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Abstract. There is given an overview of generalizations of the integral inequali-
ties for integrals based on nonadditive measures. The Hölder, Minkowski, Jensen,
Chebishev and Berwald inequalities are generalized to the Choquet and Sugeno in-
tegrals. A general inequality which cover Hölder and Minkowski type inequalities
is considered for the universal integral. The corresponding inequalities for impor-
tant cases of the pseudo-integral and applications of these inequalities in pseudo-
probability are also given.
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1 Introduction

The Hölder, Minkowski, Jensen and Chebyshev inequalities for Lebesgue integral,
see [12], play an important role in mathematical analysis and in other areas of math-
ematics, especially in theory of probability, differential equations, geometry, and
wider, e.g., information sciences, economics, engineering.
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The classical measure theory is based on countable additive measures and the
Lebesgue integral. However, additivity measures do not allow modeling many phe-
nomena. For this reason, nonadditive measure, called also fuzzy measure or ca-
pacity, and the corresponding integrals, e.g., Choquet, Sugeno, are introduced, see
[15, 18, 36, 45]. The Choquet and Sugeno integrals have important applications as
aggregation functions in decision theory (multiple criteria, multiple attributes, mul-
tiperson decision making, multiobjective optimization), information or data fusion,
artificial intelligence and fuzzy logic, see [17, 44, 47, 48].

The pseudo-analysis as a generalization of the classical analysis is based on a spe-
cial nonadditive measures, called pseudo-additive measures, and one of its tools is
the pseudo-integral. There we consider instead of the field of real numbers a semir-
ing, i.e., a real interval [a,b] ⊆ [−∞,∞] with pseudo-addition ⊕ and with pseudo-
multiplication �, see [34, 35, 36, 37, 39, 40, 46]. On this structure the notions of
⊕-measure (pseudo-additive measure) and corresponding integral (pseudo-integral)
are introduced. Methods of the pseudo-analysis can be applied for solving prob-
lems in many different fields such as system theory, optimization, decision making,
control theory, differential equations, difference equations, etc. Similar approach
was introduced independently by Maslov and his collaborators in the framework of
idempotent measures theory, see [20, 22, 25]. The theory of cost measures based on
idempotent measures and integrals of Maslov was delevoped, see [7, 8, 9].

Considering the wide applications of integrals based on nonadditive measure,
there is a need for the study of inequalities for those integrals. The study of inequal-
ities for Choquet and Sugeno integral, were given in [1, 2, 16, 27, 28, 30, 31, 43].
The first of all Jensen type inequality for Sugeno integral was obtained by Román-
Flores et al. [43]. A fuzzy Chebyshev type inequalty has been considered by a sev-
eral authors, see [2, 16, 28, 30, 32]. Inequalities with respect to the Choquet integral
is observed by Wang [31] and Mesiar, Li, and Pap [27]. The generalizations of the
classical integral inequalities for the universal integral (introduced in [19]) were in-
vestigated in [6]. In [1, 5, 41, 42] inequalities with respect to pseudo-integrals were
obtained.

In the Section 2 an overview on generalizations of the Jensen, Hölder, Minkowski,
Chebishev and Berwald type inequalities for Choquet and Sugeno integrals are
given. In Section 3, we review results related to the universal integral, as gen-
eralization of Choquet and Sugeno integral. There are given a general inequal-
ity which cover Hölder and Minkowski type inequalities. Generalizations of the
Hölder, Minkowski, Jensen and Chebyshev type inequalities for important cases
of the pseudo-integral are presented in Section 4. Inspired by applications integral
inequalities in the probability theory, the pseudo-probability is introduced and the
inequalities valid for the pseudo-integral is applied in this theory in Section 4.6.1.
Finally, using the notions of the cost measure we review these inequalities related to
the value of a cost variables.
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2 General Nonadditive Measures and Integrals Based on Them

Let X be a non-empty set and A a σ -algebra of subsets of X . Then (X ,A ) is
measurable space and a function f : X → [0,∞] is called A -measurable if, for each
B ∈ B ([0,∞]), the σ -algebra of Borel subsets of [0,∞], the preimage f−1(B) is an
element of A .

Definition 1. ([36, 48]) A monotone measure m on a measurable space (X ,A ) is a
function m : A → [0,∞] satisfying
(i) m(∅) = 0,
(ii) m(X)> 0,
(iii) m(A)� m(B) whenever A⊆ B.

Normed monotone measures on (X ,A ), i.e., monotone measures satisfying m(X) =
1, are also called fuzzy measures (see [36, 48]).

The Choquet, Sugeno and Shilkret integrals (see [10, 36, 38, 48]) are based on
monotone measure and they are defined, respectively, for any measurable space
(X ,A ), for any measurable function f and for any monotone measure m, by

Ch(m, f ) =
∫ ∞

0
m({ f � t})dt,

Su(m, f ) = sup{min(t,m({ f � t})) | t ∈ ]0,∞])} ,
Sh(m, f ) = sup{t ·m({ f � t}) | t ∈ ]0,∞])} ,

where the convention 0 ·∞= 0 is used.
Now we give a short overview on results related to the generalizations of the

classical integral inequalities for Choquet and Sugeno integrals.
Jensen inequality and reverse Jensen inequality for Sugeno integral is obtained

in [43]. Jensen, Chebyshev, Hölder and Minkowski type inequalities for Choquet
integral and several convergence concepts as applications of these inequalities are
observed in [31]. An approach to the Choquet integral as Lebesgue integral is given
in [27] and in this way there are obtained the related inequalities.

Chebyshev type inequality for Sugeno integral based on Lebesgue measure are
obtained in [16]. Previous results from [16] are generalised in [30]. Namely, there
is presented a Chebyshev type inequality for Sugeno integral based on an arbi-
trary fuzzy measure. This inequality for comonotone functions and arbitrary fuzzy
measure-base Sugeno integral were given in [28]

A general Minkowski type inequality for Sugeno integral is obtained in [1].
Berwald inequality for Sugeno integral is studied in [4]. This inequality holds in

the following form:

Theorem 1. Let 0 < r < s < ∞, f : [a,b]→ [0,∞[ be a concave function and m be
the Lebesgue measure on R. Then
(a) if f (a)< f (b) , then
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(Su(m, f r))
1
r � min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
Su(m, f s)

b−a

) 1
s
,

⎛
⎜⎝b−

(b−a)
1+r

r (1+s)
1
s

(1+r)
1
r

(
Su(m, f s)

b−a

) 1
s
+a f (b)−b f (a)

f (b)− f (a)

⎞
⎟⎠

1
r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(b) if f (a) = f (b) , then

(Su(m, f r))
1
r � min

{
f (a) ,(b− a)

1
r

}
,

(c) if f (a)> f (b) , then

(Su(m, f r))
1
r � min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
Su(m, f s)

b−a

) 1
s
,

⎛
⎜⎝

(b−a)
1+r

r (1+s)
1
s

(1+r)
1
r

(
Su(m, f s)

b−a

) 1
s
+a f (b)−b f (a)

f (b)− f (a) − a

⎞
⎟⎠

1
r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

3 Universal Integral

In order to define the notion of the universal integral the following notions are
needed.

Definition 2. ([19]) Let (X ,A ) be a measurable space.
(i) F (X ,A ) is the set of all A -measurable functions f : X → [0,∞];
(ii) For each number a ∈ ]0,∞], M

(X ,A )
a is the set of all monotone measures (in the

sense of Definition 1) satisfying m(X) = a; and we take

M (X ,A ) =
⋃

a∈]0,∞]
M

(X ,A )
a .

An equivalence relation between pairs of measures and functions was introduced in
[19].

Definition 3. Two pairs (m1, f1) ∈ M (X1,A1) ×F (X1,A1) and (m2, f2) ∈ M (X2,A2)

×F (X2,A2) satisfying

m1({ f1 � t}) = m2({ f2 � t}) for all t ∈ ]0,∞] ,

will be called integral equivalent, in symbols
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(m1, f1)∼ (m2, f2) .

Notion of the pseudo-multiplication is necessary to introduce the universal integral.

Definition 4. ([36, 46]) A function ⊗ : [0,∞]2 → [0,∞] is called a pseudo-
multiplication if it satisfies the following properties:

(i) it is non-decreasing in each component, i.e., for all a1,a2,b1,b2 ∈ [0,∞] with
a1 � a2 and b1 � b2 we have a1⊗ b1 � a2⊗ b2;
(ii) 0 is an annihilator of , i.e., for all a ∈ [0,∞] we have a⊗ 0 = 0⊗ a = 0;
(iii) has a neutral element different from 0, i.e., there exists an e ∈ ]0,∞] such that,
for all a ∈ [0,∞], we have a⊗ e = e⊗ a = a.

Let S be the class of all measurable spaces, and take

D[0,∞] =
⋃

(X ,A )∈S

M (X ,A )×F (X ,A ).

The Choquet, Sugeno and Shilkret integrals are particular cases of the following
integral given in [19].

Definition 5. A function I : D[0,∞] → [0,∞] is called a universal integral if the fol-
lowing axioms hold:

(I1) For any measurable space (X ,A ), the restriction of the function I to M (X ,A )

×F (X ,A ) is non-decreasing in each coordinate;
(I2) there exists a pseudo-multiplication ⊗ : [0,∞]2 → [0,∞] such that for all pairs
(m,c ·1A) ∈D[0,∞] (where 1A is the characteristic function of the set A)

I(m,c ·1A) = c⊗m(A);

(I3) for all integral equivalent pairs (m1, f1) ,(m2, f2) ∈D[0,∞] we have

I(m1, f1) = I(m2, f2) .

By Proposition 3.1 from [19] we have the following important characterization.

Theorem 2. Let ⊗ : [0,∞]2 → [0,∞] be a pseudo-multiplication on [0,∞]. Then the
smallest universal integral I and the greatest universal integral I based on ⊗ are
given by

I⊗ (m, f ) = sup{t⊗m({ f � t}) | t ∈ ]0,∞])} ,
I⊗ (m, f ) = essupm f ⊗ sup{m({ f � t}) | t ∈ ]0,∞])} ,

where essupm f = sup{t ∈ [0,∞] | m({ f � t})> 0} .
Notice that Su = IMin and Sh = IProd , where the pseudo-multiplications Min and
Prod are given by Min(a,b) = min(a,b) and Prod(a,b) = a ·b.
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There is neither a smallest nor a greatest pseudo-multiplication on [0,∞]. But,
if we fix the neutral element e ∈ ]0,∞] , then the smallest pseudo-multiplication ⊗e

with neutral element e is given by

a⊗e b =

⎧⎨
⎩

0 if (a,b) ∈ [0,e[2 ,
max(a,b) if (a,b) ∈ [e,∞]2 ,
min(a,b) otherwise.

Then by Proposition 3.2 from [19] there exists the smallest universal integral I⊗e

among all universal integrals given by

I⊗e(m, f ) = max(m({ f � e}),essinfm f ),

where essinfm f = sup{t ∈ [0,∞] | m({ f � t}) = e}.

3.1 A General Inequality for the Universal Integral

We will give first a main inequality, see [6], and then the Minkowski and Chebyshev
type inequalities appear as special cases.

The following important property of a pair of functions is needed, see [15, 36].
Functions f ,g : X →R are said to be comonotone if for all x,y ∈ X ,

( f (x)− f (y))(g(x)− g(y))� 0.

The comonotonicity of functions f and g is equivalent to the nonexistence of points
x,y ∈ X such that f (x) < f (y) and g(x)> g(y).

Theorem 3. Let � : [0,∞[2→ [0,∞[ be continuous and nondecreasing in both ar-
guments and ϕ : [0,∞[→ [0,∞[ be continuous and strictly increasing function. Let
f ,g ∈ F (X ,A ) be two comonotone measurable functions and ⊗e : [0,∞]2 → [0,∞]
be a smallest pseudo-multiplication on [0,∞] with neutral element e ∈ ]0,∞] and m
∈ M (X ,A ) be a monotone measure such that I⊗e (m,ϕ ( f )) and I⊗e (m,ϕ (g)) are
finite. If

ϕ−1 ((ϕ (a � b)⊗e c))�
(
ϕ−1 ((ϕ (a)⊗e c))� b

)∨ (a �ϕ−1 ((ϕ (b)⊗e c))
)
,

then the inequality

ϕ−1 (I⊗e (m,ϕ ( f � g)))� ϕ−1 (I⊗e (m,ϕ ( f )))�ϕ−1 (I⊗e (m,ϕ (g)))

holds.
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3.2 Minkowski’s Inequality for Universal Integral

As a corollary of Theorem 3 we obtain an inequality related to Minkowski type for
universal integral. Hence, if ϕ (x) = xs for all s > 0, the following holds:

Corollary 1. Let f ,g ∈ F (X ,A ) be two comonotone measurable functions and
⊗e : [0,∞]2 → [0,∞] be a smallest pseudo-multiplication on [0,∞] with neutral el-
ement e ∈ ]0,∞] and m ∈ M (X ,A ) be a monotone measure such that I⊗e (m, f s)
and I⊗e (m,gs) are finite. Let � : [0,∞[2→ [0,∞[ be continuous and nondecreasing
in both arguments. If

((a � b)s⊗e c)
1
s �

(
(as⊗e c)

1
s � b

)
∨
(

a � (bs⊗e c)
1
s

)
,

then the inequality

(I⊗e (m,( f � g)s))
1
s � (I⊗e (m, f s))

1
s � (I⊗e (m,gs))

1
s

holds for all s > 0.

3.3 Chebyshev’s Inequality for Universal Integral

Due to Theorem 3, if s = 1 we have the Chebyshev type inequality.

Corollary 2. Let f ,g ∈ F (X ,A ) be two comonotone measurable functions and
⊗e : [0,∞]2 → [0,∞] be a smallest pseudo-multiplication on [0,∞] with neutral ele-
ment e ∈ ]0,∞] and m ∈M (X ,A ) be a monotone measure such that I⊗e (m, f ) and
I⊗e (m,g) are finite. Let � : [0,∞[2→ [0,∞[ be continuous and nondecreasing in both
arguments. If

(a � b)⊗e c)� [(a⊗e c)� b]∨ [a � (b⊗e c)] ,

then the inequality

I⊗e (m,( f � g))� I⊗e (m, f )� I⊗e (m,g)

holds.

4 Pseudo-Integral

Let [a,b] be a closed (in some cases semiclosed) subinterval of [−∞,∞]. The full
order on [a,b] will be denoted by 
. This can be the usual order of the real line,
but it can be another order. The operation ⊕ (pseudo-addition) is a commutative,
non-decreasing (with respect to 
 ), associative function ⊕ : [a,b]× [a,b]→ [a,b]
with a zero (neutral) element denoted by 0 . Denote [a,b]+ = {x : x ∈ [a,b] ,0 

x}. The operation � (pseudo-multiplication) is a function � : [a,b]× [a,b]→ [a,b]
which is commutative, positively non-decreasing, i.e., x 
 y implies x� z 
 y� z,
z ∈ [a,b]+, associative and for which there exist a unit element 1 ∈ [a,b], i.e., for
each x∈ [a,b] ,1�x = x. We assume 0�x = 0 and that� is distributive over⊕, i.e.,
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x� (y⊕ z) = (x� y)⊕ (x� z)

The structure ([a,b] ,⊕,�) is called a semiring (see [23, 36]). We will consider only
semirings with the following continuous operations:

Case I: The pseudo-addition is idempotent operation and the pseudo-multiplication
is not.

(a) x⊕ y = sup(x,y), � is arbitrary not idempotent pseudo-multiplication on the
interval [a,b] (or [a,b)). We have 0 = a and the idempotent operation sup induces a
full order in the following way: x 
 y if and only if sup(x,y) = y.

(b) x⊕ y = sup(x,y), � is arbitrary not idempotent pseudo-multiplication on the
interval [a,b] (or (a,b]). We have 0 = b and the idempotent operation inf induces a
full order in the following way: x 
 y if and only if inf(x,y) = y.

Case II: The pseudo-operations are defined by a monotone and continuous function
g : [a,b]→ [0,∞] , i.e., pseudo-operations are given with

x⊕ y = g−1(g(x)+ g(y)) and x� y = g−1(g(x) ·g(y)).

If the zero element for the pseudo-addition is a, we will consider increasing genera-
tors. Then g(a) = 0 and g(b) = ∞. If the zero element for the pseudo-addition is b,
we will consider decreasing generators. Then g(b) = 0 and g(a) = ∞.

If the generator g is increasing (decreasing), the operation ⊕ induces the usual
order (opposite to the usual order) on the interval [a,b] in the following way: x 
 y
if and only if g(x)≤ g(y) .

Case III: Both operations are idempotent. We have
(a) x⊕ y = sup(x,y), x� y = inf(x,y), on the interval [a,b]. We have 0 = a and

1 = b. The idempotent operation sup induces the usual order (x 
 y if and only if
sup(x,y) = y).

(b) x⊕ y = inf(x,y), x� y = sup(x,y), on the interval [a,b]. We have 0 = b and
1 = a. The idempotent operation inf induces an order opposite to the usual order
(x
 y if and only if inf(x,y) = y).

In order to present the Hölder and Minkowski integral inequalities for the pseudo-
integral, it is necessary to introduce the pseudo-power. For x∈ [a,b]+ and p∈ ]0,∞[,
the pseudo-power x(p)

� is defined in the following way. If p = n is an integer then

x(n)� = x� x�·· ·� x︸ ︷︷ ︸
n

. Moreover, x
( 1

n )� = sup
{

y | y(n)� ≤ x
}

. Then x
(m

n )� = x(r)� is well

defined for any rational r ∈ ]0,∞[, independently of representation r = m
n = m1

n1
, m,

n, m1, n1 being positive integers (the result follows from the continuity and mono-
tonicity of �). Due to continuity of �, if p ∈ ]0,∞[ is not rational, then

x(p)
� = sup

{
x(r)� | r ∈ ]0, p[ , r is rational

}
.
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Evidently, if x� y = g−1(g(x) ·g(y)), then x(p)
� = g−1 (gp (x)). On the other hand, if

� is idempotent, then x(p)
� = x for any x ∈ [a,b] and p ∈ ]0,∞[.

Let (X ,A ) be a measurable space. A set function m : A → [a,b] is a σ -⊕-
measure if there hold

(i) m(∅) = 0 (if ⊕ is not idempotent),
(ii)m(

⋃∞
i=1 Ai) =

⊕∞
i=1 m(Ai) holds for any sequence (Ai)i∈N of pairwise disjoint

sets from A .

We suppose that ([a,b] ,⊕) and ([a,b] ,�) are complete lattice ordered semigrups.
We suppose that [a,b] is endowed with a metric d compatible with sup and inf, i.e.
limsupxn = x and liminfxn = x, imply limn→∞ d (xn,x) = 0, and which satisfies at
least one of the following conditions:

(a) d (x⊕ y,x′ ⊕ y′)≤ d (x,x′)+ d (y,y′)
(b) d (x⊕ y,x′ ⊕ y′)≤max{d (x,x′) ,d (y,y′)} .
Let f and h be two functions defined on X and with values in [a,b]. We define for
any x ∈ X for functions f and g that ( f ⊕ g)(x) = f (x)⊕ g(x) and ( f � g)(x) =
f (x)� g(x) , and for any λ ∈ [a,b] (λ � f )(x) = λ � f (x).

The pseudo-characteristic function with values in a semiring is defined with

χA(x) =

{
0 , x 
∈ A
1 , x ∈ A

.

A step (measurable) function is a mapping e : X → [a,b] that has the following

representation e =
n⊕

i=1

ai�χAi for ai ∈ [a,b] and sets Ai ∈A are pairwise disjoint if

⊕ is nonidempotent.
Let ε be a positive real number, and B ⊂ [a,b]. A subset {lεi }n∈N of B is a ε-net

in B if for each x∈ B there exists lεi such that d (lεi ,x)� ε . If we have lεi 
 x, than we
call {lεi } a lower ε-net. If lεi 
 lεi+1 holds, than {lεi } is monotone, for more details
see [33, 36].

Let m : A → [a,b] be a ⊕-measure.

(i) The pseudo-integral of a step function e : X → [a,b] is defined by

∫ ⊕

X
e� dm =

n⊕
i=1

ai�m(Ai) .

(ii)The pseudo-integral of a measurable function f : X → [a,b], (if ⊕ is not idem-
potent we suppose that for each ε > 0 there exists a monotone ε-net in f (X)) is
defined by ∫ ⊕

X
f � dm = lim

n→∞

∫ ⊕

X
en(x)� dm,

where (en)n∈N is a sequence of step functions such that d(en(x), f (x))→ 0 uni-
formly as n→ ∞.
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4.1 Two Important Special Cases

If the pseudo-operations are defined by a monotone and continuous function g :
[a,b]→ [0,∞] , the pseudo-integral for a measurable function f : X → [a,b] is given
by, ∫ ⊕

X
f � dm = g−1

(∫
X
(g ◦ f )d (g ◦m)

)
, (1)

where the integral applied on the right side is the standard Lebesgue integral. In
special case, when X = [c,d] ,A = B (X) and m= g−1◦λ , λ the standard Lebesgue
measure on [c,d] , then the pseudo-integral reduces on g -integral. Therefore, due to
(1) we have ∫ ⊕

[c,d]
f dx = g−1

(∫ d

c
g( f (x))dx

)
.

When the semiring is of the form ([a,b] ,sup,�) , cases I(a) and III(a) from section
4 we shall consider complete sup-measure m only and A = 2X , i.e., for any system

(Ai)i∈I of measurable sets, m

(⋃
i∈I

A

)
= supi∈I m(Ai). Recall that if X is countable

(especially, if X is finite) then any σ -sup-measure m is complete and, moreover,
m(A) = supx∈Aψ (x), where ψ : X → [a,b] is a density function given by ψ (x) =
m({x}) . Then the pseudo-integral for a function f : X → [a,b] is given by

∫ ⊕

X
f � dm = supx∈X ( f (x)�ψ (x)) ,

where function ψ defines sup-measure m.
In [29] is shown that any sup-measure generated as essential supremum of a

continuous density can be obtained as a limit of pseudo-additive measures with
respect to generated pseudo-addition.

Theorem 4. Let m be a sup-measure on ([0,∞] ,B ([0,∞])), where B ([0,∞]) is the
Borel σ -algebra on [0,∞],

m(A) = essupμ (ψ (x) : x ∈ A) , (2)

and ψ : [0,∞]→ [0,∞] is a continuous density. Then for any pseudo-addition⊕ with
a generator g there exists a family {mλ} of ⊕λ -measure on ([0,∞[ ,B), where ⊕λ
is generated by gλ (the function g of the power λ ), λ ∈ ]0,∞[ , such that

limλ→∞mλ = m.

For any continuous function f : [0,∞]→ [0,∞] the integral
∫ ⊕

f � dm can be ob-

tained as a limit of g-integrals, ([29]).
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Theorem 5. Let ([0,∞] ,sup,�) be a semiring with � generated by the generator
g. Let m be the same as in Theorem 4. Then exists a family {mλ} of ⊕λ -measures,
where ⊕λ is generated by gλ , λ ∈ ]0,∞[, such that for every continuous function
f : [0,∞]→ [0,∞]

∫ sup
f � dm = limλ→∞

∫ ⊕λ
f �λ dmλ .

In the following we will give the Hölder, Minkowski, Jensen and Chebyshev type
inequaities for important cases of the pseudo-integral.

Since the cases I(b) and III(b) are linked to the cases I(a) and III(a) by duality,
all inequaities for the pseudo-integral related to the cases I(a) and III(a) can be
transformed into inequaities for pseudo-integral related to the cases I(b) and III(b).

4.2 Hölder’s Inequality for Pseudo-integral

Now we shall give a generalization of the classical Hölder inequality on the semiring
with generated pseudo-operations based on [5].

Recall that if p and q are positive real number such that 1
p +

1
q = 1, then p and q

is a pair of conjugate exponents.

Theorem 6. Let p and q be conjugate exponents, 1< p<∞. For a given measurable
space (X ,A ) let u,v : X → [a,b] be two measurable functions and let a generator
g : [a,b]→ [0,∞] of the pseudo-addition ⊕ and the pseudo-multiplication � be an
increasing function. Then for any σ -⊕-measure m it holds:

∫ ⊕

X
(u� v)� dm �

(∫ ⊕

X
u(p)
� � dm

)( 1
p

)

�
�
(∫ ⊕

X
v(q)� � dm

)( 1
q

)

�
.

Example 1. (i) Let [a,b] = [0,∞] and g(x) = xα for someα ∈ [1,∞[ . The correspond-
ing pseudo-operations are x⊕ y = α√xα + yα and x� y = xy. Then the inequality
from Theorem 6 reduces on the following inequality

α

√∫
[c,d]

u(x)αv(x)α dx � pα

√∫
[c,d]

u(x)pα dx qα

√∫
[c,d]

v(x)qα dx.

(ii) Let [a,b] = [0,∞] and g(x) = xα for some α ∈ [1,∞[ . The corresponding pseudo-
operations are x⊕ y = α√xα + yα and x� y = xy. Then the inequality from Theorem
6 reduces on the following inequality

α

√∫
[c,d]

u(x)αv(x)α dx � pα

√∫
[c,d]

u(x)pα dx qα

√∫
[c,d]

v(x)qα dx.
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Let x⊕ y = sup(x,y) and x� y = g−1(g(x)g(y)). As a consequence of the Hölder
type theorem for a complete sup-measure the following result holds for general σ -
sup-measure by [5].

Theorem 7. Let � be represented by an increasing generator g and m be σ -sup-
measure. Let p and q be conjugate exponents with 1 < p <∞. Then for any measur-
able functions u,v : X → [a,b] , it holds:

∫ sup

X
(u� v)� dm≤

[∫ sup

X
u(p)
� � dm

]( 1
p

)

�
�
[∫ sup

X
v(q)� � dm

]( 1
q

)

�
.

In the case III(a) and p > 0, x(p)
� = x, the Hölder inequality reduces to the inequality

∫ sup

X
(u� v)� dm≤

(∫ sup

X
u� dm

)
�
(∫ sup

X
v� dm

)
,

which trivially holds because of distributivity of sup and inf.

Example 2. Let [a,b] = [−∞,∞] and g generating� be given by g(x) = ex. Then

x� y = x+ y,

and Hölder type inequality from Theorem 7 reduces on

supx∈X (u(x)+ v(x)+ψ(x))

� 1
p

supx∈X (p ·u(x)+ψ(x))+
1
q

supx∈X (q · v(x)+ψ(x))

where u,v,ψ are arbitrary real function on X .

4.3 Minkowski’s Inequality for Pseudo-integral

In [5] is given Minkowski’s inequality for three cases of the pseudo-integrals. The
following inequality holds for the case II and corresponding pseudo-integral.

Theorem 8. Let u,v : X → [a,b] be two measurable functions and p ∈ [1,∞[. If
an additive generator g : [a,b]→ [0,∞] of the pseudo-addition ⊕ and the pseudo-
multiplication � are increasing. Then for any σ -⊕-measure m it holds:

(∫ ⊕

X
(u⊕ v)(p)

� � dm

)( 1
p

)

�

�
(∫ ⊕

X
u(p)
� � dm

)( 1
p

)

�
⊕
(∫ ⊕

X
v(p)
� � dm

)( 1
p

)

�
.
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If we observe semiring ([a,b] ,sup, inf) , then the corresponding inequality means

(recall that x(p)
� = x for each x ∈ [a,b] , p > 0)

∫ ⊕

X
(u⊕ v)� dm � sup

(∫ ⊕

X
u � dm,

∫ ⊕

X
v � dm

)
.

In the case I(a) also Minkowski type inequality holds.

Theorem 9. Let � be represented by an increasing generator g, m be a complete
sup-measure and p ∈ ]0,∞[. Then for any functions u,v : X → [a,b], it holds:

(∫ sup

X
(sup(u,v))(p)

� � dm

)( 1
p

)

�

= sup

⎛
⎝
(∫ sup

X
u(p)
� � dm

)( 1
p

)

�
,

(∫ sup

X
v(p)
� � dm

)( 1
p

)

�

⎞
⎠ .

4.4 Jensen Inequality for Pseudo-integral

Due to [42] we have the following generalization Jensen inequality for two cases of
the pseudo-integral.

Theorem 10. Let (X ,A ) be a measurable space, m be a σ -⊕-measure and m(X) =
1. Let a generator g of the pseudo-addition⊕ and the pseudo-multiplication� is a
convex and increasing function. If f : X → [a,b] is a measurable function such that∫ ⊕

X
f � dm < b and Φ is a convex and nonincreasing function on a subinterval of

[a,b] containing the range of f , with values in [a,b] , then we have

Φ
(∫ ⊕

X
f � dm

)
�
∫ ⊕

X
(Φ ◦ f )� dm.

Example 3. (i) Let g(x) = xα for some α ∈ [1,∞[ . The corresponding pseudo-
operations are x⊕ y = α√xα + yα and x� y = xy. Then the inequality from Theo-
rem 10 has the following form

Φ

(
α

√∫
[0,1]

f (x)α dx

)
� α

√∫
[0,1]

Φ ( f (x))α dx.

(ii)Let g(x) = ex. The corresponding pseudo-operations are x⊕ y = ln(ex + ey) and
x� y = x+ y. Then we have the following inequality

Φ
(

ln
∫
[0,1]

e f (x) dx

)
� ln

(∫
[0,1]

eΦ( f (x)) dx

)
.
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Now we consider the case when ⊕= max, and �= g−1(g(x)g(y)). From Theorem
5 and the previous theorem it follows the next theorem.

Theorem 11. Let the pseudo-multiplication � is represented by a convex and
increasing generator g, μ be the usual Lebesgue measure on R and m be a sup-
measure on ([c,d] ,B ([c,d])) defined by (2) where ψ : [c,d]→ [0,∞] is a continu-
ous density and m([c,d]) = 1. If f : [c,d]→ [0,∞] is continuous function such that

pseudo-integral
∫ sup

[c,d]
f �dm is finite andΦ is a convex and non-increasing function

on the range of f , then it holds:

Φ
(∫ sup

[c,d]
f � dm

)
�
∫ sup

[c,d]
(Φ ◦ f )� dm.

Example 4. Using Example 3(ii) we have that gλ (x) = eλ x. Then

lim
λ→∞

1
λ

ln
(

eλ x + eλ y
)
= max(x,y),

and
x�λ y = x+ y.

Therefore Jensen type inequality from Theorem 11 reduces on

Φ (sup( f (x)+ψ(x)))� sup(Φ( f (x))+ψ(x)) ,

where ψ is a density function related to m..

4.5 Chebyshev’s Inequality for Pseudo-integral

The Chebyshev type inequality for pseudo-integral is studied in [1, 41]. Let in the
following theorems ([c,d],A ) be a measure space and m be σ -⊕ -measure such that
m([c,d]) = 1.

Theorem 12. Let f1, f2 : [c,d]→ [a,b] be measurable functions. If an additive gen-
erator g of the pseudo-addition ⊕ and pseudo-multiplication � is an increasing
function and f1, f2 are either both increasing or both decreasing, then

∫ ⊕

[c,d]
f1� dm�

∫ ⊕

[c,d]
f2� dm �

∫ ⊕

[c,d]
( f1� f2)� dm.

In special case, when [c,d] = [0,1] , A = B ([0,1]) and m = g−1 ◦λ , λ the standard
Lebesgue measure on [0,1] , we have the inequality from [41].
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Example 5. (i) Let g(x) = xα for some α ∈ [1,∞) . The corresponding pseudo-
operations are x⊕ y = α√xα + yα and x� y = xy. Then by the previous theorem
we obtain the following inequality

α

√∫
[0,1]

f1(x)α dx α

√∫
[0,1]

f2(x)α dx � α

√∫
[0,1]

f1(x)α f2(x)αdx .

(ii) Let g(x) = ex. The corresponding pseudo-operations are x⊕ y = ln(ex + ey) and
x� y = x+ y. Then by the previous theorem we obtain the following inequality

ln
∫
[0,1]

e f1(x) dx+ ln
∫
[0,1]

e f2(x) dx � ln

(∫
[0,1]

e f1(x)+ f2(x)dx

)
.

Now, we consider the second case, when⊕= max, and �= g−1(g(x)g(y)). Due to
Theorem 5 and the previous theorem the following holds:

Theorem 13. Let � is represented by an increasing multiplicative generator g and
m be the same as in Theorem 11. Then for any continuous functions f1, f2 : [c,d]→
[a,b], which are either both increasing or both decreasing, holds:

∫ sup

[c,d]
f1� dm�

∫ sup

[c,d]
f2� dm �

∫ sup

[c,d]
( f1� f2)� dm.

Example 6. Using Example 5(ii) we have that gλ (x) = eλ x. Then

lim
λ→∞

1
λ

ln
(

eλ x + eλ y
)
= max(x,y),

and
x�λ y = x+ y.

Therefore, Chebyshev type inequality from Theorem 13 reduces on

sup( f1(x)+ψ(x))+ sup( f2(x)+ψ(x))� sup( f1(x)+ f2 (x)+ψ(x)) ,

where ψ is a density function related to m.

4.6 Applications

4.6.1 Pseudo-probability

The pseudo-probability is a generalization of the classical probability. In an analo-
gous way as in the probability theory, see [11], we will introduced the corresponding
notions in the framework of the σ -⊕-measure and the pseudo-integral.

Let ([a,b] ,⊕,�) be a semiring and (X ,A ) be a measurable space.
The pseudo-probability P is σ -⊕-measure on (X ,A ) satisfying P(X) = 1.
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Specially, if we observe case II and P is a classical probability then P= g−1 ◦P
is distorted probability, see [13].

The function Y : X → [a,b] is a pseudo-random variable if for any y ∈ [a,b] it
holds

{ω ∈ X | Y (ω)≺ y}= {Y ≺ y} ∈A .

The pseudo-expectation of the pseudo-variable Y is introduced by

E(Y ) =
∫ ⊕

X
Y � dP.

If the pseudo-expectation of the pseudo-random variable Y has a finite value in the
sense of a given semiring, i.e., if the operation ⊕ induces the usual order (opposite
to the usual order) on the interval [a,b] it means that E(Y )< b, (E(Y )> a), then Y
is integrable.

Due to definition of the pseudo-expectation, we have

E( f (Y )) =
∫ ⊕

X
f (Y )� dP (3)

for any measurable function f : [a,b]→ [a,b] .
As consequences of (3) and the inequalities valid for pseudo-integral, with the

same assumptions as in the corresponding inequalities type theorems the following
hold:

(i) By Hölder’s inequality we have

E (Y �Z)

(

E
(
(Y )(p)

�
))( 1

p

)

�
�
(

E (Z)(q)�
)( 1

q

)

�
, (4)

(ii) By Minkowski’s inequality we have

(
E
(
(Y ⊕Z)(p)

�
))( 1

p

)

�


(

E
(
(Y )(p)

�
))( 1

p

)

�
⊕
(

E
(
(Z)(p)

�
))( 1

p

)

�
, (5)

(iii) By Jensen’s inequality we have

Φ (E(Y ))
 E(Φ (Y )) ,

(iv) By Chebyshev’s inequality we have

E( f1 (Y ))�E( f2 (Y ))
 E( f1 (Y )� f2 (Y )) .

4.6.2 Cost Measure and Decision Variable

The duality between probability and optimization was considered in [9]. Hence,
there (R+,+,×) is replaced by the semiring (]−∞,∞] ,min,+) . By analogy with
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probability theory there cost mesure, decision variable and related notions were in-
troduced. Let the semiring (]−∞,∞] ,min,+) is denoted by Rmin.

Let U be a topological spaces, U be the set of open sets of U. A set function
K : U →Rmin is a cost measure if there hold

(i) K( /0) = ∞,
(ii) K(U) = 0,

(iii) K(
⋃

n An) = infnK(An) za sve An iz U .

The triplet (U,U ,K) is called a decision space.
A function c : U → Rmin such that K(A) = infu∈A c(u) for any A ∈ U is a cost

density of the cost measure K.
A l.s.c. function c : U → Rmin such that infu c(u) = 0 defines a cost measure on

(U,U ) by K(A) = infu∈A c(u) ([8]). Also, for any cost measure K defined on open
sets of a topological space with a countable basis of open sets there exists a unique
minimal extension K∗ to P (U) ([21, 26]).

Now we recall the definitions of the decision variables and related notions [9].
The mapping Y : U → E is a decision variables on (U,U ,K) , where E is a

topological space with a countable basis of open set. It induces a cost measure
KY on (E,B) (where B denotes the set of open sets of E ) defined by KY (A) =
K∗
(
Y−1 (A)

)
for all A ∈ B. The cost measure KY has a l.s.c. density denoted cY .

When E = Rmin a decision variable Y is called a cost variable.
The value of a cost variable Y is defined by

V(Y ) = inf
x
(x+ cY (x)) .

The convergence of decision variables, law of large numbers, Bellman chains and
processes are also considered in [9].

Remark 1. The cost measure, decision variables and related notions can also be de-
fined in a general idempotent semiring, see [8].

Notice that the value of a cost variable Y is defined by the pseudo-integral with
respect to σ -⊕-measure K∗, i.e.,

V(Y ) =
∫ inf

U
Y � dK∗.

Let Y and Z be decision variables on (U,U ,K) . Due to the previous notations the
inequalities (4) and ( 5) have the following forms:

(i) For Hölder’s inequality

V(Y +Z)≥ 1
p
V(pY )+

1
q
V(qZ) ,

where p and q are conjugate exponents, 1 < p < ∞,
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(ii) For Minkowski’s inequality

1
p
V(p inf(Y,Z)) = inf

(
1
p
V(pY ) ,

1
p
V(pZ)

)
,

where p ∈ ]0,∞[ .
In [14] the semiring ([−∞,∞) ,sup,+) are considered and there are given the

corresponding inequalities related to idempotent integral introduced in [24]. These
inequalities also have applications in decision theory. Hence, in this case Hölder’s
and Minkowski’s inequalities have the following forms:

E(Y +Z)≤ 1
p
E(pY )+

1
q
E(qZ) ,

where p and q are conjugate exponents, 0 < p≤ q < ∞ and

1
p
E(psup(Y,Z)) = sup

(
1
p
E(pY ) ,

1
p
E(pZ)

)
,

where p ∈ (0,∞) and E(Y ) is the value of a decision variables (in the sense of a
given semiring) defined by sup-integral (see [24]).

5 Conclusion

We have given the generalizations of the mostly used integral inequalities for non-
additive integrals (Choquet integral, Sugeno integral, universal integral, pseudo in-
tegral). The future work will be the investigation of new applications of obtained
results in many fields.
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