollers. In addition to this, the robot system is equipped with a
sophisticated capability of intranet-connectivity where the laptop mounted on the
robot, acting in a slave mode, can be suitably commanded by a PC, acting in the
master mode, situated in a remote end.

4.3.1 IR Range Finder System with Dynamic Enhancement1

The robot system developed is equipped with an indigenously developed PIC
Microcontroller based IR range finder system, with dynamic range enhancement
capability [2]. Infrared (IR) range finders are overwhelmingly employed in robots
for range measurement because of small size, ease of use, low-cost, and low-
power consumption. In its conventional form, the Sharp make IR range finder

1 Section 4.3.1 is based on “A microcontroller based IR range finder system with dynamic

range enhancement”, by Anjan Rakshit and Amitava Chatterjee, which appeared in IEEE
Sensors Journal, vol. 10, no. 10, pp. 1635-1636, October 2010. © 2010 IEEE.

86 4 Indigenous Development of Vision-Based Mobile Robots

finds extensive real-life use, which uses the method of triangulation [1]. Here, the
angle of light reflected from the object depends on the object range. In our robot,
the IR range finder system employed is developed using scattered radiation-based
sensing, which attempts to reduce the influence of orientation of the plane of the
object on the sensor reading obtained, as is the case in traditional triangulation-
based approach. Usually the output voltage from an IR range finder system
increases with decrease in range of the object, i.e. for a nearer object. However,
the system can only be used beyond a dead zone because, for any range value
within this dead zone, the voltage starts decreasing again, instead of increasing
[1]. This is because, within the dead zone, probability of the narrow IR beam
missing the sensor becomes significant. To increase the sensitivity of the IR
sensor based obstacle avoidance scheme, the robot system, instead of utilizing a
simple IR range sensor, is built with the PIC microcontroller based IR range finder
system, developed in-house [2]. The system developed here utilizes an array-based
approach where the burst frequency and duration of IR energy transmitted are
progressively reduced. The objective is to reduce the dead zone, by utilizing the

1

+5V

20
MHz
Xtal

0.1uF100uF
12V

+

IR sensor

+5V

GP3 GP2/CCP1

GP1

GP0

12F683

8

220 IR LED
+5V

220 IR LED

+
1 K

10uF 16V
Tantulum

Analog output
 (0-5V)

Fig. 4.3. The PIC 12F683 microprocessor based IR range finder system developed, for
dynamic range enhancement (Reproduced from [2] with permission from the IEEE. ©2010
IEEE).

4.3 Development of Microcontroller Based Sensor Systems for Such Robots 87

output from the IR sensor system to adaptively switch an IR LED ON/OFF. The
system employs two IR sources on two sides of the IR sensor whose spatial
separation helps to achieve the range enhancement.

Figure 4.3 shows the hardware system developed, in its schematic form,
utilizing a PIC12F683 microcontroller [3]. The IR energy transmitted by two high
intensity infrared LEDs (IR_LED1 and IR_LED2) is received by a SHARP-make
IR sensor system (IS 1U60), called IR_Sensor in Fig. 4.3. The internal block
diagram of the IS 1U60 system [4] shows that, when this receiver receives IR
energy input, the sensor output goes low and vice versa. The center frequency of
the bandpass filter is f0 = 38 kHz. The relative sensitivity is maximum around the
carrier frequency of 38 kHz [4], utilized for frequency modulation purpose. In the
nominal case, burst wave signals of 38 kHz frequency, with a 50% duty cycle, are
transmitted, for a duration of 600 μs [4].

Algo. 4.1 shows the main routine implemented in the PIC microcontroller.
Algo. 4.2 shows the real-time interrupt routine developed, enabled on Timer1
overflow, that works in conjunction with the main routine. We introduce two
arrays: (i) the Burst_Freq_Array for controlling the carrier or burst frequency of
IR_LEDs and (ii) the Integral_Cycle_Array which determines how long the
IR_LEDs should transmit in one sweep. In conventional systems, the burst
frequency is 38 kHz, with a 50% duty cycle, the transmission duration is 600 μs,
and the sensors produce sensitive results for a narrow width of relatively large
ranges. We intentionally manipulate these two variables so that the IR_SENSOR
receive some amount of IR light energy, reflected back from the object, for several
or a few of these burst frequency durations during one sweep, depending on the
distance. This information (Range_Count) is exponentially averaged to prepare a
steady PWM signal. For a reasonable sensor speed, we can only build these arrays
of finite lengths, that gives rise to “range quantization” or finite resolution of the
system developed.

BEGIN

1. Initialize IR_LED1 and IR_LED2 in OFF mode.
2. Prepare Burst_Freq_Array and Integral_Cycle_Array.
3. Prepare Timer1 register pair for Timer1 interrupt.
4. Program suitable PWM carrier frequency.
5. Receive Range_Count info. from interrupt routine.
6. Scale this info. suitably for PWM generation.
7. Generate PWM signal using exponential averaging.
8. Go to step 5.

END

Algo. 4.1. Main routine in PIC microcontroller

88 4 Indigenous Development of Vision-Based Mobile Robots

BEGIN
1. Prepare for interrupt using Burst_Freq_Array[i].
2. Set Count1_max = Internal_Cycle_Array[i].
3. IF (Count1 > Count1_max),

Toggle Burst_Duration_flag and Reset Count1.
IF (Burst_Duration_flag == 0),
 Increment i by 1.
 IF (SIGIN == 0),
 Increment j by 1.
 ENDIF
ENDIF
IF (i reach last entry in Burst_Freq_Array),
 Range_Count =j; Reset i and j;
ENDIF

 ENDIF
4. IF (Burst_Duration_flag == 1),

Put IR_LED1 ON if Burst_Freq_flag = 0.
Put IR_LED2 ON if both Burst_Freq_flag = 0 and SIGIN = 0.

 ELSE
 Put both IR_LED1 and IR_LED2 OFF.
 ENDIF
5. Toggle Burst_Freq_flag.
6. Clear Interrupt_flag.

END

Algo. 4.2. Interrupt routine

4.3.1.1 The Dynamic Range Enhancement Algorithm

The objective of dynamic range enhancement is achieved by utilizing the output
from the IR_SENSOR as a feedback signal (SIGIN) to the microcontroller, which
adaptively turns IR_LED2 ON/OFF. Algo. 4.2 shows that the blinking of
IR_LED2 is controlled by the states of both Burst_Freq_flag and SIGIN. In a
conventional IR range finder, within the dead zone, most IR energy reflected back
from the object cannot be sensed by the IR_SENSOR. In our system, for distant
objects, mostly only IR_LED1 blinks. As we approach the dead zone gradually,
IR_LED2 starts getting activated often, as there is a higher probability of SIGIN
being low. This intelligent scheme adaptively puts IR_LED2 ON more often with
decreasing range, in an intelligent manner, which helps to reduce the length of the
dead zone and achieves the required dynamic range enhancement. This is in stark
contrast with the working principle of a conventional IR range finder, where,
within the dead zone, most of the IR energy reflected back from the object cannot
be sensed by the IR_Sensor.

4.3 Development of Microcontroller Based Sensor Systems for Such Robots 89

4.3.1.2 Experimental Results

We carried out an experiment in our laboratory, where, for the system without
range enhancement, we do not utilize the feedback signal SIGIN to control
IR_LED2 in our interrupt routine. Figure 4.4 shows the output voltage vs. range
variations for these two cases. For each range/distance, the output voltage
computed is the average of ten readings taken, for both with and without range
enhancement case. For the system without dynamic range enhancement, the usable
range is 25-50 cm and below 25 cm the dead zone arrives. It can be seen that our
proposed system could reduce this dead zone and the dynamic range was
enhanced with the usable range being 10-50 cm.

Fig. 4.4. Output voltage vs. range curve for IR sensor system. (Reproduced from [2] with
permission from the IEEE. ©2010 IEEE.).

4.3.2 Optical Proximity Detectors Using Switching-Mode
Synchronous Detection Technique2

The indigenously developed robot system is also equipped with optical proximity
detectors which are developed utilizing the theory of switching-mode synchronous
detection in a PIC microcontroller based application [15]. Microcontroller based
systems have been widely used, in recent times, to develop such low cost robotic

2 Section 4.3.2 is based on “A microcontroller based compensated optical proximity

detector employing switching-mode synchronous detection technique”, by Anjan Rakshit
and Amitava Chatterjee which appeared in Measurement Science and Technology, vol.
23, no. 3, March 2012. Reproduced with kind permission of IOP Publishing Ltd.
[Online]: http://m.iopscience.iop.org/0957-0233/23/3/035102

90 4 Indigenous Development of Vision-Based Mobile Robots

sensors systems [2] and also several intelligent instrumentation systems [5-7]. In
this section we describe the development of a PIC microcontroller [3] based
optical proximity detection sensor system which is developed using switching
mode synchronous detection technique, an efficient strategy used to extract
fundamental component of a signal heavily corrupted with noise. Such
synchronous detection techniques have been popularly employed in AM radio
receivers, in ac-biased strain-gauge bridge circuits, in pyrometer systems [8], in
mechanical vibration measurement [9], in synchronous phase to voltage converters
[10], in fiber optic sensor-based measurements [11], etc. The objective here is to
develop a low cost yet powerful robot sensor that can provide accurate proximity
indication of obstacles, even with a wide variation of ambient illumination
conditions. This system is developed using two white LEDs which emit light to
determine proximity of an obstacle. An electronic circuit using a light dependent
resistance (LDR) [12] in conjunction with a transistor determines whether an
obstacle is in close enough proximity or not. The system is developed with
external threshold variation flexibility so that the maximum obstacle distance
causing activation of the sensor can be suitably varied for different working
conditions. The sensor system developed has an additional important merit that it
has dynamic compensation capability so that the sensor performance is designed
to be almost independent of ambient illumination conditions.

There are some important factors that influence the performances of such
proximity sensors. The detection of an object will essentially depend on the
detection of the radiation reflected back from the surface of the object and, hence,
for the same closeness or proximity of an object from the sensor, the amount of
radiation reflected back will depend on the reflectivity of the object. The
reflectivity of the object varies between 0 and 1. A highly reflecting object will
have a reflectivity close to unity and vice versa. Another important factor of
influence is the condition of the surface i.e. how smooth (or rough) the surface of
the object is on which the light energy from the white LED sources are incident. It
is known that, if the reflecting surface is large enough to encompass the entire
spatial distribution of the light emitted by the two LEDs, then, for dull objects, the
sensor’s analog signal can be used to determine the proximity distance, if the
surface reflectivity is known. However, in most practical situations, the robot
sensor does not know the type of object it is going to encounter during its
navigation, and hence, the numerical values of their reflectivities will not be
known a priori. To consider such situations, we have conducted experiments for a
set of objects having wide variations in reflectivities and hence the suitability of
the sensor developed is extensively tested and verified.

4.3.2.1 PIC Microcontroller Based Optical Proximity Detector

Figure 4.5 shows the PIC 12F675 microcontroller based system developed. This
system has two digital outputs (pin 3 and 5) connected to two white LED drives
(LED1 and LED2), two analog inputs (pin 6 and 7) and one digital output (pin 2)
to turn an LED (named PXD_LED) ON/OFF. The pin 7 input is obtained from the
collector of a P-N-P transistor whose emitter circuit contains a light dependent

4.3 Development of Microcontroller Based Sensor Systems for Such Robots 91

resistor (LDR) [12], whose resistance varies with the illumination. The system is
designed with an external preset potentiometer at input pin 6, to adjust a threshold
voltage (THLD_val), essential for preventing any spurious activation of
PXD_LED. Each white LED is driven by an identical rectangular pulse, turning
them simultaneously ON/OFF for a chosen time duration.

Algo. 4.3 shows the main routine implemented in the PIC 12F675
microcontroller. Algo. 4.4 shows the real-time interrupt routine developed in
conjunction with the main routine and it is enabled on Timer1 overflow. The
system is so designed that each time interrupt is generated at an interval of 1 ms.
At each such interrupt generation, the value of a counter, named as count1, is
incremented by 1. According to the design philosophy chosen, the ON and OFF
durations of the rectangular pulse driving each white LED are unequal and the ON
time duration, in each cycle, is controlled by a designer chosen parameter,
Count1_on_max, and the OFF time duration, in each cycle, is controlled by a
designer chosen parameter, Count1_off_max. In each cycle, as long as the value of
count1 remains within Count1_on_max, both LED1 and LED2 remain ON. For
the time duration when the value of count1 remain within the band
[Count1_on_max, Count1_off_max] both LED1 and LED2 remain OFF. When
both these LEDs are ON, they emit optical radiation. The proximity of an object is
determined on the basis of the amount of optical radiation reflected back from a
nearby object and this is determined in terms of the voltage signal received at
input pin 7, from the output of the LDR-transistor combination. For each such
acquisition of an input signal, it is always carried out towards the end of the
duration of an ON/OFF time period. This is done to allow analog signal
stabilization before any measurement is actually carried out. Hence any such
signal acquisition is carried out at those instants when (Count1 ==
(Count1_on_max-2)) or (Count1 == (Count1_off_max-2)).

Each such signal acquired is subjected to three-point median filtering to
eliminate any spurious high frequency component, especially impulse natured
signals, which may have contaminated the original signal. The signal acquired at
pin 7 and then median filtered is called LDR_on_val, when this is acquired during
ON time of the white LEDs. The identically acquired and processed signal is
called LDR_off_val, when this is acquired during OFF time of the white LEDs.
One can easily appreciate that, if there is a sufficiently close object/obstacle, then
LDR_on_val will be significantly higher than the LDR_off_val. Hence, ideally
speaking, a higher value of (LDR_on_val - LDR_off_val) means a closer object
and if this (LDR_on_val - LDR_off_val) exceed a threshold value then the output
PXD_LED will be turned ON, indicating the activation of proximity detection
sensor. However, depending on different environments, there are possibilities that,
if this threshold value is made a fixed one, then, in certain situations, PXD_LED
may get turned ON, even when the object is not in near proximity. Hence, to avoid
such spurious activations, the user is given the flexibility where they can
externally set a POT using which they can regulate the threshold value chosen

92 4 Indigenous Development of Vision-Based Mobile Robots

(a)

1

+5V

0.1uF

100uF
12V

+

2

7

PIC
12F675

+5V

0.1uF

2.2K

8

1K
6

2K
preset

Threshold
adjust 0.1uF

5 3

IN 4007

+5V

270
270

10 mm
white
LED

+5V

4.7K

BC 557

1K

10K

LDR+5V

COM

OUT LED

10 mm
white
LED

(b)

Fig. 4.5. The optical proximity detector system developed: (a) the hardware system and (b)
the schematic diagram

(acquired, processed by median filtering and named as THLD_val). From Algo.
4.3, if (LDR_on_val - LDR_off_val) exceed THLD_val, then one can conclude that
the proximity sensor is close to an obstacle and the output PXD_LED will be
turned ON, otherwise it will be OFF.

The developed system also employs a smart compensation scheme that can
dynamically cope with ambient illumination variations. The design of the LDR-
transistor combination circuit has been so carried out that the transistor always
maintains almost constant voltage across the LDR to ensure same signal level,
independent of different ambient illumination conditions. Hence an approximately

4.3 Development of Microcontroller Based Sensor Systems for Such Robots 93

constant signal level is ensured for the two extreme cases of both weak and strong
ambient illuminations. This ensures almost linear sensitivity of the sensor i.e. an
almost constant ratio of incremental variation in output voltage (i.e. input voltage
at pin 7) to the incremental variation in the relative distance between the optical
sensor and the obstacle i.e. (ΔV/ Δx) value. This directly translates into a very
important property of any sensor system designed i.e. provision for almost
constant detector output voltage variation with the same change in primary
measurand (in this case, distance between the sensor and the obstacle), in spite of
variation in other secondary factors (in this case, ambient illumination).

BEGIN

1. Prepare Timer1 for 1 ms Timer1 interrupt.
2. IF (Count1 == (Count1_on_max-2)),

Accept the input signal from LDR-transistor combination circuit at
pin 7.

ENDIF
3. IF (Count1 == (Count1_on_max-1)),

Median filter the 10-bit ADC converted analog signal in PIN 7 and store
it as LDR_on_val.

ENDIF
4. IF ((Count1 >= Count1_on_max) & (Count1 < Count2_on_max)),

Accept the THLD set as an input signal at pin 6.
Median filter the 10-bit ADC converted analog signal in PIN 6 and store
it as THLD_val.

ENDIF
5. IF (Count1 == (Count1_off_max-2)),

Accept the input signal from LDR-transistor combination circuit at pin 7.
ENDIF

6. IF (Count1 == (Count1_off_max-1)),
Median filter the 10-bit ADC converted analog signal in PIN 7 and store
it as LDR_off_val.

ENDIF
7. IF ((LDR_on_val-LDR_off_val) > THLD_val),

IF (Count2 == Count2_max),
 Reset Count2 to 0.

 ENDIF
IF ((Count2 > (Count2_max-10)) & (Count2 < Count2_max)),

Turn PXD_LED on.
ENDIF

ENDIF
END

Algo. 4.3. Main routine in PIC microcontroller

94 4 Indigenous Development of Vision-Based Mobile Robots

BEGIN
1. Prepare for 1 ms timer interrupt.
2. Increment Count1 by 1.
3. IF (Count2 < Count2_max),

 Increment Count2 by 1.
ENDIF

4. IF (Count1 > Count1_on_max),
 Turn both LED1 and LED2 off.

ENDIF
5. IF (Count1 > Count1_of_max),

 Reset Count1 to 0.
 Turn both LED1 and LED2 on.
 ENDIF

END

Algo. 4.4. Interrupt routine

4.3.2.2 Switching Mode Synchronous Detection (SMSD) Technique

The synchronous detection is a popular signal processing technique used to extract
fundamental component of a weak signal, embedded within a strong noisy
counterpart. This technique is popularly employed in radio communication, in
industrial scenario (where there is strong possibilities of encountering heavily
noise contaminated or disturbed signals) etc. and this technique requires a
reference signal with known frequency and phase [8]. A very popular application
of synchronous detection technique includes design of superheterodyne receivers
for AM radio. In traditional synchronous detection method, the reference signal
employed is a pure sinusoidal signal or a harmonic signal. In a popular variation
of this traditional technique, switching mode synchronous detection technique
employs a square/rectangular wave as a reference signal. The core of a switching
mode synchronous detector employs a phase sensitive detector. In SMSD
technique [13], a periodic rectangular pulse train is employed as a reference r(t)
which is used to sample the noisy signal x(t) and the output of the detector xm(t) is
low pass filtered to recover the fundamental of x(t), i.e. xf(t). In our scheme, we
employ a modified switching mode synchronous detection technique, as shown in
Fig. 4.6. Here, the rectangular reference r(t) is used to sample the noisy signal x(t)
and this produces the output of the detector xm(t), identical to a conventional
SMSD scheme. Then the output xm(t) is used to cause an activation of the output
LED only when this xm(t) produces a high signal for a consistently long,
continuous duration of time. This is similar to a conditional sample and hold
operation and can be visualized equivalent to a low pass filtering action, because it
avoids any spurious activation of the proximity detector caused by any high input
impulse signal or a short duration input signal, acquired at input pin 7 of the
microcontroller, which may have arose because of some unwanted, external
interference. If this signal produces a high value for a continuously long time then

4.3 Development of Microcontroller Based Sensor Systems for Such Robots 95

Switching
Mode

Detector

Low
Pass
Filter

Mixer

r(t)

x(t) xf(t) xm(t)

t

Fig. 4.6. The modified switching mode synchronous detector

Fig. 4.7. (a) A sample real input signal x(t) and (b) the reference signal r(t)

96 4 Indigenous Development of Vision-Based Mobile Robots

we can infer that it is definitely because of the presence of an object in proximity
of the sensor and not because of any noisy signal acquired. Figure 4.7 shows a
sample real situation for a given condition of an object in the proximity of the
sensor. The input signal acquired at pin 7 of the microcontroller is shown as input
x(t) and the reference signal is shown as r(t). It should be borne in mind that, in
switching mode synchronous detection technique, the relative phase of the signal
under consideration and the reference signal plays an important role [8]. For those
frequencies in the signal whose phase do not match with the reference, the output
reduces and a given frequency has zero contribution in the output of the switching
mode detector, if its phase is at a 90° deviation from the reference signal. In our
scheme, the transistor emitter signal output read at pin 7 is the signal x(t) and the
white LEDs produce the reference signal r(t). In case of sufficient proximity of an
object, the low pass filter produces a high output and for distant objects the output
is low. The THLD signal is utilized on whose basis the proximity of an object is
determined as a Boolean signal.

4.3.2.3 Experimental Results

The optical proximity detector designed is implemented in real life for detection of
nearby objects under several case study conditions. Each time the sensor system
showed satisfactory performance with a Boolean output i.e. the output LED (i.e.
PXD_LED is turned ON for sufficient proximity of an object or, otherwise, turned
OFF). However, as remarked earlier, if the relative distance between the sensor
and a distant object keeps reducing, then the exact minimum distance of an object
at which this change in Boolean output takes place, from OFF condition to ON
condition, depends on various factors. Figure 4.8 shows the experimental results
obtained in testing the effect of variation in the minimum distance of an object
required to activate the proximity detector as a function of the threshold voltage
(THLD_val), adjusted externally using a POT. As expected, with an increase in
the threshold, the detector gets activated for a smaller minimum proximity, in
general. For higher thresholds set, the system shows a near saturation effect,
which indicates that there is an effective dead zone for minimum distance to
activate the detector.

The experimental results are given for three types of objects in Fig. 4.8: (a)
with moderately high reflectivity (p = 33%), (b) with medium reflectivity (p =
16%), and (c) with low reflectivity (p = 7.8%). These reflectivity values are
obtained for wavelengths centered at 550 nm. The experimental determination of
the reflectivity of each object used is carried out using KYORITSU make Model
5200 Illuminometer. These experimental results are obtained by maintaining the
reflecting surface of each object normal to the optical axes of the emitting LEDs.
It can be seen that, for highly reflecting objects, for a given threshold voltage set,
the proximity detector gets activated at relatively larger distances. For same
threshold voltage chosen, if this object is replaced by other objects with lower and
lower reflectivities, then the proximity sensor gets activated at closer and closer
proximities i.e. the minimum distance of separation required to cause activation of
the proximity output LED will get smaller and smaller. For objects with small
reflectivities, these proximity distances are quite small and the sensor reaches its

4.4 The Intranet-Connectivity for Client-Server Operation 97

dead band very fast, even for small values of threshold voltages chosen. For
example, in our experiments, for object (c), this dead band is reached for a
threshold voltage of 0.6 V and for a further increase in this voltage, the system
cannot be effectively used for proximity detection. Hence, for effective utilization
of this proximity sensor for robot navigation, the objects should be at least having
medium or low-medium reflectivites so that the robot can safely avoid them,
based on this sensor activation. Our experimentations have also revealed that the
sensor system developed can be effectively utilized to detect objects of a
minimum dimension of 6 cm × 8 cm or of bigger dimensions.

Fig. 4.8. The proximity detector performance curve for objects with (a) reflectivity p =
33%, (b) reflectivity p = 16%, and (c) reflectivity p = 7.8%

4.4 The Intranet-Connectivity for Client-Server Operation

In addition to the two special types of sensor systems, the indigenously developed
robot is also equipped with intranet-connectivity where data communication and
control command exchange can take place between the laptop mounted on the
robot and a remote end PC. In this client-server mode of operation, the robot acts
as the server and the remote-end user acts as the client and the communication
takes place using Windows based socket programming in TCP/IP protocol.

98 4 Indigenous Development of Vision-Based Mobile Robots

(a)

(b)

Fig. 4.9(a) & (b). The GUI-based view from the client-end, at a sample instant, during the
robot navigation

4.5 Summary 99

The client end can select the robot functionalities like (i) whether the proximity
sensors should be used in navigation or not and (ii) whether search mode should
be ON or OFF. If the search mode is on, then the stored information for possible
steering angle detour is used to guide the robot back to the path, in case the robot
leaves the path/line. If the search mode is deselected from the client end, then the
robot stops once it leaves the path/line. One can include more such functionalities
to add more control flexibilities in remote operation, if it is so desired. The server
end can also send both text and image data on receiving “data send_request” from
the client. Usually image data is voluminous, and, on receiving a request, the
server end first creates an array of all pixel values of an image matrix for
transmission. However the entire array of data is not transmitted in a contiguous
manner but it is sent in a series of data packets, managed by a low-end device
driver. The client end system is also programmed in such a manner that they keep
receiving the data packets until a complete image data array is received and then
reconstruct the image for display at the client end. The system is developed with
an interlocking feature so that the client is not allowed to send a new request,
when it is in the process of receiving data packets corresponding to an earlier
request. Figure 4.9(a) and Fig. 4.9(b) show an user interface developed in the
client end, which show a captured frame and the path/line extracted from this
frame, at the server end. As the GUI shows and as mentioned before, the system
has the flexibility that, from the client end, one can activate or deactivate the IR
proximity sensors, by clicking the button “Proximity on/off”. Also one can click
the button “Search on/off” which will signify, when the path vanishes from
the field-of-view of the robot, whether the robot will continue to take turns in
iterative fashion to re-localize itself on the path/line, or will it simply stop further
navigation.

4.5 Summary

This chapter described how a low-cost robot can be indigenously developed in the
laboratory with special functionalities. The robot system consists of two specially
developed microcontroller based sensor systems and also the flexibility of intranet
connectivity. Among the two specially developed sensor systems, a PIC
microcontroller based IR range finder system is developed where dynamic range
enhancement is achieved by adaptively utilizing the IR sensor output to switch one
IR LED ON/OFF. This system utilizes an array-based approach to manipulate the
burst frequency and duration of IR energy transmission, to enhance accuracy of
range finding. Another microcontroller based sensor system designed comprises
an optical proximity detection sensor system using white LEDs, an LDR-transistor
based electronic circuit and an output LED for Boolean indication of ON/OFF.
The scheme is developed using switching mode synchronous detection technique
and to facilitate reliable functioning of this circuit under different working
conditions, the system is equipped with an external threshold adjustment facility,
which an user can advantageously use for fine tuning the performance of the
system. Finally the robot is equipped with intranet connectivity for client server

100 4 Indigenous Development of Vision-Based Mobile Robots

operation where the laptop on the robot acts in the slave mode and a remote end
PC, in master mode, can command the robot from a remote location for suitable
operations.

References

[1] De Nisi, F., Gonzo, L., Gottardi, M., Stoppa, D., Simoni, A., Angelo-Beraldin, J.: A
CMOS sensor optimized for laser spot-position detection. IEEE Sensors
Journal 5(6), 1296–1304 (2005)

[2] Rakshit, A., Chatterjee, A.: A microcontroller based IR range finder system with
dynamic range enhancement. IEEE Sensors Journal 10(10), 1635–1636 (2010)

[3] http://ww1.microchip.com/downloads/en/DeviceDoc/
41211D_.pdf

[4] http://owww.phys.au.dk/elektronik/is1u60.pdf
[5] Chatterjee, A., Sarkar, G., Rakshit, A.: Neural compensation for a microcontroller

based frequency synthesizer-vector voltmeter. IEEE Sensors Journal 11(6), 1427–
1428 (2011)

[6] Chatterjee, A., Sarkar, G., Rakshit, A.: A reinforcement-learning-based fuzzy
compensator for a microcontroller-based frequency synthesizer/vector voltmeter.
IEEE Transactions on Instrumentation and Measurement 60(9), 3120–3127 (2011)

[7] Ray, S., Sarkar, G., Chatterjee, A., Rakshit, A.: Development of a microcontroller-
based frequency synthesizer cum vector voltmeter. IEEE Sensors Journal 11(4),
1033–1034 (2011)

[8] Platil, A.: An introduction to synchronous detection,
http://measure.feld.cvut.cz/en/system/files/files/en/
education/courses/xe38ssd/SynchrDetectBW.pdf

[9] Borza, D.N.: Mechanical vibration measurement by high-resolution time-averaged
digital holography. Measurement Science and Technology 16(9), 1853 (2005),
doi:10.1088/0957-0233/16/9/019

[10] Ruggeri, M., Salvatori, G., Rovati, L.: Synchronous phase to voltage converter for
true-phase polarimeters. Measurement Science and Technology 16(2), 569 (2005),
doi:10.1088/0957-0233/16/2/033

[11] Philp, W.R., Booth, D.J., Shelamoff, A., Linthwaite, M.J.: A simple fibre optic
sensor for measurement of vibrational frequencies. Measurement Science and
Technology 3(6), 603 (1992), doi:10.1088/0957-0233/3/6/007

[12] PHILIPS Data handbook. Semiconductors and integrated circuits, Part 4b
(December 1974)

[13] Min, M., Parve, T.: Improvement of the vector analyser based on two-phase
switching mode synchronous detection. Measurement 19(2), 103–111 (1996)

[14] Nirmal Singh, N.: Vision Based Autonomous Navigation of Mobile Robots. Ph.D.
Thesis, Jadavpur University, Kolkata, India (2010)

[15] Rakshit, A., Chatterjee, A.: A microcontroller based compensated optical proximity
detector employing switching-mode synchronous detection technique. Measurement
Science and Technology 23(3) (March 2012),
http://m.iopscience.iop.org/0957-0233/23/3/035102

A. Chatterjee et al.: Vision Based Autonomous Robot Navigation, SCI 455, pp. 101–142.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 5
Sample Implementations of Vision-Based
Mobile Robot Algorithms

Abstract. This chapter presents a detailed, step-by-step demonstration of how
vision-based navigation modules can be actually implemented in real life, under
32-bit Windows environment. These lessons start with a simple development of
capturing image frames from a running video and then gradually proceeds to more
complex tasks of incorporating image processing capabilities e.g. filtering
techniques, contrast enhancement, adaptive thresholding etc. Then the lessons
demonstrate how to extract path for the robot from such images and how a rule-
based approach can be utilized to determine left and right wheel speed settings of
a differential drive system.

5.1 Introduction

In this chapter Visual Basic based software programming is presented in a step-
by-step fashion. Ten lessons are developed for PC based vision-based navigation
programming. Low-cost webcam is used for capturing streaming video.

Visual Basic version 6 (VB6) [1-2] is used for windows based programming.
The first lesson ‘Lesson 1’ demonstrates how to capture image frames from

streaming video from a low-cost webcam and examine pixel (picture element)
values with the help of mouse pointer. RGB (Red-Green-Blue) to gray-scale
conversion is also done in a pixel-by-pixel manner. A ‘Format’ menu is provided
for selecting the image frame size to 160x120. Windows 32-bit API (Application
Programming Interface) calls [3] are adopted for faster processing.

The second lesson ‘Lesson 2’ demonstrates how to process captured image
frames from streaming video. Options are provided for RGB to gray-scale
conversion and subsequent low-pass filtering [4].

The third lesson ‘Lesson 3’ shows the method of contrast enhancement by
histogram stretching technique [4] under poor lighting conditions.

The fourth lesson ‘Lesson 4’ introduces geometric-mean filter [4] to smooth
and suppress image detail to simplify the extraction of required white path for
navigation.

The fifth lesson ‘Lesson 5’ applies an adaptive threshold operation to extract
white path under varying illumination conditions. A selectable reference pixel
determines the centre of path to be extracted.

102 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

The sixth lesson ‘Lesson 6’ introduces a cleaning operation to remove
unwanted objects detected during threshold operation.

The next lesson ‘Lesson 7’ introduces an option for selection of path color
white or black. For black path color option, the gray-scale image frame is first
converted to negative image, so that black objects become white and then
processed as usual as discussed in ‘Lesson 6’.

The eighth lesson ‘Lesson 8’ is targeted for white or black path finding for
navigation with a fixed reference pixel.

The next lesson ‘Lesson 9’ introduces a rule-based approach to determine left
and right wheel speed settings of a differential drive system for navigation.
Pictorial representation of navigation direction is done with appropriate image file.

Finally in the last lesson ‘Lesson 10’ sound output is added to draw attention
during navigation.

Source codes are available for Visual Basic version 6 and Visual Basic dot net
version 2010 compiler from ‘http://extras.springer.com’.

Executable codes are also provided for testing the performance of programs
when compilers are not available with the reader. Only run-time executables are
needed which are freely available from Microsoft.

5.2 Lesson 1

Objective: To develop a VB6 program to capture webcam streaming video.
Following steps summarize the program development.

1. All necessary Application Programming Interface (API) calls are declared in
‘Webcam1.bas’ module. It is necessary to include this module in ‘Form1’ of
the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to preview
streaming video at 30 frames per second and ‘Picture2’ to capture image from
streaming video as clipboard data at a regular interval of 10mS with the help
of ‘Timer1’ control.

4. Two command buttons, namely, ‘Capture’ and ‘Close’ are added under
‘Form1’ to control image capturing process. The command button names are
‘cmdCapture’ and ‘cmdClose’ respectively.

5. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

6. Any captured pixel may be examined with the mouse pointer over ‘picture2’
image. The mouse cursor is changed to ‘cross’ to facilitate pixel examination.

7. Pixel color is obtained through the ‘GetPixel’ API call.
8. Red (R), Green (G) and Blue (B) vales are obtained from ‘Color’ by calling

three functions ‘GetRed’, ‘GetGreen’ and ‘GetBlue’ functions as follows:
GetRed = Color And 255, GetGreen = (Color And 65280) \ 256 and GetBlue
= (Color And 16711680) \ 65535.

9. Three text boxes, namely, ‘Text1’, ‘Text2’ and ‘Text3’ are added to examine
8-bit Red (R), Green (G) and Blue (B) values of the selected pixel.

5.2 Lesson 1 103

10. Two text boxes, namely, ‘Text4’ and ‘Text5’, are incorporated to monitor ‘X’
and ‘Y’ coordinates of the selected pixel.

11. A text box ‘Text6’ is added to view 8-bit gray value of the selected pixel from
its RGB values according to the formula: gray = 0.2125 * red + 0.7154 *
green + 0.0721 * blue.

12. A second timer ‘Timer2’ control is added to remove textbox data within
10mS when the mouse pointer is not positioned over ‘Picture2’ picture box.

Following text shows the listing of ‘Webcam1.bas’ module.

Global Const WS_CHILD As Long = &H40000000
Global Const WS_VISIBLE As Long = &H10000000
Global Const WM_USER = 1024
Global Const WM_CAP_DRIVER_CONNECT = WM_USER + 10
Global Const WM_CAP_SET_PREVIEW = WM_USER + 50
Global Const WM_CAP_SET_PREVIEWRATE = WM_USER + 52
Global Const WM_CAP_DRIVER_DISCONNECT As Long = WM_USER + 11
Global Const WM_CAP_DLG_VIDEOFORMAT As Long = WM_USER + 41
Global Const WM_CAP_GET_FRAME As Long = 1084
Global Const WM_CAP_COPY As Long = 1054
Global Const WM_CAP_SET_SCALE As Integer = WM_USER + 53
Global Const SWP_NOMOVE As Integer = 2
Global Const SWP_NOZORDER As Integer = 4
Global Const HWND_BOTTOM As Integer = 1

Declare Function SendMessage Lib "user32" Alias "SendMessageA" _
 (ByVal hwnd As Long, ByVal wMsg As Long, ByVal wParam As _
 Long, ByVal lParam As Long) As Long
Declare Function capCreateCaptureWindow Lib "avicap32.dll" Alias _

"capCreateCaptureWindowA" (ByVal a As String, ByVal b As Long, _
ByVal c As Integer, ByVal d As Integer, ByVal e As Integer, _
ByVal f As Integer, ByVal g As Long, ByVal h As Integer) As Long

Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _
ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, _
ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long

Declare Function GetPixel Lib "gdi32" (ByVal hdc As Long, _
 ByVal x As Long, ByVal y As Long) As Long

104 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘Form1’ code.

Dim hwdc As Long
Dim startcap As Boolean
Dim mflag As Boolean

Private Sub cmdCapture_Click()
 hwdc = capCreateCaptureWindow("Webcam Vision System", WS_CHILD _
Or WS_VISIBLE, 0, 0, 160, 120, Picture1.hwnd, 0)
 If (hwdc <> 0) Then
 Clipboard.Clear
 If SendMessage(hwdc, WM_CAP_DRIVER_CONNECT, 0, 0) Then
 SendMessage hwdc, WM_CAP_SET_SCALE, True, 0
 SendMessage hwdc, WM_CAP_SET_PREVIEWRATE, 30, 0
 SendMessage hwdc, WM_CAP_SET_PREVIEW, 1, 0
 SetWindowPos hwdc, HWND_BOTTOM, 0, 0, 160, 120, SWP_NOMOVE _

 Or SWP_NOZORDER
 startcap = True
 cmdCapture.Enabled = False
 cmdClose.Enabled = True
 Timer1.Enabled = True
 Menu1.Enabled = True
 Picture2.Visible = True
 Label1.Visible = True
 Label2.Visible = True
 Label3.Visible = True
 Label4.Visible = True
 Label5.Visible = True
 Label6.Visible = True

5.2 Lesson 1 105

 Label7.Visible = True
 Label9.Visible = True
 Label11.Visible = True
 Text1.Visible = True
 Text2.Visible = True
 Text3.Visible = True
 Text4.Visible = True
 Text5.Visible = True
 Text6.Visible = True

Else
 MsgBox ("No Webcam found!")
 startcap = False

End If
End If

End Sub

Private Sub cmdClose_Click()
 If startcap = True Then
 SendMessage hwdc, WM_CAP_DRIVER_DISCONNECT, 0, 0
 startcap = False
 cmdCapture.Enabled = True
 cmdClose.Enabled = False
 Timer1.Enabled = False
 Menu1.Enabled = False
 Picture2.Visible = False
 Label1.Visible = False
 Label2.Visible = False
 Label3.Visible = False
 Label4.Visible = False
 Label5.Visible = False
 Label6.Visible = False
 Label7.Visible = False
 Label9.Visible = False
 Label11.Visible = False
 Text1.Visible = False
 Text2.Visible = False
 Text3.Visible = False
 Text4.Visible = False
 Text5.Visible = False
 Text6.Visible = False
 End If
End Sub

106 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

Private Sub Form_Load()
 If App.PrevInstance = True Then End ' multiple instances are not allowed
 cmdCapture.Enabled = True
 cmdClose.Enabled = False
 Picture1.AutoSize = True
 Picture2.AutoSize = True
 Timer1.Interval = 10
 Timer2.Interval = 10
 Menu1.Enabled = False
 mflag = False
 Picture2.Visible = False
 Picture2.MousePointer = 2 ' cross cursor
 Label1.Visible = False
 Label2.Visible = False
 Label3.Visible = False
 Label4.Visible = False
 Label5.Visible = False
 Label6.Visible = False
 Label7.Visible = False
 Label9.Visible = False
 Label11.Visible = False
 Text1.Visible = False
 Text2.Visible = False
 Text3.Visible = False
 Text4.Visible = False
 Text5.Visible = False
 Text6.Visible = False
End Sub

Private Function GetRed(ByVal Color As Long)
 GetRed = Color And 255
End Function

Private Function GetGreen(ByVal Color As Long)
 GetGreen = (Color And 65280) \ 256
End Function

Private Function GetBlue(ByVal Color As Long)
 GetBlue = (Color And 16711680) \ 65535
End Function

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, _
 x As Single, y As Single)
 mflag = False ' mouse pointer in form but not in picture box
End Sub
Private Sub Menu1_Click()

5.2 Lesson 1 107

 If startcap = True Then
 SendMessage hwdc, WM_CAP_DLG_VIDEOFORMAT, 0, 0
 End If
End Sub

Private Sub Picture2_MouseMove(Button As Integer, Shift As Integer, _
 x As Single, y As Single)
 Dim Color As Long
 Dim red As Byte
 Dim blue As Byte
 Dim green As Byte
 Dim gray As Byte
 Dim xp As Long
 Dim yp As Long

 xp = x / Screen.TwipsPerPixelX
 yp = y / Screen.TwipsPerPixelY
 Color = GetPixel(Picture2.hdc, xp, yp)
 red = GetRed(Color)
 green = GetGreen(Color)
 blue = GetBlue(Color)
 gray = 0.2125 * red + 0.7154 * green + 0.0721 * blue
 Text1.Text = red
 Text2.Text = green
 Text3.Text = blue
 Text4.Text = xp
 Text5.Text = yp
 Text6.Text = gray
 mflag = True ' mouse pointer in picture box
End Sub

Private Sub Timer1_Timer()
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture2.Picture = Clipboard.GetData
 SendMessage hwdc, WM_CAP_SET_PREVIEW, 1, 0
End Sub

Private Sub Timer2_Timer()
 If mflag = False Then ' no mouse pointer in picture box
 Text1.Text = ""
 Text2.Text = ""
 Text3.Text = ""
 Text4.Text = ""

108 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 Text5.Text = ""
 Text6.Text = ""
 End If
End Sub

To execute the program the capture button has to be pressed. If any webcam is

available then preview is available in picture box ‘Picture1’. If the size of the
captured image does not fit in the picture box ‘Picture2’ then the image size has to
be changed to 160x120 by activating the ‘Format’ menu.

If no webcam is available then a message box will appear with a message “No
webcam found!”

5.3 Lesson 2

Objective: To develop a VB6 program to capture and process webcam streaming
video for conversion to gray scale image and subsequent low-pass image filtering.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam2.bas’ module. It is
necessary to include this module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from captured image at the same rate with
the help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. Pixel array is processed according to option controls ‘Option1’ or ‘Option2’.
8. If ‘Option1’ is selected then pixel array is processed as gray scale image

with the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’
through ‘SetBitmapBits’ API call.

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’
and then displayed in ‘Picture2’.

5.3 Lesson 2 109

 Option1 Option2

 Gray Gray + low-pass

Following text shows the listing of ‘Webcam2.bas’ module.

Global Const WS_CHILD As Long = &H40000000
Global Const WS_VISIBLE As Long = &H10000000
Global Const WM_USER = 1024
Global Const WM_CAP_DRIVER_CONNECT = WM_USER + 10
Global Const WM_CAP_SET_PREVIEW = WM_USER + 50
Global Const WM_CAP_SET_PREVIEWRATE = WM_USER + 52
Global Const WM_CAP_DRIVER_DISCONNECT As Long = WM_USER + 11
Global Const WM_CAP_DLG_VIDEOFORMAT As Long = WM_USER + 41
Global Const WM_CAP_GET_FRAME As Long = 1084
Global Const WM_CAP_COPY As Long = 1054
Global Const WM_CAP_SET_SCALE As Integer = WM_USER + 53
Global Const SWP_NOMOVE As Integer = 2
Global Const SWP_NOZORDER As Integer = 4
Global Const HWND_BOTTOM As Integer = 1

Declare Function SendMessage Lib "user32" Alias "SendMessageA" (ByVal hwnd _

As Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As_
Long) As Long Declare Function capCreateCaptureWindow Lib _
"avicap32.dll" Alias "capCreateCaptureWindowA" (ByVal nWindowName _
As String, ByVal nStyle As Long, ByVal nx As Integer, ByVal ny As Integer, _
ByVal nWidth As Integer, ByVal nHeight As Integer, ByVal nHwnd As Long, _
ByVal nId As Integer) As Long

Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _
ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, _
ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long

Declare Function GetObject Lib "gdi32" Alias "GetObjectA" (ByVal hObject _
 As Long, ByVal nCount As Long, lpObject As Any) As Long
Declare Function GetBitmapBits Lib "gdi32" (ByVal hBitmap As Long, _
 ByVal dwCount As Long, lpBits As Any) As Long
Declare Function SetBitmapBits Lib "gdi32" (ByVal hBitmap As Long, _
 ByVal dwCount As Long, lpBits As Any) As Long

110 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘Form1’ code.

Dim hwdc As Long
Dim startcap As Boolean
Private Type Bitmap
 bmType As Long
 bmWidth As Long
 bmHeight As Long
 bmWidthBytes As Long
 bmPlanes As Integer
 bmBitsPixel As Integer
 bmBits As Long

End Type
Dim Pbytes() As Byte, Pinfo As Bitmap
Dim x As Long, y As Long

Private Sub Form_Load()
 If App.PrevInstance = True Then End
 Picture1.AutoSize = True
 Picture2.AutoSize = True
 Picture1.ScaleMode = vbPixels
 Picture2.ScaleMode = vbPixels
 Timer1.Interval = 10

hwdc = capCreateCaptureWindow("Webcam Vision System", WS_CHILD _

Or WS_VISIBLE, 0, 0, 160, 120, Picture1.hwnd, 0)

5.3 Lesson 2 111

If (hwdc <> 0) Then
 Clipboard.Clear
 If SendMessage(hwdc, WM_CAP_DRIVER_CONNECT, 0, 0) Then
 SendMessage hwdc, WM_CAP_SET_SCALE, 1, 0
 SendMessage hwdc, WM_CAP_SET_PREVIEWRATE, 30, 0
 SendMessage hwdc, WM_CAP_SET_PREVIEW, 1, 0
 SetWindowPos hwdc, HWND_BOTTOM, 0, 0, 160, 120, _
 SWP_NOMOVE Or SWP_NOZORDER
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetObject Picture1.Picture, Len(Pinfo), Pinfo
 ReDim Pbytes(0 To (Pinfo.bmBitsPixel \ 8) - 1, 0 To Pinfo.bmWidth - 1, _
 0 To Pinfo.bmHeight - 1)
 Picture2.height = Picture1.height
 Picture2.width = Picture1.width
 Timer1.Enabled = True
 startcap = True
Else
 MsgBox "No Webcam found!", OK, ""
 startcap = False
 Unload Me
End If

Else
Unload Me

End If
End Sub

Private Sub Gray(width As Long, height As Long)

 Dim G As Byte
 For x = 0 To width - 1
 For y = 0 To height - 1
 G = 0.2125 * CDbl(Pbytes(2, x, y)) + 0.7154 * CDbl(Pbytes(1, x, y)) + _
 0.0721 * CDbl(Pbytes(0, x, y))
 Pbytes(2, x, y) = G 'Red
 Pbytes(1, x, y) = G 'Green
 Pbytes(0, x, y) = G 'Blue
 Next y
Next x

End Sub

Private Sub Lowpass(width As Long, height As Long)
 Dim R As Long
 Dim c, d, e, f As Long
 For x = 0 To width - 1
 For y = 0 To height - 1

112 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 c = x - 1
 d = x + 1
 e = y - 1
 f = y + 1
 If c < 0 Then c = width - 1
 If d = width Then d = 0
 If e < 0 Then e = height - 1
 If f = height Then f = 0
 R = Pbytes(2, x, e)
 R = R + CLng(Pbytes(2, c, y))
 R = R + 2 * CLng(Pbytes(2, x, y))
 R = R + CLng(Pbytes(2, d, y))
 R = R + CLng(Pbytes(2, x, f))
 R = R / 6 '3x3 low pass
 Pbytes(2, x, y) = R
 Pbytes(1, x, y) = R
 Pbytes(0, x, y) = R
 Next y
Next x

End Sub

Private Sub Form_Terminate()
If startcap = True Then
 SendMessage hwdc, WM_CAP_DRIVER_DISCONNECT, 0, 0
 startcap = False
 Timer1.Enabled = False
End If

End Sub

Private Sub Form_Unload(Cancel As Integer)
If startcap = True Then
 SendMessage hwdc, WM_CAP_DRIVER_DISCONNECT, 0, 0
 startcap = False
 Timer1.Enabled = False
End If

End Sub

Private Sub Menu_Click()
If startcap = True Then
 SendMessage hwdc, WM_CAP_DLG_VIDEOFORMAT, 0, 0
End If

End Sub

Private Sub Timer1_Timer()
Timer1.Enabled = False
SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
SendMessage hwdc, WM_CAP_COPY, 0, 0

5.4 Lesson 3 113

Picture1.Picture = Clipboard.GetData
GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _

 Pbytes(0, 0, 0)
If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight
If Option2.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
End If
SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
Picture2.Refresh
Picture2.Picture = Picture2.Image
Timer1.Enabled = True

End Sub

Low-pass filtering is performed with a 2-D FIR filer mask of size 3x3 as stated
below:

Circular 2-D convolution is performed with the above mask to preserve the image
size before and after filtering with minimum amount of distortion.

If the size of the captured image does not fit in the picture box then the image
size has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam
is available then a message box will appear with a message “No webcam found!”

5.4 Lesson 3

Objective: To develop a VB6 program to capture and process webcam streaming
video for conversion to gray scale image, low-pass image filtering and contrast
enhancement.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam3.bas’ module, same as
‘Webcam2.bas’, as mentioned in Lesson 2. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from captured image at the same rate with the
help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

114 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. Pixel array is processed according to option controls ‘Option1’, ‘Option2’ or
‘Option3’.

8. If ‘Option1’ is selected then pixel array is processed as gray scale image with
the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ through
‘SetBitmapBits’ API call.

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’
and then displayed in ‘Picture2’.

10. If ‘Option3’ is selected then array is low-pass filtered as in step 9 and then
processed for contrast enhancement using histogram stretching technique with
the help of procedure ‘Contrast’ and then displayed in ‘Picture2’.

Option1 Option2 Option3

Gray Gray + low-pass Gray + low-pass + contrast

Following figure shows the ‘Form1’ layout.

5.4 Lesson 3 115

Following text shows the listing of ‘Contrast’ and ‘Timer1’ procedure code.
For rest of the code refer to Lesson 2.

Private Sub Contrast(width As Long, height As Long)

 Dim R As Long 'histogram stretching
 Dim pmax, pmin As Long
 pmax = 0
 pmin = 255
 For x = 0 To width - 1
 For y = 0 To height - 1
 If pmax <= CLng(Pbytes(2, x, y)) Then pmax = Pbytes(2, x, y)
 If pmin >= CLng(Pbytes(2, x, y)) Then pmin = Pbytes(2, x, y)
 Next y
 Next x
 For x = 0 To width - 1
 For y = 0 To height - 1
 R = Pbytes(2, x, y)
 If pmax > pmin Then R = (((R - pmin) * 255) / (pmax - pmin)) + pmin / 4
 If R < 0 Then R = 0
 If R > 255 Then R = 255
 Pbytes(2, x, y) = R
 Pbytes(1, x, y) = R
 Pbytes(0, x, y) = R
 Next y
 Next x

End Sub

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If Option2.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option3.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 End If

116 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Timer1.Enabled = True
End Sub

If the size of the captured image does not fit in the picture box then the image size
has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam is
available then a message box will appear with a message “No webcam found!”

5.5 Lesson 4

Objective: To develop a VB6 program to capture and process webcam streaming
video for conversion to gray scale image, low-pass filtering, contrast enhancement
and geometric-mean filtering.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam4.bas’ module, same as
‘Webcam3.bas’, as mentioned in Lesson 3. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from captured image at the same rate with the
help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. Pixel array is processed according to option controls ‘Option1’, ‘Option2,
‘Option3’ or ‘Option4’.

8. If ‘Option1’ is selected then pixel array is processed as gray scale image with
the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ through
‘SetBitmapBits’ API call.

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’
and then displayed in ‘Picture2’.

5.5 Lesson 4 117

10. If ‘Option3’ is selected then array is low-pass filtered as in step 9 and then
processed for contrast enhancement using histogram stretching technique with
the help of procedure ‘Contrast’ and then displayed in ‘Picture2’.

11. If ‘Option4’ is selected then array is processed for contrast enhancement as in
step 10 and then processed for geometric-mean filtering with the help of
procedure ‘Geometricmean’ and then displayed in ‘Picture2’. Options are
provided for increasing the number of cascaded Geometric-mean filters and
the size of mask for each filter.

Option1 Option2 Option3

Gray Gray + low-pass Gray + low-pass + contrast

Option4

Gray + low-pass + contrast + geometric-mean

Following figure shows the ‘Form1’ layout.

118 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

Following text shows the listing of ‘Geometricmean’ and ‘Timer1’ procedure
code. For rest of the code refer to Lesson 3.

Private Sub Geometricmean(width As Long, height As Long, Size As Long)

 Dim R, S As Long
 Dim i, j As Long
 Dim c, d As Long
 Dim w1, h1 As Long
 If Size < 3 Then Size = 3
 If Size > 7 Then Size = 7
 If (Size And 1) = 0 Then Size = Size + 1 'even to odd conversion
 S = Size * Size
 w1 = width - 1
 h1 = height - 1
 For x = 0 To w1
 For y = 0 To h1
 R = 1
 For i = 0 To Size - 1
 For j = 0 To Size - 1
 c = x + i - ((Size - 1) / 2)
 If c < 0 Then c = width + c
 If c > w1 Then c = c - w1
 d = y + j - ((Size - 1) / 2)
 If d < 0 Then d = height + d
 If d > h1 Then d = d - h1
 R = R * CLng(Pbytes(2, c, d))
 Next j
 Next i
 R = R ^ (1# / S)
 If R > 255 Then R = 255
 Pbytes(2, x, y) = R
 Pbytes(1, x, y) = R
 Pbytes(0, x, y) = R
 Next y
 Next x
End Sub

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight

5.6 Lesson 5 119

 If Option2.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option3.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option4.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 End If
 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Timer1.Enabled = True
End Sub

If the size of the captured image does not fit in the picture box then the image size
has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam is
available then a message box will appear with a message “No webcam found!”

5.6 Lesson 5

Objective: To develop a VB6 program to capture and process webcam streaming
video for conversion to gray scale image, low-pass filtering, contrast
enhancement, geometric-mean filtering and an adaptive threshold operation to
extract white path from the captured image under varying illumination conditions.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam5.bas’ module, same as
‘Webcam4.bas’, as mentioned in Lesson 4. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from captured image at the same rate with the
help of ‘Timer1’ control.

120 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. Pixel array is processed according to option controls ‘Option1’, ‘Option2,
‘Option3’, ‘Option4’ or ‘Option5’.

8. If ‘Option1’ is selected then pixel array is processed as gray scale image with
the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ through
‘SetBitmapBits’ API call.

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’
and then displayed in ‘Picture2’.

10. If ‘Option3’ is selected then array is low-pass filtered as in step 9 and then
processed for contrast enhancement using histogram stretching technique with
the help of procedure ‘Contrast’ and then displayed in ‘Picture2’.

11. If ‘Option4’ is selected then array is processed for contrast enhancement as in
step 10 and then processed for geometric-mean filtering with the help of
procedure ‘Geometricmean’ and then displayed in ‘Picture2’. Options are
provided for increasing the number of cascaded Geometric-mean filters and
the size of mask for each filter.

12. If ‘Option5’ is selected then an adaptive threshold operation is performed
with the help of the procedure ‘Adaptive Threshold’ and then displayed in
‘Picture2’. First the white line width around a reference pixel [at the nominal
position (80,110)] is determined with the procedure ‘WhiteLineWidth’. If
both left and right path width around the reference pixel are found be less
than ‘MIN_PATH_WIDTH’ value then a parameter ‘delta’ is adjusted to
increase the path width by decreasing the threshold value within a range
‘delta_max’. Then the procedure ‘Threshold’ computes new image and the
above sequence of operations repeats until a valid white path is obtained.

Option5

Gray + low-pass + contrast + geometric-mean + threshold

5.6 Lesson 5 121

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘AdaptiveThreshold’, ‘WhiteLineWidth’,
‘Threshold’ and ‘Timer1’ procedure code. For rest of the code refer to Lesson 4.

Private Sub AdaptiveThreshold(width As Long, xr As Long, yr As Long)
 Dim i As Integer
 WhiteLineWidth width, xr, yr

If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then

 delta = delta + 0.2
 If delta > delta_max Then
 delta = delta_max
 Else
 GoTo atc
 End If
 If delta < 1# Then delta = 1#
 End If
 delta = delta - 0.5
atc:
 i = Pbytes(2, xr, yr)
 If i > (255 - (2 * delta)) Then
 If i > (255 - delta) Then i = (255 - delta)
 Threshold Picture1.ScaleWidth, Picture1.ScaleHeight, i - CInt(delta), _
 i + CInt(delta)
 Else
 Threshold Picture1.ScaleWidth, Picture1.ScaleHeight, 255, 255
 End If

End Sub

122 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

Private Sub WhiteLineWidth(width As Long, xr As Long, yr As Long)
 Dim pcl1, pcl2, pcl3, pcr1, pcr2, pcr3 As Integer
 PixelCountLeft = 0: PixelCountRight = 0
 y = yr
 pcl1 = 0: pcr1 = 0
 For x = xr To 0 Step -1
 If Pbytes(2, x, y) > 250 Then
 pcl1 = pcl1 + 1
 End If
 Next x
 For x = (xr + 1) To (width - 1)
 If Pbytes(2, x, y) > 250 Then
 pcr1 = pcr1 + 1
 End If
 Next x
 y = yr - 1
 pcl2 = 0: pcr2 = 0
 For x = xr To 0 Step -1
 If Pbytes(2, x, y) > 250 Then
 pcl2 = pcl2 + 1
 End If
 Next x
 For x = (xr + 1) To (width - 1)
 If Pbytes(2, x, y) > 250 Then
 pcr2 = pcr2 + 1
 End If
 Next x
 y = yr + 1
 pcl3 = 0: pcr3 = 0
 For x = xr To 0 Step -1
 If Pbytes(2, x, y) > 250 Then
 pcl3 = pcl3 + 1
 End If
 Next x
 For x = (xr + 1) To (width - 1)
 If Pbytes(2, x, y) > 250 Then
 pcr3 = pcr3 + 1
 End If
 Next x

 PixelCountLeft = (pcl1 + pcl2 + pcl3) / 3
 PixelCountRight = (pcr1 + pcr2 + pcr3) / 3
End Sub

5.6 Lesson 5 123

Private Sub Threshold(width As Long, height As Long, lv As Long, hv As Long)
 Dim R As Long
 For x = 0 To width - 1
 For y = 0 To height - 1
 R = Pbytes(2, x, y)
 If R < lv Then R = 0
 If R >= hv Then R = 255
 Pbytes(2, x, y) = R
 Pbytes(1, x, y) = R
 Pbytes(0, x, y) = R
 Next y
 Next x

End Sub

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If Option2.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option3.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option4.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 End If
 If Option5.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i

124 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 End If
 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) + 2, _
 Val(Text3.Text) + 2), RGB(255, 0, 0), B
 Timer1.Enabled = True

End Sub

If the size of the captured image does not fit in the picture box then the image size
has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam is
available then a message box will appear with a message “No webcam found!”

5.7 Lesson 6

Objective: To develop a VB6 program to capture and process webcam streaming
video for conversion to gray scale image, low-pass filtering, contrast
enhancement, geometric-mean filtering, adaptive threshold and a cleaning
operation to extract white path and remove unwanted objects from the captured
image under varying illumination conditions.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam6.bas’ module, same as
‘Webcam5.bas’, as mentioned in Lesson 5. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from captured image at the same rate with the
help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. Pixel array is processed according to option controls ‘Option1’, ‘Option2,
‘Option3’, ‘Option4’, ‘Option5’ or ‘Option6’.

5.7 Lesson 6 125

8. If ‘Option1’ is selected then pixel array is processed as gray scale image with
the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ through
‘SetBitmapBits’ API call.

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’
and then displayed in ‘Picture2’.

10. If ‘Option3’ is selected then array is low-pass filtered as in step 9 and then
processed for contrast enhancement using histogram stretching technique with
the help of procedure ‘Contrast’ and then displayed in ‘Picture2’.

11. If ‘Option4’ is selected then array is processed for contrast enhancement as in
step 10 and then processed for geometric-mean filtering with the help of
procedure ‘Geometricmean’ and then displayed in ‘Picture2’. Options are
provided for increasing the number of cascaded Geometric-mean filters and
the size of mask for each filter.

12. If ‘Option5’ is selected then an adaptive threshold operation is performed
with the help of the procedure ‘Adaptive Threshold’ and then displayed in
‘Picture2’. First the white line width around a reference pixel [at the nominal
position (80,110)] is determined with the procedure ‘WhiteLineWidth’. If
both left and right path width around the reference pixel are found be less
than ‘MIN_PATH_WIDTH’ value then a parameter ‘delta’ is adjusted to
increase the path width by decreasing the threshold value within a range
‘delta_max’. Then the procedure ‘Threshold’ computes new image and the
above sequence of operations repeats until a valid white path is obtained.

13. If ‘Option6’ is selected then an additional cleaning operation is performed to
remove unwanted objects with the help of the procedure ‘Clean’ and then
displayed in ‘Picture2’.

Option6

Gray + low-pass + contrast + geometric-mean + threshold + clean

126 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘Clean’ and ‘Timer1’ procedure code. For

rest of the code refer to Lesson 5.

Private Sub Clean(width As Long, height As Long, yr As Long)
 Dim R, xr, xref, xwidth As Long
 Dim PB As Long
 Dim bl_flag As Boolean
 bl_flag = False
 xref = 0
 xwidth = 0
 If PixelCountLeft >= MIN_PATH_WIDTH Or PixelCountRight >= _
 MIN_PATH_WIDTH Then
 For x = 0 To width - 1
 R = Pbytes(2, x, yr)
 If R > 240 Then
 If xref = 0 Then xref = x
 End If
 If R > 240 And xref > 0 Then xwidth = xwidth + 1
 Next x
 xr = xref + (xwidth / 2)
 For y = height - 1 To (yr + 1) Step -1
 For x = 0 To width - 1
 Pbytes(2, x, y) = 0
 Pbytes(1, x, y) = 0
 Pbytes(0, x, y) = 0
 Next x
 Next y
 For y = yr To 0 Step -1
 For x = xr To 0 Step -1

5.7 Lesson 6 127

 R = Pbytes(2, x, y)
 If bl_flag = True Then GoTo m1
 If R < 240 Then
 PB = x
 If PB = xr Then bl_flag = True
 GoTo m1
 End If
 Next x
m1:
 For x = PB To 0 Step -1
 Pbytes(2, x, y) = 0
 Pbytes(1, x, y) = 0
 Pbytes(0, x, y) = 0
 Next x

 For x = (xr + 1) To width - 1
 R = Pbytes(2, x, y)
 If bl_flag = True Then GoTo m2
 If R < 240 Then
 PB = x
 If PB = (xr + 1) Then bl_flag = True
 GoTo m2
 End If
 Next x
m2:
 For x = PB To width - 1
 Pbytes(2, x, y) = 0
 Pbytes(1, x, y) = 0
 Pbytes(0, x, y) = 0
 Next x

 xref = 0
 xwidth = 0
 For x = 0 To width - 1
 R = Pbytes(2, x, y)
 If R > 240 Then
 If xref = 0 Then xref = x
 End If
 If R > 240 And xref > 0 Then xwidth = xwidth + 1
 Next x
 If xwidth = 0 Then bl_flag = True
 For x = 0 To width - 1
 If bl_flag = True Then
 Pbytes(2, x, y) = 0
 Pbytes(1, x, y) = 0
 Pbytes(0, x, y) = 0
 End If

128 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 Next x
 Next y
 End If
End Sub

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If Option2.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option3.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option4.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 End If
 If Option5.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 End If
 If Option6.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)

5.8 Lesson 7 129

 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text),
 Val(Text3.Text)
 Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text)
 End If
 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) _
 + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B
 Timer1.Enabled = True
End Sub

If the size of the captured image does not fit in the picture box then the image size
has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam is
available then a message box will appear with a message “No webcam found!”

5.8 Lesson 7

Objective: To develop a VB6 program to capture and process webcam streaming
video for conversion to gray scale image, low-pass filtering, contrast
enhancement, geometric-mean filtering, adaptive threshold and clean operations
along with a selection of white/black path color for vision based navigation.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam7.bas’ module, same as
‘Webcam6.bas’, as mentioned in Lesson 6. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from captured image at the same rate with the
help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

130 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

7. ‘Shape1’ displays the color of the path (white or black) as selected with the
‘cmdWhiteBlack’ button.

8. Captured image is converted to negative with the help of procedure ‘Negative’
if black path is selected according to step 7. Then this image is processed
according to the option selection (‘Option1’ to ‘Option6’) as described in
lesson 6.

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘cmdWhiteBlack’, ‘Negative’ and ‘Timer1’
procedure code. For rest of the code refer to Lesson 6.

Private Sub cmdWhiteBlack_Click()
 If sflag = False Then
 sflag = True
 Else
 sflag = False
 End If
 If sflag = False Then Shape1.FillColor = vbWhite
 If sflag = True Then Shape1.FillColor = vbBlack
End Sub

Private Sub Negative(width As Long, height As Long)
 Dim R As Long
 For x = 0 To width - 1
 For y = 0 To height - 1
 R = 255 - Pbytes(2, x, y) 'Invert
 Pbytes(2, x, y) = R
 Pbytes(1, x, y) = R
 Pbytes(0, x, y) = R

5.8 Lesson 7 131

 Next y
 Next x
End Sub

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 If Option1.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option2.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option3.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 End If
 If Option4.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 End If
 If Option5.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 End If

132 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 If Option6.Value = True Then
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), _
 Val(Text3.Text)
 Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text)
 End If
 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2) _
 - (Val(Text2.Text) + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B
 Timer1.Enabled = True
End Sub

If the size of the captured image does not fit in the picture box then the image size
has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam is
available then a message box will appear with a message “No webcam found!”

5.9 Lesson 8

Objective: To develop a VB6 program to capture and process webcam streaming
video for vision based navigation along with a selection of white/black path color.
Inference is drawn on whether path is available or not.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam8.bas’ module, same as
‘Webcam7.bas’, as mentioned in Lesson 7. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from the captured image at the same rate with
the help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5.9 Lesson 8 133

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. ‘Shape1’ displays the color of the path (white or black) as selected with the
‘cmdWhiteBlack’ button.

8. Captured image is converted to negative with the help of procedure ‘Negative’
if black path is selected according to step 7. Then this image is processed
according to the option 6 of Lesson 7.

9. Then white line width around a fixed reference pixel [at position (80,110)] is
determined with the procedure ‘WhiteLineWidth’. If both left and right path
width around the reference pixel are found be less than
‘MIN_PATH_WIDTH’ value then ‘No path’ inference is drawn, otherwise
‘Path found’ inference is drawn and shown in a text box.

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘Timer1’ procedure code. For rest of the

code refer to Lesson 7.

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)

134 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text)
 WhiteLineWidth Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) _
 + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B
 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then
 Text5.Text = "No path"
 Else
 Text5.Text = "Path found"
 End If
 Timer1.Enabled = True
End Sub

If the size of the captured image does not fit in the picture box then the image size
has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam is
available then a message box will appear with a message “No webcam found!”

5.10 Lesson 9

Objective: To develop a VB6 program to capture and process webcam streaming
video for vision based navigation along with a selection of white/black path color.
Inference is drawn on whether path is available or not. Appropriate rules are
applied to determine different navigational directions and speed parameters for
differential drive.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam9.bas’ module, same as
‘Webcam8.bas’, as mentioned in Lesson 8. It is necessary to include this
module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

5.10 Lesson 9 135

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from the captured image at the same rate with
the help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

7. ‘Shape1’ displays the color of the path (white or black) as selected with the
‘cmdWhiteBlack’ button.

8. Captured image is processed according to Lesson 8. If path is found then
appropriate navigational direction (‘forward’ or ‘turn-left’ or ‘turn-right’) and
the corresponding speed parameters for differential drive are determined with
three rules. A picture box shows the direction of navigation.

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘Timer1’ procedure code. For rest of the

code refer to Lesson 8.

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData

136 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If blkflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i
 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text)
 WhiteLineWidth Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) _
 + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B

 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then

 Text5.Text = "No path"
 Else
 Text5.Text = "Path found"
 End If
 If PixelCountLeft >= MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then
 Text6.Text = 0: Text7.Text = 50 'turn left
 Text8.Text = "Turn left"
 Picture3.Picture = LoadPicture("turn_left.jpg")
 End If
 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight >= _
 MIN_PATH_WIDTH Then
 Text6.Text = 50: Text7.Text = 0 'turn right
 Text8.Text = "Turn right"
 Picture3.Picture = LoadPicture("turn_right.jpg")
 End If
 If PixelCountLeft >= MIN_PATH_WIDTH And PixelCountRight >= _
 MIN_PATH_WIDTH Then
 Text6.Text = 100: Text7.Text = 100 'forward
 Text8.Text = "Forward"
 Picture3.Picture = LoadPicture("forward.jpg")
 End If

5.11 Lesson 10 137

 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then
 Text6.Text = 0: Text7.Text = 0 'no path - idle
 Text8.Text = ""
 Picture3.Picture = LoadPicture("blank.jpg")
 End If
 Timer1.Enabled = True
End Sub

Following image files are used to indicate direction of navigation.

 Forward.jpg turn_left.jpg turn_right.jpg

If the size of the captured image does not fit in the picture box then the image

size has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam
is available then a message box will appear with a message “No webcam found!”

5.11 Lesson 10

Objective: To develop a VB6 program to capture and process webcam streaming
video for vision based navigation along with a selection of white/black path color.
Inference is drawn on whether path is available or not. Appropriate rules are
applied to determine different navigational directions and speed parameters for
differential drive. Sound output is added to draw attention.

Following steps summarize the program development.

1. All necessary API calls are declared in ‘Webcam10.bas’ module. It is
necessary to include this module in ‘Form1’ of the VB6 program.

2. AVICAP32.DLL is used to capture webcam streaming video through proper
API call. The webcam video format should be either RGB24 or YUY2.

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture
image as clipboard data from streaming video at a regular interval of 10mS
and ‘Picture2’ to process image from the captured image at the same rate with
the help of ‘Timer1’ control.

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120
pixels.

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’
API call.

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue.

138 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

7. ‘Shape1’ displays the color of the path (white or black) as selected with the
‘cmdWhiteBlack’ button.

8. Captured image is processed according to Lesson 9. If path is found then
appropriate navigational direction (‘forward’ or ‘turn-left’ or ‘turn-right’) and
the corresponding speed parameters for differential drive are determined with
three rules. A picture box shows the direction of navigation.

9. Sound output is activated through ‘sndPlaySound’ API call with appropriate
‘wave’ file.

Following text shows the listing of ‘Webcam10.bas’ module.

Global Const WS_CHILD As Long = &H40000000
Global Const WS_VISIBLE As Long = &H10000000
Global Const WM_USER = 1024
Global Const WM_CAP_DRIVER_CONNECT = WM_USER + 10
Global Const WM_CAP_SET_PREVIEW = WM_USER + 50
Global Const WM_CAP_SET_PREVIEWRATE = WM_USER + 52
Global Const WM_CAP_DRIVER_DISCONNECT As Long = WM_USER + 11
Global Const WM_CAP_DLG_VIDEOFORMAT As Long = WM_USER + 41
Global Const WM_CAP_DLG_VIDEOCOMPRESSION As Long = _
 WM_USER + 46
Global Const WM_CAP_DLG_VIDEODISPLAY As Long = WM_USER + 43
Global Const WM_CAP_DLG_VIDEOSOURCE As Long = WM_USER + 42
Global Const WM_CAP_GET_FRAME As Long = 1084
Global Const WM_CAP_COPY As Long = 1054
Global Const WM_CAP_SET_SCALE As Integer = WM_USER + 53
Global Const SWP_NOMOVE As Integer = 2
Global Const SWP_NOZORDER As Integer = 4
Global Const HWND_BOTTOM As Integer = 1
Global Const SND_ASYNC = 1
Global Const SND_LOOP = 8
Global Const SND_NODEFAULT = 2
Global Const SND_SYNC = 0
Global Const SND_NOSTOP = 16
Global Const SND_MEMORY = 4

Declare Function SendMessage Lib "user32" Alias "SendMessageA" (ByVal hwnd _

As Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As Long) _
As Long Declare Function capCreateCaptureWindow Lib "avicap32.dll" Alias _
"capCreateCaptureWindowA" (ByVal nWindowName As String, ByVal nStyle _
As Long, ByVal nx As Integer, ByVal ny As Integer, ByVal nWidth As Integer, _
ByVal nHeight As Integer, ByVal nHwnd As Long, ByVal nId As Integer) As Long

Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _
ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, _
ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long

5.11 Lesson 10 139

Declare Function GetObject Lib "gdi32" Alias "GetObjectA" (ByVal hObject As Long, _
ByVal nCount As Long, lpObject As Any) As Long

Declare Function GetBitmapBits Lib "gdi32" (ByVal hBitmap As Long, ByVal dwCount _
As Long, lpBits As Any) As Long

Declare Function SetBitmapBits Lib "gdi32" (ByVal hBitmap As Long, ByVal dwCount _
As Long, lpBits As Any) As Long

Declare Function sndPlaySound Lib "winmm.dll" Alias "sndPlaySoundA" _
(ByVal lpszSoundName As String, ByVal uFlags As Long) As Long

Following figure shows the ‘Form1’ layout.

Following text shows the listing of ‘Timer1’ procedure code. For rest of the
code refer to Lesson 9.

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0
 SendMessage hwdc, WM_CAP_COPY, 0, 0
 Picture1.Picture = Clipboard.GetData
 GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)

 Gray Picture1.ScaleWidth, Picture1.ScaleHeight
 If blkflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight
 Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight
 Contrast Picture1.ScaleWidth, Picture1.ScaleHeight
 For i = 1 To Val(Text4.Text)
 Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms
 Next i

140 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

 AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)
 Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text)
 WhiteLineWidth Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text)

 SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _
 Pbytes(0, 0, 0)
 Picture2.Refresh
 Picture2.Picture = Picture2.Image
 Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) _
 + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B

 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then

If Text5.Text <> "No path" Then sndPlaySound "No path.wav", _
SND_ASYNC Or SND_NODEFAULT

 Text5.Text = "No path"
 Else

If Text5.Text <> "Path found" Then sndPlaySound "Path found.wav", _
 SND_ASYNC Or SND_NODEFAULT

 Text5.Text = "Path found"
 End If

 If PixelCountLeft >= MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then
 Text6.Text = 0: Text7.Text = 50 'turn left
 Text8.Text = "Turn left"
 Picture3.Picture = LoadPicture("turn_left.jpg")
 End If
 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight >= _
 MIN_PATH_WIDTH Then
 Text6.Text = 50: Text7.Text = 0 'turn right
 Text8.Text = "Turn right"
 Picture3.Picture = LoadPicture("turn_right.jpg")
 End If
 If PixelCountLeft >= MIN_PATH_WIDTH And PixelCountRight >= _
 MIN_PATH_WIDTH Then
 Text6.Text = 100: Text7.Text = 100 'forward
 Text8.Text = "Forward"
 Picture3.Picture = LoadPicture("forward.jpg")
 End If

5.12 Summary 141

 If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _
 MIN_PATH_WIDTH Then
 Text6.Text = 0: Text7.Text = 0 'no path - idle
 Text8.Text = ""
 Picture3.Picture = LoadPicture("blank.jpg")
 End If
 Timer1.Enabled = True
End Sub

Two pre-recorded wave files ‘Nopath.wav’ and ‘Pathfound.wav’ are used to play
when needed through PC sound card interface. The PC sound recorder program
may be used to create these wave files.

If the size of the captured image does not fit in the picture box then the image
size has to be changed to 160x120 by activating the ‘Format’ menu. If no webcam
is available then a message box will appear with a message “No webcam found!”

5.12 Summary

Ten lessons are presented in a step-by-step manner to develop programming skill
for implementing vision-based navigation applications under 32-bit Windows
environment.

Lesson 1: This demonstrates how to capture image frames from streaming video
from a low-cost webcam and examine pixel values with the help of mouse pointer.

Lesson 2: This demonstrates how to process captured image frames from
streaming video with two processing options covering color to gray-scale
conversion and low-pass filtering.

Lesson 3: The method of contrast enhancement by histogram stretching technique
is added to improve contrast under poor lighting conditions.

Lesson 4: The geometric-mean filter is added to smooth and suppress image
detail.

Lesson 5: An adaptive threshold operation in introduced to extract white path
under varying illumination conditions.

Lesson 6: A cleaning operation is provided to remove unwanted objects detected.

Lesson 7: Here an option is added for selection of path color white or black.

Lesson 8: Modified for white or black path searching for navigation with
reference to a fixed pixel.

Lesson 9: Introduces a rule-based approach to determine left and right wheel
speed settings of a differential drive system for navigation.

Lesson 10: Here sound output is added to draw attention during navigation.

142 5 Sample Implementations of Vision-Based Mobile Robot Algorithms

References

[1] Balena, F.: Programming Microsoft Visual Basic 6. Microsoft Press (1999)
[2] Mandelbrot Set International Ltd., Advanced Microsoft Visual Basic 6. Microsoft

Press (1998)
[3] Appleman, D.: Dan Appleman’s Win32 API Puzzle Book and Tutorial for Visual

Basic Programmers. Apress (1999)
[4] Gonzalez, Woods: Digital Image Processing. Prentice Hall (2002)

A. Chatterjee et al.: Vision Based Autonomous Robot Navigation, SCI 455, pp. 143–166.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 6
Vision Based Mobile Robot Path/Line Tracking

Abstract. In this chapter we discuss how a vision based navigation scheme can be
developed for indoor path/line tracking, so that the robot is equipped to follow a
narrow line or to travel along a wide path. The scheme utilizes fuzzy logic to
achieve the desired objective. The scheme is so developed that, in case of absence
of obstacles in front, it will guide the robot to navigate using fuzzy vision-based
navigation. The scheme also employs a fuzzy IR-based obstacle avoidance
strategy which becomes active on detection of any obstacle.

6.1 Introduction

In this chapter we shall describe a vision-based navigation algorithm implemented
in conjunction with the robot indigenously developed in our laboratory, which
utilizes fuzzy logic for path/line tracking, in presence or in absence of obstacle
[10]. Fuzzy logic has been widely accepted as a possible means in mobile robot
navigation for quite some time now. In [1], an earliest fuzzy controller was
developed for obstacle avoidance. In that work the controller used a vision based
algorithm to obtain information about occupied and free areas in front of the robot
from a video camera and the rules were derived with the help of a simulator.
Another similar work for corridor navigation, by a fuzzy controller, using video
images, which was implemented in vehicle ATHENE, was reported in [2]. Fuzzy
logic approaches have been widely utilized in navigation systems for mobile
robots over a decade. A method of path planning and execution, using fuzzy logic,
for mobile robot control, was proposed in [3]. Almost during similar time, a
successful application of fuzzy logic for vision based mobile robot navigation,
considering the aspects of collision avoidance and obstacle avoidance, was
reported in [4]. In [5], a new approach based on forecast learning fuzzy control,
where the environmental information is acquired by a CCD camera, was proposed.
In this work the image acquired is classified into several characteristic patterns
and the robot is programmed with sets of control rules for each pattern, set a
priori. The robot combines these sets into a single set by matching the patterns.
Several works have also been reported with stereo vision system, coupled with the
support of conventional sensors, for robot navigation, using fuzzy controllers [6],
[7]. A detailed and comprehensive study of several fuzzy based mobile robot

144 6 Vision Based Mobile Robot Path/Line Tracking

navigation techniques was presented in [8]. In recent times, a new fuzzy based
approach called rule-based fuzzy traversability index approach is used for outdoor
navigation of mobile robots, where imagery data is used to classify different
characteristics like terrain roughness, terrain slope, terrain discontinuity, terrain
hardness etc. [9]. Once these characteristics from the viewable scene are extracted,
then the fuzzy rules for traversablility index are developed for smooth navigation
of the mobile robot.

Utilizing the indigenous robot developed in our laboratory as described in the
previous chapter, a new fuzzy based mobile robot navigation scheme is developed
which attempts to track the middle of a narrow line or a broad path, both in
presence or absence of obstacle. This system utilizes a vision-based fuzzy module
for navigation when there is no obstacle in front of the robot. As soon as the robot
senses an obstacle in front, it deactivates the vision-based fuzzy module and
activates an IR-based fuzzy obstacle avoidance module, so that the robot attempts
to safely avoid the obstacle and re-localize itself on the middle of the path/line. If
this objective is satisfied, then the IR-based fuzzy module is deactivated and
vision-based fuzzy module is re-activated and the robot continues with its line
tracking activity. The robot system utilizes the capability of intranet-connectivity,
suitable for client/server operation, as described in the previous chapter, so that the
robot functionalities can be suitably chosen and the robot can be suitably
commanded from a remote end client PC.

6.2 A Preview of the Proposed Scheme

Figure 6.1 shows the complete scheme developed in this work. Let the pose of the
differential drive robot system, at the present given instant, be ()φ

RRR yx ,, .

Depending on the environment ahead of it, a new navigation command is issued
for the robot that comprises the linear velocity command (v) and the steering angle
command (θ). The steering angle command can be any value between (00-1800),
counted in a counter-clockwise sense, with reference to the present pose of the
robot. This is shown in Fig. 6.2 where the World Coordinate System is denoted by
XWY and the mobile robot coordinate system is denoted by xoy, o being the center
of the robot. The new direction of the robot navigation is along op in Fig. 6.2. At
any given position, the robot scans the front of it, using the IR sensor at positions
4, 5, and 6, to determine whether the front region is free from obstacle or it
contains an obstacle. If the presence of an obstacle is detected, it will first produce
a voice message that there is an obstacle in front, hoping that somebody has
wrongly left an obstacle in its path and will remove it, hearing the robot speak. If
this does not happen, the robot will perform the obstacle avoidance using the IR
sensor readings in eleven scan positions. The obstacle avoidance routine will be so
performed that the robot will attempt to take a short detour in its original path and,
after avoiding the obstacle, it will attempt to come back to its original, ideal path.

6.2 A Preview of the Proposed Scheme 145

Once the robot re-detects that there is no obstacle in front, the system will return
the control to its vision-based navigation scheme. The system developed employs
one fuzzy based navigation algorithm each, for both vision-based navigation and
IR-based obstacle avoidance. The basic philosophy of the navigation scheme is
that the robot should track the center of a path towards its goal, whether in
presence or in absence of any obstacle in its path. For a wide path, the robot
always attempts to navigate through the middle of the path. Similarly, for a narrow
path or line, whose width is smaller than the width of the robot, the navigation
algorithm attempts to track the center of the line.

Fig. 6.1. The navigation strategy for the mobile robot

146 6 Vision Based Mobile Robot Path/Line Tracking

Fig. 6.2. The robot co-ordinate system

6.3 A Fuzzy System for Vision Based Robot Navigation

If the robot find that its front region is free of obstacle, the robot will undertake
vision based navigation. The scheme employs the following image processing
steps:

a. Capture a frame from the video stream recorded by the webcam
When the IR scanning system infers that the front region of the robot is a free
region, a frame is captured from the continuously running video stream available
from the webcam of the laptop, mounted on the robot. This frame gives the visual
information of the environment ahead of the robot. This frame is further processed
to extract meaningful information from it, by first converting the colour image to
its corresponding gray image and performing image processing steps on this gray
image.

b. Process the gray image of the environment to extract the path/line
The next step is carried out to segment the image so that the path/line is extracted
from its surroundings. For this the image is first de-speckled to perform low pass
filtering, to eliminate noises. Then the image is auto corrected for its brightness, so
that, if the image looks unsatisfactorily dark, because of dim illumination, the
overall brightness of the processed image can be enhanced by changing the
dynamic range of the intensity values. This brightness corrected image is then
processed so that the isolated bright spots get connected and thickened, in an
operation very similar to dilation by a structuring element. This linking and

6.3 A Fuzzy System for Vision Based Robot Navigation 147

thickening operation can be performed by employing a geometric mean filtering
technique.

This thickened image is finally segmented by performing thresholding. The
intensity threshold is chosen as a very high value in a bid to extract only the
path/line from its surrounding. Figure 6.3 and Fig. 6.4 show a sample environment
with the output of each image processing step described above, without
incorporating the geometric mean filtering step and with incorporation of the
geometric mean filtering step. Figure 6.5 and Fig. 6.6 show the similar situations
in an environment where there is an interfering object apart from the actual
path/line, in the captured image. Figure 6.6 shows how the geometric mean
filtering process helps to remove that interfering object through the segmentation
process and can clearly extract the path, which was not possible in Fig. 6.5.

c. Employ the fuzzy system for vision-based navigation
The fuzzy-based system is developed based on the thresholded image obtained in
the previous step. In this case the image is of size 160 x 120 where the top left
corner pixel is assigned the coordinate (0, 0) and the bottom right corner pixel is
assigned the coordinate (159, 119). Then a seed point S is chosen on the mid-
vertical line on the image, more towards the bottom of the image i.e.
corresponding to a real-world point closer to the robot, in its present position. In
image pixel coordinates this seed point is chosen as (80, 110). At this position a
horizontal line is drawn on the image. From the seed point S, one can travel along
this scan line, once towards left and once towards right, to compute the number of
pixels (both to the left and to the right of S) with bright intensity, in a bid to

(a) (b)

(c)

(d)

(e)

Fig. 6.3. The results of the image processing steps for a sample environment: (a) the
original image captured, (b) the corresponding gray image, (c) de-speckled image, (d) auto-
brightness corrected image, and (e) final processed image after thresholding

148 6 Vision Based Mobile Robot Path/Line Tracking

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6.4. The results of the image processing steps for the sample environment in Fig. 6.3:
(a) the original image captured, (b) the corresponding gray image, (c) de-speckled image,
(d) auto-brightness corrected image, (e) isolated point linked and thickened image
employing geometric mean, and (e) final processed image after thresholding

(a) (b) (c)

(d)

(e)

Fig. 6.5. The results of the image processing steps for a sample environment with an
interfering object: (a) the original image captured, (b) the corresponding gray image, (c) de-
speckled image, (d) auto-brightness corrected image, and (e) final processed image after
thresholding

6.3 A Fuzzy System for Vision Based Robot Navigation 149

(a) (b) (c)

(d) (e) (f)

Fig. 6.6. The results of the image processing steps for a sample environment with an
interfering object: (a) the original image captured, (b) the corresponding gray image, (c) de-
speckled image, (d) auto-brightness corrected image, (e) isolated point linked and thickened
image employing geometric mean, and (e) final processed image after thresholding

determine the width of the path towards the left and towards the right of the robot.
If these two pixel counts are same, one can infer that the robot is positioned
approximately in the middle of the road or the line. On the other hand, if the left
pixel count is higher than the right pixel count, it indicates that the robot position
is more skewed towards the right of the path and the fuzzy inference system
should try to direct it towards the middle of the road. If the right pixel count is
higher than the left pixel count, it indicates that the robot is more towards the left
side of the road and the fuzzy guidance should again provide a different command
to bring the robot back to the middle of the road. This fuzzy-logic based vision-
aided navigation system is developed as a two-input-two-output system, where the
two input variables are PixelCountLeft and PixelCountRight and the two output
variables are the linear velocity command (v) and the steering angle command (θ).
The fuzzy system is developed as a zero-order Takagi-Sugano (TS) system. To
make the fuzzy system a robust one, the pixel counts to the left and to the right of
the seed point are taken for three consecutive horizontal lines drawn at three seed
points (S1≡ (80, 109), S2≡ (80, 110), and S3≡ (80, 111)) and then an average count
is used as:

150 6 Vision Based Mobile Robot Path/Line Tracking

=

=
3

13

1

i
i

pclLeftPixelCount (6.1a)

=

=
3

13

1

i
i

pcrRightPixelCount (6.1b)

where
pcli = pixel count to the left along the scan line for seed point Si and
pcri = pixel count to the right along the scan line for seed point Si.

(a)

(b)

Fig. 6.7. Membership functions for (a) PixelCountLeft and (b) PixelCountRight

Figure 6.7 shows the input membership functions (MFs) for fuzzification,
where each input variable is fuzzified using three MFs: small (S), medium (M),
and large (L). The fuzzy sets or MFs for the input variables are described as:

6.3 A Fuzzy System for Vision Based Robot Navigation 151

()

 ,

,

, otherwise

cl
bl cl

cl bl

blS

PixelCountLefts PixelCountLefts s
s s

PixelCountLeft PixelCountLeftμ s

 − < < − = ≤ ≤

1 0

0

 (6.2a)

()

 ,

 ,

, otherwise

al
al bl

bl al

cl
bl clM

cl bl

PixelCountLeft m PixelCountLeftm m
m m

PixelCountLeftmPixelCountLeft PixelCountLeftμ m m
m m

 − < < −
 − = ≤ < −

0

 (6.2b)

()

≥

<<

−
−

=

otherwise ,0

 ,1

,

l

llll
l

bl

blal
albl

al

L
LeftPixelCount

LeftPixelCount
LeftPixelCount

LeftPixelCountμ (6.2c)

()

 ,

,

, otherwi

cr
br cr

cr br

brS

PixelCountRights PixelCountRights s
s s

PixelCountRight PixelCountRightμ s

 − < < −
= ≤ ≤1 0

0 se

(6.3a)

()

 ,

 ,

, otherwise

ar
ar br

br ar

cr
br crM

cr br

PixelCountRight m PixelCountRightm m
m m

PixelCountRightmPixelCountRight PixelCountRightμ m m
m m

 − < < −
 − = ≤ < −
0

 (6.3b)

()

,

,

, otherwis

ar
ar br

br ar

brL

P ixelCountRight l PixelCountRightl l
l l

PixelCountRight PixelCountRightμ l

 − < < −
= ≥1

0 e

 (6.3c)

The outputs are represented by singletons, for each output variable. The fuzzy rule
base consists of a collection of fuzzy IF-THEN rules. A model rule i can be given
as:

152 6 Vision Based Mobile Robot Path/Line Tracking

Niisis
ivisivis

ii

i

vis

yVy
MxMxR

,,2,1 ,

is is :

θ

2_21_1

2211

)(

=ANDTHEN

ANDIF (6.4)

where

[,] ,[,]T TPixelCountLeft PixelCountRightx x= =x 1 2

,
21],[],[θ visvisvyy

TT
==y

{ },,,
1

LMSM i
∈ { },,,

2
LMSM i

∈ and
1_ vvisivisV ∈ .

2_ θ visivis
∈θ

Here,

.21angle steeringoutput for the singletons ofvector

and21ocitylinear veloutput for the singletons ofvector

],,,[

],,,[

θθθ visNvisvis

visNvisvis
T

vis

T

vis vvv

==

==

θ
v

Table 6.1. Fuzzy rule base for the vision system

Rule No.

Antecedent Parts
(IF clauses)

Consequence Parts
(THEN Parts)

PixelCountLeft PixelCountRight vvis (in p.u.) θvis (in
degree)

1 Small Small 0.9 90
2 Small Medium 0.5 67
3 Small Large 0.1 45
4 Medium Small 0.5 112
5 Medium Medium 0.9 90
6 Medium Large 0.5 67
7 Large Small 0.1 135
8 Large Medium 0.5 112
9 Large Large 0.9 90

N is the total number of rules in the fuzzy rule base. This fuzzy rule base

constructed is given in Table 6.1. The fuzzy output for linear velocity is generated
in p.u., which is multiplied by a suitable gain (Kvel_vis). The defuzzification is
carried out by employing weighted average method. Then the output crisp linear
velocity command (vvis) and the output steering angle command (θvis) are
computed as:

()
()

()

=

=

=
N

i
i

N

i
ivisi

visvelvis

v
Kv

1

1
_

*
*

x

x

α

α (6.5)

6.3 A Fuzzy System for Vision Based Robot Navigation 153

()

()

=

==
N

i
i

N

i
ivisi

vis

1

1

*

x

x

α

αθ
θ (6.6)

where ∏
=

==
2

1

)(rule of degree firing)(
j

jii xi μα x .

(d) Store the possible steering angle detour, if the robot leave the line
The robot navigation system is equipped with an additional module to take care of
an excigency situation. Let us consider that, under some circumstances, the robot
leaves the path and, from the processed image output, the PixelCountLeft and
PixelCountRight variables are both computed as zero. In this situation the robot is
given small steering angle detour commands (with linear velocity chosen as zero),
in an iterative fashion, until at least one of the variables PixelCountLeft and
PixelCountRight gives a non-zero count. Then one can infer that the robot has
been oriented back to the original path and hence the subsequent activation of the
vision-based navigation algorithm will attempt to bring the robot back on the
middle of the path/line. Now, whether the robot detour should be activated in
clockwise or counter-clockwise direction, can be determined on the basis of
whether the robot was moving more towards its left or more towards its right in its
previous iterations. This can help in reducing the time to be spent in the detour
phase and also to restore the original direction of navigation.

Fig. 6.8 shows the algorithm for storing information for possible steering angle
detour. At each sampling instant (k), calculate the number of pixels to the left
(pclk) and to the right (pcrk) of a seed point by making a horizontal scan, to
determine the number of bright pixels. To determine a proper trend of robot
orientation, this process is repeated for a number of rows (N_rows) to determine
the cumulative values at the sampling instant k as cum_pclk and cum_pcrk. This
process is repeated for each processed image frame in vision-based navigation to
determine final stored values of these two corresponding quantities at instant k.
However, while storing these values, the highest priority is given to the present
instant and as we go back to the past instants, the priority gradually reduces. This
can be formulated as:

* *_ _ _store pcl cum pcl store pclk kk k k= + −1 2 1 (6.7)

* *_ _ _store pcr cum pcr store pcrk kk k k= + −1 2 1 (6.8)

In this system, the forgetting factor is so chosen that k1 = 0.25 and k2 = 0.75. When
the vision-based navigation algorithm is working satisfactorily, the storage
continues. However these stored values only become functional when, due to
some reason, the robot leaves the path/line and both the PixelCountLeft and
PixelCountRight variables become zero. Then, depending on the polarity of
(store_pclk - store_pcrk), the steering detour direction to be effected is chosen.

154 6 Vision Based Mobile Robot Path/Line Tracking

Fig. 6.8. The information storage for possible steering angle detour module

If this quantity is positive, the detour direction is chosen counter-clockwise,
otherwise clockwise. Once the detour direction is fixed, an iterative procedure is
implemented, where, with zero linear velocity, the robot turns by a fixed angle of
100, an image frame is captured and the image processing steps discussed in the
previous section are implemented, to determine the new values of the variables
PixelCountLeft and PixelCountRight. If at least one of these values is non-zero,
the vision-based navigation algorithm is reactivated. Otherwise, the next iteration
of turning the robot by 100 and implementing subsequent steps is carried out
and this process continues, until the vision-based navigation algorithm gets
reactivated.

6.4 The IR-Sensor Based Obstacle Avoidance by Employing a Fuzzy Algorithm 155

6.4 The IR-Sensor Based Obstacle Avoidance by Employing a
Fuzzy Algorithm

The IR-sensor based obstacle avoidance module will be activated if the system
detects an obstacle in front and then the vision system will be deactivated. A
fuzzy based IR-obstacle-avoidance scheme will attempt that the robot should go
around the obstacle and then continue along its original path. Once the
robot avoids the obstacle, then the vision-based algorithm will be reactivated. This
will automatically bring the robot back to the middle of the path. For
the development of the IR-based fuzzy system, the lone IR-sensor is scanned in
eleven angular positions 11,,2,1 =l to produce eleven IR sensor readings,

()lvalSensorIR __ , given in terms of voltage ()V . These eleven readings are

grouped into three sensor groups _ _ , , , .IR Group val p p

=12 3 This is done with an

aim to reduce the input dimension for the fuzzy system developed. In each IR
sensor group, the maximum sensor scan reading is chosen as the representative
reading for the group. This is because a higher reading indicates presence of a
nearer obstacle. Hence these analog group readings are given as:

() ()()4 ,3 ,2 ,1 __max1__ == llvalSensorIRvalGroupIR (6.9)

() ()()7,6 ,5 __max2__ == llvalSensorIRvalGroupIR (6.10)

() ()()11 ,10 ,9 ,8 __max3__ == llvalSensorIRvalGroupIR (6.11)

Then a three-input-two-output fuzzy obstacle avoidance system is developed with
() ,3,2,1,__ =ppvalGroupIR as the three inputs and (v, θ) as the two outputs.

Here also a zero- order Takagi-Sugeno (TS) fuzzy system is developed. Figure 6.9
shows the MFs chosen for each input variable. Each input is fuzzified using three
MFs: far (FR), intermediate (IM), and near (NR). The corresponding MFs can be
given as:

()()

()
()

()

≤≤

<<

−

−

=

otherwise

pvalGroupIR

pvalGroupIR
pvalGroupIR

pvalGroupIR F

FFFF
F

p

pp
pp

p

FR

 ,0

__0 ,1

__,
__

__
2

32
23

3

μ

(6.12a)

()()

() ()

()
()

<≤

−

−

<<

−

−

=

otherwise

pvalGroupIR
pvalGroupIR

pvalGroupIR
pvalGroupIR

pvalGroupIR IIII
I

IIII
I

pp
pp

p

pp
pp

p

IM

 ,0

__,
__

__,
__

__
32

23

3

21
12

1

μ (6.12b)

156 6 Vision Based Mobile Robot Path/Line Tracking

(a)

(b)

(c)

Fig. 6.9. Membership functions for (a) IR_Group_val(1), (b) IR_Group_val(2), and (c)
IR_Group_val(3)

6.4 The IR-Sensor Based Obstacle Avoidance by Employing a Fuzzy Algorithm 157

()()

()
()

()

≥

<<

−

−

=

otherwise

pvalGroupIR

pvalGroupIR
pvalGroupIR

pvalGroupIR N

NNNN
N

p

pp
pp

p

NR

 ,0

__ ,1

__,
__

__
2

21
12

1

μ

(6.12c)
Each fuzzy rule i can be given as:

()

_ _

: is is is

 , , , , θ

i
obs i i i

obs i obs i

Q Q QR z z z

is is i Lu V u =
IF A N D A N D

T H E N A N D
1 2 31 2 3

1 1 2 2 1 2

(6.13)

Table 6.2. Fuzzy rule base for obstacle avoidance

Rule
No.

Antecedent Parts
(IF clauses)

Consequence Parts
(THEN parts)

IR_Group_val(1) IR_Group_val(2) IR_Group_val(3) vobs (in
p.u.)

θobs (in
degree)

1 FR FR FR 0.8 0
2 FR FR IM 0.8 90
3 FR FR NR 0.7 90
4 FR IM FR 0.5 135
5 FR IM IM 0.7 135
6 FR IM NR 0.6 150
7 FR NR FR 0.3 135
8 FR NR IM 0.5 135
9 FR NR NR 0.4 160
10 IM FR FR 0.9 90
11 IM FR IM 0.8 90
12 IM FR NR 0.6 90
13 IM IM FR 0.7 50
14 IM IM IM 0.3 90
15 IM IM NR 0.2 105
16 IM NR FR 0.5 35
17 IM NR IM 0.2 105
18 IM NR NR 0.1 150
19 NR FR FR 0.8 90
20 NR FR IM 0.7 90
21 NR FR NR 0.6 90
22 NR IM FR 0.5 40
23 NR IM IM 0.2 25
24 NR IM NR 0.1 90
25 NR NR FR 0.4 30
26 NR NR IM 0.1 15
27 NR NR NR 0 90

158 6 Vision Based Mobile Robot Path/Line Tracking

where
,321)]3(__),2(__),1(__[],,[valGroupIRvalGroupIRvalGroupIRzzz

TT
==z

,21],[],[θ obsobsvuu
TT

==u

{ },,,
1

NRIMFRQ
i

∈ { },,,
2

NRIMFRQ
i

∈ { },,,
3

NRIMFRQ
i

∈ and
1_ vobsiobsV ∈

.
2_ θ obsiobs

∈θ

Here

.21angle steeringoutput for the singletons ofvector

and21ocitylinear veloutput for the singletons ofvector

],,,[

],,,[

θθθ obsLobsobs

obsLobsobs
T

obs

T

obs vvv

==

==

θ
v

L is the total number of rules for the fuzzy system and Table 4.2 shows the entire
fuzzy rule base created for obstacle avoidance. Let Kvel_obs be the scaling gain for
the linear velocity. Then the output crisp linear velocity command (vobs) and the
output steering angle command (θobs) are computed as:

()

()

=

=

=
L

i
i

L

i
iobsi

obsvelobs

v
Kv

1

1
_

*
*

z

z

β

β (6.14)

()

()

=

==
L

i
i

L

i
iobsi

obs

1

1

*

z

z

β

βθ
θ (6.15)

where βi(z) = firing degree of rule ()ji μij
z∏=

=

3

1
 .

6.5 Real-Life Performance Evaluation

Several experiments were conducted using the proposed system in real-life indoor
environments. Four example case studies are reported here.

Case-Study I
In this study, the robot is commanded to follow a curved line. The width of the
line is chosen smaller than the width of the robot. Figure 6.10 shows the sequence
of images where the robot performs this commanded task. Figure 6.10(a) to
Fig. 6.10(f) show a sequence of images when the robot is attempting to follow the
middle of the line. For all the case studies, the navigation utilizes vision and IR

6.5 Real-Life Performance Evaluation 159

range sensing and hence the proximity sensors are turned off from the client side.
Figure 6.11 shows the complete path of traversal in red colour. The ideal path of
traversal for the robot is shown by the blue dotted line that goes through the
middle of the line. It can be seen that the actual path traversed by the robot is in
close agreement with the ideal path. At the corners, the actual path deviated a little
more from the ideal path. This is understandable because a practical robot is
expected to follow a smooth steering angle transition, when a fuzzy based
navigation algorithm is employed.

Case-Study II

In this study, the robot is commanded to follow a bended line, take almost a U-
turn when the path finishes, and trace the path back so that it can come back to its
original starting position. Figure 6.12 shows the sequence of images where the
robot performs this commanded task. This case study demonstrates the situation
where the robot was commanded from the remote client to utilize the stored
possible steering angle detour information to automatically turn, when the path in
the forward direction finished, and attempt to come back on the line to trace its
path back. Hence the robot did not stop when the path ended and both the
PixelCountLeft and PixelCountRight computations produced zero values. Instead,
it kept taking turns, in an iterative fashion, until it was able to retrace the path.
Figure 6.12(a) to Fig. 6.12(f) show a sequence of images when the robot is in
forward motion, attempting to follow the middle of the line.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6.10. Robot path traversed in case-study I

160 6 Vision Based Mobile Robot Path/Line Tracking

0 15 30 45 60 75 90 105 120 135 150

-30

-15

0

15

30

45

60

75

Ideal path
Pratical response

y-
co

or
di

na
te

 (c
m

)

x-coordinate (cm)
Fig. 6.11. The complete path of traversal for case study I

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 6.12. Robot path traversed in case-study II

6.5 Real-Life Performance Evaluation 161

(j)

(k)

(l)

(m)

(n)

(o)

Fig. 6.12. (continued)

0 10 20 30 40 50 60 70 80 90
-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

Ideal path
Reverse response
Forward response

y-
co

or
di

na
te

 (c
m

)

x-coordinate (cm)
Fig. 6.13. The complete path of traversal for case study II for forward and reverse direction

Figure 6.12(g) to Fig. 6.12(k) show the sequence of images when the robot is
performing the turning operation, in an iterative fashion, so that it can re-position
itself on the line. Figure 6.12(l) to Fig. 6.12(o) show the next sequence of images
when the robot was able to retrace that path and could come back following the

162 6 Vision Based Mobile Robot Path/Line Tracking

line to its original starting point. A selection of “Search ON” option from the
client end enabled the robot to attempt this retracing of path, even when the path
disappeared from the field-of-view of its vision sensor. Figure 6.13 shows the
forward path of traversal in red. The ideal path for the robot is shown by the blue
dotted line that goes through the middle of the line. It can be seen that here also
the actual path traversed by the robot is in close agreement with the ideal path and,
at the corners, the actual path deviated a little more from the ideal path. It can also
be seen that after taking almost a U-turn, the path traversed by the robot shown in
green, had small deviations from the path traversed in the forward direction,
shown in red. This shows a satisfactory performance for the robot, both while
going up and then coming back.

Case-Study III
In this case study, the robot is commanded to follow the center of a path, which is
of bigger width than the robot, as far as practicable, and there is an obstacle on the
path which the robot needs to avoid. Figure 6.14 shows a sequence of images of
how the robot performs its commanded task. In this experiment, the robot was
commanded from the client end to navigate with “Search OFF” option. Hence the
robot stopped after safely avoiding the obstacle and when it reached at the end of
its path. As commanded, it did not attempt to re-localize itself on the path, when
the path vanished from the field-of-view of the camera sensor. Figure 6.15 shows
the complete path of traversal in red. This shows how the robot, at first, continued
to travel along the middle of the road using vision sensing, and then, when it
sensed the obstacle, took a left turn using IR based obstacle avoidance, safely
avoided it by almost moving parallel to the obstacle, and then, when it crossed the
obstacle, attempted to re-localize itself along the middle of the wide road, using
vision sensing.

Case-Study IV
In this case study, the robot is commanded to perform a more difficult task, where
the robot has to follow, on its way, two exactly perpendicular turns, and it is yet
required to follow the middle of the line. In this case study the robot was
commanded from the client end to navigate with “Search OFF” option. Figure
6.16 shows a sequence of images, when the robot performs this navigation task. It
can be seen from these images that, in spite of these perpendicular turns, the robot
was able to re-localize itself at the middle of the line, after each turn, and could
follow the path commanded, in a satisfactory fashion. This can also be seen in
Fig. 6.17 which shows the complete path of traversal. It can be seen that even
after crossing the two perpendicular corners, the robot was able to quickly re-
localize itself on the middle of the path and the deviation of the actual robot path
from the ideal robot path is satisfactorily small. The deviations are a little more at
the two perpendicular corners, which are again justifiable from the logic presented
before.

6.5 Real-Life Performance Evaluation 163

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6.14. Robot path traversed in case-study III

0 15 30 45 60 75 90 105 120 135 150 165 180
-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

Obstacle

Pratical response

y-
co

or
di

na
te

 (
cm

)

x-coordinate (cm)

Fig. 6.15. The complete path of traversal for case study III

164 6 Vision Based Mobile Robot Path/Line Tracking

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 6.16. Robot path traversed in case-study IV

0 15 30 45 60 75 90 105 120
-20

-10

0

10

20

30

40

50

60
Ideal path
Pratical response

y-
co

or
di

na
te

 (c
m

)

x-coordinate (cm)

Fig. 6.17. The complete path of traversal for case study IV

6.6 Summary 165

6.6 Summary

This chapter discussed how a simple yet effective fuzzy based path/line tracking
scheme can be implemented in indoor environments. The implementation is
carried out for an indigenously developed mobile robot in our laboratory. The
scheme employs fuzzy vision-based navigation, when the front of the robot is free
of obstacles. When any obstacle is detected, a fuzzy IR-based obstacle avoidance
scheme gets activated and the vision based scheme is deactivated. Once the
obstacle is avoided, the IR-based scheme is deactivated and the vision based
navigation takes over. The scheme always attempts to guide the robot along the
middle of the path/line, whether the objective is to follow a narrow line or to travel
along a wide path. The system has been implemented for navigation both in
presence and in absence of obstacles and it has also been experimented
successfully with intranet-connectivity functionality. This mobile robot path
tracker system, implemented in conjunction with the indigenously developed
robotic platform, has been experimented for several real-life indoor environments.
Four such real-life case studies are discussed here to demonstrate the usefulness
and effectiveness of the system developed.

Acknowledgement. The work described in this chapter was supported by University
Grants Commission, India under Major Research Project Scheme (Grant No. 32-118/
2006(SR)).

References

[1] Takeuchi, T., Nagai, Y., Enomoto, N.: Fuzzy control of a mobile robot for obstacle
avoidance. Information Sciences 43, 231–248 (1988)

[2] Blochl, B.: Fuzzy Control in Real-Time for Vision Guided Autonomous Mobile
Robots. In: Klement, E.-P., Slany, W. (eds.) FLAI 1993. LNCS, vol. 695, pp. 114–
125. Springer, Heidelberg (1993)

[3] Yen, J., Pfluger, N.: A fuzzy logic based extension to Payton and Rosenblatt’s
command fusion method for mobile robot navigation. IEEE Transactions on
Systems, Man, and Cybernatics 25(6), 971–978 (1995)

[4] Pan, J., Pack, D.J., Kosaka, A., Kak, A.C.: FUZZY-NAV: A vision-based robot
navigation architecture using fuzzy inference for uncertainty. In: Proc. IEEE World
Congress Neural Networks, vol. 2, pp. 602–607 (July 1995)

[5] Maeda, M., Shimakawa, M., Murakami, S.: Predictive fuzzy control of an
autonomous mobile robot with forecast learning function. Fuzzy Sets and
Systems 72, 51–60 (1995)

[6] Congdon, C., Huber, M., Kortenkamp, D., Konolige, K., Myers, K., Ruspini, E.H.,
Saffiotti, A.: CARMEL vs. Flakey: A comparison of two winners. Artificial
Intelligence Magazine 14(1), 49–57 (1993)

[7] Goodridge, S.G., Luo, R.C.: Fuzzy behavior fusion for reactive control of an
autonomous mobile robot: MARGE. In: Proc. IEEE International Conference on
Robotics and Automation, San Diego, pp. 1622–1627 (1994)

166 6 Vision Based Mobile Robot Path/Line Tracking

[8] Saffiotti, A.: The uses of fuzzy logic in autonomous robot navigation. Soft
Computing 1, 180–197 (1997)

[9] Howard, A., Seraji, H., Tunstel, E.: A rule-based fuzzy traversability index for
mobile robot navigation. In: Proc. International Conference on Robotics and
Automation, Korea, pp. 3067–3071 (May 2001)

[10] Nirmal Singh, N.: Vision Based Autonomous Navigation of Mobile Robots. Ph.D.
Thesis, Jadavpur University, Kolkata, India (2010)

A. Chatterjee et al.: Vision Based Autonomous Robot Navigation, SCI 455, pp. 167–206.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 7
Simultaneous Localization and Mapping
(SLAM) in Mobile Robots*

Abstract. This chapter first introduces the concept of SLAM for navigation of
mobile robots and then describes the extended Kalman filter (EKF) based SLAM
algorithms in detail. Next we consider a more complex scenario where this EKF
based SLAM algorithm is implemented in presence of incorrect knowledge of
sensor statistics and discuss how fuzzy or neuro-fuzzy supervision can help in
improving the estimation performance in such situations. In this context, we
also discuss how evolutionary optimization strategies can be employed to
automatically learn the free parameters of such neuro-fuzzy supervisors.

7.1 Introduction

The simultaneous localization and mapping (SLAM) problem has attracted
significant attention from the research communities of the autonomous vehicles
and mobile robots in the past two decades. The SLAM problem, essentially,
consists of estimating the unknown motion of a moving platform iteratively, in an
unknown environment and, hence, determining the map of the environment
consisting of features (also known as landmarks) and the absolute location of the
moving platform on the basis of each other’s information [1]. This is known as a
very complex problem as there is always the possibility that both the vehicle’s
pose estimate and its associated map estimates become increasingly inaccurate in
absence of any global position information [2]. This situation arises when a
vehicle does not have access to a global positioning system (GPS). Hence the
complexity of the SLAM problem is manifold and requires a solution in a high
dimensional space due to the mutual dependence of vehicle pose and the map
estimates [3].

* This chapter is based on:

 1) “A neuro-fuzzy assisted extended Kalman filter-based approach for Simultaneous
Localization and Mapping (SLAM) problems,” by Amitava Chatterjee and Fumitoshi
Matsuno, which appeared in IEEE Transactions on Fuzzy Systems, vol. 15, issue 5, pp.
984-997, October 2007. © 2007 IEEE and

 2) Amitava Chatterjee, “Differential evolution tuned fuzzy supervisor adapted extended
kalman filtering for SLAM problems in mobile robots,” Robotica, vol. 27, issue 3, pp.
411-423, May 2009, reproduced with permission from Cambridge University Press.

168 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

One of the oldest and popular approaches to solve the SLAM problem employs
Kalman filter based techniques. Until now extensive research works have been
reported employing EKF to address several aspects of the SLAM problem [1], [4-
12]. Several successful applications of SLAM algorithms have been developed for
indoor applications [13, 14], outdoor applications [7], underwater applications
[15], underground applications [16] etc. An EKF based approach estimates and
stores the robot pose and the feature positions within the map of the environment
in the form of a complete state-vector and the uncertainties in these estimates are
stored in the form of error covariance matrices. These covariance matrices also
include cross-correlation terms signifying cross-correlation among feature/
landmark estimates. However, one of the well-known problems with the classical
full EKF-based SLAM approach is that the computational burden becomes
significantly high in the presence of a large number of features, because both the
total state vector and the total covariance matrix become large in size. The later
variations of researches on EKF based SLAMs have identified this problem as a
key area and several improvements have so far been proposed [7, 9, 17-19].
Another key problem associated with EKF-based SLAM is the data association
problem, which arises because several landmarks in the map may look similar. In
those situations, different data association hypotheses can give rise to multiple,
distinct looking maps and Gaussian distribution cannot be employed to represent
such multi-modal distributions. This problem is usually solved by restricting the
algorithm to associate the most likely data association, given the current robot
map, on the basis of single measurement [1] or on the basis of multiple
measurements [20]. The method of utilizing multiple measurements is a more
robust method. Although several other data association algorithms have so far
been developed, e.g. those in [21, 22], these algorithms have less significance as
they cannot be implemented in real-time.

Some alternative approaches to solve SLAM problems have also been proposed
which intend to implement some numerical algorithms, rather than employing the
rigorous statistical methods as in EKF. Some of these schemes are based on the
Bayesian approaches which can dispense with the important assumption in EKF
(i.e. the uncertainties should be modeled by Gaussian distributions). Several such
algorithms have been developed employing Sequential Monte Carlo (SMC)
methods that employ the essence of particle filtering [2], [3], [23], [24]. Particle
filtering technique can do away with a basic restriction of EKF algorithm that
introduces an additional uncertainty by performing linearization of nonlinear
models. However, in particle filtering based methods, it is expected that one
should employ large number of particles so that it can contain a particle that can
very closely resemble the true pose of the vehicle/robot at each sampling time
instant [25]. How to develop an efficient SLAM algorithm, employing particle
filtering with small enough number of particles, constitutes an important area of
modern-day research. A significant leap in this direction is taken by the
FastSLAM1.0 and FASTSLAM2.0 algorithms, which have successfully solved
the issue of dimensionality for particle filter based SLAM problems [26]. Several
other SLAM algorithms have also been successfully developed employing scan-
matching technique where the map can efficiently be built by a graph of spatial
relations amongst reference frames [7], [27].

7.1 Introduction 169

It has been shown previously that the performance of an EKF process depends
largely on the accuracy of the knowledge of process covariance matrix (Q) and
measurement noise covariance matrix (R). An incorrect a priori knowledge of Q
and R may lead to performance degradation [28] and it can even lead to practical
divergence [29]. Hence adaptive estimation of these matrices becomes very
important for online deployment. In [28], Mehra has reported a pioneering work
on adaptive estimation of noise covariance matrices Q and R for Kalman filtering
algorithm, based on correlation-innovations method, that can provide
asymptotically normal, unbiased and consistent estimates of Q and R [35]. This
algorithm is based on the assumption that noise statistics is stationary and the
model under consideration is a time invariant one. Later several research works
have been reported in the same direction, employing classical approaches, which
have attempted adaptive estimation of Q and R [30-35]. In [30], a combination of
an iterative algorithm and a stochastic approximation algorithm has been proposed
to estimate Q and R. In [32] and [33], the problem domain has been expanded to
allow time-variance in estimation of Q and R. A wonderful practical application
of [28] has been reported in [34].

In the last ten years or so, there have also been several adaptive Kalman
filtering algorithms proposed which employ fuzzy or neuro-fuzzy based
techniques [36]-[39]. In [38], an input-output mapping problem, where output is
corrupted by measurement noise, is solved by employing a neuro-fuzzy network to
determine AR parameters of each operating point dependant ARMA model and
then employing Kalman filter for the equivalent state-space representation of the
system. In [36], fuzzy logic has been employed for simultaneous adaptive
estimations of Q and R and in [37], fuzzy logic is employed to adapt the R matrix
only, for a Kalman filter algorithm. In real world situations, it is quite perceptible
that these information matrices, in the form of Q and R, may not be accurately
known. Then the performance of the SLAM problem may get affected
significantly.

The present chapter will first introduce the EKF-based stochastic SLAM
algorithm in detail. Then the chapter will explore those situations for SLAM
problems where the noise statistics information for the sensor is not known
accurately. In those situations, we shall describe how neuro-fuzzy assisted EKF
based SLAM algorithms can be effectively utilized [44, 45]. This will detail how a
neuro-fuzzy model can be employed to assist the EKF-based SLAM algorithm to
estimate R adaptively in each iteration. The chapter will also discuss how the free
parameters of the neuro-fuzzy model can be learned using popular evolutionary
optimization algorithms, for example, particle swarm optimization (PSO) [40] and
differential evolution. The fuzzy adapted Kalman filter algorithms discussed in
this chapter essentially implement a much complicated and sophisticated system
compared to its predecessors mainly in two aspects:

i) For the SLAM problem, the situation is essentially very complex as the
sizes of the state vector and hence the covariance matrix are time varying in
nature. This is because, during the process of navigation, new landmarks are
initialized in the state vector at different time instants (and, under some
specific conditions, some existing landmarks may even be deleted) and

170 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

hence these vector and matrix sizes will keep changing. The sizes of these
matrices usually grow.

ii) The approaches discussed in this chapter uses a generalized method of
learning the neuro-fuzzy model automatically. This is in stark contrast with
previously developed systems which use carefully, manually chosen
parameters for the fuzzy system(s) under consideration.

The chapter concludes with a detail, in-depth analysis of these SLAM algorithms
where the results are presented for a variety of environmental situations i.e. with
varying number of feature/landmark points and with several incorrectly known
measurement noise statistics values.

7.2 Extended Kalman Filter (EKF) Based Stochastic SLAM
Algorithm

A. Hypotheses

• The features under consideration are assumed to be 2-D point features
• The features are assumed to remain static i.e. they do not change their

positions with time, in the map built
• There are uncertainties in control inputs, the steering angle command (s) and

the velocity at which the rear wheel is driven (w), and these uncertainties are
modeled using Gaussian distributions

• It is assumed that there is no uncertainty in the starting pose of the robot
• The incremental movement of the robot, between two successive sampling

instants, is assumed to be linear in nature
• There are uncertainties in the range (r) and bearing (θ) measurements, and

these uncertainties are modeled using Gaussian distributions
• The features are only characterized by their 2-D positions and no other

characteristics, e.g. shape etc., is considered in this work

B. The Algorithm
An overview of the feature-map based SLAM employing EKF algorithm is
presented now. An excellent description of the algorithm can also be obtained in
[6], [7]. An EKF is employed for state estimation in those situations where the
process is governed by nonlinear dynamics and/or involves nonlinear
measurement relationships. The method employs linearization about the filter’s
estimated trajectory, which is continuously updated in accordance with the state
estimates obtained from the measurements [43]. The state transition can be
modeled by a nonlinear function f(•) and the observation or measurement of the
state can be modeled by a nonlinear function h(•), given as:

kkkk quxfx +=+),(1 (7.1)

and

111)(+++ += kkk rxhz (7.2)

7.2 Extended Kalman Filter (EKF) Based Stochastic SLAM Algorithm 171

where xk is the (n × 1) process state vector at sampling instant k, zk is the (m × 1)
measurement vector at sampling instant k and uk is the control input. The random
variables qk and rk represent Gaussian white process noise and measurement noise
respectively and Pk, Qk and Rk represent the covariance matrices for xk, qk and rk
respectively.

In case of the SLAM problem, the state vector x is composed of the vehicle
states xv and the landmarks’ states xm. Hence the estimates of the total state vector
x, maintained in the form of its mean vector x̂ and the corresponding total error

covariance matrix P, is given as:
TT

m
T
v]ˆ ˆ[ˆ xxx = (7.3)

=

m
T
vm

vmv

PP

PP
P (7.4)

where vx̂ = the mean estimate of the robot/vehicle states (represented by its pose),

Pv = error covariance matrix associated with vx̂ ,

mx̂ = mean estimate of the feature positions and

Pm = error covariance matrix associated with mx̂ .

The robot/vehicle pose is defined with respect to an arbitrary base Cartesian
coordinate frame. The features or landmarks are considered to be 2-D point
features. It is assumed that there are n such static, point features observed in the
map. Then,

T
vvvv yx]ˆ ˆ ˆ[ˆ ϕ=x (7.5),

=
222

222

222

vvvvvv

vvvvvv

vvvvvv

yx

yyyyx

xyxxx

v

ϕϕϕϕ

ϕ

ϕ

σσσ
σσσ
σσσ

P (7.6),

T
nnm yxyx]ˆ ˆ ˆ ˆ[ˆ 11=x (7.7)

and

=

2222

2222

2222

2222

11

11

111111

111111

nnnnnn

nnnnnn

nn

nn

yyyxyyyx

yxxxxyxx

yyxyyyyx

yxxxyxxx

m

σσσσ
σσσσ

σσσσ
σσσσ

P (7.8)

The map is defined in terms of the position estimates of these static features and
Pvm in (7.4) maintains the robot-map correlation. The off-diagonal elements of Pm

172 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

signify the cross-correlation and hence interdependence of information among the
features themselves. The system is initialized assuming that there is no observed
feature as yet, the base Cartesian coordinate frame is aligned with the robot’s
starting pose and there is no uncertainty in the starting pose of the robot.
Mathematically speaking, 0xx == vˆˆ and P = Pv = 0.

As the robot starts moving, vx̂ and Pv become non-zero values. In subsequent

iterations, when the first observation is carried out, new features are expected to
be initialized and mx̂ and Pm appear for the first time. This increases the size of x̂

and P and the entries of x̂ vector and P matrix are re-calculated. This process is
continued iteratively.

i) Time Update (“Predict”) Step
Here, it is assumed that the control input vector u, under the influence of which
the robot moves, is constituted of two control inputs, the steering angle command

(s) and the velocity at which the rear wheel is driven (w). Hence, Tsw][u = . So

the state estimates can be obtained by employing wheel encoder odometry and the
robot kinematic model. The control inputs w and s must be considered with their
uncertainties involved (e.g. uncertainties due to wheel slippage, incorrect
calibration of vehicle controller) and these are modeled as Gaussian variations in
w and s from their nominal values. Hence, the prediction step calculates the
projections of the state estimates and the error covariance estimates from sampling
instant k to (k+1), given as:

=

 −
+==−

+
m

k
k

vv

m

k
v

kkk x

uxf

x

x
uxfx

ˆ

)ˆ,ˆ(

ˆ
1

ˆ
)ˆ,ˆ(1

ˆ (7.9)

∇

∇∇∇+∇∇

=−
+

m
T

kvm
k

v

kvm
k

v

T

k
uk

k

T

k
k

v
k

v

k PPxf

Pxf fUuf
vxfPxf

P
)(1

 (7.10)

where fv estimates the robot pose on the basis of the motion model and the control
inputs. Based on the odometric equation of the mobile robot under consideration
here, which assumes that the incremental movement of the robot is linear in
nature, fv can be represented as [42]:

∗Δ∗+

+∗Δ∗+

+∗Δ∗+

==

−
+

−
+

−
+

=−
+

WB
k

s
t

k
w

k
v

k
vk

st
k

w
k

v
y

k
vk

st
k

w
k

v
x

k
k

vv

k
v

k
v

y

k
v

x

k
v

)sin(
ˆ

)ˆsin(ˆ

)ˆcos(ˆ

)ˆ,ˆ(

1
ˆ

1
ˆ

1
ˆ

1
ˆ

ϕ

ϕ

ϕ

ϕ

uxfx (7.11)

7.2 Extended Kalman Filter (EKF) Based Stochastic SLAM Algorithm 173

where, WB represents the wheelbase of the robot and Δt is the sampling time. The
Jacobians and Uk, the covariance matrix of u are given as:

)ˆ,ˆ(
k

k
v

k
v

k
v

k
v

ux

x

f

xf
∂

∂

=∇
(7.12),

)ˆ,ˆ(
k

k
v

k

k
v

k
ux

u

f

uf
∂

∂

=∇
(7.13),

=

2

2

0

0

s

v

σ
σ

U

(7.14)

Here, mx̂ and Pm in (7.9) and (7.10) remain constant with time, as the features are

assumed to remain stationary with time.

ii) Measurement Update (“Correct”) Step
Let us assume that we observe a feature, which already exists in the feature map,

whose position is denoted by that of the ith feature i.e.)ˆ ,ˆ (ii yx . For the system

under consideration [7], [42], it is assumed that the feature observation is carried
out using 2-D scanning range laser (SICK PLS), a range-bearing sensor, which
nowadays is very popular in mobile robot navigation, for distance measurement. It
is assumed that the laser range scanner is mounted on the front bumper of the
vehicle and the laser returns a 180° planar sweep of range measurements in 0.5°
intervals. The range resolution of such a popular sensor is usually about ±50 mm.
In this context, it should be mentioned that the vehicle is also assumed to be
equipped with wheel and steering encoders. The distance measured, in polar form,
gives the relative distance between each feature and the scanner (and hence the
vehicle). Let this feature be measured in terms of its range (r) and bearing (θ)
relative to the observer, given as:

Tr] [θ=z (7.15)

The uncertainties in these observations are again modeled by Gaussian variations
and let R be the corresponding observation/measurement noise covariance matrix
given as:

=

2

2

0

0

θσ
σ rR (7.16)

where we assume that there is no cross-correlation between the range and bearing
measurements. In the context of the map, the measurements can be given as:

−
−

−

−+−

==

k
k

k

kk

v
v

x
i

x

v
y

i
y

v
y

i
y

v
x

i
x

ki
k

i ϕ̂)
ˆˆ

ˆˆ
arctan(

2)ˆˆ(2)ˆˆ(

)ˆ(ˆ xhz (7.17)

174 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

Now the Kalman gain Wi can be calculated assuming that there is correct

landmark association between z and)ˆ ,ˆ (ii yx and the following computations can

be resorted to:

)1
ˆ(11

−
+−+=

+ kikki
xhzν (7.18)

k
T

k
k

kk
i

RxhPxhS +
+

∇−
++

∇=
+ 1111

 (7.19)

1

111
1

−
++

∇−
+=

+ k
i

T

k
k

k
i

SxhPW (7.20)

where iν denotes the innovation of the observation for this ith landmark and Si the

associated innovation covariance matrix. The Jacobian
1+

∇
k

xh is given as:

−

+
∂

∂
=

+
∇

1
ˆ1

k
k

i

k x
x

h

xh (7.21)

Hence, the a posterior augmented state estimate and the corresponding covariance
matrix are updated as:

111
ˆ

1
ˆ

++
+−

+=+
+

k
i

k
ikk

νWxx (7.22)

T

1k
i

k
i

k
ikk +++

−−
+=+

+ WSWPP
1111

 (7.23)

Here it should be remembered that in addition to the process and measurement
uncertainties, there is an additional uncertainty due to linearization involved in the
formulation of an EKF. The “time update” and “measurement update” equations
are obtained by employing linearization of nonlinear functions f(•) and h(•) about
the point of the state mean. This linearization is obtained by employing a Taylor
series like expansion and neglecting all terms which are of higher order than the
first order term in the series. This manner of approximating a nonlinear system by
a first order derivative introduces this additional source of uncertainty in EKF
algorithm. In fact, for highly nonlinear functions, these linearized transformations
cannot sufficiently accurately approximate correct covariance transformations and
this may lead to highly inconsistent uncertainty estimate. Under those situations
unscented transform may provide more accurate results.

iii) Initialization of a new feature and deletion of an old feature
During this iterative procedure of performing prediction and update steps
recursively, it is very likely that observations of new features are made time to
time. Then these new features should be initialized into the system by
incorporating their 2-D position coordinates in the augmented state vector and
accordingly modifying the covariance matrix. These features, identified by the

7.2 Extended Kalman Filter (EKF) Based Stochastic SLAM Algorithm 175

LRS, may correspond to points, lines, corners, edges etc. In this work, we have
considered that the features are point like features, each representing a unique
distinct point in the two-dimensional map of the environment. Resorting to the
mathematical computations as shown in [7], these new +

kx̂ and +
kP can be

calculated as:

=+

),ˆ(

ˆ
ˆ

k
k

vf

k
k zxf

x
x (7.24)

∇∇+∇∇∇∇

∇

∇

=+

T

k
z

k
k

z

T

k
vk

v
k

vk
vm

k
vk

v
k

v

T

k
v

T

k
vmmk

T
vm

T

k
vk

v
k

vm
k

v

k

ffR
f

fffP
f

fP
f

fP
f

f

ffPPP

ffPPP

P
 (7.25)

Here),ˆ(zxf vf is employed to convert the polar observation z to the base

Cartesian coordinate frame. The Jacobians are calculated as:

),ˆ(
k

k
v

k
v

f

k
v

zx
x

f

f
f

∂

∂
=∇ ,

),ˆ(
k

k
v

k

f

k
z

zx
z

f

f
f

∂

∂
=∇ (7.26)

The deletion of unreliable features is a relatively simple matter. We only need to
delete the relevant row entries from the state vector and the relevant row and
column entries from the covariance matrix.

Now, it is quite common that when an observation step is carried out, there will
be multiple number of landmarks visible at the same time and hence, several
independent observations will be carried out. In our system, we have assumed that

a batch of such observations is available at once (i.e. T
nnrr] , [,1,1 θθ =z)

and updates are carried out in batches. This is in conformation with the arguments
placed in [7] which indicate that an EKF algorithm tends to perform better update
steps for SLAM algorithms, if the innovation vector ν consists of multiple
observations simultaneously. Hence, in the context of this batch mode of
observation and update procedure, the corresponding SLAM algorithm is based on
composite ν, S and W vectors/matrices and the sizes of these vectors/matrices
keep changing with time because at any instant of observation, the total number of
visible landmarks keep changing.

176 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

7.3 Neuro-fuzzy Assistance for EKF Based SLAM

Most of the works reported in the area of adaptive Kalman filters have so far
concentrated on utilizing new statistical information from innovation sequence to
correct the estimation of the states. Our approach for adapting the EKF is based on
the innovation adaptive estimation (IAE) approach, which was originally proposed
in [28] and later utilized in combination with fuzzy logic in [37]. The basic
concept relies on determining the discrepancy between a new measurement zk and

its corresponding predicted estimation kẑ , at any arbitrary kth instant, and

utilizing this new information to correct the estimations/predictions already made.
The adaptation strategy is based on the objective of reducing mismatch between
the theoretical covariance of the innovation sequences (Sk) and the corresponding

actual covariance of the innovation sequences (InnkĈ). In our SLAM algorithm,

Sk is calculated using (7.19) where the right hand side of the equation is made

consistent with the concept of batch mode of observation and update. InnkĈ can

be calculated as:

 InnkĈ = νk νk
T (7.27)

where νk denotes the augmented innovation sequence, made consistent with the
batch mode. According to [37], this covariance should be calculated on the basis of
a moving average of νk νk

T over an appropriate moving estimation window of size
M. However, for the SLAM problem, the size of the augmented νk keeps changing
from time to time. This is because it is dependent on the number of landmarks
observed in any given observation and update step, which were all observed at

least once before. Hence we employ (7.27) to calculate InnkĈ rather than using a

moving average. Therefore, the mismatch at the kth instant, is given as:

kInnkInnk SCC −=Δ ˆˆ (7.28)

Our objective is to minimize this mismatch employing fuzzy logic. This is carried
out, by employing a one-input-one-output neuro-fuzzy system for each diagonal

element of the InnkĈΔ matrix. These fuzzy rules are employed to adapt the R

matrix, so that the sensor statistics is adapted for subsequent reduction in

mismatch InnkĈΔ . The complete EKF-based SLAM algorithm, employing the

neuro-fuzzy assistance, is presented in algo. 7.1. The system is designed with a
sampling time of 25 msec. between successive control input signals.

7.3 Neuro-fuzzy Assistance for EKF Based SLAM 177

1. IF All waypoints are traversed, THEN Stop ENDIF.
2. Compute distance of the robot from the current waypoint.

 IF (distance < minimum distance allowed from any waypoint),
 THEN switch to next waypoint as the current waypoint ENDIF.

3. Compute change in steering angle (Δs) to point towards the current waypoint
and then, new value of steering angle (s) (satisfying the constraints of max. rate of
steering change (Δsmax) and max. steering angle (smax)).
4. Move the robot and determine its actual pose.
5. Perform EKF prediction step, in accordance with (7.7) to (7.10).
6. IF (Time_for_Observation is TRUE), THEN go to step 7. ELSE go to step 1.
ENDIF.
7. Determine the set of visible landmarks from the current actual robot position.
Compute actual range-bearing observation for each of them. Separate those
observations based on already observed landmarks and newly observed landmarks
(if any).
8. Predict range-bearing observations, for already observed landmarks in step 7,
on the basis of augmented total state vector, predicted in step 5.
9. Compute augmented innovation sequence (ν) for already observed landmarks,
on the basis of actual and predicted observations, employing (7.14), adapted for
batch-mode situations.
10. Compute corresponding augmented measurement noise covariance matrix R
(utilizing the original [2 × 2] R matrix) and augmented linearized observation
model h, adapted for batch-mode situations.
11. Compute augmented S, on the basis of the augmented R and h and employing
(7.15), adapted for batch-mode situations.
12. Update the a posterior state estimate vector and error covariance matrix,
according to (7.18) and (7.19).

13. Compute InnkĈ and InnkĈΔ , according to (7.23) and (7.24) respectively,

and determine the size of InnkĈΔ , i.e.]ˆˆ[, colsrows CC ΔΔ .

14. Determine the absolute maximum value of mismatch among the range

observations (mismatchrangeInnk __ĈΔ) and the bearing observations

(mismatchbearingInnk __ĈΔ) separately from the corresponding diagonal entries of

the InnkĈΔ matrix.

15. FOR j = 1 to rowsĈΔ ,

Normalize the corresponding diagonal entry),(ˆ jjInnkCΔ by the

appropriate

mismatchrangeInnk __ĈΔ or mismatchbearingInnk __ĈΔ .

178 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

Determine the corresponding),(jjRΔ output from the NFS, with the

normalized),(ˆ jjInnkCΔ input to it.

ENDFOR

16. Determine 2
rσΔ as a mean of those),(jjRΔ entries, which correspond to

range measurements.

17. Determine 2
θσΔ as a mean of those),(jjRΔ entries, which correspond to

bearing measurements.

18. Adapt the original 2×2 R matrix as: Rk = Rk-1 +

Δ
Δ

2

2

0

0

θσ
σ r .

19. IF (new feature(s) observed in step 7),
THEN augment state vector and error covariance matrix, according to (7.20),

(7.21) and (7.22).
ENDIF

20. Go to step 1.

Algo. 7.1. The neuro-fuzzy assisted EKF based SLAM algorithm

From algo. 7.1, it can be seen that each Neuro-Fuzzy System (NFS) employs a
nonlinear mapping of the form:)),((),(ˆ jjfjj InnkNFS CR Δ=Δ where),(jjRΔ

corresponds to an adaptation recommended for the corresponding diagonal
element of the augmented measurement noise covariance matrix R matrix,
computed according to the batch-mode situation. This augmented matrix is
calculated each time an iteration enters into the observe and update step and its
size is determined on the basis of the total landmarks visible in the observe step.
To make it consistent with the batch of observed landmarks that were already
visited at least once earlier, the size of this augmented R is [2zf × 2zf] where zf is
the number of landmarks observed in that iteration, which were also observed
earlier. This augmented R is formed utilizing the original [2 × 2] R matrix and this
is formulated as:

=

2

2

2

2

2

2

000

000

0

0

000

00000

 augmented

θ

θ

θ

σ
σ

σ
σ

σ
σ

r

r

r

R
 (7.29)

7.3 Neuro-fuzzy Assistance for EKF Based SLAM 179

Here, 2
rσ and

2
θσ correspond to the sensor statistics computed for that iteration.

It can be seen that the augmented R matrix comprises of diagonal elements only
and all the off-diagonal elements are considered to be zero. This is in
conformation with our assumptions presented beforehand, in section 7.2, that the
range and the bearing measurements are independent of each other and there is no
cross-correlation between these measurements. The size of this augmented R
matrix keeps changing in different iterations, as the number of already visited
landmarks observed again in a given iteration keeps varying from iteration to

iteration. The size of this augmented R is consistent with that of the InnkĈ and

hence, InnkĈΔ .

With the idea of implementing the same NFS for each and every diagonal
element of the augmented R matrix, we employ normalized input for each NFS.
The NFS practically employs three fuzzy IF-THEN rules of the form:

 IF),(ˆ jjInnkCΔ is N THEN),(jjRΔ = w1,

IF),(ˆ jjInnkCΔ is Z THEN),(jjRΔ = w2 and

IF),(ˆ jjInnkCΔ is P THEN),(jjRΔ = w3.

w1, w2 and w3 indicate the amount of fuzzy adaptation recommended in form of a
diagonal element of the ΔR matrix, depending on the nature of the fuzzified
mismatch in the corresponding diagonal element of the InnkĈΔ matrix.

However, the order of mismatch may be different for range and bearing
observations and this may depend on how poorly (or accurately) the sensor
statistics for range and bearing observations are individually known. Hence we
employ normalized inputs corresponding to range and bearing observations

separately, on the basis of appropriate computations of mismatchrangeInnk __ĈΔ

and mismatchbearingInnk __ĈΔ , as given in algo. 7.1. Then with these normalized

inputs, the NFS enables us to compute),(jjRΔ for each diagonal entry. Finally

we compute the adaptations i.e. 2
rσΔ and 2

θσΔ required for the original [2 × 2]

R matrix on the basis of appropriate means, separately computed from the arrays
of),(jjRΔ entries for range and bearing observations. This adapted original [2

× 2] R matrix is kept ready for the next appropriate iteration, when EKF will enter
the observation and update step, and will be utilized for subsequent formation of
augmented R matrix and so on. Then, each observation and update step is
concluded by augmenting the state vector and the corresponding covariance
matrix, by employing (7.24)-(7.26), if there are new feature(s) observed during
this observation step.

180 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

7.4 The Neuro-fuzzy Architecture and Its Training
Methodology Employing Particle Swarm Optimization
(PSO)

7.4 The Neuro-fuzzy Architecture and Its Training Methodology

7.4.1 Architecture of the Neuro-fuzzy Model

The neuro-fuzzy model has been developed as a one-input-one-output system. The
four-layer architecture is shown in Fig. 7.1. Let ui

l and Oi
l respectively denote the

input to and output from the ith node of the lth layer.

1w

Σ
3w

2w

N

Z

P

K

Π ΔRk(j,j)ΔCInnk(j,j)

Fig. 7.1. Four-layer architecture of the proposed neuro-fuzzy system. (Reproduced from
[44] with permission from the IEEE. ©2007 IEEE.).

1) Layer 1: Input Layer
This layer comprises a single node, signifying the single input variable. The input-
output relation of this node is:

O1 = u1 =),(ˆ jjInnkCΔ (7.30)

2) Layer 2: Membership Function Layer
Here, the input variable is fuzzified employing three Membership Functions
(MFs), negative (N), zero (Z) and positive (P). Figure 7.2 shows these MFs where
Nv and Nb respectively denote the right vertex and right base points of the MF N,
Zbl, Zvl, Zvr and Zbr respectively denote the left base, left vertex, right vertex and
right base points of the MF Z and Pb and Pv respectively denote the left base and
left vertex points of the MF P. The output of the ith MF is given as:

Oi
2 = μi(u

1) = μi(),(ˆ jjInnkCΔ) (7.31)

3) Layer 3: Defuzzification layer
This layer performs defuzzification where the defuzzified output is calculated as
an weighted average of all its inputs. Hence the output from the solitary node in
this layer can be calculated as:

=

=

=

=
∗

=
∗

=
3

1

1

3

1

1

3

1

2

3

1

2

3

)(

)(

i
i

i
ii

i
i

i
ii

u

wu

O

wO
O

μ

μ
 (7.32)

7.4 The Neuro-fuzzy Architecture and Its Training Methodology 181

-1.0 1.0

1
N : Negative

Z : Zero

P : Positive

N Z P

Nv NbZbl ZbrZvl Zvr Pb Pv
0

Fig. 7.2. Membership functions employed in Fig. 7.1. (Reproduced from [44] with
permission from the IEEE. ©2007 IEEE.).

4) Layer 4: Output Layer
This layer performs a suitable scaling for the defuzzified output. The input-output
relationship of the node in this layer is given as:

344 OKuKO ∗=∗= (7.33)

7.4.2 Training the Neuro-fuzzy Model Employing PSO

This neuro-fuzzy model is trained to determine the suitable free parameters of the
system i.e. the parameters of the MFs, the output consequence singletons and the
output gain. However, the training cannot be accomplished in the conventional
supervised mode, as the exact desired output, for a given input, is not quantitatively
known. Hence, normal backpropagation kind of training methodology cannot be
resorted to and it is suitable to apply stochastic global optimization algorithms for
such systems in an unsupervised manner. There are several such candidate
algorithms available now. In this section we describe how PSO can be suitably
employed for this purpose. PSO is a relatively new algorithm [40], [41], that is
based on the swarm behaviors of birds or fishes. The training of the neuro-fuzzy
system is accomplished as a high-dimensional metaheuristic optimization problem,
where the objective is to optimize a fitness function),,(21 nfit xxxf on the

basis of the values of the variables nxxx ,, 21 .

In a PSO problem, several such candidate solutions of nxxx ,, 21 are
created in a multi-dimensional space (called “particles”) and the suitability of each
of them is evaluated in each iteration. For the problem under consideration here,
each such potential “particle” is formed as a 12-dimensional vector x =

[1221 xxx]T, as shown in Fig. 7.3. Each “particle” i is characterized by the

vectors denoting its position (xi) and its velocity (vi) at the current time step. In
order to pursue the optimum of the fitness function (ffit), velocity vi and hence
position xi of each particle is adjusted in each time step. The updated velocity

182 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

in each time step vinew is a function of three major components: the old velocity
vector of the same particle (viold), difference of the ith particle’s best position
found so far (called pi) and the current position (xi) (called the “cognitive”
component) and difference of the best position of any particle within the context
of the topological neighborhood of ith particle found so far (called pg) and current
position of the ith particle (xi) (called the “social” component) [40, 41]. Each of
the last two components is stochastically weighted so that the updating in the
velocity of each particle will cause enough oscillations, allowing each particle to
search for a better pattern within the problem space. Hence, the velocity and
position update relations, in the dth dimension, are given as:

vidnew = vidold + ϕi(pid – xid) + ϕg(pgd – xgd)

 IF (vidnew > vdmax) THEN vidnew = vdmax ENDIF

IF (vidnew < -vdmax) THEN vidnew = -vdmax ENDIF

 xidnew = xidold + vidnew

 vidold = vidnew

 xidold = xidnew (7.34)

ϕi and ϕg are responsible for introducing stochastic weighting and they are given
as ϕi = ci*rand1() and ϕg = cg*rand2(). rand1() and rand2() are two random
functions in [0, 1] and ci and cg are positive constants. A popular choice for ci and
cg is ci = cg = 2. This traditional PSO model shows quick, aggressive convergence
during the early phase but often encounters problem in fine tuning the search to
determine the supreme solution. Hence, in our algorithm we have employed an
improved version of this PSO algorithm that utilizes a judicious mix of aggressive,
coarse updating during early iterations and fine updating during later iterations
[40]. Hence the velocity update rule is given as

vidnew = witer (vidold) + ϕi(pid – xid) + ϕg(pgd – xid) (7.35)

with the position update rule remaining unchanged as given before. w is called the
inertia weight which is initially kept high and then gradually decreased over the
iterations so that it can initially introduce coarse adjustment in velocity updating
and gradually fine changes in velocity updating takes over. In our algorithm, we
have utilized linearly adaptable inertia weight and witer gives the value of the
inertia weight at that given iteration. The iterative process is continued until the
optimization process yields a satisfactory result. This is evaluated on the basis of
whether the value of ffit falls below the specified maximum allowable value or
whether the maximum number of iterations has been reached. A detailed
description of the PSO algorithm is available in [40, 41].

7.4 The Neuro-fuzzy Architecture and Its Training Methodology 183

Nv Nb Zbl Zvl Zvr Zbr Pb Pv w1 w2 w3 K

Fig. 7.3. Detailed configuration of each 12-dimensional “particle” employed by PSO.
(Reproduced from [44] with permission from the IEEE. ©2007 IEEE.).

In our approach, the objective of the neuro-fuzzy assistance to the EKF based
SLAM is to improve the estimation performance as much as possible. This means
we should try and minimize the discrepancy between actual covariance and the
theoretical covariance of the innovation sequence over the entire set of
observation instants, during the movement of the vehicle/robot, as much as
possible. Hence the fitness function is formulated on the basis of: a) computing
the mean-square value of all the diagonal entries of the ΔCInnk matrix at any given
observation instant, b) storing such mean-square values for each observation
instant during an on-going iteration and c) computing a mean of all such mean-
square values for all observation instants at the end of a complete iteration.
Mathematically this can be shown as:

obs

N

n nobsC

J

j
Innk

fit N

J

jj

f

obs

obs

nobsC

=

=

Δ

= 1 _

1

2

)

)],([

(

_

C
 (7.36)

where Nobs denotes the total number of observation instants in a given iteration and
JC_nobs denotes the total number of diagonal elements of ΔCInnk matrix when the
nobsth observation is made.

In the context of adapting a meaningful NFS, the positions of each “particle”, at
the end of each iteration, are subjected to several constraints. Most of these
constraints are implemented to maintain specific shapes chosen for the MFs
(usually trapezoidal, which as a special case can become triangular) and also to
ensure that there is some overlapping between the stretches of consecutive MFs.
Another constraint included is that, for each MF, its control points (starting from
left to right) should be chosen in a monotonically nondecreasing fashion. This will
ensure that all regions, within the universe of discourse of the input for the NFS,
will remain covered by at least one MF. These constraints are implemented as:

 IF (Nb < Nv) THEN Nb = Nv ENDIF
 IF (Zvl < Zbl) THEN Zvl = Zbl ENDIF
 IF (Zvr < Zvl) THEN Zvr = Zvl ENDIF
 IF (Zbr < Zvr) THEN Zbr = Zvr ENDIF
 IF (Pv < Pb) THEN Pv = Pb ENDIF

 IF (Nb < Zbl) THEN Nb = Zbl ENDIF
 IF (Zbr < Pb) THEN Zbr = Pb ENDIF (7.37)

184 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

Another constraint is implemented to signify that the scaling employed in the
output layer of the NFS is employed for magnitude scaling only, and hence it
cannot be employed for changing polarity. It means that K cannot become
negative.

7.4.3 Performance Evaluation

To evaluate the performance of the proposed system, we have considered various
environments, which are available in [42]. In fact the packages available in [42]
should serve as an excellent platform for learning and analysis of existing Kalman
filter and particle filter based SLAM algorithms. Researchers can develop their
own algorithms and can compare their performance vis-à-vis these algorithms.
Several benchmark environments are available there and we have tested our
algorithm in these simulated environments with their associated given vehicle
motion model. The environment is usually specified in such a manner where a
vehicle/robot is supposed to navigate through some waypoints and in the process
should be able to acquire the map of the environment with several configurations
of feature/landmark points. In the present scheme, we consider three such
environments as specified in [42]. In each case we have the identical scene of
ideal robot movement where the robot path is specified by 17 waypoints.
However, each environment consists of varied number of landmarks to impose
several degrees of complexities and the three environments under consideration
consist of 35, 135 and 497 landmarks respectively. The uncertainties in control
inputs are specified as: σw = 0.3 m/sec. and σs = 3 deg. An observation step and
the associated update step is carried out after eight consecutive prediction steps,
identical with the EKF based algorithm in [42]. This follows a popular notion in
EKF-based SLAM community, where instead of employing an observation and
update step after each prediction step, one computes several consecutive
prediction steps, and then takes corrective action by one observation and update
step. This helps in reducing the computational burden of the SLAM algorithm. In
algo. 7.1, this is indicated by the Time_for_Observation flag, which is set TRUE
for one iteration, after each 8 successive iterations.

The performance of the proposed system is compared with a conventional
EKF-based SLAM system where the Q and R matrices are kept static throughout
the experiment. The proposed algorithm starts with the same Q and R matrices,
but it keeps adapting the R matrix according to the proposed scheme. According
to the data available from [42], the EKF based algorithm works perfectly when
sensor statistics are known as: 1.0=rσ m. and 1=θσ deg. First we consider

the situation where the sensor statistics are wrongly considered as: 0.2=rσ m.
and 1.0=θσ deg. In each figure, the firm lines shown in green, depict the actual

path traversed by the robot, while the firm lines shown in black, depict the SLAM
estimated path traversed based on estimated states of robot poses in each sampling

7.4 The Neuro-fuzzy Architecture and Its Training Methodology 185

instant or iteration. The stars (∗) depict the actual landmark positions, which are
stationary in the environment. The crosses (+) depict the positions of these
landmarks estimated at the end of the test run. Obviously, the performance of the
system will be superior, if the estimated robot path and actual path match as far as
possible and the estimated landmark positions and their actual positions coincide
as far as possible. Figure 7.4(a) to Fig. 7.4(c) shows the performance of the
conventional EKF-based SLAM for three different environment situations. It can
be seen that the performance is acceptable when there are small number of
landmarks in the environment. However, the performance became really bad when
the landmarks became denser and both the estimations of the robot pose at
different instants and the map acquired degraded significantly as the EKF
estimations are quite distant from the original robot positions and the map
situation. Figure 7.5(a) to Fig. 7.5(c) show the situations when the neuro-fuzzy
assisted EKF-based SLAM is employed for identical environments. It can be seen
that the neuro-fuzzy assistance could improve the situation dramatically and the
estimates of the robot states as well as acquisition of the map was quite stable for
all three different environments with varied number of landmarks. In all these
environments, the robot position estimates follow the actual robot positions
closely and the estimation of the stationary landmark positions also closely
matches with their actual positions in the environments.

The scheme was further tested for another situation where the sensor statistics
are wrongly considered in opposite directions and they are considered as

01.0=rσ m. and 0.3=θσ deg. Then the same set of algorithms was employed

for identical set of environments. Figure 7.6(a) to Fig. 7.6(c) show the
performances of the conventional EKF-based SLAM and Fig. 7.7(a) to Fig. 7.7(c)
show the corresponding performances of the neuro-fuzzy assisted EKF-based
SLAM algorithms. In these case studies, the EKF-based SLAM shows a different
trend in performance. As we can see, the estimation performance is worst for the
environment containing small number of landmarks. However, with increase in
landmarks, the estimations became more accurate and for the situation with 497
landmarks, the performance of the EKF-based SLAM was quite satisfactory. On
the other hand, the neuro-fuzzy assisted EKF showed uniformly stable
performance for each environment with quite accurate estimations of robot poses
and feature positions for each environment situation. Each result, shown in Fig.
7.5(a) to Fig. 7.5(c) and Fig. 7.7(a) to Fig. 7.7(c), for the neuro-fuzzy assisted EKF
based SLAM depicts one sample run conducted. For each of these six specific
situations of two case studies, we conducted 10 individual runs. It was found that,
for each given situation, results obtained with each of 10 individual runs, were
very close to each other. These case studies further prove that the neuro-fuzzy
assistance can vastly improve the degrading performance of the traditional EKF
algorithm in several situations, when the sensor statistics are wrongly known. In
these situations, the performance of the conventional EKF becomes highly
unreliable. However, presence of neuro-fuzzy assistance can help the EKF to

186 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

maintain a stable performance and this performance has been shown robust
enough over several environment situations, with several wrong knowledge of
sensor statistics.

For the neuro-fuzzy assisted EKF based SLAM, the training of the neuro-fuzzy
system, for each case study as described before, was carried out in offline situation
on the basis of the data gathered by the robot for a given environment situation.
For our experimentation, we implemented the training procedure, for each case
study, for the environment containing 135 landmarks. Once the training of the
neuro-fuzzy system was completed (on the basis of a given configuration of
the landmarks) and the free parameters of the NFS were suitably determined, the
trained NFS-based EKF was implemented for robot navigation through the
waypoints for several configuration of landmarks as described before (i.e.
environments with 35, 135 and 497 landmarks). Table 7.1 details these parameters
employed for the PSO algorithm employed for training the NFS. Here, the
dimensions of each particle, which are employed to learn the control points of the
MFs of the NFS (i.e. [821 xxx]), are all initialized with their positions within

the range [-1, 1]. This is done in conformation with the normalization procedure
that works in conjunction with the NFS. The prospective weights associated with
the layer 3 of the NFS (denoted by the dimensions x9, x10 and x11 of the PSO
algorithm) are all initialized with their positions within the range [-2, 2]. The
prospective gain K associated with the layer 4 of the NFS (denoted by
the dimension x12 of the PSO algorithm) is initialized with its position within the
range [0, 2], because it is assumed that K is a non-negative quantity. Each time,
the termination criterion for the PSO algorithm was set for a maximum number of
iterations (maxiter) of 20. For the case study with initial sensor information

0.2=rσ m. and 1.0=θσ deg, the learned parameters of the NFS at the

completion of the training procedure are:

[1221 xxx] = [-0.2008 –0.0626 –0.0626 –0.0626 0.0820 0.5961 0.3224

0.4002 –0.0086 1.5801 –0.9729 0.0011]

and for the case study with initial sensor information 01.0=rσ m. and

0.3=θσ deg., the learned parameters of the NFS are:

[1221 xxx] = [-0.4570 0.5242 0.4805 0.9741 0.9741 0.9741 –0.4290

0.2413 –0.0024 –0.8762 1.3561 0.2907].

In each case, it can be seen that these learned parameters satisfied those
constraints presented in (7.37).

7.4 The Neuro-fuzzy Architecture and Its Training Methodology 187

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(a)

-100 -50 0 50 100
-100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(b)

Fig. 7.4. Conventional EKF-based SLAM performance for case study I (0.2=rσ m.

and 1.0=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks in the

environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.).

188 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

-100 -50 0 50 100

-100

-80

-60

-40

-20

0

20

40

60

80

100

metres

m
et

re
s

(c)

Fig. 7.4. (continued)

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(a)

Fig. 7.5. Neuro-fuzzy assisted EKF-based SLAM performance for case study I
(0.2=rσ m. and 1.0=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks

in the environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.).

7.4 The Neuro-fuzzy Architecture and Its Training Methodology 189

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(b)

(c)

Fig. 7.5. (continued)

190 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

-100 -50 0 50 100
-100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(a)

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

100

metres

m
et

re
s

(b)

Fig. 7.6. Conventional EKF-based SLAM performance for case study II (01.0=rσ m.

and 0.3=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks in the
environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.).

7.4 The Neuro-fuzzy Architecture and Its Training Methodology 191

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(c)

Fig. 7.6. (continued)

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(a)

Fig. 7.7. Neuro-fuzzy assisted EKF-based SLAM performance for case study II
(01.0=rσ m. and 0.3=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks

in the environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.).

192 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

(b)

(c)

Fig. 7.7. (continued)

7.5 Training a Fuzzy Supervisor Employing Differential Evolution 193

Table 7.1. The PSO parameters employed

Sl. No. Parameter descriptions Parameter values for
case study (i)

Parameter values for
case study (ii)

1 No. of particles (N) 40 40
2 No. of dimensions (D) 12 12
3 Initial inertia weight (Winitial) 0.9 0.9
4 Slope of inertia weight (ΔW) 2.5e-4 2.5e-4
5 Initialization range for MFs (x1,

x2, … x8)
[-1, 1] [-1, 1]

6 Initialization range for weight
factors (x9, x10, x11)

[-2, 2] [-2, 2]

7 Initialization range for gain (x12) [0, 2] [0, 2]
8 Maximum permissible velocity

for MFs
(v1max, v2max, … v8max)

0.3 0.1

9 Maximum permissible velocity
for weight factors (v9max, v10max,
v11max)

1.0 0.5

10 Maximum permissible velocity
for gain (v12max)

1.0 0.5

7.5 Training a Fuzzy Supervisor Employing Differential
Evolution (DE) Based Optimization

7.5 Training a Fuzzy Supervisor Employing Differential Evolution

In the previous section we demonstrated how PSO can be utilized to train a
fuzzy/neuro-fuzzy supervisor for successful supervision of an EKF based SLAM
system. Logically speaking, the idea can be extended to employ other evolutionary
algorithms too for similar fuzzy/neuro-fuzzy based supervision purpose. Hence we
implemented a similar fuzzy supervisor employing differential evolution (DE),
another popular evolutionary algorithm known, for similar types of problems [45].
In DE, like many other population based global optimization methods, several
candidate solutions, each containing a possible solution vector for the optimization
problem under consideration, are created simultaneously in the multi-dimensional
search space and each one of them is individually evaluated in terms of its fitness
function, which indicates the degree of suitability of that particular candidate
solution to evolve as the best possible solution. This process is continued in an
iterative fashion, where new vectors, i.e. possible candidate solutions, are created
from the candidate solutions in the previous generation, in quest for generation of
better and better solutions, which can be quantitatively evaluated by fitter and fitter
fitness function values. Several mathematical strategies can be employed to create
new candidate vectors for the current generation, based on the old candidate vectors
of the previous generation. At the end of each generation, the candidate solution
providing the fittest fitness function value (usually the minimum value) emerges as
the best possible solution. This iterative process continues until the fittest fitness
function value (usually the minimum value) for the best solution vector in a
generation falls below the maximum permitted fitness function value for that
optimization process or when the maximum number of generations is reached.

Let us consider that, in the basic variant of DE, utilized for minimizing a cost
function f(x) on the basis of D-dimensional x, NP number of such candidate

194 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

solutions of ()Dxxx ,, 21 are created in the D-dimensional space and the

suitability of each of them is evaluated in each generation G. The initial
population is generated in a random fashion and the objective is that the generated
vectors should try to cover the entire search space as far as practicable. Each ith
vector for the (G+1)th generation is created by adding the weighted difference
between two population vectors to a third vector, all these three vectors pertaining
to the Gth generation. This can be shown by the following formula [46],[47]:

, , , ,()i G r G r G r Gν x F x x+ = + −
1 2 31 (7.38)

where NPi ,,2,1 = . Here []NPrrr ,1,, 321 ∈ and they are all mutually

different. F is a constant weighting factor and usually []2,0∈F . This factor

influences the amplification of the difference)(,, 32 GrGr xx − .

To increase diversity in the newly generated vector, the method of crossover is
introduced. This crossover operation generates a new vector ui,G+1, from the newly
generated perturbed vector νi,G+1 and the old vector xi,G. In the basic variant of DE,
this new vector is generated as [11,12]:

()1,1,21,11, ,, ++++ = GDiGiGiGi uuuu with

[]

∈
++=

= +
+ Djotherallforx

Lnnjfor
u

Gji

DDGji
Gji ,1

1

,

1,
1,

ν (7.39)

Here, n is a randomly chosen integer, []Dn ,1∈ , and it determines the starting

index for the crossover. The length or duration of crossover, in this basic variant
of DE, is also an integer drawn from the interval [1,D], and is based on the chosen
crossover probability, []1,0∈CR . These n and L values are chosen afresh for

each ui,G+1.
Now, if the new vector ui,G+1 can yield a smaller value for the fitness function,

then this vector becomes the new xi,G+1 for the (G+1)th generation. Otherwise we
keep xi,G+1= xi,G.

7.5.1 Performance Evaluation

The performance of DE optimized fuzzy supervisor based solution for the SLAM
problems has also been tested by creating an environment in simulation, utilizing
the package available in [42], as done in our previous set of case studies. For the
new set of case studies, we consider a different environment and two sets of
incorrect knowledge of sensor statistics as: (a) 01.0=rσ m. and

0.10=bσ deg. and (b) 01.0=rσ m. and 0.15=bσ deg. For these situations,
the performances exhibited by the conventional EKF-based SLAM [42] are shown
in Fig. 7.8(a) and Fig. 7.8(b). It can be seen that the estimated robot path deviates
a lot from the ideal path and also the estimated positions of many landmarks are
quite far away from their actual positions. However, when our DE-optimized
fuzzy supervisor based system was employed for each of these two case studies,

7.5 Training a Fuzzy Supervisor Employing Differential Evolution 195

the fuzzy supervision could improve the performance quite markedly, in each
case, as depicted in Fig. 7.9(a) and Fig. 7.9(b). For the fuzzy supervised algorithm,
the estimated robot paths deviated much less from the ideal robot paths. In this
scheme, the free parameters of the fuzzy supervisor are learnt by implementing
differential evolution with D = 11 and employing binomial crossover. The variety
of the DE algorithm employed is a popular variant, known as the “DE/rand/1”
scheme [46], [47]. However, this variant differs slightly from the original
“DE/rand/1” scheme, because here the random selection of vectors is performed
by shuffling the array containing the population so that a given vector does not get
chosen twice in the same term contained in the perturbation expression [48]. It can
also be seen that, for each case study, the estimated positions of the landmarks are
in closer agreement with their actual positions, than the systems utilizing
conventional EKF-based SLAM algorithms.

The results shown in Fig. 7.9 are obtained in the implementation phase, using
the fuzzy supervisors trained by the DE algorithm, with the chosen control
parameters NP = 20, F = 0.1, CR = 0.5. Like most other stochastic global
optimization methods, the performance of the differential evolution strategy too
varies with the choice of these free parameters. Hence proper choice or fitting of
these parameters is crucial. According to the general guidelines proposed in [46],
for many applications, choices of NP = 10*D, F ∈ [0.5, 1] and CR ∈ [0, 1] but
much lower than 1, are considered to be good choices. Among these factors, F is
considered to be the most crucial control parameter and NP and CR are considered
less crucial ones. Hence, in order to find the best performance of DE, it was
considered to carry out simulations for various values of these control parameters
and to observe their corresponding performances, for the case study with sensor
statistics (01.0=rσ m. and 0.15=bσ deg.). At first, NP and CR are kept
fixed at 20 and 0.5 respectively and varied F for a number of values in the range 0
to 1 and for each case the fuzzy supervisor was trained separately. Although,
according to the general guideline NP should have been chosen as 10*11=110,
this would have increased the computational burden of the training procedure
enormously. Hence, with the objective of keeping the computational burden
reasonably low, the optimization procedure was attempted with an NP value of 20.
Here when F was varied, it was found that better and better performance of the
overall system could be achieved in the implementation phase if we use smaller
values of F. It was found that the best performance was achieved with F = 0.1 and
with lower values of F the performance degraded a little while with higher values
of F the degradation was significant. Figure 7.10(a) to Fig. 7.10(c) show the
corresponding performances of the system in the implementation phase with
the trained fuzzy supervision for F = 0.05, F = 0.1 and F = 0.5. Figure 7.11 shows
the RMS errors in estimating x̂ , in the implementation phase, at each sampling
instant with an incremental movement of the robot, for this series of case studies
with five representative values of F. It can be easily concluded that the training
process conducted with F = 0.1 produced the best result for these
experimentations.

With this value of F, then one can proceed to determine the most suitable
values of NP and CR. Keeping F = 0.1 and CR = 0.5, we varied NP for a series of

196 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

values. The objective was to obtain a reasonable performance with as small a
value of NP as practicable, so that the computational burden is kept minimum.
Figure 7.12 shows the RMS errors in estimating x̂ , in the implementation phase,
at each sampling instant with an incremental movement of the robot, for this series
of case studies with three representative values of NP = 15, 20 and 25. It was
found that the best performance is obtained with NP = 20 and the performance
degrades if we either increase or decrease the value of NP. Hence a value of NP =
20 was chosen for the training procedure. Next keeping F = 0.1 and NP = 20, CR
was varied for a series of values. It was found that the variation of CR was not that
critical in varying the training performance of the scheme. Figure 7.13 shows the
similar plotting of RMS errors in estimating x̂ , for this series of case studies with
three representative values of CR = 0.4, 0.5 and 0.6. It was found that the best
performance was obtained with CR = 0.5 although performances for other values
of CR were quite similar in nature. Hence it could be concluded that the best set of
control parameters of the DE for the training procedure of the fuzzy supervisor is
obtained as NP = 20, F = 0.1 and CR = 0.5. Hence, using these parameters the
fuzzy supervisor was trained for each case study of sensor statistics i.e. (a) with
(01.0=rσ m. and 0.10=bσ deg.) and (b) with (01.0=rσ m. and

0.15=bσ deg.). Figure 7.9(a) and Fig. 7.9(b) showed the performances of those

case studies, in the implementation phase.
In the next phase, we present a performance comparison between the fuzzy

supervisor tuned by DE and the fuzzy supervisor tuned by PSO. The performance
comparison is demonstrated for the sample case study with sensor statistics
(01.0=rσ m. and 0.15=bσ deg.). The popular version of PSO, employed

using linearly decreasing inertia weight, as described in (7.35), is used for this
purpose. To make as uniform comparison between the DE based and the PSO
based tuning algorithms for our problem as practicable, the following factors are
taken into consideration: (i) identical number of candidate solutions or particles
for each algorithm (i.e. 20), (ii) identical value of maximum number of iterations
or generations for which the optimization algorithm is run each time (taken as 10
in this work) and (iii) identical range of initialization of each corresponding
dimension of the initial population for each optimization algorithm. The PSO with
inertia weight variation is normally known to perform well for benchmark
optimization functions with initial inertia weight, Winitial, of 0.9 and slope of
inertial weight of 2.5e-4. For our case study, we implemented PSO with Winitial =
0.9 and employed a series of both slow decrease and aggressive decrease in inertia
weight. Figure 7.14 shows the corresponding performance of the PSO algorithm in
terms of the RMS errors in estimating x̂ , in the implementation phase, at each
sampling instant with an incremental movement of the robot, for this series of case
studies when the PSO-based training procedure was conducted with slope of
inertia weight having values 2.0e-4, 2.5e-4, 5.0e-4, 4e-2 and 5e-2. It was found
that the best performance was indeed obtained with the universally known
superior value of 2.5e-4. Figure 7.15 shows a similar comparison of estimation
performance for the best PSO-tuned and best DE-tuned fuzzy supervisors for the

7.5 Training a Fuzzy Supervisor Employing Differential Evolution 197

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(a)

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(b)

Fig. 7.8. Performance of the conventional EKF-based SLAM under incorrect knowledge of
sensor statistics: (a) with (01.0=rσ m. and 0.10=bσ deg.) and (b) with

(01.0=rσ m. and 0.15=bσ deg.)

198 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(a)

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(b)

Fig. 7.9. Performance of the Fuzzy supervised EKF-based SLAM, in implementation
phase, under incorrect knowledge of sensor statistics: (a) with (01.0=rσ m. and

0.10=bσ deg.) and (b) with (01.0=rσ m. and 0.15=bσ deg.)

7.5 Training a Fuzzy Supervisor Employing Differential Evolution 199

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(a)

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(b)

Fig. 7.10. The implementation performance of the fuzzy supervised EKF-based SLAM,
when the DE-based training was carried out with NP = 20, CR = 0.5, and (a) F = 0.05, (b) F
= 0.1, and (c) F = 0.5

200 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

-50 -40 -30 -20 -10 0 10 20 30 40 50

-30

-20

-10

0

10

20

30

40

metres

m
et

re
s

(c)

Fig. 7.10. (continued)

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

sampling instants

R
M

S
 e

rr
or

e

c a

d

b

Fig. 7.11. The estimation performance of the fuzzy supervised EKF-based SLAM, in the
implementation phase, when the DE-based training was carried out with NP = 20, CR = 0.5,
and (a) F = 0.05, (b) F = 0.08, (c) F = 0.1, (d) F = 0.15, and (c) F = 0.5

7.5 Training a Fuzzy Supervisor Employing Differential Evolution 201

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

sampling instant

R
M

S
 e

rr
or

c

a

b

Fig. 7.12. The estimation performance of the fuzzy supervised EKF-based SLAM, in the
implementation phase, when the DE-based training was carried out with F = 0.1, CR = 0.5,
and (a) NP = 15, (b) NP = 20, and (c) NP = 25

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

sampling instants

R
M

S
 e

rr
or

b a

c

Fig. 7.13. The estimation performance of the fuzzy supervised EKF-based SLAM, in the
implementation phase, when the DE-based training was carried out with F = 0.1, NP = 20,
and (a) CR = 0.4, (b) CR = 0.5, and (c) CR = 0.6

202 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

sampling instants

R
M

S
 e

rr
or

a

c
d

e
b

Fig. 7.14. The estimation performance of the fuzzy supervised EKF-based SLAM, in the
implementation phase, when the PSO-based training was carried out with the slope of
inertia weight chosen as (a) 2.0e-4, (b) 2.5e-4, (c) 5.0e-4, (d) 4e-2, and (e) 5e-2

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

sampling instants

R
M

S
 e

rr
or

 a

 b

Fig. 7.15. Comparison of the estimation performance of the fuzzy supervised EKF-based
SLAM, in the implementation phase, when the fuzzy supervisor is trained by (a) DE
algorithm and (b) PSO algorithm

7.6 Summary 203

adaptive EKF based SLAM algorithm, for the case study under consideration. It
can be seen that the performance of the DE tuned algorithm gave less RMS errors
in estimation, at most of the sampling instants. This procedure helps us
demonstrating the usefulness of employing a DE-tuned fuzzy supervision for EKF
based SLAM problems. However we would like to generally remark that this
performance may vary depending on the environment chosen and the sensor
statistics considered.

7.6 Summary

The present chapter discussed the importance of SLAM in the context of mobile
robot navigation and, at first, described the extended Kalman filter based SLAM
algorithms in detail. Next we considered the degradation in system performance
when a priori knowledge of the sensor statistics is incorrect and showed how
fuzzy/neuro-fuzzy assistance or supervision can significantly improve the
performance of the algorithm. Usually, EKF is known as a good choice for SLAM
algorithms when the associated statistical models are well known. However, the
performance can become significantly unpredictable and degrading when the
knowledge of such statistics is inappropriate. The fuzzy/neuro-fuzzy supervisor
based system proposes to start the system with the wrongly known statistics and
then adapt the R matrix, online, on the basis of a fuzzy/neuro-fuzzy system that
attempts to minimize the mismatch between the theoretical and the actual values
of the innovation sequence. The free parameters of the neuro-fuzzy system are
automatically learned employing an evolutionary optimization based training
procedure. The chapter showed how two popular contemporary evolutionary
optimization techniques, namely, PSO and DE, can be utilized successfully for
this purpose. The performance evaluation is carried out for several benchmark
environment situations with several wrong knowledge of sensor statistics. While
the conventional EKF based SLAM showed unreliable performance with
significant degradation in many situations, the fuzzy/neuro-fuzzy assistance could
improve this EKF’s performance significantly and could provide robust, accurate
performance in each sample situation in each case study.

Acknowledgement. This work was partially supported by JSPS Postdoctoral Fellowship for
Foreign Researchers in Japan. This work was also partially supported by All India Council for
Technical Education under RPS scheme (Grant No. 8023/BOR/RPS-89/2006-07).

References

[1] Dissanayake, M.W.M.G., Newman, P., Clark, S., Durrant-Whyte, H.F.: A solution
to the simultaneous localization and map building (SLAM) problem. IEEE Tran.
Robotics and Automation 17(3), 229–241 (2001)

[2] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: An improved
particle filtering algorithm for simultaneous localization and mapping that provably
converges. In: Proc. 18th International Joint Conference on Artificial Intelligence
(IJCAI), Acapulco, Mexico (2003)

204 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

[3] Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with Rao-
Blackwellized particle filters by adaptive proposals and selective resampling. In:
Proc. of the IEEE International Conference on Robotics and Automation (ICRA),
Barcelona, Spain, pp. 2443–2448 (2005)

[4] Smith, R., Cheeseman, P.: On the representation and estimation of spatial
uncertainty. International Journal of Robotics Research 5(4) (1986)

[5] Moutarlier, P., Chatila, R.: Stochastic multisensory data fusion for mobile robot
location and environment modeling. In: 5th Int. Symposium on Robotics Research,
Tokyo (1989)

[6] Davison, A.J.: Mobile Robot Navigation Using Active Vision. PhD Thesis, Univ. of
Oxford (1998)

[7] Bailey, T.: Mobile Robot Localization and Mapping in Extensive Outdoor
Environments. PhD Thesis, Univ. of Sydney (2002)

[8] Davison, A.J., Murray, D.W.: Simultaneous localization and map-building using
active vision. IEEE Tran. Pattern Analysis and Machine Intelligence 24(7), 865–880
(2002)

[9] Guivant, J., Nebot, E.: Optimization of the simultaneous localization and
map-building algorithm and real-time implementation. IEEE Tran. Robotics and
Automation 17(3), 242–257 (2001)

[10] Guivant, J., Nebot, E.: Solving computational and memory requirements of feature-
based simultaneous localization and mapping algorithms. IEEE Tran. Robotics and
Automation 19(4), 749–755 (2003)

[11] Williams, S.B., Newman, P., Dissanayake, G., Durrant-Whyte, H.: Autonomous
underwater simultaneous localization and map building. In: Proc. IEEE
International Conference on Robotics and Automation, San Francisco, CA, vol. 2,
pp. 1792–1798 (2000)

[12] Chong, K.S., Kleeman, L.: Feature-based mapping in real, large scale environments
using an ultrasonic array. International Journal of Robotic Research 18(2), 3–19
(1999)

[13] Bosse, M., Leonard, J., Teller, S.: Large-scale CML using a network of multiple
local maps. In: Leonard, J., Tardós, J.D., Thrun, S., Choset, H. (eds.) Workshop
Notes of the ICRA Workshopon Concurrent Mapping and Localization for
Autonomous Mobile Robots (W4), Washington, DC. ICRA Conference (2002)

[14] Thrun, S., Fox, D., Burgard, W.: A probabilistic approach to concurrent mapping
and localization for mobile robots. Machine Learning 31, 29–53 (1998); also
appeared in Autonomous Robots 5, 253–271 (joint issue)

[15] Williams, S., Dissanayake, G., Durrant-Whyte, H.F.: Towards terrain-aided
navigation for underwater robotics. Advanced Robotics 15(5) (2001)

[16] Thrun, S., Hähnel, D., Ferguson, D., Montemerlo, M., Triebel, R., Burgard, W.,
Baker, C., Omohundro, Z., Thayer, S., Whittaker, W.: A system for volumetric
robotic mapping of abandoned mines. In: Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA (2003)

[17] Castellanos, J.A., Montiel, J.M.M., Neira, J., Tardós, J.D.: The SPmap: A
probabilistic framework for simultaneous localization and map building. IEEE
Transactions on Robotics and Automation 15(5), 948–953 (1999)

[18] Paskin, M.A.: Thin junction tree filters for simultaneous localization and mapping.
In: Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI), Acapulco, Mexico (2003)

References 205

[19] Thrun, S., Koller, D., Ghahramani, Z., Durrant-Whyte, H., Ng, A.Y.: Simultaneous
mapping and localization with sparse extended information filters. In: Boissonnat,
J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Proceedings of the Fifth
International Workshop on Algorithmic Foundations of Robotics, Nice, France
(2002)

[20] Neira, J., Tardós, J.D.: Data association in stochastic mapping using the joint
compatibility test. IEEE Transactions on Robotics and Automation 17(6), 890–897
(2001)

[21] Shatkay, H., Kaelbling, L.: Learning topological maps with weak local odometric
information. In: Proceedings of IJCAI 1997. IJCAI, Inc. (1997)

[22] Araneda, A.: Statistical inference in mapping and localization for a mobile robot. In:
Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith,
A.F.M., West, M. (eds.) Bayesian Statistics 7. Oxford University Press, Oxford
(2003)

[23] Montemerlo, M., Thrun, S.: Simultaneous localization and mapping with unknown
data association using Fast SLAM. In: Proc. IEEE International Conference on
Robotics and Automation (ICRA), Taipei, Taiwan (2003)

[24] Hu, W., Downs, T., Wyeth, G., Milford, M., Prasser, D.: A modified particle filter
for simultaneous robot localization and Landmark tracking in an indoor
environment. In: Proc. Australian Conference on Robotics and Automation
(ACRA), Canberra, Australia (2004)

[25] Frese, U., Larsson, P., Duckett, T.: A multilevel relaxation algorithm for
simultaneous localization and mapping. IEEE Tran. Robotics 21(2), 196–207 (2005)

[26] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored
solution to the simultaneous localization and mapping problem. In: Proceedings of
the AAAI National Conference on Artificial Intelligence, Edmonton, Canada, AAAI
(2002)

[27] Lu, F., Milios, E.: Globally consistent range scan alignment for environment
mapping. Autonomous Robots 4, 333–349 (1997)

[28] Mehra, R.K.: On the identification of variances and adaptive Kalman filtering. IEEE
Tran. Automatic Control AC-15(2), 175–184 (1970)

[29] Fitzgerald, R.J.: Divergence of the Kalman filter. IEEE Tran. Automatic Control
AC-16(6), 736–747 (1971)

[30] Sinha, N.K., Tom, A.: Adaptive state estimation for systems with unknown noise
covariances. International Journal of Systems Science 8(4), 377–384 (1977)

[31] Bellanger, P.R.: Estimation of noise covariance matrices for a linear time-varying
stochastic process. Automatica 10, 267–275 (1974)

[32] Dee, D.P., Cohn, S.E., Dalcher, A., Ghil, M.: An efficient algorithm for estimating
noise covariances in distributed systems. IEEE Tran. Automatic Control AC-30(11),
1057–1065 (1985)

[33] Reynolds, R.G.: Robust estimation of covariance matrices. IEEE Tran. Automatic
Control 32(9), 1047–1051 (1990)

[34] Morikawa, H., Fujisaki, H.: System identification of the speech production process
based on a state-space representation. IEEE Trans. Acoust., Speech, Signal
Processing ASSP-32, 252–262 (1984)

[35] Noriega, G., Pasupathy, S.: Adaptive estimation of noise covariance matrices in
real-time preprocessing of geophysical data. IEEE Trans. Geoscience and Remote
Sensing 35(5), 1146–1159 (1997)

206 7 Simultaneous Localization and Mapping (SLAM) in Mobile Robots

[36] Kobayashi, K., Cheok, K.C., Watanabe, K., Munekata, F.: Accurate differential
global positioning system via fuzzy logic Kalman filter sensor fusion technique.
IEEE Tran. Industrial Electronics 45(3), 510–518 (1998)

[37] Loebis, D., Sutton, R., Chudley, J., Naeem, W.: Adaptive tuning of a Kalman filter
via fuzzy logic for an intelligent AUV navigation system. Control Engineering
Practice 12, 1531–1539 (2004)

[38] Wu, Z.Q., Harris, C.J.: An adaptive neurofuzzy Kalman filter. In: Proc. 5th
International Conference on Fuzzy Sets and Systems FUZZ-IEEE 1996, vol. 2, pp.
1344–1350 (September 1996)

[39] Sasiadek, J.Z., Wang, Q., Zeremba, M.B.: Fuzzy adaptive Kalman filtering for
INS/GPS data fusion. In: Proc. 15th International Symposium on Intelligent Control
(ISIC 2000), Rio, Patras, Greece (July 2000)

[40] Clerc, M., Kennedy, J.: The particle swarm-explosion, stability and convergence in
a multidimensional complex space. IEEE Tran. Evolutionary Computation 6(1), 58–
73 (2002)

[41] Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In:
Proceedings of the 1999 Congr. Evolutionary Computation, pp. 1945–1950. IEEE
Service Center, Piscataway (1999)

[42] http://www.acfr.usyd.edu.au/homepages/academic/tbailey/
software/software.html

[43] Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman
Filtering, 3rd edn. John Wiley and Sons, USA (1997)

[44] Chatterjee, A., Matsuno, F.: A neuro-fuzzy assisted extended Kalman filter-based
approach for Simultaneous Localization and Mapping (SLAM) problems. IEEE
Transactions on Fuzzy Systems 15(5), 984–997 (2007)

[45] Chatterjee, A.: Differential evolution tuned fuzzy supervisor adapted extended
kalman filtering for SLAM problems in mobile robots. Robotica 27(3), 411–423
(2009)

[46] Storn, R.: On the usage of differential evolution for function optimization (1996)
[47] Storn, R., Price, K.: Minimizing the real functions of the ICEC 1996 contest by

differential evolution (1996)
[48] http://www.icsi.berkeley.edu/~storn/code.html

(last accessed June 24, 2008)

A. Chatterjee et al.: Vision Based Autonomous Robot Navigation, SCI 455, pp. 207–222.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 8
Vision Based SLAM in Mobile Robots*

Abstract. This chapter is an extension of the previous chapter and it discusses
how the previously discussed concept of SLAM for mobile robots can be actually
implemented in real-life in an indoor environment. The system developed employs
a two camera based vision system which successfully performs image feature
identification and tracking.

8.1 Introduction

As mentioned in the previous chapter, the extended Kalman filter (EKF) based
approach has been widely regarded as probably the most suitable approach for
solving the simultaneous localization and mapping (SLAM) problem for mobile
robots [1-7]. The basic strength of EKF in solving the SLAM problem lies in its
iterative approach of determining the estimation and hence building of an
augmented map of its surrounding environment through which the robot is
directed to navigate through some waypoints. Here we assume that both the initial
localization of the robot pose and the map to be built is unknown to us and we
gradually build the map by considering it as an augmentation of estimated states,
which are nothing but a collection of the positions of the features or landmarks in
the environment, along with the robot’s pose. The estimations of these states are
integrally associated with some uncertainties in these estimates and they are stored
in the form of error covariance matrices. This EKF based SLAM algorithm has
been discussed in detail in the previous chapter. In this chapter we shall now
discuss how SLAM can be implemented in mobile robots employing vision based
sensing.

It is also well regarded that the real implementation of SLAM algorithm for
practical environments to build meaningful maps is a difficult task. The accuracy
of such a system largely depends on the sensors employed. As we already know,
the wheel sensors suffer from wheel-slippage, sonar sensors are low resolution,
not highly accurate systems, which also suffer from environmental disturbances,

* This chapter is adopted from Expert Systems with Applications, vol. 38, issue 7, July 2011,

Avishek Chatterjee, Olive Ray, Amitava Chatterjee, and Anjan Rakshit, “Development of a
Real-Life EKF based SLAM System for Mobile Robots employing Vision Sensing,” pp.
8266-8274, © 2011, with permission from Elsevier.

208 8 Vision Based SLAM in Mobile Robots

infra red sensors can only be employed for short distances, laser range finders are
expensive and slow in operation due to low update rate and the performance of
GPS can suffer due to occlusion of line-of-sight to satellites and their accuracy
and update rate may be slow. Hence, solid-state cameras and computers have
emerged in recent times as an attractive, feasible, real-time solution for building
such robot localization systems [3, 5]. They can also provide comparatively
cheaper solution and they can provide great flexibility in interpreting the
environment through which a robotic platform is needed to navigate. However, till
date, not many works have been reported utilizing vision sensing based SLAM
algorithms. The primary reason for that can be that the development of such
systems and to make them meaningfully accurate in real-life is essentially a
difficult task.

The present chapter will give a detail description of a successful real-life
implementation of SLAM algorithm for map development in an indoor
environment [15], utilizing a popular differential drive mobile robot, called
KOALA robot, which has also been described in previous chapters. An important
highlighting feature of the developed scheme is that this stand-alone system
utilizes a computer vision based sensing system for building the map. A two-
camera based vision system is utilized to perform feature identification, in frames
grabbed, and track these features in subsequent frames. Such a system is essential
for scene identification and obstacle recognition for a vision-based system that
helps in developing suitable navigational algorithms, performing obstacle
avoidance and/or developing a map of the environment where the robot is
intended to carry out the navigation job. The feature tracking approach is based on
minimization of the sum of squared intensity differences between the past and the
current window, which determines whether a current window is a warped version
of the past window. The system is also equipped with the 3D distance calculation
module of the landmarks from the robot frame, which enables to determine the
map of the location, storing current localization of the robot along with the co-
ordinates of the landmarks in the map. The system has been implemented in real-
life in our laboratory for waypoint-directed map development and the system
could demonstrate high accuracy in map development in such indoor
environments.

8.2 The Dynamic State Model for the Differential Drive Koala
Robot

The details of the EKF based SLAM algorithm were already presented in section
7.2. Now, to adapt this theory in the context of the KOALA robot, at first, the
dynamic model is developed for the differential-drive based KOALA robot in this
section. This can also be logically extended to other similar types of mobile robots
too. Here, there are two independent variables governing motion of the vehicle

8.2 The Dynamic State Model for the Differential Drive Koala Robot 209

i.e. rotation of the left wheel of the motor and rotation of the right wheel of the
motor. However, we consider two derived variables as primary variables and these
are (i) linear translation of the geometric center of the robot and (ii) its rotation
around the vertical axis through the geometric center. The rationale behind this
domain changeover is because of the reason that an error is introduced if we
choose ‘rotation’ as a variable, because of the severe deformation of tier during
rotation. Such a problem will not arise in case of linear, translational motion,
where the sources of errors or uncertainties are different e.g. incorrect calibration
of wheel encoder, small slippage in wheel rotation etc. Here we assume that the
robot will never be subjected to simultaneous commands of rotational motion and
translational motion.

Fig. 8.1. Schematic of the KOALA robot movement

While developing the model, we should keep in mind that the robot always
moves along a circular arc. The curvature is zero for linear, translational motion
and the radius of curvature is zero for pure rotation. Figure 8.1 shows the
schematic of a robot movement. Here

sCBA =

 (8.1)

r

s=θ = K1 (Rotation of right wheel – Rotation of left wheel) (8.2)

s = (K2/2) (Rotation of right wheel + Rotation of left wheel) (8.3)

A

B

C

r

θ

210 8 Vision Based SLAM in Mobile Robots

(8.2) and (8.3) enable us to obtain s and θ directly from the readings of the wheel

encoders. Hence we obtain,
θ

= s
r and

2
2

θ= sinrAC . Then AC can be

decomposed into its x- and y-components, when the initial pose φ of the robot is
known. Therefore we have:

θ=φ

φθ=

φθ=

d

rdy

rdx

sinsin

cossin

2
2

2
2

 (8.4)

The development of such a model gives rise to a logical problem under those

situations when θ → 0°, because then ∞→
θ

= s
r . Hence, for θ < 5°, it is

assumed that sAC = . Now, for D amount of linear displacement and θ amount
of rotation of the KOALA robot, the dynamic model can be finalized using the
following formulae:

θ+φ=φ
φ+=
φ+=

θ=φΔ
φ=Δ
φ=Δ

+

+

+

kk

kk

kk

Dyy

Dxx

Dy

Dx

1

1

1

sin

cos

sin

cos

(8.5)

Hence the Jacobians and the covariance matrix will be calculated as:

φ
φ

=

θ∂
φΔ∂

∂
φΔ∂

θ∂
Δ∂

∂
Δ∂

θ∂
Δ∂

∂
Δ∂

=∇
10

0

0

sin

cos

u
f

D

y

D

y

x

D

x

(8.6)

φ
φ−

=∇
100

10

01

cos

sin

x
f D

D

v

(8.7)

and

σθ

σ
=

2

2

0

0D
Q where σD = D × standard deviation for per unit

displacement and σθ = θ × standard deviation for per unit rotation.

8.3 Vision Sensing Based Image Feature Identification, Feature Tracking 211

8.3 Vis ion Sensing Based Image Feature Ide ntification, Feature Trac king

8.3 Vision Sensing Based Image Feature Identification, Feature
Tracking and 3d Distance Calculation for Each Feature

8.3 Vis ion Sensing Based Image Feature Ide ntification, Feature Trac king

In our SLAM algorithm, the “observe” step is carried out using vision sensing.
The basic version of the KOALA robot is originally procured with some built-in
sensors, e.g. incremental wheel encoders and infrared (IR) sensors, and it has been
later integrated with several accessories e.g. ultrasonic sensors, wireless radio
modem, sensor scanning-tilt-pan system, vision system, servo motors for
controlling four degrees of freedom, computing platform etc. All the integrations
have been carried out in-house in our laboratory. Figure 8.2 shows the KOALA
robot in its integrated form, used specifically for the purpose of performing vision
based SLAM.

 (a) (b)

Fig. 8.2. KOALA mobile robot, original procured with some built-in sensors, and later
integrated in our laboratory with several accessories

The vision-based sensing employs two webcams, as shown in Fig. 8.2(a), for
real-life implementation, where the main objective is to implement a two camera
based vision system for image feature selection, tracking of the selected features
and the calculation of 3D distance of the selected features [16]. This feature
identification is based on selection of suitable, candidate image patches or
windows in captured frames from running videos acquired from each camera, that
have high potential of tracking in subsequent frames. In real life, image patches
having high edge information content are better candidates for tracking and hence
such patches (considered as static in our system) are considered the best candidate
landmarks for developing subsequent maps. The computation of correspondences
between features in different views (for our system, the left snap and the right

212 8 Vision Based SLAM in Mobile Robots

snap i.e. the frames grabbed from the left camera and the right camera) is a
necessary precondition to obtain depth information. The system first performs a
feature identification algorithm in the frame grabbed from the left camera to
identify some suitable rectangular patches or windows that are most suitable as
trackable features (patches with sufficient texture) and then it attempts to track
them in the frame grabbed from the right camera. The inspiration for developing
such a image tracking system is obtained from the Kanade-Lucas-Tomasi (KLT)
Tracker [10, 13]. It is always preferable to track a window or patch of image
pixels instead of a single pixel because it is almost impossible to track a single
pixel, unless it has a very distinctive brightness with respect to all its neighbors. At
the same time the result can be confusing, because the intensity value of the pixel
can also change due to noise. Hence N number of feature windows is selected,
based on the intensity profile, by maintaining a minimum distance between the
features in an image frame. For an image f(x, y), a two dimensional function, its
gradient is a vector and the gradient of each window G is calculated along x-
direction and y-direction as:

=

=

2

2

yyx

yxx

yyxy

xyxx

ggg

ggg

gg

gg
G (8.8)

The suitability of the choice of a window as a feature window is evaluated by
computing the eigenvalues λ1 and λ2 of its G matrix and a feature window is
accepted if

 min (λ1, λ2) > λ (8.9)

where λ is a predefined threshold [14]. Two small eigenvalues mean a roughly
constant intensity profile within the window. A large and a small eigenvalue
correspond to a unidirectional texture pattern. On the other hand two large
eigenvalues represent the corners or salt and pepper type texture [11][16].

Once the features are selected, the next job is to follow or track these features
from one frame to another frame in an image sequence [11-13]. Similar to [11],
we compute the displacement dp = [dxp dyp]T of the center of a feature window
that minimizes the sum of the squared difference in image intensities between the
windows of the two image frames under consideration. In case of the small inter-
frame motion, the motion of the features within two image frames can be
approximated sufficiently accurately by a pure translation model. However, for
bigger inter-frame motions, an affine model, comprising linear warping combined
with pure translation, is known to provide better models. Here, the quality of the
feature monitored during tracking is better with a dissimilarity measure that
includes a deformation matrix that represents the linear warping based affine
motion model as well as translations of feature within the frame. The point motion
in the image can be described by

 J(Axp + dp) = I(xp) (8.10)

8.3 Vision Sensing Based Image Feature Identification, Feature Tracking 213

where, J is the current image, I is the original image, A = 1+D (1 is a 2x2 identity
matrix and D is the deformation matrix) and dp is the translation vector. Hence
the dissimilarity can be computed utilizing w(xp), a weighting function (popularly
chosen as unity or a Gaussian function to emphasize the central portion of the
window) as [11]

 ε =
W

[J(Axp + dp) – I(xp)]2 w(xp)dxp (8.11)

The Newton-Raphson minimization between image intensities of two windows is
employed to search for the new position of the center point of a feature window in
a new frame in an iterative manner. The following system is needed to be solved
to obtain dp:

 Gdp=e (8.12)

where ()= dawTggG ; G = second order weighted coefficient matrix (2×2),

e = weighted intensity error vector (2×1) (e = (
W

(I – J) gwda), dp = displacement

vector (2×1) (dp = [dxp dyp]T), and g = Gradient vector (2×1)

(
T

y

I

x

I
g

∂
∂

∂
∂=).

This iterative algorithm solves (8.12) by solving, in each iteration, for

=

y

x

yyxy

xyxx

e

e

dyp

dxp

gg

gg
and calculating the new window center in the

image, where we are trying to perform the tracking, in that iteration, as xp_tracked =
xp_tracked + dxp; yp_tracked = yp_tracked + dyp.

The 3D distance of the tracked landmarks can be obtained on the basis of data
available about the geometry of the camera and the head used [3], [9], [14]. To get
depth information in stereo vision, it is required that two lines of sight for the two
cameras intersect at a scene point P and from this information the three-
dimensional coordinates of the observed scene point in the world co-ordinate
system (WCS) can be obtained. Our distance calculation module is based on the
pin-hole camera model used in Andrew J. Davison’s work [3]. It makes use of the
well known camera calibration matrix and perspective projection equation and
utilizes the “Midpoint of Closest Approach”. Figure 8.3 shows a front view of the
active head designed and implemented in our laboratory where H = the vertical
distance of the head center above the ground plane, I = the horizontal distance
between the left and the right vergence axes, and c = the offset along either
vergence axis between the intersections with the elevation axis and the camera
optic axis.

214 8 Vision Based SLAM in Mobile Robots

Fig. 8.3. Front view of the active head designed in our laboratory with sensor-scanning-
pan-tilt system, two webcams and four servo motors for individual control of four degrees
of freedom (pan control, tilt control, left vergence control and right vergence control)

Once new landmarks or image patches are identified and tracked between left
and right camera images they can be initialized in the map utilizing the usual
procedure of new landmark initialization in our EKF-based SLAM algorithm.
Similarly, identification and tracking of image patch(es) in left and right camera
images, which was(were) also previously identified in images acquired for a past
position of the robot, will constitute the re-observation step of our EKF-based
SLAM algorithm. In this step, where the estimated position of this landmark is
calculated according to the usual “Predict” step of the Kalman filter, it is further
refined by performing the corresponding “Observe and Update” step of the
Kalman filter algorithm.

The steps followed for this vision-sensing based real-life implementation of
EKF-SLAM algorithm is shown in Algo. 8.1. Here it can be seen that the robot is
asked to move through some waypoints and it is directed to build a map of its
surrounding. To perform this function, the robot is moved by a specified distance
and it grabs several image frames to perform landmark observation as well as its
own localization simultaneously. To build a map for both environment ahead of
the robot, environment to its left and environment to its right, it is taking image
shots both for 0° angular position of the pan-angle, for +θ° angular position of
pan-angle and for -θ° angular position of pan-angle. Hence during the “observe”

8.4 Real-Life Performance Evaluation 215

step of the EKF the robot identifies and acquires feature(s)/landmarks(s) from
environment straight ahead of it, from environment to its left and from
environment to its right. This procedure of moving the robot ahead, performing
the “predict” step, using vision sensors in several pan directions to acquire and
track landmarks, and to perform “correct and update” step of EKF algorithm is
performed in an iterative fashion, until the last waypoint is reached. The map built
in the last iteration is utilized as the final map built by the robot, to be used for
some future tasks in the same environment.

Step 1. Specify the waypoints through which the robot should navigate and
initialize the robot pose.

Step 2. Move the robot by a specified amount and perform the “predict” step of
EKF.

Step 3. Grab image frames from continuously running video sequences in left and
right camera, for 0° angular position of the pan-angle, and perform
feature identification, tracking and distance calculation of the tracked
feature(s) from the robot.

Step 4. Repeat Step 3 for +θ° angular position of pan-angle.
Step 5. Repeat Step 3 for -θ° angular position of pan-angle.
Step 6. For new feature(s)/landmark(s) observed in step 3 - step 5, initialize them

in the map.
Step 7. For those feature(s)/landmark(s) observed in step 3 - step 5, which were

observed earlier, perform the usual “observe and update” step of EKF, to
refine the map already built.

Step 8. Perform step 2 – step 7 until the robot reaches the last waypoint specified.
Step 9. Store the last map built by the robot as the final map built for the

environment.

Algo. 8.1. The Real EKF-based SLAM algorithm implemented for the KOALA robot,
using vision sensors, in an indoor environment (in our laboratory)

8.4 Real-Life Performance Evaluation

As we have mentioned previously, the KOALA robot is a 32 cm x 32 cm, six
wheeled, and differential drive vehicle manufactured by K-team, Switzerland. It
has already been mentioned that in KOALA, the hardware control is performed by
an on- board microprocessor (16MHz Motorola 68331@ 22MHz) [8]. To add the
four degrees of freedom to the robot system for pan, tilt, left vergence and right
vergence control, we have developed a PIC 16F876A micro-controller based
system that, in interrupt-driven mode, works in conjunction with the Motorola
processor of the KOALA robot, in master-slave configuration. The development
of such a PIC micro-controller based system for interfacing external add-on
peripherals with a real mobile robot, is really helpful for adding flexibility for real
life applications and this development was discussed in detail in chapter 2.

216 8 Vision Based SLAM in Mobile Robots

 (b)

(b)

 (a)

(c)

Fig. 8.4. The environment created through which the robot navigates and performs EKF-
SLAM algorithm

Figure 8.4 shows the indoor environment created through which the robot is
asked to navigate through several specified waypoints and build a map performing
vision-based SLAM algorithm. To judge the performance of the system, a grid
containing 100 squares was drawn on the maze with each square having a
dimension of 20 cm × 20 cm i.e. a navigation domain of dimension 2 m × 2 m was
explored.

Figure 8.5 shows the GUI-based software developed in our laboratory for real-
life execution of the EKF-SLAM algorithm. Different frames in Fig. 8.5 show the
landmarks identified during several iterations for incremental map building
employing the EKF-SLAM algorithm and incorporation of these landmarks in the
stored map. The “green line” shows the ideal path joining the waypoints through
which the robot is asked to navigate. The “light blue triangle” represents the
initial, starting pose of the robot and, as can be seen in Fig. 8.4, this initial pose for
our implementation is considered as: () ()TT

xz 00100 ,,,, −=φ . For this real-

life implementation here, the notations z, x and φ are chosen in conformation with
the notations used in [3] and hence the z-direction and x-direction correspond to
the x-direction and y-direction respectively, as specified in our theories before.

8.4 Real-Life Performance Evaluation 217

During its navigation, the robot identifies landmarks in its surrounding
environment and initializes their positions or refines their positions in the map. As
the robot keeps moving forward, the number of landmarks identified, and hence,
the size of the map, increases. The “red crosses” in the map show the 2D positions
of the landmarks identified. Figure 8.5(d) shows the final map constructed at the
end of the test-run of the KOALA robot.

 (a) (b)

 (c) (d)

Fig. 8.5. Real-life landmark identification for map building in different steps of EKF-
SLAM algorithm

Figure 8.6 shows the GUI-based form developed for capturing image frames in
real-life, for some representative positions of the KOALA robot and
demonstrating the performance of feature extraction and tracking algorithm, for
meaningful identification of landmarks. The image patches identified in “red
squares” are identified as new potential landmarks and the image patches
identified in “green squares” are identified as re-observed landmarks. The form
also displays the 3D distance calculated for each landmark tracked, from the robot.

218 8 Vision Based SLAM in Mobile Robots

 (a) (b)

 (b)

 (c) (d)

Fig. 8.6. Sample examples of results of feature extraction, feature tracking and 3D distance
calculation of the tracked features from the robot, for some representative positions of the
KOALA robot, during its test run in the environment

Figure 8.7 shows three sample situations of identifying and tracking

features/landmarks in real environments. The “green line” on the maze and in
vertical direction and the “red dots” help in pointing the actual landmark in the
environment and in obtaining its true position. The hollow circle drawn in “light
blue” shows the actual object corresponding to an image patch identified in the
environment. The estimated positions of these landmarks in the map built, shown
earlier in Fig. 8.5, show that there are small discrepancies between the true 2D
positions and the estimated 2D positions for most of the landmarks in the map.
However this is always understandable and can be appreciated for real-life
experimentations. Table 8.1 shows these true and estimated positions, for the three
sample landmarks under consideration, as shown in Fig. 8.7.

8.4 Real-Life Performance Evaluation 219

 (a) (b)

 (c) (d)

Fig. 8.7. Three sample situations of identifying and tracking landmarks in real
environments

220 8 Vision Based SLAM in Mobile Robots

 (e) (f)

Fig. 8.7. (continued)

Table 8.1. Performance comparison of the EKF-SLAM algorithm employing vision
sensing, for three sample real-life landmarks, as shown in Fig. 8.7

Sl.
No.

Landmark
Description

Estimated Position
(cm)

 True Position (cm)

 z-coordinate x- coordinate z-coordinate x- coordinate
1. Landmark in Fig.

8.6(a) and Fig. 8.6(b)
(bottom left corner of
the keyboard image)

-43 -26 -47 -27

2. Landmark in Fig.
8.6(c) and Fig 8.6(d)
(corner of the letter
‘A’ in UMAX box)

-18 -18 -10 -23

3. Landmark in Fig.
8.6(e) and Fig. 8.6(f)
(top right corner of
the thick red line in

the FOXIN box)

4 70 2 74

8.5 Summary

In this chapter we described the theories of and successfully demonstrated a real-life
implementation of the simultaneous localization and mapping problem (SLAM) of
mobile robots for indoor environments, utilizing two web-cam based stereo-vision
sensing mechanism. The system showed a successful implementation of an
algorithm for image feature identification in frames grabbed from continuously

References 221

running videos on two cameras, installed on the active head integrated in-house with
KOALA mobile robot, tracking of features/landmarks identified in a frame in
subsequent frames and incorporation of these landmarks in the map created,
utilizing a 3D distance calculation module implemented in real-life for calculation
of co-ordinates of landmarks in WCS on the basis of the distances calculated of
the landmarks from the robot frames. The system could be successfully test-run in
laboratory environments where our experimentations showed that there are very
small deviations of the estimated landmark positions determined in the map from
the actual positions of these landmarks in real-life. It is hoped that such successful
implementations will inspire many readers to implement similar meaningful map
building systems for more complex environments and also in outdoor situations.

Acknowledgement. The work reported in this chapter was supported by All India Council
for Technical Education under RPS scheme (Grant No. 8023/BOR/RPS-89/2006-07).

References

[1] Dissanayake, M.W.M.G., Newman, P., Clark, S., Durrant-Whyte, H.F.: A solution
to the simultaneous localization and map building (SLAM) problem. IEEE Tran.
Robotics and Automation 17(3), 229–241 (2001)

[2] Smith, R., Cheeseman, P.: On the representation and estimation of spatial
uncertainty. International Journal of Robotics Research 5(4) (1986)

[3] Davison, A.J.: Mobile Robot Navigation Using Active Vision. PhD Thesis, Univ. of
Oxford (1998)

[4] Bailey, T.: Mobile Robot Localization and Mapping in Extensive Outdoor
Environments. PhD Thesis, Univ. of Sydney (2002)

[5] Davison, A.J., Murray, D.W.: Simultaneous localization and map-building using
active vision. IEEE Tran. Pattern Analysis and Machine Intelligence 24(7), 865–880
(2002)

[6] Chatterjee, A., Matsuno, F.: A neuro-fuzzy assisted extended Kalman filter-based
approach for Simultaneous Localization and Mapping (SLAM) problems. IEEE
Trans. on Fuzzy Systems 15(5), 984–997 (2007)

[7] Chatterjee, A.: Differential evolution tuned fuzzy supervisor adapted extended
Kalman filtering for SLAM problems in mobile robots. Robotica 27(3), 411–423
(2009)

[8] KOALA User Manual, Version 2.0 (silver edition), K-team S.A., Switzerland (2001)
[9] Nishimoto, T., Yamaguchi, J.: Three dimensional measurements using fisheye stereo

vision. In: SICE Annual Conference, Japan, pp. 2008–2012 (September 2007)
[10] Brichfield, S.: KLT, An implementation of the Kanade-Lucas-Tomasi feature

tracker, http://www.ces.clemson.edu/~stb/klt
[11] Shi, J., Tomasi, C.: Good Features to Track. In: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR 1994) Seattle, pp. 593–600 (June 1994)
[12] Marr, D., Poggio, T., Ullman, S.: Bandpass channels, zero-crossing, and early visual

information processing. Journal of the Optical society of America 69, 914–916
(1979)

[13] Moravec, H.: Obstacle avoidance and navigation in the real world by a seeing robot
rover. PhD thesis Stanford University (September 1980)

222 8 Vision Based SLAM in Mobile Robots

[14] Yamaguti, N., Oe, S., Terada, K.: A Method of distance measurement by using
monocular camera. In: SICE Annual Conference, Japan, pp. 1255–1260 (July 1997)

[15] Chatterjee, A., Ray, O., Chatterjee, A., Rakshit, A.: Development of a Real-Life
EKF based SLAM System for Mobile Robots employing Vision Sensing. Expert
Systems with Applications 38(7), 8266–8274 (2011)

[16] Chatterjee, A., Singh, N.N., Ray, O., Chatterjee, A., Rakshit, A.: A two-camera
based vision system for image feature identification, feature tracking and distance
measurement by a mobile robot. International Journal of Intelligent Defence
Support Systems 4(4), 351–367 (2011)

Index

A

active sensors 47
AGV 11, 47
ANN 22
API 101, 108
appearance-based technique 5
architecture 180
arithmetic mean filter 53
ARMA 169
array 108
ASCII 35
autonomous navigation 9

B

base 180
batch-mode 178
bearing 170
binary image 54
brightness 212
bumper 173
burst frequency 87

C

calibration 172
camera 2, 23, 25, 55, 213
Canny edge detection 54
CCD camera 143
client-server 97
clock 25
cognitive component 182
contrast enhancement 101, 113, 117
control 143
controller 172
convolution 113
correct 173
correlation 10, 168
cost function 193
count 149
covariance 168

crossover 194
crossover probability 194

D

data 25
data association 168
data byte 33
DE 193
dead zone 55, 86
deformation matrix 213
defuzzification 152, 180
degree of freedom 22, 63
de-speckle 146
detour 154
differential drive 102
Dijkstra’s algorithm 48
dilation 54
dissimilarity measure 212
DOF 22, 23
drive 33
dynamic range enhancement 85

E

edge 54
EEPROM 25
EKF 12, 168, 176, 207
elevation 213
elevation angle 55
environment 216
evolutionary algorithm 193

F

FASTSLAM 168
feature 170, 208
field-of-view 162
FINALE 4
FIR filter 113
firing degree 158
fitness function 181

224 Index

floor plane 55
focal length 55
frame 212
frame grabber 49
fuzzification 150
fuzzy 143, 144, 169
fuzzy inference 149
fuzzy obstacle avoidance 144
fuzzy set 150
fuzzy supervisor 193
FUZZY-NAV 4

G

Gaussian distribution 6
geometric-mean filter 101, 117
global 181
GPS 2, 167, 208
gradient vector 213
gray image 146
gray-scale 101
grid map 66, 67, 71
GUI 35, 216

H

Harris edge and corner detector 7
histogram stretching 117
Hough transform 6

I

I2C mode 34
IF-THEN rule 151
illumination 91
illuminometer 96
image 55, 108
image processing 53
infrared 47
infrared sensor 2
innovation 174
innovation adaptation estimation 176
innovation covariance matrix 174
innovation sequence 176
INTCON register 26
intensity 212
interrupt 91
interrupt service routine 33
intranet-connectivity 97
IR based navigation 62
IR range finder 85, 86
IR sensor 2, 48, 84

J

Jacobian 174

K

Kalman filter 12, 168
KLT feature tracker 8
KLT tracker 212
KOALA 21, 34, 39, 83, 208

L

landmark 169, 176
laptop 83
large 150
laser 47, 173
laser range finder 2
LDR 90, 91
LED 87, 90
line 145
linear velocity 144
linearization 174
localization 4
low pass filter 53, 113

M

mask 54, 113
master mode 39
matrix 170
measurement noise covariance

matrix 169
measurement update 173
medium 150
message box 113
metaheuristic 181
MF 150, 180
microcontroller 84
microprocessor 215
monocular vision 48
mono-vision 23, 84
motion model 172
MSSP control register 26

N

narrow path 145
navigation 3, 216
neural network 22
neuro-fuzzy 169
NEURO-NAV 4
Newton-Raphson minimization 213

Index 225

O

observation 174
obstacle 3
obstacle avoidance 12, 62
obstacle detection 12
obstructed zone 54
occupancy map 4
omni-directional vision 10
optical center 55
optical proximity detector 85, 89
optical-flow based technique 5
optimization 181
optimum 181

P

pan 34, 63
pan-tilt system 53
parameter 170
parity 50
particle 181
particle filter 168
passive sensors 47
path planning 3
PC 83
peripheral interface command 39
PIC 16F876A microcontroller 23
PIC microcontroller 22, 86
PIE1 register 26
PIR1 registers 26
pixel 149
population 193
PORT 26
pose 62, 207
predict 172
process covariance matrix 169
processor 35
proximity 91
proximity sensor 49, 84
PSO 169, 181
PWM 87

R

radial depth map 7
radius of curvature 209
RAM 26, 84
range 170
range quantization 87
RC servo motor 26, 27
reading 155

reflectivity 96
region growing 54
RGB 101
RGB image 7
RGB24 113
RMS error 196
robot 143
rotation 209
RS232 83
RS232 serial link 26
rule 158
rule-based approach 102

S

scan 155
scanner 173
search 162
segmentation 54
sensor 155
servomotor 23, 39
shortest path 58
SLAM 11, 167, 176, 207
slave mode 39
small 150
SMC 168
SMSD 94
social component 182
sonar 47
sonar sensor 2
SPI 25
start bit 50
steepest descent 58
steering angle 62, 144
stereo vision 14, 48, 143
stereo-vision 23
stochastic 181
stop bit 50
subgoal 48, 58
switching mode synchronous

detection 85, 89

T

TCP/IP protocol 97
thickening 54
threshold 91
tilt 34, 63
time update 172
timer 25
tracking, patch 211
training 181

226 Index

transistor 90
translation 212
translation vector 213
translational motion 209
TS system 149

U

uncertainty 174
unobstructed zone 54
unsupervised 181
USART 26
USB 83, 84
USB-to-serial converter 83
U-turn 162

V

VB 35, 39
VB6 101
vehicle 167, 168

velocity 181
vergence 35, 213
vertex 180
video 108, 146
vision 3, 48, 84
vision-based navigation 145

W

warping 212
waypoint 215
WCS 55, 213
webcam 108, 113
weighting function 213
wheel 170
wheel encoder 49, 62
wheel slippage 172
wheelbase 173
Wi-fi 84
window 212
wireless camera 49

	Title
	Preface
	Contents
	Mobile Robot Navigation
	Autonomous Mobile Robot Navigation
	Why Vision in Navigation?
	Vision-Based Navigation
	Vision Based Indoor Navigation
	Vision Based Outdoor Navigation

	State of the Art
	Obstacle Detection and Avoidance
	Summary
	References

	Interfacing External Peripherals with a Mobile Robot
	Introduction
	PIC Microcontroller Based System for Interfacing a Vision System with a Ready-Made Robot
	The Integrated System Employing KOALA Robot with a PC and a Vision System
	Real-Life Performance Evaluation
	Summary
	References

	Vision-Based Mobile Robot Navigation Using Subgoals
	Introduction
	The Hardware Setup
	A Two-Layer, Goal Oriented Navigation Scheme
	Image Processing Based Exploration of the Environment in Layer 1
	Shortest Path Computation and Subgoal Generation

	Indigenous Development of Vision-Based Mobile Robots
	Introduction
	Development of a Low-Cost Vision Based Mobile Robot
	Development of Microcontroller Based Sensor Systems for Such Robots
	IR Range Finder System with Dynamic Enhancement1
	Optical Proximity Detectors Using Switching-Mode Synchronous Detection Technique2

	The Intranet-Connectivity for Client-Server Operation
	Summary
	References

	Sample Implementations of Vision-Based Mobile Robot Algorithms
	Introduction
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5
	Lesson 6
	Lesson 7
	Lesson 8
	Lesson 9
	Lesson 10
	Summary
	References

	Vision Based Mobile Robot Path/Line Tracking
	Introduction
	A Preview of the Proposed Scheme
	A Fuzzy System for Vision Based Robot Navigation
	The IR-Sensor Based Obstacle Avoidance by Employing a Fuzzy Algorithm
	Real-Life Performance Evaluation
	Summary
	References

	Simultaneous Localization and Mapping (SLAM) in Mobile Robots
	Introduction
	Extended Kalman Filter (EKF) Based Stochastic SLAM Algorithm
	Neuro-fuzzy Assistance for EKF Based SLAM
	The Neuro-fuzzy Architecture and Its TrainingMethodology Employing Particle Swarm Optimization (PSO)
	Architecture of the Neuro-fuzzy Model
	Training the Neuro-fuzzy Model Employing PSO
	Performance Evaluation

	Training a Fuzzy Supervisor Employing DifferentialEvolution (DE) Based Optimization
	Performance Evaluation

	Summary
	References

	Vision Based SLAM in Mobile Robots
	Introduction
	The Dynamic State Model for the Differential Drive Koala Robot
	Vision Sensing Based Image Feature Identification, Feature Tracking and 3d Distance Calculation for Each Feature
	Real-Life Performance Evaluation
	Summary
	References

	Index

