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Preamble

Dear Reader,

Probably you are thinking: ‘‘Why another book about spectroscopic ellipsometry
and polarimetry, if there are classical books from Azzam and Bashara (Ellipsometry
and Polarized light) [1], Fujiwara (Spectroscopic Ellipsometry: Principles and
Applications) [2], Schubert (Infrared Ellipsometry on Semiconductor Layer
Structures: Phonons, Plasmons, and Polaritons) [3], and others, including the
‘‘Handbook on Ellipsometry’’ [4], by Tompkins and Irene?’’

The main reason is that scientists, including ourselves, start in exploiting
ellipsometry for characterizing structured, plasmonic, stochastic, self-assembled,
and engineered nanoscale systems, where the Fresnel equations are not strictly
applicable any more.

This raises a list of puzzling questions: how accurate is the classical description
representing nanomaterials? What is the limit of applying an effective medium
theory to nanostructures? What is the minimum size for which nonlocal and
quantum size effects predominate in the nanostructures? What are the effects of size
and shape of nanostructures on their dielectric function? How do physics and
chemistry change at the nanoscale?

The opportunity to gather experts to share opinions and find answers seemed too
good to miss.

Indeed, it turns out experimentally that ellipsometry and polarimetry are
extremely powerful for monitoring in situ and in real time nanoscale processes and
characterizing ex situ nanostructured materials. Therefore, to provide the commu-
nity with different aspects and opinions on this rapidly evolving field, we have
decided to edit this book to critically present and review recent applications of
polarimetric techniques to nanomaterials.
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In order to catch the spirit of this book, let us recall the international accepted
definition of nanotechnology1:

Establishing deepened knowledge at the nanoscale has been the main focus of
the nanotechnology research community in the last decade. In this context, in 2008,
the European Commission funded, within the 7th Framework Programme, a cross-
disciplinary project entitled ‘‘NanoCharM.’’

The NanoCharM coordination action brought together a critical mass of experts
and committed and passionate people who believe in a future with better
understanding and control of nanomaterials and related processes achievable by
exploiting the potential of noninvasive polarization-based optical techniques of
ellipsometry and polarimetry. NanoCharM moved ideas from the laboratory into
practice and industry through the commitment to transform knowledge and
expertise in materials and diagnostics into new products, processes, and devices,
according to nanotechnology definition.

This book evolved from the NanoCharM extensive program of training courses,
workshops, roadmapping, and networking events that created broad awareness of
the many advantages of ellipsometry characterization. We were glad to see that
students and colleagues from many different areas found interest in ellipsometry.
This book also contains and reflects the spirit advanced and matured of learning

Definition of Nanotechnology (Set Out in Nanotechnology Research
Directions, 1999) (see footnote 1)

Nanotechnology is the ability to control and restructure the matter at the
atomic and molecular levels in the range of approximately 1–100 nm, and
exploiting the distinct properties and phenomena at that scale as compared to
those associated with single atoms or molecules or bulk behaviour. The aim
is to create materials, devices, and systems with fundamentally new prop-
erties and functions by engineering their small structure. This is the ultimate
frontier to economically change materials properties, and the most efficient
length scale for manufacturing and molecular medicine. The same principles
and tools are applicable to different area of relevance and may help establish
a unifying platform for science, engineering, and technology at the nano-
scale. The transition from single atoms or molecules behaviour to collective
behaviour of atomic and molecular assemblies is encountered in nature, and
nanotechnology exploits this natural threshold.

1 International Standards Organization (ISO), TC 229: Nanotechnologies (2010),
http://www.iso.org/iso/iso_technical_committee.html?commid=381983
M.C. Roco, R.S. Williams, P. Alivisatos (eds.), Nanotechnology Research Directions: Vision for
the Next Decade. IWGN Workshop Report 1999 (National Science and Technology Council,
Washington, DC, 1999), Available online: http://www.wtec.org/loyola/nano/IWGN, Research.
Directions/. Published by Kluwer, currently Springer, 2000.
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from the experience of growing and characterizing nanomaterials and thin films, to
gain the capacity to face new challenges in material characterization at the
nanoscale.

In essence, it keeps alive the aim of the NanoCharM project to develop
ellipsometry and polarimetry measurements and control procedures required to
mass produce nanomaterials, which are critical factors for the successful transition
from ideas to commercial products.

This book cannot be comprehensive and does not reprint information already
included in the classical textbooks on ellipsometry; indeed, it gives an up-to-date
introduction to and an overview about the ongoing research and need in
nanomaterials characterization.

Who knows what new concepts might emerge in our ‘‘nano-minds’’ and where
the important applications will be? We hope that this book inspires you to apply
polarimetric techniques for your research approach and that its contents facilitate
the interpretation of the measurements in terms of chemical and physics
phenomena.

Writing this book would not have been possible without the very helpful input
and inspiration that we received from many students and colleagues, especially
those who lively contributed to the NanoCharM schools and workshops. We are
especially grateful to Marcin Sadowski, a colleague and the motivating scientific
officer of the European Commission (Directorate General for Research), who
followed the NanoCharM project also with scientist0s spirit asking us intriguing and
challenging questions and giving us many enlightening suggestions. We thank all
scientists who inspired the attendants of the NanoCharM schools and workshops
with their lectures and contributions. Just to name a few, far from being
comprehensive, Prof. Manuel Cardona (Max-Planck Institute, Suttgart), Prof.
Wolfgang Richter (University of Rome), Prof. Dr. Friedhelm Bechstedt (University
Jena), Prof. Bernard Drevillon (Ecole Polytechnique, LPICM), Dr. Ramdane
Benferhat (Horiba-JY), Prof. Dr. Hans Arwin (University Linkoping), Prof. Dr.
Joachim Krenn (University of Graz), Dr. Fritz Keilmann (Munich-Centre for
Advanced Photonics), Prof. Norbert Esser (ISAS-Berlin). We are also very thankful
to all authors and really appreciate the dedication in providing insights into current
and future trends in ellipsometry. Finally, we thank the publisher, Springer-Verlag,
especially Mayra Castro for her invaluable and unwavering commitment.

Maria Losurdo
Kurt Hingerl
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Preface

‘‘Light has a relation to the matter which it meets with in its course, and is affected
by it, being reflected, deflected, transmitted, refracted, and absorbed by particles
very minute in their dimensions. At present the most instructed persons are, I
suppose, very far from perceiving the full and close coincidence between all the
facts of light interacting with particles and the physical account of them which the
theory supplies.’’ This is how Michael Faraday started his ‘‘Bakerian Lecture:
Experimental Relations of Gold (and Other Metals) to Light’’ published in 1857 in
the Philosophical Transactions of the Royal Society. More than a century and a
half has passed, and despite the enormous advances in understanding the inter-
action of light with nanostructured materials, this sentence still expresses a way
of thinking common to those who enter the world of physical investigations of
the nature and action of a ray of light with nanostructures that were of the order of
‘‘1/282000th of an inch’’, which we say 35 nm nowadays!

Therefore, the term nanotechnology is new, but research at the nanometer scale
is not new at all!

Richard Feynman’s renowned lecture ‘‘There’s plenty of room at the bottom’’
(1959 at Caltech) is seen as the milestone of nanoscience. Noteworthily, Feynman
also presciently recognized the synergy between the ability to make things smaller
and the ability to see and probe what has been made as the key to progress in the
field of nanoscience and nanotechnology.

Indeed, almost 15 years earlier, in 1945, Alexandre Rothen made the pio-
neering statement that ‘‘during the course of an investigation of the reaction
between films of antigens and antibodies, it was found that an apparatus was
needed which would measure film thickness rapidly and with an accuracy of at
least 1 Å’’ (which is a fraction of a nanometer!). The apparatus that was devised
was given the name ‘‘ellipsometer’’ [1]. Already in 1945, the ellipsometer was
capable of measuring a film thickness to within ±0.3 Å!

Therefore, we could say that ellipsometry was pioneering nanoscience, where
both light and matter play leading roles.

In the past few years, entirely new classes of materials have been discovered
and developed. These include one-dimensional nanowires and quantum dots of
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various compositions, polyvalent noble metal nanostructures, graphene, metama-
terials, superlattices, and a wide variety of other nanoparticle assemblies. A
toolbox of nanostructures is being engineered with tailored, functional optical
properties and colors for optics, photonics, and biomedical applications ranging
from therapeutics to diagnostics. The need for a wider understanding of nano-
particle and nanostructures exploiting characterization techniques down to the
level of 0.1–100 nm is the driving force of significant changes in optical metrol-
ogy, since, from the optical point-of-view, the interaction of materials with pho-
tons is strongly dependent not only on the chemistry but also on structure, size, and
shape, which can then be used to control light propagation.

The versatile nature of ellipsometry as a functional, nanoscale sensitive, and
nondestructive technique, is paving the way for the application of these new
nanostructures in a widening field of technologies and for breakthroughs in
knowledge of thin film multilayer surfaces, composite and smart materials, and
materials engineering at the nanoscale.

Scope of the Book

The primary aim of this book is to present and introduce ellipsometry in nano-
science and nanotechnology making a bridge between the classical and nanoscale
optical behavior of materials. The progress in the current understanding of optical
properties of nanomaterials is an important driving force for developing a variety
of applications.

This book helps to delineate the role of the nondestructive and noninvasive
optical diagnostics of ellipsometry in improving science and technology of
nanomaterials and related processes by illustrating its exploitation ranging from
fundamental studies of the physics and chemistry of nanostructures to the ultimate
goal of turnkey manufacturing control.

This book is written for a broad readership: materials scientists, researchers,
engineers, as well as students, and nanotechnology operators who want to deepen
their knowledge about both basics and applications of ellipsometry to nanoscale
phenomena. Readers might have quite different backgrounds, interests, and
understanding of optics, physics, materials, and of their properties and technolo-
gies, and, despite the difficulty of having a single book addressing a varied
audience, we have at least one chapter of interest to everyone!

Therefore, this book goes through different levels. It starts as a general intro-
duction for people curious to enter the fields of ellipsometry and polarimetry
applied to nanomaterials and progresses to articles by experts on specific fields that
span from plasmonics, optics, to semiconductors and flexible electronics. The core
belief reflected in this book is that ellipsometry applied at the nanoscale offers new
ways of addressing many current needs.

The book also explores forward-looking potential applications. The potential of
ellipsometry is not yet fully used, and it is currently the only optical technique
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which can reliably provide phase information. Especially, the phase is sensitive to
e.g., minute changes in the thickness of overlayers, or adsorbates or structural
changes in nanomaterials. The competing interferometric measurements still lack
solutions to the problems of being constrained to normal incidence, of managing
the dispersion of the optical components and also vibrational control.

The question is: how to move forward?
The intrinsic difficulty of ellipsometry in nanotechnology is that it is a multi-

disciplinary field involving optics; therefore, chemists, physicists, material sci-
entists, engineers, molecular biologists, pharmacologists, etc., should all be
familiar with the basic optics concepts in those heterogeneous fields, which is
sometime not straightforward.

Therefore, the goal was not to write a monograph style book, and even less a
textbook, but a book with contributions from multidisciplinary fields, with dif-
ferent approaches and languages that different readers with optic vocabularies
imbibed in their scientific infancy can become acquainted with. The principles of
ellipsometry are not always seen as easy. For many researchers, the lack of
knowledge on polarized light and on the Maxwell equations—with specific
boundary conditions, especially for nanomaterials—make spectroscopic ellips-
ometers seem mystic devices, providing (pseudo-)dielectric functions. Further-
more, the meaning of the ellipsometric measurables W and D may not be
straightforward and modeling procedures are required to derive the dimensional
and optical properties of the materials. Therefore, the primary goal of this book is
to provide a common ground for a better understanding of how to use ellipsometry
effectively. The position reflected in this book is that this goal can only be
accomplished by materials scientists, optics scientists, process engineers, and
nanotechnology analysts exchanging background and expertise and working
together on a found basis.

Excellent books on the fundamental of ellipsometry already exist and for more
detailed description of the principles of polarized lights and ellipsometry the
reader is referred to the books ‘‘Ellipsometry and Polarized light’’ edited by
R. M. A. Azzam and N. M. Bashara, ‘‘Handbook of ellipsometry’’ edited by
H. G. Tompkins and E. A. Irene.

Organization of the Book

This book captures the interdisciplinary nature of nanoscience and provides a
balanced approach to introduce the principles of ellipsometry and exploit them in
various fields serving as both an education and training text and as a reference
point for research and development providing the following unique features:

• A unifying vision of ellipsometry merging nanotechnologies, including ellips-
ometry instrumentation and modeling best practice, fabrication processes,
nanomaterials, applications, and technologies
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• A full perspective about the various information that can be gained depending
on the spectral range and ellipsometry configuration (from the Terahertz to near-
infrared, visible and far-UV)

• A multifaceted study of novel chemical, electrochemical, and optical phenom-
ena in nanostructures

• A coverage of inorganic and organic semiconductor nanomaterials, supercon-
ductors, biomaterials, and nanocomposites, as well as graphene optically char-
acterised by ellipsometry

• A focus on new technologies based on the interaction of light with nanomate-
rials such as plasmonics and metamaterials

• A coverage of ellipsometry in bioresearch and medicine
• A critical and comprehensive assessment of ellipsometry in the industry and in

the market place, with future forecasts.

We took care of organizing this book and sorted and clustered the contributions
with respect to topics without trying to squeeze all authors into a common frame.
The story is not only about the things; it is also about the people! It is peoples’
background and language that make them communicative. Therefore, because of
multidisciplinarity of nanoscience, each author wrote each chapter in a self-
standing way, certainly referring to other chapters, but the nomenclature has not
been unified all over the book.

Therefore, as the Editors of this book, we are deeply grateful to all contributing
authors for their efforts and their willingness to share recent results within the
framework of ‘‘nanoscience and nanotechnology’’. We are especially proud that
the authorship includes pioneers and newcomers to this intriguing and fertile field
of research. With chapters addressing fundamental and practical questions of
physics, chemistry, quantum theories, and real-time monitoring of fabrication
processes related to nanostructures, this book shows the reader how ellipsometry
can help to achieve a better orientation in nanoscale optical phenomena.

Most readers will use the book to get a solid grasp of the fundamentals, so that
they can move on to more complex topics. Some of the chapters can be read
independently of the others, on the assumption that the fundamental in Chaps. 1–5
have been fully assimilated. The reader is just left to be driven by his/her curiosity
and interests!

Therefore, Chap. 1 has been devoted to introducing the main concepts of the
ellipsometry technique and its historical context, also related to nanomaterials. This
book does not presuppose that the reader has a working knowledge of ellipsometry,
therefore a beginner can grasp the fundamentals needed in this chapter.

Chapter 2 takes the fundamentals a bit further, letting the reader become more
confident with the polarimetric properties of a sample and, consequently, moving
from standard ellipsometry to generalized ellipsometry and Mueller polarimetry; it
also deals with the instrumental aspects of ellipsometry and polarimetry, giving a
perspective on ‘‘how’’ ellipsometry and polarimetry measure what they measure.
Recent developments exploiting Mueller polarimetry in fields as diverse as sub-
wavelength grating metrology and cancer detection in biomedicine are discussed.
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The book then turns to fundamental optical properties and modeling advances
needed to explore the nanoscale and to application-oriented considerations.
Therefore, Chap. 3 is dedicated to the optical properties of materials consisting of
a matrix with inclusions and layered materials. Various effective medium theories
(EMAs) are available, the result of which is the so-called ‘‘effective dielectric
function’’ that describes the macroscopic optical response of a heterogeneous
system. Both strengths and weaknesses of the various EMAs are described in this
chapter.

One of the most common applications of EMAs is the analysis of surface
roughness from ellipsometric spectra. Surfaces and interfaces are also important in
explaining nanomaterials’ behavior. In bulk materials, only a relatively small
percentage of the atoms will be at or near a surface or interface. In nanomaterials,
half or more of the atoms are near interfaces and at the surface. Therefore, a
critical review of major results in describing surface roughness with effective
medium theories is presented in Chap. 4.

Chapter 5 extends the discussion on EMAs to plasmonic materials and intro-
duces the ‘‘plasmonics’’ cluster of chapters that extends from Chaps. 5–9. The
fundamental relationship between the dielectric function, ellipsometry, and plas-
monic materials is given in Chap. 5, while Chap. 6 enters into the details of the
optical characterization of substrate-supported nanostructured noble metal nano-
particles, extending the discussion on the validity of EMAs to the Thin Island Film
theory. With Chap. 7, which presents a review of fabrication, modeling and
characterization aspects related to the fascinating field of metallic periodic
nanostructures, we extend the discussion also to metamaterials. Chapter 8 over-
views the merging of Mueller polarimetry and rigorous coupled wave analysis,
described in details in the previous chapter, for the analysis of periodic nano-
structures. Chapter 9 deals with magnetic plasmonic nanocomposites giving some
examples of applications of magneto-optical Kerr spectroscopy.

Chapter 10 interrelates the discussions of the different aspects of standard
ellipsometry, generalized ellipsometry, and Mueller polarimetry to the measure-
ment and analysis of exotic and fascinating shapes of biaxial nanostructures.
A complete discussion on the appropriateness of generalized ellipsometry for the
determination of principal optical constants of chiral and achiral multifold and
helical sculptured thin films is given.

Extending the spectral range to Terahertz ellipsometry is the innovative subject
of Chap. 11, since there exists a wealth of fascinating excitation mechanisms with
eigenfrequencies in the THz domain in condensed and soft matter, such as spin
transitions, collective modes of biological molecules, local free charge carrier
oscillations, dynamic motion of magnetic domains, ferroelectric domains, or
collective charge phenomena, which are discussed here as examples.

Chapter 12 focuses on infrared ellipsometry, which is proven to be a powerful
technique for the studies of electronic excitations and lattice vibrations in both the
normal and superconducting states and, therefore, for highlighting superconduc-
ting phenomena in nanomaterials.
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Exploiting light in the NIR–VIS–UV spectral range, which is common to all
commercial ellipsometers, to probe in real-time various nanoscale phenomena at
surfaces and interfaces is the subject of Chaps. 13 and 14. Many nanoscale
characterization methods cannot probe samples in native or desired operating
(operando) environments. Enabling nanoscale materials real-time analysis under
realistic conditions is a critical need. Chapter 13 reviews the application of real-
time ellipsometry to probe charge transfer processes in surface-nanoparticle—
molecule coupled systems of interest for photonics, molecular electronics and
sensing, while the detection of phenomena and kinetics occurring at the solid–
liquid interface, which is an important field in electrochemistry, is overviewed in
Chap. 14.

Having learned that ellipsometry has all the hardware, instrumental setups, and
modeling capabilities to address the process-nanostructure—optical properties
interrelationship, a series of examples of the exploitation of ellipsometry in
research and industry of both organic and inorganic semiconductors is given in the
cluster of Chaps. 15–19.

One possible strategy toward functional optoelectronic composites for OLEDs
and organic flexible solar cells is to use an organic material that can efficiently
harness photons from light and convert them to useful energy. Therefore, issues
related to the optical characterization of organic, polymeric layers combined with
inorganic materials are reviewed in Chap. 15.

Another domain that emerged two decades ago and which is another hot topic,
concerns the optical properties of quantum structures to make biological tags,
efficient light emitting diodes (LEDs), efficient solar cells, or low-consumption flat
panel displays. The semiconductor industry is also working on materials for
‘‘beyond CMOS’’ devices. Graphene is the most prevalent example of this.
Ellipsometry applied to the analysis of graphene is discussed in Chap. 16 while
Chap. 17 focuses on semiconductor nanocrystals.

We then turn to industrial quality control: Spectroscopic ellipsometry is the
only method that can be used to measure inline multiple thicknesses on fully
fabricated CMOS chips on a test area of 50 x 100 lm. One of the advantages of
this technique is that standard uncertainty values of the thickness found using SE
are typically between 0.01 and 0.05 nm and, therefore, considerably less than
those found with the other electrophysical techniques. Therefore, inline applica-
tions of ellipsometry to the semiconductor industry are presented in Chap. 18.

Chapter 19 looks at industry and market perspectives, concluding with pre-
senting capabilities and ideas for exploiting ellipsometry in several industries.

Chapter 20 offers a broad perspective of the concept that ‘‘the ideal’’ charac-
terization tool for nanomaterials does not exist, but corroborating techniques must
be used. Therefore, this chapter shows how ellipsometry can corroborate, and be
corroborated by, other characterization techniques. Most commonly used struc-
tural and chemical characterization methods are introduced to corroborate ellips-
ometry. Structural characterization methods include scanning or transmission
electron microscopies (SEM/TEM), and atomic force or scanning tunneling probe
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microscopies (AFM/STM). Chemical characterization methods include electron
spectroscopies (XPS).

We conclude with Chap. 21 analyzing the influence and the role that nanom-
aterials and nanotechnologies might or might not effectively play in the fuzzy
future. This chapter reflects the perspective of nanotechnologists and market-
product developers—a perspective that it would be well worth for scientists and
engineers interested in fundamental knowledge as well as in applications of
nanomaterials to know about.

This book is timely in proposing the state-of-the-art ellipsometry applications to
nanomaterials and pointing the way to further exciting developments. We are just
at the transition from the first foundational phase of nanotechnology (2001–2010),
which was focused on interdisciplinary research at the nanoscale, on the discovery
of new phenomena, properties, and functions at the nanoscale, and on the synthesis
of a library of components as building blocks for potential future applications, tool
advancement, to the second phase (2011–2020), which will be focused on nano-
scale science and engineering integration, projected toward direct measurements
with good time resolution and science-based design of fundamentally new
products.

The transition from the Nano-1 to the Nano-2 phase is focused on achieving
direct measurements at the nanoscale, and science-based design of nanomaterials
and nanosystems. It is in this context that ellipsometry, with its nondestructive
real-time capability of monitoring processes and tailor materials characteristics
can play a role in the general purpose of science and technology integration!

Therefore, the Editors hope to contribute with this book to a wider use of
ellipsometry in the nanomaterials community, since it is our common vision and
experience as a chemist (ML) and as a physicist (KH) that many questions/problems/
issues can be tackled with this technique.

Maria Losurdo
Institute of Inorganic Methodology and of Plasmas

Italian National Council of Research
Italy

Kurt Hingerl
Center for Surface and Nanoanalytics

University of Linz
Austria
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Chapter 1
A Brief History and State of the Art
of Ellipsometry

Eugene A. Irene

Abstract Ellipsometry is a nonperturbing optical technique that uses the change in
the state of polarization of light upon reflection for the ex-situ and in-situ and real-time
characterization of surfaces, interfaces, thin films and nanostructured materials. This
chapter identifies the crucial ideas from which the ellipsometry technique derives,
provides the key relationships for ellipsometry and presents a brief introduction to
the essential ellipsometry configurations and hardware.

1.1 Introduction

As discussed in depth in the following chapters on optical theory and practice related
to ellipsometry of nanomaterials, ellipsometry is first of all an optical technique.
Ellipsometry is characterized as a polarized light technique and as it is commonly
practiced it is a reflection technique. Therefore, the history of ellipsometry derives
from the development of an understanding of the reflection of polarized light. As
a reflection optical technique, ellipsometry finds application at surfaces where the
optical properties of surfaces and surface films whether continuous or discontinuous
can be determined. Thus the state of the art of ellipsometry developed largely as a
result of demands made by surface and thin film scientists and engineers.

The history of any particular idea in physics is often impossible to trace precisely.
The reason for this is that scientists rely on the existent scientific literature to find and
to update their knowledge and then to contribute incrementally to the field. In essence
new ideas derive from older ideas and the directions of research are often guided by
what has gone before. Therefore it is often difficult to implicate only one or two key
scientists related to a particular discovery. Rather there is a trail of publications with
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2 E. A. Irene

perhaps one or two well known scientists implicated as well as scores of less well
known scientists.

In this chapter one goal is to identify the crucial ideas from which the ellip-
sometry technique derives rather than to achieve historical accuracy. In addition the
key relationships for ellipsometry will be identified and a brief introduction to the
essential ellipsometry configurations and hardware will be presented. This chapter
is intended to be a brief introduction to ellipsometry so as to provide an introduction
to the more detailed and specialized chapters that follow.

The material for this chapter can be gleaned from various optical texts and ellip-
sometry books and the specific references for this chapter are Refs. [1–5] and the
references therein.

1.2 Brief Historical Perspective

1.2.1 Light Waves, Polarized Light and Ellipsometry

Robert Hooke published a wave theory of light in 1660 and Christian Huygens
followed soon after with the book entitled Treatise on light in 1690. These scientists
and other early workers mentioned below are depicted in Fig. 1.1. Huygens proposed
that light was emitted from a point source in all directions as a series of waves.
Later Thomas Young using experiments with slits confirmed that light consists of
waves. Inherent in the wave theory is the concept of interference that is crucial to
understanding the reflection of light from surfaces and film covered surfaces.

In the 1820s Augustin-Jean Fresnel showed that the polarization of light waves
was possible, if the light had a transverse rather than a longitudinal wave nature.

However it wasn’t until the mid 1840s that Michael Faraday proposed that light
was related to magnetism from the so-called Faraday effect in which the plane of
polarization of light could be changed using a magnetic field and further proposed
that light was an electromagnetic disturbance and therefore could propagate without
a medium.

James Clerk Maxwell elegantly quantified these educated speculations made by
Faraday and in 1873 published A Treatise on Electricity and Magnetism which con-
tained the famous Maxwell’s Equations that comprise the basic ideas of electromag-
netism and electromagnetic waves.

Now the description of polarized light as was developed by the early workers is
discussed as applied to ellipsometry. Figure 1.2 shows linearly or plane polarized light
as an electromagnetic wave with orthogonal electric E and magnetic B fields that are
characteristic of light as a periodic transverse electromagnetic disturbance. The linear
polarization refers to the existence of one orientation of the electric field as the wave
propagates in the z direction, but the E field (and B field) oscillates in x (and the B
field in y), hence the transverse nature of the light waves. Figure 1.3a also displays
the E field of a linearly polarized electromagnetic wave with the projection of E
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Fig. 1.1 Major early scientists who contributed to the understanding of light, polarized light
and ellipsometry. Form top left Robert Hooke, Christian Huygens, Thomas Young, Augustin-Jean
Fresnel, Michael Faraday, James Clerk Maxwell, Etienne-Louis Malus, David Brewster, and Paul
Drude

upon a screen in Fig. 1.3b as the wave propagates. Figure 1.3c shows the projection
of circularly polarized light which indicates that as the wave propagates the E vector
rotates with the endpoint of the E vector tracing a circle. The general case depicted
in Fig. 1.3d is elliptically polarized light that shows an ellipse as the projected locus
of the endpoints of E as the wave propagates, but E also changes in magnitude and
hence traces an ellipse. Figure 1.4 shows an incident beam of linearly polarized light
with E resolved into two orthogonal components Eis and Eip. The plane defined by
the incident beam and the surface normal is called the plane of incidence (POI) and
as seen has one incident beam reflecting from a surface with the two components of
the incident polarized beam: Eip parallel to POI and Eis orthogonal to the POI (the
subscript i refers to the incident beam, r to the reflected beam and the subscript p
indicates parallel to the POI and s from the German senkrecht for orthogonal to POI).
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Fig. 1.2 Transverse electromagnetic wave with electric E and magnetic B fields perpendicular to
the propagation direction z

z

x

y

E x

E yE

E x

E y

E

(a)

(b) (c) (d)

Fig. 1.3 Various polarization states of a monochromatic light wave with E field projections in the
x and y planes yielding Ex and Ey: a linearly or plane polarized light; b projected linearly polarized
light; c projected right circularly polarized light; d projected elliptically polarized light
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Eip

Eis

Ers

Erp
φο

Sample
Surface

POI

N

Fig. 1.4 Incident linearly polarized light with orthogonal electric field components Eip and Eis
reflected at incidence angle φo yielding reflected components Erp and Ers. The plane of incidence
POI contains the surface normal N and the incident ray

It is noted that ellipsometry as presently practiced and as discussed below involves
only the E field of light.

Etienne-Louis Malus contributed to the understanding of polarized light in the
early 1800s where he established that reflection can cause polarization and that
crossed polarizers can be used to identify polarization and determine the polarization
state of reflected light. After Malus, David Brewster around 1815 quantified Malus’
discoveries from a surface and greatly extended the understanding of polarizing
materials and methods. Now we more closely examine the specifics of all of these
discoveries.

With Maxwell’s work being accepted worldwide in the latter part of the 1800s
elucidating the electromagnetic nature of light waves, Paul Drude (1863–1906) came
onto the scene with major contributions to many areas of physics including optics.
Near the end of his life Drude published “The Theory of Optics” in 1902. Part II,
Sect. 1, Chap. 5 entitled “Polarization” of this book with the Table of Contents of
this chapter included as Fig. 1.5 could easily serve as a modern introduction to polar-
ized light and ellipsometry. Figure 81 from Drude’s book displayed as Fig. 1.6 herein
depicts all the necessary optical components needed to perform reflection ellipsom-
etry but without mention of the term “ellipsometry”. In fact the Drude ellipsometer
depicted looks remarkably like a single wavelength ellipsometer marketed in the
1970–1990s by one manufacturer. There is no doubt that Drude contributed much
to what would become the field of ellipsometry, but it is also clear that there are
many both famous and unsung scientists who preceded Drude and contributed not
only to the underlying physics but also to the specific optics for the measurement
of reflected polarized light. Yet in many scientific quarters Drude is considered the
father of ellipsometry.

After Drude, the development of ellipsometry appears driven by need as are most
measurement techniques. For example many scientists, particularly electrochemists,
became interested in thin films and therefore techniques were sought and developed
that had sensitivity to thin films. In the late 1920s Leif Tronstad did research on
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Fig. 1.5 Chapter 5 table of contents from Ref. [1]

Fig. 1.6 Figure 81 from Ref. [1] depicts all the necessary optical components needed to perform
reflection ellipsometry

thin films in Herbert Freundlich’s laboratory in Berlin where many of the practical
aspects of thin film measurement were being worked out along with G. Patcheke and
H. Zocher. In 1932 Tronstad published a paper [6] entitled “The investigation of thin
surface films on metals by means of reflected polarized light” that directly broached
the ellipsometric measurement of the thickness of thin films that were prepared using
electrochemical methods. Figure 1.7 depicts Fig. 1.1 from the Tronstad paper which
is a drawing of the ellipsometer that was used in the research. This ellipsometer
includes a monochromator which could indicate that some form of spectroscopic
ellipsometry was also contemplated. Tronstad studied passive oxide films on polished
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Fig. 1.7 Figure 1.1 from Ref. [6] is a drawing of the ellipsometer that was used in the research by
Tronstad in 1932

iron and steel surfaces and was able to determine a film thickness around 3 nm and
even earlier around 1920 similarly thin films were reported from Freundlich. Thus
nanometer (nm) dimensions obtained from ellipsometry were reported at least as
early as around 1920. It wasn’t until 1945 in a paper by Rothen [7], that the actual
term “ellipsometry” was used to describe the technique already in use.

1.2.2 The Specifics of the Reflection of Polarized Light

As seen in Fig. 1.4 the reflection of a linearly polarized incident beam (subscript i)
from a surface can be described in terms of the projected components parallel (sub-
script p) and perpendicular (subscript s from the German senkrecht for perpendicular)
to the plane of incidence, POI as:

Ei =
(

E2
ip + E2

is

)1/2

where the POI is defined as the plane comprised of the incident beam and the surface
normal [8]. Upon reflection from a surface as displayed in Fig. 1.8a, the amplitude
of the reflected electric field vector components, Erp and Ers are in general different
from the incident components and the phase is also changed. The change in ampli-
tude and phase upon reflection comprise the change in the polarization of the light
and indeed this change in polarization is measured in the ellipsometric technique and
is related to the optical properties of the system that caused the reflection changes.
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(a)

(b)

Fig. 1.8 Reflection at a bare substrate and b film covered substrate showing incident and reflected
electric field components E, angles (φ) and optical properties (Ñ). rij and tij are the Fresnel reflection
and transmission coefficients, respectively

These relationships are discussed further below. The Fresnel equations discussed
below describe the reflection and transmission of electromagnetic waves at an inter-
face. The Fresnel reflection coefficients for wave components parallel and perpen-
dicular to the plane of incidence are derived for a dielectric medium by considering
continuity of the wave components across the reflection boundary and then using
Snell’s law which embodies the relationship between angles of incidence and refrac-
tion for a transverse electromagnetic wave impinging on an interface between two
media with different real parts for the refractive indices n. Snell’s law follows from
the boundary condition that a wave be continuous across a boundary, which requires
that the phase of the wave be constant on any given plane, resulting in the following
relationship:

n1 sin θ1 = n2 sin θ2

where n’s are the real parts of the refractive indices for the two media 1 and 2 at
the interface and θ’s are the corresponding angles from the normal of the incident
and refracted waves. From Fig. 1.8a for reflection from a single surface the Fresnel’s
reflection coefficients relate the electric fields and from Snell’s law the incident and
refraction angles as follows:
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rp = Erp

Eip
= Ñ1 cos φ0 −Ñ0 cos φ1

Ñ1 cos φ0 +Ñ0 cos φ1

and

rs = Ers

Eis
= Ñ0 cos φ0 −Ñ1 cos φ1

Ñ0 cos φ0 +Ñ1 cos φ1

where the Ñ′s are the complex indices of refraction given as:

Ñ = n + ik

where n is the real part of the complex refractive index and is the ratio of the speed of
light in vacuum compared to the material in question, and k is the absorption index
that is related to the absorption constant α. α and k are related by the formula:

α = 4πk

λ0

where λ0 is the wavelength of the probing light in vacuum.
The dielectric response function, or simply the dielectric function ε is a measure

of the response of a material to the interaction with electromagnetic radiation and is
given as:

ε = ε1 + iε2

ε1 = n2 − k2 and ε2 = 2nk

It is important to realize that the dielectric function is defined for a pure homoge-
nous material. The dielectric function for a simple homogenous surface or a pseudodi-
electric function for a complex film covered surface, and denoted by brackets, can
be written in terms of the ellipsometric variable ρ as follows:

ε or 〈ε〉 = sin2 φ0 + sin2 φ0 tan2 φ0

[
1 − ρ

1 + ρ

]2

The use of this formula for ε is straightforward for a pure material: � and � are
measured at some angle of incidence φ0 and wavelength λ and then ε is calculated
using equations above. However in many cases�, � is measured for a complicated
system such as a film covered surface, possibly with many films and/or roughness
and/or impurities. In all of these cases only a single �, � is measured at φ0 and λ.
The measured �, � corresponds to a complex system in which ε is undefined, and
thus the use of equation will not yield a value for ε, but rather simply a number. In
order to indicate that this was the case for a complex system, angular brackets are
used for the calculated quantity, 〈ε〉 and it is called the pseudodielectric function in
that 〈ε〉 is obtained using the relationship for ε.
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For film covered surfaces Fig. 1.8b shows that additional reflections and refractions
occur at the film-film and film-substrate interfaces and in the different media and as
mentioned above the reflected output at the detector must be a sum of all reflected
beams. The result, R, as obtained from a converging geometric series is as follows:

Rp = r01p + r12p exp(−i2 β)

1 + r01pr12p exp(−i2 β)
and Rs = r01s + r12s exp(−i2 β)

1 + r01sr12s exp(−i2 β)

where

β = 2 π

(
L

(
Ñ2

1 − Ñ2
0 sin2 φ0

)1/2

λ

)

and where the Fresnel coefficients rmnl where mn identify the interface and l is either
the p or s component of E are as follows:

r01p = Ñ1 cos φ0 −Ñ0 cos φ1

Ñ1 cos φ0 +Ñ0 cos φ1

r12p = Ñ2 cos φ1 −Ñ1 cos φ2

Ñ2 cos φ1 +Ñ1 cos φ2

r01s = Ñ0 cos φ0 −Ñ1 cos φ1

Ñ0 cos φ0 +Ñ1 cos φ1

r12s = Ñ1 cos φ1 −Ñ2 cos φ2

Ñ1 cos φ1 +Ñ2 cos φ2

The exponential factor β often referred to as the phase factor is particularly
important since it contains the usually desired information from an ellipsometry
measurement viz. film thickness, L, and the complex refractive indices, Ñ.

1.2.3 Fundamental Parameters of Ellipsometry

The measurables of ellipsometry are the phase change upon reflection and the light
amplitude change upon reflection which are denoted as� and�, respectively. These
measurables comprise the ellipsometric experiment and for interpretation require
recasting in terms of the physically relevant parameters of the optical system under
study. Using the Fresnel coefficients defined above that contain optical parameters
of the reflection problem, it is usual in ellipsometry to define a complex reflection
coefficient, ρ, for both bare and film covered substrates:

ρ = rp

rs
or

Rp

Rs

where the reflection coefficients, the r’s and R’s can also be expressed as complex
exponentials in order to keep track of both phase and amplitude:
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rp = ∣∣rp
∣∣ exp

(
iδp

)
and rs = |rs| exp (iδs)

Rp = ∣∣Rp
∣∣ exp

(
i�p

)

and Rs = |Rs| exp (i�s)

Combining the results above the following is obtained for ρ:

ρ = ErpEis

EipErs
=

∣∣rp
∣∣ exp

(
i δp

)

|rs| exp (i δs)
or

∣∣Rp
∣∣ exp

(
i�p

)

|Rs| exp (i�s)
= tan ψ exp (i�)

where:

tan ψ =
∣∣rp

∣∣
|rs| or

∣∣Rp
∣∣

|Rs|
and � = δ p − δ s or �p − �s. Thus the measurable � and � are related to the
physical parameters n, k and L embedded within the Fresnel coefficients. From
the development above the general formula for ellipsometry is obtained that relates
measurables to properties as follows:

ρ = tan ψ exp (i�) = ρ
(
Ñ0, Ñ1, Ñ2, ..L1, . . .φ0, λ

)

where the last term on the right contains all the physical parameters of the mea-
surement, viz. film thicknesses, optical properties, the wavelength of light and the
angle of incidence. It is usual that the last two parameters are known a priori and the
others are sought from the measurement of � and �. It must be remembered that
however complex is the film(s) upon a substrate, there are always only the two same
measurables in ellipsometry:� and�. Therefore, from a typical measurement of�
and � only two properties from the general ellipsometry equation can be obtained.
Either the other unknowns need to be supplied from independent measurements
or additional experimentally controlled hardware variables can be systematically
varied in order to increase the number of independent equations. Often the angle
of incidence and the wavelength are selected. For many in-situ measurements the
experimental situation precludes changes in angle of incidence, but scanning wave-
length ellipsometry or spectroscopic ellipsometry is comparatively straightforward to
implement.

Now with the relevant physics identified from historical origins along with the
important equations revealed that relate the ellipsometric measurables � and �
with relevant physical parameters, the next three issues to be addressed herein are
the accuracy and precision of ellipsometry measurements, the hardware used to
perform ellipsometry and finally the present state of ellipsometric science and
technology.
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1.3 State of the Art of Ellipsometry

1.3.1 Accuracy and Precision of Ellipsometry

The great sensitivity of ellipsometry is derived from the fact that the measurement of
�,� is a relative measurement of the change in polarization imparted by the sample
upon the incident polarized light, as was evidenced by equations for ρ above. It is
important to note that because ellipsometry is a relative measurement (see the ratio
equations above) unlike absolute light measurement spectroscopies, ellipsometry
is not especially sensitive to long term drift in the light source or detector. Hence
ellipsometry is sensitive to small surface changes. Indeed fractions of a monolayer
are readily sensed by reflection ellipsometry. However this level of sensitivity is
achievable only after careful hardware alignment.

One way to quantify the sensitivity of ellipsometry is to first calculate the effect
of the presence of overlayers or films on a substrate on the measurables �, �, and
then to compare that result with the capability of an ellipsometer to measure �, �.
Table 1.1 shows calculated results for a Si surface (with n = 3.085 and k = 0.018
at λ = 632.8 nm) coated with a transparent film with n = 1.5 and k = 0. Under
these conditions of the calculation for an imaginary film that is similar to SiO2, it
is seen that � changes by about 0.3◦ per 0.1 nm of film and � by about 0.001◦ for
0.1 nm. Considering that a properly aligned ellipsometer with high quality optics is
capable of precision of about 0.01–0.02◦ in� and�, sensitivity approaching 0.01 nm
or sub monolayer sensitivity (considering that atomic diameters are of the order of
0.1 nm) is achievable with the determination of �. For other film thicknesses and
other measurement conditions there may be more � sensitivity.

Automated ellipsometers often have lower sensitivity, but even with an order of
magnitude worse sensitivity than calculated above, sensitivity to the presence of a
film of the order of 0.1 nm thick is achievable. It was mentioned above that while
ellipsometry has great sensitivity, it is a precision optical technique and to achieve
the sensitivity, each optical component as well as the angle of incidence φ0 must
be carefully calibrated. In order to illustrate the level to which calibration must be
done, Table 1.2 is used to show the effect of errors in φ0 on film thickness L and
refractive index n. The first column has film thickness of 10 and 100 nm and column

Table 1.1 Calculated � and
� for various transparent film
thickness with conditions:
n = 1.5 on Si, λ = 632.8 nm,
φ0 = 70◦

� (◦) � (◦) Film thickness (nm)

179.257 10.448 0.0
178.957 10.448 0.1
178.657 10.449 0.2
178.356 10.450 0.3
178.056 10.451 0.4
177.756 10.453 0.5
176.257 10.462 1.0
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Table 1.2 Calculation of errors in film thickness L and refractive index n due to errors in φ0

Film thickness L (nm) φ0 (◦) � (◦) � (◦) L@ 70◦ (nm) n@ 70◦

10 70.00 150.815 11.404 9.84 1.52
10 70.01 150.770 11.390 9.58 1.56
10 70.02 150.726 11.376 9.36 1.60
10 70.03 150.682 11.362 9.18 1.64
10 70.05 150.593 11.334 8.93 1.71
100 70.00 76.026 43.541 100.01 1.500
100 70.01 75.989 43.540 99.97 1.500
100 70.02 75.952 43.539 99.93 1.501
100 70.03 75.915 43.538 99.89 1.501
100 70.05 75.841 43.536 99.82 1.502

Calculation parameters are L = 10 and 100 nm, n = 1.5 on Si, λ = 632.8 nm, various φ0,� and�
calculated results in columns 3 and 4, and L and n are calculated from� and� assuming φ0 = 70◦

2 shows the variation in φ0 used for the calculation. Columns 3 and 4 display the
corresponding calculated � and � values. These � and � values are then used to
calculate L and n values but assuming that φ0 is fixed at 70◦ rather than the value of
φ0 actually used and given in Column 2. In all cases except for the first lines for the
10 and 100 nm films, this introduces an error due to φ0 used.
The first entries in column 5 and 6 are the values for L and n that were recalculated
from the columns 3 and 4� and� values. One might expect exact agreement between
columns 1 and 5 and for n in column 6 to be exactly 1.5, since all the parameters and
input values are the same. Rather for the 10 nm film there is a 1.6 % difference in L
and 1.3 % in n that is due to the truncation of the� and � values in the thousandths
decimal place. This error is barely noticed for the 100 nm film. Since there is a limit
of about 0.01◦ in the measurement of � and �, errors of this order can be expected
as minimum errors in the 10 nm film thickness range. When erroneous φ0 values are
used for the remaining 4 entries for the 10 and 4 entries for the 100 nm films larger
errors are seen that are always larger for the thinner films. For example an error of
0.05◦ in φ0 yield an error of almost 11 % in L and 14 % in n for the 10 nm film, and
about 2 % in L and 0.1 % in n for the 100 nm film. It is clear that ellipsometry is a
very sensitive technique, sensitive to fractions of a monolayer on a surface so long
as the ellipsometers must be carefully aligned and calibrated. In addition there are
other factors such as truncation errors and thickness regimes that also can affect the
accuracy of the measurement.

1.3.2 Components

In order to briefly describe the optical components needed to perform an ellip-
sometric measurement of � and � Fig. 1.9 shows a simple manual ellipsometer
in the Polarizer(P)—Compensator(C)—Sample(S)—Analyzer(A), or PCSA,
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Fig. 1.9 Polarizer, compensator, sample, analyzer PCSA ellipsometer configuration

configuration. The light source for single wavelength ellipsometry is typically a
low power laser such as a He-Ne laser at 632.8 nm or a wide band source such as
a Xe high pressure lamp with filters to pass only the desired wavelength. For spec-
troscopic ellipsometry the use of a wide bandwidth light source is required. For the
visible spectrum (200–900 nm) it is usual to use Xe short arc high pressure lamps
with appropriate collimating optics. In the configuration shown in Fig. 1.9 the usual
measurement is the “null” measurement where for a given sample the light intensity
at the detector is adjusted to zero by adjusting the P, C, A azimuths with a sam-
ple S in place. This null condition plus knowledge of λ, φ0, and the P, C, and A
azimuths enable a deduction of what polarization the sample must have imparted to
the light which in combination with the optical elements yield zero light intensity
at the detector, ID. With knowledge of how much polarization has been imparted
by the sample, and with an optical model for the sample to be discussed below, the
optical properties of the sample can be obtained. For null ellipsometry the following
condition is sought:

ID = 0 = GEAOE∗
AO

where G is a constant and EAO is the electric field after the analyzer and E∗
AO is the

complex conjugate of EAO. In order to find expressions for the intensity we need to
follow the light as it propagates from the source through P, C, and reflects from S
and then through A.

When light interacts with an optical element, the polarization state of the light
changes. If we are only interested in the change in polarization state of the light
before and after it interacts with an ideal optical element (P, C, S or A), the effect of
an optical element on the polarization of light can be represented by a 2 × 2 matrix
T called a Jones matrix that can express the change as follows:

Eo = TEi

where Ei and Eo are the field vectors of the input and output waves respectively, and
the Jones matrix of the optical element is given as:

T =
(

T11 T12
T21 T22

)



1 A Brief History and State of the Art of Ellipsometry 15

x
y

z T

Eo

Eo

Ei

E i

x'
y'

z'

TI TII TN

(a)

(b)

Fig. 1.10 The effect of a one optical element, or b several elements in series as represented by boxes
(with T inside), on the polarization state of light where each box is represented by a characteristic
Jones matrix and with Ei and Eo the incident light and out light electric field, respectively

In those instances where the optical elements are not ideal and the samples are not
uniform more competent mathematical descriptions such as Mueller matrices and
Stokes parameters are necessary.

Figure 1.10a shows the interaction using a x, y reference frame. Figure 1.10b
shows several optical elements each represented by a different T and for a light wave
propagating through all the elements and by using matrix algebra a combination
matrix Tcomb is generated and expressed with the following relationship:

Eo = TNTN−1 · · · TIITIEi = TcombEi

The Jones matrices for some most frequently encountered optical elements in
ellipsometry systems are for an optically isotropic sample, polarizer or analyzer
which are the same optical element differing only by function and a compensator.
For an istropic medium with incident light of wavelength λ propagating through the
isotropic medium of thickness L and refractive index n, the exiting E field, Eo is
given by a Jones matrix operating on the incident Ei as follows:

Eo =
(

e−i2πnL/λ 0
0 e−i2πnL/λ

)
Ei

Notice that the product nL appears as in the previous formula forβ and this product
is called the optical path for a material. If the medium is isotropically absorbing, the
effect can be represented simply by replacing the refractive index n in the above
matrix with the complex refractive index Ñ of the medium.

A linear polarizer is the main element in an ellipsometer system and it converts
incident light of any polarization state into linearly polarized light at its output.
Additionally a polarizer is used to resolve the polarization state of light reflected
from a sample and before the detector, and in this position the polarizer is called
an analyzer. A linear polarizer has two orthogonal axes, i.e., a transmission axis
and an extinction axis as indicated by t and e, respectively. When unpolarized or
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in general elliptically polarized light passes through a linear polarizer, the light is
transformed into linearly polarized light with an electric field vector that is parallel
to the transmission axis of the polarizer. The effect of a linear polarizer (of thickness
L and index n) can be represented by the following Jones matrix:

T = K

(
1 0
0 0

)
, where K = e−i2πnL/λ

A linear polarizer is characterized by a parameter called the extinction ratio, which
is the ratio of intensity of light along the extinction and transmission directions. For
ellipsometry high extinction ratios are required and suitable polarizers are commer-
cially available with extinction ratios of 10−6.

A compensator is an anisotropic element in which light travels at different speeds
in different directions thereby causing a phase change for the light exiting the com-
pensator. The light traversing the compensator travels at different speeds due to
different refractive indices along two axes, a fast (f) and a slow (s) axis that are
orthogonal. Therefore, when light passes through a linear compensator the phase of
the electric vector that is parallel to the slow axis is retarded by δc and the amplitude
attenuated by Tc with respect to the component parallel to the fast axis. The Jones
matrix for a compensator can thus be written as:

T = Kc

(
1 0
0 ρc

)
, ρc = Tceiδc

where Kc is a constant that accounts for the attenuation and phase shift along the fast
and slow axes of the compensator.

A compensator also called a retarder is an optical component that introduces
a phase shift between orthogonally polarized components without affecting their
relative amplitude. Retarders used in ellipsometry are linear retarders, that have two
light propagation directions: a fast axis and a slow axis. The component of incident
light parallel to the slow axis is retarded in phase relative to the component along
the fast axis. When the phase retardation is π/2 the retarder is called a quarter-wave
retarder that is often used in ellipsometry. There are two types of retarders based on
two different mechanisms: birefringent retarders and reflection retarders (the Fresnel
rhomb). The more common birefringent retarder has two refractive indices no the
ordinary and ne the extraordinary refractive index. Light propagating through the
component will have speeds of c/no and c/ne, along the two directions, respectively.
For a component of thickness L, this difference in propagation speed will result in a
phase shift δ given as:

δ = 2πL (no − ne)

λ

Then for a material with known no and ne, L can be varied to produce a specific
desired retardation. With the Jones matrices for these elements we can now formulate
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the propagation of light through an ellipsometer and keep track of the changing
polarization state.

For null single wavelength ellipsometry the propagation of light from source to
detector the transmitted intensity Et can be expressed as follows:

Et = Rp cos A [cos C cos (P − C)− ρc sin C sin (P − C)]

+ Rs sin A [sin A cos (P − C)+ ρc cos C sin (P − C)]

The intensity of the light collected is given by the square of the electric field:

I = ∣∣Ete
AO

∣∣2

which is a function of P, C, A, ρc, Rp and Rs. For a null ellipsometry system, usually
a quarter wave plate is chosen as the compensator, so ρc is known (because Tc and ρc
are known from calibration). During the measurements, P, C, and A are arranged so
that the light intensity detected becomes zero (null), which means that Et = 0. With
this condition, we finally obtain the following relationship in terms of the complex
reflection coefficient ρ:

ρ ≡ Rp

Rs
= − tan A

[
tan C + ρc tan (P − C)

1 − ρc tan C tan (P − C)

]

A major ellipsometry advance that occurred in the 1970s is the automation of the
measurement system. Several methods are available but all follow a similar rubric of
modulating one of the optical components, P, C, or A. Historically the first modulation
consisted of rotating the analyzer A called rotating analyzer ellipsometry, RAE. For
RAE A is given as:

A = ωt + δ

where δ is a phase constant offset as mentioned above and here t is time. As before
the transmitted electric field Et is obtained:

Et = E0
(
Rp cos A cos P + Rs sin A sin P

) (
cos A
sin A

)

The measured intensity is be expressed as:

I = I0

[
1 +

(
tan2� − tan2 P

tan2� + tan2 P

)
cos 2A +

(
2 tan P cos� tan�

tan2� + tan2 P

)
sin 2A

]

or
I = I0 (1 + α cos 2A + β sin 2A)
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Fig. 1.11 The components for a rotating analyzer ellipsometer

The constants I0 (the DC signal component), α and β (2nd Fourier coefficients) can be
obtained from a Fourier analysis of the detected signal, and thus the two ellipsometric
parameters � and � are obtained as:

tan� = |tan P|
√

1 + α

1 − α

cos� = β√
1 − α2

The RAE system is readily automated with a sketch of such a system shown
in Fig. 1.11 and usually in such a way that data acquisition and analysis are
done simultaneously using a computer. There are presently available high qual-
ity commercial ellipsometer systems that modulate the polarizer (RPE), analyzer
(RAE) and the compensator (RCE) via rotation and the compensator by modulating
phase (PME).

The major advantage of PME is a factor of 103 in speed relative to RAE or RPE.
In the usual polarizer—compensator—sample—analyzer configuration (PCSA) the
compensator is replaced with a photoacoustic modulator (PM). The PM is essentially
a fused silica window that is cut to resonate and it is put into a resonant vibration via
a quartz crystal to which the window is glued. An AC potential applied to the crystal
sets up stress in one direction. Hence there is a strain induced time dependence in
the refractive index (n) of the window:

ni (V, λ, t, l) = no
i (λ)+ V ci (λ) sin(ω t) sin(π l/ lo)
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where c is a piezo-optic coefficient, l is the distance from the interface of c-SiO2
crystal to the light entrance point in the a-SiO2. The same form would apply to the
orthogonal j direction. The periodic phase retardation in a-SiO2 is given as:

δ(λ, t) = 2πd(ni − n j )

λ

where d is the thickness of the a-SiO2 part. These equations when combined yield:

δ(V, λ, t) = δo(λ)+ A sin(ω t)

where

A = 2πdV (ci (λ)− c j (λ))

λ

For P = 45◦, PM = 0◦, A = 45◦ the following formulas for intensity apply:

Iω = Io sin(2�) sin�

and

I2 ω = Io sin(2�) cos�

where Io, Iω, I2 ω are the respective intensities at DC, and for the first and second
harmonics. Thus � and � are obtained at high speed. There is the issue of a spec-
troscopic measurement as for the RA case and the calibration of the PM.

Another major advance was made in the 1970s, largely through the efforts of
Aspnes (9) namely the implementation of spectroscopic ellipsometry (SE). As was
pointed out above, several early workers anticipated using wavelength selective opti-
cal components for ellipsometry. However the modern implementation made full use
of the spectrally enhanced results as pointed out below. SE is often accomplished
using a wide band light source that can produce the desired spectrum (a Xe high pres-
sure lamp for the near uv-visible spectrum), a polarizer, sample stage and a rotating
analyzer (discussed above) and then an automated monochromator followed by a
detector. The monochromator drive is controlled by a computer that also controls
the rotating analyzer, and whose angular position is sensed by an optical angular
encoder, to allow data to be acquired and analyzed at the same time at each wave-
length. Alternatively the light dispersed by the monochromator can be impinged
upon a linear detector array (photo diode or charge coupled device CCD) and the
entire spectrum accessed in one measurement. This hardware, the detector array and
associated electronics to scan the array, is called an optical multichannel analyzer or
OMA and is presently in wide use in commercial SE systems.

Automation is especially important for spectroscopic in situ real-time monitoring
of thin film formation and/or surface evolution during reactions at surfaces. Typ-
ical automation hardware for an RAE system includes an optical angular encoder
synchronized with the rotating analyzer that is used to digitize the signal after the
analyzer. The digitized signal is then collected by a computer which also performs the
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Fourier analysis to obtain α and β (and thus� and�), and then the modeling regres-
sion analysis discussed briefly below. The overall speed of RAE measurements is
appropriate for many processes interesting in microelectronics such as film growth or
removal (etching) in real time using PC class computers. The usual scanning mono-
chromators may take minutes to scan the visible spectrum that is used for most SE
with shorter times for more limited spectral scans. Within the last 10 years detector
arrays (both 1D and 2D) have been used to obtain complete spectra in seconds and
less thereby increasing the kinds of processes monitored using ellipsometry.

1.3.3 Optical Models

In order to extract useful optical properties for films and surfaces from the two ellip-
sometric measurable � and �, the optical system (substrate, film, ambient) being
investigated needs to be approximated and this approximation of reality is called a
model and for ellipsometry an optical model. The kind of modeling now discussed
was found to be very useful for conventional systems of thin film materials on spec-
ular surfaces. However with the advent of nano structures and nano materials new
modeling approaches are required that consider small structures in various media.
Here the tried and true methods are briefly reviewed and following chapters inform
about the new approaches to modeling that are being developed for nano science and
technology applications.

The extent to which an optical model is correct will determine the physical mean-
ingfulness of the ellipsometrically determined properties. For example in order to
accurately extract optical properties from an ellipsometric measurement, it must first
be determined whether the system under study is a bare or film covered surface with
sharp interfaces as shown in Fig. 1.12a or whether the single film is inhomogeneous
as shown in Fig. 1.12b where the single inhomogeneous film on a substrate has sharp
interfaces, and/or whether the films and/or interfaces have significant roughness as
is shown in Fig. 1.12c or multiple films each with different characteristics as shown
in Fig. 1.12d. In some instances the interfaces between films and substrate may not
be sharp due to interaction or diffusion which further complicates the modeling.
Once a model for the system is obtained, an algorithm can be formulated that con-
siders reflection and refraction at each interface with different optical properties for
each film. The model based algorithm is then used to invert the general ellipsometry
equation:

ρ = tan ψ exp (i�) = ρ
(
Ñ0, Ñ1, Ñ2, ..L1, . . .φ0, λ

)

to obtain the desired optical properties that are in the model. It should be noted that
film thickness is also considered to be a film optical property in that thickness deter-
mines the path length for the optical wave in the material and the optical thickness
is the product of thickness and refractive index, n·L and this product is found in the
equation above for the exponent β in the Fresnel equations.
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One successful strategy is to deduce an optical model based on facts obtained from
an often lengthy materials science study that typically involves a number of inde-
pendent measurements using a variety of techniques. Another strategy for studying
a new film-substrate system is to commence with one of the established models that
appears to fit the situation under investigation, and then try to determine how well the
physical parameters obtained using the model agree with independently determined
values. In essence this method is to make an educated guess based on previous expe-
rience, and then provide an independent test. For example in microelectronics where
devices are fabricated using various films on semiconductor surfaces the dielectric
film thickness, L, on a semiconductor surface is usually of great interest, particularly
for SiO2 films on Si, since many device electronic properties depend on dielectric
film thickness. For this system a single film model is used because it is known that
there is little interaction between Si and SiO2 and for films greater than 10 nm the
sharp interface model is applicable and yields good results. L can not only be mea-
sured by ellipsometry, but also by angle resolved x-ray photoelectron spectroscopy,
ARXPS, and transmission electron microscopy, on cross-sectioned samples, XTEM.
One could use the results from these independent techniques to compare with the
ellipsometric optical model results or as input to the model so as to extract other
parameters. The models that are shown in Fig. 1.12 are ones that have already been
used successfully for a number of thin film systems of interest and will be referred
to below.

Figure 1.12a is a simple single film on substrate model in which both the film
and substrate are discrete, planar and homogenous. The film thickness, L, can vary
upwards from 0 nm that is indicative of a smooth bare substrate. This model works
very well for grown and deposited dielectric films on Si and for many other film sub-
strate situations where nearly perfect smooth substrates are used, and where uniform
stoichiometric films are possible, i.e. where there is little interaction between film
and substrate during film formation, and for thicker films (>10 nm) where interfacial
effects are relatively small. In this single film model there are possibly seven model
parameters to be determined or supplied: n and k for ambient, film and substrate and
the film thickness L. With ambient air or vacuum the optical properties are known
with n = 1 and k = 0 and can therefore be provided as input to the single film model
algorithm. For other ambients for example liquids the properties of the medium (n
and k) would add another two unknowns. Typically, n and k for the substrate can
be measured separately for a bare surface and then input the algorithm. With known
substrate and ambient optical properties, a single ellipsometric measurement of �
and � would not yield remaining three film parameters (n, k, L). In order to over-
come this problem sometimes λ and a range of λ can be chosen so that k for the
film is 0, i.e. the film is optically transparent. This is possible and convenient for
many dielectric films in the visible photon energy range. Another way around this
problem of too many unknowns is to measure thickness by another technique and
then use it as input to obtain n and k. Once found, n and k can be used as input to find
L. Regression analyses can also be used that enable the best fit for underspecified
systems and this will be discussed below.
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Fig. 1.12 Optical models:
a uniform single film on
substrate; b inhomogeneous
film on substrate; c rough film
on substrate; d multiple films
on substrate

(a)

(b)

(c)

(d)

Figure 1.12b–d show the more complicated cases where the film(s) and/or the
substrate are inhomogeneous. For Fig. 1.12b there are two different materials and
therefore two different film compositions with commensurate properties. In this case
there will be composition unknowns in addition to the unknowns in Fig. 1.12a. For
many situations similar to Fig. 1.12b it has been shown that the Bruggeman effective
medium approximation, BEMA, can yield excellent results for a variety of inho-
mogeneous film-substrate situations. Essentially this model that is discussed further
below considers that an inhomogeneous layer is discrete, i.e. with sharp interfaces
as for the simpler models, but with a dielectric response that is the composite of the
dielectric responses of the individual components. The manner in which the individ-
ual components with their respective contributions to the total dielectric response, 〈ε〉
are summed, varies according to assumptions made based about the state of aggre-
gation. In order to understand this more clearly and without lengthy derivations we
proceed quickly to the final forms used for optical response calculations. Justification
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Fig. 1.13 Optical properties of a typical dielectric in the visible light range: a in terms of the optical
dielectric function ε and real and imaginary components ε1 and ε2 , respectively, and b in terms of
the refractive index n and absorption constant k

for the application of the various models is in the original literature as are deriva-
tions. The various effective medium approximations that can be used for a variety of
applications are discussed after other useful approximations are introduced.

It is often useful to approximate the dispersion of ε (the changes in ε with photon
energy or ν or λ) or changes in Ñ for a film or substrate. Typical spectra for a
material in terms of ε and Ñ are shown in Fig. 1.13 for the visible photon energy
range. Figure 1.13a shows a strong absorption near 5 eV with both ε1 and ε2 slowly
varying at lower energies away from the absorption. Figure 1.13b show the same
spectrum but in terms of n and k. At energies lower than the adsorption k is close to
zero and n is slowly varying. For the sub-absorption photon energies where k can be
safely approximated as 0 the Cauchy formula is often used to approximate n(λ) as
follows:

n(λ) = A + B

λ2 + C

λ3
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where A, B and C are Cauchy parameters. For materials or at photon energies where
absorption is in evidence the Cauchy formula is not a good approximation and a
useful formula that includes optical absorption, the Lorentz Oscillator formula is
used and for a single oscillator is given as:

ε = 1 + 4πe2

m
(
ω2

0 −ω2 −j�ω
)

where m is the oscillator reduced mass, ω0 is a oscillator resonance frequency, ω is
the probe frequency and � is a broadening parameter for the resonance. For more
than one oscillator the Lorentz formula is a sum as:

ε = 1 + 4πe2

m

∑
i

Ni

ω2
i −ω2 −j�i ω

where Ni is the number of oscillators per volume with resonance at ωi. For
∑

i Ni = N
and ωo is the resonance frequency, ε1 and ε2 are as follows:

ε1 = 1 + 4πNe2
(
ω2

0 −ω2
)

m
(
(ω2

0 −ω2)2 + �2 ω2
) and ε2 = 4 π Ne2�ω

m
(
(ω2

0 −ω2)2 + �2 ω2
)

Figure 1.13a shows a single oscillator with � given by the width of the resonance
at ω0 at half maximum. The region near ω0 where ε1decreases rapidly and even
becomes negative and n goes through a maximum is called the anomalous dispersion
region. The Cauchy and/or Lorentz formulas are used to approximate various films
in single or multiple film models for non-absorbing or absorbing films, respectively.
The remaining issue is the modeling of inhomogeneous films and rough interfaces
and this can be done using effective medium approximations, EMA’s.

The effective medium approximations formulas that are used for approximating
inhomogeneous films are now discussed and are derived by considering how the
incident electromagnetic light waves interact with the inhomogeneous material. Thus
different formulas are obtained for different materials and different materials circum-
stances such as mixtures. The starting point is the Clausius-Massotti equation which
connects a microscopic material property, the polarizability, α, to the macroscopic
dielectric response, ε:

ε −1
ε +2

= 4π

3
nα

In this formula n is the number of polarizable species in the volume of material
probed or the density. This equation obtains for a pure substance and is derived from
a consideration of the local electric fields. For a material that is approximated as a
heterogeneous mixture of polarizable points (atoms/molecules) a and b in vacuum
and each with a different polarizability, αa and αb, then the Lorentz-Lorenz equation
applies:
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ε −1
ε +2

= fa
εa −1
εa +2

+ fb
εb −1
εb +2

where the f’s are the volume fractions of constituents.
If a and b are not points in a vacuum, but rather are in a host with a dielectric

response εh then the Maxwell-Garnet equation is obtained:

ε − εh

ε +2 εh
= fa

εa − εh

εa +2 εh
+ fb

εb − εh

εb +2 εh

If a is considered as the host and thus we have a mixture of points of b in a then
one obtains:

ε− εa

ε +2 εa
= fb

εb − εa

εb +2 εa

The Maxwell-Garnet relationship has found application in the field of cermets
which are ceramic composites composed of hard brittle ceramic particles in a con-
nected ductile phase. If fa ≈ fb, i.e. there are ample amounts of both materials present,
and we let εh = ε with a as host the result is:

fa
εa − ε

εa +2 ε
+ fb

εb − ε

εb +2 ε
= 0

which is called the Bruggeman effective medium approximation, BEMA, as was
mentioned above and this formula is generalized for i constituents as follows:

∑
i

fi
εi − ε

εi +2 ε
= 0

The BEMA assumes mixtures on a scale smaller than the wavelength of light, but
that each constituent retains its original dielectric response. One can imagine that
this model might be appropriate for mixed phase films, large amounts of impurities
in substrates and damage, and roughness and indeed applications to these cases have
been successful in many instances.

Now with these approximation tools in hand a regression analysis can be used to
extract desired optical properties from � and � measurements at numerous photon
energies (spectroscopic ellipsometry SE will be discussed further below). One recipe
for this analysis is shown in Fig. 1.14 and is described as follows:

1. Measure �, � at various λ’s and obtain ρexp. This experimentally determined
quantity, ρexp, provides one input to the regression analysis and is displayed in
the top box in Fig. 1.14.

2. As was discussed above the optical model is deduced from independent experi-
ments and measurements, and/or good guesses and this is seen as the second box
in Fig. 1.14. The identity of each film, its constituents and state of aggregation
(homogeneous, inhomogeneous, rough etc.) is determined.
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Fig. 1.14 Regression analysis flow chart. � and � are measured variables and ρ is the complex
reflection coefficient. Ñj is the complex index for the j component, Li is film thicknesses and fj
are the volume fractions of constituents, N is the number of measurements and P the number of
parameters and δ the tolerable error

3. Measure or find in the literature the ε’s (Ñ’s) for all the constituents. Steps 2 and
3 are summarized in the second box from the top in Fig. 1.14.

4. The third box from the top indicates that from items 2 and 3 above ρcalc is calcu-
lated.

5. The values for ρexp and ρcalc are compared as shown in the fourth box from the
top where N is the number of measurements (the number of λ’s) and P is the
number of parameters.
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6. The difference is compared in the fifth box with a tolerable difference between
the model and experimental results. If this result is satisfactory the calculation
ends and the parameter values obtained are deemed to be correct.

7. If not then the process repeats with a change of parameters as shown in the sixth
box This first comparison derives from the initial values for the parameters in the
model. There are many mathematical methods that could be used for the mini-
mization routines with one shown in the last box. Also it should be remembered
that the parameter values obtained are only as good as the model. It is possible
to get a good fit to a physically or chemically incorrect model and correlation
among parameters is also a source for error and often determined. With a well
substantiated optical model, a regression analysis has been found to be useful in
obtaining desired materials parameters and properties.

Figure 1.15 shows a summary of a typical thin film ellipsometry study on the
plasma oxidation of a single crystal Si surface where optical modeling was performed.
Various optical models were proposed based on transmission electron microscopy
(TEM) and x-ray photoelectron spectroscopy (XPS) studies of the interface between
the oxide film and the Si substrate combined with a knowledge of the plasma oxi-
dation mechanism. Figure 1.15a shows four models that fit some of the observed
facts. Model 1 considers only a homogenous amorphous SiO2 film on the Si surface
and is included only for completeness, Model 2 considers that the oxide film is a
homogenous mixture of amorphous Si and SiO2and is based on the higher refractive
index observed for thin oxide films. Models 3 and 4 consider a separate mixed inter-
face layer coated with pure amorphous SiO2 where either the other ingredient in the
interface layer is either crystalline or amorphous Si, respectively. It is seen that the
best fit model is Model 4 based on the mathematical quality of the fit measured by an
unbiased estimator δ. While Model 4 is the best mathematical fit it cannot be argued

(a) (b)

Fig. 1.15 a Various optical models considered for ECR plasma oxidation of Si with typical values
for the unbiased estimator δ. b Shows a typical data fit to model 4 that consistently displayed the
best fit to the model (inset). (Adapted from Hu et al. [10] Fig. 1.1b)
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that this Model is the true Model based on the fit alone, because there are always
errors associated with the measurements that could influence the fit. However not
only is the mathematical fit best for Model 4 but the excess Si observed by XPS near
the interface but in the oxide film is also found to be amorphous by TEM. So the good
fit merely confirms the physical measurements to further strengthen the conclusion
that Model 4 is likely the true model for the plasma oxidation of Si.

1.4 The Past, Present and Future of Ellipsometry

As was briefly discussed above, historically ellipsometry was developed from the
emerging understanding of light in the 1600s and the employment of classical optics
with the intent to study thin films into the early 1900s. The term “ellipsometry” was
coined in the mid 1900s. Ellipsometry as it is presently practiced has been developed
as one of the most surface sensitive surface optical techniques and as such has been
found useful to determine surface optical properties of materials where typically
only bulk optical properties are available from other techniques. Furthermore since
ellipsometry requires only conventional light sources and the required hardware can
be placed at a distance from a sample and outside typical thin film process chambers,
ellipsometry has been found very useful for in situ and/or real-time thin film process
monitoring. Many of the earliest applications were derived from electrochemical
research, since that field produced thin films on electrode surfaces. The formation
of some films reduced the electrochemical chemical reactivity of the surfaces and
consequently the surfaces were passivated. The formation of passive films was and
is an important field of study in corrosion science. Even greater progress was made
in the 1970s due mainly to the demands of the microelectronics industry that utilizes
thin films for computer chips. The example summarized in Fig. 1.15 of Si oxidation
is a classical example in microelectronics where ellipsometry can follow important
processes very accurately and in real time. The microelectronics industry resulted in
large part from the ability to control the electric potential at a semiconductor which
when accomplished via the thermal oxidation of Si led to metal oxide semicon-
ductor (MOS) devices that comprise a major fraction of modern microelectronics
applications.

It is interesting to consider the cyclic nature of the advances in ellipsometry. While
it is clear that the demands of the emerging microelectronics industry in the late 1960s
and 1970s for high quality thin films and surface properties obtainable from ellip-
sometry led to increased interest and development in ellipsometry, the developments
within microelectronics such as microprocessors leading to powerful PC’s and dig-
ital signal processing chips such as CCD’s and the analysis algorithms to analyze
and reduce data have lead to further developments of ellipsometry automation, speed
and accuracy. Ellipsometer manufacturers were encouraged to develop better hard-
ware with automation and sophisticated software so as to both improve the quality of
the ellipsometric measurements and increase the accessibility to users who are not
deeply trained in optical techniques and data analysis.
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Now after a hundred plus years of progress in ellipsometry due in large part to
the requirements and demands of the now mature microelectronics industry what
lies ahead? The answer is general terms is somewhat obvious. Recent research and
product development has focused on small structures, even smaller than those in
microelectronics. The new prefix “Nano” is used to describe the many new terms that
reflect new research paths and potentially new products. From a materials science
point of view nanomaterials or materials based on nanostructures offer unlimited
commercial potential. Consequently, numerous large and small research programs
worldwide have been dedicated to some form of nanoscience or nanotechnology
and this trend continues ever rapidly. While some products derived from nano stud-
ies are in the marketplace, the potential is far from realized. One key issue in both
nanoscience and nanotechnology is the availability of methods to characterize the
nano-materials. Ellipsometry has been shown to be a competent technique for deter-
mining film dimensions well into the lower end of the nano size range. Efforts are well
underway (the NanoCharm program for example) to develop ellipsometry for nano-
materials characterization. The following chapters are dedicated to summarizing the
understanding developed and progress made with ellipsometry and associated polar-
ized light techniques Here only some of the issues and objectives for ellipsometry
nanostructure measurements are summarized.

The predominant issue is size. It will be seen that the consequences of size leads
to most of the other difficult issues with characterizing nanomaterials. From the
voluminous literature on thin films, ellipsometry has been proven useful to obtain
accurate film thicknesses, L, to 0.1 nm and the materials optical dielectric function
ε that includes n and k. However there are some limitations for conventional thin
films. First for homogenous films less than 10 nm thick it is often difficult to obtain
both L and ε. Often either ε or L is independently determined and used as input
to an ellipsometric calculation where measured � and � are to obtain the other. A
usual approach is to determine the film thickness using electron microscopy, electron
spectroscopy or scanning probe microscopy and then use the thickness to determine
ε for a given material of nm thickness. Once established, the ε for the nm range thick
films can then be used as input for the further ellipsometric characterization of the
material. It is unwise to use tabulated values for ε obtained from bulk materials or
even derived from thick films that are well outside of the nm range, since it is known
that for many films the optical properties are a function of thickness and of the exact
method of preparation. These notions are well known for thin films and apply equally
to all small structures.

Next is the question of homogeneity. Many nanostructures are composed of nm
sized particles, columns, wires etc that must be supported on a surface or included
as a composite in a medium. If for example nanoparticles are included in a film
of a different material like a pure substance as depicted in Fig. 1.12b then there is
a possibility that effective medium approximations can be used to formulate the
dielectric response. If the occluded nanoparticles can be described by a dielectric
function then a Bruggeman Effective Medium Approximation (BEMA) has been
found to be useful. However, it should be recalled that a dielectric function is strictly
only defined for a pure material of sufficient extent to exhibit a uniform dielectric
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response. For very small particles composed of relatively small numbers of atoms or
molecules, the addition or subtraction of a few atoms or molecules could change the
dielectric response. Thus a single dielectric function is not defined for that material
and the BEMA would fail. The argument persists in physics just how large a material
must be to be described by a single dielectric function. This issue is related to the
similarly persistent argument about how large a material must be to exhibit an electron
energy band structure.

Small structures can have many shapes other than spherical. Shape gives rise to
directionality which combined with size can potentially result in quantum confine-
ment and then ultimately affect the optical response of the nanostructure. Also small
structures can scatter incident light. Non-specular reflection can be interpreted at
the detector as absorption if the loss is not otherwise accounted for. This issue arises
when performing ellipsometry on rough surfaces when the rough feature size relative
to the wavelength of the incident light are in the range of λ/2 and therefore scattering
is maximum.

These issues of size, shape and state of aggregation are simultaneously manifest
in nanostructures. The resolution of these issues are subjects for study and progress
is discussed in the following chapters.
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Chapter 2
Advanced Mueller Ellipsometry
Instrumentation and Data Analysis

Enric Garcia-Caurel, Razvigor Ossikovski , Martin Foldyna, Angelo
Pierangelo, Bernard Drévillon and Antonello De Martino

Abstract The main object of this chapter is to give an overview the possibilities
offered by instruments capable of measuring full Mueller matrices in the field of
optical characterization. We have chosen to call these instruments Mueller ellip-
someters in order to highlight their close relation with instruments traditionally used
in ellipsometry. We want to make clear to the reader the place that Mueller ellipsom-
etry takes with respect to standard ellipsometry by showing the similarities but also
the differences among these techniques, both in instrumentation and data treatment.
To do so the chapter starts by a review of the optical formalisms used in standard
and Mueller ellipsometry respectively. In order to highlight the particularities and
the advantages brought by Mueller ellipsometry, a special section is devoted to the
algebraic properties of Mueller matrices and to the description of different ways to
decompose them. Matrix decompositions are used to unveil the basic polarimetric
properties of a the sample when a precise model is not available. Then follows a
description of the most common optical configurations used to build standard ellip-
someters. Special attention is paid to show what can and what cannot be measured
with them. On the basis of this knowledge it is shown the interest of measuring whole
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Mueller matrices, in particular for samples characterized by complex anisotropy
and/or depolarization. Among the numerous optical assemblies able to measure full
Mueller matrices, most of them are laboratory prototypes, and only very few have
been industrialized so far. Because an extensive and comparative review of all the
Mueller ellipsometric instruments developed to date is clearly out of the scope of
this chapter, we limit our description to four Mueller ellipsometers, two imaging and
two spectroscopic systems that have been developed by us in the past years. The
technical description of the Mueller ellipsometers is accompanied by some exam-
ples of applications which, without being exhaustive, are representative of the type
of analyses performed in ellipsometry, and also illustrate the advantages that can
be brought by modern Mueller ellipsometers to optical metrology, materials science
and biomedicine.

2.1 Introduction

The use of polarized light to characterize the optical properties of materials, either
in bulk or thin film format, is generally called Ellipsometry. The technique finds its
roots in the pioneering work by Paul Drude in the nineteenth century when he used
polarized light in a reflection configuration to study the optical properties and thick-
ness of very thin metallic films. Since then, many methods have been successfully
used to generate and analyze the polarization properties of light, and this technique
has enjoyed a great success over the past decades. Hundreds of studies and industrial
applications have emerged, which are either directly based on ellipsometry, or profit
from its sensitivity.

Classical ellipsometric measurements require that the light beam remains com-
pletely polarized during the measurement process. Let us recall that a light beam is
said to be fully polarized, when the relative phase between the different components
of the electromagnetic field along two orthogonal directions remains constant. If for
some reason, this relative phase varies (spatially, spectrally and/or temporally), the
light will become partially polarized. If so, single ellipsometric measurements lose
their physical meaning. To correctly measure and physically interpret the properties
of partially polarized light, it is necessary to use the more general technique called
Mueller Ellipsometry or Polarimetry. Mueller ellipsometry is thus needed for com-
plete and accurate characterization of the anisotropic and/or depolarizing samples
of interest in many instances, both in academic research and “real life” activities.
We prefer the term “Mueller Ellipsometry” instead of “Polarimetry”, to emphasize
the close relationship of this technique with standard ellipsometry. Several excellent
monographs [1–3] have been published covering different aspects of both standard
and Mueller ellipsometry, such as the theory of polarization, the optical response of
solids, the instrumentation and innovative applications.

This chapter is aimed at accounting for the novel Muller ellipsometric data analy-
sis, instrumentation, and their applications in the context of standard ellipsometry.
Our purpose is not only to give a simple technical description of these aspects but
also to show their interest for non-experienced and experienced users of standard
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ellipsometry. The chapter is organized in different sections but it can be divided in
three conceptual parts.

The first one starts by recalling the Jones and Stokes formalisms used in standard
and Mueller ellipsometry respectively. Next we introduce the basic polarimetric
effects such as dichroism, retardance, depolarization and polarizance. Those are
the basic “building blocks” which allow to interpret the information brought by
Mueller matrices in physical terms. Next we show different ways to decompose
Mueller matrices into sums or products of simpler matrices which can be helpful to
understand the physics and/or the structure of the samples. The next section consists
of an overview of the basics of an ellipsometric measurement, and the usual process of
treating ellipsometric data (inversion problem). This section emphasizes the features
common to standard and Mueller ellipsometry.

The next section opens the second conceptual part of the chapter, devoted to
instrumentation. The section gives an overview of the four most widely used types
of ellipsometers. A special attention will be paid to show what can be measured with
these ellipsometric configurations, or in other words, which elements of the Mueller
matrix can be accessed. The purpose is to show the limitations of standard ellipsome-
ters and the advantages brought by modern Mueller ellipsometers. In the next section
we compare Generalized and Mueller ellipsometry, to show their equivalence for the
study of complex but non-depolarizing samples, and the interest of measuring the
full Mueller matrix when depolarization is present. The next section is devoted to
various instrumentation issues of Mueller ellipsometers. We start recalling the basic
theoretical background needed to design optimal polarimeters. Special emphasis is
put on the concept of condition number, which has been used as a figure of merit
to predict the optical performance of the designed instrument. Calibration is also an
important issue because it strongly influences the quality of the measurements. We
provide a concise description of a particularly useful, robust and versatile calibration
procedure called “eigenvalue calibration method” (ECM). In the following section,
we review different Mueller ellipsometers developed by the authors of the present
chapter: (i) a spectroscopic system based on liquid crystal variable retarders working
in the visible and near infrared, (ii) a broadband spectroscopic Mueller ellipsometer
which has been adapted to work in the mid-infrared range, (iii) an imaging Mueller
ellipsometer based on liquid crystal retarders to work with macroscopic samples
with a characteristic size of few centimeters, (iv) an angle-resolved imaging Mueller
ellipsometer coupled to a microscope in order to analyze tiny parts samples with a
high degree of magnification.

The third part is devoted some examples of application of these Mueller ellipsome-
ters. These applications, namely optical metrology and determination of dielectric
functions of materials in broad spectral ranges, are representative of very common
uses of Mueller ellipsometers. Optical metrology means the determination of physical
dimensions such as thin film thicknesses, profile reconstruction of one-dimensional or
two-dimensional diffraction gratings, or the overlay (misalignment) between stacked
patterned structures. we show that even if we use only visible light we are able to push
the accuracy of the optical metrology to the nanometer scale. Finally, we present some
very recent and promising results of Mueller imaging for the detection and staging of
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Fig. 2.1 Examples of electric field trajectories in the plane perpendicular to the propagation direc-
tion for fully polarized (left) or partially polarized (right) light waves

cancer both ex-vivo, and in vivo. In the conclusion, we try to summarize our vision
of the status and the possibilities of Mueller ellipsometry, both from the instrumental
point of view and for “real world” applications.

2.2 The Polarization of Light

In this section, we briefly review the most widely used theoretical descriptions of
the light polarization properties, namely the Jones formalism for totally polarized
light and the Stokes-Mueller formalism, which is the most general representation
and can adequately account for any polarization states. The polarimetric properties
of any sample are then defined from the changes this sample introduces in the polar-
ization state of a probe light beam. In turn, these properties may be used for various
purposes, from very well established applications (such as material and thin film
characterizations) to more advanced ones, such as remote sensing and/or medical
diagnosis.

As described in textbooks on electromagnetism [4], when a light ray propagates
(through an isotropic or weakly birefringent medium) along the z direction, the
electric field vector E is confined to vibrate in a x–y plane perpendicular to z, as
illustrated in Fig. 2.1.

For totally polarized states, the electric field E describes an ellipse, characterized
by its ellipticity ε and the azimuth of its major axis φ. The particular cases of linear
and circular polarizations respectively correspond to ε = 0, andφ = 45◦. In contrast,
partially polarized states correspond to more disordered motions of the electric field,
which can be properly described only statistically, from cross-correlation functions,
as discussed below.

2.2.1 The Jones Formalism

As mentioned above, the Jones formalism is well adapted to the description of totally
polarized states. Any elliptical motion of E can be decomposed along the x and y axes,
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with real amplitudes Ai and phases φi, (i = x, y) which can be lumped into complex
numbers Ei. Because in ellipsometry measurements are in general performed either
in reflection or transmission configurations, it is common to choose as reference for
the coordinates x and y, the directions parallel and perpendicular with respect to the
plane of incidence, called p and s respectively. Then for transversal electromagnetic
waves the Jones vector for the electric field is given by:

(
Ex

Ey

)
=

(
Ep

Es

)
=

(
Apeiϕp

Aseiϕs

)
(2.1)

Stated in the form (2.1), the Jones vector contains also an overall phase factor, which
may be important in some cases, when the polarized beam under study interferes
with another beam. However, as long as only single-beam ellipsometry is concerned,
this overall phase can be removed, for example by setting φp = 0. In the absence
of depolarization, the interaction with a sample transforms the Jones vector of the
incident beam into another Jones vector, by a linear transformation:
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where the Jij are the elements of the Jones matrix. In a similar way as for Jones
vectors, if one is interested only in the polarimetric properties of the sample and not
its overall optical path (or phase shift) then one element can be taken as a real number
(phase set arbitrarily to zero), and the Jones matrix depends on seven real parameters.
This dependence can be further reduced to six if the overall amplitude transmission
(or reflectivity) is also neglected. For plane and isotropic samples the Jones matrix
in (2.2) takes on a special simple form: diagonal. It turns out that in practice the
majority of substrates and thin films produced in research or industrial laboratories
are isotropic, which makes the study by ellipsometry particularly simple.

(
Ein

x

Ein
y

)
=

(
rp 0

0 rs

)(
Ein

x

Ein
y

)
(2.3)

Jones matrix elements can be interpreted in terms of the Fresnel reflection coeffi-
cients in polarization parallel, rp, and perpendicular, rs, to the plane of incidence.
If the measurement is performed in transmission configuration, rp and rs must be
substituted by the respective equivalent Fresnel transmission coefficients tp and ts
(Fig. 2.2).

Ellipsometry measures the change on the polarization state of a beam after reflec-
tion or transmission by a sample. In the simplest case of isotropic samples, standard
ellipsometry measures a couple of values � and � called the ellipsometric angles.
The angles � and � are usually defined from the ratio ρ,
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Fig. 2.2 Schematic view of a ellipsometric measurement in reflection configuration. The polarized
beam is incident on the sample from the right side. After reflection the polarization state of the
beam has changed and pursuits its propagation to the left side

ρ = rp

rs
= tan�ei� (2.4)

where

tan� =
∣∣rp

∣∣
|rs| and � = δp − δs (2.5)

Thus, tan � is the amplitude ratio upon reflection, and � is the difference in phase
shift. As it will be shown in a subsequent section of this chapter, Sect. 2.5.3, standard
ellipsometers do not measure directly � and �, but functions of them.

2.2.2 The Stokes-Mueller Formalism

2.2.2.1 General Polarization States: Coherence and Stokes Vectors

For partially depolarized states, the disordered motion of the electric field in the (x, y)
plane schematically shown in Fig. 2.1, can be properly described only by its statis-
tical properties instead of its instantaneous values. For this reason it is preferable
to use field intensities instead of amplitudes. At first sight, one might think that a
full probability distribution of the electric field E would be needed to fully charac-
terize such states. In fact, as long as only intensity measurements can be performed
with state-of-the art detectors at optical frequencies, all that is needed to predict the
result of any classical measurement are the second moments (statistical averages of
quadratic functions) of the electric field distributions. As a result, in the framework
of linear optics, any possible polarization state of partially polarized field can be
fully characterized by a four dimensional vector, called the field coherence vector
C, defined for any set of a orthogonal axes (p, s). In the context of ellipsometry, the
p and s axes are traditionally chosen to be oriented along the directions parallel and
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perpendicular to the plane of incidence. Accordingly C can be written as:

CT = (C1,C2,C3,C4) =
(〈

EpE∗
p

〉
,
〈
EpE∗

s

〉
,
〈
EsE

∗
p

〉
,
〈
EsE

∗
s

〉)
(2.6)

where the first and last components are real while the other two are complex conju-
gates of each other. However, in practice the most widely used vector to characterize
arbitrary polarization states is the Stokes vector :

S =

⎛
⎜⎜⎝

I
Q
U
V

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Ip + Is

Ip − Is

I45◦ − I−45◦
IL − IR

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
EpE∗

p + EsE∗
s

〉

〈
EpE∗

p − EsE∗
s

〉

〈
EpE∗

s + EsE∗
p

〉

i
〈
EpE∗

s − EsE∗
p

〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= AC with

A =

⎛
⎜⎜⎝

1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎞
⎟⎟⎠ (2.7)

The popularity of the four dimensional real Stokes vector is certainly due to its
immediate relationship with the directly measurable quantities Ip, Is, I+45, I−45 i.e.
the intensities which would be measured through ideal linear polarizers oriented
along the p, s, p + 45◦ and p−45◦ in the plane perpendicular to the direction of
propagation, while IL and IR would be the intensities transmitted by left and right
circular polarizers [1]. Contrarily to the Stokes vectors, the Jones vector, which is
defined in terms of electric field amplitudes, cannot be measured at optical frequen-
cies.

In the most general case of partially polarized light the brackets at the right hand
sides of (2.6) and (2.7) stand for all possible ways to take averages, e.g. spatially,
spectrally or temporally, depending on the sample and measurement conditions.
Thus, partially polarized states can be viewed as incoherent superpositions of fully
polarized states with different polarizations, with simple addition of intensities and
no interference effect. Conversely, for fully polarized states the field amplitudes
are well defined and there is no need of averaging whatsoever. The corresponding
brackets can thus be removed from (2.6) and (2.7).

Within the Stokes formalism, the degree of polarization ρS related to a given
Stokes vector S is defined as:

ρS =
√

Q2 + U2 + V2

I
(2.8)

This parameter varies between 0, for totally depolarized (fully disordered) states;
and 1, for totally polarized states. This is an important difference between Jones and
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Stokes vectors: while Jones vectors may have any complex components, without any
limitation whatsoever, this is no longer true for Stokes vectors, for which ρs must be
comprised between 0 and 1 to actually represent a physically realizable polarization
state.

2.2.2.2 Interaction with a Sample: Mueller Matrices

Let us first consider the transformation of a fully polarized light by interaction with
a non-depolarizing sample. From the transformation described within the Jones for-
malism by (2.2) we immediately obtain

(EiE
∗
j )

out =
∑
k,l

JikJ∗
jl (EkE∗

l )
in (2.9)

If we now consider the general case of a partially depolarized state interacting with
a partially depolarizing sample, then both sides of (2.9) must be averaged. Now,
in linear optics there is absolutely no reason to expect any statistical correlations
between the fluctuations of the Jones matrix elements characterizing the sample and
those of the incoming field amplitudes, as the light field cannot affect the sample
properties in any way at the intensities typical of ellipsometric measurements. As a
result, the quadratic functions of the Jones matrix and of the field amplitudes can be
averaged separately,

〈
EiE

∗
j

〉out =
∑
k,l

〈
JikJ∗

jl

〉 〈
EkE∗

l

〉in or Cout = F Cin (2.10)

where the matrix F is obtained by renumbering the couples of indices ik and jl in the
same way as it was done for the coherence vector C in (2.6):

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
JppJ∗

pp

〉 〈
JppJ∗

ps

〉 〈
JpsJ∗

pp

〉 〈
JpsJ∗

ps

〉

〈
JppJ∗

sp

〉 〈
JppJ∗

ss

〉 〈
JpsJ∗

sp

〉 〈
JpsJ∗

ss

〉
〈
JspJ∗

pp

〉 〈
JspJ∗

ps

〉 〈
JssJ∗

pp

〉 〈
JssJ∗

ps

〉

〈
JspJ∗

sp

〉 〈
JspJ∗

ss

〉 〈
JssJ∗

sp

〉 〈
JssJ∗

ss

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 〈
J ⊗ J∗〉 (2.11)

where ⊗ stands for a Kronecker product. While the coherence vector C is transformed
by F, upon interaction with a sample the Stokes vector is transformed by the well-
known Mueller matrix M [5–7]:
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Sout =

⎛
⎜⎜⎝

I
Q
U
V

⎞
⎟⎟⎠

out

= MSin =

⎛
⎜⎜⎝

M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

I
Q
U
V

⎞
⎟⎟⎠

in

(2.12)

By combining (2.7), (2.10) and (2.11) we immediately obtain

M = A F A−1 = A
〈
J ⊗ J∗〉 A−1 (2.13)

which can be written in an expanded notation for a general case as:

(2.14)
Of course, in the absence of depolarization, i.e. when the Jones matrix is well

defined, the brackets meaning averages can be removed in (2.14). Furthermore, if
the Jones matrix is diagonal, as it is the case for standard ellipsometry, only the upper
left and lower right 2 × 2 sub-matrices do not vanish, and the Mueller matrix can be
recast in terms of the ellipsometric angles � and � as:

M (τ,�,�) = τ

⎛
⎜⎜⎝

1 − cos(2�) 0 0
− cos(2�) 1 0 0

0 0 sin(2�) cos� sin(2�) sin�
0 0 − sin(2�) sin� sin(2�) cos�

⎞
⎟⎟⎠

(2.15)
Due to the capability of the Stokes vectors to describe any polarization state, the
Mueller matrix can fully describe the polarimetric properties of any sample, be it
depolarizing or not. In other words, Mueller polarimetry is the only technique able
to fully characterize the polarization responses of any sample, in any measurement
conditions.

In contrast with the Jones matrix, the Mueller matrix does not carry any informa-
tion about the overall optical phase shift introduced by the sample. So, depending
on whether the overall transmission (or reflectivity) of the sample is of interest or
not, the Mueller matrix may be considered in its original or in its normalized form:
in the latter case, all its elements are divided by the upper left element M11 which is
set equal 1.

2.2.2.3 Coherence Matrix: Physical Realizability and Depolarizing
Character of Mueller Matrices

The coherence matrix, N, is an interesting object, obtained from a smart rearrange-
ment of the matrix F. To obtain the coherence matrix it is necessary to redefine the
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Jones matrix in a “vector” form JV as:

[
JV

]T =
(

JV
1 , JV

2 , JV
3 , JV

4

)
= (

Jpp, Jps, Jsp, Jss
)

(2.16)

then the matrix N can be expressed in terms of matrix F as:

N =
〈[

JV
]

⊗
([

JV
]T

)∗〉
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
JppJ∗

pp

〉 〈
JppJ∗

ps

〉 〈
JppJ∗

sp

〉 〈
JppJ∗

ss

〉
〈
JpsJ∗

pp

〉 〈
JpsJ∗

ps

〉 〈
JpsJ∗

sp

〉 〈
JpsJ∗

ss

〉
〈
JspJ∗

pp

〉 〈
JspJ∗

ps

〉 〈
JspJ∗

sp

〉 〈
JspJ∗

ss

〉
〈
JssJ∗

pp

〉 〈
JssJ∗

ps

〉 〈
JssJ∗

sp

〉 〈
JssJ∗

ss

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

F11 F12 F21 F22
F13 F14 F23 F24
F31 F32 F41 F42
F33 F34 F43 F44

⎤
⎥⎥⎦ (2.17)

where the superscripts, T and ∗ stand for transposed and complex conjugated. When
applied successively, they are equivalent to the Hermitian conjugate. The relation
between the N and F matrices allows to combine expressions (2.17), (2.11) and
(2.14) to write N in terms of the elements of the Mueller matrix M as:

N = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 + M22+
M12 + M21

M13 + M23+
i(M14 + M24)

M31 + M32−
i(M41 + M42)

M33 + M44+
i(M34 − M43)

M13 + M23−
i(M14 + M24)

M11 − M22−
M12 + M21

M33 − M44−
i(M34 + M43)

M31 − M32−
i(M41 − M42)

M31 + M32+
i(M41 + M42)

M33 − M44+
i(M34 + M43)

M11 − M22+
M12 − M21

M13 − M23 + i
(M14 − M24)

M33 + M44−
i(M34 − M43)

M31 − M32
+i(M41 − M42)

M13 − M23−
i(M14 − M24)

M11 + M22−
M12 − M21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.18)
An alternative definition of the matrix N, giving the same result as (2.17), has been
proposed by [8]. As it can be seen, the coherence matrix has the same elements as
the matrix F, hence it carries the same information. By construction, the matrix N is
Hermitian, implying its eigenvalues are real. This algebraic property will be used to
define some of the Mueller matrix decompositions detailed in a forthcoming section,
Sect. 2.4. Moreover by construction it can be easily seen that the coherence matrix
has the form of a variance-covariance matrix. In the following, in order to keep the
same terminology as other authors, we will refer to matrix N as coherence matrix
instead of variance-covariance matrix.
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2.2.2.4 Physical Realizability of Mueller Matrices

We already pointed out in paragraph 2.2.2.1 that any two dimensional complex vector
may represent the Jones vector of a physically realizable polarization state, while
a four dimensional real vector is not necessarily an acceptable Stokes vector, as its
degree of polarization ρs must be comprised between 0 and 1.

The situation is quite analogous for Jones and Mueller matrices. Any 2×2 complex
matrix is a physically acceptable Jones matrix (provided we consider the polarization
behavior of optical amplifiers, to include matrices with coefficients having moduli
larger than 1), while any 4×4 real matrix M is not necessarily a physically realizable
Mueller matrix. An obvious necessary condition is that any acceptable Stokes vector
must be transformed by M into another acceptable Stokes vector, with ρs between 0
and 1. However, this condition is not sufficient.

The real criterion of physical realizability of M as a Mueller matrix is directly
related to our previous definition of a Mueller matrix as a linear combination of the
second moments of a probabilistic (and not deterministic) Jones matrix. A necessary
and sufficient condition for the existence of such matrix, and thus of the acceptabil-
ity of M as a Mueller matrix is that the matrix N calculated from M by (2.18) is
an acceptable coherence matrix, i.e. that this Hermitian matrix is definite positive
[9, 10] (all eigenvalues are non-negative, and at least one is strictly positive).

2.2.2.5 Depolarizing and Non-Depolarizing Mueller Matrices

From the above definitions, it should be quite clear now that a non-depolarizing
sample is characterized by a well-defined (deterministic) Jones matrix. As a result,
all the averaging introduced in Eqs. (2.10), (2.11), (2.14) and (2.17) can be safely
eliminated. If so, Eq. (2.17) shows that N can be seen as a “projector” of the C4 space
onto the vector JV.

Actually, a necessary and sufficient condition for a Mueller matrix M to be non-
depolarizing and equivalent to a Jones matrix J is that its coherence matrix N has
only one strictly positive eigenvalue The eigenvector associated with this eigenvalue
is the vector JV related to J by JV (2.16).

As discussed later in Sect. 2.3.3 devoted to pure depolarizers, there are many ways
to quantify the depolarizing character of a given sample, after more or less complex
treatments of the Mueller matrix M. However, a very simple quantifier, the quadratic
depolarization index Pq proposed by Gil [11] deserves a special mention here due to
its ease of implementation:

Pq =

√√√√√
∑
ij

M2
ij − M2

11

3M2
11

=
√

trace(MT M)− M2
11

3M2
11

(2.19)
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Fig. 2.3 Left a pair of ellip-
tically polarized orthogonal
states. Right a pair of linearly
polarized orthogonal states

where the superscript T stands for the transpose operation and, trace, indicates the
algebraic trace operator. The quadratic depolarization index Pq varies from 0, for a
perfect depolarizer (only M11 is nonzero) to 1, for non-depolarizing matrices.

2.3 The Essential Polarimetric Properties of Any Sample

Generally speaking, the polarimetric response of a given sample describes how the
incident light polarization is changed due to the interaction with the sample. In spite
of its apparent complexity, this response can be rationalized in terms of three funda-
mental properties, namely the sample diattenuation, retardation, and depolarization.
In many cases of practical interest, among which the usual ellipsometric characteri-
zation of isotropic materials or thin films, all these properties can be unambiguously
defined from the measured data. The fundamental polarimetric properties used as
“building blocks” to characterize more complex systems are given by pure diatten-
uators, pure retarders and depolarizers.

To understand these properties it is useful to use the concept of pairs of fully
polarized orthogonal eigenstates, represented in Fig. 2.3. Each eigenstate is charac-
terized by its length and ellipticity. An ellipticity equal to zero corresponds to linearly
polarized light, an ellipticity equal to ±1 corresponds to circularly polarized light,
while other values of ellipticity correspond to elliptically polarized light. The sign of
the ellipticity states the difference between clockwise or counterclockwise rotation.
For the vast majority of usual polarization optical components, such as retardation
plates or polarizers, these eigenstates are actually linearly polarized, (also shown in
Fig. 2.3).

Linear diattenuators, which can be seen as partial linear polarizers, transmit (or
reflect) each of their eigenstates without altering their ellipticity nor azimuth, but
may change their intensities. Simple linear retarders, which can be assimilated to
wave plates, transmit their eigenstates without changing their respective ellipticity,
azimuth and intensity but modify their relative phases (or optical paths). These effects
are schematically represented in Fig. 2.4.

In contrast with diattenuators and retarders, ideal depolarizers do not leave any
polarization state invariant, excepted the totally depolarized one. Actually these com-
ponents reduce the light degree of polarization ρs defined in (2.8). In particular, these
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Fig. 2.4 Illustration of the transformation of polarization eigenstates by simple diattenuators (left)
or simple retarders (right)

Fig. 2.5 Analogous to
Fig. 2.4, for a typical depolar-
izer

components transform totally polarized states into partially polarized ones, as illus-
trated in Fig. 2.5.

As mentioned above, partially polarized states can be physically interpreted as
incoherent superpositions of totally polarized states with different polarizations. As
a result, a depolarizer can be described as an optical system with different non-
depolarizing responses which add up incoherently. In practice, this occurs for samples
featuring spatial, spectral or temporal inhomogeneities resulting in different output
polarization states leading to intensity signals which are integrated by the detector. If
retarders and diattenuators sharing the same eigenvectors are present in a sample or in
a given medium, their combined effect on the final state of a polarized beam does not
depend on the order on which each one appears; in other words, their polarization
effects are commutative. The same is not true for a depolarizer. When combined
with retardance and diattenuation, the position where depolarization takes place in
the sample matters, and determines the final polarization state of the beam.

In the following we provide a description of each one of the elementary polarimet-
ric properties together with a representation of the corresponding Mueller matrices.
More details can be found in [12]. The matrix representation is the basis of a pow-
erful method of interpretation of polarimetric measurements. The method consists
on decomposing the measured Mueller matrix into basic polarimetric effects, and it
will be detailed in a forthcoming section, Sect. 2.4.
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2.3.1 Diattenuation and Linear Diattenuators (Polarizers)

Diattenuation, the polarimetric property of the diattenuators, is defined in practice by
a scalar, called D, characterizing the maximum variation of transmitted (or reflected)
light intensity with as a function of the incident polarization state. Diattenuation is
defined as follows

D = Imax − Imin

Imax + Imin
(2.20)

where Imax and Imin correspond to the intensities of the two transmitted (or reflected)
eigenstates. This definition recalls the definition of the ellipsometric angle�. Indeed
tan2� can be written as Imax/Imin. The square is justified because D is defined for
intensities and � for amplitudes of the electromagnetic field. From this relation it is
easy to derive:

D = 1 − tan2�

1 + tan2�
= cos 2�. (2.21)

For ideal linear polarizers, Imin is close to 0, (in practice the ratio Imin/Imax is typ-
ically of the order of 10−3 to 10−6 Imax), thus D is almost 1 and � almost 0◦ or
90◦. The notion of diattenuation can be further extended to a vector, which gives
information about the orientation if diattenuator eigenstates. More specifically, if the
vector diattenuation is defined as:

D = D

⎛
⎝

d1
d2
d3

⎞
⎠ =

⎛
⎝

Dhorizontal
D45◦
Dcircular

⎞
⎠ (2.22)

with d2
1 + d2

2 + d2
3 = 1, then the polarization eigenstates Stokes vectors Smin, Smax

are given by

ST
max = (1, d1, d2, d3,) , ST

min = (1,−d1,−d2,−d3,) (2.23)

The three components of the diattenuation vector D define respectively the horizontal,
the 45◦, and the circular diattenuation. The vector diattenuation of any sample is a
very simple function of the first row of the sample Mueller matrix:

D = 1

M11

⎛
⎝

M12
M13
M14

⎞
⎠ (2.24)

The Mueller matrix of a pure diattenuator can be expressed in terms of the scalar and
the vector diattenuation as follows:
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M = τ

(
1 DT

D (md)

)
; where md =

√
1 − D2I3 +

(
1 −

√
1 − D2

)
D DT (2.25)

This Mueller matrix has been written in a contracted form. The elements of the first
row and column are represented by the diattenuation vector. md is a 3×3 symmetric
sub-matrix which is function of the identity (3 × 3) matrix, I3, the vector and the
scalar diattenuation. Finally, τ represents the overall transmission or reflectivity or
the sample when the incident light is totally depolarized.

For the practically very interesting case of linear diattenuators (e.g. whose eigen-
states are linearly polarized) the Mueller matrix MD reads:

P = τP

2⎛
⎜⎜⎜⎜⎜⎝

1 cos (2θ) cos 2� sin (2θ) cos 2� 0

cos (2θ) cos 2� cos2 (2θ)+ sin2 (2θ) sin 2� cos (2θ) sin (2θ) (1 − sin 2�) 0

sin (2θ) cos 2� cos (2θ) sin (2θ) (1 − sin 2�) sin2 (2θ)+ cos2 (2θ) sin 2� 0

0 0 0 sin 2�

⎞
⎟⎟⎟⎟⎟⎠

(2.26)

where θ is the azimuth of the high transmission polarization direction with respect
to the x axis and � is the ellipsometric angle. The diattenuator vector takes the
particularly simple form

D = cos 2�

⎛
⎝

cos 2θ
sin 2θ

0

⎞
⎠ (2.27)

2.3.2 Retardance and Linear Retarders

The time delay generated between two eigenstates after propagation through a pure
retarder is represented by the scalar retardance, R. In a frequency representation
of the electromagnetic fields, the time delay is represented by the phase difference
between the two eigenstates. Similarly to the diattenuation, it is possible to define a
vector retardance, R, as

R = R

⎛
⎝

r1
r2
r3

⎞
⎠ =

⎛
⎝

RH

R45◦
RC

⎞
⎠ (2.28)

with r2
1 + r2

2 + r2
3 = 1. Again, the Stokes vectors of the fast and slow eigenstates Sf ,

Ss are given respectively by

ST
f = (1, r1, r2, r3,) , ST

s = (1,−r1,−r2,−r3,) (2.29)
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A pure retarder can be described geometrically as rotation in the space of Stokes
vectors. Mathematically the Mueller matrix MR of the retarder can be written in
compact notation as:

MR =
(

1 0T

0 mR

)
, and (mR)ij = δij cos(R)+ rirj (1 − cos R)

3∑
k=1

εijkrk sin R

(2.30)
where the 3×3 sub-matrix, mR, is orthogonal and has a unit determinant, det(mR) =
+1. 0 represents the null vector. δij is the Kronecker symbol, and εijk is the Levi-
Civita permutation sign. Scalar and vector retardances can be easily determined from
the measured Mueller matrices as follows:

R = cos−1
(

trace (MR)

2
− 1

)
(2.31)

ri = 1

2 sin R

3∑
j,k=1

εijk(mR)jk (2.32)

Again, the case of linear retarders is of particular interest. For such a component,
with its fast axis oriented at an azimuth, θ , with respect to the x axis and a scalar
retardation �, the Mueller matrix reads :

MR(θ,�) =

τR

⎛
⎜⎜⎝

1 0 0 0
0 cos2(2θ)+ sin2(2θ) cos(�) cos(2θ) sin(2θ) (1 − cos(�)) − sin(2θ) sin(�)
0 cos(2θ) sin(2θ) (1 − cos(�)) sin2(2θ)+ cos2(2θ) cos(�) cos(2θ) sin(�)
0 sin(2θ) sin(�) − cos(2θ) sin(�) cos(�)

⎞
⎟⎟⎠

(2.33)

It is straightforward to check that the scalar retardation R given by (2.31) is nothing
else but the ellipsometric angle �, and the retardance vector is

R = �

⎛
⎝

cos 2θ
sin 2θ

0

⎞
⎠ (2.34)

2.3.3 Depolarization and Pure Depolarizers

The Mueller matrix of a general depolarizer, Mδ , is given in compact notation by:
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Mδ =
(

1 0T

0 mδ

)
(2.35)

where mδ is a 3 × 3 real symmetric matrix. Thus this matrix can be reduced to
a diagonal form in a suitable orthonormal basis formed by three (3-dimensional)
eigenvectors vi. As a result, in a basis formed by the four Stokes vectors

ST
0 = (1, 0, 0, 0,) , and ST

i =
(

1, vT
i

)
, (1 ≤ i ≤ 3) (2.36)

the Mueller matrix Mδ of the depolarizer becomes diagonal

Mδ =

⎛
⎜⎜⎝

1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c

⎞
⎟⎟⎠ (2.37)

where the eigenvalues a, b, c of mδ are real numbers comprised between −1 and 1.
The Eq. (2.37) above shows that for the three Stokes vectors Si defined in (2.36) the
degree of polarization is reduced by a factor equal to the corresponding eigenvalue
a, b or c, while the totally depolarized state remains unchanged. In other words, a
general depolarizer features only one eigenpolarization, corresponding ot a totally
depolarized state.

Due to the symmetry of mδ , the Mueller matrices of pure depolarizers defined
in (2.35), clearly depend on six parameters, i.e. the independent components of
mδ . Another possible choice, which may be more physically relevant, are the three
eigenvalues a, b, and c, and the three Euler angles defining the directions of the
normalized vectors vi in the three dimensional space of the (Q, U, V ) coordinates of
Stokes vectors.

Due to this dependence on six parameters, in the most general case, depolariz-
ers are more mathematically complex than retarders or diattenuators, which involve
only three parameters each. Fortunately, in many situations of physical interest the
symmetry properties of the sample greatly reduce the number of independent para-
meters. For example, when observed in forward or backward scattering geometries
a suspension of spherical (or statistically isotropic) scatterers behaves as a pure
depolarizer with different depolarization powers for linearly and circularly polar-
ized incident states. Moreover, for the particular case of a suspension of spheres, the
depolarization power for linear states is independent of the orientation of the incident
polarization. Mathematically, these intuitive properties can be reformulated as

a = b �= c and vT
1 = (cosα, sin α, 0) , vT

2 = (− sin α, cosα, 0) , vT
3 = (0, 0, 1)

(2.38)
where α can be chosen arbitrarily.

However, as depolarizers are studied not only for their own sake but also to charac-
terize the depolarizing properties of more general Mueller matrices by mathematical
treatments presented in the next section, it is desirable to define a single numeri-
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cal function defining the “overall” depolarizing power of a depolarizer, and which
would vary from 0 to 1, these extreme values being reached for nondepolarizing
matrices and for total depolarizers respectively. A first example of such function
is the quadratic depolarization index Pq defined in Eq. (2.19) for a general Mueller
matrix, and obviously applies also to pure depolarizers. Another possible definition
has been given specifically for depolarizers by Lu and Chipman [12].

δ = 1 − 1

3
(|a| + |b| + |c|) (2.39)

Finally, we point out that the best definition of an “overall” depolarizing power
depends on the system under consideration. This is an open field, with many new
definitions being proposed [13, 14].

2.3.4 Polarizance: Homogeneous and Inhomogeneous Systems

The concept of polarizance is linked to the ability of a sample to increase the degree
of polarization of an initially non-polarized beam. This increase can be done either by
a selective reorientation or by a selective elimination of certain vibration directions
of the electric field. Mathematically this concept is expressed as follows:

Sout =

⎛
⎜⎜⎝

M11
M21
M31
M41

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ (2.40)

The degree of polarization of the Stokes vector representing the final state of the beam
is called scalar polarizance P. Moreover, in analogy with the vector diattenuation and
the vector retardance the vector polarizance P can be defined from the Mueller matrix
elements of the polarizing element as:

P =
√

M2
21 + M2

31 + M2
41

M2
11

and P = 1

M11

⎛
⎝

M21
M31
M41

⎞
⎠ (2.41)

For many systems, the diattenuation and polarizance vectors are equal: P = D. Such
systems are said to be homogeneous. The diattenuators and the retarders respectively
defined in Sects. 2.3.1 and 2.3.2 are indeed homogeneous.

At first glance a diattenuating system may seem necessary to partially polarize
an initially unpolarized beam. The emerging polarization being directly determined
by the diattenuation vector D, one might expect that in all cases P = D, and thus
the notion of polarizance would eventually be pointless. This is not true, as we now
show with very simple examples of inhomogeneous systems.
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• Let us first consider a setup consisting of a polarizer followed by a perfect depo-
larizer. Such a system clearly exhibits diattenuation, as the intensity transmitted
by the polarizer depends on the incoming polarization. However, the beam emerg-
ing from the depolarizer is, by definition, totally depolarized, implying that an
initially depolarized beam would remain totally depolarized. As a result, such a
system exhibits a strong diattenuation but no polarizance.

• Let us now consider the same elementary components, but in reverse order (depo-
larizer first, polarizer afterwards). In this case, any incoming polarized beam is
transformed by the depolarizer into a totally depolarized beam whose intensity
does not depend on the incoming polarization. Then, the polarizer transforms this
beam into a polarized one, with always the same polarization. In contrast with the
previous case, now the system exhibits zero diattenuation but a strong polarizance
(P = 1 for a perfect polarizer).

2.3.5 Summary

In this part, we have introduced the “elementary” polarimetric properties, namely
diattenuation, retardance, depolarization and polarizance. As diattenuation, retar-
dance and polarizance are defined by 3D non-normalized vectors, each of them
depends on three independent parameters. On the other hand, we have seen that
depolarization depends on another six parameters. So, all these polarimetric proper-
ties imply 15 independent parameters, as expected for normalized Mueller matrices
(M11, which is an overall transmission factor, is irrelevant for polarimetry).

However, the elementary polarimetric properties of a given Mueller matrix cannot
be defined unambiguously. As shown in the next section, several decomposition
procedures may be used to retrieve these properties, the final results depending on
the chosen decomposition. For a correct interpretation of the data, it is therefore
essential to choose properly the decomposition best adapted to the system under
study, if available in the “toolbox”.

2.4 Mueller Matrix Algebra: Decomposition
of Mueller Matrices

Ideally, any polarimetric measurement should be interpreted by fitting to the mea-
sured Mueller matrices numerical simulations based on a relevant model, as it is very
commonly done with standard ellipsometry studies of samples like stacks of isotropic
thin films on plane substrates. Unfortunately this is far from being always possible
with the “complex” and/or “disordered” samples such as biological tissues, which
exhibit depolarization and justify the use of Mueller polarimetry. For such samples
accurate models of their polarimetric responses are very difficult to elaborate.
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In the absence of adequate physical models, experimental Mueller matrices can
still be phenomenologically interpreted by decomposing them into simpler compo-
nents with well-defined polarimetric properties. Basically, Mueller matrix decom-
positions can be classified into two groups:

• sum decompositions: Sum decompositions treat a depolarizing Mueller matrix as
an incoherent addition of non-depolarizing matrices. Sum decompositions are pri-
marily used to assess the physical realizability of the measured Mueller matrix,
a condition which is not necessarily satisfied due to experimental errors, and to
“filter” out the contribution these errors if needed. In other cases sum decompo-
sitions allow to isolate the individual non-depolarizing Mueller matrices which
contribute to a measured depolarizing matrix.

• product decompositions, which describe the sample as a stack of elementary sam-
ples traversed sequentially by the light beam. These decompositions are mostly
used to evaluate the diattenuation, retardation, depolarization and polarizance of
the input Muller matrix, and, in some cases, to locate the various elementary
polarization properties inside the sample.

2.4.1 Sum Decompositions

Sum decompositions treat the depolarizing Mueller matrix as an incoherent addition
of non-depolarizing matrices. The physical image behind these decompositions is
that of a beam which does not shine a single sample, but on N different ones at
the same time. Consequently each sample transmits of reflects, simultaneously and
independently of the other samples, a portion of the beam. To complete the image
we consider that a unique detector integrates incoherently (without interferences)
and simultaneously the light coming from all the N samples. An electrical analogue
would be a circuit comprising N resistances connected in parallel. A current flow,
arriving to the circuit, splits, and a portion of the total intensity current goes through
each resistance. Once the individual current flows have gone through the resistances,
they sum up again at the output of the circuit.

Sum decompositions are very useful because they may represent physical situa-
tions frequently encountered in ellipsometric measurements. Incoherent superposi-
tions of differently polarized contributions may be caused by the sample or by the
measurement system itself. Typical examples of such situations are

(a) multiple reflections by the double face of substrates thicker than the light coher-
ence length, typically of the order of 0.2 mm for most spectroscopic ellipsome-
ters.

(b) Spatially inhomogenous samples. Many examples can be found in this category
which have in common the fact that the probe beam is much larger than the
characteristic size of homogeneous zones. Thus the beam illuminates a region
of the sample with different optical responses. Once all of these responses arrive
at the detector they add-up incoherently and generate depolarization.
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(c) Tightly focused beams. The reduction of beam spot sizes sometimes involves
the creation of highly divergent (convergent) beams incident on the sample.
A highly divergent or convergent can be understood as a bundle of well collimated
beams with a specific angle of incidence each. As a result, the reflected beam
is also divergent and contains a “bundle” of optical responses, which add-up
incoherently when they are detected.

Many other examples can still be found which shows the interest for a decomposition
which simplifies the analysis of data.

2.4.1.1 Cloude Decomposition

The most popular sum decomposition is known as the Cloude decomposition
[15, 16]. Accordingly, any depolarizing matrix M can be represented as a weighted
sum of up to four non-depolarizing Mueller matrices Mi in the following way:

M = λ1M1 + λ2M2 + λ3M3 + λ4M4, (2.42)

with the weight factorsλi being positive. To form the decomposition, it is necessary to
evaluate the coherence matrix N from the original Mueller matrix M via the F matrix
by Eqs. (2.11) and (2.17). Then, let the eigenvalues and the normalized eigenvectors
of N be λi and ei, respectively. The coherence matrices Ni of the non-depolarizing
components Mi are given by

Ni = eie
†
i (2.43)

where the symbol † stands for Hermitian conjugate Comparison of (2.43) and (2.18)
immediately shows that ei is nothing else but the vector form JV

i defined in (2.16)
of the Jones matrix Ji associated with the nondepolarizing matrix Mi. Finally, the
matrices Mi can be derived from Ji by using (2.14).

As shown previously, for a physically realizable Mueller matrix, the correspond-
ing coherence matrix N is positive semi-definite and therefore, has non-negative
eigenvalues λi that are usually sorted according to λ1 ≥ λ2 ≥ λ3 ≥ λ4. Conversely,
if λ4 < 0 for instance, the matrix M is unphysical, i.e. M may transform a valid input
Stokes vector into an invalid output one. When the Mueller matrix to be measured is
non- or very weakly depolarizing, measurement errors may easily make it nonphys-
ical. In such cases, Cloude decomposition provides a convenient tool to “filter out”
the effect of such errors and make the measured matrix physical: to this end, once
the eigenvalues λi and non-depolarizing matrices Mi are obtained, the (presumably
small) negative eigenvalues are set equal to zero, and the relationship (2.42) is used
one more to reconstruct a physically acceptable matrix close to the initially measured
one.

In general for a spatially inhomogeneous system the non-depolarizing components
Mi do not correspond to actual physical Mueller matrices corresponding to different
parts of the system ! A simple reason for that is that the eigenvectors ei, of N form
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an orthonormal basis. Then the matrices Mi = eie
†
i have special properties which

are not necessarily verified by the actual physical Mueller matrices of different parts
of the system. To retrieve such matrices, and thus fully characterize such systems in
spite of their inhomogeneity, more information than the simple knowledge of M is
needed. An example of such characterization is described in Sect. 2.7.2.

2.4.1.2 Le Roy-Bréhonnet Decomposition

A special case of Cloude decomposition is that proposed by Le Roy-Bréhonnet
et al. [17] representing M as the sum of a non-depolarizing Mueller matrix Mnd
and an ideal diagonal depolarizer Mid (i.e., the kind of depolarizer introduced in the
preceding section with null diagonal elements a = b = c = 0):

M = Mnd + Mid (2.44)

Unlike Cloude decomposition which is valid for an arbitrary depolarizing Mueller
matrix, Le Roy-Bréhonnet expression is valid only if the condition λ2 = λ3 = λ4
( �= λ1) is fulfilled. Le Roy-Bréhonnet decomposition offers another way to filter
noisy experimental Mueller matrices of non-depolarizing samples. The procedure
attributes to Mnd the whished matrix and to Mid the noise.

2.4.2 Product Decompositions

Product decompositions represent an arbitrary Mueller matrix as a product of
elementary Mueller matrices—diattenuators, retarders and depolarizers. These
decompositions are characterized by the number of elementary components and their
respective positions in the multiplication. The order of the components is important
since depolarizer matrices do not commute with diattenuator nor with retarder matri-
ces. In principle, product decompositions are adequate to describe physical situations
in which the beam interacts sequentially with different parts of the sample, each of
which being characterized by a well-defined fundamental polarization property.

An ad-hoc example of such situation is the propagation of a beam through a
wedge made of an anisotropic material with a rough output face. We assume that
the input face is tilted with respect to the propagation direction, whereas the rough
surface is perpendicular to the output beam. Then the tilted plane surface introduces
diattenuation due the difference in transmission coefficients for s and p polarizations,
the propagation though the bulk crystal introduces retardation, and the scattering on
the rough output surface may depolarize. Accordingly, the Mueller matrix M of the
wedge can be represented by a matrix multiplication of the form M = MδPMRMD
with elementary Mueller matrices in this order. MδP,MR,MD are the Mueller matri-
ces of the depolarizer, the retarder and the diattenuator respectively.
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Of course, situations in which one knows very well a priori the right order of
the elementary components are very rare in “real life” applications. Thus various
product decompositions have been (and are still being) developed to better cope with
complex situations.

2.4.2.1 Forward and Reverse Decompositions into Three Factors

All these decompositions describe the input matrix M as a product of a diattenuator,
a retarder, and a depolarizer. Actually with three elementary component types, there
are six different possible orders. Among these, the most widely used choice is that
chosen by Lu and Chipman [12], namely:

M = MδP MR MD (2.45)

where the “special” symbol Mδ P had been used for the depolarizer. Actually, for
this decomposition to be quite general, if the diattenuator and the retarder are of
the forms defined in Sects. 2.3.1 and 2.3.2, then the depolarizer cannot be a “pure”
depolarizer of the form defined in Sect. 2.3.3, as the product matrix M would exhibit
no polarizance (three parameters are missing). As a result, the “depolarizer” has
nonzero polarizance and its matrix is of the form:

MδP =
(

1 0T

P mδ

)
(2.46)

With these assumptions the procedure is numerically stable and always provides
physically realizable elementary matrices Mδ P,MR and MD. This procedure is thus
very convenient and is widely used for the phenomenological interpretation of exper-
imental (or even simulated) Mueller matrices.

What happens if the order of the elementary components is changed? A very
simple calculation shows that the above results are easily generalized to the other
two cases in which the diattenuator precedes the depolarizer, namely

M = M′
R M′

δP M′
D or M = M′′

δP M′′
D M′′

R (2.47)

More precisely, the depolarizer matrices keep the form defined in (2.46) and the M′
and M′′ matrices are deduced from those provided by the standard decomposition
(2.45) by unitary transformations.

This kind of simple generalization is no longer valid for the three cases in which the
depolarizer precedes the diattenuator. Morio and Goudail [18] introduced a “reverse”
decomposition procedure for these three cases with the same definition of the depo-
larizer, but this procedure could lead to unstable or even unphysical results in case
of very strong depolarizations. This issue has been solved by Ossikovski et al. [19]
assuming that when the depolarizer precedes the diattenuator, the former features
zero polarizance. The “standard” reverse decomposition takes then the form:



54 E. Garcia-Caurel et al.

M = MD MR MD′δ (2.48)

with a depolarizer matrix of the form:

MD′δ =
(

1 D′T
0 mδ

)
(2.49)

As in the case of “direct” decompositions, the matrices of the three possible
“reverse” cases (i.e. when the depolarizer precedes the diattenuator) are deduced
from one another by simple orthogonal transformations. This procedure too is sta-
ble and always provides physically realizable Mueller matrices for the elementary
components.

2.4.2.2 Symmetric Decompositions

The symmetric decomposition was first introduced for non-depolarizing Mueller
matrices [20] in the following form:

M = MLR2 M�� MLR1 (2.50)

where MLR1 and MLR2 represent linear retarders, and M�� is a linear retarding
diattenuator with known orientation of its common diattenuation and retardation
axes (like in standard ellipsometry, where these axes are along s and p directions).
The procedure allowing to retrieve the three matrices MLR1, M�� and MLR2 from
M has been experimentally validated by measuring the Mueller spectra of a standard
ellipsometric sample (10 nm of SiO2 on a c-Si substrate) with and without inserting
retardation plates in the input and output beams [21]. A possible application of this
procedure could be the elimination of the effect of birefringence of strained windows
for in situ ellipsometric measurements.

This procedure was subsequently generalized to depolarizing Mueller matrices,
which could be decomposed according to [22]

M = MD2 MR2Md δ MR1 MD1 (2.51)

where MD1 and MD2 represent generic diattenuators of the form defined in Sect. 2.2.1,
MR1 and MR2 generic retarders, and Md δ a diagonal depolarizer. The central position
of the depolarizer in the symmetric decomposition can be very useful for samples
which can be viewed as purely depolarizing media limited by tilted input and output
interfaces: in this case the diattenuation and retardation effects are likely to occur at
the output interfaces and the depolarization in between. Moreover, in many cases of
practical interest the Mueller matrix of the depolarizer is indeed diagonal.
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However, this decomposition has two essential limits:

• Md δ an take a diagonal form if, and only if, the eigenvector related to the largest
eigenvalue of the matrix product M′ = G MT G M is not fully polarized, which
is quite generally, but not always the case. If so, M can be termed “Stokes diago-
nalizable” and the procedure may be used

• Assuming M Stokes diagonalizable the depolarizer should be nondegenerate, i.e.
its three diagonal elements a, b, c (other than M11, set equal to 1) must be different
from each other. Otherwise, Md δ may commute with MR1 and MR2, and if so only
the product MR1MR2 can be determined unambiguously.

This decomposition has been thoroughly studied experimentally. First, its validity
has been demonstrated on an ad hoc system including nondegenerate and degenerate
depolarizers set between retarders and diattenuators [23]. In both cases, the achieved
accuracy was better than that of forward or reverse decompositions. Then a system
with a non-Stokes diagonalizable Mueller matrix was implemented and studied [24],
and finally it was shown that such matrices may occur in natural photonic systems,
such as the cuticles of beetles [25].

2.4.2.3 Logarithmic Decomposition

The logarithmic decomposition was proposed recently as a complementary alterna-
tive to the standard product decompositions. This decomposition is a natural gen-
eralization [26] of the classic differential matrix formalism [27] to the depolarizing
case. The approach, based on the physical picture of a continuously distributed depo-
larization, parallels and complements the product decomposition approach whereby
depolarization is modeled as a spatially localized “lump” phenomenon. In particular,
the differential matrix methodology appears as particularly well adapted to the phe-
nomenological description of the continuous scattering in turbid media. According
to this decomposition, the space derivative along the propagation direction z of a
Mueller matrix M can be expressed as:

dM
dz

= mM (2.52)

For a non-depolarizing medium, the (4 × 4) differential matrix m contains all the
seven elementary properties of the medium and is given by:

m =

⎛
⎜⎜⎝
α β γ δ

β α μ ν

γ −μ α η

δ −ν −η α

⎞
⎟⎟⎠ (2.53)

in which α is the isotropic absorption, β is the linear dichroism along the x–y labora-
tory axes, γ is the linear dichroism along the ±45◦ axes, δ is the circular dichroism,
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η is the linear birefringence along the x–y axes, ν is the linear birefringence along the
±45◦ axes and μ is the circular birefringence [27]. Note that m is z (z the direction
of light propagation) dependent in the general case of longitudinally inhomogeneous
medium. If the medium can be considered homogeneous in the z direction over a
distance, d, expression (2.52) can be easily integrated giving:

M = exp(md) = exp(L) (2.54)

which can be also written as:

ln(M) = md = L (2.55)

This expression indicates that the fundamental properties of the medium in consider-
ation can be easily deduced from the simple logarithm of the related Mueller matrix
if the total thickness d is known.

When the medium shows depolarization, the matrix m must be substituted by
matrix m′:

m′ =

⎛
⎜⎜⎝
α β ′′ γ ′′ δ′′
β ′ α1 μ′′ ν′′
γ ′ −μ′ α2 η′′
δ′ −ν′ −η′ α3

⎞
⎟⎟⎠ (2.56)

According to this representation, the primed and the double primed betas, β ′ and β ′′,
are still related to the linear dichroism in the x–y laboratory axis. Similarly, γ ′ and
γ ′′ are related to the linear dichroism along the ±45◦ axes, δ′ and δ′′ are related to
the circular dichroism, η′ and η′′ are related to the linear birefringence along the x–y
axes, ν′ and ν′′ are related to the linear birefringence along the ±45◦ axes and μ′
and μ′′ are related to the circular birefringence.

As discussed in Sect. 2.2.2.2, a depolarizing Mueller matrix can be seen as a
statistical superposition of non-depolarizing Mueller matrices. As a result, the matrix
m′ can also be interpreted as a statistical superposition of matrices of the form
given by (2.53), which are the only differential ones for which diattenuation and
birefringence may be unambiguously defined. Then, for m′ all we can define are
estimates of the polarimetric fundamental parameters, together with the uncertainties
affecting these estimates.

Following the idea behind the Le Roy-Bréhonnet decomposition, it is possible
to decompose a matrix m′ into the sum of two components, a non-depolarizing
component and a purely depolarizing one, represented by the matrices mm and mu
respectively. The first matrix, mm, has the same shape and symmetry properties as
m in (2.53), therefore it represents a non-depolarizing component. Accordingly, mu
represents the depolarizing component. Matrices mm and mu can be easily deduced
from:

If m′ = mm+mu then, mm = 1

2

(
m′ − Gm′T G

)
, and mu = 1

2

(
m′ + Gm′T G

)

(2.57)
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in which G is a diagonal matrix, G = diag(1,−1,−1,−1) and the superscript T
stands for the transpose. The latter expression written in an extended notation leads
to:

mm = 1

2

⎛
⎜⎜⎝

2α β ′ + β ′′ γ ′ + γ ′′ δ′ + δ′′
β ′ + β ′′ 2α1 μ′ + μ′′ ν′ + ν′′
γ ′ + γ ′′ μ′ + μ′′ 2α2 η′ + η′′
δ′ + δ′′ ν′ + ν′′ η′ + η′′ 2α3

⎞
⎟⎟⎠ and

mu = 1

2

⎛
⎜⎜⎝

0 β ′ − β ′′ γ ′ − γ ′′ δ′ − δ′′
β ′ − β ′ 0 μ′ + μ′′ ν′ − ν′′
γ ′′ − γ ′ μ′′ − μ′ 0 η′ − η′′
δ′′ − δ′ ν′′ − ν′ η′′ − η′ 0

⎞
⎟⎟⎠ (2.58)

What is the physical meaning of the elements of the matrices mm and mu? The
random character of depolarization leads to a statistical interpretation of these two
matrices. According to (2.17) all the off-diagonal terms of mm represent the average
of the prime and double prime estimations of each one of the fundamental properties.
Therefore, the off-diagonal terms of mm are interpreted to be the most probable
statistical estimates of each fundamental property. The main diagonal of mm has
four entries, the isotropic absorption α, and the anisotropic absorptions α1, α2 and α3
along the x–y, the ±45◦ and the circular axes respectively, which characterize the type
of depolarization affecting the sample. The off-diagonal elements of the matrix mu
are the semi-differences between the prime and the double prime estimates of each
one of the fundamental properties. These elements are interpreted as the statistical
uncertainties associated by the degree of randomness on each fundamental property
because of depolarization.

In summary, the logarithmic decomposition provides an easy way to determine the
fundamental polarization properties characterizing a medium, considered as homoge-
nous along the direction of propagation of light over a distance d. If the medium is
depolarizing, then the decomposition provides a matrix m′ whose elements are related
to the fundamental properties. A simple sum decomposition of matrix m′ allows
to obtain an estimation of the most probable values of the fundamental properties
together with their related uncertainty created by the depolarization. Moreover, the
matrix m′ provide three values allowing to characterize the depolarization affecting
the sample unambiguously.

2.4.2.4 Experimental Validation of the Reverse Decomposition

The reverse decomposition procedure has been validated [28] by an ad hoc setup
schematized in Fig. 2.6, used in conjunction with an imaging Mueller polarimeter
described in more detail later. This setup comprised three samples: a depolarizer, a
diattenuator and a retarder, traversed by the light beam in this order, and realized as
follows:
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(a) (b)

Fig. 2.6 Experimental set-up used in conjunction with an imaging Mueller polarimeter for the
experimental validation of the “reverse” decomposition. a Side view of the whole setup. b View of
the depolarizer as seen by the imager, from the top. The red dotted line on panel b defines the field
imaged on the CCD

• The depolarizer. As a controllable depolarizer we used a transparent glass con-
tainer, resting on a white piece of paper, with a small square metallic plate at the
center of the field of view. This container was filled with milk diluted in water at
variable concentrations. The paper always appeared as highly depolarizing due to
its bulk scattering properties while the depolarization power of the plate could be
varied from 0 to 1 by increasing the milk concentration.

• The diattenuator. This element consisted of two high index (n = 1.8) glass plates,
tilted as shown on the figure at about 45◦, providing a uniform diattenuation D close
to 0.3 all over the field of view. This diattenuation was kept constant throughout
this investigation. Moreover, both glass plates were tilted around the y axis of the
image, implying that in the Mueller matrix of the diattenuator alone the only non
vanishing elements were M11, M12 = M21 < M11 and M22 = M11, as it can be
easily checked from (2.26) with θ = 0.

• The retarder. The retarder was a commercially available 50 mm clear aperture
mica quarter wave-plate (Melles Griot 02WRM009). This element also can be
inserted and removed without any displacement of the image of the depolarizer.
The orientation of the plate was also kept constant but arbitrary, so that the lower
right 3 × 3 sub-matrix in (2.33) was “full”.

Both the diattenuator and the retarder could be inserted or removed from the beam
path without any displacement or deformation of the image of the depolarizer. The
measurements were performed as follows: the container was filled with 30 ml of
water first, and milk concentration was gradually increased, from 0 to 5 %. For each
concentration, three Mueller images were taken, the first one with the depolarizer
alone, the second one with the depolarizer followed by the diattenuator and the third
one with the retarder added to the other two components. Figure 2.7 shows typical
experimental Mueller images, taken at 0.6 % milk concentration. Moreover:

• The image taken with the depolarizer alone exhibits the expected shape for a
suspension of spherical scatterers, i.e. a diagonal matrix with M22 = M33. As
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Fig. 2.7 Mueller matrix images taken with 0.6 % of milk concentration on water. Left depolarizer
alone. Middle left depolarizer followed by the diattenuator. Middle right depolarizer, diattenuator
and retarder. All elements are normalized by M11, the only one shown without normalization and
displayed according to the color scale shown at right of the figure. Images taken from Ref. [28]
with authorization of the publisher

expected, the central part of the image, corresponding to the metal plate, features
higher values of the diagonal terms than the more depolarizing surrounding part,
corresponding to the paper.

• The second image was taken with the diattenuator after the depolarizer. Again, the
measured Mueller images exhibit the expected trends: with respect to the previous
image, only the M12 and M21 are affected. Moreover, the observed diattenua-
tion (M12) is significant only on the metal plate, and practically vanishes in the
peripheral part due the strong depolarization characteristic of the paper. In con-
trast, the polarizance (M21) is uniform, as expected for a diattenuator set after the
depolarizer and covering the whole field of view. This result clearly shows how
depolarization breaks the expected symmetries for a non-depolarizing Mueller
matrix of a diattenuator.

• In the third image, taken with all three elements in place, we see a “mixing” of
lower three lines due to the shape of the retarder Mueller matrix MR given by
(2.30). All three the components of the polarizance vector are nonzero, but of
course they remain spatially uniform as expected for a polarizance is introduced
by the spatially uniform diattenuator.

To assess the performance of the appropriate decomposition (in the present case
the “reverse” one) we applied the procedure to various images obtained with the
diattenuator and/or the retarder after the depolarizer. The Fig. 2.8 shows the image of
the depolarizer extracted by applying both the forward and reverse decompositions to
the image acquired with all elements present (right panel of Fig. 2.7). Simple visual
inspection of Fig. 2.8 clearly shows the relevance of the reverse decomposition in our
case, as this decomposition retrieves a diagonal image quite similar to that taken with
the depolarizer alone (left panel of Fig. 2.7). In contrast, the forward decomposition
introduces an artificial polarizance, together with significant errors in the diagonal
terms (M44 appears larger than M33 and M22, while the opposite is true, as correctly
found by the reverse decomposition).



60 E. Garcia-Caurel et al.

Fig. 2.8 Mueller images of the depolarizer obtained by the forward (left) and the reverse (right)
decomposition of the image taken with all three elements present. Images taken from Ref. [28] with
authorization of the publisher

Fig. 2.9 Data relevant to the diattenuator retrieved from images taken with all components present
by both forward and reverse decompositions. Left scalar diattenuation images provided by the
reverse (top) and the forward (bottom) decompositions at 0.6 % milk concentration. Right evolution
of the scalar diattenuation retrieved by both decompositions in the central region (where the plate
is located) as a function of milk concentration. Images taken from Ref. [28] with authorization of
the publisher

Another test was performed on the images of the diattenuator provided by both
procedures. The results are summarized in Fig. 2.9. The left panel shows the diatten-
uation images provided by both procedures from measurements with all elements
present. The image at the top, provided by the reverse decomposition, shows an
almost spatially uniform diattenuation, as expected. In contrast, the reverse decom-
position displays widely different values in the regions with the plate and the paper,
with a very large error for the latter, due to its strong depolarization power. The right
panel of Fig. 2.9 shows the evolution of the diattenuation retrieved in the region of the
plate as a function of milk concentration, or, equivalently, of the depolarizing power
δ in this region. When δ is low both decompositions provide a value close to the
expected value, 0.3. Then, when δ increases, the value given by the forward decom-
position decreases very significantly, while that given by the reverse decomposition
remains stable.
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2.4.3 Summary

In summary, in this section a number of possible ways to decompose Mueller matrices
have been presented. A decomposition is always possible on a given matrix, however
each decomposition has its own domain of validity and it will produce correct and
results when applied to the cases for which it is adapted. Otherwise it may produce
non-sense results. When it comes to decomposing Mueller matrix it is thus advis-
able to have a good knowledge about the physical nature of the system to evaluate
the relevance of the various decompositions. It is also advisable to apply different
decompositions to the same Mueller matrix and select the ‘correct one’ (or, rather,
the ‘best one’) after a critical comparison of all the results. In spite of these caveats,
Mueller matrix decompositions may prove extremely useful, as we will show for
several experimental examples in, Sect. 2.7, the last section of this chapter.

2.5 Standard and Generalized Ellipsometry

Ellipsometry is a well-established and powerful optical tool for the characterization
of optical substrates, thin films and multilayer samples. This technique is based
on the measurement of the sample Jones matrix, followed by numerical treatments
involving direct data inversion in “simple” cases, or, more frequently, data fitting by
simulations with a suitable multi-parameter model.

Depending on whether the sample Mueller matrix is diagonal or not, the tech-
nique is called Standard or Generalized Ellipsometry. Non-diagonal Jones matrices
are generated because the sample has the ability to transform p polarized light into
s polarized light and vice-versa, which is called cross-polarization. Standard ellip-
sometry is, by far, the most widely used and is perfectly well suited to optically
isotropic samples. On the other hand, generalized ellipsometry is needed for thor-
ough characterization of samples such as: magnetized materials with their associated
magnetization directed out of the plane of incidence, anisotropic crystals, diffraction
gratings in conical configuration or roughened surfaces.

In the rest of this section, we will essentially consider standard ellipsometry,
including the basic principles of operation of the most widespread ellipsometers.
However, we will show that these instruments, though explicitly designed for standard
ellipsometry, can also be used for generalized ellipsometry provided the sample
Jones matrix obeys some specific symmetry properties. We postpone to Sect. 2.6 the
presentation of Mueller ellipsometers, which are specifically designed to provide
the whole set of 16 coefficients (or 15 if the matrix is measured in its normalized
form).
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2.5.1 Standard Ellipsometry

Standard ellipsometric measurements are commonly performed in external config-
uration, which means that a light beam propagating in air (or vacuum) is reflected
by or transmitted through, a sample, and then it propagates again in air (or vacuum)
before arriving at the detector. The interest of ellipsometry is that it can measure
simultaneously the moduli and the phases of the polarization components of the
light.

The sensitivity of phase measurements, exploited to determine thin film thickness,
has its roots in an interferometric effect. The light reflected by the first interface of a
layer present in the sample, interferes with the light reflected by the second face of
the layer. The same principle remains valid when a stack of multi-layers are present.
Therefore, the maximum film thickness that can be measured with ellipsometry has
to be less than the coherence length of the light source (otherwise, true depolarization
occurs and must be properly taken into account). Accordingly, ellipsometry is capable
of characterizing transparent or low absorbing thin films with thicknesses ranging
from less than a nanometer to several micrometers.

The information provided by ellipsometry is very rich for layer stack descrip-
tion. It enables accurate measurements of surface roughness and interfaces, while
the determination of complex refractive index gives access to fundamental physical
parameters which are related to a variety of sample properties including: morphology,
crystallinity, chemical composition and electrical conductivity, etc.

The informations extracted from ellipsometric measurements are greatly enhanced
by using wide spectral ranges, from vacuum ultraviolet to mid-infrared. The vacuum-
ultraviolet, (wavelengths between 130 and 400 nm) is the most sensitive to small
changes such as ultra-thin layers or interfaces, films with low index contrast, gra-
dient and anisotropy. Ultraviolet is also highly sensitive to the roughness of sample
surface. The near-infrared (NIR), (wavelengths between 0.8 and 3μm), and mid-
infrared (MIR) (wavelengths between 2 and 14–50μm), are necessary to determine
the thickness of materials which are strongly absorbing in the visible spectrum. NIR
and MIR are also used to determine the optical conductivity (typically metals and
doped oxides) because in this spectral region the optical response of samples is
dominated by free charge carriers.

In addition to high sensitivity, ellipsometry has the advantages of being non-
destructive and contactless. A spectroscopic ellipsometer is relatively easy to use
and requires no sample preparation. Standard ellipsometers can be built with light-
weight optomechanical components and they are relatively compact. They can be
mounted as stand-alone instruments or coupled to other systems such as vacuum
chambers, chemical reactors or bio-reactors, etc. In the former case, measurements
are said to be ex-situ and in the latter they are called in-situ. In-situ measurements are
interesting because they allow for the characterization of a sample in “real-time” and
at the same conditions (no alterations by the atmosphere) as it is prepared, deposited
or treated (Fig. 2.10).
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Fig. 2.10 Schematic representation summarizing the different parameters related to the sample
that can be deduced using ellipsometry. These parameters include: thin film thickness, refractive
index, roughness, porosity, composition and uniformity, etc.

The variety of samples that can be studied with ellipsometry opens a wide range
of possibilities for this technique. A recent survey [29] of the most relevant databases
of scientific publications concluded that ellipsometry has been successfully applied
in many studies concerning material science (semiconductors and photovoltaics),
biology (biofilms, and biosensors) and pharmacy.

2.5.2 Analysis of Ellipsometric Data

Conventional techniques used for thin film characterization (e.g., ellipsometry and
reflectometry) rely on the fact that the complex reflectivity of an unknown optical
interface depends on both its intrinsic characteristics (material properties and thick-
ness of individual layers) and on three properties of the light beam that is used for the
measurements: wavelength, angle of incidence, and polarization state. In practice,
characterization instruments record reflectivity spectra resulting from the combined
influence of these parameters. The extraction of the information concerning the phys-
ical parameters of the sample from the recorded spectra is an indirect process, in other
words, from a given ensemble of experimental data, we need to build a theoretical
model of the sample allowing to reproduce as closely as possible the measured data.

In general, theoretical models depend on a series of parameters characteristic of the
sample, which must be adjusted to make the theoretical data “fit” the measurements.
A common model for a stack of layers includes the thicknesses and the refractive
indices of the layers. In many cases, the refractive index of the substrate must be
considered as well [30, 31]. The quality of the fit is usually evaluated with a figure
of merit and it is used during the fit process to guide the numerical algorithm which
searches for the best-fitted values of the model parameters. According to [30] it is
necessary to define an unbiased figure of merit in order to judge for the goodness of
fit. There exist different expressions for the figure of merit, but the most popular is
the one based on the mean square deviation between simulated and measured data.
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N refers to the total number of data points and M is the total number of fitted para-
meters. The superscripts Th, and, Exp, refer the theoretical and experimental data
respectively. The summation is done over all the spectral data points. The sigmas
in the denominators correspond to the estimated uncertainties of the corresponding
experimental values. Typical values for sigmas of our experimental setups are around
0.5 or 0.1 % depending on the setup. The advantage of the formulation given by (2.59)
is that it allows to include non-ellipsometric data, such as total reflectivity R, in the
fitting process. Combination of ellipsometric data with information coming from
other sources can be interesting and enhances the accuracy in the determination of
fitted parameters. According to [30] the figure of merit behaves like a multivariate
mathematical function which depends on a given number of fitting parameters.

Once the figure of merit has been defined, it is possible to take advantage of
modern computers to automatize the process of parameter fitting, which is based
on the search of the minimum value of the figure of merit. The automatic process
of minimization of a multivariate function is far from being obvious. The principal
difficulty that arises almost systematically, is the fact that the figure of merit may
have either multiple minima with the same value, or multiple partial minima with
different values. In order to minimize the impact of this drawback in the final results, it
is possible to use smart or advanced minimization strategies which are based either on
systematic multiple guesses for the initial parameters, or genetic algorithms or even
on simulated annealing algorithms. In spite of the advantages of those minimization
strategies, it is important to keep in mind that at the end of a minimization process,
a supervision of the results is necessary to check their pertinence and efficiency.

A second factor that can complicate data fitting, which is inherent to the fact that
ellipsometry data analysis is an indirect process, is the correlation between fitted
parameters. We use the term parameter correlation when in a fit process it is possible
to find multiple sets of parameters that produce the same value of the figure of merit.
Correlation is said to be linear when the couples of correlated parameters follow
a linear relation. Correlation between fitting parameters happens because experi-
mental data are not sensitive to individual parameters but to combinations of them.
Correlation between two parameters may also occur if one of the two parameters
has much more impact on the data, the optical response, than the other. A statisti-
cal treatment of optical and simulated data based on the variance-covariance matrix
formalism [30] can quantify parameter correlations which are specific to the sample
and the model. It is therefore difficult to establish general rules to treat the problem.
A procedure based on common sense consists, whenever correlation appears, to keep
one of the parameters fixed at a ‘reasonable’ value, determined a priori or from a com-
plementary technique (microscopy, XPS. . .), and to fit the other parameters. Modern
commercial ellipsometers come with data modelling software packages specially
designed to help the user, professionals or beginners, to overcome the most usually
encountered difficulties in data analysis. They provide various data fitting procedures
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based on multi-start or multi-guess strategies to avoid problems related to multiple
relative minima and parameter correlation. In many cases, they also provide graphical
user friendly interfaces which are of great help to build models of complex structures.

In spite of the great advantages of ellipsometry, this technique is limited to the
analysis of samples which do not depolarize light. As stated previously, depolar-
ization results from incoherent superposition of light beams with different polariza-
tion states. In practice, depolarization is commonly encountered when measuring
inhomogeneous samples (either in composition of thickness) or very rough sur-
faces. Depolarization can be caused by the measurement device itself as in the case
of monochromators with poor spectral resolution or instruments with high angular
acceptance [3]. When depolarization is present it may introduce significant errors
into the results provided by ellipsometry and the usual optical models. In such cases it
is safer to make measurements with a Mueller polarimeter and use advanced optical
models to take into account the sources of incoherent mixing of light which cause
depolarization.

2.5.3 Instrumental Implementations of Standard Ellipsometers

Very many designs have been successfully implemented for standard ellipsometers.
As an exhaustive review of all these designs is clearly beyond the scope of this
chapter, in this subsection we will restrict ourselves to the configurations schematized
in Fig. 2.11.

Overall, the instrument is made of two optical arms and a sample-holder in
between. The first arm, the entry, is coupled to a source of light, and includes a linear
polarizer set at an azimuth P with respect to the p direction in the plane perpendicular
to the input beam. The second arm, or exit arm, is used to determine the polarization
of the outcoming beam. It comprises a Polarization State Analyser, or PSA, and a
detector which may be a single channel device (photodiode, photomultiplier. . .) or a
multichannel one (typically a CCD coupled with a spectrometer, or, less frequently,
with an imaging system). The PSA typically includes a polarizer and possibly other
components. The PSA design actually defines the various types of instruments out-
lined in this part.

Of course, in all cases the polarization components can be inverted: all the PSAs
described in the following can be placed in the input

If the instrument is designed as shown in Fig. 2.11, with only a linear polarizer
(set at azimuth P) between the source and the sample, then the incident polarization
is linear, with a normalized Stokes vector of the form:

ST
inc = (

1, Ip − Is, I45 − I−45, 0
) = (1, cos(2P), sin(2P), 0) (2.60)

As a result, the output Stokes vector Sout does not depend on the last column of the
sample Mueller matrix M: only the first three columns of M can be determined by
such an instrument. Similarly, if the design is reversed and the output arm includes
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Fig. 2.11 General scheme of
a standard ellipsometer. The
PSA is the Polarization State
Analyzer, which distinguishes
the various setups outlined in
this subsection

only a linear polarizer before the detector, then only the first three lines of M will
be accessible, as this type of analysis does not provide any information about the
circular component V of the Stokes vector Sout of the emerging beam.

Basically, standard ellipsometers can be classified into two general families, null-
ellipsometers and non-null ellipsometers. In null ellipsometers, the optical compo-
nents of the system must be rotated until the detected intensity vanishes, then the
ellipsometric values are deduced from the orientations of the optical elements needed
to achieve the null intensity. Conversely, in non-null ellipsometers the light intensity is
modulated temporally by the action of at least one of the optical components integrat-
ing the ellipsometer, then after an harmonic analysis of the signal, the ellipsometric
values are deduced. The non-null ellipsometers can be classified into three groups:
rotating polarizers or analyzers, rotating compensators and phase-modulated. In the
following we overview some characteristics of the different types of ellipsometers.
Our interest is to show which functions of the ellipsometric angles � and � can
be measured with each type of instrument, and also, how those measurements are
related to the Mueller matrix elements. A deeper and more exhaustive analysis of
different ellipsometric configurations can be found elsewhere [1, 3, 32].

2.5.3.1 Null Ellipsometers

Null ellipsometers were the first type of instruments developed in late nineteenth
century because of their instrumental simplicity and ease of use. As outlined before,
the operation of this kind of ellipsometers consists of rotating the optical elements in
order to cancel the transmitted intensity. The operation is so simple that in the former
systems, rotation was done manually and the null intensity was evaluated with the
naked eye. During the twentieth century, thanks to the generalization of electronics,
automatic rotation by motors and photodiodes substituted the human hand and eye
respectively, making the measurement task much more comfortable. Two possible
PSA designs for null ellipsometers are shown in Fig. 2.12.

In the first design (left panel of the figure) a variable retarder (VR) is included
just after the sample with its axes parallel to the s and p directions, followed by a
linear analyzer. (The VR represented as a Babinet Soleil Bravais compensator, but
of course any other equivalent device, such as a nematic liquid crystal cell, may also
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Fig. 2.12 Two possible designs of PSAs for null-ellipsometers. Left variable retarder (VR) with
its axes aligned along the s and p directions, followed by a linear analyzer (A). Right the variable
retarder is replaced by a quarter wave plate (λ/4). In both cases, the high transmission axis of the
polarizer is shown as a black bar

be used). This PSA requires to set the polarizer in the input arm at P = 45◦. Then,
for the incoming beam Ep = Es, while after the sample one has

Ep = Es tan� exp [i�] (2.61)

Now, if (and only if) the VR is set at a retardation −�, the elliptical polarization
described by (2.61) is transformed into a linear one, oriented at an angle � from
the s direction. Then extinction is merely obtained by setting the analyzer A at an
azimuth � from the p direction. The ellipsometric angles � and � are thus nothing
else but the retardation introduced by the VR and the azimuth of the analyzer that
extinguish the output beam. Once the VR has been properly calibrated, such a setup
can be used at various wavelengths.

In the second setup (right panel of Fig. 2.12) the VR is replaced by a quarter
wave plate (QWP), which is cheaper and may also be more accurate due to its wider
angular and spectral acceptances angle (at least for zero or low order plates), but
will operate at a single wavelength. The fast axis of the QWP is oriented 45◦ with
respect to respect to p direction the plane of incidence. The intensity measured by
the detector is then:

I = sin (2A) sin (2�) [sin (2P) cos (�)− cos (2P) sin (�)] − cos (2A) cos (2�)+ 1
(2.62)

and vanishes if and only if

A = � and 2P + 90◦ = � (2.63)

meaning that now the ellipsometric angles� and� are retrieved from the orientations
of the input polarizer P and the output analyzer A.

Null ellipsometers based on QWPs have been shown to be very accurate, and
comparable to good modern instruments, but a single wavelength. As mentioned
above, to circumvent this limitation VR can be used (in both the configurations
shown in Fig. 2.12) to make the instrument spectroscopic, but the overall accuracy
may be limited by that of the VR calibration.
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2.5.3.2 Rotating Analyzer Ellipsometers

In this case, the PSA consists only of a single linear analyzer, rotating at constant
angular speed ω. This configuration is often referred to as “PSRA” for “Polarizer-
Sample Rotating Analyzer”. The mechanical rotation of the analyzer is used to har-
monically modulate the intensity of the light beam, for subsequent synchronous
detection. The detected signal by a PSRA ellipsometer can be written as follows:

S(t) = S0 [1 + α cos(2ωt)+ β sin(2ωt)] (2.64)

where ω is the angular rotation speed of the analyzer. The Fourier coefficients of the
modulated signal can be written as functions of the ellipsometric angles �,� and
the orientation of the polarizer with respect to the plane of incidence, P:

α = tan2� − tan2 P

tan2� + tan2 P
, β = 2 tan� cos� tan P

tan2� + tan2 P
(2.65)

from which one easily gets

tan� =
√

1 + α

1 − α
|tan P| cos� = β√

1 − α2
× tan P

|tan P| (2.66)

As a result tan �, and thus � itself, is determined unambiguously. In contrast, as
only cos� is actually retrieved, for this type of instrument:

• Only the absolute value of � is measured,
• This value becomes inaccurate when � is close to 0 or 180◦, where the cosine

function reaches its extrema. This situation typically occurs for thick transparent
or highly absorbing samples.

However, this shortcoming may be obviated by inserting an additional known
retarder, with its axes aligned with the s and p directions, to “shift” the retarda-
tion to be measured away from 0◦ or 180◦. Another possible issue to be solved are
the systematic errors which may be introduced by any residual polarization of the
source and/or of the detector. On the other hand, as the technique uses only polariz-
ers, it is possible to operate it over wide spectral ranges (from 200 nm to 30μm), and
the rotation speed may be chosen according to other requirements, such as a possible
acquisition by a linear CCD after a spectrometer, which can be very convenient in
many cases.

About Muller matrix elements, as stated above the fourth column cannot be mea-
sured with a linear polarization incident on the sample. Moreover, when the Polariza-
tion State Analyzer at the output consists also in a simple (rotating) linear analyzer,
the fourth row is also inaccessible. Only the upper left 3×3 sub-matrix of the sample
Mueller matrix can be determined, provided the measurements and data analysis out-
lined above are repeated with at least four different azimuths P of the input polarizer.
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Alternatively, both the analyzer and the polarizer can be rotated simultaneously,
at different angular frequencies, in a “RPSRA” configuration. For example, if these
frequencies are set equal to 3ω for the analyzer and ω for the polarizer, then the
intensity measured by a detector can be written as follows:

4
I

I0
= α0 +

4∑
j=1

(
α2j cos (2jωt)+ β2j sin (2jωt)

)
(2.67)

where I0 represents the light source intensity. The 3 × 3 upper left sub-matrix of the
sample can be expressed in terms of the Fourier coefficients appearing in (2.67) as

M =

⎛
⎜⎜⎝
α0 α2 β2 •
α6 (α4 + α8) (β8 − β4) •
β6 (β8 + β4) (α4 − α8) •
• • • •

⎞
⎟⎟⎠ (2.68)

2.5.3.3 Rotating Compensator Ellipsometers

Rotating compensator ellipsometers include at least one linear retarder, usually called
(somewhat improperly) compensator. The linear polarizers at the entry and exit arms
are kept still and, as the name indicates, the retarder is continuously rotated in order
to temporally modulate the detected signal.

Depending on whether the rotating compensator is placed at the entry or at the exit
arm there are two possible configurations known as PRCSA or PSRCA where the
meaning of P, S and A is the same as previously RC stands for Rotating Compensator.
In the following we will consider the PSRCA configuration, which corresponds to the
general scheme of Fig. 2.11, with a Polarization State Analyzer designed as shown
in Fig. 2.13.

A major difference between this type of PSA and the previous one, based on a
rotating analyzer, is that with a rotating compensator and a fixed linear analyzer it is

Fig. 2.13 Scheme of the
Polarization State Analyzer
of a rotating compensator
ellipsometer in the PSRCA
configuration. The linear
analyzer (A) is fixed while
the compensator (C) is rotated
continuously, with its azimuth
C = ωt
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possible to retrieve all four components of the Stokes vector Sout, implying that more
quantities are measurable, both in standard ellipsometry and for Mueller matrices.

If the compensator is a quarter wave plate (retardation equal to 90◦), the intensity
recorded by the detector is:

I

I0
= 2 − cos 2� + 2 sin 2� sin� sin 2C − cos 2� cos 4C + 2 sin 2� cos� sin 4C

(2.69)
where I0 is again the non-modulated (DC) intensity if the light source, and the
trigonometric functions of C = ωt, the compensator orientation. As a result, the
three different Fourier harmonics of the modulated signal directly provide the three
quantities cos 2�, sin 2� sin� and sin 2� cos�. In other words, rotating compen-
sator ellipsometers provide accurate measurements of the ellipsometric � and �
angles over the complete measurement range (� = 0−90◦;� = 0−360◦). Similar
results can be obtained for PRCSA ellipsometers.

However, the construction of a rotating compensator ellipsometer, with a com-
pensator which behaves ideally providing an achromatic retardance of 90◦ over a
wide spectral range, is a difficult optomechanical challenge, and it requires more
complicated calibration and data reduction procedures than rotating polarizer or
analyzer ellipsometers. Any deviation of the optical response of the compensator
from the ideal behavior must be carefully calibrated, otherwise it will be the source
of important systematic errors.

Rotating compensator ellipsometers can be implemented in more general config-
urations, among which:

(a) The RP/RCFA configuration, which consists of a rotating polarizer at the entry
arm and a rotating compensator followed by a fixed analyzer at the exit arm.

(b) The FPRC/RA configuration, which consists of a fixed polarizer and rotating
compensator at the entry arm and at rotating analyzer at the exit arm.

In the best operation mode of the RP/RCFA configuration, the compensator and the
polarizer are rotated synchronously at different frequencies. In an optimal operation
configuration the rotation frequency of the polarizer is 3 times that of the compensator.
Then the detected signal can be decomposed in a Fourier series:

4
I

I0
= α0 +

7∑
j=1

(
α2j cos (2jP)+ β2j sin (2jP)

)
(2.70)

where I0 is again the light source intensity. The Fourier analysis of the modulated
signal provides 15 coefficients which allow to determine the elements of the first
three columns of the Mueller matrix as follows:

M =

⎛
⎜⎜⎝
(α0 − α6) (α1 − α5 − α7) (β1 − β5 + β7) •

2α6 2 (α5 + α7) 2 (β7 − β5) •
2β6 2 (β7 + β5) 2 (α5 − α7) •

−2β3 −2β2 −2α2 •

⎞
⎟⎟⎠ (2.71)
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The Fourier components are functions of the compensator properties, in particular
retardation, which can be wavelength dependent. The calibration of such as system
is extremely complex, especially when the ellipsometer is spectroscopic [33]. Con-
versely, the advantage of such as system is that a single measurement scheme allows
to obtain 12 out of 16 Mueller matrix elements. If a simplified operation mode is
used, in which only the compensator is rotated continuously, the 12 elements of the
Mueller cannot be obtained after a single measurement. The polarizer must be placed
at different azimuths, and for each position, a new measurement must be made. Once
the process is finished, the combination of the Fourier coefficients extracted from all
the measurements allows to obtain the first three columns of the Mueller matrix. Sim-
ilar arguments can be given to illustrate the operation of the FPRC/RA configuration
which then provide the first three rows of the Mueller matrix.

2.5.3.4 Phase-Modulation Ellipsometers

Finally we describe the phase-modulation ellipsometers, which include a photoelas-
tic modulator, This component can be placed between the linear polarizer and the
sample, either at the entry or exit optical arm, in PMSA or the PSMA configurations
respectively. Here P, M S and A stand for fixed polarizer, modulator, sample, and
fixed analyzer respectively.

A photoelastic modulator consists of a bar of optically isotropic material, which is
made birefringent by means of an applied mechanical stress. To enhance this naturally
weak effect, the applied stress is periodic and at a proper frequency to generate a
stationary sound wave in the bar. The needed time dependent mechanical stress is
usually applied using piezoelectric transducers attached to the end of the bar. As
acoustic losses in the bar are very weak, very sharp resonances occur for ultrasonic
waves, resulting in a dramatic increase of the induced birefringence with respect to
a static stress. As a result, the device behaves as a retarder with a time dependent
retardation δ(t), which varies sinusoidally at frequencies of several tens of kHz.

We now consider the PSMA configuration in which at the entry arm the polarizer
is fixed and set at an azimuth P with respect to the plane of incidence, while in the
exit arm, as represented in Fig. 2.14, the photoelastic modulator is set to an azimuth
M and the linear analyzer is set at an azimuth angle A with respect to the plane of
incidence. The detected signal then takes the form:

S(t) = S0[1 + Is sin(δ(t))+ Ic cos(δ(t))], (2.72)

with:

Ic = sin[2(A−M)] [sin 2M(cos 2�−cos 2P)+sin 2P cos 2M sin 2� cos�] (2.73)

Is = sin[2(A − M)] sin 2P sin 2� sin� (2.74)
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Fig. 2.14 Scheme of a PSA
comprising a photoelastic
modulator (PEM) and a linear
analyzer (A), set respectively
at azimuths M and A. The
black “patches” in the higher
part of the component are
piezoelectric transducers

In practice, as δ(t) = sin(ωt), the Eq. (2.72) must be developed in Fourier series (with
the well-known Bessel functions as coefficients) to express Is and Ic as functions of
the directly measured quantities, actually the amplitudes of the sin(ωt) and sin(2ωt)
components of the signal.

The expressions (2.73) and (2.74) show that the signal S ( Is, Ic) are maximized
when A-M = 45◦. Moreover it is also clear that it is not possible to unambiguously
determine � and � from a single measurement configuration. In practice, two con-
figurations are typically used

• M = 0◦, A = 45◦, P = 45◦, known as configuration II, for which we get Is =
sin 2� sin�, Ic = sin 2� cos�

• M = 45◦, A = 90◦, P = 45◦, known as configuration III, for which we get
Is = sin 2� sin�, Ic = cos 2�

As a result, in configuration II, one measures � accurately over the full range
(0–360◦) but � is ambiguously defined, as only sin 2� is retrieved. Conversely, in
configuration III one fully determines 2�, but only cos� is obtained. However, all
that is needed to shift from one configuration to the other is to rotate the whole PSA,
which can be done automatically without major difficulties, and then combine the
results of the two measurements for a complete, unambiguous determination of both
� and �.

For Mueller matrix measurements, the three quantities which can be directly
retrieved from the time evolution of the signal can be recast in terms of the matrix
elements Mij and the azimuths P, A and M as [34]

Iα = S0 = M11 + M12 cos (2A)+ M13 sin (2A)
Iβ = S0IS = (M31 + M32 cos (2A)+ M33 sin (2A)) cos (2M)

− (M21 + M22 cos (2A)+ M23 sin (2A)) sin (2M)
Iγ = S0IC = M41 + M42 cos (2A)+ M43 sin (2A)

(2.75)

from which it is clear that the nine elements M1i, M2i and M4i can be retrieved with
three measurements carried out with M = 45◦ and A = 0◦, 60◦ and 120◦ for exam-
ple. Then the last four element M3i can be obtained by another three measurements,
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with the same A values as before but M = 0◦. Moreover, this new set of measure-
ments over-determines the values of M1i and M4i. As a result, six measurements
are necessary to retrieve the full set of 12 elements of the first three columns of the
Mueller matrix, with partial redundancy. In order to “spread” this redundancy over
the whole set of elements, eight measurements can be realized, as described in [34].
Of course, the need to realize so many measurements to obtain the first three columns
of the sample Mueller matrix makes phase modulation ellipsometers less practical
than those based on rotating compensators, which provide the same set of data with
a single measurement.

However, if combined with a suitable synchronous detection (which may be per-
formed digitally) the high modulation frequency (50 kHz) specific of photoelastic
phase modulation allows very efficient noise rejection and provides wide dynamic
ranges. This technique is thus particularly well suited for very demanding measure-
ments, such as the characterization of extremely thin films of example.

As it can be seen, the elements of the fourth column of the Mueller matrix can-
not be addressed. To determine the elements of the sample Mueller matrix, eight
measurements are necessary, corresponding to appropriate and alternative settings
of the azimuths of the modulator and the analyzer. If the modulator were placed at
the exit arm, the 12 elements of the matrix that would be addressed would corre-
spond to the first three rows of the Mueller matrix. The situation is comparable to
the rotating compensator ellipsometer previously described. The difference is that
with the rotating compensator ellipsometer, the 12 elements can be measured in a
single measuring run, whereas 8 runs are needed with an ellipsometer with only one
photoelastic modulator.

2.5.3.5 Summary

In this subsection we have presented the most commonly used experimental con-
figurations for standard ellipsometry, with particular emphasis of the quantities that
actually can, or cannot, be measured by each of them. In Table 2.1, we summarize
the main characteristics of these configurations, including their strengths and weak-
nesses.

We want to make two points absolutely clear:

• We did not try to review the many refinements are more complex systems which
have been tested and developed, possibly up to commercialization. A full book
would be needed for this to be done seriously.

• By listing the main advantages and weaknesses of each technique we absolutely
do not mean that commercially available systems using this technique necessarily
presents these strengths and weaknesses. While some basic limitations, such as
those concerning the measurable Mueller matrix elements, cannot be solved in a
given configuration, many other practically essential issues, among which those
related to the measurements accuracy, the speed, the signal to noise ratio and the
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like greatly depends on engineering developments which are clearly beyond the
scope of this contribution

We thus stress that the information presented in Table 2.1 is by no means a “buyer’s
guide”: it might be useful only to ask the manufacturers some reasonably relevant
questions !

2.5.4 Generalized Ellipsometry

In practice, when it comes to measure non-diagonal matrices characterizing non-
depolarizing cross-polarizing samples, the ease of use, and the adequacy of the
instrument to retrieve all the necessary information from the sample is of prime
importance for the researcher. Even though none of the previously shown standard
ellipsometers (rotating analyzer-polarizer, rotating compensator with a single com-
pensator and phase-modulation with a single modulator) is able to perform a complete
measurement of the 16 elements of a Mueller matrix, this does not mean that they
cannot be used to perform generalized ellipsometry.

In many cases of practical interest it can be shown [31] that for non-depolarizing
systems the form of their associated Jones-Mueller matrix (2.14) is sufficiently redun-
dant that either the corresponding Jones matrix can be inferred from a partially mea-
sured Mueller matrix, or the non-measured Mueller-Jones matrices can be inferred
from the measured ones. Inference procedure is valid under some hypothesis, for
instance, the fact that the off-diagonal element of the Jones matrix Jsp is equal to the
conjugate of Jps.

At this point it important to point-out that the information carried by a Jones matrix
and the related Jones-Mueller matrix is strictly the same, and it can be retrieved
independently of the formalism, either Jones or Stokes, used to represent the data
and the physical problem to which they are related.

However, it is important to recall that the accuracy of the non-measured matrix
elements depends on the systematic errors of the measured matrix elements and
also, on the degree of applicability of the conditions under which the non-measured
elements have been inferred.

2.6 Mueller Ellipsometry: Instrumental Issues

When the redundancies of the Mueller matrix are not sufficient to reconstruct the full
matrix from partial measurements, or when depolarization modifies the structure of
the matrix respect to the non-depolarizing case, it is mandatory to measure the 16
elements of the Mueller matrix (15 if it is normalized). In this section we address some
essential issues specific of the instruments capable of achieve such measurements.
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Polarization state 
generator (PSG)

Polarization state
analyzer (PSA)

Sample
Si MSi

Fig. 2.15 Schematic representation of the optical setup of a general Mueller ellipsometer. The
Stokes formalisms has been used to represent the polarization properties of light. In the framework
of Stokes formalism the optical properties of the PSG, sample and PSA can be represented by
matrices

2.6.1 General Considerations on Mueller Ellipsometers

Throughout this section, Mueller ellipsometers will be described within the frame-
work of the Stokes-Mueller formalism, which unifies the presentation of both tech-
niques, and simplifies the algebra with respect to original descriptions of generalized
ellipsometry based on Jones matrices.

In the following, to avoid too lengthy developments, we will limit our presen-
tation to sequential ellipsometers, i.e. systems in which the polarization states are
generated in the entry arm and analysed in the exit arm sequentially. The ideas and
techniques presented in this section is also valid, with minor adaptations, for instru-
ments performing sinusoidal modulation of the input and/or output polarizations with
subsequent Fourier analysis of the signals (Fig. 2.15).

Within this formalism, the operation of any ellipsometric or polarimetric system
can be schematized as follows:

The PSG produces a set of input Stokes vectors Si, which are transformed by the
sample into M Si (M being the Mueller matrix of the sample). These output Stokes
vectors are then analysed by the PSA, which delivers the raw signals Bij by projecting
each vector M Si onto its basis states. This scheme can be summarized by the simple
matrix equation.

B = A M W (2.76)

where the modulation matrix W, which characterizes the PSG, is formed by the
Si vectors in columns, while the S’j are the line vectors of the analysis matrix A
characterizing the PSA. In the most general case, B is rectangular, with m lines and
n columns, where m and n respectively represent the numbers of states generated by
the PSG and analyzed by the PSA.

To get the full Mueller matrix M, both the PSG and the PSA must be “complete”,
with at least 4 basis states. Then expression (2.76) is sufficient to extract M from B
by merely inverting the (in principle well known !) matrices A and W, if both m and n
are equal to 4, or by pseudo-inverting these matrices if the system is overdetermined.
In the following for simplicity reasons, we will consider only the case of “minimal”
Mueller ellipsometers, for which m = n = 4, but we emphasize that all the ideas
exposed in the following about instrument optimization and calibration can be easily
transposed to overdetermined configurations.
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While their principle of operation may seem straightforward, Mueller ellipsome-
ters are not so widespread (only two have been very recently made commercially
available), because of the added technical complexity due to the simultaneous pres-
ence of complete PSG and PSA. Two issues are of paramount importance (as for any
other instruments, but they are particularly critical here)

• The optimization of the instrument design, to get the optimal performance if all
components were ideal (perfectly well described by the model). The general cri-
terion for this optimization, namely the minimization of the condition numbers of
matrices A and W is now widely accepted.

• The instrument calibration, in other words the determination of the actual A and
Wmatrices, which are necessarily affected by the many imperfections of the opti-
cal components, positioning systems and the like. This is a crucial issue, espe-
cially for the complex setups which may be necessary to follow the optimization
criterion defined above. Actually, for such complex systems, the usual approach
based on a detailed modeling of the whole instrument and its non-idealities may
be totally inapplicable. Conversely, the Eigenvalue Calibration Method developed
and experimentally validated by Compain [35] circumvents this problem by deter-
mining both A and W matrices from a set of measurements on reference sample
directly, by algebraic methods, without any modeling of the instrument. Moreover,
the only requirement on reference samples is that they are linear dichroic retarders;
not too close to half-wave plates, as the ECM allows to determine their precise
characteristics during the calibration procedure itself. As a result, no very specific
samples, such as retardation plates with accurate retardation values, are needed.

Due to its flexibility and robustness, the ECM has been a cornerstone of all the
instrumental developments in Mueller ellipsometry at LPICM (and a few other lab-
oratories as well). Its usefulness could hardly be overestimated for the development
of innovative Mueller ellipsometers.

2.6.2 Design Optimization of the Polarization State
Generators and Analyzers

Item 1 is probably the easiest to address. If we rewrite expression (2.76) as

M = A−1B W−1 (2.77)

we see that the optimization of the instrument design is equivalent to a minimization
of the errors in M for a given value of the measurement errors in the raw matrix B.
Due to the algebraic properties of matrices, the error propagation from B to M will
be minimized if the condition numbers of A and W are minimized [36–39]. Without
trying to be too rigorous, we now illustrate the rationale behind this criterion by
considering the noise propagation from raw intensities to final results in the case of
a PSA.
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Let us recall that the condition number c(X) any square matrix X is defined as

c(X) = ‖X‖ ‖X−1‖ (2.78)

where the norm of the matrices (and vectors) can be defined in several ways. In
our case, the most relevant choice is the Euclidean norm for the vectors while for
matrices we define

‖X‖ = sup [si(X)] (2.79)

where si are the singular values of X. With such definitions, for any vectors T and Z,

Z = TX ⇒ ‖Z‖ ≤ ‖T‖ ‖X‖ (2.80)

If now we consider the operation of a PSA with an analysis matrix A, the Stokes
vector S of the light impinging on the PSA and the four dimensional vector I whose
components are the four intensities measured at the output of the PSA are related by

I = A S ⇔ S = A−1I (2.81)

Now when the configuration of the PSA is varied, for example by changing the relative
orientations of its optical components, the matrix A varies too. However, for typical
PSA as those described below, the four line vectors of A are always the transposes of
totally polarized Stokes vectors, and it is easy to see that in these conditions that ‖A‖
hardly changes. Conversely,

∥∥A−1
∥∥ may become arbitrarily large when A becomes

close to a singular matrix, for example when two line vectors become almost equal,
meaning that the same polarization state is being measured twice while for another
polarization state, say Smin the measured intensity vector Imin is very small. If so, as
the norm of Smin is always between 1 and 2,

∥∥A−1
∥∥ has to be large for (2.80) to be

verified.
Then, if we make the realistic assumption that any intensity measurement vector

I is affected by an additive noise δ I, then the resulting error δ S in the extracted S is
simply

δS = A−1δI (2.82)

but, in contrast with the signal, the amplitude ‖δI‖ of the additive noise is assumed to
remain constant when the PSA configuration is changed. As a result, the maximum
error ‖δS‖ on the extracted Stokes vector S is proportional to

∥∥A−1
∥∥, which must

then be mimimized. Due to the typically very small variation of ‖A‖, this criterion
is basically equivalent to the minimization of the condition number c(A), which has
the advantage to be dimensionless.

Moreover the condition number c(X) is a widely used criterion to see “how well”
a given square matrix X can be numerically inverted, between the two extremes of
unitary (c = 1) and singular (c = 0). Actually this parameter describe “how well
the polarization space is sampled” by the PSA. At this point, the generalization to
complete Mueller polarimeters is intuitively straightforward: in these instruments,
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both the PSG and the PSA must realize an optimal sampling of their respective
polarization spaces.

Mathematically, the argumentation presented above can be easily generalized by
recasting the matrices B and M defined in (2.76) as 16 dimensional vectors B(16) and
M(16), which transforms (2.76) into [40]

B(16) =
[
WT ⊗ A

]
M(16) (2.83)

and using the relationship

c
[
WT ⊗ A

]
= c(W)c(A) (2.84)

For sequential PSAs the line vectors are actually physically realizable Stokes vectors,
which thus exhibit a degree of polarization between 0 and 1. Any set of such 4 vectors
can never be orthogonal to each other, which prevents the matrix A to be unitary and
imposes

c(A) ≥ √
3 (2.85)

(a similar limitation actually occurs also for modulation-based ellipsometers, even
though the basis states forming the A and W matrices are not necessarily physically
realizable Stokes vectors).

Finally, we point out that the minimization of the condition numbers c(A) and
c(W) optimizes the propagation of additive noise. In principle, other indicators may
be found to minimize the effect of other types of noise, such as the multiplicative
noise due to speckle effects in imaging with spatially coherent light.

However, in practice, this criterion provides very efficient guidelines to optimize
the design of complete Mueller ellipsometer, as it has been experimentally demon-
strated among others, on a double rotating compensator setup operated in discrete
rotation steps [41]. In addition to the “Standard” double rotating compensator oper-
ated with continuous rotations [42], many optimized designs of complete PSA and
PSG have been published in the past decade, based on photoelastic modulator in
double pass [43], achromatic division of amplitude prism [44], Pockels cells [45,
46] nematic or ferroelectric. The last two types of PSGs and PSAs will be described
in more detail below.

Last but not least, we conclude this subsection with the two following remarks

• Minimizing the conditions numbers of A and W not only minimizes the noise
on the extracted Mueller matrix M, but it also “equalizes” the noise among its
various components [38], and is thus recommended only for the complete Mueller
ellipsometers described in this section. For more specialized instruments, or when
particular attention is paid to some particular elements of M, other criteria may be
much more adapted.
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• In principle, the minimization of c(A) and c(W) is intended to minimize the effects
of statistical noise on B, but in practice it turns out to be also a good criterion to
minimize systematic errors even though such errors cannot be treated by a general
theory comparable to those available for statistical noises.

2.6.3 Actual Implementations of Polarization State
Generators and Analyzers

In this subsection we briefly outline various widely used configurations for PSGs and
PSAs, without trying to be exhaustive. We first consider those based on what we call
“traditional” approaches, which make use of the elements previously described for
standard ellipsometers, with, however, suitable modifications to provide full Mueller
matrix measurements.

We then focus on the original systems developed at LPICM, and based on

• rotatable Fresnel rhombs for broadband spectroscopic operation in the infrared,
• nematic and ferroelectric liquid crystals. These devices are actually extremely

easy to use, and typically feature wide angular and spatial acceptances, which
make them particularly well suited for imaging applications, in the visible and
near infrared range. Spectroscopic Mueller ellipsometers based on these devices
have also been successfully developed and commercialized.

For all the optimized PSGs described in the following, the corresponding PSAs are
nothing else but the mirror images of the PSGs.

2.6.3.1 Traditional Approaches

Two of the standard ellipsometric configurations, the rotating compensator and the
photoelastic modulator have been generalized, at the expense of extensive instru-
mental and calibration complication, in order to access the full Mueller matrix.

Concerning the rotating analyzer configuration, the generalization consists of
using at least two rotating compensators, both with an ideal retardance of 90◦ and
rotating synchronously with different angular speeds [3, 34, 41, 42]. One com-
pensator is placed at the entry arm between the polarizer and the sample, whereas
the second compensator is placed at the exit arm between the sample and the ana-
lyzer. Following the nomenclature previously described, this configuration can be
addressed as PRCSRCA, or in a shortened version just as PCSCA. The advantage of
this configuration is that it allows to access the full Mueller matrix in a single mea-
surement run. This approach has been used to develop the commercially available
spectroscopic Mueller ellipsometer RC2 by Woollam [47].

The second type of generalized ellipsometer, based on photoelastic modulators,
can be found in two variants. The first one, similar to the rotating compensator
consists of a system with two modulators. One modulator is placed at the entry arm,
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between the polarizer and the sample. The second modulator occupies a symmetric
position respect to the first. It is placed at the exit arm between the sample and
the analyzer. This configuration can be called, PMSMA. The two modulators can
be operated synchronous or asynchronously, but they must be resonant at different
frequencies. The drawback of this configuration is that in order to access the whole
Mueller matrix, the modulators must be placed at different orientations, and that a
complete measurement must be carried out for each orientation [48]. The second
variant, consist of a system with four photoelastic modulators. According to the
description given in [3, 49], two modulators are placed at the entry arm between the
sample and the polarizer, and two modulators are placed at the exit arm between the
sample and the analyzer. Again the modulators must vibrate at different frequencies in
order to get maximum sensitivity and to avoid possible ambiguities. The advantage
is that the four-modulator configuration is exempt of mechanical movements and
therefore it can measure the full Mueller matrix in a single run.

2.6.3.2 Rotatable Fresnel Rhombs for Broadband
Spectroscopic Operation

As it is well known [4] a prism working in total internal reflection behaves as a
retardation plate, with, however, a high degree of achromaticity, as the retardation
depends only on the material optical index and the angle of incidence on the face
working in internal reflection, without the 1/λ factor typical of retarders cut in bire-
fringent materials. As a result, if used in conjunction with suitable linear polarizers,
this type of component is very appealing to develop broadband PSGs, PSAs, and
complete Mueller ellipsometers.

Because of the bulky shape of the prisms, care must be taken to select an
appropriate geometry that does not deviate the beam the element is rotated. Among
the possible prism geometries [50], we selected the V-shaped retarder shown in
Fig. 2.16 as it is the easiest to manufacture. This component consists of two identical
Fresnel rhombs disposed symmetrically and joined by optical contact.

The PSG of the Mueller ellipsometer consists then of a linear polarizer, which
is kept fixed, followed by an achromatic retarder that can rotate about the light prop-
agation axis. The PSA is identical to the PSG, but with its optical elements in reverse
order. During current operation of the Mueller ellipsometer, the PSG generates at
least four polarization states corresponding to four different azimuths of the retarder
and, similarly, the PSA is operated with at least four analysis configurations.

The optical configuration of the broadband Mueller ellipsometer is very similar
to that of a PCSCA generalized ellipsometer, with two fixed polarizers and two
mobile retarders, which explains why the broadband Mueller ellipsometer is able to
measure a full Mueller matrix in a single run. However, the operation mode and the
retardance created by the retarders is quite different. To work in optimal conditions,
the retardance of the compensators of a PCSCA generalized ellipsometer must be
90◦, 270◦ or a multiple of them, whereas in the broadband system, it is not the case
as it will be shown later. The operation is very different too. The compensators in
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Fig. 2.16 V-shaped achromatic retarder made of two assembled Fresnel rhombs operating with
four total internal reflections at incidence θi

the PCSCA system are continuously rotated and a double Fourier analysis, either
continuous or discrete, of the time-modulated detected signal must be performed. In
contrast, our broadband Mueller ellipsometer, is operated sequentially setting each
retarder at four predetermined orientations and the signal is measured between two
sequential rotations. During an acquisition, the retarders do not move. Simple linear
algebraic operations, (two matrix multiplications), are needed to obtain the Mueller
matrix from the measured intensities B. Finally, the system is calibrated by the ECM
method described below.

As described above, the four polarization states generated in the PSG and analyzed
by the PSA, have been selected in order to minimize the condition numbers c(W) and
c(A). To this end, we simulated the optical behavior of PSG assuming the polarizer
and the retarder were ideal. The Mueller matrices of a linear polarizer, P, and an
ideal retarder, C, oriented respectively at azimuths 0 and θ , are:

P = τP

⎛
⎜⎜⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ;

C(θ, δ) =

τR

⎛
⎜⎜⎝

1 0 0 0
0 cos2(2θ)+ cos(δ) sin2(2θ) sin2( δ2 ) sin(4θ) − sin(δ) sin(2θ)
0 sin2( δ2 ) sin(4θ) cos2(2θ)+ cos(δ) sin2(2θ) sin(δ) cos(2θ)
0 sin(δ) sin(2θ) − sin(δ) cos(2θ) cos(δ)

⎞
⎟⎟⎠

(2.86)

where τP is the polarizer transmission, while τR and δ represent the transmission and
the retardance of the retarder respectively. Assuming that the light entering the PSG
is completely depolarized, the Stokes vector generated by the PSG is given by the
expression:

Sout (θ, δ) = C(θ, δ) · P ·

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ (2.87)
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Fig. 2.17 Reciprocal condi-
tion number as function of
the value of the retardance
of the V-shaped prism. The
two maxima correspond to the
selected retardances

Hence, the matrix W and its condition number c(W) can be understood as functions
of five parameters. Finding the values of the parameters that minimize the condition
number is a numerical problem that can be solved by means of a standard numerical
optimization routines. As a result, two optimal values for the retardation and two sets
of optimal azimuth angles can be found. δ1 = 132◦ +n360◦ and δ2 = 227◦ +n360◦,
with “n” being any integer. Figure 2.17 shows the values of the condition number
calculated as function of the Fresnel rhomb pair retardation for one set of optimal
values of the azimuths (In this figures and all the following analogous ones, we plot
the reciprocal 1/c of the condition number, which may vary from 0 to 0.577 and is
thus easier to plot than c.)

The two maxima and correspond respectively to the optimal values for the retar-
dation. The two sets of azimuths are:

• {θ1, θ2, θ3, θ4} = {38◦ + n360◦, 74◦ + n360◦, 106◦ + n360◦, 142◦ + n360◦}
• {θ1, θ2, θ3, θ4} = {218◦ + n360◦, 254◦ + n360◦, 286◦ + n360◦, 322◦ + n360◦}

with “n” being any integer.

2.6.3.3 Nematic Liquid Crystals

These devices behave as electrically controllable variable retarders, analogous to
Babinet Soleil Bravais compensators, with fixed orientation of their slow and fast
axes and retardations which may be adjusted from 1 ∼ 2 times 360◦ to almost 0◦
by applying a.c. driving voltages, typically in square wave form, with rms values
from 0 to about 15 V. We used NLC variable retarders from Meadowlark; detailed
information about these devices is available on their site [51]. One limitation of NLCs
is their slow switching times, of the order of tens of milliseconds.
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The whole PSG is composed of a linear polarizer followed by two NLCs with
their fast axes set at the (fixed) azimuths θ1 and θ2 with respect to the polarization
defined by the polarizer. Calling respectively δ1 and δ1 the retardations of the NLCs,
a straightforward calculation provides the output Stokes vector

SPSG = MR(θ2, δ2)MR(θ1, δ1)

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦ (2.88)

where the matrices MR(θi, δi) are those defined in (2.33) for linear retarders. Finally
we get the explicitly

SPSG =⎛
⎜⎜⎜⎝

1(
c2

1 + s2
1 cos δ1

) (
c2

2 + s2
2 cos δ2

) + c1c2s1s2 (1 − cos δ1) (1 − cos δ2)− s1s2 sin δ1 sin δ2

c2s2 (1 − cos δ2)
(
c2

1 + s2
1 cos δ1

) + c1s1 (1 − cos δ1)
(
c2

2 + s2
2 cos δ2

) + s1c2 sin δ1 sin δ2

s2 sin δ2
(
c2

1 + s2
1 cos δ1

) − c1s1c2 sin δ2
(
c2

1 + s2
1 cos δ1

)
(1 − cos δ1)+ s1 sin δ1 cos δ2

⎞
⎟⎟⎟⎠

(2.89)

where ci = cos 2 θi, si = sin 2 θi. Now to generate the needed four Stokes vectors to
be complete, we can play with 10 parameters (the fixed azimuths and the four pairs
of retardations); which are far too many! Actually, among the many possibilities, the
theoretical minimum of c(W) is reached for azimuth values given by

θ1 = ε27.4◦ + q90◦ and θ2 = ε72.4◦ + r90◦ (2.90)

where ε = ±1 has the same value in both equations, while q and r, are any integer
numbers (not necessary equal), and retardation sequences the form

(δ1, δ2) = (�1,�1), (�2,�1), (�1,�2), and (�2,�2), (2.91)

with
�1 = 315◦ + p90◦ and �2 = 135◦ + p90◦ (2.92)

where, again, p is an arbitrary integer.
As retardations can be adjusted on demand, PSGs based on nematic liquid crystals

can in priniciple reach the theoretical minimum of c(W) for any wavelength within
their spectral range. This possibility of complete optimization make them very well
suited for Mueller ellipsometric measurements discrete wavelengths, provided total
acquisition times of the order of 1 s for the whole set of 16 images is acceptable.
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2.6.3.4 Ferroelectric Liquid Crystals

With respect to nematics, ferroelectric liquid crystals (FLCs) feature the following
quite different, and complementary, characteristics

• They are also linear retarders, but with constant retardation. What is driven electri-
cally is the orientation of their fast axis. This orientation is actually bistable, with
two possible azimuths 45◦ apart from each other. The polarity of the DC driving
voltage actuelly defines which of these two azimuths is actually reached.

• These devices may switch from one state to other extremely fast, typically in less
than 100 μs.

The commutation speed of these components allow fast Mueller ellipsometry, either
in spectroscopic or in imaging modes. However, due to the fixed values of retar-
dations, PSG is built with these components will not allow a fine minimization of
the condition number like that possible with nematics. This minimization can be
performed only as a compromise over all the spectral range of interest. On the other
hand, if acceptable values are obtained throughout this range, with c values typically
less than 4 or so, then the data can be taken simultaneously over this range, allowing
fast spectral ellipsometry and/or “color” Mueller imaging.

We first consider a configuration similar to that described above for nematic
LCs (Fig. 2.18). A linear polarizer is followed by two FLCs, which are switched
alternatively to actually generate the four needed polarization states. If we now call
θ1 and θ2 two possible azimuths of the FLCs, when the driving voltages are switched,
the resulting pairs of azimuth are

{(θ1, θ2), (θ1 + 45◦, θ2), (θ1, θ2 + 45◦), (θ1 + 45, θ2 + 45◦)} (2.93)

Again, the four generated Stokes vectors can be calculated by putting these
azimuths, and the constant retardations δ1 and δ2 into (2.89). With this configuration,
the best result was obtained with

δ1 = 90◦ and δ2 = 180◦(at 510 nm), and θ1 = 70◦, θ2 = 165.5◦ (2.94)

Fig. 2.18 Configuration of
a PSG based on two nematic
liquid crystals. The red arrows
indicate the directions of the
fast axes
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Fig. 2.19 Spectral depen-
dence of the reciprocal con-
dition number 1/c(W) of the
matrix W associated to the
FLC based PSG. The effect
of the insertion of a quartz
wave-plate between the FLCs
can be clearly seen. Red line
with the wave-plate and Black
line without it
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The spectral dependence of the reciprocal condition number 1/c(W) obtained with
these parameters is shown as the black line on Fig. 2.19. The qualitative criterion
defined above, namely 1/c ≥ 0.25 is obeyed in a relatively narrow range, between
450 and 700 nm.

This useful spectral range can be significantly extended by adding a true zero
order quarter wave plate for 633 nm. With the same values of δ1 δ2 (quarter− and
half-wave at 510 nm) the red curve is obtained for

θ1 = −10◦ and θ2 = 165.5◦ (2.95)

meaning that the PSG can be used with the same noise propagation as before between
420 nm (limited by the transmission of the FLCs) and 1000 nm.

This configuration has been generalized to extend the spectral range towards
the near infrared (NIR). Ladstein and co-workers [52] used the same configuration
described above but with FLCs specially adapted to work in the NIR. The working
principle of this system was based in a simple scale law. They used two FLCs pro-
viding a retardance which was roughly the double of the retardance provided by the
ellipsometer working in the visible range, and as a result, they obtained a system
which worked well in the range from 700 to 1900 nm. However, the high retardance
provided by the NIR FLCs prevented the system to work in the visible range. A
second attempt made in parallel by the group of Letnes [53] in Norway and us in
France [54] showed that the addition of a third FLC to the PSG (and to the PSA as
well) allowed to work in an extended range from 450 nm in the visible to 1800 nm
in the NIR. There are two possible modes of operation of the 3FLC system:

(a) In a first mode, the orientations of the three FLCs in the PSG have to be commuted
to generate a sequence of 8 polarization states. The same sequence must to
be done for the PSA for acquiring a sequence of 64 measurements at each
wavelength to extract the Mueller matrix of the sample. This mode is referred
as “complete mode”.

(b) In a second mode, the orientations of the three FLCs in the PSG have to be
commuted to generate a reduced sequence of only 6 polarization states. The
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Fig. 2.20 Spectral values of (1/c) associated to the 3 FLCs PSG operated in the complete (left)
mode and the reduced (right) mode respectively. λ represents the wavelength in nanometers

same sequence must to be done for the PSA for acquiring a sequence of N = 36
measurements at each wavelength to extract the Mueller matrix. This mode is
referred to below in the present document as “reduced mode”.

Figure 2.20 shows the spectral value of the reciprocal condition number for the
complete and the reduced modes of operation respectively. As it can be seen in both
cases, the condition number remains acceptable. The reduced mode, despite of dis-
playing a condition number that is slightly lower than the complete mode, allows
to perform a complete Mueller matrix measurement, twice faster than the complete
mode because it needs half of polarization station states. The choice between opera-
tion modes depends on the particular experimental conditions. Complete mode will
always produce less noisy results than the reduced mode, therefore it is recommended
to use it when measuring samples with low reflectivity.

2.6.4 The Eigenvalue Calibration Method (ECM)

We now focus on item 2, i.e. the crucial issue of instrument calibration. Obviously,
the more complex the instrument, the more difficult the detailed modeling of all
its imperfections. This modeling, however, is needed to calibrate the instrument by
the usual procedure: the presumably relevant parameters are included in the model
describing non-idealities, and then their values are determined by fitting the measured
deviations from expected values on well-known samples (in many cases, vacuum or
NIST samples made of crystalline silicon covered with various thicknesses of SiO2)

[33, 48]. While this classical procedure may be of great value as it provides in-depth
knowledge of the instrument, it can be extremely time-consuming and may not be
applicable to otherwise interesting optical assemblies, due to their complexity. In
this respect, the optimization of A and W condition numbers, if it may enhance the
instrument performance, may also render its calibration by traditional methods more
difficult.

As it was outlined at the beginning of Sect. 2.6, the purpose of ECM method is to
accurately determine the W and A matrices without any modeling of the instrument
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nor any specific calibration samples. Provided these samples are linear dichroic
retarders, their characteristics (transmission, diattenuation, retardation) are retrieved
by the procedure itself, as shown in this subsection. Of course, in the following we
expose the ideas presented in the original article by Compain et al. [35] but the
practical implementation, and in particular the choice of the reference samples, is
somewhat different.

We first address the case of a Mueller ellipsometer operated in transmission, before
generalizing the method to the case of measurements in reflection.

2.6.4.1 Calibration of Mueller Ellipsometers in Transmission

The general principle. Let us first assume we have a set of reference samples,
characterized by perfectly well known Mueller matrices Mi. As the instrument is
operated in transmission, it is possible to make a first measurement on vacuum, to
obtain

B0 = A W. (2.96)

Then, putting the sample i in the beam we measure the corresponding raw matrix

Bi = A Mi W (2.97)

Now, with the experimentally available matrices B0 and Bi we calculate the matrices
Ci as

Ci = (B0)
−1 Bi = W−1 Mi W. (2.98)

Then, by multiplying both sides of the above equation by W−1 we finally get

Mi W − W Ci = 0. (2.99)

For all values of I (i.e. for all samples). As Mi is assumed to be known and Ci has
been obtained experimentally, (2.99) is actually a linear system of equations whose
unknowns are the elements of M. The question is therefore: how can we solve this
system most efficiently? To define the best procedure, we must keep in mind two
essential points

• The system may be undetermined, well determined or overdetermined, depending
on how many samples have been measured, and “how different” these samples
were. Thus the solving procedure must be suitable for all cases.

• Even if the Mi matrices are perfectly well known, the matrices Ci are certainly
affected by experimental errors, and thus the system may very well have no exact
solution. All we can try to do is to determine the best possible approximation of
the ideal solution which would have required “perfect” measurements for Ci.
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The best way to cope with these two issues is to solve (2.99) in the “least-squares”
sense, by determining the X matrix (or matrices, if the system is undetermined)
which minimizes the sum of the squares of the 16 N elements of the N 4×4 matrices
appearing in (2.99). Of course, is the system turns out to be undetermined, then more
samples have to be included. On the other hand, inclusion of new measurements is
straightforward.

To practically realize this rms minimization, we define for each measurement the
linear operator Ti which associates to any matrix X the matrix

Ti (X) = Mi X − X Ci (2.100)

Provided its elements are properly renumbered any 4 × 4 real matrix X can be con-
sidered as a vector X(16)

k with 16 components. Equation (2.100) can then be rewritten
in the form

(Ti(X))
(16)
k = Y(16)

i,k =
∑

m

H(16,16)
i,km X(16)

m (2.101)

where the H(16,16) matrix is obtained by a little bit lengthy but straightforward cal-
culation by expliciting the renumbering of the elements of X and Ti(X). Then the
sum of the squares of the 16 matrix elements appearing in (2.100) for the sample i
can be rewritten as

∣∣∣Y(16)
i

∣∣∣
2 =

[
X(16)

i

]T [
H(16,16)

i

]T
H(16,16)

i X(16)
i =

[
X(16)

]T
Ki X(16) (2.102)

where the 16×16 matrix Ki = HT
i Hi is symmetrical and semi-definite positive, i.e.

its eigenvalues are all positive or zero. Clearly, if Eq. (2.100) were “exact” (i.e. the
matrices Ci had no errors) the � vector � W(16) must be an eigenvector associated
with a zero eigenvalue of the K matrix associated with this sample. If we now define
a matrix Ktot as

Ktot =
∑

i

Ki (2.103)

again W(16) will be an eigenvector associated with a zero eigenvalue. In fact, the
quantity tX(16)KtotX(16) is nothing else but the sum of the squares of the 16 N matrix
elements of the Ti(X) appearing in (2.100) for all samples.

As all the eigenvalues of the Ki matrices are positive or zero, when the number
of samples included in the procedure (and so the number of Ki matrices in the sum
(2.103)) is sufficient, then Ktot will have only one eigenvector W(16) associated with
a zero eigenvalue, which then determines the W matrix unambiguously.

Again, we point out once more than due to the experimental errors affecting the
matrices Ci, none of the eigenvalues of the actual K matrix is exactly zero. However, if
the intensity measurements are reasonably accurate (and if the samples are sufficient
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to (over)determine the system) then one eigenvalue of K will be found to be much
smaller than the 15 others. In the following, we assume that the eigenvalues of K
are sorted in decreasing order, from the largest (λ1) to the smallest (and theoretically
vanishing) λ16.

The choice of sets of optimal reference samples. In addition to constitute a very
efficient tool to find W (if the Mi are known), the above formalism also provides
a simple criterion to optimize the choice of the reference samples. Our goal is to
determine as precisely as possible the eigenvector of K associated with the smallest
eigenvalue (λ16). It is reasonable to assume that, the larger the other eigenvalues,
the more the eigenvector W(16) will be “isolated” from the others and thus well
determined (or, if the take the argument in the other way around, if λ15 is very small,
then the two smallest eigenvalues are almost degenerate and W(16) will be difficult
to distinguish from the eigenvector associated to λ15).

In summary, the best sets of calibration samples are those for which λ15 is largest,
or, equivalently, those for which the ratio R = λ15

λ1
is largest. As we will see in the

following, to be characterized during the calibration procedure, these samples must
also linear dichroic retarders set at various azimuths, with Mueller matrices of the
form:

M(τ,�,�, φ) = τR(−φ)

⎛
⎜⎜⎝

1 − cos 2� 0 0
− cos 2� 1 0 0

0 0 sin 2� cos� sin 2� sin�
0 0 − sin 2� sin� sin 2� cos�

⎞
⎟⎟⎠R(φ)

(2.104)
where we recognize a matrix of the form defined in (2.15), while R(φ) is matrix
describing a rotation by an angle φ around the light propagation direction within the
Stokes Mueller formalism

R(φ) =

⎛
⎜⎜⎝

1 0 0 0
0 cos(2φ) − sin(2φ) 0
0 sin(2φ) cos(2φ) 0
0 0 0 1

⎞
⎟⎟⎠ (2.105)

It turns out that the first condition (only one vanishing eigenvalue) is met with the
following set of three measurements (in addition to the measurement of B0, without
any sample):

• Polarizer set at two different azimuths φP1 and φP2. Actually, φP1 can be set equal
to zero throughout, without any loss of generality,

• Retarder with retardation angle �, set at an azimuth φD.

The ratio R = λ15
λ1

is then optimized by a (little bit lengthy) trial-and-error procedure.
A maximum Rmax = 0.1015, which seems to be a global maximum, is reached for:

φP1 φP2 � φD

0◦ 90◦ 109◦ 30.5◦
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Fig. 2.21 Variation of the
ratio R with the retarder
azimuth, for three azimuths of
the 2nd polarizer

Retarder Azimuth (degrees)

R

Fig. 2.22 Variation of the
ratio R with the retardation �
of the retarder, for three values
of its azimuth

Retardation (degrees)

R

As for the choice of PSG and PSA configuration, this optimization must be
completed by an evaluation of the �sharpness� of this maximum: a calibration
procedure characterized by a local maximum Rloc < Rmax may be more convenient
than that corresponding to Rmax, if the local maximum is much broader, as the values
of the parameters are less critical.

In the three following figures, the ratio, R is plotted against φD, �, and φP2
respectively for values close to the optimum.

The curves reproduced in Figs. 2.21, 2.22 and 2.23 clearly show that the value of
the retardation is by no means critical: this retarder must not be close to a half-wave
plate, but basically any value of � between 30◦ and 150◦ is fine. Conversely, the
angular positioning of the polarizer is more critical.

Of course, many other sets of calibration samples can be used, including at least
a polarizer and a retarder. For the latter, the acceptable retardation interval is very
broad, as seen above.

Characterization of reference samples. The basic idea is to use the very
special form of the M(τi, �i,�I, φi)matrices of the calibration samples to determine
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Fig. 2.23 Variation of R with
the 2nd polarizer azimuth,
for three orientations of the
retarder

Polarizer Azimuth (degrees)

R

these matrices during the calibration procedure itself. A key in this respect is that
the eigenvalues of these matrices are independent of φ. Two of them are real and the
other two are complex conjugates:

λR1 = 2τ cos2�, λR2 = 2τ sin2�, λC±− = τ sin(2�)exp[±i�] (2.106)

Now, (2.98) shows that the experimentally available matrix Ci and Mi have the
same eigenvalues, from which we can determine all the parameters of Mi, except the
azimuth, by inverting (2.106)

τ = 1

2
(λR1 + λR2) , cos(2�) = λR1 − λR2

λR1 + λR2
(2.107)

sin(2�) cos� = λC+ + λC−
λR1 + λR2

, sin(2�) sin� = −i
λC+ + λC−
λR1 + λR2

(2.108)

Moreover, these eigenvalues must obey the simple criterion:

λR1λR2

λC+λC−
= 1 (2.109)

which provides a simple test of the quality of the measurements involved in the
determination of Ci.

At this point, the azimuthsφi can be determined from the spectrum of the matrix K.
If we use a polarizer set at two different azimuths (one of which is zero by definition,
and the other, φP2, is close to 90◦) and a retarder set at φD ∼30◦ the matrix K
can be calculated with φP2 and φD “injected” into the Mi as variable parameters.
Then, the system (2.99) has a solution, and l16 will tend to zero if, and only if, these
parameters take the values corresponding to the actual azimuths of the elements
during the measurements. Thus, these azimuths can be determined by minimizing
the ratio λ16/λ15. A typical example of such a search is shown in Fig. 2.24. The
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Fig. 2.24 Typical result of the
determination of the azimuths
of the calibration samples by
minimizing Z = λ16/λ15

Polarizer Azimuth θP2 (degrees)

minimum is quite sharp, allowing a determination of the angles φP2 and φD with
accuracies of the order of 0.1◦.

Once W has been determined, the matrix A is readily obtained by inverting (2.96):

A = B0W−1 (2.110)

2.6.4.2 Calibration of Mueller Ellipsometers in Reflection

We consider now cases where the vacuum cannot be measured, but an object (say a
sample holder) with a matrix M0 (a priori unknown) is necessarily placed between
the PSG and the PSA. Then the PSG and the PSA have to be calibrated separately.
In a first (common) step, the holder is measured alone, yielding

B0 = A M0W (2.111)

Then the calibration samples are inserted in the input arm, between the PSG and the
sample holder. The corresponding raw data matrices now write

Bi = A M0 Mi W (2.112)

From which we calculate the products

Ci = B−1
0 Bi = W−1MiW (2.113)

And the matrix W is then determined in the same way as described previously. Then
the calibration elements are inserted in the output arm, between the holder and the
PSA, to measure
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B′
i = A Mi M0 W (2.114)

And then calculate

C′
i = B′

i B−1
0 = A−1 Mi A (2.115)

And the same procedure now provides A. There is no need to know M0 this matrix
can even be measured once both A and W, are calibrated, the only requirement about
this matrix is that it should be reasonably well conditioned to allow a safe inversion
of B0.

2.6.4.3 Summary: Practical Implementation

We now summarize how the method is used in practice. The essential steps appear in
a different order with respect to the previous (hopefully pedagogical !) presentation:

1. Choice of the set of calibration samples. Of course this choice is made once
and for all, and may be dictated not only by the criteria shown above, but also by
practical considerations about the availability of the components, and the space
they need to be inserted. As we already mentioned, there are many possibilities
with combinations of polarizers and retarders, the latter being really uncritical.
The main issue to keep in mind is that these components should be “ideal” in the
sense that they should not depolarize, for example. As a result, these components
must feature wide enough spectral, angular or spatial acceptances, depending on
the type of instrument.

2. Measurement of B0. This is the first step of the procedure, but if the instrument
is operated in transmission (or equivalently, in reflection under normal or quasi-
normal incidence) this measurement may also be used for another purpose, namely
the minimization of the condition numbers of A and W, if needed, for example
by optimizing the driving voltages of NLCs (this step too is made once and for
all for a given configuration): as B0 = AW, the lower the condition numbers of
A and W, the lower that of B0. As a simple measurement of B0 is much faster
than a complete calibration, the multi-parameter optimization using this criterion
is also much more efficient, even though at the end a full calibration is needed to
evaluate separately c(A) and c(W)!

3. Measurement of the Bi, calculation of the, Ci, matrices and of their eigen-
values. This step offers very interesting possibilities to check that the system is
working properly. Actually, the eigenvalues of the matrices Ci should be of the
form

a. (τ, 0, 0, 0) for polarizers,
b. (λR1, λR2, λC, λ∗

C) for the retarders, and these eigenvalues should verify
(2.107)

c. For any given component, the eigenvalues of its C matrix should be invariant
when the component is rotated (even though the B matrix changes wildly !)
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Let us emphasize that these criteria are pretty robust, as they do not involve in
any way the (still unknown A and W matrices) but are based on two conditions
which are mandatory for a good operation of the instrument:

• the intensity measurements are linear.
• the components, in their current use, can be considered as “good” linear

dichroic retarders.

It is a very strong point of the method to offer the possibility to check these issues
in a very robust way.

4. The K matrix is evaluated as a function of the unknown azimuths of (n − 1)
calibration samples (in the example showed above, these parameters were θP2
and θD) and the ratio Z = λ16/λ15 must be minimized to determine the actual
values of these parameters,

5. W is determined as the eigenvector associated to λ16.
6. A is determined either from W and B0 (in transmission) or by repeating the

procedure with the calibration samples in the exit arm.

Though this procedure may seem quite complex, once it is implemented it is very easy
to use and provides accurate results even for systems which would be impossible to
model correctly such as the ellipsometer based on FLCs described in Sect. 2.6.3.2. As
a matter of fact, by using this calibration method, full Mueller ellipsometry becomes
easier to implement than more limited techniques with traditional calibration pro-
cedures !

2.6.5 Examples of Complete Mueller Ellipsometers
Developed at LPICM

2.6.5.1 Broad Band Spectroscopic Mueller Ellipsometer
with Fresnel Rhombs

The motivation to develop a broadband Mueller ellipsometer was to perform com-
plete Mueller matrix measurements in a wide spectral range. Two examples of inter-
esting wide spectral ranges are the vacuum-ultraviolet (130 nm) to the mid infrared
(7000 nm), or the visible to mid-long infrared (500–18000 nm). Vacuum-ultraviolet
and infrared ranges have particular advantages. Infrared, features enhanced sensi-
tivity to the sample chemical compositions due to molecular vibrations and phonon
absorptions. Moreover, free carrier absorption in the infrared can be useful to study
the dopant concentrations or electrical mobilities. On the other hand, the shortness
of the vacuum-ultraviolet wavelengths make this range ideal to measure the thick-
ness of very thin films (down to a few nm). In addition, the enhanced sensitivity of
vacuum-ultraviolet to small defects and structures in the surface of samples is used
for optical metrology and surface state quality control.

To date, several systems have been shown which are able to work in the vacuum
ultraviolet [55–57], the infrared [33, 58–63], or even the terahertz [64–66] spectral
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ranges. However, almost none of them can perform complete Mueller matrix mea-
surements in a wide spectral range because they are either standard (incomplete)
ellipsometers, or they are designed to work in a relative narrow spectral range. We
developed a broadband Mueller ellipsometer to fill this lack of full polarimetric
solutions.

Two main parameters actually determine the performances of a broadband system,
namely the transparency and the dispersion properties of the optical components used
to build it. Polarizers, based either on prisms or grids, can be used over broad spectral
range, with quasi-achromatic properties. For instance, magnesium fluoride (MgF2)

used in prism polarizers is transparent from 0.12 to 7μm and ZnSe, used for grid
polarizers, transmits from 0.6 to 21μm.

In contrast, issues appear with retarder. Liquid crystals are limited to a relative
narrow spectral band covering the visible and the near infrared. These materials
strongly absorb in the mid-infrared and may be irreversibly damaged by ultravio-
let light. Moreover, liquid crystals show a strong dispersion of retardance at short
wavelengths. Similar issues related with either absorption or dispersion appear when
other optical components such Kerr optical rotators, photoelastic modulators, or
wave-plate compensators are considered. We decided to use retardation induced by
total internal reflection in prisms because it is almost non dispersive [67]. Limitations
are only induced by the transmission of the prisms.

In accordance to these general principles we developed a prototype which is
optimized to work in the mid-infrared spectral range, from 2 to 14μm. A func-
tional scheme of the prototype optical assembly is represented in the Fig. 2.25a. The
instrument is represented in a reflection configuration even though measurements in
transmission are also possible. The Mueller ellipsometer consists of an input arm,
a sample holder, an exit arm and an acquisition system. The input arm includes a
light source, a PSG and a retractable sample-holder for calibration samples. The exit
arm includes a second retractable sample-holder for calibration samples, a PSA and
a detection platform which can contain one or multiple detectors. The illumination
source consists of a commercial conventional FTIR interferometer providing an col-
limated beam. The PSG is of the type described in Sect. 2.6.3.2, with a fixed grid
type linear polarizer, and an V-shaped achromatic retarder. The retarder is mounted
on a motorized rotating platform that allows it to be rotated at four consecutive ori-
entations following a predetermined sequence. Both the polarizer and the V-shaped
retarder are made on ZnSe. The PSA is identical to the PSG as discussed above.

As shown in Fig. 2.25 it is possible to design the optical assembly either to min-
imize either the spot size or the divergence of the beam arriving to the sample.
In the focused configuration (Fig. 2.25c), the spot size can be reduced to around
300μm. This configuration is ideal to measure small or inhomogeneous samples. If
a motorized X–Y table is used to move the sample, it is possible to record mappings
of the sample with a good lateral resolution. In the collimated beam configuration
(Fig. 2.25b), the divergence of the beam can be reduced to values of the order of
several milliradians. This configuration is ideal for measuring strongly anisotropic
samples such diffraction gratings or photonic structures. In this configuration, the
spot size is about 0.7 mm. In this configuration, it is advisable to use an automatic
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(a)

(b)

(c)

Fig. 2.25 a Functional schema of the Mueller ellipsometer. It includes a FTIR interferometer (5)
a PSG (6) and a PSA (10). The PSG includes a linear polarizer (13) and the V-shaped retarder
(21). The same elements can be found in the PSA. The detection signal (12) and the motors which
control the orientation of the V-shaped retarders are controlled with a computer (4). b Schematic
representation of the optical chain to create a collimated beam incident on the sample. c Idem to
create a focused spot size on the sample

theta table as sample-holder to make measurements as a function of the azimuthal
angle.
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2.6.5.2 Spectroscopic Mueller Ellipsometer with Ferroelectric
Liquid Crystals

Liquid crystal modulation Mueller ellipsometers use liquid crystal variable retarders
to modulate the polarization without any mechanical rotation. The first prototype
was built in 2003 and presented to the 3rd International Conference of Spectroscopic
Ellipsometry held in Vienna [68]. After the encouraging preliminary results, the
system was patented [69], and the first commercial system appeared in 2005 under the
name of MM16. Since then, the product has been developed and new versions are now
in the market. For instance, a particular implementation adapted to the measurement
of small samples, commercialized under the name of AutoSE has been launched
in 2008. The latest version, called SmartSE, combine spectroscopic with imaging
capabilities. The spectral range, initially limited to the visible (450–850 nm), has
been widened to the near IR (450–1000 nm). The working spectral range of liquid
crystal based polarimeters is determined by the transparency of the liquid crystal
devices. In the short wavelength range, UV radiation must be avoided because it may
induce chemical modifications or even destroy the liquid crystals which are made
of delicate organic molecules [70]. In the long wavelength range, the near infrared,
the limits are due to the thin conducting oxides that are deposited on the windows of
the liquid crystal devices that allow the electrical control the orientation of the liquid
crystals. The conducting oxides have a high concentration of free charge carriers
which absorbs very efficiently the near infrared (>1500 nm) making the devices to
become opaque. This range matches quite well that defined in Sect. 2.6.3.4 from the
criterion c(W), c(A) > 4, and is also very well suited for the use of standard CCDs.

The optomechanical design of the instrument is shown in Fig. 2.26. The illu-
mination beam comes from a halogen lamp, goes through the PSG, interacts with
the sample and traverses the PSA before entering a spectrometer operating in the
visible and fitted with a CCD array. For practical purposes, the PSG and the PSA
were mounted on an automatic goniometer allowing to vary the angles of incidence
and detection from 40◦ to 90◦ in steps of 0.01, and to operate the ellipsometer in

FLC3

PSG

PSA
Disp.

Grating

CCD

FLC1
QWP

FLC2

QWP
FLC4

Polarizer

Polarizer

Lamp

Fig. 2.26 Left schematic representation of the general set-up of a Mueller ellipsometer mounted
in reflection configuration, showing the PSG the sample and the PSA. Right schema of the optical
configuration of the PSG. The PSA is identical to the PSG. Pictures taken from [68] with the
authorization of the authors and the publisher
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reflection and in transmission modes. The sample holder was mounted on an auto-
mated theta table which allows rotation of the sample about a vertical axis. As shown
below, this azimuthal movement is interesting to characterize anisotropic samples
and diffracting structures.

With this setup, full Mueller spectra in the whole spectral range could be taken in
seconds or less, depending on the sample reflectivity. Moreover, most users are essen-
tially interested in classical ellipsometry, for which the accuracy must be comparable
to that of other, very mature, instruments. Actually, normalized Mueller matrix spec-
tra are retrieved with typical accuracies of a few 10−3 % a clear demonstration of the
efficiency of the optimization and calibration procedures described earlier.

2.6.5.3 Imaging Mueller Ellipsometer with Nematic Liquid Crystals
for Macroscopic Samples

We now describe an imaging ellipsometer for macroscopic samples (up to 4 cm in
size) using PSG and PSA based on nematic liquid crystal variable retarders, previ-
ously described in Sect. 2.6.3.3. This approach seemed indeed the most appropriate
for an instrument used to image static samples, as the acquisition time (of the order of
10 s) was not an issue while the condition numbers of W and A could be minimized
for each chosen wavelength. Actually, this instrument was installed in 2009 in the
Pathology Department of Institut Mutualiste Montsouris hospital in Paris, and has
been used to image dozens of samples such as those briefly presented in Sect. 2.7.4.

A schematic view of the optical assembly is represented in Fig. 2.27. The illu-
mination part of the set-up comprises a halogen lamp (Olympus CLH-SC 150 W),
a fiber bundle with its output at the focus of an aspherical condenser (Newport
KPA046, f 1 = 37 mm) followed by an achromatic lens (Edmund Optics NT- 32-
886, f 2 = 150 mm) whose focal point F coincides with the condenser’s one. This
combination is both telecentric in the object and images the fiber output onto the PSG.
As all points of the NLCs are illuminated with the same angular aperture (defined
by the aperture stop), the polarization generated by the liquid crystals is spatially
uniform in spite of the angle-dependency of the liquid crystal retardation. Finally, a
third lens images the PSG on the sample plane, illuminating a 5 cm diameter zone
with very uniform intensity and polarization throughout.

The sample was imaged on a fast CCD camera (Dalsa CAD1, 256 × 256 pixels,
12 bits) by means of a 12.5 − 75 mm zoom with an additional 500 mm close-up lens
to “reject” the sample image at infinity, in order to use the zoom. This arrangement
allowed an efficient rejection of any stray light. The wavelengths could be chosen
between 400 and 700 nm in 50 nm steps by means of interference filters with 20 nm
bandwidth placed before the close-up lens.

The PSG and PSA were built according to the optimized design defined in
Sect. 2.6.3.3, [71] with a dichroic linear polarizer (Melles Griot, 03 FPG 007) fol-
lowed by two nematic LCVRs (Meadowlark LVR 300). The four NLCs of the PSG
and PSA were sequentially switched with frequencies in ratios 1, 2, 4 and 8 to gener-
ate the 16 needed polarization states. The dark current, which depended on the room
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Fig. 2.27 Scheme of the
imaging Mueller ellipsometer
in reflection

temperature was measured frequently and subtracted from the signal for each pixel.
A satisfactory signal-to-noise ratio was achieved by typically averaging 7 images for
each state of polarization. A complete set of 16 averaged raw images was taken in
about 11 s.

Typically, the reciprocal condition number of the PSG and the PSA were of the
order of 0.45, thus quite close to the theoretical maximum of 0.57. The polarimetric
accuracy, evaluated with a polarizer and a retardation plate set a various azimuths
in either the illumination or the detection arm, was of the order of 3 % (maximum
errors), which turned out to be more than sufficient for polarimetric imaging of
surgical samples. However, a “run” of improvement of this instrument is planned for
the near future.

Impact of the choice of the reference frame basis. With instruments operating
in reflection at, or close to, normal incidence, special attention has to be paid to the
definition of the (s, p) and (s′, p′) bases for incident and emerging beams, whose
directions of propagation are defined by the vectors z and z′ respectively. Far from
normal incidence, the most natural (and the most widespread !) choice is that shown,
for instance, on Fig. 2.11: s = s′ and both p and p′ have positive components on the
outgoing surface normal. By doing so, the 3D bases (p, s, z) and (p′, s′, z′), are both
right handed. If this choice is maintained up to normal incidence, the result is:

(p′, s′, z′)+ = (−p, s,−z) (2.116)
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with this (usual) convention the Mueller matrix M+
m of a mirror under normal inci-

dence is

M+
m =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0′ −1

⎞
⎟⎟⎠ (2.117)

The other possible choice for the emerging beam is to take the same basis (s, p) for
both directions of propagation:

(p′, s′, z′)− = (p, s,−z) (2.118)

Of course, in this case the (p′, s′, z′)− is no longer right-handed. But then the Mueller
matrix M−

m of a mirror under normal incidence is simply the unit matrix. More
generally, if M+ is the Mueller matrix of a system in the usual (+) convention, then
the Mueller matrix M− of the same system in the other convention is obtained by
changing the sign of the lower two lines.

As we will see in the following, many samples of interest for us behave as diagonal
depolarizers, with M22 = −M33 with the usual (+) convention and M22 = M33 with
the other choice. Obviously, it is much easier to visually check this relationship if
the elements to be compared are supposed to be equal rather than opposite ! We thus
decide to keep the “unusual” choice for the calibration of the imagers operating in
reflection.

2.6.5.4 Imaging Mueller Ellipsometer with Nematic LCs Coupled
to a Microscope

This instrument can be seen as the ultimate development of the well-known polarized
microscopy, as the polarimetric characterization of the sample is complete, in contrast
with the usual setups with crossed linear polarizers or left and right circular polarizers.
An overall view of the imaging polarimeter [72, 73] is shown in Fig. 2.28.

A microscope objective (Nikon Plan Achromat 100×) with a high numerical
aperture (0.90) is illuminated by a halogen source via a fiber bundle followed by an
input arm comprising, among other elements:

• An aperture diaphragm 1, which is imaged on the objective back focal plane
(BFP), and is used to define the angular distribution of the light incident on the
sample,

• A field diaphragm 2, imaged on the sample, which allows to define the size of the
illuminated area on the sample.

• The PSG 3, to modulate the incident polarization,
• A nonpolarizing beamsplitter, with approximately 50 % transmission and reflec-

tion coefficients, to steer the beam onto the microscope.
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Fig. 2.28 Schematic representation of the imaging/conoscopic Mueller polarimeter

On the detection side, we find

• The beamsplitter again, working this time in transmission,
• The PSA 4 to analyse the emerging polarization,
• A set of two lenses which image the objective back focal plane onto a two dimen-

sional imaging detector,
• A “retractable” lens which can be inserted in the beam path to image the sample

instead of the objective back focal plane,
• An aperture mask 5 can be set in a plane conjugated with the objective BFP,

typically to eliminate some strong contributions in order to see weaker ones, or to
select the visualized diffraction orders if the sample is a grating.

• An interferential filter, typically quite narrow for metrological applications.
• The camera, a backthinned and cooled 512 × 512 pixel CCD from Hamamatsu.

The PSG and PSA operating in this setup are essentially the same as those used
in the macroscopic imagers, though of smaller size. This choice was driven by the
same considerations as for the macroscopic imager: the samples were static, and we
considered it was important to be able to minimize the condition numbers at each
wavelength [68, 74].

The angular distribution and the spot size characterizing the beam incident onto
the sample can be adjusted independently of each other (at least as long as the
illumination beam is far from being diffraction limited, a condition which is always
fulfilled in practice with the classical light sources such as the one we use).

The two modes of operation of the microscope are illustrated on Fig. 2.29. The
left panel shows the real space image of image of a grating, and the reciprocal space
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Fig. 2.29 Left Real-Fourier space images of a grating. Right Angular coordinates in the Fourier
space (maximum aperture 62◦). Images taken from Ref. [72] with the permission of Willey Science

image obtained with a slit as an aperture diaphragm and the grating as the sample:
due to the presence of the slit, the angular distribution of the incident light is almost
1D, which is then diffracted in orders 0 (central line) and + − 1 (lateral images).

The right panel of Fig. 2.29 shows how the angular distribution of the light coming
from the sample is actually mapped on the objective back focal plane. Due to Abbe’s
sine condition [4] a parallel beam emerging from the sample with a polar angle θ and
an azimuth φ is focussed in the back focal plane on a point with radial coordinates
(f sinθ , φ), where f is the objective focal length. Of course, while all the azimuths
between 0◦ and 360◦ are mapped, the polar angles θ are limited by the numerical
aperture of the objective. In our case the nominal values are sin θmax = 0.90 and
θmax = 65◦. In practice, it is difficult to achieve the full angular range. The radial
coordinate is calibrated on the images by using diffraction patterns obtained with
gratings with known pitches, such as the pattern shown in the left panel of Fig. 2.29,
and our images are limited to about 60◦.

Imaging in reciprocal space may constitute an interesting alternative to the more
conventional approach of goniometric ellipsometry/polarimetry if angularly resolved
data are to be acquired. Measurements along the polar angle at a fixed azimuthal angle
of an image are equivalent to measurements taken at different angles of incidence
on a non-imaging system. Accordingly, measurements recorded at a fixed polar
angle and along the azimuthal direction on an image are equivalent to measurements
taken rotating the sample holder in a non-imaging ellipsometer. With respect to
simple conoscopy through crossed polarizers, full polarimetric conoscopy can be
very useful to characterize anisotropic materials, as it provides angularly resolved
maps of retardation (and diattenuation, if present) which significantly constrains the
values of the dielectric tensor from easy and fast measurements [75] Moreover, under
a powerful microscope objective, the spot size can easily be reduced to 10 μm or less,
a possibility which can be very useful for some metrological applications, and more
particularly in microelectronics, as we will see in Sect. 7.3. Obviously, so small spots
sizes are much more difficult to obtain with the usual ellipsometric setups involving
narrow beams with low numerical apertures.

As an example of Mueller images in the Fourier space we show in left panel of
Fig. 2.30 the data taken on a silica thick plate. At first sight the observed patterns
may seem surprising for an isotropic sample. In fact, the isotropy is “broken” by

http://dx.doi.org/10.1007/978-3-642-33956-1_7
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Fig. 2.30 Left raw Mueller images in the reciprocal space of a thick plate of silica. The basis vectors
for the definition of polarisaton are vertical and horizontal all over the image. Right, top maps of
angularly resolved� and� derived from the Lu–Chipman decomposition of the data shown in the
left panel. Right bottom corresponding simulations

the choice of the basis used to define the polarization, and which is uniform all over
the image with one vector horizontal and the other vertical. Obviously, these are
not the usual (p, s) vectors defined with respect of the incidence plane, and which
would be oriented radially in each point of the image.

If the Lu–Chipman decomposition is applied to the raw image at the left of
Fig. 2.30 we obtain essentially zero depolarization, and the angularly resolved values
of � and � shown in the right panel (top), together with the corresponding simula-
tions (bottom). As expected, once � and � are plot according to the conventional
(s,p) coordinate system, both parameters display an almost perfect radial symmetry.
Moreover � remains at zero, and then “jumps” to 180◦ at the Brewster incidence,
while � starts at 45◦ at the image center, and then decreases in agreement with the
theory (the jump from red to light yellow indicates that the plotted value went below
the minimum of the scale, here 15◦).

These results clearly show that this technique may be very powerful. We give
in Sect. 2.7.3 an example of application for the metrology of sub-wavelength grat-
ings. However, it would be extremely difficult to “push” the accuracy of such
measurements to the levels reached by usual, non-imaging ellipsometers. The
main reason for this is that the objectives used in Fourier configuration may
introduce some polarimetric artifacts which cannot be taken into account by the
ECM method, as the system must be calibrated with the objective removed [72].
Moreover, even strain free objectives are extremely sensitive to mechanical con-
straints, and the resulting artifacts would probably evolve in time. In spite of
these limitations in accuracy, Mueller microscopes (operating here in reflection,
but transmission may be used too) are likely to open new research topics in many
areas.
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2.7 Examples of Applications of Mueller Ellipsometry

One of the interest of using Mueller ellipsometers is to access the whole Mueller
matrix in a single measurement configuration to characterize samples with a com-
plex optical response such as anisotropic layers or diffracting structures. Another
interest of having broadband spectral measurements is to access different types of
properties of the solids. In the following we provide three examples showing the
performances of the above described systems to perform optical metrology of dif-
fracting structures and to characterize the optical (and electrical) properties of thin
metal films.

2.7.1 Characterization of Low Emissivity Coatings Using
Broadband Mueller Ellipsometry and Standard
Ellipsometry in Total Internal Reflection

In the first part of this chapter, it is stated that ellipsometry is an indirect technique,
here we provide an example of a common way to work with ellipsometric data from
non-depolarizing samples; i.e. the use of parameterized optical models to fit exper-
imental data. This example also illustrates the advantages of using data in a broad
spectral range and the interest of combining data from different sources and optical
configurations to optimize the amount of information that can be obtained from the
sample. In particular we show how to use optical data to study the dependence of the
electrical properties (conductivity) of thin metallic layers with their thickness. The
link between electrical and optical properties can be established because the infrared
optical response of conducting materials is dominated by the dynamics of free charge
carriers and can be written in terms of the electrical conductivity in the framework of
the Drude model. We have worked with multi-layer stacks of aluminum doped zinc
oxide, ZnO:Al, and silver, Ag, with the structure ZnO:Al/Ag/ZnO:Al. Silver layer
thickness changed from sample to sample in the range from 8 to 50 nm, while the
thickness of the ZnO:Al layers was kept constant (≈20 nm). ZnO:Al and Ag layers
were deposited by magnetron sputtering. In the following we present a summary of
a detailed study made on the set of samples. More information about measurements,
parameterization of the dielectric function of the materials present in the samples,
and fitting of data can be found elsewhere [76].

The optical characterization of the samples was performed with two techniques:
spectroscopic ellipsometry and infrared reflectometry. Infrared reflectometry mea-
surements were taken with a commercial (Bruker) FTIR Spectrophotometer in the
spectral range from 4 to 30μm. Spectroscopic ellipsometry measurements in the
ultraviolet to the near-infrared (270–1600 nm) were performed with a commercial
phase-modulated ellipsometer UVISEL (HORIBA Jobin-Yvon). Mueller ellipsomet-
ric data in the mid-infrared were measured with the Mueller ellipsometer described
in Sect. 2.6.5.1 The angle of incidence was the same, 68.5◦, for the UVISEL and
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Fig. 2.31 Left sketch of the ZnO:Al/Ag/ZnO:Al stack on a glass substrate. Right sketch of TIR
configuration used and the orientation of the sample. The prism used for TIR measurements was
cut at an angle of 57.6◦

the broadband Mueller ellipsometer in order to have continuous data. Measurements
were performed from the coated side as depicted in Fig. 2.31. Total internal reflection
ellipsometric (TIR) measurements were performed using the UVISEL spectroscopic
ellipsometer because the most prominent spectral features appear at visible frequen-
cies. The TIR measurement configuration, sketched in Fig. 2.31, consists of a BK7
prism optically matched to the substrate by an oil designed for this purpose. Measure-
ments were performed from the substrate side of samples as depicted in Fig. 2.31.

Experimental data for all samples was interpreted on the basis of a common
model of the structure which included as parameters the thickness and dielectric
functions of the three layers. The dielectric function of the substrate was considered
as well. The dielectric function of the glass at infrared frequencies was described
with a combination of four Lorentz oscillators (OS) whereas in the ultraviolet it
was represented using the Tauc-Lorentz (TL) model [3, 31, 77]. ZnO:Al showed
strong ultraviolet absorption due to interband transitions which were modeled with
a TL formula with two oscillators. Silver is a noble metal which shows a noticeable
absorption in the whole spectral region from the infrared to the ultraviolet. Above the
plasma frequency the absorption is governed by interband transitions, and below it
by intraband absorptions due to free carriers. Free carrier contribution was modeled
with the Drude expression, whereas interband transitions were modeled with TL
expression.

Glass substrate was characterized following the example given in [78]. Ellipsom-
etry and reflectometry measurements were performed on both sides of the uncoated
glass substrate. In Fig. 2.32, we provide a comparison between best-fitted data and
experimental values obtained for the glass substrate at the air side. In addition, the
values of the refractive index and absorption coefficient deduced from the best-fitted
parameters are also plotted in the same figure.

For the characterization of optical properties of ZnO:Al we worked with a sample
consisting of a glass substrate coated with a 30 nm layer of ZnO:Al. The optical
model of the sample was identical to the glass substrate with an additional layer
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Fig. 2.32 Left experimental (blue dots) and best-fitted (red lines) values for the ellipsometer angles
� and � corresponding to the air side of the glass substrate. Right best-fitted refractive index n,
and absorption coefficient k, corresponding to bulk glass (red line) and glass with tin (blue line).
Spectral range spans from the ultraviolet to the mid infrared, the wavelength axis of both figures is
represented in a logarithmic scale

representing the ZnO:Al film. In Fig. 2.33, we provide a comparison between the
best-fitted and the experimental data obtained for the ZnO:Al sample. The same
figure also shows the values of the refractive index and the absorption coefficient
deduced from the fitted data.

Unlikely to zinc oxide, it is not possible to characterize a single layer of silver
because it oxidizes quickly in contact with the air. In order to work with silver, we had
to use the complete ZnO:Al/Ag/ZnO:Al tri-layer samples. We measured the sample
having the thickest film, 50 nm. From the set of parameters characterizing the Ag
optical response, the most relevant for the purposes of the present example are only
two: the plasma frequency, ωp, and the Drude damping factor, �D. The best-fitted
value of ωp was 9.2 ± 0.2 eV and it was found to be stable from sample to sample
[76, 79]. On the contrary, the value of the Drude damping, which is the inverse of
the mean time among two collisions of electrons, was expected to strongly depend
on the thickness of the silver layers. Considering that the mean free path (MFP) of
electrons in bulk silver is about 40 nm, it is not surprising that once dimensions of
the layer become of the same order or even smaller than MFP, the interfaces of the
film as well as the microcrystalline grain boundaries, have a non-negligible impact
on the kinetics of free electrons. The fitted value for �D for the thicker layer was
about 0.038 eV, a value which is compatible with the literature.

Once the dielectric functions of the materials were known, it came the problem
of fitting the three layer system. It was found that it was not possible to fit properly
the thickness of the three layers and the Drude damping using either ellipsometric
data in external configuration alone or reflectometry data alone. The problem was the
strong numerical correlations between parameters. This limitation is due to the loss
of information contained in optical data because of the absorption of the Ag layer.
To circumvent this problem we added to our fitting procedure the measurements
performed in TIR configuration. This approach allowed to enhance the sensitivity
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angles� and� corresponding to the ZnO:Al single layer sample. Right best fitted refractive index,
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Fig. 2.34 Experimental (circles) and best-fitted (lines) � and � spectra corresponding to sam-
ples with silver thickness of 8 (blue), 16 (red) and 30 (green) nm. Left ellipsometric data in TIR
configuration. Right ellipsometric data in external configuration

of measurements and to remove most of the numerical correlations. In Fig. 2.34 we
have represented the experimental and the best-fitted ellipsometric data for three
representative samples.

The main advantage of using ellipsometer in TIR configuration is the excitation
of resonant surface plasmon waves on metal/dielectric interfaces [80–83]. When the
metallic surface is covered with thin films, the field distribution and the propagation
characteristics of plasmons are strongly influenced by the thickness and refractive
index of these layers. Contrarily to standard propagating (plane) waves, the way
surface plasmons interact with thin films is substantially non-interferometric, which
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Fig. 2.35 Spectral dependence of the values of the refraction index, n, and the absorption coefficient,
k, for each sample studied. The arrows indicate spectra corresponding to samples with increasing
silver layer thickness. Spectral range spans from the ultraviolet to the mid infrared, the wavelength
axis of both figures is represented in a logarithmic scale

explains why surface plasmons can retrieve an information which is not affected by
the same limitations as that carried by light beams in external configuration and thus,
enhance the sensitivity of ellipsometric measurements.

As expected, we observed that�D increased when the thickness dAg decreases.�D
is proportional to the collision frequency. The observed behavior of �D is explained
because when the silver layer thickness decreases, scattering of electrons at the layer
interfaces and at grain boundaries becomes non-negligible and it adds-up to the
intrinsic bulk scattering by phonons and impurities. The value of �D impacts con-
siderably the refractive index and the absorption coefficient of the Ag layer specially
at long wavelengths. As shown in Fig. 2.35, the refractive index decreases and the
absorption coefficient increases when �D increases.

In order to study the dependency of �D with the silver layer thickness, the optical
conductivity of each sample was calculated from the fitted data and compared with
the corresponding values of the measured electrical conductivity. In the framework
of the Drude theory the optical conductivity can be calculated as follows: [3]

σc,opt = ε0ω
2
p

�D
= 1

ρc,opt

According to [84, 85] the most convenient is not to represent resistivity, but the
resistivity times the thickness of the silver layer, ρcdAg, as a function of the silver
layer thickness itself. It can be shown that for metals this relation is linear. The slope
of the line is related to the intrinsic resistivity of the silver layer, ρ0, and the cut with
the y-axis gives information about the influence of the surface scattering. In Fig. 2.36
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Fig. 2.36 Left electrical (blue spots) and the optical (red spots) results in terms of the dAgρc product
as function silver layer thickness dAg. Linear regression of the experimental electrical data (blue
line) and optical data (red line) are represented together with the corresponding 95 % confidence
intervals (blue and red dotted lines). Right experimental (blue) and extrapolated (red) emissivity as
a function of the Ag layer thickness for the whole set of samples

are represented the values of the product ρcdAg obtained with optical and electrical
measurements respectively as a function of dAg.

The slope of the linear regression (also shown in the figure) corresponding to the
electrical and optical data were (2.1±0.9)μ�cm and (2.1±0.3)μ�cm respectively.
These values are slightly higher than the value for bulk monocrystalline silver at room
temperature, 1.59μ�cm, because the silver in our samples was polycrystalline. To
validate the results obtained from optical data fitting, we compared the emissivity
extrapolated from the optical model for each sample with experimental data. The
results, shown in Fig. 2.38, prove that the high accuracy of the optical model allows
to predict emissivity which matches very well with experimental data.

In summary, in this example we wanted to illustrate the way to treat ellipsomet-
ric data from non-depolarizing samples and also to show the interest of combining
data from different sources in a wide spectral range to optimize the amount of infor-
mation that can be obtained from the sample. In our particular example we have
applied a combined approach to characterize a tri-layer structure in which an Ag
layer was stacked between two ZnO:Al layers. We have used Mueller ellipsometric
data in the infrared to obtain the optical properties of Ag layers, which are respon-
sible of the thermal emissivity of the coatings. Moreover, the enhanced sensitivity
due to the penetration of surface plasmons through the tri-layer stack measured in
TIR configuration, allowed us to achieve the better accuracy for the thickness of the
layers. The validation of the method using an independent measurement (emissivity),
confirmed the accuracy of characterization achieved with ellipsometry.

This example shows how Mueller ellipsometric data in the infrared can be used
to study the dependence of the electrical properties (conductivity) of thin metallic
layers with their thickness. The link between electrical and optical properties can be
done because the infrared optical response of conducting materials is dominated by
the dynamics of free charge carriers. We have studied multi-layer stacks of aluminum
doped zinc oxide, ZnO:Al, and silver, Ag, forming the structure ZnO:Al/Ag /ZnO:Al
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with thin Ag films of following thicknesses: 8, 10, 12, 14, 16, 20, 30, and 50 nm. The
thickness of the ZnO:Al layers was kept constant (≈20 nm). ZnO:Al and Ag layers
were deposited by magnetron sputtering. In the following we present a summary of
a detailed study made on the set of samples, here we want to highlight the benefits
of having optical data in a broad spectral range.

2.7.2 Characterization of Spatially Inhomogeneous Samples
by Sum Decomposition of the Measured Mueller Matrix

This example illustrates one practical use of the sum decomposition, the retrieval
of non-depolarizing components of a depolarizing Mueller matrix. A beam which
shines two parts of a sample with different optical properties can lead to depolarizing
Mueller matrices because the two responses add-up incoherently in the detector. This
situation can easily occur when it comes to measure samples with characteristic size
comparable to the size of the probe beam. If the alignment of the sample with the
beam is not extremely accurate, a portion of the beam may fall outside of the sample,
then the combination in the detector of beam parts having fallen inside and outside
the sample causes the measured Mueller matrix to be depolarized. This example
shows how to separate the Mueller matrix of the sample from the Mueller matrix of
the surrounding substrate provided that both matrices are non-depolarizing and the
matrix of the substrate is known. The adequate decomposition to treat this simple
example is the Cloude decomposition.

The sample consisted of a one-dimensional diffraction grating etched on a pho-
toresist deposited on the surface of a silicon wafer. More details about the grating
profile and the etching procedure can be found elsewhere [86]. The size of the etched
area containing the grating was about 3 × 3 mm, large enough to contain the spot
size of the Mueller ellipsometer, 200 × 400 μm projected on the sample when the
grating was properly aligned. The etching process removed the photoresist coating
surrounding the grating, leaving exposed the surface of the bare silicon substrate.
Therefore, the measured signal could come from the substrate, from the sample or
from a mixture of both depending on the alignment of the beam. The lines of the grat-
ing were oriented at 45◦ respect to the plane of incidence to maximize the difference
between the polarimetric optical response of the grating and the surface.

As shown in Fig. 2.37, the measurement process started positioning the beam per-
fectly aligned to the center of the grating and measuring the corresponding Mueller
matrix. Then, the beam was slightly shifted from the initial position and the sam-
ple was measured again. The procedure was repeated until the entire beam spot
fell well outside the grating. The goal was to measure the depolarization of all the
measured matrices, to separate the depolarizing matrices in two components, and
to measure the relative weight of each non-depolarizing component as a function of
total shift of the beam respect to the initial position. The matrices of the initial and the
final steps corresponding to the grating and the substrate respectively, were found
to be non-depolarizing. Ellipsometric measurements were performed with a com-
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Fig. 2.37 Schematic representation of the sample and the measurement procedure. The stripped
square represents the grating whereas the white area surrounding it represents the silicon substrate.
The yellow ellipses represent the projection of the spot size on the sample surface in the initial and
the final step. A few intermediate measurement steps are represented by the dashed ellipses. Picture
taken from [86] with the authorization of the authors and the publisher

mercial liquid crystal based spectroscopic Mueller matrix ellipsometer (MM16 from
HORIBA Jobin-Yvon), operating in the visible range (450–850 nm with a spectral
step of 1.5 nm) previously described in this chapter.

The method to separate the Mueller matrix of the grating from the experimen-
tal Mueller matrix is based on the Cloude sum decomposition. This decomposi-
tion implies to work with coherence matrices given by expressions (2.43) or (2.18).
Because in this particular experience, there are two components that can contribute
to the detected signal, the grating and the substrate, the rank of the coherence matrix
Ne associated to the depolarizing measured Mueller matrix, Me, must be two (2).
It is assumed that both the substrate and the grating are non-depolarizing, thus their
respective Mueller matrices Ms, and Mg, have associated matrices Ns and Ng of rank
one. According to the experimental conditions, the normalized depolarizing Mueller
matrix Me resulting from the sum of two normalized non-depolarizing matrix com-
ponents Ms and Mg can be written in form:

Me = 1

1 + p

(
Mg + pMs) (2.119)

where the coefficient p accounts for the relative weight of the two non-depolarizing
matrices. Therefore, when Me and Ms are known, it is always possible to use find
unique real number, α, such that the rank of the matrix (Ne − α Ns) equals one
[87]. The solution of this algebraic problem can be performed numerically with an
algorithm that searches the value of parameter α by minimizing the values of three
eigenvalues associated to the matrix (Ne − α Ns). Ideally, for the matrix (Ne − α Ns)

to be of rank one, three of its four eigenvectors must be zero. Because the matrices
are experimental, they have some noise, then for practical reasons related to the
minimization routine, the noise level is numerically considered as zero. Once the
value of the parameter α is known, the normalized Mueller matrix Mg an be written
in terms of Me and Ms as:
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Fig. 2.38 Left experimental data corresponding to a normalized depolarizing Mueller matrix Me

(solid red line) and the normalized non-depolarizing Mueller matrix of the substrate Ms (dashed
blue line). The different boxes arranged in 4 × 4 arrays correspond to each one of the sixteen
elements of the normalized Mueller matrices. Right spectral values of the numerically (dash-dotted
blue line) retrieved Mueller matrices compared with the directly measured matrix of the grating
(solid black line). The dashed blue lines correspond to an alternative way to calculate the coefficient
α, not commented in this chapter. More details about the alternative method can be found in [88]
from which the figure has been reproduced with the authorization of the authors and the publisher

Mg = (1 + p)Me − pMs with p =
(

α

1 − α

)
(2.120)

Therefore, the method allows the extraction of the unknown non-depolarizing com-
ponent Mg from the original depolarizing matrix by subtracting the right proportion
of the known component Ms. The method can be further generalized to extract more
than one non-depolarizing component from the depolarizing matrix [88]. Figure 2.38
shows one of the depolarizing Mueller matrices Me and the non-depolarizing Mueller
matrix Ms. The same figure also shows the matrix Mg resulting from the decompo-
sition of matrix Me together with the experimental matrix of the grating measured
alone (first step in the measurement process). The overall correspondence between
measured and numerically reconstructed matrices is very good, which shows the
validity of the extraction procedure.

In summary, this example illustrates one of the possible uses of the Cloude
decomposition, i.e. the extraction of pure non-depolarizing matrices, which can
be in turn analyzed using ellipsometric models, from depolarizing matrices. A
method to implement the subtraction has been presented. The robustness of the
method is illustrated in an example concerning depolarizing Mueller matrices con-
taining two non-depolarizing components, a diffraction grating and a silicon substrate
respectively.
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2.7.3 Subwavelength Grating Metrology

In this section we focus on the profile reconstruction of diffraction gratings. Opti-
cal methods (also called “scatterometry”) are fast, non-destructive and may exhibit
strong sensitivity to tiny changes in grating profiles [89]. As a result, they are becom-
ing increasingly popular for process control in microelectronics industry [90]. On the
other hand, these methods are indirect, and the reconstructed profiles may depend on
the model used to fit the data (and the dielectric function of somewhat “ill-defined”
materials like resists.) Possible model inadequacies do not necessarily appear in
the goodness of fit. Parameter correlations may also constitute a serious issue, as
shown in a comprehensive study of the results of scatterometric reconstruction by
the usual techniques (normal incidence reflectometry and planar diffraction spec-
troscopic ellipsometry) of various profiles representing different technological steps
[91]. In this context, Mueller ellipsometry may constitute an interesting alternative,
provided the data are taken in conical diffraction geometries. In conical diffraction
configurations, the symmetry axes of the grating structure are neither parallel or per-
pendicular respect to the plane of incidence. Indeed, in such geometries the grating
Jones matrix is no longer diagonal (and the Mueller matrix no longer block-diagonal).
As a result, additional information is available, and may help in constraining the fit-
ting parameters. Moreover, the stability of the optimal values of these parameters
when the azimuth is varied may constitute a much better test of the model rele-
vance than goodness of fit at a single azimuth [92]. The principle of ellipsometric
measurements is sketched in Fig. 2.39. The relevant parameters characterizing the
measurement are the angle of incidence, θ, and the azimuthal angle ϕ, which is the
angle between the plane of incidence and one of the axes of symmetry of the sample.
For one-dimensional gratings, the azimuth is defined to be zero when the grooves are
aligned perpendicular to the plane of incidence. Only in the case the grooves are ori-

Fig. 2.39 Sketch of a typical
Mueller ellipsometric config-
uration to perform measure-
ments in conical diffraction
mode. The relevant angles
are the angle of incidence, θ,
and the azimuthal angle ϕ. In
the figure only the zero order
diffracted beam is represented
for simplicity reasons
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ented parallel or perpendicular to the plane of incidence the measurement geometry
is called planar diffraction.

For non-depolarizing samples, either Jones or Mueller formalisms are valid to rep-
resent the properties of the sample and Mueller matrices can be related to Jones matri-
ces with expression (2.14). This particular representation of Mueller matrices is use-
ful to discuss the symmetry properties of the Mueller matrix of a sample measured in
conical diffraction. Li demonstrated in [93] that the off-diagonal elements of the Jones
matrix are anti-symmetric for symmetric structures as a result of the electromagnetic
reciprocity theorem. Translating this condition to expression (2.14) gives a Mueller
matrix which satisfies the following symmetry M12 = M21; M14 = M41; M24 = M42
and anti-symmetry conditions: M13 = −M31; M23 = −M32; M34 = −M43.
Figure 2.40 show schematically all these relations:

When the a symmetric grating is rotated azimuthally of ±180◦ the resulting geom-
etry is equivalent to the original non-rotated one, except that the s component of the
electric field have changed its sign. In other words, “p(ϕ)” = “p(ϕ ±180)” “s(ϕ)” =
−“s(ϕ ±180)”. This transformation makes the signs of all the off-diagonal elements
of a rotated Mueller matrix to change respect to the elements of the non-rotated
matrix. In particular for a symmetric grating the following relations are always sat-
isfied:

M13(ϕ) = −M13(ϕ ±180◦) = −M31(ϕ) = M31(ϕ ±180◦);
M14(ϕ) = −M14(ϕ ±180◦) = M41(ϕ) = −M41(ϕ ±180◦);
M23(ϕ) = −M23(ϕ ±180◦) = −M32(ϕ) = M32(ϕ ±180◦); (2.121)

M24(ϕ) = −M24(ϕ ±180◦) = M42(ϕ) = −M32(ϕ ±180◦);
M34(ϕ) = −M34(ϕ ±180◦) = −M43(ϕ) = M43(ϕ ±180◦);

These symmetry relations under rotation (2.121), are not fulfilled if the grat-
ing is not perfectly symmetric. The lack of symmetry can be due the presence of
overlays or just because of imperfections of the grating profile occurred during the
fabrication process. In many practical situations, the asymmetric effects due to over-
lays are small, and may be comparable in magnitude to the measurement errors of
standard ellipsometric systems. In those cases, the fact of being able to measure a
full Mueller matrix allows to profit the redundancies of all elements of the Mueller
matrix to achieve an optimal discrimination between overlay effects and experimen-
tal measurement errors. Therefore, when only partial Mueller matrix are available,
an extra-care must be taken in order to not mix-up both effects. In the following
we show two examples of use of measurements of gratings in conical diffraction to
characterize diffraction gratings. The first example is about profile reconstruction
using spectroscopic Mueller matrices and the second example illustrates the use of
the imaging Mueller ellipsometer to characterize small overlays.
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Fig. 2.40 Top schematic representation of the Mueller matrix of a symmetric grating, showing
in black and in red the elements showing a symmetric an anti-symmetric relation respectively.
Diagonal elements are not subjected to symmetry relations. Bottom spectroscopic Mueller matrix
of a one-dimensional grating measured at two azimuths, +45◦ (red circles) and −45◦ (blue line)
and at angle of incidence of 45◦. Two types of symmetries can be seen. The off-diagonal elements
of the matrix at azimuth +45◦ have opposite sign respect to those of the matrix at −45, whereas the
rest of elements have equal sign. Moreover for every single Mueller matrix, the symmetries among
its respective elements, schematically show in the figure on top, are always respected

2.7.3.1 Profile Reconstruction by Spectroscopic Mueller Ellipsometry
at Discrete Angles

Here we will summarize the main results of a study which goal was to show the
possibility of using Mueller ellipsometry data for reconstruction (optical metrology)
of diffraction gratings profile. The sample analyzed consisted of a silicon wafer
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Fig. 2.41 Measured (dots) and fitted (lines) spectroscopic Mueller matrices for azimuthal angles
of 0◦ (blue), +30◦ (dark green), +60◦ (red) and +90◦ (light green) and incidence angle of 45◦.
Spectral range spanned from 450 to 850 nm. Images taken from Ref. [71] with the authorization of
the authors and the publisher

with a series of silicon gratings etched on it using UV beam lithography. Typical
dimensions for the gratings were: groove depths around 100 nm, line widths around
130 and 250 nm, and pitches from 500 to 1100 nm. Each individual grating was
etched in an area of 3 × 3 mm. Etched silicon gratings were chosen for this study
because of their long term dimensional stability, higher refractive index contrast and
relevance to semiconductor industry. For reference, the dimensions of the profiles
of the gratings were determined by the state of the art 3D AFM microscope. For
the sake of simplicity we show here the results corresponding to only one grating.
For more details, please refer to [94]. Experimental data was taken by an Horiba
Jobin-Yvon Mueller ellipsometer (MM16), operating in the visible (450–850 nm)
[68]. A series of measurements were taken varying the azimuth over 360◦ in steps
of 5◦. The incidence was kept constant at 45◦ to make sure the beam diameter at the
sample was small enough to safely maintain the spot within the grating. Four of the
measured spectroscopic matrices, corresponding to azimuthal angles 0, +30, +60
and 90◦, together with the corresponding fits, are shown in Fig. 2.41. The matrix
elements are normalized by the element M11, and thus they vary from −1 to 1.
The redundant information in the Mueller matrix allows to evaluate the quality of
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Fig. 2.42 Left top profile representing the trapezoidal model with the two characteristic parameters,
the CD, the thickness and the SWA. Left bottom resulting best-fitted values for the parameters CD
and thickness at different azimuths. The corresponding variations are indicated by the symbols �.
Right top profile representing the double lamella model with the four characteristic parameters.
Right bottom results of the fit of four free parameters of two lamellas model over different azimuthal
angles. Error bars in figures denote statistical errors. The maximum variation of each parameter is
indicated with the symbol�. Images taken from Ref. [94] with the authorization of the authors and
the publisher

the measured data by simple criteria such as the degree of polarization, expression
(2.19), or the symmetry of the off-diagonal elements (2.121). In the upper left corner
panel of Fig. 2.41 there is plotted the degree of polarization, which was found to
be very close to 1, indicating that no depolarization phenomenon occurs because
of the high quality of both sample and data. The blue and green spectra coincide
in the diagonal blocks, while they are opposite in the off-diagonal blocks. These
symmetries provide a robust test of the accuracy of both the measurements and the
sample azimuthal position.

The measured data were fitted by RCWA simulations [95] formulated in the
Mueller–Jones formalism [73]. The profile of the gratings was represented using
different models. For the sake of clarity here we discuss only two models. The first
model assumed the profile to be trapezoidal. In the second model the grating profile
was represented by the superposition of two rectangular lamellas. Both models are
sketched in Fig. 2.42. The trapezoidal model depends on three adjustable parameters,
the thickness, d, the CD (with) of the lines, and the trapeze angle (SWA). The second
model depends on four parameters, the CDs and the thickness of the two lamellas. The
resulting best-fitted parameters for both models are presented in Fig. 2.42. In general
both models provided fits of same quality, but the most prominent difference among
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them was the dependence of the best-fitted parameters with the azimuth angle at
which the measurements were taken. Whereas best-fitted parameters corresponding
to the model of two lamellas showed a low dependency with the azimuthal angle,
CD2 values are dispersed by less than 1.5 nm and the grating depth varies by less
than 2 nm around 108 nm, the parameters fitted with the trapezoidal model showed
strong fluctuations, 5 nm for the CD and 10 nm for the thickness. The second element
that makes the difference between both models is the correlation between fitted
parameters. A close look to the values of the CD and the thickness corresponding to
the trapezoidal model reveals that them are strongly linearly correlated. This means
that the data does not carry the information needed by the model to discriminate the
particular influence of each parameter. In contrast, regarding the bi-lamellar model
only a small correlation between the overall grating depth and the bottom lamella
depth can be observed in this figure. The low amount of correlation and dependency of
the fitted parameters with the observation conditions, show that the bi-lamellar model
represented better the profile than the trapezoidal model. The adequacy of the model
was also confirmed by comparing the obtained profile with AFM measurements.
Similar results have been obtained on all the gratings of the sample.

In summary, this example shows that Mueller ellipsometry spectra is a non-
destructive technique, with allows accurate metrology of grating profiles. Mueller
ellipsometry has the advantage of being faster and cheaper than other tests currently
used to in-line quality control in the microelectronics industry.

2.7.3.2 Overlay Characterization by Angle Resolved Mueller Imaging
Ellipsometry

The overlay is defined as the misalignment between two layers of a stack. The
influence of this error could lead to defective transistors for example if there is no
electrical contact between the different constitutive layers. This feature is more and
more challenging with the shrinking of the technology node (TN). If this overlay is
higher than a set threshold, the whole batch cannot be processed to the new step, this
results in a rework, the wafer returns to the previous lithography step and the resist
is stripped. Such in the case of grating profile optical metrology, there are several
techniques that are considered as a reference for the microelectronic industry. Those
techniques include non-optical techniques such AFM or SEM microscopy, and opti-
cal techniques based on image analysis (pattern recognition) and on scatterometry.
Image analysis also known as Advanced Image Metrology (AIM) is used in this work
as reference in order to check the quality of the results obtained by angle resolved
Mueller ellipsometry. Angle resolved scatterometry, with a high numerical aperture
microscope objective as described above [72, 96], also constitute an interesting scat-
terometric tool, as it greatly facilitates measurements in extremely tiny targets (less
than 5μm wide), an increasing requirement by semiconductor manufacturers. This
would be particularly true for overlay (default of positioning of superimposed grids at
different layers), a parameter which is becoming increasingly critical and will require
in-die dense sampling while current methods involve up to 8 standard (50μm wide)
targets to provide all the relevant information [97]. In the following we provide two
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examples, the first one illustrates the use of spectroscopic measurements, and the
second one shows the possibilities of the angle-resolved polarimeter.

It has been shown that the choice of proper azimuthal configuration for the mea-
surements with spectroscopic polarimetry is extremely important for the overlay
characterization [98, 99]. Given that the angle resolved polarimeter gives an angular
signature, it is possible to use the symmetries of the grating to enhance the sensitivity
of its angle-resolved signature. The sign of the off-diagonal blocks of the measured
Mueller matrix changes when the azimuth ϕ is changed into −ϕ. If the profile is
symmetric, the signature is invariant when ϕ − > ϕ +180◦ and also for the special
case of ϕ = 90◦ the previous two conditions can only be fulfilled if the off-diagonal
blocks are zero. A rupture of symmetry in the structure will violate the above condi-
tions and the off-diagonal blocks will take non-zero values for ϕ = 90◦. Moreover,
given that these blocks change sign upon a mirror symmetry, the information about
the sign of the overlay can be unambiguously extracted. In order to highlight the
influence of the overlay over the off-diagonal elements of the Mueller matrices the
following estimator was defined: E = |M| − |M|T where the superscript t denotes
the transposed matrix. The estimator works well either with one-dimensional or
two-dimensional gratings and for different types of overlays.

For the sake of clarity we show here a simple example. It consists of the overlay
of a one-dimensional grating. As depicted in Fig. 2.43, the overlay is the small shift
defined along the direction perpendicular to the lines of the grating. For this particular
example, overlay 25 nm, the elements of the estimator matrix E can reach the value
of 0.25 (m14 and m41), i.e. 1/8 of the total scale, which points out the high sensitivity
of this estimator.

The fact of being able to measure the full Mueller matrix is advantageous because
it provides the “full picture” of the polarization effects. From this full picture, it is
possible to optimize the overlay estimation sensitivity for a given type of sample,
by selecting a particular matrix element (or a the combination of them) from the
whole matrix. However, if a partial Mueller matrix is measured, the evident lack of
matrix elements may prevent to evaluate the optimal estimators, needed to properly
measure the overlay. For the particular sample discussed here, we choose to work
with the estimator element E14 for two reasons: The first was that E14 showed the
strongest values, thus providing the most precise results in terms of signal to noise
ratio. The second reason was related to the minimization of the impact of systematic
errors in the evaluation of the overlay. For Mueller measurements performed in the
Fourier plane at high numerical apertures, the principal source of systematic errors
came from the residual birefringence of the microscope objective used to concentrate
the light on the sample. Without entering into a detailed description of these errors,
it is worth to mention here that it was observed that the Mueller matrix elements
which were the less affected by non-idealities of the objective were M14 and M41.
Therefore the choice of the estimator element E14, which is a combination of M14
and M41, was done in order to maximize the accuracy of the measurements. In order
to check the linear relation between the values of the estimator E and the value of
the overlay, we compared the maximum value of the element E1,4 of the estimator
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Fig. 2.43 Top schematic view of the grating used in the experiences for the overlay characteriza-
tion. The overlay: 25 nm. Bottom-Left experimental angle-resolved Mueller matrix. Bottom-Right
corresponding estimator matrix E. Values taken from [100] with the authorization of the author

matrix with the overlay value obtained by AIM for set of samples. The results are
shown in Fig. 2.44.

The fitted linear regression, also shown in Fig. 2.44 is excellent. Moreover, the
figure indicates that these results can be extended to negative overlays, the sign of
the estimator becoming negative.

In conclusion, it can be said that the overlay errors can be accurately determined
provided that we are able to design an apparatus with small enough errors. For this
particular case, the magnitude of the systematic errors of the experimental matrices
were estimated to be of the order of 1 %, which was associated to an incertitude of
about 1nm in the determination of the overlay.

2.7.4 Biomedicine: Cancer Detection and Staging

The field of “optical biopsy”, i.e. the diagnosis of the status of tissues by optical
means, is currently a very active research area, with many techniques such as optical
coherence tomography (OCT), fluorescence imaging, spectral reflectivity, imaging
in coherent light (speckles), confocal imaging in vivo and many others. Polarimetric
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Fig. 2.44 Correlation between measured and AIM Y-overlay for 55 samples with different overlays.
Values taken from [100] with the authorization of the author

imaging has received comparatively much less attention, even though it has several
potential advantages for a wide use in “real world”, among which its intrinsically
low cost.

At LPICM we have been exploring this field for several years now, with particular
attention to the early detection and staging of uterine cervix cancer. For this disease,
the standard practice is as follows:

• the first “alarm” comes with anomalous Pap smear,
• then the patient is examined by a specialist with a long working distance binocular

microscope, called colposcope, to give a first diagnosis form the visual aspect
of the cervix, with and without staining by diluted acetic acid and iodine. The
colposcopist usually takes one to three biopsies to be analyzed in a pathology
department.

• If the biopsies are positive for a “precancer” state called dysplasia, the front part
of the cervix is removed (“cone biopsy”) and examined again by pathologists to
pose the final diagnosis.

Now the colposcopic visualization of uterine dysplasias is notoriously very difficult
and operator dependent. Any technique able to make this examination easier and
more reliable would be welcome, provided it is not too expensive and does not imply
too long examination times, which is the case for polarimetric imaging.

During a first clinical trial of a “polarimetric colposcope” which, however, did
not provide full Mueller measurements, we realized that the polarimetric response
of uterine cervix is much more complex than what we anticipated, and that other
samples, where tumors were much easier to see, had to be studied too to get a more
sound vision of the origin of the observed polarimetric contrasts. We thus focussed
our activity on Mueller ellipsometric imaging of ex vivo samples, mostly colons with
cancerous parts, with the instrument presented in Sect. 2.6.5.3, which was installed
at the Pathology Department of Institut Mutualiste Montsouris in Paris.
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Polyp
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Pictures

Fig. 2.45 Left ordinary (intensity) images of a colon sample with a burgeoning tumor. Right full
Mueller image of the same sample, with a 5×5 field of view corresponding to the bottom left photo

In this contribution we cannot go beyond a short presentation of a few “emblem-
atic” recent images, and a short discussion of the relevance of the technique for “real
world” applications in this field.

2.7.4.1 Colon Samples

A first example is shown in Fig. 2.45. A colon sample with a large polyp is shown in
ordinary (intensity) imaging and in full polarimetric imaging at 550 nm. The whole
tissue appears as a diagonal depolarizer, with

M22 = M33 > M44 (2.122)

as expected for a globally isotropic system observed in backscattering. Depolar-
ization is larger for circular than for linear incident polarization, indicating that
the contribution of small scatterers is dominant [101]. The key point here is that
the tumoral part, at the top right of the images, is clearly less depolarizing than the
healthy tissue.

Subsequent detailed studies [102] on similar colon samples with tumors at various
stages confirmed that this trend is observed essentially at early stages of the disease,
when tumoral cells exhibit an exophytic growth over normal tissues. At subsequent
stages, the thickness of the tumoral tissue decreases, and the underlying layers are
progressively destroyed. Then, the polarimetric responses depend on the structure of
the remain tissue. However, by suitable processing of multispectral depolarization
images, tumor staging by optical means seems possible.
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H = Healthy colon         
RC = Zone treated 
with chemotherapy

No Residual cancer

Residual Cancer

M22

5cm

M22

Fig. 2.46 Ordinary (left) and linear depolarization (right) images of samples of rectum extracted
from two different patients after treatment by RC. The “footprint” of the initial tumor is shown on
the ordinary images by white dotted lines. In the bottom images, the tissue visible in the low right
corner is the section of the colon wall and should not be considered

Besides the detection and characterization of cancers at early stages, another
important issue is the follow-up of treatment by radiochemotherapy (RC). For uterine
cervix cancers taken at late evolution stages, RC is very efficient, and in many cases
the tumor is totally “burnt” and replaced by fibrotic tissue. If so, no other treatment
is actually needed. On the other hand, if some residual tumor is present after RC,
it is mandatory to remove it surgically, even though this surgery, on fibrotic tissue,
is much more difficult and traumatic than on non-irradiated tissues. In summary it
is of paramount importance to know if residual cancer is present or not to take the
right decision. Currently residual tumors are searched in CT and PetSCAN images,
but none of these techniques is really satisfactory.

We took Mueller images of several rectum samples taken on patients operated after
RC. Figure 2.46 shows the results for two such samples, which were subsequently
analyzed by pathologists. On the ulcerated regions corresponding to the “footprint”
of the initial cancer, M22 images reveal a lower depolarization (with respect to sur-
rounding healthy tissue) when a residual tumor is present, while such contrasts are
not visible if all the tumor has been “burnt”. Of course these results are still prelim-
inary, but they have been considered encouraging enough to start a specific project
on this issue for uterine cervix.
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Fig. 2.47 Full Mueller matrix of a uterine cervix cone biopsy

2.7.4.2 Uterine Cervix Cone Biopsies

The colon and rectum samples always show polarimetric responses typical of pure
depolarizers. Obviously, to characterize such sample full Mueller polarimetry is not
needed and simpler instruments could do the job. However, this is not always so: our
clinical trial on incomplete polarimetric imaging clearly showed that in vivo uterine
cervix is optically anisotropic, a totally unexpected result for this kind of tissue.

Subsequently, full Mueller matrix imaging of unstained cone biopsies confirmed
this very surprising result. An example of such images is shown in Fig. 2.47, where
off diagonal terms are clearly quite significant. Again, a Lu–Chipman decomposition
has been performed and its result has been compared with the maps of the lesions
obtained by a careful (and time consuming !) pathology study of this cone biopsy.
The results are shown in Fig. 2.48. The scalar birefringence is a very good marker
of healthy regions. In spots where this birefringence disappears, the depolarization
power becomes the best indicator of the status of the tissue: as seen previously on
colon cancer at early stages, the dysplastic (precancerous) region at the center of the
sample is less depolarizing than healthy tissue. Another type of tissue, with an even
much lower depolarization, appears at the right bottom corner: this is not really a
lesion, and it is very easily distinguished from dysplasia.

These trends have been confirmed with many other cone biopsies. It turns out that
the birefringence is a very good marker of healthy regions, while in dysplastic parts
the depolarization power seems rather well correlated with the stage of the disease.
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Fig. 2.48 Lu–Chipman decomposition of MM matrix of the polyp shown in Fig. 2.47

2.7.4.3 Summary and Perspectives

The results briefly reported here clearly demonstrate the potential of polarimetric
imaging for optical biopsy. Though some tissues, like colon walls, behave as pure
depolarizers, in other cases the polarimetric response is too rich to be exploited by
incomplete polarimeters. Full Mueller imaging with subsequent image decomposi-
tions is mandatory, and can be implemented to be used not only on ex-vivo sample,
but also in vivo, for clinical practice. Moreover, to really optimize the reliability of
optical biopsy based on Mueller imaging, it will probably be necessary to acquire
superimposable images at various wavelengths (for example with a color CCD cou-
pled to FLCs based polarimeter) and then combine data merging and polarimetric
analysis. For such an activity to succeed, the motivation of the MDs and the quality
of the dialogue between physicists and physicians is crucial.

2.8 Conclusions

In this chapter we reviewed different aspects of Mueller ellipsometric instrumenta-
tion and data analysis in relation with standard ellipsometry showing the similarities
but also the differences among them. We reviewed the optical formalisms currently
used in the framework of standard and Mueller ellipsometry, the Jones and the Stokes
formalisms. A special attention has been paid to the description of the fundamen-
tal polarization properties. These basic properties are used as “building blocks” to
understand the optical response of any sample. We also discussed different ways
to decompose general Mueller matrices into simple matrices taking profit of their
linear algebraic properties. Mueller matrix decompositions are useful to highlight
the physical properties of complex samples, such biological tissues, which cannot
be easily modeled. Moreover, matrix decompositions are useful to filter depolariz-
ing Mueller matrices, to remove noise or to isolate non-depolarizing components
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which, in turn, can be treated with simple models. Matrix decompositions are pow-
erful tools to characterize samples, but to be applied properly they need to be carried
on full Mueller matrices, not on partial matrices. In order to further highlight the
advantages of working with full Mueller matrices, we compared the information
that can be retrieved by generalized ellipsometry and by Mueller ellipsometry. We
showed that whereas for non-depolarizing samples, both, generalized and Mueller
ellipsometry provide the same results, for depolarizing samples only Mueller ellip-
sometry is relevant. In order to disclose the technical possibilities of measuring full
Mueller matrices, we reviewed the most frequently used standard ellipsometric con-
figurations showing their characteristics including advantages and limitations. The
theory allowing the design, calibration and operation of optimal Mueller polarime-
ters have been overviewed. We have also shown four examples of complete Mueller
ellipsometers developed by us in the past years. The technical description of the
Mueller ellipsometers is accompanied by some examples of applications covering
topics related to materials science, optical metrology and biomedical imaging. We
believe that there is an important potential for the future development of Mueller
matrix-based diagnosis tools in medicine and biology. The reason for this is that
tissues and living cells show an extremely complex optical behavior, which cannot
be sufficiently characterized either by partial polarimetric systems, or by methods
neglecting polarization properties of light. We hope to have made clear to the reader
the necessity of measuring full Mueller matrices in order to properly study samples
showing either depolarization or complex anisotropic response. We also hope to have
brought clear and pedagogic information about the general methods and criteria that
may be used to build robust and accurate Mueller ellipsometers.

Acknowledgments We would like to express our deep gratitude to the editors of this book for
giving us the opportunity, (the place in terms of pages, and specially the time) that we needed to
write this chapter.

Appendix 1. Mueller Matrices of Some Common Optical
Retarders and Diattenuators

In the following we provide specific expressions for Mueller matrices corresponding
to different types of general and fundamental optical elements.

Homogeneous Elliptic Diattenuator
The following expression corresponds to the Mueller matrix of a homogeneous

elliptic diattenuator oriented with an azimuth angle θ respect to the laboratory axis.

(A1.1)
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In expression (A1.1) the angles� and� are the ellipsometric angles with its standard
meaning, and the angle δ represents the ellipticity of the eigenvalues of the elliptic
retarder.

The following Table A1.1 provides matrices representing some particular cases
of the previous general formula corresponding to ideal circular polarizers, dichroic
circular polarizers and an ideal elliptical polarizer elliptical oriented at particular
angles respect to the laboratory axis.

Table A1.1 provides matrices representing some particular cases of the previous
general formula corresponding to ideal linear polarizers and dichroic linear polarizers
oriented at particular angles respect to the laboratory axis.

The following expression corresponds to the Mueller matrix of a homogeneous
elliptic retarder oriented with an azimuth angle θ respect to the laboratory axis. The
retardance provided by the system is�. The phase difference between the two linear
components needed to build an ellipse is given by the angle ϕ.

M = τP

2

⎛
⎜⎜⎝

1 0 0 0
0 d2 − e2 − f 2 + g2 2 (de + fg) 2 (df − eg)
0 2 (de − fg) −d2 + e2 − f 2 + g2 2 (ef + dg)
0 2 (df + eg) 2 (ef − dg) −d2 − e2 + f 2 + g2

⎞
⎟⎟⎠

(A1.2)

d = cos (2θ) sin

(
�

2

)
; e = sin (2θ) sin

(
�

2

)
cos (ϕ) ;

f = sin (2θ) sin

(
�

2

)
sin (ϕ) ; g = cos

(
�

2

)

Table A1.2 provides Mueller matrices representing some particular cases of the previ-
ous general formula corresponding to circular retarders and linear retarders oriented
at particular angles respect to the x–y reference coordinate axis.

Appendix 2. Differential Matrices of Fundamental Polarimetric
Properties

In this appendix we provide a detailed expression of the differential matrices corre-
sponding to the eight fundamental polarimetric properties, written according to the
4 × 4 Stokes formalism and the 2 × 2 Jones formalism. We also provide the way to
deduce them from the original Mueller or Stokes matrices.

Mueller matrix of an homogeneous elliptic retarder
According to [26, 27] the differential matrix m of a given Mueller matrix M is a

4 × 4 matrix containing simple expressions of the fundamental polarimetric prop-
erties: isotropic refraction, ϕ isotropic absorption, α, linear birefringence along the
coordinate axis x–y, η, linear dichroism along the coordinate x–y, β, linear bire-
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fringence along the bisectors to the coordinate axis x–y, η, linear dichroism along
the bisectors to the coordinate axis x–y, γ, circular birefringence, μ, and circular
dichroism, δ. The bisectors to the coordinate axis x–y form a coordinate axes rotated
45◦ respect to the x–y. A particular choice of the x–y axis well adapted for ellip-
sometric measurements in reflection, or in transmission with tilted samples, is the
p-s axis defined respect to the plane of incidence. When light propagates along the
z direction in an anisotropic medium, which is considered as homogeneous in the x,
y directions, the transformation of the Stokes vector at a given position z, S(z) to a
Stokes vector at a given position S(z +�z) can be described by the Mueller matrix
Mz,�z. The transformation can be written according to the following expression:

S(z +�z) = Mz,�zS(z) (A2.1)

Subtraction of S(z) from both sides of expression (A2.1) leads to:

S(z +�z)− S(z) = S(z)
(
Mz,�z − I

)
(A2.2)

where I is the identity matrix. Clearly, if the latter expression is divided by �z and
then the it is extrapolated to the limiting case of�z → 0, then it is possible to obtain
the following expression relating the transformation of the Stokes vector:

dS
dz

= lim
�z→0

(
Mz,�z − I

)

�z
S(z) = mS(z) (A2.3)

The latter equation is the definition of the matrix m in the 4×4 Stokes formalism. The
derivation of expression (A2.3) is valid for either a non-depolarizing or a depolarizing
medium. The matrix m is the expression of the effect of the different optical properties
of the medium on the Stokes vector when light travels a differential distance�z. For
this reason the matrix m is called the differential propagation matrix, or simply the
differential matrix.

The relation of (A2.3) with the expression (2.52) given in the text is easily found.
The transformation of an initial Stokes vector S(0) of a beam traveling a distance z
inside a medium can be written as:

S(z) = MzS(0) (A2.4)

After differentiating the previous expression respect to z one gets:

dS
dz

= dMz

dz
S(0) (A2.5)

According to (A2.3) the latter expression can be rewritten as:

dS
dz

= mS(z) = mMzS(0) = dMz

dz
S(0) (A2.6)
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Table A2.2 Differential matrices m and n corresponding to the eight fundamental polarimetric
properties

Optical property Differential m Differential n

Isotropic refraction

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ϕ

2

(
i 0
0 i

)

Isotropic absorption

⎛
⎜⎜⎝

α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α

⎞
⎟⎟⎠ α

2

(
1 0
0 1

)

Linear birefringence along x–y

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 η

0 0 −η 0

⎞
⎟⎟⎠ η

2

(
i 0
0 −i

)

Linear dichroism along x–y

⎛
⎜⎜⎝

0 β 0 0
β 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ β

2

(
1 0
0 −1

)

Linear birefringence along bisectors of x–y

⎛
⎜⎜⎝

0 0 0 0
0 0 0 ν
0 0 0 0
0 −ν 0 0

⎞
⎟⎟⎠ −ν

2

(
0 i
i 0

)

Linear dichroism along bisectors of x–y

⎛
⎜⎜⎝

0 0 γ 0
0 0 0 0
γ 0 0 0
0 0 0 0

⎞
⎟⎟⎠ γ

2

(
0 1
1 0

)

Circular birefringence (right)

⎛
⎜⎜⎝

0 0 0 0
0 0 μ 0
0 −μ 0 0
0 0 0 0

⎞
⎟⎟⎠ −μ

2

(
0 −1
1 0

)

Circular dichroism (right)

⎛
⎜⎜⎝

0 0 0 δ
0 0 0 0
0 0 0 0
δ 0 0 0

⎞
⎟⎟⎠ δ

2

(
0 −i
i 0

)

Thus giving an analogous definition of the matrix m which is identical to (2.52):

M−1
z

dMz

dz
= m (A2.7)

An analogous procedure may be performed using Jones vectors instead of Stokes
vectors leading to the derivation of a 2×2 matrix called n. Obviously the applicability
of matrix n is restricted to non-depolarizing media.
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As an illustration, of the method to obtain the expression of the differential matri-
ces m and n, let’s consider their detailed derivation for the particular case of a
homogeneous medium along the propagation direction, of total thickness z, showing
linear birefringence characterized by the parameter η. The respective Mueller and
Jones matrices associated to this medium are:

M =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cos(ηz) sin(ηz)
0 0 − sin(ηz) cos(ηz)

⎞
⎟⎟⎠ and J =

(
ei η2 z 0

0 e−i η2 z

)
where η = 4πbirr

λ

(A2.8)
The total retardance created by the medium, commonly expressed by the ellipso-
metric angle � is given by η times the thickness z. The parameter η is the intensive
retardance, also called the differential retardance, whereas � is the extensive retar-
dance, which is proportional to the path that light has travelled inside the medium. The
differential retardance depends of the wavelength of light, λ, and the birefringence
of the medium, birr.

For a thin section of thickness �z of the material, the corresponding Jones and
Mueller matrices can be calculated expanding the terms of matrices in (A2.8) in a
Taylor series expansion respect to z and retaining only the first order terms.

M�z =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 ηz
0 0 −ηz 1

⎞
⎟⎟⎠ and J�z =

(
1 + iηz

2 0
0 1 − iηz

2

)
(A2.9)

Then according to (A2.3) after subtraction of the respective (2 × 2) and (4 × 4) unit
matrices and division by z, one gets:

m =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 η

0 0 −η 0

⎞
⎟⎟⎠ and n = η

2

(
i 0
0 −i

)
(A2.10)

The matrices (4 × 4) and (2 × 2) m and n matrices grouped in Table A2.2 the
following table are the result of applying the same procedure to each one of the eight
fundamental properties:
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j.ijleo.2008.12.030

15. S.R. Cloude, E. Pottier, IEEE Trans. GRS 34, 498 (1996)
16. S.R. Cloude, Conditions for the physical realizability of matrix operators in polarimetry. Proc.

SPIE 1166, 177–185 (1989)
17. F. Le Roy-Bréhonnet, B. Le Jeune, Utilization of Mueller matrix formalism to obtain opti-

cal targets depolarization and polarization properties. Prog. Quantum Electron. 21, 109–151
(1997). doi:10.1016/S0079-6727(97)84687-3

18. J. Morio, F. Goudail, Influence of the order of diattenuator, retarder, and polarizer in polar
decomposition of Mueller matrices. Optics. Lett. 29, 2234–2236 (2004). doi:10.1364/OL.29.
002234

19. R. Ossikovski, A. De Martino, S. Guyot, Forward and reverse product decompositions of
depolarizing Mueller matrices. Opt. Lett. 32, 689 (2007)

20. R. Ossikovski, Interpretation of nondepolarizing Mueller matrices based on singular-value
decomposition. J. Opt. Soc. Am. A 25, 473–482 (2008). doi:JOSAA.25.000473

21. R. Ossikovski, E. Garcia-Caurel, A. De Martino, Product decompositions of experimentally
determined non-depolarizing Mueller matrices. Physica status solidi C (2008). doi:10.1002/
pssc.200777794

22. R. Ossikovski, Analysis of depolarizing Mueller matrices through a symmetric decomposition.
J. Opt. Soc. Am. A 26, 1109–1118 (2009)

23. C. Fallet, A. Pierangelo, R. Ossikovski, A. De Martino, Experimental validation of the sym-
metric decomposition of Mueller matrices. Opt. Express. 18, 2832 (2009). doi:10.1364/OE.
18.000831

24. R. Ossikovski, C. Fallet, A. Pierangelo, A. De Martino, Experimental implementation and
properties of Stokes nondiagonalizable depolarizing Mueller matrices. Opt. Lett. 34, 974 (2009)

25. R. Ossikovski, M. Foldyna, C. Fallet, A. De Martino, Experimental evidence for naturally
occurring nondiagonal depolarizers. Opt. Lett. 34, 2426–2428 (2009). doi:10.1364/OL.34.
002426

26. R. Ossikovski, Differential matrix formalism for depolarizing anisotropic media. Opt. Lett. 36,
2330–2332 (2011). doi:10.1364/OL.36.002330

27. R.M.A. Azzam, Propagation of partially polarized light through anisotropic media with or
without depolarization: a differential 4 × 4 matrix calculus. J. Opt. Soc. Am. 68, 1756–1767
(1978). doi:10.1364/JOSA.68.001756

http://dx.doi.org/10.1364/JOSAA.17.000328
http://dx.doi.org/10.1364/JOSAA.18.003130
http://dx.doi.org/10.1364/JOSAA.18.003130
http://dx.doi.org/10.1364/JOSAA.11.002305
http://dx.doi.org/10.1364/JOSAA.11.002305
http://dx.doi.org/10.1080/713821732
http://dx.doi.org/10.1364/JOSAA.13.001106
http://dx.doi.org/10.1364/JOSAA.27.000808
http://dx.doi.org/10.1016/j.ijleo.2008.12.030
http://dx.doi.org/10.1016/j.ijleo.2008.12.030
http://dx.doi.org/10.1016/S0079-6727(97)84687-3
http://dx.doi.org/10.1364/OL.29.002234
http://dx.doi.org/10.1364/OL.29.002234
http://dx.doi.org/JOSAA.25.000473
http://dx.doi.org/10.1002/pssc.200777794
http://dx.doi.org/10.1002/pssc.200777794
http://dx.doi.org/10.1364/OE.18.000831
http://dx.doi.org/10.1364/OE.18.000831
http://dx.doi.org/10.1364/OL.34.002426
http://dx.doi.org/10.1364/OL.34.002426
http://dx.doi.org/10.1364/OL.36.002330
http://dx.doi.org/10.1364/JOSA.68.001756


140 E. Garcia-Caurel et al.

28. M. Anastasiadou, S. Ben-Hatit, R. Ossikovski, S. Guyot, A. De Martino, Experimental vali-
dation of the reverse polar decomposition of depolarizing Mueller matrices. J. Eur. Opt. Soc.
Rapid Publ. 2, 1–7 (2007). doi:10.2971/jeos.2007.07018

29. M. Gaillet, D. Cattelan, G. Bruno, M. Losurdo, Roadmap on industrial needs in ellipsometry
and specifications for the next generation of ellipsometry and polarimetry. NanocharM Report
2009, www.nanocharm.org

30. G.E. Jellison Jr., Data analysis for spectroscopic ellipsometry. Thin Solid Films 234, 416–422
(1993). doi:10.1016/0040-6090(93)90298-4

31. G.E. Jellison Jr., The calculation of thin film parameters from spectroscopic ellipsometry data.
Thin Solid Films 290–291, 40–45 (1996). doi:0.1016/S0040-6090(96)09009-8

32. P.S. Hauge, Recent developments in instrumentation in ellipsometry. Surf. Sci. 96, 108–140
(1980). doi:10.1016/0039-6028(80)90297-6

33. D. Thomson, B. Johs, Infrared ellipsometer/polarimeter system, method of calibration and use
thereof, US patent No: US5706212, (1998)

34. A. Laskarakis, S. Logothetidis, E. Pavlopoulou, M. Gioti, Mueller matrix spectroscopic ellip-
sometry: formulation and application. Thin Solid Films 455–456, 43–49 (2004). doi:10.1016/
j.tsf2003.11.197

35. E. Compain, S. Poirier, B. Drévillon, General and self-consistent method for the calibration
of polarization modulators, polarimeters, and Mueller-matrix ellipsometers. Appl. Opt. 38,
3490–3502 (1999). doi:10.1364/AO.38.003490

36. D.S. Sabatke, A.M. Locke, M.R. Descour, W.C. Sweatt, Figures of merit for complete Stokes
polarimeters. Proc. SPIE 4133, 75–81 (2000). doi:10.1117/12.406613

37. J.S. Tyo, Noise equalization in Stokes parameter images obtained by use of variable-retardance
polarimeters. Opt. Lett. 25, 1198–2000 (2000). doi:10.1364/OL.25.001198

38. J.S. Tyo, Design of optimal polarimeters : maximization of signal-to-noise ratio and minimiza-
tion of systematic error. Appl. Opt. 41, 619–630 (2002). doi:10.1364/AO.41.000619

39. D.S. Sabatke, M.R. Descour, E.L. Dereniak, W.C. Sweatt, S.A. Kemme, G.S. Phipps, Opti-
mization of retardance for a complete Stokes polarimeter. Opt. Lett. 25, 802 (2000). doi:10.
1364/OL.25.000802

40. J. Zallat, S. Aïnouz, M.P. Stoll, Optimal configurations for imaging polarimeters: impact of
image noise and systematic errors. J. Opt. A Pure Appl. Opt. 8, 807 (2006). doi:10.1088/1464-
4258/8/9/015

41. M.H. Smith, Optimisation of a dual-rotating-retarder Mueller matrix polarimeter. Appl. Opt.
41, 2488 (2002). doi:10.1364/AO.41.002488

42. R.W. Collins, J. Koh, Dual rotating-compensator multichannel ellipsometer: instrument design
for real-time Mueller matrix spectroscopy of surfaces and films. JOSA A. 16, 1997–2006
(1999). doi:10.1364/JOSAA.16.001997

43. E. Compain, B. Drévillon, High-frequency modulation of the four states of polarization of light
with a single phase modulator. Rev. Sci. Instrum. 69, 1574 (1998). doi:/10.1063/1.1148811

44. E. Compain, B. Drévillon, Broadband division-of-amplitude polarimeter based on uncoated
prisms. Appl. Opt. 37, 5938 (1998). doi:10.1364/AO.37.005938

45. E. Compain, B. Drévillon, J. Huc, J.Y. Parey, J.E. Bouree, Complete Mueller matrix mea-
surement with a single high frequency modulation. Thin Solid Films 313–314, 47–52 (1998).
doi:10.1016/S0040-6090(97)00767-0

46. D. Lara, C. Dainty, Double-pass axially resolved confocal Mueller matrix imaging polarimetry.
Opt. Lett. 30, 2879–2881 (2005). doi:10.1364/OL.30.002879

47. See for instance the official website of Woollam Co. www.jawoollam.com
48. G.E. Jellison, F.A. Modine, Two-modulator generalized ellipsometry: experiment and callibra-

tion. Appl. Opt. 36, 8184–8189 (1997). doi:10.1364/AO.36.008184
49. O. Arteaga, J. Freudenthal, B. Wang, B. Kahr, Mueller matrix polarimetry with four photoelastic

modulators: theory and calibration, to be published in, Applied Optics (2012)
50. A.E. Oxley, On apparatus for the production of circularly polarized light. Philos. Mag. 21,

517–532 (1911). doi:10.1080/14786440408637058
51. See for instance the official website of Meadowlark Optics, www.meadowlark.com

http://dx.doi.org/10.2971/jeos.2007.07018
www.nanocharm.org
http://dx.doi.org/10.1016/0040-6090(93)90298-4
http://dx.doi.org/0.1016/S0040-6090(96)09009-8
http://dx.doi.org/10.1016/0039-6028(80)90297-6
http://dx.doi.org/10.1016/j.tsf2003.11.197
http://dx.doi.org/10.1016/j.tsf2003.11.197
http://dx.doi.org/10.1364/AO.38.003490
http://dx.doi.org/10.1117/12.406613
http://dx.doi.org/10.1364/OL.25.001198
http://dx.doi.org/10.1364/AO.41.000619
http://dx.doi.org/10.1364/OL.25.000802
http://dx.doi.org/10.1364/OL.25.000802
http://dx.doi.org/10.1088/1464-4258/8/9/015
http://dx.doi.org/10.1088/1464-4258/8/9/015
http://dx.doi.org/10.1364/AO.41.002488
http://dx.doi.org/10.1364/JOSAA.16.001997
http://dx.doi.org//10.1063/1.1148811
http://dx.doi.org/10.1364/AO.37.005938
http://dx.doi.org/10.1016/S0040-6090(97)00767-0
http://dx.doi.org/10.1364/OL.30.002879
www.jawoollam.com
http://dx.doi.org/10.1364/AO.36.008184
http://dx.doi.org/10.1080/14786440408637058
www.meadowlark.com


2 Advanced Mueller Ellipsometry Instrumentation 141

52. J. Ladstein, F. Stabo-Eeg, E. Garcia-Caurel, M. Kildemo, Fast near-infra-red spectroscopic
Mueller matrix ellipsometer based on ferroelectric liquid crystal retarders. Physica Status Solidi
C, Special Issue: 4th International Conference on Spectroscopic Ellipsometry, 5, n/a, doi:10.
1002/pssc.200890005

53. P.A. Letnes, I.S. Nerbo, L.M.S. Ass, P.G. Ellingsen, M. Kildemo, Fast and optimal broad-
band Stokes/Mueller polarimeter design by the use of a genetic algorithm. Opt. Express 18,
23095–23103 (2010). doi:10.1364/OE.18.023095

54. D. Cattelan, E. Garcia-Caurel, A. De Martino, B. Drevillon, Device and method for taking spec-
troscopic polarimetric measurements in the visible and near-infrared ranges. Patent application
2937732, Publication number: US 2011/0205539 A1

55. T. Wagner, J.N. Hilfiker, T.E. Tiwald, C.L. Bungay, S. Zollner, Materials characterization in the
vacuum ultraviolet with variable angle spectroscopic ellipsometry. Physica Status Solidi A 188,
1553–1562 (2001). doi:10.1002/1521-396X(200112)188:4&lt;1553:AID-PSSA1553&gt;3.0.
CO;2-A

56. A. Zuber, N. Kaiser, J.L. Stehlé, Variable-angle spectroscopic ellipsometry for deep UV char-
acterization of dielectric coatings. Thin Solid Films 261, 37–43 (1995). doi:10.1016/S0040-
6090(94)06492-X

57. E. Garcia-Caurel, J.L. Moncel, F. Bos, B. Drévillon, Ultraviolet phase-modulated ellipsometer.
Revi. Sci. Instrum. 73, 4307–4312 (2002). doi:10.1063/1.1518788

58. D.H. Goldstein, Mueller matrix dual-rotating retarder polarimeter. Appl. Opt. 31, 6676–6683
(1992). doi:10.1364/AO.31.006676

59. L.L. Deibler, M.H. Smith, Measurement of the complex refractive index of isotropic materi-
als with Mueller matrix polarimetry. Appl. Opt. 40, 3659–3667 (2001). doi:10.1364/AO.40.
003659

60. A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, Berlin, 1990)
61. E.H. Korte, A. Röseler, Infrared spectroscopic ellipsometry: a tool for characterizing nanometer

layers. Analyst 123, 647–651 (1998)
62. J.N. Hilfiker, C.L. Bungay, R.A. Synowicki, T.E. Tiwald, C.M. Herzinger, B. Johs, G.K. Pribil,

J.A. Woollam, Progress in spectroscopic ellipsometry: applications from vacuum ultraviolet to
infrared. J. Vac. Sci. Technol. A 21, 1103 (2003). doi:10.1116/1.1569928

63. E. Gilli, M. Kornschober, R. Schennach, Optical arrangement and proof of concept prototype
for mid infrared variable angle spectroscopic ellipsometry. Infrared Phys. Technol. 55, 84–92
(2012). doi:10.1016/j.infrared.2011.09.006

64. T.D. Kang, E. Standard, G.L. Carr, T. Zhou, M. Kotelyanskii, A.A. Sirenko, Rotatable broad-
band retarders for far-infrared spectroscopic ellipsometry. Thin Solid Films 519, 2698–2702
(2011). doi:/10.1016/j.tsf.2010.12.057

65. C. Bernhar, J. Humlıcek, B. Keimer, Far-infrared ellipsometry using a synchrotron light source
the dielectric response of the cuprate high Tc superconductors. Thin Solid Films 455–456,
143–149 (2004). doi:10.1016/j.tsf.2004.01.002

66. T. Hofmann, C.M. Herzinger, A. Boosalis, T.E. Tiwald, J.A. Woollam, M. Schubert, Variable-
wavelength frequency-domain terahertz ellipsometry. Rev. Sci. Instrum. 81, 023101 (2010).
doi:10.1063/1.3297902

67. J.M. Bennett, A critical evaluation of rhomb-type quarterwave retarders. Appl. Opt. 9, 2123–
2129 (1970). doi:10.1364/AO.9.002123

68. E. Garcia-Caurel, A. de Martino, B. Drévillon, Spectroscopic Mueller polarimeter based on
liquid crystal devices. Thin Solid films 455–456, 120 (2003). doi:10.1016/j.tsf.2003.12.056

69. B. Drévillon, A. De Martino, Liquid crystal based polarimetric system, a process for the cal-
ibration of this polarimetric system, and a polarimetric measurement process. Patent number
US 7,196,792 (filing date 2003)

70. T. Scharf, Polarized Light in Liquid Crystals and Polymers (Willey, New Jersey, 2007)
71. A. De Martino, Y-K. Kim, E. Garcia-Caurel, B. Laude, B. Drévillon, Optimized Mueller

polarimeter with liquid crystals. Opt. Lett. 28, 619–618 (2003) doi:10.1364/OL.28.000616
72. S. Ben Hatit, M. Foldyna, A. De Martino, B. Drévillon, Angle-resolved Mueller polarimeter

using a microscope objective. Phys. Stat. Sol. (a) 205, 743 (2008). doi:10.1002/pssa.200777806

http://dx.doi.org/10.1002/pssc.200890005
http://dx.doi.org/10.1002/pssc.200890005
http://dx.doi.org/10.1364/OE.18.023095
http://dx.doi.org/10.1002/1521-396X(200112)188:4&lt;1553:AID-PSSA1553&gt;3.0.CO;2-A
http://dx.doi.org/10.1002/1521-396X(200112)188:4&lt;1553:AID-PSSA1553&gt;3.0.CO;2-A
http://dx.doi.org/10.1016/S0040-6090(94)06492-X
http://dx.doi.org/10.1016/S0040-6090(94)06492-X
http://dx.doi.org/10.1063/1.1518788
http://dx.doi.org/10.1364/AO.31.006676
http://dx.doi.org/10.1364/AO.40.003659
http://dx.doi.org/10.1364/AO.40.003659
http://dx.doi.org/10.1116/1.1569928
http://dx.doi.org/10.1016/j.infrared.2011.09.006
http://dx.doi.org//10.1016/j.tsf.2010.12.057
http://dx.doi.org/10.1016/j.tsf.2004.01.002
http://dx.doi.org/10.1063/1.3297902
http://dx.doi.org/10.1364/AO.9.002123
http://dx.doi.org/10.1016/j.tsf.2003.12.056
http://dx.doi.org/10.1364/OL.28.000616
http://dx.doi.org/10.1002/pssa.200777806


142 E. Garcia-Caurel et al.

73. A. De Martino, S. Ben Hatit, M. Foldyna, Mueller polarimetry in the back focal plane. Proc.
SPIE 6518, 65180X (2007). doi:10.1117/12.708627

74. A. De Martino, E. Garcia-Caurel, B. Laude, B. Drévillon, General methods for optimized
design and calibration of Mueller polarimeters. Thin Solid Films 455, 112–119 (2004). doi:10.
1016/j.tsf.2003.12.052

75. N.A. Beaudry, Y. Zhao, R.A. Chipman, Dielectric tensor measurement from a single Mueller
matrix image. J. Opt. Soc. Am. A 24, 814 (2007). doi:10.1364/JOSAA.24.000814

76. A. Lizana, M. Foldyna, M. Stchakovsky, B. Georges, D. Nicolas, E. Garcia-Caurel, Enhanced
sensitivity to dielectric function and thickness of absorbing thin films by combining Total
Internal Reflection Ellipsometry with Standard Ellipsometry and Reflectometry, to appear in
Journal of Physics D. Applied Physics

77. G.E. Jellison, F.A. Modine, Parameterization of the optical functions of amorphous materials
in the interband region. Appl. Phys. Lett. 69, 371–373 (1996). doi:10.1063/1.118064

78. R.A. Synowicki, B.D. Johs, A.C. Martin, Optical properties of soda-lime float glass from
spectroscopic ellipsometry. Thin Solid Films 519, 2907–2913 (2011). doi:10.1016/j.tsf.2010.
12.110

79. M. Philipp, M. Knupfer, B. Büchner, H. Gerardin, Plasmonic excitations in ZnO/Ag/ZnO
multilayer systems: insight into interface and bulk electronic properties. J. Appl. Phys. 109,
063710–063716 (2011). doi:10.1063/1.3565047

80. H. Raether, Surface Plasmons on Smoth and Rough Surfaces and on Gratings (Springer, Berlin,
1988)

81. F. Abelès, Surface electromagnetic waves ellipsometry. Surf. Sci. 56, 237–251 (1976). doi:10.
1016/0039-6028(76)90450-7

82. H. Arwin, M.K. Poksinski, K. Johansen, Total internal reflection ellipsometry: principles and
applications. Appl. Opt. 43, 3028–3036 (2004). doi:10.1364/AO.43.003028

83. T. Lopez-Rios, G. Vuye G, Use of surface plasmon excitation for determination of the thickness
and the optical constants of very thin surface layers. Surf. Sci. 81, 529–538 (1979). doi:10.
1016/0039-6028(79)90118-3

84. P. Wissmann, H.-U. Finzel, Electrical Resistivity of Thin Metal Films (Springer Tracts in
Modern, Physics, Berlin, 2007)

85. E.H. Sondheimer, The mean free path of electrons in metals. Adv. Phys. 50, 499–537 (2001).
doi:10.1080/00018730110102187

86. M. Foldyna, A. De Martino, R. Ossikovski, E. Garcia-Caurel, C. Licitra, Characterization of
grating structures by Mueller polarimetry in presence of strong depolarization due to finite spot
size and spectral resolution. Opt. Commun. 282, 735–741 (2009). doi:10.1016/j.optcom.2008.
11.036

87. J.M. Correas, P. Melero, J.J. Gil, Decomposition of Mueller matrices in pure optical media.
Mon. Sem. Mat. Garcia de Galdeano 27, 233–240 (2003). Free PDF can be downloaded www.
unizar.es/galdeano/actas_pau/PDF/233.pdf

88. M. Foldyna, E. Garcia-Caurel, R. Ossikovski, A. De Martino, J.J. Gil, Retrieval of a non-
depolarizing component of experimentally determined depolarizing Mueller matrices. Opt.
Express 17, 12794–12806 (2009). doi:10.1364/OE.17.012794

89. B.J. Rice, H. Cao, M. Grumski, J. Roberts, The limits of CD metrology. Microelectron. Eng.
83, 1023 (2006). doi:10.1063/1.2062991

90. See for example the proceedings of the conference “Advanced Lithography” available on line
at the site of the SPIE, www.spie.org

91. V. Ukraintsev, A comprehensive test of optical scatterometry readiness for 65 nm technology
production. Proc. SPIE 6152, 61521G (2006). doi:10.1117/12.657649

92. M. Foldyna, A. De Martino, D. Cattelan, F. Bogeat, C. Licitra, J. Foucher, P. Barritault, J.
Hazart, Accurate dimensional characterization of periodic structures by spectroscopic Mueller
polarimetry. Proc. SPIE 7140, 71400I (2008). doi:10.1117/12.804682

93. L. Li, Symmetries of cross-polarization diffraction. J. Opt. Soc. Am. A 17, 881–887 (2000).
doi:10.1364/JOSAA.17.000881

http://dx.doi.org/10.1117/12.708627
http://dx.doi.org/10.1016/j.tsf.2003.12.052
http://dx.doi.org/10.1016/j.tsf.2003.12.052
http://dx.doi.org/10.1364/JOSAA.24.000814
http://dx.doi.org/10.1063/1.118064
http://dx.doi.org/10.1016/j.tsf.2010.12.110
http://dx.doi.org/10.1016/j.tsf.2010.12.110
http://dx.doi.org/10.1063/1.3565047
http://dx.doi.org/10.1016/0039-6028(76)90450-7
http://dx.doi.org/10.1016/0039-6028(76)90450-7
http://dx.doi.org/10.1364/AO.43.003028
http://dx.doi.org/10.1016/0039-6028(79)90118-3
http://dx.doi.org/10.1016/0039-6028(79)90118-3
http://dx.doi.org/10.1080/00018730110102187
http://dx.doi.org/10.1016/j.optcom.2008.11.036
http://dx.doi.org/10.1016/j.optcom.2008.11.036
www.unizar.es/galdeano/actas_pau/PDF/233.pdf
www.unizar.es/galdeano/actas_pau/PDF/233.pdf
http://dx.doi.org/10.1364/OE.17.012794
http://dx.doi.org/10.1063/1.2062991
www.spie.org
http://dx.doi.org/10.1117/12.657649
http://dx.doi.org/10.1117/12.804682
http://dx.doi.org/10.1364/JOSAA.17.000881


2 Advanced Mueller Ellipsometry Instrumentation 143

94. A. De Martino, M. Foldyna, T. Novikova, D. Cattelan, P. Barritault, C. Licitra, J. Hazart, J.
Foucher, F. Bogeat, Comparison of spectroscopic Mueller polarimetry, standard scatterometry
and real space imaging techniques (SEM and 3D-AFM) for dimensional characterization of
periodic structures. SPIE Proc 6922, 69221P (2008). doi:10.1117/12.772721

95. M.G. Moharam, T.K. Gaylord, Diffraction analysis of dielectric surface-relief gratings. J. Opt.
Soc. Am. 72, 1385 (1982). doi:10.1364/JOSA.72.001385

96. R.M. Silver, B.M. Barnes, A. Heckert, R. Attota, R. Dixson, J. Jun, Angle resolved optical
metrology. Proc. SPIE 6922, 69221M.1–69221M.12 (2008). doi:10.1117/12.777131

97. P. Leray, S. Cheng, D. Kandel, M. Adel, A. Marchelli, I. Vakshtein, M. Vasconi, B. Salski,
Diffraction based overlay metrology: accuracy and performance on front end stack. Proc. SPIE
6922, (2008) doi:10.1117/12.772516

98. Y.-n. Kim, J.-s. Paek, S. Rabello, S. Lee, J. Hu, Z. Liu, Y. Hao, W. Mcgahan, Device based in-
chip critical dimension and overlay metrology. Opt. Express 17, 21336–21343 (2009). doi:10.
1364/OE.17.021336

99. T. Novikova, A. De Martino, R. Ossikovski, B. Drévillon, Metrological applications of Mueller
polarimetry in conical diffraction for overlay characterization in microelectronics. Eur. Phys.
J. Appl. Phys. 69, 63–69 (2005). doi:10.1051/epjap:2005034

100. C. Fallet, Polarimétrie de Mueller résolue angulairement et applications aux structures péri-
odiques. Ph.D. Thesis, Ecole Polytechnique, (2011). The manuscript can be freely downloaded
at http://pastel.archives-ouvertes.fr/pastel-00651738/

101. M.R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, A. De Martino,
Impact of model parameters on Monte Carlo simulations of backscattering Mueller matrix
images of colon tissue. Biomed. Opt. Express 2, 1836–1851 (2011). doi:10.1364/BOE.2.
001836

102. A. Pierangelo, A. Benali, M.R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino,
Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging. Opt. Express
19, 1582–1593 (2011). doi:10.1364/OE.19.001582

http://dx.doi.org/10.1117/12.772721
http://dx.doi.org/10.1364/JOSA.72.001385
http://dx.doi.org/10.1117/12.777131
http://dx.doi.org/10.1117/12.772516
http://dx.doi.org/10.1364/OE.17.021336
http://dx.doi.org/10.1364/OE.17.021336
http://dx.doi.org/10.1051/epjap:2005034
http://pastel.archives-ouvertes.fr/pastel-00651738/
http://dx.doi.org/10.1364/BOE.2.001836
http://dx.doi.org/10.1364/BOE.2.001836
http://dx.doi.org/10.1364/OE.19.001582


Chapter 3
Data Analysis for Nanomaterials: Effective
Medium Approximation, Its Limits and
Implementations

Josef Humlicek

Abstract We review here basic theoretical approaches to the optical response
of nanostructured materials. We use the well established framework of Effective
medium approximation (EMA) and discuss key issues of its use. The treatment of
this extensive subject is adapted to the needs of ellipsometric/polarimetric measure-
ments on nanostructured materials. In Sects. 3.1 and 3.2 we formulate the problems
and establish notation. Then, we recall and discuss, in Sects. 3.3 and 3.4, several
well-known formulae for the effective dielectric function. Sections 3.5 and 3.6 are
devoted to a fairly detailed comparison of selected measured data with results of the
EMA models. We also assess the uncertainties involved in the EMA approach by
visualizing the differences between results of its different versions (Sect. 3.7) and
by calculating the differences from exact solutions (Sect. 3.8). Finally, Sect. 3.9 is
devoted to the discussion of possible resonant behaviour of EMA mixtures.

3.1 Introduction

Contemporary materials science provides a wealth of unique materials obtained by
a fine (nanometer-sized) mixing of different components. An example of a fairly
complex artificial nanostructure is shown in Fig. 3.1. Six layers of the nanoscale
mixture of molybdenum and SiO2, separated by very thin SiO2 spacers (bright hor-
izontal lines), are placed on the oxidized silicon substrate (the bottom part showing
the segment of 100 nm of length) and capped with the topmost SiO2 layer. Differ-
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Fig. 3.1 TEM cross section of molybdenum/SiO2 multilayer nanocomposite deposited on SiO2/Si
substrate. Courtesy of Ivo Vávra, Bratislava

ent deposition conditions of the individual Mo/SiO2 layers were chosen in order to
obtain different microstructures, seen as the changing contrast pattern of the trans-
mission electron microscopy (TEM) picture. The targeted functionality of this kind
of structures might be, for example, low-frequency electric conduction and/or optical
behaviour in infrared/visible/ultraviolet range.

In general, many fundamental and functional properties of nanocomposites can be
conveniently probed using several variants of optical spectroscopy. In particular,
using polarized light in ellipsometric measurements proves to be highly efficient. The
scheme of reflection and transmission of polarized optical wave interacting with slabs
of nanostructured materials is shown in Figs. 3.2 and 3.3. The structure of Fig. 3.2
consists of thin layers extended in the (x,y) plane and stacked along the z-direction,
which is typical of contemporary epitaxial heterostructures; that of Fig. 3.3 indicates
small particles dispersed in a matrix.

Optical fields in the (meta)materials and the corresponding far-field solutions can
be, in principle, obtained from rigorous full-wave analysis. This is usually very
tedious, and the results are accompanied by a considerable volume of unwanted
information. The fine structure of the optical fields is mostly irrelevant, since only
smooth macroscopic averages are detected in actual measurements. Thus, the obvious
replacement of mixed materials with “effective medium” can provide a plausible
solution. This approach is usually termed EMA (effective medium approximation)
or EMT (effective medium theory). The concept of EMA is very old; in fact, Maxwell
included a paragraph on the electric conduction in a mixture in his famous Treatise [1].
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Fig. 3.3 Cross section of a planar ambient-film-substrate system. The film consists of nanoparticles
embedded in a matrix material

3.2 Linear Optical Response of Nanostructured Materials

Optical frequencies, ∼3 × 1011 − 3 × 1016 Hz, cover the range from far-infrared
(FIR) to vacuum-ultraviolet (VUV) spectral regions; the longest and shortest vac-
uum wavelength is about 1 mm and 10 nm, respectively. Since the atomic dimensions
are of the order of 0.1 nm, matter behaves as a continuum at the optical frequencies
and below (microwaves and radio waves). Namely, the wavelength is large enough
to prevent substantial diffraction on the atomic structure, in contrast to the shorter
wavelengths of the X-ray range. Although the discrete atomic structure of matter pro-
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duces strong spatial variations of the quantities describing optical fields, the smooth
averages at macroscopic length scales are usually detected using a light probe from
the optical range.

The nanostructured materials are mixtures of individual components, possessing
their own optical (continuum-like) behaviour. In other words, the atomic structure
of individual components enters merely a limited number of macroscopic quantities,
characteristic of the corresponding continuum. A second (sometimes called meso-
scopic) level of averaging might be useful in representing the mixture as another
continuum, with negligible diffraction on the mesoscopic structure. The possibility
to use this continuum representation is not as universal as that of bulk materials, due
to a wide range of possible sizes of the components.

The essential step in treating a mixture as a continuum consists in finding the macro-
scopic (averaged) field quantities. The actual behaviour of the mixture differs from
this approximative treatment (effective medium approximation, EMA), whenever the
structuring is not fine enough on the length scale of a single wavelength. Obviously,
the fulfilment of this condition depends on the spectral range: a mesoscopic struc-
ture with characteristic dimensions of ∼10 nm is likely to behave as a continuum in
infrared and visible, but not in ultraviolet.

Maxwell equations govern the spatial and temporal dependencies of the electromag-
netic field:

∇ × E = −∂B/∂t, ∇ × H = ∂D/∂t + j , ∇ · D = ρ, ∇ · B = 0. (3.1)

The electric and magnetic field quantities and their units in the SI system are the
following vectors: E [V/m], the electric intensity, H [A/m], the magnetic intensity,
D [As/m2], the electric displacement (flux density), B [Vs/m2], the magnetic dis-
placement (flux density), j [A/m2], the current density. The scalar ρ [As/m3] is the
charge density.

The linear response of matter to the monochromatic electromagnetic field, where
all of the quantities follow the harmonic time dependence of exp(−iωt) with the
angular frequency ω, is described by the constitutive relations for the displacements
and intensities,

D = ε(ω)ε0 E, B = μ0 H, (3.2)

where ε0 = 8.85×10−12 As/Vm is the vacuum permittivity,μ0 = 4 π×10−7 Vs/Am
the vacuum permeability, and ε(ω) the (dimensionless) relative permittivity. Alter-
natively, the induced current density j is a linear function of the electric intensity and
the proportionality factor, the conductivity σ , is simply related to the permittivity:

j = σ(ω)E, σ (ω) = −iω[ε(ω)− 1]ε0. (3.3)

The SI unit of conductivity is A/Vm = 1/�m. The linear response of Eqs. (3.2) and
(3.3) contains complex functions of frequency, ε = ε1 + iε2 and σ = σ1 + iσ2,
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reflecting possible phase shifts between the electric field and the induced polar-
ization/current at finite frequencies. The second of equations (3.3) is a simple
consequence of the indistinguishability of ∂D/∂t and j in the second of Maxwell
equation (3.1) at optical frequencies.

As usual, we use the complex permittivity as the preferred response function.
However, the complex conductivity might be more appropriate for conducting struc-
tures in IR.

3.3 Average Fields and Effective Permittivity for a Small
Contrast

A simple approach to the dielectric response of a mixture is due to Landau-Lifshitz
[2]. The mixture is assumed to be finely dispersed, representing a homogeneous and
isotropic material with respect to the macroscopic field. Its effective permittivity
relates the volume-averaged displacement and intensity,

〈D〉 = εeff〈E〉, (3.4)

where the averaging volume V has to be large enough to be representative of the
mixture, and, in optical case, small in comparison with the wavelength. Using the
averages of the intensity and permittivity,

〈E〉 = (1/V )
∫

E(r)dxdydz, 〈ε〉 = (1/V )
∫
ε(r)dxdydz, (3.5)

the local field intensity and permittivity at the position r = (x, y, z) can be written as

E(r) = 〈E〉 + δE(r), ε(r) = 〈ε〉 + δε(r). (3.6)

The essential step in calculating the mean displacement,

〈D〉 = 〈(〈ε〉 + δε(r))(〈E〉 + δE(r))〉 = 〈ε〉〈E〉 + 〈δε(r)δE(r))〉, (3.7)

consists in finding the average of the product δε(r)δE(r). An approximate treat-
ment of Landau-Lifshitz uses the third of Maxwell equation (3.1) with the vanishing
charge density ρ, which relates the divergence of the displacement to positional
dependencies of the field intensity and permittivity:

∇ · D = ∇ · [(〈ε〉 + δε(r))(〈E〉 + δE(r))]
≈ 〈ε〉∇ · [δE(r)] + 〈E〉∇ · [δε(r)] = 0. (3.8)
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The divergence of the product δε(r)δE(r) is supposed to be negligible. The second
term of the right-hand side of Eq. (3.7) is calculated in two steps. First, the spatial
average is performed over the regions of constant δε, i.e., for a given component of
the mixture. The corresponding average of δE can be obtained from its divergence

∇ · 〈δE(r)〉 = δ

δx
〈δEx (r)〉 + δ

δy
〈δEy(r)〉 + δ

δz
〈δEz(r)〉 = 3

δ

δx
〈δEx (r)〉, (3.9)

using the assumption of the isotropy of the 3-dimensional mixture. Choosing the
direction of 〈E〉 along x, we obtain from Eq. (3.8) the following relations,

3〈ε〉 δ
δx

〈δEx (r)〉 = −〈Ex (r)〉 δ
δx

〈ε(r)〉, 〈δE(r)〉 = − 1

3〈ε(r)〉 〈E(r)〉δε(r).
(3.10)

The second stage of finding the average of Eq. (3.7) is performed by multiplying the
second of Eq. (3.10) by δε, and averaging over all species in the mixture. The result
reads

〈δε(r)δE(r)〉 = − 1

3〈ε(r)〉 〈E(r)〉〈(δε(r))2〉. (3.11)

Using this in Eqs. (3.7) and (3.4), we find the resulting effective permittivity,

εeff = 〈ε〉 − 〈(δε)2〉
3〈ε〉 . (3.12)

We call the result of Eq. (3.12) the Landau-Lifshitz (LL) formula. It can be expressed
approximately in the following appealing way. Neglecting higher-order terms in the
third power of the Taylor expansion of the averaged cube root,

〈ε1/3〉3 = 〈(〈ε〉 + δε)1/3〉3 ≈ 〈ε〉 − 3〈ε〉1 · 2

3 · 6

〈(δε)2〉
〈ε〉2 , (3.13)

the right-hand side of Eq. (3.12) is recovered, i.e.,

εeff = 〈ε1/3〉3. (3.14)

This form of the approximate effective permittivity has been obtained in a differ-
ent way by Looyenga [3]; the formula of Eq. (3.14) is sometimes labeled as LLL
(Landau-Lifshitz-Looyenga). In practice, it does not bring any essential advantage
compared with the LL formula of Eq. (3.12).

The above development can be easily modified for structures of lower dimensions.
Let us assume translational invariance of the mixture along one spatial dimension (z),
with the structuring restricted to the (x,y) plane of the 2-dimensional (2D) system. The
material is uniaxial, with the optical axis along z, and the z (extraordinary) component
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of its dielectric tensor equals the volume average 〈ε〉. In order to calculate the ordinary
component, we notice that the divergence of Eq. (3.9) becomes

∇ · 〈δE(r)〉 = δ

δx
〈δEx (r)〉 + δ

δy
〈δEy(r)〉 = 2

δ

δx
〈δEx (r)〉. (3.15)

Similarly, with the structuring vanishing along z and y in a one-dimensional (1D)
mixture, the material is uniaxial with the optical axis along x, and the y and z (ordi-
nary) components of the dielectric tensor are equal to the volume average 〈ε〉. The
divergence of Eq. (3.9) is reduced to

∇ · 〈δE(r)〉 = δ

δx
〈δEx (r)〉. (3.16)

The corresponding modification of the corresponding tensor components of the effec-
tive permittivity of Eq. (3.12) is

εeff = 〈ε〉 − 〈(δε)2〉
D〈ε〉 , (3.17)

where D =3, 2, 1 for the 3D, 2D, and 1D mixtures, respectively.

Let us note that looking for an approximate representation of Eq. (3.17) using powers,
analogous to Eq. (3.14), leads to the following simple result in the 1-dimensional
(D = 1) case: the right-hand side of Eq. (3.17) is recovered when expanding

εeff |1D = 〈ε−1〉−1. (3.18)

This is actually a precise result of the long-wavelength averaging for general lamellar
structures, not restricted to the low contrast of constituents. We will use this fact later
in order to test the level of errors introduced by the assumption of the small contrast.

For the simplest mixture consisting of just two components, a and b, the averages
can be expressed explicitly in terms of their permittivities, εa and εb, and the volume
fractions, fa and fb,

fa = Va/(Va + Vb), fb = Vb/(Va + Vb) = 1 − fa ≡ f. (3.19)

Thus, the composition of binary mixtures is specified by a single parameter f, the
volume fraction of the component occupying volume Vb, with the permittivity of εb.
The average permittivity of the binary mixture is

〈ε〉 = (1 − f )εa + f εb = εa + f (εb − εa), (3.20)

the deviations from the mean are

δεa = εa − 〈ε〉 = f (εa − εb), δεb = εb − 〈ε〉 = (1 − f )(εb − εa), (3.21)



152 J. Humlicek

the mean of the squared deviation is

〈(δε)2〉 = (1 − f )(δεa)
2 + f (δεb)

2 = f (1 − f )(εb − εa)
2, (3.22)

and the LL formula of Eq. (3.17) reads

εeff = εa + f (εb − εa)− f (1 − f )(εb − εa)
2

D[εa + f (εb − εa)] . (3.23)

The approximation based on neglecting higher-order terms in the derivation of
Eqs. (3.8)–(3.17) introduces differences that are, in general, difficult to specify. We
will discuss these errors later, using partly precise solutions for selected 1D cases,
partly comparisons with predictions of the effective dielectric functions that do not
assume the low contrast.

3.4 A Collection of Mixing Rules

A mixture is isotropic in the absence of preferred directions of polarization on macro-
scopic scale. This condition is evidently not fulfilled in cases of preferential orienta-
tions of the interfaces between the components. Two extreme cases of the orientation
of aligned planar interfaces with respect to the direction of electric field can easily
be identified; they are shown in Fig. 3.4.

Applying the boundary conditions for tangential and normal components of E and H
[4], the two orientations differ in the average values of the field quantities. Namely,
Ea = Eb = 〈E〉 in the parallel case, leading to the following average value of the
displacement,

〈D〉 = (1 − f )εa Ea + f εb Eb = [(1 − f )εa + f εb]〈E〉, (3.24)

(⊥)

EbEa

DbDa

-

-

-

-

-

-

-

-

εbεa

Db

Ea

εb

Eext

εa Da

Eb

+

+

+

+

+

+

+

+

(||)

Fig. 3.4 Cross sections of a layered structure with the parallel (left part, no screening charges at
the interfaces) and perpendicular (right part, maximum screening charge density) orientation with
respect to the electric field
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where f is the volume fraction of the component b. Thus, the effective permittivity
of Eq. (3.4) is the simple volume average of the two components,

εeff = 〈ε〉 = (1 − f )εa + f εb. (3.25)

On the other hand, normal components of the displacement D are continuous (Da =
Db = 〈D〉) across the interfaces in the perpendicular case, leading to the following
average value of the electric intensity perpendicular to the planes,

〈E〉 = (1 − f )Da/εa + f Db/εb = [(1 − f )/εa + f/εb]〈D〉. (3.26)

Consequently, the inverse of the effective permittivity along the horizontal direction is
the volume average of the inverses of the permittivities of the individual components
(i.e., the inverse permittivity is additive),

1/εeff = (1 − f )/εa + f/εb. (3.27)

The two orientations of layers in Fig. 3.4. differ in the absence/presence of screening
charges at the interfaces. Namely, a surface charge density develops at the interfaces
in the perpendicular case, which is related to the discontinuity of the electric field
intensity across the interface. On the other hand, no screening charges appear in the
parallel case. Curved interfaces lead evidently to more complex field patterns, with
positional dependence of the surface charge density.

The case of a spherical (more generally, ellipsoidal) inclusion is particularly simple,
as it allows an analytical solution [5]. Shown in Fig. 3.5 are the field lines describing
the field in and around a dielectric sphere. The inner field, produced by the applied
intensity and screening charges unevenly distributed on the surface, is constant [4]:

Eb = 3εa

εb + 2εa
Ea . (3.28)

Note that the inner field is weaker than the outer one for εb > εa , i.e., for the
inclusion more polarizable than the host material (if both permittivities are real).
Static fields are assumed in calculations of average quantities; however, the optical
case is essentially the same for the diameter of the sphere negligible with respect to
the wavelength and the penetration depth of light.

The more general case of an ellipsoid leads to similar results. Let us assume an
ellipsoid (permittivity εb, semi axes u, v, and w) with u oriented along the electric
field intensity. The field inside the ellipsoid is constant [5],

Eb = εa

(1 − Lu)εa + Luεb
Ea, (3.29)
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where

Lu = uvw

2

∞∫

0

dt

(t2 + u2)
√
(t + u2)(t + v2)(t + w2)

∈ 〈0, 1〉 (3.30)

is the depolarization factor. The three depolarization factors of any ellipsoid satisfy
the condition Lu + Lv + Lw = 1. Special cases are

Lu = Lv = Lw = 1

3
for u = v = w (sphere), (3.30a)

Lu = Lv = 1

2
, Lw = 0 for u = v,w → ∞ (cylinder), (3.30b)

Lu = 1, Lv = Lw = 0 for v = w → ∞ (slab). (3.30c)

Note that the zero depolarization inserted into Eq. (3.29) reproduces the condition
Ea = Eb for the interface parallel to the field; this occurs for the orientation of a
cylinder or a slab with the interfaces parallel to the field. On the other hand, the
maximum (unit) value of the depolarization factor describes the continuity of the
normal component of electric displacement, εa Ea = εb Eb, for a slab with its normal
oriented along the field.

The simplest version of averaging the microscopic fields (such as those in Fig. 3.5)
neglects the dipole-like field pattern in the close neighborhood of the spheres, sparsely
dispersed in the host material. Using the volume fraction f of the spheres, the average
intensity and displacement is approximately

〈E〉 ≈ (1 − f )Ea + f Eb =
[

1 − f + f 3εa

εb + 2εa

]
Ea, (3.31a)

〈D〉 ≈ (1 − f )εa Ea + f εb Eb =
[
(1 − f )εa + f 3εaεb

εb + 2εa

]
Ea . (3.31b)

E
a εa

εb

Eb

Fig. 3.5 A dielectric sphere embedded in an infinite dielectric medium under the electric field Ea
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The effective dielectric function of Eq. (3.4) is then given by the well known Maxwell
Garnett [6] formula

εeff = 〈D〉
〈E〉 = εa + f (εb − εa)

3εa

εb + 2εa − f (εb − εa)
. (3.32)

This result explained colors in glasses with nanometer-sized spherical metallic inclu-
sions as early as in 1904.

The Maxwell Garnett (MG) formula is easily generalized to a dilute mixture of
aligned ellipsoids in a host matrix as

εeff,u = εa + f (εb − εa)
εa

εa + Lu(1 − f )(εb − εa)
. (3.32a)

A mixture with randomly oriented ellipsoids is isotropic, with the scalar permittivity

εeff = εa + f (εb − εa)εa

∑
j=u,v,w

1/[εa + L j (εb − εa)]

3 − f (εb − εa)
∑

j=u,v,w
L j/[εa + L j (εb − εa)] . (3.32b)

Two limiting cases of very prolate and oblate ellipsoids are useful; the cylinders of
Eq. (3.30b) are likely to approximate the behavior of needle-like inclusions, with the
effective permittivity of the random orientation

εeff = εa + f (εb − εa)
εb + 5εa

3(εb + εa)+ 2 f (εa − εb)
. (3.32c)

Using the depolarization factors of Eq. (3.30c), we obtain the effective permittivity
of disk- or platelet-shaped inclusions with random orientation,

εeff = εa + f (εb − εa)
2εb + 2εa

3εb + f (εa − εb)
. (3.32d)

An instructive treatment of mixtures can be based on a simplified microscopic model,
with the polarization of components represented by point dipoles [7]. For simple
geometries, the average values can be found analytically, and the distinction between
local field causing the polarization and experimentally accessible macroscopic (aver-
aged) field is straightforward. On the other hand, the actual induced density of dipole
moment of either electrons or atomic nuclei in condensed matter is significantly dif-
ferent from the diverging pattern of point dipoles. A discrete set of dipoles of different
polarizabilities, representing two different materials, leads to the effective dielectric
function obeying the equation

f
εb − 1

εb + 2
+ (1 − f )

εa − 1

εa + 2
= εeff − 1

εeff + 2
. (3.33)
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Evidently, it can be viewed as a variant of Clausius-Mosotti or Lorentz–Lorenz
relation [7]. It is actually of the same form as the Maxwell Garnett formula (3.32);
the latter can easily be put in the form

f
εb − εa

εb + 2εa
= εeff − εa

εeff + 2εa
. (3.34)

In fact, introducing the permittivity εh of the host material, the following general
form

f
εb − εh

εb + 2εh
+ (1 − f )

εa − εh

εa + 2εh
= εeff − εh

εeff + 2εh
(3.35)

covers the Lorentz–Lorenz formula of Eq. (3.33) when taking εh = 1 (vacuum), and
the Maxwell Garnett formula of Eq. (3.34) with εh = εa (precisely in the spirit of the
approximate calculations of the averages of Eq. (3.31a,b). An appealing variant of
the mixing is to assume the host material to be the effective medium itself, εh = εeff.
This was suggested by Bruggeman [8], resulting in the mixing formula

f
εb − εeff

εb + 2εeff
+ (1 − f )

εa − εeff

εa + 2εeff
= 0. (3.36)

The effective permittivity solves the following quadratic equation, with one of its
two roots being physical,

2ε2
eff + εeff [(3 f − 2)εa + (1 − 3 f )εb] − εaεb = 0. (3.37)

The Bruggeman formula is symmetric with respect to interchanging the components,
which is attractive for dealing with materials of comparable volume fractions in
the mixture. Further, the way of its derivation leads to the expectation of a better
performance outside the dilute limit of Maxwell Garnett formula.

Another attractive mixing rule is known as the coherent potential formula; we recall
the form for spherical inclusions [9],

εeff = εa + f (εb − εa)
3εeff

3εeff + (1 − f )(εb − εa)
. (3.38)

As in the case of Bruggeman formula, the effective permittivity solves a quadratic
equation, with only one of its two roots being physical:

3ε2
eff + εeff [4( f − 1)εa + (1 − 4 f )εb] − (1 − f )εa(εb − εa) = 0. (3.39)

We use here the label CPA (coherent potential approximation) for the mixing formula
of Eq. (3.26). It is based, like the Bruggeman formula, on the assumption of the
spherical form of inclusions. However, the averaging procedure of field quantities is
different. For dilute mixtures of spheres (f � 1), both Bruggeman and CPA rules



3 Data Analysis for Nanomaterials: Effective Medium Approximation 157

give the same expansion to the first order in f as the Maxwell Garnett formula, namely

εeff ≈ εa + f (εb − εa)
3εa

εb + 2εa
. (3.40)

For real permittivities, the slope of this linear approximation is smaller than that
of the linear interpolation between εa and εb for εb > εa and vice versa. This is
easily understandable with the help of the approximate averaging used in deriving
the Maxwell Garnett rule above. It should be noted that the corresponding expansion
found from Eq. (3.12),

εeff ≈ εa + f (εb − εa)
4εa − εb

3εa
, (3.41)

and (3.14),
εeff ≈ εa + 3 f (ε2/3

a ε
1/3
b − εa), (3.42)

is different from that of Eq. (3.40). This is not surprising, because of different assump-
tions used in deriving the latter two mixing rules. In fact, the most important require-
ment was a small contrast of the permittivities. No specific geometry of the mixture
has been used; it should not be expected that the result valid for spherical inclusions
would be obtained.

The EMA calculations done for the spherical inclusions can be easily modified for
aligned ellipsoids, similar to the Maxwell Garnett type of averaging of Eq. (3.32a).
The resulting effective medium is anisotropic, since the screening effects depend on
the relative orientation of the electric field and the ellipsoids. An instructive case
is that of the aligned cylinders, i.e., infinitely elongated ellipsoids with a circular
cross-section. There is no screening for the field parallel to the cylinders, and the
corresponding tensor component of the effective permittivity is just the volume aver-
age of Eq. (3.25). For the field perpendicular to a dilute system of cylinders, the
two-dimensional distribution of screening charges leads to the following effective
permittivity, which is a modification of Eq. (3.34),

f
εb − εa

εb + εa
= εeff − εa

εeff + εa
, (3.43)

sometimes called Rayleigh mixing formula. Obviously, Maxwell Garnett and
Rayleigh mixing rules are two intermediate stages between the absence and maxi-
mum of screening in Eqs. (3.25) and (3.27), respectively.

Most of the rules for binary mixtures discussed above can be rewritten in the form
of explicit relations for the volume fraction f. This is convenient, since the typical
use of the effective medium approach is to estimate the composition from the known
permittivities of the components, and the measured value for the mixture. We list
in the table below several mixing formulas using the expression for the effective
permittivity and the volume fraction (Table 3.1).
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3.5 Tests of EMA: Glass Spheres in Liquids

An illustrative example of using different mixing formulas is the system of glass
spheres dispersed in liquids. The effective response has been studied experimentally
in the low (≤GHz) frequency range, using the mixture as a dielectric in a condenser or
a resonator. Even fairly large glass particles (mostly spheres) warrant the applicability
of the continuum approach, since the vacuum wavelength λvac at the frequency of
1 GHz is 0.3 m and the effective refractive index of the mixture, neff = √

( εeff), does
not exceed 10. Thus, the diameter of the glass spheres, smaller than about 1 mm, is
much smaller than the wavelength in the effective medium, λvac/neff .

First, we analyze the mixture of glass spheres in the non-polar liquid of carbon
tetrachloride; the experimental results of J. A. Reynolds quoted in [3] are shown
in Fig. 3.6, together with the long-wavelength (real) permittivity predicted by four
selected mixing formulas as a function of the volume fraction f of glass. A slightly
bowed dependence is almost coinciding for Bruggeman, Eq. (3.36), Landau-Lifshitz-
Looyenga, Eq. (3.14), and CPA, Eq. (3.38), formulas. The prediction of Maxwell
Garnett, Eq. (3.32), lies slightly below the three.

Since the mutual differences of the mixing formulas are rather small, we show their
differences from the Bruggeman model in Fig. 3.7 on an expanded scale. Except
for the Maxwell Garnett model, the effective permittivities are within the ±0.02
margins (less than ±1 % of the effective values) in the whole composition range.
Also the deviations from experimental points are fairly small, as shown in Fig. 3.8.
We have calculated the mean square deviations between the model and measured
values and listed the results in Fig. 3.8. The least mean deviation occurs for the CPA
rule, followed by the Landau-Lifshitz-Looyenga, Bruggeman and Maxwell Garnet
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up to 0.35 (symbols)
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rules. Evidently, the experimental point for the largest value of f might be an outlier;
removing it from the data set reduces the mean square deviation of the CPA formula
to 0.0015, about a half of the value for the LLL rule.

Another representation of the data is shown in Fig. 3.9. The volume fractions were
calculated from the measured value of permittivity and those of the constituents
using the same mixing rules as above. Considering the possibility of the data point
with the largest value of f being an outlier, the agreement of Bruggeman and CPA
with the measured data is excellent. The Maxwell Garnett rule is very good for
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Fig. 3.8 Deviation of the predictions of different mixing formulas from experimental data for glass
spheres dispersed in carbon tetrachloride. The mean square deviation for the 7 measured points is
given next to the acronym of the mixing formula. The lines are guides to the eye
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small f, which is expected from the proper account of the screening charges on the
glass spheres; however, it overestimates the value of the volume fraction due to the
deficiencies of the simplified averaging of Eq. (3.31a,b). The LL rule underestimates
the lower values of f; however, it was derived for the condition of small differences
of permittivities in the mixture, not satisfied very well in the present case.

The LLL rule of Eq. (3.14) has been derived for a mixture of unspecified geometry,
with the only assumption of the isotropy and small variations of the permittivity. The
existence of screening charges on inner boundaries is hidden in the manipulation
with the divergences of Eqs. (3.8) and (3.9). The corresponding “average screening”
lies between the minimum and maximum of the planar interfaces oriented parallel
and perpendicular to the electric field, respectively. These two cases would occur
for the corresponding orientations of aligned glass platelets dispersed in CCl4, with
the tensor components of the permittivity of Eqs. (3.25) and (3.27). We compare in
Fig. 3.10 the compositional dependence resulting from Eq. (3.12), and its approxima-
tion of Eq. (3.14), with these two limiting cases. Note that the results of Eqs. (3.12)
and (3.14) differ rather markedly; this is obviously due to the large contrast of permit-
tivities of glass and carbon tetrachloride. Further, this way of showing the measured
data supports the suspicion of the presence of an outlier (for the largest volume
fraction of glass, 0.35).

Another set of experimental data, suitable for testing the EMA mixing rules, has been
collected for a dense packing of glass spheres immersed in various liquids [10]. The
volume fraction f of soda lime silicate glass (diameter 500 μm) was fixed at the value
of 0.605, the pores between the spheres were filled with different liquid immersions.
In our notation, the dielectric function of glass inclusions, εb, had the value of 7.6.
The permittivity of the immersing liquids, εa , span the range from 1 (air) to 78.5
(water, at radio frequencies of the order of 1 GHz or smaller used in the measure-
ments). Unfortunately, the uncertainties of the effective permittivity measured using
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the time-domain reflectometry are rather large, the estimate of accuracy quoted in
Ref. [10] is ±0.1. We have digitized the experimental points from Figs. 3.3 and 3.4
of Ref. [10]; they are shown together with the predictions of several mixing rules
in Fig. 3.11. Interestingly, the measured points are fairly close to the Maxwell Gar-
nett model for large values of εa . A plausible explanation of this fact relies on the
averaging procedure of Eq. (3.31), which neglects the fields generated by the surface
charges of the spheres. In fact, the large polarizability of the liquids should tend to
reduce the contribution of these fields to the average intensity and displacement.
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Fig. 3.11 Effective permittivity of glass spheres in different liquids. Experimental data (symbols),
and several mixing rules (lines)
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We have omitted the CPA mixing rule (which provided the best representation of the
glass-CCl4 mixture discussed above) from the comparison of Fig. 3.11. The reason
is its failure for large values of the ratio εa /εb. An indication of peculiar behavior
is linked to the possibility of vanishing denominator in the fraction of Eq. (3.38) for
εb > εa , or the indefinite expression for the volume fraction f resulting for εeff = εa /4
(see the last row of the table in paragraph 4). Shown in Fig. 3.12 are the two values of
the CPA rule of Eq. (3.38) obtained for εb = εa /4. One of the roots of the quadratic
Eq. (3.39) is εeff = εa /4; the remaining one is εeff = εa(1 − f ), coinciding with
the linear expansion of Eq. (3.40). Thus, the latter root is usable for small volume
fractions f, while it even runs out of the Wiener bounds for larger values of f.

The range of the smaller polarizabilities of the immersion liquids is shown on
expanded scales in Fig. 3.13. The CPA, Bruggeman and Landau-Lifshitz predic-
tions are fairly close to one another, while the Maxwell Garnett rule deviates from
the three. The measured points lie slightly below the lower Wiener bound for the two
largest values of εa ; the increase with increasing εa seems to be closer to that of the
CPA, Bruggeman and Landau-Lifshitz models than to the Maxwell Garnett model.

3.6 Testing EMA: Water Solutions of Sucrose

An interesting mixture suitable for the investigation of its optical properties is the
water solution of sucrose, as suggested by Feynman in his Lectures [11]. The sucrose
molecules, C12H22O11, remain stable in aqueous solutions at ordinary temperatures.
Further, due to their importance in food industry, the solutions have been measured
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extensively; reliable, comprehensive datasets in saccharimetry are readily available
[12].

Before discussing the optical properties of the solutions, we estimate the volume
fractions of their constituents based on the density (mass per unit volume) mea-
surements. The number of molecules in 1 mol of matter is the Avogadro number
NA = 6.02214 × 1023 mol−1. The mass of one solvent (water) molecule and one
solute (sucrose) molecule is mw = 18.02/NA g and ms = 342.3/NA g, respectively.
The solution is formed by mixing the masses Mw = Nwmw and Ms = Nsms of
the two molecular species, where Nw and Ns are the corresponding numbers of the
molecules. The density of the solution is

ρ = Nwmw + Nsms

V
= cwmw + csms, (3.44)

where cw and cs are the concentrations of the constituents (i.e., the numbers of
molecules per unit volume). Let us assume the total volume V is shared by the
corresponding apparent volumes, Vw and Vs , of the constituents, V = Vw + Vs .
We assume further the apparent volume of the solvent molecule to be that of the
pure solvent having the density ρw (this assumption is the better the more dilute the
solution is). Then, we can rewrite Eq. (3.44) in the following form

Vs = Nwmw + Nsms

ρ
− Nwmw

ρw
. (3.45)

Introducing the mass fraction of the solute (a convenient measure of the composition,
independent of temperature and pressure),
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fM = Nsms

Nwmw + Nsms
, (3.46)

we use Eq. (3.45) to obtain the apparent volume of one solute molecule:

V1s ≡ Vs

Ns
=

(
1

ρ
− 1 − fM

ρw

)
ms

fM
. (3.47)

Shown in Fig. 3.14 is the apparent volume of the sucrose molecule as a function of
the mass fraction, obtained from the density data from several sources. We have used
the extensive tabulation of Ref. [12] to calculate the dependence shown by the thick
solid line in Fig. 3.14. The results are in a fair agreement with the individual data
points from two other sources, taking into account the higher temperature of 25◦ C.
As expected, the determination of the apparent volume is rather poor at small mass
fractions, when the density of the solution approaches that of the solvent; two close
values are subtracted in the parentheses of Eq. (3.45) which magnifies both random
and systematic errors.

The increase of the apparent volume with increasing mass fraction indicates the for-
mation of voids adjacent to the sucrose molecules, small enough to prevent filling
with water, see the space filling model in Fig. 3.15. The presence of voids should
be easily detectable in the optical response of the solutions, provided the dielectric
response of water and sucrose molecules was only weakly dependent on the com-
position of the solution. This assumption has been tested by Feynman [11] using
the representation of the water and sucrose molecules by point dipoles, contributing
(via their polarizabilities) to the refractive index of the mixture. We will reformulate
the problem in terms of the standard EMA picture: the solution is described by the
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Fig. 3.15 Space filling model of the sucrose C12H22O11 molecule, from [15]

three-component mixture with the volume fractions fw, fs , and fv, and permittivities
εw, εs , and εv = 1 of water, sucrose and voids, respectively. We will use the tabulated
dependence of the refractive index (i.e., the square root of the permittivity) at the
sodium line λD = 589.3 nm at 20 C, covering the compositions from pure water
(fM = 0) to fM = 0.85 (85 weight percent of sucrose) [16]. The permittivity of solu-
tion increases monotonically from 1.77686 (pure water) to 2.26196 at fM = 0.85,
implying the value for the sucrose component in EMA to be below about 2.5; thus, the
contrast of the dielectric constants (that of vacuum, water and sucrose) is fairly small,
which suggests using the LL or LLL mixing rules of Eqs. (3.12) or (3.14). This choice
is further substantiated by the complex geometry of the elongated sucrose molecules
and the free volume within their clusters (the averages of the optical fields in the LL
approach are independent of the geometry).

Using the LLL mixing formula of Eq. (3.14) for the resulting permittivity ε, we arrive
at the following formula for the volume fraction of voids,

fv = ε
1/3
s − ε1/3

ε
1/3
s − 1

− fw
ε

1/3
s − ε

1/3
w

ε
1/3
s − 1

. (3.48)

The volume fraction of water is provided by the density ρ, using the same reasoning
as that in deriving Eq. (3.45):
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fw = ρ

ρw
(1 − fM ). (3.49)

The only unknown quantity in Eq. (3.48) is the permittivity εs , describing the dielec-
tric response of a continuum of sucrose molecules in a hypothetical mixture with no
water and no voids. Its value results readily from the plausible requirement of the
zero slope of the fv(fM ) dependence for fM → 0, which occurs for εs = 2.466. This
value is larger than the average of the three principal components of the dielectric
tensor of the biaxial sucrose crystal (2.427; note that Feynman [11] uses the average
of refractive indices to estimate the response of the sucrose component of the solu-
tion). Shown in Fig. 3.16 is the volume fraction of voids resulting from Eq. (3.48),
using the refractive index (i.e., the square root of the dielectric constant) at 20 C and
the wavelength of 589.3 nm given in Ref. [16]. The measured data are represented
in the inset of Fig. 3.16 together with its cubic polynomial approximation; the mean
square deviation of the two is 1.3 × 10−5 in the whole experimental range of the
mass fractions fM from zero to 0.85. Consequently, we use the polynomial also for
the extrapolation of experimental data in order to cover the whole compositional
range by the LLL model with εs equal to 2.46 (dashed line in Fig. 3.16, negative
slope of fv at fM = 0) and 2.47 (dash-dotted line in Fig. 3.16, positive slope of fv at
fM = 0).

The void fraction can also be estimated from the density ρ of the solution, using
the fixed volume of one sucrose molecule from Eq. (3.47) for fM → 0 throughout
the composition range, and attributing the increase of the apparent volume to the
presence of the voids. Assuming once more the density of water independent of the
composition, we arrive at
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f (ρ)v = 1 − ρ

[
1

ρw
− fM

(
1

ρw
− V1s

ms

)]
. (3.50)

The resulting void fraction shown in Fig. 3.16 is in a very good agreement with that
obtained from the refractive index. Thus, the simple treatment of the packing of the
water and sucrose molecules, neglecting the changes of bond lengths and optical
polarizabilities with the composition, seems to provide consistent results.

Let us note that the assumption of averaging the microscopic fields of point dipoles
using the Clausius-Mossotti relation [11] is very good for dilute solutions. In fact,
the conceptually similar treatment of EMA described above results in the volume
fraction of voids smaller than 0.001 for the mass fraction of sucrose less than 0.32.
On the other hand, the presence of voids is clearly indicated in denser solutions, and
discrepancies of a few percent are observed in the EMA description of the dielectric
function when using the simplest two-component picture.

The concentrated sucrose solutions were studied by molecular dynamics simulations
in [17]. These calculations suggested a non-monotonic dependence of the free vol-
ume fraction on the compositions, which is absent in the data of Fig. 3.16 resulting
from both density and refractive index. A further notice concerns the temperature
dependence of Fig. 3.14: the increase of the free volume with increasing sucrose frac-
tion is steeper at higher temperatures. This indicates the role of dynamical effects in
filling the voids between clustered sucrose molecules with water.

Of course, EMA has to be used with caution. Substantial deviations from the simple
mixing are expected in the spectral range of strong absorption (of both sucrose
and water); the spectral shifts of molecular absorption bands due to the changes
of environment of each molecule when changing concentration would be absent in
the model spectra. The simplest EMA approach would also fail if it was used in
treating the light scattering by the solutions [18]. However, the predictions of EMA
described above are very good in predicting the refractive index in the transparent
range, in spite of the very small size of the sucrose molecule (V1s ∼ 0.35 nm3 at
room temperature).

3.7 Differences Between Mixing Rules for Binary
Dielectric Mixtures

The choice of a mixing rule in a particular situation need not be obvious. It is there-
fore desirable to estimate the differences between various plausible possibilities.
This is easily accomplished in the simplest case of binary mixtures possessing real
components of permittivity. Different rules provide differing compositional depen-
dences of the effective permittivity, interpolating between the two constituents. The
simplest linear interpolation is exact (in the long-wavelength limit) for layers parallel
to the electric intensity, the perpendicular orientation is properly described by addi-
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tive inverse permittivities of Eq. (3.27). These two limiting cases are usually called
Wiener bounds for two-phase mixtures of any microstructure.

The Wiener bounds and the effective permittivities of three selected mixing rules are
shown in Fig. 3.17 for two values of εb/εa . We have chosen the CPA and Bruggeman
rules for spherical inclusions, and the LLL formula for a small difference of the
permittivities. For the smaller contrast, the bounds are fairly close and the three rules
are indistinguishable on the scale of the figure. However, the large relative value of
εb in the right panel of Fig. 3.17 shifts the lower bound rather significantly, since the
smaller value εa becomes more important. In addition, the remaining mixing rules
deviate markedly from each other. It should be reemphasized that the LLL rule has
been derived for small values of εb/εa ; we have included it here in order to draw
the attention to a possible “accidental” success of any mixing rule. For example, the
predictions of CPA and LLL rules coincide for f ≈ 0.29 for the ratio of permittivities
as high as 10.

The differences between the selected mixing rules are better seen on expanded (loga-
rithmic) scales of Fig. 3.18. The difference between the LLL and CPA rule (left panel
of Fig. 3.18) crosses zero at f ≈ 0.29 in a broad range of the dielectric contrasts. At
the same time, the CPA and Bruggeman rules agree within less than one percent of
the difference between the constituents.

All of the tested rules agree within a few percent of the difference between the
permittivities of the components when the latter does not exceed 10. Moreover,
the mutual agreement is much better for dilute mixtures (small values of f); this is
expected since the averaged fields become less sensitive to the properties of inclusions
and their interactions.
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3.8 Exact Solutions and EMA for Layered Structures

Layered structures of the type shown in Fig. 3.2 represent a convenient system for
evaluating quantitatively the approach of effective medium. Namely, the optical fields
can be computed exactly for incident plane waves using the scheme of transfer matri-
ces [19]; moreover, analytical results are available for derivatives of the field ampli-
tudes and ellipsometric quantities, enabling a very efficient fitting of measured data
[20]. We show here examples of exact results and their approximation using effective
medium approach. Let us start with the positional dependence of the field intensity
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Fig. 3.19 Complex amplitude of the electric intensity of a plane wave propagating along the z
axis in the layered system consisting of repeated pairs of films specified by the thickness d and the
dielectric function ε
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shown in Fig. 3.19. The wave, travelling in the z direction, is damped due to the
absorption in one of the layers in the repeated pairs. The electric intensity is parallel
to the interfaces, i.e., the angle of incidence in Fig. 3.2 is zero. The exact solution
is composed from linear combinations of plane waves in each of the layers, with
the electric intensity continuous across the interfaces and the electric displacement
undergoing step-like changes. The appropriate effective permittivity is the simple
volume average with no screening, Eq. (3.25). The damped plane wave solving the
propagation in the effective medium is indiscernible from the exact solution at the
scale of Fig. 3.19. The reason is the smallness of the thickness of individual layers
with respect to the wavelength of the optical field. The latter is about λvac/neff , with
the effective refractive index of ∼3.54 resulting from the volume average of the two
permittivities of the mixture. The detailed comparison of the exact and approximate
fields shown in Fig. 3.20 reveals a subtle relative difference of the order of 10−3.
Even this small difference could be observed via differences in interference patters
observed in light reflected from or transmitted by a film of suitable thickness made
from this model metamaterial. On the other hand, the differences diminish with
decreasing d/λ ratio.

This kind of differences of the inner fields in the metamaterial becomes fairly easily
observable in ellipsometric measurements. We show in Fig. 3.21 the spectra of the
standard ellipsometric angles computed for different values of d/λvac, where d is the
total thickness of the layered metamaterial of Fig. 3.19. We have used the repeated
pairs of the λvac/1000 films of the two different dielectric functions, kept constant
throughout the calculation of the spectra, calling the metamaterial a “superlattice”
(SL). The substrate has been chosen to be the material with the complex permittiv-
ity 16 + 2i, the more polarizable component of the mixture. Because of the large
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Fig. 3.21 Ellipsometric angles, (ψ, left panel) and (
, right panel), computed for a layer of
thickness d, made of the metamaterial of Fig. 3.19 with d1 = d2 = λvac/1000, at the angle of
incidence of 70◦. Solid line exact solution; dashed line effective medium approximation, using the
isotropic dielectric function along the interfaces

refractive index of the metamaterial, the optical wave is refracted very close to the z
direction, and the usual approach is to neglect the anisotropy and use the parallel com-
ponent of the dielectric function for the appropriate effective medium. The exact and
EMA calculations produce similar interference patterns, displaying a pronounced
decrease of the amplitude with increasing ratio d/λvac, due to the absorption in the
metamaterial. The EMA calculation deviates from the exact result for the following
two reasons: the neglected anisotropy, and the finite values of d1 and d2. A closer
look at the increase of the differences for decreasing wavelength identifies the second
reason as the decisive one.

In order to identify potential problems caused by a too coarse structure of the mixture
compared to the wavelength, we have performed the exact calculations of the ellipso-
metric spectra for different thicknesses of the constituent bilayers, keeping the total
thickness d of the metamaterial fixed. In other words, we have used the appropriate
number of repetitions of the basic bilayer motif, d/(d1 + d2).The results shown in
Fig. 3.22 demonstrate a fairly high sensitivity of ellipsometry to the fineness of the
mixture; as usual, the phase shift
 is more sensitive. Note that considerable changes
from the behavior of a “true mixture” occur for the individual layer thicknesses well
below one percent of the wavelength in the effective medium.

The dramatic changes seen for thicker constituent layers are due to the interferences
in the stack of layers with the high and low index of refraction. In fact, the thickness
of individual layers close to λ/4 leads to the appearance of Bragg-like bands of
increased reflectivities and corresponding changes in the relative phase shifts.

We can readily transform these model calculations into practical guidelines for the
applicability of the effective medium (i.e., continuum) approximation of the layered
metamaterial. Namely, at the representative vacuum wavelength of the visible range,
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Fig. 3.22 Ellipsometric angles, (ψ, left panel) and (
, right panel), computed for a layer of fixed
thickness d, made of the metamaterial of Fig. 3.19 with different values of d1 = d2, at the angle of
incidence of 70◦

500 nm, we observe easily detectable (at least one tenths of a degree in ψ, and
one degree in 
) changes for the individual layer thicknesses as low as 2 nm in
this particular metamaterial. Of course, this value scales with the wavelength in the
mixture.

This level of sensitivity is related to a possible detection of surface or interface
roughness in ellipsometric measurements. In fact, the representation of the surface
roughness as the presence of an overlayer composed of the topmost material and voids
is usually a plausible approximation explaining the measured data. Similarly, the
interface roughness can be modeled by inserting a thin layer of mixed composition.
These transition layers are graded; due to the usually small extent of the grading,
the approximation by a single homogeneous layer of intermediate composition is
suitable. However, without independent information concerning the geometry of
these mixtures, values of film thicknesses and compositions derived from measured
data should be used with care.

3.9 Resonant Behavior of EMA Mixtures

When selecting properly the individual contributions of the constituents of an EMA
mixture, we can arrive at a spectacular behavior of the effective optical response;
the latter can be traced down to the spectacular behavior of local fields. We outline
here the simple cases having analytical solutions, based on the constant field inside
an isolated ellipsoid in an infinite host medium as described by Eq. (3.29). Namely,
the field intensity inside the ellipsoid becomes infinite whenever
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εb

εa
= 1 − 1

Lu
∈ (−∞, 0〉. (3.51)

According to the value of the depolarization factor Lu of Eq. (3.30), this divergence
occurs in particular in a

• sphere: u = v = w, Lu = 1/3, for εb = −2εa ;
• cylinder, field perpendicular to its axis: u = v,w → ∞, Lu =1/2, for εb = −εa ;
• slab, field perpendicular to the interface: v = w → ∞, Lu = 1, for εb = 0.

To fulfill this condition, the permittivity of the inclusion has either to vanish or to be
of the opposite sign as that of the host. Since the response functions are frequency
dependent, the diverging (in practice, very large) field intensities can only occur in
narrow spectral ranges, i.e., they exhibit resonant behavior. Let us note that the above
condition for the slab is related to the occurrence of the surface plasmon resonance,
achieved by using a thin metallic film and the obliquely incident, p-polarized wave;
the enhanced fields occur for εb ≈ 0 in the metal.

Assuming a dilute mixture (the volume fraction f � 1) of aligned ellipsoids, the
Maxwell Garnett formula of Eq. (3.32a) leads to a diverging dielectric function for

εb

εa
= 1 − 1

Lu(1 − f )
, (3.52)

which is close to the condition of diverging field of Eq. (3.51). In the case of flat
interfaces perpendicular to the field, the effective dielectric function can be expanded
in the form

εeff ≈ εa(1 + f )− ε2
a

εb
f, (3.53)

leading to a divergence whenever εb crosses zero (in practice, its imaginary part
being small and the real part crossing zero). The spectral lineshape of the resonance,
proportional to negative inverse of εb, is almost independent of f; it is multiplied by
the squared permittivity of the host material, which is large for highly polarizable
materials.

The resonance condition of Eq. (3.52) is actually exact for the field perpendicular to
flat interfaces (i.e., Lu = 1). In fact, the effective dielectric function of Eq. (3.27)
diverges for

εb

εa
= − f

1 − f
(3.54)

at any volume fraction f. With equal volume fractions of one half (i.e., equal film
thicknesses), the resonance occurs for εb = −εa . The opposite signs of the per-
mittivitites have been achieved by a proper doping of one of the components of a
semiconductor superlattice [21], as shown in Fig. 3.23. The undoped AlInAs alloy
possesses an (almost constant) positive permittivity εa throughout the mid-infrared
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(MIR) range, while the n-type InGaAs alloy has the negative-valued real part of
its permittivity, εb, up to the wavenumber of about 1130 cm−1, due to the Drude-
like contribution of free electrons. The model lineshapes of Fig. 3.23 are based on
ellipsometric measurements [22] performed on a superlattice layer (lattice-matched
to its InP substrate), exhibiting negative refraction in MIR [21]. With equal film
thicknesses, the effective medium response for the field perpendicular to the inter-
faces displays a strong resonance at 832 cm−1, and a band of negative real part of
permittivity from 836 to 1125 cm−1.

Another example of the resonance governed by Eq. (3.54) is the “transverse plasmon”
in the c-axis response of superconducting cuprates [23]. In this case, the resonant
behavior observed in the far-infrared range is more damped due to the energy losses
of normal-state carriers.

The averaging procedure pertinent to the EMA treatment of finely structured meta-
material is instructive also for the strongly anisotropic layer stack of Fig. 3.23. In
fact, it explains in simple terms the effect of negative refraction occurring in a fairly
broad range of wavenumbers [22]. The averaging procedure is shown in detail for
a selected pair of undoped (positive permittivity) and doped (negative permittivity)
layers. With an arbitrary selection of the electric field intensity in the former layer,
we find all of the intensities and displacements as follows:

Dax = εa Eax , Daz = εa Eaz (isotropic material a),

Eax = Ebx , Daz = Dbz (crossing the interface),

Dbx = εb Ebx , Ebz = Dbz/εb (isotropic material b).
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Further, the averaging assuming the thicknesses da, db, d = da +db, and the volume
fractions fa = da/d, fb = db/d = 1 − fa , leads to

〈Ex 〉 = fa Eax + fb Ebx = Eax ,

〈Ez〉 = fa Eaz + fb Ebz = ( fa + fbεa/εb)Eaz,

〈Dx 〉 = fa Dax + fb Dbx = ( faεa + fbεb)Eax ,

〈Dz〉 = fa Daz + fb Dbz = Daz = εa Eaz,

i.e., to the components of the dielectric tensor of the resulting effective medium:

〈Dx 〉 = ε||〈Ex 〉 = ( faεa + fbεb)〈Ex 〉,
〈Dz〉 = ε⊥〈Ez〉 = 1

fa/εa+ fb/εb
〈Ez〉.

This averaging procedure assumes constant fields within each layer, in other words,
film thicknesses negligible compared with the wavelength. The average flow of
energy, shown also in Fig. 3.24, occurs in the “negative” direction.

The description of the doped multilayer within the EMA framework has been tested
by performing MIR ellipsometric measurements [22]. The good agreement of the
measured and model spectra (no fitting, the nominal layer thicknesses and a guess of
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the Drude parameters of the doped material have been used in the model) confirms
the usefulness of the EMA picture.

The individual layer thicknesses of 80 nm are small compared with the wavelength
if MIR light in the metamaterial. On the other hand, the interference pattern with the
period of about 100 cm−1 results from the coherent reflections within the total thick-
ness of 8080 nm of the superlattice. We have tested this interpretation by calculating
the model spectra of 
 for two values of the total thickness of the metamaterial
layer. Note that the spectra of
 are folded to the range from −180 to 0◦ (due to the
rotating-analyzer measurement setup, which is unable to determine the sign of 
).
The denser interference pattern obtained for the larger total thickness confirms our
assumption (Fig. 3.25).

3.10 Conclusions

The approximate treatment of mixtures using effective medium approach is simple
and attractive, as it can capture important properties of nanostructured materials. We
would encourage using it, whenever the underlying assumptions are fulfilled. The
applicability of any specific EMA formula should be assessed carefully, and the level
of uncertainties estimated.

It might be surprising to find a consistent EMA picture of the water solutions of
sucrose in the visible spectral range, remembering the apparent volume of one sucrose
molecule of about 0.35 nm3. Further, the individual layers in a semiconductor super-
lattice might be as thick as ∼0.1 μm and still form a proper component in the EMA
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continuum in the mid-infrared range, and even provide a plausible explanation of
the negative refraction. We could easily find a failure of the EMA models for these
systems in other circumstances; however, this would not be a defect of the approach,
but that of its improper use.
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Chapter 4
Relationship Between Surface Morphology
and Effective Medium Roughness

Angel Yanguas-Gil and Herbert Wormeester

Abstract The modeling of surface and interface roughness is a key issue in the
interpretation of ellipsometric measurements. Materials properties are often extracted
from ellipsometry measurements in an indirect way by modeling the optical response
of the material. Since roughness is known to affect the scattering of light on an
interface, how roughness is incorporated into these models can affect the outcome
of the fitting procedure.

4.1 Introduction

Many practical approaches used to model the optical response of a material rely on
Fresnel’s reflection and refraction relations. These describe the effect experienced
by an incident electric field at a mathematically sharp planar interface between two
media with different refractive index. However, roughness poses a clear violation of
the concept of a mathematical sharp planar interface, see also Fig. 4.1. The statistical
properties of the surface topography can be used to quantify the deviation of the actual
surface from the planar interface approximation. Two commonly used parameters are
the standard deviation of the height distribution, also known as the root mean square
(rms) roughness, and the lateral correlation length scale ξ, the distance above which
the heights of two points are statistically uncorrelated. In many practical applications,
both rms and lateral correlation length are much smaller than the wavelength of light.
This is known as the microscopic roughness regime.
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(a) (b)

Fig. 4.1 a Schematic of interface roughness profile between two media with refractive index n0
and n1. The average interface position is indicated by the solid line. The local deviation from this
is the height h(x,y). Also indicated are the statistical quantities w and ξ. b Modeling of roughness
by the introduction of a layer of thickness d and an effective refractive index nE M A

In a seminal work by Aspnes et al. [3], the use of an intermediate layer to model
the contribution of interface roughness to the optical response of the surface was eval-
uated and compared with experimental results. This concept is pictorially depicted in
Fig. 4.1. The introduced intermediate layer has a thickness ds that is some measure
for the average height variation, while the dielectric properties of this layer are a
mix of the two media on either side of the rough interface. The introduction of this
intermediate layer creates again two sharp interfaces which allows to use the full Fres-
nel formalism to evaluate the optical response. An empirical evaluation of several
mixing rules for dielectric media, so called effective medium approximations (EMA)
was made [3]. These included the Lorentz-Lorenz model, the Maxwell Garnett model
[23] and Bruggeman’s EMA for spherical entities [6]. They concluded that Brugge-
man’s EMA consistently provided the best agreement for the materials considered,
which include both semiconductor and metal interfaces. Since then, BEMA has been
routinely used to take into account the influence of roughness on the optical properties
of a film.

BEMA is Bruggeman’s solution to a long standing problem of a self-consistent
effective medium model. In the most widely used variety of Bruggeman’s analysis,
two spherical entities are mixed. The size of these spherical entities is much smaller
than the wavelength of light. The self-consistent nature of this model is obtained by
embedding the spherical particles of different refractive index n0 and n1 in a material
with an effective refractive index nE M A:

fv
n2

0 − n2
E M A

n2
0 + n2

E M A

+ (1 − fv)
n2

1 − n2
E M A

n2
1 + n2

E M A

= 0 (4.1)

where fv fraction of species 0 in the mixed layer. The effective refractive index of
this intermediate layer is used to represent the dielectric properties of the surface
roughness layer.

The EMA model for surface roughness provides two parameters to characterize
roughness: the layer thickness ds and the fraction fv . However, because the roughness
layer is usually quite thin, these two parameters are strongly correlated. Therefore,
this fraction is usually fixed to a value of 0.5 [15]. The value of ds obtained in
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many analyses is generally assumed to reflect the rms roughness of the real surface.
However, the concept proposed by Aspnes et al. [3] does not provide a straightforward
connection between these two parameters. With the advent of surface characterization
techniques such as Atomic Force Microscopy (AFM), it was possible to investigate
whether a direct relation between surface roughness and the value of ds indeed
exists. However, only a partial correlation was found [15]. Therefore, after more
than 30 years since the publication of Aspnes work, two long-standing questions
prevail regarding the use of EMA in ellipsometry to model the effect of surface
morphology: (1) how is it possible that, with only two parameters, the EMA is able
to describe the effect of surface roughness in spectroscopic ellipsometry in such a
wide range of experimental systems? and (2) what is the correlation between the
thickness of the EMA layer ds and the surface morphology?

This chapter introduces the current state of roughness analysis and describes
alternative approaches for modelling microscopic roughness based on a perturbation
of the Fresnel reflection coefficient. This description starts with an evaluation of the
statistically averaged quantities that are used to characterize surface roughness. This
is followed by a short overview of the correlation between surface roughness and
EMA reported in literature. The Rayleigh Rice perturbation theory will be introduced
that provides a suitable formalism for describing the effect of microscopic roughness
in ellipsometric analysis. We will finish with a short discussion on normal incidence
ellipsometry, also known as Reflectance Anisotropy Spectroscopy (RAS) as this
provides an experimental configuration for which the Rayleigh Rice approximation
condenses to a very transparent formula.

4.2 Quantification of Microscopically Rough Surfaces

4.2.1 Statistical Properties of a Surface Morphology

The simplest mathematical description of a surface assumes that every point of the
surface is characterized by a unique height h(x, y). While this definition disregards
the influence of overhangs and microporosity, it is a good approximation for most of
the experimental systems where spectroscopic ellipsometry is applied. Moreover, this
definition allows a one-to-one correlation with experimental measurements. Discrete
maps h(x, y) of surface topography at the nanoscale can be obtained by Scanning
Probe Microscopy techniques such as AFM or STM. The output of those techniques
is a discretized version of the h(x, y) function convoluted with an instrument func-
tion due to the finite radius of the tip and the precision in the lateral and vertical
displacement of the experimental system. The task is to represent the fluctuation of
h(x, y) by numbers that represent statistically averaged quantities [39].

Sampling of the values of h(x, y) over a certain sampling area of characteristic
size L allows the determination of a height distribution function f (h; L), so that
f (h; L)dh indicates the probability that a point of the surface has a height between
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h and h + dh. From f (h; L) it is possible to determine a number of parameters fre-
quently used to characterize surface topography, of which two are the most common:

• The average height of the surface is simply the first moment of this height distri-
bution: h̄ = ∫

h f (h; L)dh.
• The surface roughness σ(L) is defined as the second central moment of the

distribution:

σ2 =
∫
(h − h̄)2 f (h; L)dh (4.2)

In many cases, this distribution function resembles a Gaussian. In this case, the
second moment provides the width of this height distribution and h̄ and σ completely
determine the statistical properties of the rough surface. However, if the distribution
departs from a Gaussian shape, higher moments of the height distribution become
relevant and surface roughness fails to completely capture the statistical properties
of the surface morphology.

The surface roughness σ(L) generally depends on the length scale L . On real
surfaces, microscopic surface roughness generally increases with the length scale,
until reaching a constant value above a certain value of L . The interpretation of this
dependence is simple: closer points tend to share similar heights; as we increase
the sampling area, a more rich morphology is sampled, leading to higher height
variations. Eventually, for a wide enough sampling area, we capture all the main
surface features, and increasing it even further does not provide any extra information.
In this case, the surface roughness reaches an asymptotic valuew, so that σ(L) → w

for high enough L . Hereafter, we will refer as surface roughness to the asymptotic
length scale value w, also commonly known as the mean square roughness (rms).

The fact that roughness changes with length scale is a consequence of surface
correlations. It is the fact that closer points tend to exhibit similar heights (their
heights are correlated) what leads to a length scale-dependent roughness. In contrast,
in a purely uncorrelated surface, where heights at each points are extracted randomly
from a given distribution, surface roughness is independent of L .

The height distribution function f (h; L) defined above provides information on
the vertical range of the heights of points in a surface. However, it does not contain
any information on how those points are spatially distributed. This information is
obtained from lateral correlation functions.

The so called height-height correlation function is defined as

C(r) =
[
〈(h(r0 − r)− h(r0))

2〉S A

]1/2
(4.3)

where the average extends to a certain surface S A. C(r) measures the statistical
correlation of two points separated by the vector r. If two points are completely
uncorrelated, then their heights are independent from each other and C(r) → 2w.
For extremely short distances, the correlation function is zero. From the behavior of
C(r) a correlation length ξ can be defined. The points separated a distance greater than
the correlation length are considered to be statistically uncorrelated. The influence
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(a) (b) (c)

Fig. 4.2 a Experimental AFM image of a HfB2 surface. b Surface with identical height distribution
but spatially uncorrelated. c Surface with identical power spectral density constructed using a
random phase in its Fourier transform

of correlation length is shown in Fig. 4.2: the surfaces represented in Fig. 4.2a, b are
characterized by the same height distribution function, but in Fig. 4.2b the points are
completely uncorrelated. The presence of a cauliflower-like texture is a consequence
of spatial correlations in the surface.

A final important function used to describe the morphology of surfaces is the
power spectral density. It is defined as:

S(q) = 〈ĥ(q)ĥ(−q)〉 (4.4)

where ĥ(q) is the Fourier transform of the surface. The power spectral density is the
Fourier transform of the surface autocorrelation function G(r), which is defined as:

G(r) = 〈h(r0 − r)h(r0)〉 = w2 −
[
C(r)2/2

]
(4.5)

Generally, for isotropic surfaces, it is the radial average what matters, and we can
define a radially averaged power spectral density S(k) from Eq. 4.4. Surfaces having
the same averaged power spectral density exhibit identical roughness, correlation
length and height distribution function. However they still can appear significantly
different. Thus, Fig. 4.2a, c have the same power spectral density and therefore have
the same roughness, correlation length and height distribution function despite their
different textures.

As shown in this chapter, the power spectral density is the fundamental variable
controlling the scattering of light from a rough surface. Thus, surfaces whose textures
are represented by Fig. 4.2a, c have identical response and are equivalent from the
point of view of spectroscopic ellipsometry.

4.2.2 Classification of Surface Morphologies

The main criterion to characterize the surface morphology is whether the surface is
periodic or random. Real surfaces are rarely periodic, and even periodically textured
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surfaces have microscopic roughness. The second criterion is whether the surface is
isotropic or anisotropic.

In the case of isotropic randomly rough surfaces, their power spectral density
allows to classify them as one of the three following types [39]:

Gaussian surfaces Gaussian surfaces are characterized by a Gaussian power spec-
tral density. Their power spectral density is given by two parameters, the surface
roughness w and the correlation length ξ, so that:

S(q) = w2ξ2

4π
e−q2ξ2/4 (4.6)

Gaussian power spectral densities are seldom found in experimental systems, but
they are commonly used as model surfaces in scattering problems.

Self-affine surfaces As mentioned above, roughness changes with the scale of mea-
surements before a certain length scale. In some cases, the dependence of roughness
with length scale follows a power law, so that σ(L) ∼ Lα, where α is the so-called
roughness exponent. Objects having this property are known as self-affine. The case
of α = 1 corresponds to a self-similar fractal surface [7].

For these kind of objects, the power spectral density S(q) has two asymptotic
behaviors:

S(q) =
{

const. q � 2π/ξ
q−(2α+2) q � 2π/ξ

(4.7)

Mound surfaces Mound surfaces are characterized by a characteristic periodicity
�m that reflects the average separation between similar features [28]. The power
spectral density is characterized by a maximum at surface wavenumber qm ∼ �−1

m .
The width of the peak is related to the correlation length of the surface ξ. At higher
wavenumber, the asymptotic value of the power spectra density can be characterized
by a power law as in the self-affine case.

4.2.3 Origin and Development of Surface Morphology

Roughness is ubiquitous in real surfaces. Even in the case of thermodynamic equi-
librium, a roughening transition takes place at high-index surfaces. In nanotechnol-
ogy, roughness normally appears in the context of growth or etching processes. The
surface morphology develops as a consequence of two competing processes: the
incorporation or removal of material from a surface in a random fashion, and surface
relaxation processes that generally tend to drive the surface towards a more stable
configuration. The main reason why the evolution of morphology is so relevant for
our purposes is that, as we will see in the next section, correlations between the EMA
and surface morphology have been determined in the context of thin film growth.
Therefore, in this section we will provide the required background.
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In understanding how surface morphology and surface roughness develops in
the context of thin film growth, it is important to distinguish between the early
stages of growth and the steady-state growth conditions for thicker films. If materials
growth starts on a foreign surface, nucleation can have a strong impact on the surface
morphology. Sparse nucleation tend to favor big grains that form rough surfaces
after coalescence, and the films exhibit nucleation induced roughness [12, 21]. The
equilibrium between deposition and relaxation control the subsequent evolution of
the surface morphology at later stages of growth.

The evolution of surface morphology with growth has been studied in detail for
the case of self-affine surfaces. In many experimental systems, the growth dynamics
leads to the formation of self-affine surfaces [7]. In the simplest case, roughness
increases with thickness t as σ ∼ tβ , where β is the so called growth exponent,
until reaching a certain saturation value. That saturation value depends on L so that
σ(L) ∼ Lα. Likewise, for distances greater than the correlation length ξ, the surface
roughness becomes independent of the length scale. The consequence of these two
trends is that the surface morphology evolves in such a way that the roughness
exponent α is preserved during growth, and the roughness w increases as w ∼ tβ .
This behavior is summarized by the so called Family Vicsek scaling law, stating that
σ(L , t) ∼ Lα f (t/Lz), with f (u) → 1 for u � 1 and f (u) → uβ for u � 1 [7].

The power spectral density of systems satisfying the scaling behavior described
above evolves with time in such a way that the high spatial frequency components
remain constant, and changes take place only at low wavenumbers. Likewise, in
these systems the correlation length increases with time following the scaling law:
ξ ∼ t1/z , where z = α/β. As we will show in later sections, the evolution of the
power spectral density with time is crucial in order to establish a good correlation
between the EMA roughness and the surface roughness w in self-affine surfaces.

The Family Vicsek scaling law is only one of the many different dynamics that
have been experimentally observed. Anomalous scaling behaviors have been reported
in many different systems, including situations in which the roughness exponent α
changes as a function of time [16, 17, 24, 25, 35, 36]. However, the Family Vicsek
is the benchmark against all the experimental results are compared.

4.3 Correlation Between EMA and Surface Morphology:
Comparison with Experiments

The EMA has been proved to be extremely effective in modeling the optical response
of rough surfaces. One of the most surprising aspects is that, given the number of dif-
ferent parameters required to characterize surface morphology, such good agreement
with optical measurements is obtained with at most two parameters. In practice, a
strong correlation between the two parameters is found and the void fraction is usually
set to 0.5. This leaves the thickness as the sole fitting parameter. The main question
is: how does it correlate with the surface morphology?
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One of the earliest attempts to extract information on the surface morphology was
carried out by Aspnes et al. [3]. In their work on Si surfaces, they prepared samples
with different morphologies and fitted the ellipsometric data using different effective
medium theories. By leaving the void fraction as a fitting parameter, they were
able to extract an effective density of the roughness layer. They then correlated this
density value with that calculated using different models for the surface morphology,
including a surface layer composed by hemispheres, truncating cones and cylindrical
ridges. Their results showed that hemispheres provided density values that were in
agreement with the experimental data. Moreover, they determined that Bruggeman’s
EMA theory provided a better agreement with their experimental data. This work on
p-Si was followed up by work on Au surfaces. Both models helped consolidating the
EMA as a valid approach to the modeling of microscopic roughness.

Since then, a number of different authors have studied the correlation of EMA
roughness with surface morphology using characterization techniques such as pro-
filometry, atomic force microscopy or transmission electron microscopy. One of the
earliest insights on this subject was the work of Fang et al., which highlighted the
influence of power spectral density on the ellipsometric response of the surface. In
their 1996 work, Fang et al. [10] characterized more than forty samples using both
single-wavelength ellipsometry and atomic force microscopy. Surface roughness was
generated using wet etching and wet etching followed by thermal processing, and
measurements were carried out immediately after HF dipping. Their results showed
that the optical response of wet-etched samples could be fitted assuming a 1:1 rela-
tionship between the EMA model roughness and the surface roughness as measured
by AFM and a 40–50 % void fraction. However, the 1:1 relationship in the samples
that were also thermally treated could be maintained only if void fractions of 70–80 %
were assumed. A direct comparison of the surface morphology of these two films
showed a similar surface roughness, while their power spectral density significantly
differed. Wet-etched films had a smaller high-wavenumber contribution to the power
spectral density, and that directly correlated with a different magnitude change on
the ellipsometric angle �, therefore providing a compelling evidence on the influ-
ence of high-wavenumber contributions of the surface on the polarization state of
the reflected light.

The lack of universal correlation between ds and w was also confirmed by Petrik
et al. [27, 29]. In their characterization of polysilicon thin films by spectroscopic
ellipsometry and atomic force microscopy, they found ds/w ratios ranging from
0.8 to more than 1.6. The authors attributed such variation to differences in surface
morphology that, as shown in the previous section, cannot be described by a single
roughness parameter. The author suggested that, while quantitative determination
of surface roughness is possible by spectroscopic ellipsometry, a calibration curve
is first needed in order to determine the ds/w ratio for the desired experimental
conditions.

Excellent correlation between surface roughness as measured by Atomic Force
Microscopy and the EMA thickness determined by spectroscopic ellipsometry was
also found by Fujiwara et al. for a-Si:H films [11, 12]. The linear relationship was
estimated to be ds = 1.5w + 4 Å. Best-fit void fractions were higher (40–50 %) for
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the early stages of growth characterized by nucleation-induced roughness than for
the thicker films (30–40 %). In a later study, Fujiwara et al. determined a correlation
between EMA and AFM roughness given by ds = 0.88w + 4.9 Å for a different set
of samples of a-Si:H and μc-Si:H, thus confirming that even for the same material,
different growth conditions could lead to different ds/w ratios.

While the ds/w is a-priori unknown, a linear dependence between ds andw implies
that spectroscopic ellipsometry can be used as an in-situ technique to monitor the
change of roughness as a function of film thickness or processing time. Thus, in
2003 Smets et al. [33] studied the morphology evolution of a-Si:H growth as a
function of temperature. Both in situ ellipsometry and ex-situ AFM showed that
the kinetic roughening of a-Si was characterized by a power law dependence with
time: ds ∼ tβ , which was consistent with the ideal case described by the dynamic
scaling theory referred in the previous section and with the results found by other
authors. The value of β determined using single-wavelength rotating compensator
ellipsometry and AFM were within the experimental error (βRC E = 0.29 ± 0.03
vs β(AF M) = 0.27 ± 0.03), showing that even if the ratio is unknown, surface
ellipsometry can provide a useful indication of the roughness evolution if a linear
dependence between the EMA thickness layer and the surface roughness can be
demonstrated.

However, even though there is an abundant experimental evidence suggesting
a linear dependence between ds and w, in 2004 Sperling and Abelson [31] pro-
vided an interesting counterexample that showed that such linear dependence is far
from universal. Starting from rough substrates, they showed that while in-situ spec-
troscopy ellipsometry indicated a smoothening of the surface, the surface roughness
w as determined by AFM increased with time. From their analysis of the power
spectral density, the authors determined that, while the low wavenumber component
of the power spectral density increased with film thickness, its high wavenumber
component was actually decreasing. They concluded that spectroscopic ellipsome-
try was more sensitive to the high wavenumber contribution of the power spectral
density.

The conclusion that we can extract from the literature is that, while in most of
cases there is a linear relationship between thickness of the EMA layer and the surface
roughness w, that relationship is by no means universal, and in some extreme cases
the evolution with thickness of both parameters even follow opposite trends. Also,
ds/w ratios depend on the experimental conditions. First-principle calculations of
the interaction of light with microscopically rough surfaces hence become a crucial
tool to understand the correlation between EMA and surface morphology, and to
determine under which conditions it is reasonable to expect a linear dependence
between EMA and surface roughness.
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4.4 Application of Scattering Models to Rough Surfaces

4.4.1 Rayleigh-Rice Scattering Theory

A complementary approach to the experiments described in the previous section is the
use of electromagnetic scattering theory to describe the optical response of a rough
surface. Many different approaches have been described in literature to describe
the scattering of electromagnetic radiation from rough surfaces. Since both surface
roughnessw and the characteristic size of the surface features are much smaller than
the wavelength of the incident light λ, the Rayleigh-Rice formalism is a suitable
approach to model the interaction of light with microscopically rough surfaces.

Franta and Ohlidal [13] developed such formalism up to second order of the w/λ
parameter, and obtained a closed expression for the change in the Fresnel reflection
coefficient of a randomly rough surface:

�rp,s = w2
∫ ∞

−∞

∫ ∞

−∞
f p,s(qx , qy)Sn(qx − n0k0 sin θ0, qy)dqx dqy (4.8)

Here, f p,s are kernel functions that relate the surface morphology to the optical
response that depend on the optical properties of the material and the angle of inci-
dence θ0, the wavenumber of the radiation k0 = 2π/λ and the spatial wavevector q.
Expressions for the kernel functions f p,s were derived by Franta and Ohlidal [13]
and are reproduced in the appendix. Sn(q) = S(q)/w2 is the normalized version of
the power spectral density defined in the previous section, i.e.

∫ ∞

−∞

∫ ∞

−∞
Sn(qx , qy)dqx dqy = 1. (4.9)

Let us consider the ideal case of a surface with a Gaussian power spectral density.
Then, the power spectral density can be parametrized using Eq. 4.6, and the optical
response depends on two parameters: the surface roughness w and the correlation
length ξ. The effect of surface morphology on the pseudodielectric constant is shown
in Fig. 4.3 for the case of p-Si. It is clear from Fig. 4.3 that both the surface roughness
and the correlation length have an influence on the optical response.

Moreover, by fitting the simulated optical response to an EMA model, it is possible
to establish a correlation between the power spectral density of the surface and
the EMA roughness. This process was carried out by Franta and Ohlidal [14] for
Gaussian microscopically rough surfaces and by Yanguas-Gil et al. [37] for self-
affine microscopically rough surfaces.
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Fig. 4.3 Influence of correlation length ξ and roughness w on the pseudodielectric constant of a
p-Si surface with a Gaussian power spectral density

4.4.2 Comparison with Effective Medium Models

Before establishing the connection between the power spectral density and EMA
model roughness, it is instructive to compare Eq. 4.8 with the corresponding expres-
sion obtained considering an effective medium approximation. The change in
the reflection coefficients due to the presence of an EMA roughness ds can be
expressed as:

�rp,s = rs1
(
1 − r2

0s

) (
e−2iχ − 1

)

(1 + r0srs1)
(
1 + r0srs1e−2iχ

) (4.10)

where r0s and rs1 are the Fresnel reflection coefficients of the air/roughness and
roughness/surface interface respectively, and χ is given by:

χ = 2π

(
ds

λ

)
nEMA cos θs (4.11)

Here, nEMA is the effective refraction index of the roughness layer and θs is the angle
of incidence in the effective medium, which can be obtained from the incidence angle
θ0 using Snell’s law.

Restricting Eq. 4.10 to the region of applicability of the Rayleigh-Rice theory, that
is, assuming that ds � λ, one obtains at first order in ds/λ that:

�rp,s = −4iπ
nEMA cos θs

λ

rs1
(
1 − r2

0s

)

(1 + r0srs1)
2 ds (4.12)

From, Eq. 4.12, it is clear that for microscopically rough surfaces, the change
in the Fresnel reflection coefficients scales linearly with the EMA roughness ds .



190 A. Yanguas-Gil and H. Wormeester

Equation 4.8, on the other hand, would predict a quadratic dependence of �rp,s on
the surface roughness w, due to the normalization condition of the power spectral
density. However, as shown in the previous section, in many cases a linear dependence
of ds on w is experimentally found.

This apparent discrepancy was studied by Yanguas-Gil et al. [37], who applied
the second-order Rayleigh-Rice scattering theory described above to the case of
randomly rough surfaces with a self-affine power spectral density. In this case, as
mentioned in the previous section, the surface morphology is described by three
parameters: surface roughness w, correlation length ξ and the roughness exponent
α, which determines the high surface wavenumber dependence of the power spectral
density. To these parameters the authors added a cut-off wavenumber qc, to account
for the breakdown in the scaling behavior at an atomic scale.

Using a parametrization of the power spectral density such that:

S(q) = αw2ξ2

π

1(
1 + ξ2q2

)α+1 (4.13)

�rs,p can be determined for different materials and surface morphologies. As in the
Gaussian case, changes in w, ξ and α affect the optical response of the surface, and
indeed a quadratic dependence on w is obtained when the rest of surface parameters
remain constant. However, when the changes in the reflection coefficients are plotted
against the single parameter w2/ξα, the points coalesce onto a single curve, that is:

�rp,s ∼ w2/ξα (4.14)

Using the standard definition of ρ:

ρ = rp

rs
= tan�ei� (4.15)

it is easy to see how this dependence translates to� and�. This is shown in Fig. 4.4.
The change in � and � as a function of w2/ξα with respect to the values of a flat
surface �0, �0 is shown for CdS, GaAs, pSi and Cu surfaces for an incident angle
of 70◦ and a wavelength of 500 nm. From the results in Fig. 4.4, it is clear that the
parameter w2/ξα captures the influence of the surface morphology on the optical
response of a surface.

These results can be extended to a multiple wavelength analysis. As shown by
Yanguas-Gil et al. [37] for a-Si:H, by fitting the simulated optical response to the
BEMA model a linear relationship between the thickness of the roughness layer in
the EMA model ds and the parameter w2/ξα for a-Si:H (Fig. 4.5). As in the case of
the reflection coefficient, ds changes with the three surface parameters controlling
the morphology of a self-affine surface, but again these points coalesce in a single
curve if ds is plotted against w2/ξα.

The physical interpretation of such dependence is simple: the average surface
slope in a self-affine surface scales with w, ξ and α as δ ∼ w/ξα [26].
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Fig. 4.4 Scaling of the change of the ellipsometric angles � and � with the parameter w2/ξα for
different materials (CdS, GaAs, pSi, Cu) for an incident angle of 70◦ and a wavelength of 500 nm

Fig. 4.5 Correlation between
the thickness of the roughness
layer ds in the BEMA model
and the scaling parameter
w2/ξα for a-Si:H

Therefore, both the optical response of a self-affine surface and the corresponding
EMA roughness ds depend on the product of the surface roughness and the average
surface slope:

ds ∼ wδ (4.16)

Surfaces exhibiting power spectral densities that can be parametrized by Eq. 4.13
are commonplace in the scientific literature, including some of the examples described
in the previous sections. Therefore, in all those experimental systems, a linear depen-
dence between the roughness ds and w is indeed expected, and different proportion-
ality factors experimentally observed between these two variables can be accounted
for by considering different surface slopes.

Interestingly, the results presented above for self-affine power spectral densities
are also reproduced in the case of an ideal Gaussian power spectral density. Franta and
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Ohlidal determined a similar ds ∼ wδ dependence from fitting the optical response
of modeled p-Si surfaces using Eq. 4.8 to the EMA model.

One consequence of the results discussed above is that the ability of EMA models
to accurately follow the evolution of roughness with time relies on a small variation
of the average surface slope δ with thickness. How common is this behavior? The
dynamic scaling theory introduced in the previous section predicts that the correlation
length changes with thickness as ξ ∼ tβ/α and surface roughness as w ∼ tβ . Thus,
the average surface slope δ is expected to remain constant in systems where growth
can be described by these two power laws.

When the growth departs from this behavior, the average surface slope will change
with thickness. In experimental systems where this so-called anomalous scaling is
present, the surface slope is expected to change as δ ∼ tκ, and this would lead to a
breakdown of the linear dependence between w and ds , as experimentally shown by
Sperling and Abelson [32]. The general conclusion that can be then extracted from
scattering theory is that in general the linear dependence between ds and w cannot
be ensured without a proper evaluation of the roughening dynamics.

4.4.3 Small Correlation Length Approximation

The Rayleigh-Rice formalism allows the rationalization of apparent discrepancies
found in the literature. As shown above, the application of this formalism to different
materials suggests that the w2/ξα, wδ dependence should be an intrinsic property
of the scattering process. This can be explicitly shown in the limit where the surface
correlation length is much smaller than the wavelength of the light used to probe the
material investigated: λ � ξ. We will follow the approach presented in Ref. [37].

Assuming that the correlation length is much smaller than the wavelength, so that
ξk0 � 1, it is possible to expand Eq. 4.13 in 4.8 in a power series of ξk0, so that:

Sn(qx − n0k0 sin θ0, qy) = Sn(qx , qy)

[
1 − 2(α + 1)n0 sin θ0

ξqx

1 + ξ2q2 (ξk0)+ O (ξk0)
2
]

(4.17)

This essentially splits the contribution of the power spectral density in an even and
odd contribution.

Likewise, the kernel functions f p(qx , qy) and fs(qx , qy) can be divided into even
and odd components:

f p,s = f (e)p,s(qx , qy)+ qx f (o)p,s (qx , qy) (4.18)

Combining the two results, the change in the fresnel coefficients can be expressed as:
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�rp,s = w2
∫ ∫

f (e)p,s Sn(q)dqx dqy (4.19)

− 2w2(α + 1)ξk0n0 sin θ0

∫ ∫
f p,s(q)

ξq2
x Sn(q)

1 + ξ2q2 dqx dqy

The even and odd components of f p(qx , qy) are given by:

f (e)p (qx , qy) = Ap + (b − c)

q2 + bc

[
B31pq2 + B62p(q

2
y + bc)

]
(4.20)

f (o)p (qx , qy) = B61p

[
q2 (b − c)2

(q2 + bc)
+ (q2 + bc)

]
− B32p

q2 + bc
(4.21)

while those for s polarized light are given by:

f (e)s (qx , qy) = As + B5s
(b − c)(q2

x − bc)

k2 + bc
(4.22)

f (o)s (qx , qy) = 0 (4.23)

In this expression, b =
√

n2
0k2

0 − q2 and c =
√

n2
1k2

0 − q2. Ap, B31p, B62p, B61p,
B32p, As and B5s are coefficients that depend on the optical properties of the interface
defined in Ref. [14], whose values are given in the appendix.

q � k0 in most of the integration range of Eq. 4.19. Thus, we can further simplify
the expression by determining the asymptotic limit of the optical response functions
above. Considering:

b = iq

[
1 − 1

2

n2
0k2

0

q2 + O
(

k0

q

)4
]

(4.24)

and

c = iq

[
1 − 1

2

n2
1k2

0

q2 + O
(

k0

q

)4
]

(4.25)

then

f (e)p (qx , qy) = Ap + i
n2

1 − n2
0

n2
1 + n2

0

q

[
B31p + B62p

(
q2

y

q2 − 1

)]
(4.26)

f (o)p (qx , qy) = 2

n2
1 + n2

0

(
2n2

0n2
1k2

0 B61p − B32p

k2
0

)
(4.27)

f (e)s (qx , qy) = As + i
n2

1 − n2
0

n2
1 + n2

0

q B5s

(
q2

x

q2 − 1

)
(4.28)

f (o)s (qx , qy) = 0 (4.29)
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And the change in the Fresnel coefficients is given by:

�rp = Apw
2 + iπ

n2
1 − n2

0

n2
1 + n2

0

(
2B31p − B62p

)
w2

∫
q2Sn(q)dq (4.30)

− 4πk2
0n0 sin θ0

n2
1 + n2

0

(
2n2

0n2
1 B61p − B32p

k4
0

)
(α + 1)w2k0ξ

2
∫

q3Sn(q)

1 + ξ2q2 dq

�rs = Asw
2 − iπ

n2
1 − n2

0

n2
1 + n2

0

B5sw
2
∫

q2Sn(q)dq (4.31)

As was shown in Ref. [37], of the three terms in �rp, it is the second one the
responsible for the scaling behavior determined above. The first and the third show
contributions that only depend on the square of the surface roughnessw, with the third
term being first order in ξk0, which is normally much smaller than unity. Likewise,
in�rs the scaling behavior is due to the second term. This means that, in both cases,
the influence of the optical properties of the interface and the surface microstructure
become separable:

�rp,s = C p,s(n0, n1, θ0, k0)T (w, ξ,α, qc) (4.32)

where we have defined:

C p(n0, n1, θ0, k0) = iπ
n2

1 − n2
0

n2
1 + n2

0

(
2B31p − B62p

)
(4.33)

Cs(n0, n1, θ0, k0) = −iπ
n2

1 − n2
0

n2
1 + n2

0

B5s (4.34)

T = w2
∫

q2Sn(q)dq (4.35)

Here T has been chosen so that it has units of length. As shown in Fig. 4.6, T is
responsible for the scaling with w2/ξα predicted by the Rayleigh Rice model.

To conclude this analysis, it is interesting to compare Eq. 4.32 with the linearized
expression for the BEMA model, Eq. 4.12. In both cases, since

�ρ ≈ ρ

(
�rp

rp
− �rs

rs

)
(4.36)

the ratios �ρR R/T and �ρE M A/ds depend solely on the optical properties of the
materials, angle of incidence and light wavelength. In Fig. 4.7, we show the correla-
tion of the absolute values and phase of these magnitudes for a wavelength range of
1.5–4.5 eV, refractive index ranging from 1.2 to 3.1, attenuation constant from 0.2 to
2 and an angle of incidence of 70◦. Despite their different origin and mathematical
structure, the agreement between the two models is fairly good, showing a good
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Fig. 4.6 Dependence of the surface term T of the asymptotic RR model with w2/ξα

Fig. 4.7 Correlation of the normalized optical response modeled using the BEMA model and using
the asymptotic RR theory

linear behavior. Such agreement is the reason why the simulated spectroscopic ellip-
sometry data using the RR theory can be accurately fitted using the BEMA model,
as depicted in Fig. 4.5 [37].

4.5 Optical Characterisation at Normal Incidence

The influence of roughness is particularly well observed on metal surfaces like
silver. Several studies showed the emergence of a strong plasmon feature around
335 nm during the growth of a silver film [5, 19, 22, 30]. A thorough treatment
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of the influence of roughness on the normal incidence optical response of a sil-
ver surface using the Rayleigh Rice approximation was provided by Kretschmann
and Kröger [18]. This approach explains the substantial red shift observed for
roughness with a large correlation length. The BEMA approximation is not able
to reproduce the position of the plasmon peak. This inability of BEMA to repre-
sent a plasmon resonance is very similar to that found for the optical character-
isation of noble metal colloidal particles [20]. Modelling the roughness of a sil-
ver surface with BEMA provides a resonance feature at a much larger wavelength
than the 335 nm observed for roughness with a small correlation length. In fact,
the BEMA approach for a silver surface reflects the response of roughness with a
correlation length of 4 µm. However, this is not the only problem associated with
the BEMA approach. Also anisotropic structures like ripples are conceptually diffi-
cult to model with this. The optical response of such a nanostructured surface was
characterized in detail with RAS measurements [8, 9, 34]. The use of RAS has sev-
eral advantages compared to the usually employed oblique incidence ellipsometry.
The main advantage is that the technique is only sensitive for anisotropic features.
Any isotropic roughness present on the initial surface is disregarded. Furthermore,
the standard experimental system used in RAS works as an optical bridge, which
allows high sensitivity [1, 38]. The analysis of the recorded optical response is very
suited for analysis within the Rayleigh Rice formalism introduced in the previous
section.

At normal incidence, the rather complex perturbation of the reflectivity for oblique
incidence introduced in Eq. 4.8 can be highly simplified. In this situation, the kernel
reduces to the form found for s-polarized light, see Eq. 4.22. However, because we
are now interested in the response as a result of roughness on a surface (n0 = 1) that
is different two orthogonal directions (x, y) on the surface, two kernels associated
with these directions have two be considered:

f̂ y,x = −2k0r (0)q

⎛
⎜⎜⎝

k0n1

q
+
(b̂ − ĉ)

((
qx,y

q

)2 + b̂ĉ)

)

1 + b̂ĉ

⎞
⎟⎟⎠ (4.37)

In this the normalized version of the previously introduced parameters was used:

b̂ = b

q
=

√(
k0

q

)2

− 1 (4.38)

ĉ = c

q
=

√(
k0n1

q

)2

− 1 (4.39)

are used.
With these definitions the reflectivity difference of an anisotropically rough sur-

face on top of an optically isotropic substrate can be evaluated:
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�r

r
= 2 · (rx − ry)

(rx + ry)

= σ2

r̂ (0)

∫ ∞

−∞

∫ ∞

−∞
( f̂x − f̂ y)w(�q)d�(q)z (4.40)

where r̂ (0) = 1
2 · (r̂ (0)x + r̂ (0)y ). The difference in the kernel f̂ reduces to:

f̂x − f̂ y = −2k0r̂ (0)q ·
(b̂ − ĉ) ·

((
qy
q

)2 −
(

qx
q

)2
)

(1 + b̂ĉ)

= −2k0r̂ (0)q
(b̂ − ĉ)

(1 + b̂ĉ)
· cos 2φ (4.41)

The angle φ represents the direction of �q with respect to the parallel direction.
The selection of only the anisotropic roughness contribution to the optical response
is made by the cos2φ term.

For anisotropic roughness in the y direction with a small lateral length scale, i.e.
q � k0, the kernel can be simplified to:

f̂ y = −2ik0r̂ (0)qy
n1

2 − 1

n1
2 + 1

(4.42)

The spectral contribution of this kernel is reduced to a resonance function n1
2−1

n1
2+1

.
For silver this provides the mentioned plasmon resonance at 335 nm. Both rms rough-
ness and spatial periodicity contribute in a similar way to the amplitude of this kernel.
The anisotropic optical response is found by integrating the product of the kernel
and the specific PSD:

�r

r
= −2ik0σ

2 n1
2 − 1

n1
2 + 1

∫ ∞

−∞

∫ ∞

−∞
|�q| cos 2φw( �K q)d�(q) (4.43)

For anisotropic roughness, this integration over the PSD provides the average
spatial wavevector q0. This leads to an optical response that shows the same depen-
dence on roughness and correlation length derived above, i.e. a change in reflectivity
proportional to w2/ξ

�r

r
= −2ik0w

2q0
n1

2 − 1

n1
2 + 1

= −8π2w2

λξ

n1
2 − 1

n1
2n + 1

(4.44)

Aspnes [2] evaluated the optical response of various nanostructures taking into
account local field effects and found for a sinusoidal modulation the result of Eq. 4.44.
However, in his derivation he used Re(n1

2) � 1. The resonance observed for Ag
does not comply with this, as the position of the resonance is given by the Frölich
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Fig. 4.8 RAS spectrum of a ripple pattern on Ag(001) created by grazing incidence ion sputtering
for various ion fluence. A fit of a Lorentz lineshape to the individual spectra is also shown

(a) (b)

Fig. 4.9 a RAS spectrum of a ripple pattern on Ag(001) created by oblique incidence ion sputtering
for various ion fluence. Note that only 4 spectra and the and the model fit are shown for clarity. b
Evaluated PSDF from the fit to the measured spectra

condition Re(n1
2) = −1. Local field effects as considered by for instance Aspnes

and Barrera et al. thus seem not to have any influence on the optical response for a
sinusoidal profile [2, 4].

An anisotropic ripple pattern can be obtained by grazing incidence ion sputtering
[8]. The anisotropic optical response of such a pattern created at 320 K is shown in
Fig. 4.8. Clearly visible is the plasmon resonance whose shape can be fitted with
Eq. 4.44. This lineshape is essentially a Lorentz profile [34]. However, a red shift
with increasing ion fluence is observed, albeit that the Lorentz lineshape still fits
the optical spectrum. This indicates that the length scale at the prolonged stage is
no longer much smaller than the resonance wavelength of 334 nm and in principle
Eq. 4.44 is no longer valid. The periodicity of the ripple pattern can be reduced by
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sputtering at a lower sample temperature. At 250 K, a pattern with a periodicity of
around 50 nm can be made providing the resonance peak at the expected 334 nm
wavelength. The red shift observed in Fig. 4.8 allows to retrieve the length scale of
the ripple pattern. The amplitude of the RAS spectrum is again proportional tow2/ξ.

Ripple patterns with a larger periodicity can no longer be modelled with the short
correlation length approach used in the derivation of Eq. 4.42. This breach can be
experimentally observed as a much larger red shift, see Fig. 4.9a. This occurs for
a less grazing incidence sputtering, i.e. a polar angle of 70◦ and a temperature of
390 K. A fit to the experimental data with a Gaussian distributed periodicity of the
ripples provides an evolution of the PSDF that provides both the ripple periodicity
distribution and ripple amplitude as depicted in Fig. 4.9b. The observed red shift is
related to a substantial increase in the ripple periodicity, reflected by the decrease of
the depicted spatial wavevector.
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A. Terms of the Rayleigh-Rice Theory

Following the notation used in Ref. [14], the kernel functions in the Rayleigh-Rice
theory are given by:

f p(qx , qy) = Ap + (b − c)
B31pq2 + B62p(q2

y + bc)

q2 + bc

+ qx
B61p

[
q2(b − c)2 + (q2 + bc)2

] − B32p

q2 + bc
(4.45)

fs(qx , qy) = As + B5s
(b − c)(q2

x − bc)

q2 + bc
(4.46)

where:

b =
√

n2
0k2

0 − q2 (4.47)

c =
√

n2
1k2

0 − q2 (4.48)

and

Ap = k2
0n0n2

1 X/D (4.49)
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B31p = k0n2
0n2

1 sin θ0W/D (4.50)

B62p = k0n0n1 cos θ1 X/D (4.51)

B61p = n0n1 cos θ1W/(Dk0) (4.52)

B32p = k3
0n2

0n2
1 sin θ0 X/D (4.53)

As = −2k2
0n0n1 cos θ0 cos θ1rs (4.54)

B5s = −2k0n0 cos θ0rs (4.55)

with:

D = (n0 cos θ0 + n1 cos θ1)(n
2
0 sin2 θ0 + n0n1 cos θ0 cos θ1) (4.56)

X = (n2
0 − n2

1) cos θ1tp (4.57)

W = (n1/n2
0 − 1/n1)n0 sin θ0tp (4.58)

Here, θ0 is the incidence angle, k0 is the light wavenumber, n0 and n1 are the air
and the material complex refractive index, and rs , rp, tp, ts are the Fresnel reflection
and transmission coefficients for the flat interface.
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Chapter 5
Plasmonics and Effective-Medium
Theory

David E. Aspnes

Abstract The field of plasmonics has recently undergone a renaissance with the
development of methods that can systematically produce structures on submicron
scales. Plasmons, plasmon polaritons, and dielectric responses at the effective-
medium level all involve screening charge that develops at the boundaries between
different media, and hence are all related. The purposes of this work are to develop,
from a fundamental perspective, these connections; to fill gaps that exist in stan-
dard treatments of electrodynamics; and to make contact with the relevant literature.
The emphasis is on solutions of the homogeneous Maxwell Equations for com-
posite materials and laminar samples. As a restatement of objectives, we outline
what effective-medium theory can teach us about plasmonics; cast plasmonics in a
form that can readily be taught to students; and provide introductory references to
more extended treatments, for example recent reviews, the light-scattering literature
describing grating anomalies, and approaches to metrology.

5.1 Introduction and Overview

When an external field is applied to a homogeneous material, forces on the atomic
scale are generated on the charges of the material. In the classical picture, these forces
displace the point charges q from their equilibrium positions, generating dipoles
� �p = q��r , where��r is the change of position of a given q resulting from the local
field at q [1]. We have neither the temporal nor spatial resolution to follow these
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displacements on the scale of the individual q, nor would this necessarily lead to useful
information even if we could. However, by performing spatial averages on length
scales that are large compared to atomic dimensions but small compared to those
in the laboratory, we convert these atomic-scale displacements into a macroscopic
average [2]. This averaging process yields a dielectric function ε that provides a
macroscopic-scale description of the atomic-scale response of the material to the
applied field. This is genuine progress, because ε can be used to describe macroscopic
phenomena such as wave propagation and reflection through the Fresnel equations.
Taking advantage of its dependence ε(ω) on frequency ω, one can also identify
materials by spectral measurements of their transmittances and reflectances.

If the material is a composite consisting of dissimilar regions that are small com-
pared to the wavelength λ of light but still large enough to possess their own dielectric
identity, the local fields and the subsequent averaging process are now complicated
by the presence of screening charge that develops at the boundaries between regions.
This screening charge modifies the local fields and hence the polarizations within
the different regions of the composite, and therefore its macroscopic average polar-
ization. However, under certain conditions we can perform a second average, which
again yields a macroscopic dielectric function 〈ε(ω)〉, but one that now describes the
macroscopic response of the composite to the applied field [3]. The result of this
effective-medium calculation is an expression that gives 〈ε(ω)〉 not only in terms
of the dielectric functions εa(ω), εb(ω), . . . of its constituent materials, but also of
its structure. If the geometry is sufficiently simple so that a closed-form expression
results, we can solve the inhomogeneous Maxwell Equations analytically to obtain
expressions relating 〈ε(ω)〉 to these material and structural parameters. A relation of
this type is termed an effective-medium theory (EMT). The prototype EMT is that
developed by Garnett [4, 5] in 1904 to explain the well-known red color of disper-
sions of Au nanoparticles in glass.1 While the description of the response is now more
complicated, it also invests optical measurements with substantially more diagnostic
power. This capability is crucial in integrated-circuits technology, where optical mea-
surements have become a nondestructive replacement for the analysis of materials,
thin films, and structures used in these ubiquitous electronic assemblies [6].

Under conditions that also depend on the nature and structure of the constituents,
the screening charge can oscillate without being externally driven, although an exter-
nal drive is necessary to initiate the excitation. These excitations are solutions of the
homogeneous Maxwell Equations, and are termed plasmons. A critical examination
of these solutions under simplified but instructive conditions is one of the goals of this
work. These form a much richer set than those of the corresponding inhomogeneous
equations used to obtain the standard effective-medium expressions. These solutions
correspond to poles in the macroscopic dielectric response of the composite, or even
more generally to poles in expressions for reflectance or transmittance, and can be

1 A famous example of the use of dispersed metal colloids to color glass is the Lycurgus Cup,
crafted probably in Rome about the fourth century AD and currently on exhibit at the British
Museum (www.britishmuseum.org.)

www.britishmuseum.org.
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found by approaching them from this perspective. In the former case the poles are
associated with the composite material itself, as for example the aforementioned
dispersions of Au nanoparticles in glass. An example of the latter is the “surface” or
more accurately interface plasmon, which requires only a planar interface between
two materials with the appropriate dielectric responses [7]. The interface plasmon to
which the term usually refers is an evanescent excitation that decays exponentially
on both sides of the interface. However, a second class also exists, consisting of plane
waves that radiate from both sides of the interface.

Why a pole in a response function should correspond to a self-sustaining excitation
may be easier to accept if we note that a response, for example the reflectance, is the
ratio of an outgoing to an incoming field. However, a stand-alone excitation generates
an outgoing field with no incoming field. From this perspective it should not be
surprising that these excitations influence the spectral dependences of reflectances
and transmittances either on or off resonance, and that plasmons are already an
intrinsic part of the Fresnel equations. When driven by an external plane wave, these
excitations are termed plasmon polaritons.

Although the present work is concerned mainly with solutions of the homogeneous
Maxwell Equations, to gain a better perspective, scattering needs to be mentioned
as well. Scattering is the unavoidable result of incoming or outgoing waves inter-
acting with spatially inhomogeneous systems. With or without effective-medium
involvement, standard laminar-sample calculations using the Fresnel equations
ignore scattering by assuming that the length scales of all inhomogeneities except
layer thicknesses are small compared to λ. In this case reflectance and transmittance
can be described by interactions involving the four basic types of plane waves at pla-
nar interfaces: incoming, reflected, back-reflected, and transmitted. Resonances are
particularly effective at scattering, but for mathematically smooth interfaces the only
resonances that can be accessed directly by plane-wave excitation are the effective-
medium plasmons in the bulk. However, rough interfaces possess Fourier coefficients
that can be obtained by Fourier-transforming their autocorrelation functions. These
Fourier coefficients can couple incoming and outgoing waves to interface plasmons
in second order, thereby diverting energy to their creation [7]. This process results in
plasmonic features in reflection spectra. The diffraction grating represents an extreme
case, where the objective is to divert as much of the incoming radiation as possible
into scattered radiation. Here, the inhomogeneities are not only of the scale of λ
but also periodic. The Hessell and Oliner model [8], which is generally considered
to be the landmark for quantitative analysis of grating structures, invokes plasmons
directly by viewing the grating as a waveguide interacting with a resonant cavity. The
incident and reflected waves correspond to the propagating modes of the waveguide,
and the role of the resonant cavity is taken by the plasmon.

In the bulk, effective-medium theory crosses over to scattering in the analysis of
critical dimensions (CD) in integrated-circuits technology. CD analysis has reached
the stage where optical CD measurements have taken over functions that previously
required scanning electron microscopy (SEM) or transmission electron microscopy
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(TEM) [6]. The landmark analytic connection is generally considered to be the work
of Moharam et al. [9], who model patterned layers as a laminar stack, with the
(spatially dependent) dielectric response of a given lamination expressed as a Fourier
series. By matching data obtained over a wide spectral range in the visible-near uv
using rotating-compensator polarimetry, the coefficients of the different laminations,
and hence their dielectric properties and structural dimensions, can be determined.
The issue reduces to one of computational speed, although this remains a continuing
challenge because scattering calculations are formidable.

The current resurgence of interest in plasmonics (at least the third such) is driven by
several factors. First, plasmons increase local fields at boundaries. Attaining the high-
est possible fields is important in a number of areas, for example surface enhanced
Raman scattering (SERS) [10]. Second, the length scales of plasmons are determined
by the length scales of the inhomogeneities themselves, thus nominally providing
a basis for more compact information-processing technologies [11]. Third, spatial
inhomogeneities provide another means of engineering refractive indices to create
layers that can index-match other materials and thus for example enhance efficiencies
of solar cells [12]. Fourth, and most important, with current lithographic technol-
ogy we can actually fabricate structures of dimensions considerably less than the
wavelength of visible light.

This recent resurgence of interest tends to obscure the fact that plasmonics is a
field that is well over a century old. The first papers on radiative plasmonic effects
are those of Garnett [4, 5]. However, nonradiative (interface-plasmon) solutions to
Maxwell’s Equations have been known since the work of Wood [13] and the follow-
up calculations by Wood [14] and Sommerfeld [15]. These surface plasma waves
(SPWs) were more extensively investigated in the 1960s and early 1970s. Notewor-
thy treatments include those of Kretschmann [16] and Kretschmann and Kröger [17],
Abeles [18], and Otto [19]. Another major resurgence of interest occurred with the
discovery of surface-enhanced Raman scattering (SERS) by Fleischman et al. in 1974
[10]. This work was followed by hundreds of papers discussing not only the theory
but also methods of systematically roughening surfaces, for example with lithog-
raphy, to generate the spatial inhomogeneities necessary to control local fields (see
for example the theoretical treatments by Kerker et al. [20] and references therein,
Gersten and Nitzan [21] and references therein, Moscovitz [22], and Hulteen et al.
[23]). Numerous general reviews of plasmonics are also available. Raether’s mono-
graph [7] is an excellent summary of knowledge up to its date of publication, with a
major focus on interface roughness. Murray and Barnes [24] give a summary of the
field from the perspective of materials, Atwater and Polman [11] from applications,
and Zhang and Zhang from nanoengineered structures [25].

Given this extensive background, it is unfortunate that the only contact that most
students have with spatial inhomogeneity in traditional electricity and magnetism
courses is the unphysical cavity derivation of the Clausius-Mossotti relation [26].
Yet a minor extension of the traditional problem of a dielectric sphere in a dielectric
medium in a uniform electric field is all that is necessary to introduce plasmonics.
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One need only to look for solutions with no applied field, which are easy to find as
shown below. The derivation of the Maxwell Garnett EMT requires the extra step of
spatially averaging the textbook solution, which is surprisingly more difficult than
it sounds. My point is not to do detailed calculations or a provide comprehensive
review, but to develop the topics at a relatively low level and provide some examples.

5.2 Dielectric Functions and Effective-Medium Theories

A. Basic Equations

We suppose that the material of interest consists of point charges q that respond in
some way to applied fields. The simplest classical equation of motion for a given q
involves the Lorentz and restoring forces, specifically [27]

�F = m�a = m
d2�r
dt2 = q �E + q

c
�v × �B − κ ·��r , (5.1)

where �r is the position of q, �v = d�r/dt is the velocity of q, �E and �B are the local
electric and magnetic fields at q, and κ is a restoring-force tensor. Ē and �B satisfy
the microscopic Maxwell Equations

∇ · �E = 4πρ; (5.2a)

∇ × �E + 1

c

∂ �B
∂t

= 0; (5.2b)

∇ · �B = 0; (5.2c)

∇ × �B = 4π �J + 1

c

∂ �E
∂t
, (5.2d)

where ρ and �J = ρ�v are the microscopic charge and current densities, respectively.
We recast these into a form more convenient for solution by defining vector and scalar

potentials �A and φ such that �B = ∇ × �A and �E = − 1
c
∂ �A
∂t −∇φ. In the Lorentz gauge

∇ · �A + 1
c
∂φ
∂t = 0, and the Maxwell Equations reduce to the Helmholtz Equation

(
∇2 − 1

c2

∂2

∂t2

)
(φ, �A) = −4π

c
(cρ, �J ), (5.3)

where (φ, �A) and (cρ, �J ) are the 4-potential and 4-current, respectively. We return
to Eq. (5.3) when discussing limits to the validity of EMTs.
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B. Atomic-Scale Averaging

We assume that we are deep inside a macroscopically homogeneous medium, far
from any boundaries. Our objective is to connect atomic-scale quantities to macro-
scopic observables by spatial averaging. Following the electrostatics approach used
by Ashcroft and Mermin [2], we define for example the macroscopic equivalent
〈 �E(�r)〉 of the microscopic field �E(�r ′) according to

〈 �E(�r)〉 =
∞∫

−∞
d3r ′W (�r − �r ′) �E(�r ′), (5.4)

where W (�r − �r ′) is an averaging function that is positive definite, varies slowly with
a characteristic length L on the atomic scale but possibly rapidly on the laboratory
scale, integrates to 1, and depends only on the spatial difference between the source
point �r ′ and the observation point �r . Although vague, this definition is sufficient. From
a different perspective, the above convolutions of two functions in direct space can
be replaced by the product of their Fourier transforms in reciprocal space. The slow
spatial variation of W (�r − �r ′) ensures that its Fourier transform is highly localized
about zero, thereby largely eliminating a substantial fraction of the wide range of
Fourier coefficients of �E(�r ′), which varies rapidly on the atomic scale. Thus W (�r−�r ′)
effectively selects only a small range of the Fourier coefficients of �E(�r ′) about zero.

By defining a new integration variable �r ′′ = �r − �r ′, taking the divergence of both
sides of Eq. (5.3), and performing some mathematics that depend on the integration
limits being infinite, we obtain the macroscopic version of Coulomb’s Law: ∇ ·
〈 �E〉 = 4π〈ρ〉. While correct, this is not particularly informative because 〈ρ〉 includes
the change of the original charge density 〈ρo〉 that is the polarization induced by
〈 �E〉. Since this induced polarization is presumably linear in 〈 �E〉, we can isolate its
contribution. We do this by writing 〈ρ〉 = 〈ρo〉 + (〈ρ〉 − 〈ρo〉), then considering the
difference, noting that for neutral materials 〈ρo〉 = 0. If q is a point charge located at
�R j , then ρo(�r ′) = ∑

j qδ(�r ′ − �R j ). When 〈 �E〉 is applied, �R j → �R j +� �R j , where

� �R j can be obtained from a suitable model. The induced dipoles themselves are
q� �R j . The δ-function makes the integral trivial, and we convert the resulting sum to
an integral, introducing in the process the volume density n of q. Finally, we perform
a Taylor-series expansion of the result. After some additional mathematics we find

∇ · 〈 �E〉 = 4π〈ρo〉 − 4π∇ · 〈 �P〉, (5.5)

where

〈 �P〉 =
∞∫

−∞
d3r ′W (�r − �r ′)n(�r ′)q� �R j (5.6)
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is the macroscopic dipole density. Since by assumption� �R j∼〈 �E〉, we can bring the
polarizability term to the left side of Eq. (5.5), defining the macroscopic displacement
field 〈 �D〉 and therefore ε according to 〈 �D〉 = ε〈 �E〉. We thus not only obtain ε but
also develop a procedure for calculating it in terms of atomic-scale parameters. At
the same time we have laid the groundwork for the description of anisotropic and
nonlinear effects, which are obtained by suitably extending ��r , in the latter case by
including higher-order terms.

C. Effective-Medium Theories

EMTs result from a second average. Rather than make use of the weighting function
explicitly, the standard procedure is to assume that the material has been placed in
an external field �E , then to solve Laplace’s Equation exactly for the microscopic
electrostatic field �E(�r ′) in terms of the geometry of the configuration and the dielec-
tric functions of its constituents. The external field is assumed to be a constant,
�E = �Eo, being generated for example by well-separated, large-area, parallel capac-
itor plates. The resulting �E(�r ′) is then volume-averaged along with the microscopic
displacement-field �D(�r ′), which is obtained by evaluating �D(�r ′) = ε(�r ′) �E(�r ′), where
ε(�r ′) is the value of the dielectric function at �r ′. Although we write ε = ε(�r ′) as if it
were a continuous function of �r ′, the calculations that follow require ε to be constant
within a given region and to change discontinuously at the boundaries between one
region and another. The results of the averaging processes are 〈 �D〉 and 〈 �E〉, and ε is
obtained from 〈 �D〉 = ε〈 �E〉.

For a real composite an analytic solution is generally impossible. Therefore, we
give it a configuration that we can solve, and use limit theorems to estimate possible
ranges of error. One easily solvable configuration is a laminar stack of alternating
layers of materials of dielectric functions εa and εb. For �E parallel to the laminations
the continuity condition on tangential �E yields �E(�r) = �Eo, and therefore 〈 �E〉 = �Eo.
The corresponding calculation for �D(�r) yields εa �Eo or εb �Eo according to whether �r
is in material a or b. Performing the volume average we find that 〈 �D〉 = faεa �Eo +
fbεb �Eo, where fa and fb are the volume fractions of materials a and b, where
fa + fb = 1. The EMT describing this configuration is therefore

ε = faεa + fbεb. (5.7)

For �E perpendicular to the laminations, the boundary condition on normal �D
yields a constant value �D(�r) = �Do throughout, and an analogous calculation yields

1

ε
= fa

εa
+ fb

εb
. (5.8)



210 D. E. Aspnes

In neither case do the layer thicknesses appear, so in this approximation layers may
be of any thickness. For the perpendicular-field case 1/ε becomes singular if either
εa or εb goes to zero. We shall say more about this below.

Except for field orientation the laminar configurations are identical, yet the EMTs
describing them are different. This is a consequence of screening charge. From the
Maxwell Equations and the assumption that ε is constant within a given region, the
screening charge σ can be calculated from

σ = 1

4π
n̂ · ( �Eb − �Ea), (5.9)

where n̂ is the unit normal vector at the interface and �Ea and �Eb are the local fields
on either side. For fields parallel to the boundaries it is evident that no screening
charge exists, so the EMT expression for ε reduces in this case simply to a weighted
average of the dielectric responses of the two constituents. The circuit equivalent
is capacitors in parallel. For fields perpendicular to the boundaries the screening
charge is clearly maximized, and the weighted average leading to ε now involves
reciprocals (capacitors in series). Since there can never be less screening charge
than no screening charge, nor more than that which occurs when all boundaries are
perpendicular to the field, these two cases are extremes. When plotted as a function
of composition for any given εa and εb, the resulting loci form the Wiener limits
[28]. For any two-component composite, ε must lie in the region bounded by these
two loci.

The above also represent limiting cases of Maxwell Garnett (MG) EMTs, which
follow from intermediate solvable configurations. The standard example follows
from the standard introductory electrostatics problem of a dielectric sphere of radius
a and dielectric function εb embedded in a “host” material of dielectric function
εh = εa. The relevant expressions for the scalar potential φ inside and outside the
sphere are

φin =
∞∑

l=0

Al

( r

a

)l
Pl(cos θ); (5.10a)

φout =
∞∑

l=0

Bl

(a

r

)l+1
Pl(cos θ)− Ez, (5.10b)

where the Pl(x) are Legendre polynomials. Applying the boundary conditions on
tangential �E and normal �D and performing volume averages of the resulting electric
and displacement fields we find

ε − εh

ε + 2εh
= fa

εa − εh

εa + 2εh
+ fb

εb − εh

εb + 2εh
. (5.11)
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In our example the host dielectric function εh = εa, so the first term on the right
vanishes. In the Bruggeman mean-field approximation [29] we set εh = ε, and the
left side of Eq. (5.11) vanishes.

The quantity 2 in Eq. (5.11) is a particular value of the depolarization factor p.
Rewriting Eq. (5.11) more generally gives

ε − εh

ε + pεh
= fa

εa − εh

εa + pεh
+ fb

εb − εh

εb + pεh
. (5.12)

Other values of p for simple configurations include p = 0 and ∞ for laminar samples
where the applied field is perpendicular and parallel, respectively, to the laminations,
and p = 1 for inclusions of cylindrical symmetry. In particular, the values p = 0
and ∞ reduce Eq. (5.12) to Eqs. (5.8) and (5.7), respectively, so the laminar-sample
solutions are limiting cases of the MG EMT. In particular, Eq. (5.12) becomes singular
when εa + pεh or εb + pεh vanishes. Again, we will say more about this below.

5.3 Plasmonics

As noted in the Introduction, plasmons are resonances that are solutions of the homo-
geneous Maxwell Equations. We now look for EMT solutions in the electrostatic
(long-wavelength) limit.

A. Parallel Plates

The simplest case is the configuration where a material of dielectric function ε is
placed between two ideal conducting plates. For the field direction parallel to the
plates the boundary condition on normal �D is satisfied trivially. Because there can
be no electric field parallel to the surface of a conductor, the boundary condition on
tangential �E requires �E = 0 throughout. Hence there is no nontrivial solution for
this field direction.

We now contrast this to the situation where �E is perpendicular to the plates. Here,
the boundary condition on tangential �E is satisfied trivially. However, the boundary
condition �D = 0 on normal �D requires that �D = ε �E = 0 between the plates. This
equation can be satisfied either by setting �E = 0, which is again a trivial solution of
no interest, or requiring that ε = 0. Thus if some plasma frequency ω = ωp exists
such that ε(ω) = ε(ωp) = 0, then an internal field can exist even though there is no
external applied field. The resulting solution is the bulk plasmon. The bulk plasmon
also follows from Eq. (5.8), where 1/ε = E/D becomes singular if either ε = εa or
εb is equal to zero.
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This simple example also shows that these solutions cannot be static, but are
resonances that occur at specific nonzero frequencies. By Eq. (5.9), they are also
characterized by screening charges σ that develop at interfaces. In this laminar case,
the screening charges obviously have opposite signs on the two sides. The physics
behind the absence of a solution for fields parallel to the boundary is now obvious:
no screening charge, no resonance.

The plasmon also obviously has energy associated it. This is stored alternately
in the electric field at maximum �E and in the magnetic field at maximum current
density �J . This simple picture remains valid as long as retardation effects are negli-
gible. If the spacing d between plates is too large, then the bulk plasmon is no longer
supported. For appropriate values of dielectric functions and sufficiently large d,
waveguide modes appear for both orientations of the electric field. However, these
are not plasmon solutions and will not be discussed further.

B. Sphere

We consider next the embedded-sphere configuration used to derive the Maxwell
Garnett EMA. With no external driving field to impose a symmetry constraint on
allowed solutions, Eqs. (5.10) take the more general form

φin(�r) =
∞∑

l=0

Al

( r

a

)l
Y m

l (θ, ϕ), (5.13a)

φout (�r) =
∞∑

l=0

Al

(a

r

)l+1
Y m

l (θ, ϕ). (5.13b)

where the Y m
l (θ, ϕ) are spherical harmonics. In Eqs. (5.13a, b) the coefficients are

chosen so that φ is continuous at r ′ = a, which is a more efficient version of the usual
continuity condition on tangential �E . Invoking the boundary condition on normal �D
we obtain

Al(lεb + (l + 1)εa) = 0. (5.14)

No condition is imposed on m.

Equation (5.14) again presents opportunities for nontrivial solutions. For a given
l either Al = 0, or there exists an ω such that εb(ω) = −(1 + 1/ l)εa(ω) [7].
If this is the case, then for any l we have a set of solutions for integer m ranging
from m = −l to m = +l. We thus find an entire host of solutions, each of which
corresponds to a different plasmon. Note that this set includes, but goes well beyond,
the l = 1 plasmon singularity that appears in the MG EMT at εb(ωp) = −2εa for the
sphere. The absence of any other solutions in the MG EMT case follows because the
MG EMT was derived assuming the configuration was driven by a uniform external
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field, so we obtain only the solution l = 1,m = 0. The resonance is evanescent,
because the exterior field converges as 1/(rl+1) for all l.

Spheroidal configurations can also be solved analytically [7]. For rotationally
symmetric shapes the l = 1 plasmon appears as two separate modes, one of which
is doubly degenerate.

C. Cylinder

In this geometry the generic solution for the potential is

φin =
∞∑

m=0

( r

a

)m [Am cos mϕ + Bm sin mϕ], (5.15a)

φout =
∞∑

m=0

(a

r

)m [Cm cos mϕ + Dm sin mϕ] (5.15b)

Following the same procedure as above, the condition for a nontrivial solution with
no externally applied field is

εb(ω) = −εa(ω), (5.16)

valid for any m and either harmonic function cos or sin. The solution is again evanes-
cent: for a given m the exterior field converges as 1/rm.

D. Shape and Size Effects: Limits to the Validity
of the Long-Wavelength Approximation

The above calculations show that particle shapes determine the value that εmust take
at the singularities. To make the discussion more specific, we make the usual approx-
imation that the effect of free carriers on the polarizability is adequately summarized
by the Drude expression

εs(ω) = ε∞ − ω2
p

ω2 , (5.17)

where ωp is the plasma frequency and ε∞> 0 is the infrared dielectric constant.
Equation (5.17) allows us to bring frequency explicitly into the calculation. While
useful for describing qualitative behavior, Eq. (5.17) neglects lifetime effects on the
free carriers, which are dictated by scattering. Scattering typically arises from two
basic phenomena: finite mean-free paths of carriers in the metal, and inelastic inter-
actions between carriers and the surface. Both act to broaden resonance lineshapes,
as discussed in more detail by Kreibig [30]. Viewing Eqs. (5.7), (5.8), (5.14), and
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(5.16) in the context of Eq. (5.17), we see that a decrease in screening (increase in p)
leads to a red shift of the resonance for a given material.

Regarding particle sizes, the above effective-medium and plasmonics calculations
were done in the approximation c → ∞, where retardation is neglected. For finite
frequencies the Laplace Equation of electrostatics must be replaced by the Helmholtz
Equation, with Cartesian solutions consisting of plane waves φ ∼ �E ∼ eikz , where
k2 = ω2ε/c2 is the square of the wave vector �k. From Eqs. (5.2a–d) and (5.3), we
can also view the use of ∇ · �E = 4πρ ≈ −∇2φ as being equivalent to using an
incorrect value of ρ.

We can estimate where particle size becomes important by calculating the macro-
scopic average of eikz from Eq. (5.4). Taking a simple normalized decreasing expo-
nential e−|z|/L/2L for W, the average of eikz about z = 0 is not 1 but (1 + k2L2)−1.
Thus to lowest order the errors go as k2L2. This is negligible for atomic-scale aver-
ages but becomes important when particle dimensions become comparable to L. For
example the lowest nontrivial solution of the Helmholtz Equation for the interior
potential of the sphere is

φin(z) ∼ j1(kz) = sin(kz)

(kz)2
− cos(kz)

kz
, (5.18)

where j1(kr) is the spherical Bessel function of order 1. Consequently, the MG EMT
fails where the approximation

j1(ka) = ka

3
(1 − (ka)2

10
+ · · · ) ≈ ka

3
(5.19)

is no longer valid. Since ka = 2πna/λ, the factor (2πn) causes this to occur at
surprisingly small values of a.

The correct treatment of finite-wavelength effects for isolated inclusions follows
the above procedure, but requires the use of solutions of the Helmholtz equation for
both interior and exterior waves. For the spherical case, the exterior waves are given
by Hankel functions. Numerical calculations for simple metals show that resonances
red-shift with increasing particle size, along with changes in lineshapes that are a
consequence of the dependences of the different scattering mechanisms on particle
size. Representative results for some simple metals are given by Derkachova and
Kolwas [31].

Several of these points are illustrated in Fig. 5.1, which shows the resonant emis-
sions of Ag particles of different sizes and shapes [24]. The top row shows the TEM
micrographs of the particles below. The spectrum shifts from the blue with large
screening to the yellow with reduced screening. The fourth (red) emission derives
from the same shape as that of the third particle, but the fourth particle is larger.

Interference causes additional difficulties, even for well-separated particles.
Although local polarizations depend only on local fields, interference can affect these
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Fig. 5.1 Resonant emission of Ag particles of different shapes and sizes, illustrating the effect of
these parameters on resonance wavelengths. The top row shows the transmission electron micro-
graphs of the particles (after Ref. [24])

values and hence the weightings and the overall averages. We take interference explic-
itly into account when evaluating reflectances and transmittances of laminar stacks.
But even in the MG case, where the inclusions are assumed to be well separated,
scattered fields may add coherently in certain directions. Thus other requirements for
the validity of EMTs are that contributions to fields resulting from scattering outside
the averaging region are small and phase-incoherent. The diffraction grating is the
obvious example where these conditions are not satisfied.

5.4 Interfaces and Laminar Samples

Planar configurations present interesting challenges of a somewhat different nature.
In what follows we identify plasmons by an unconventional approach: examining
singularities in reflectance expressions.

A. Interfaces

The nonradiative interface plasmon at a planar interface between two semi-infinite
media of dielectric functions εa (ambient) and εs (substrate) is the classic case. It
is particularly interesting not only from a physical but also from a mathematical
perspective. For TE (s-polarized) light the reflectance rTE is given by

rTE = na⊥ − ns⊥
na⊥ + ns⊥

, (5.20a)

where

ns⊥ =
√
εs − εa sin2 θ, (5.20b)
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etc., where θ is the angle of incidence. The denominator can never be zero in this case
simply because na⊥ and ns⊥ are both restricted to the first quadrant of the complex
plane. Thus no pole, and no plasmon, exists for TE polarization.

However, the situation is different for TM (p-) polarization. Here

rTM = εsna⊥ − εans⊥
εsna⊥ + εans⊥

, (5.21)

We set the denominator equal to zero,

εsna⊥ = −εans⊥, (5.22a)

then square the result to eliminate square-root operations. We find

ε2
s (εs − εa) = (ε2

s − ε2
a) sin2 θ. (5.22b)

Cancelling a common factor we have

sin2 θ = εs

εs + εa
, (5.23a)

cos2 θ = εa

εs + εa
, (5.23b)

so
tan θB = ns/na, (5.23c)

where θB is the Brewster angle.

But this is not what we expected, because the Brewster angle results from setting
the numerator, not the denominator, equal to zero. What went wrong? The difficulty
clearly arises when we square Eq. (5.22a) to obtain Eq. (5.22b), so we need to examine
Eq. (5.22a) more carefully. This equation can be satisfied in principle if εs is negative.
But by Eq. (5.20b), ns⊥ must then be pure imaginary. We can accept this if na⊥ is also
pure imaginary. However, at first sight Eq. (5.20b) indicates that this is impossible,
because it would require sin2 θ > 1. We therefore need to examine the origin of
Eq. (5.21).

Equation (5.21) is the result of combining the dispersion equations, which specify
the squares of the propagation vectors in the ambient and substrate, and the continuity
condition at the s − a interface, which requires that their parallel components are
equal. Defining na|| = cka||/ω etc., the dispersion equations can be written

εa = n2
a|| + n2

a⊥, (5.24a)

εs = n2
s|| + n2

s⊥ (5.24b)
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where the continuity condition requires na|| = ns|| = n||. By formulating the problem
in this way we eliminate any reference to θ . Applying Eq. (5.22a) to Eqs. (5.24a, b)
leads to

n2
a|| = n2

s|| = n2|| = εsεa

εs + εa
; (5.25a)

n2
s⊥ = ε2

s

εs + εa
; (5.25b)

n2
a⊥ = ε2

a

εs + εa
. (5.25c)

We see immediately that a solution does in fact exist for which εs is negative and
where ka|| = ks|| = k|| is real. It is only necessary to require that εs<−εa . From this
it follows that k2

a|| > k2
a , so ka⊥ is imaginary. Since εs is already negative, ks⊥ is also

imaginary. Therefore, the excitation is an evanescent wave that decays exponentially
on both sides of the interface. In the context of Eq. (5.20b) we see that this also
requires sin2 θ>1. However, since we expect sin2 θ≤1, the reason for not initially
recognizing the plasmonic solution becomes clear. We have simply used the wrong
notation for the relevant variable.

In practice k2
a|| > k2

a cannot be achieved by illuminating the interface in
an isotropic ambient, and special measures must be taken. One approach is the
Kretschman configuration [16], which is illustrated in Fig. 5.2. Here, measurements
are made on a thin metal film deposited on a prism of a suitably large refractive index
by illuminated the film through the prism. By changing the angle of incidence in the
prism, we change the projection angle and therefore k||. For the typical case of an
air ambient, a sufficiently large angle of incidence in the prism allows us to generate
a k|| that exceeds anything that can be achieved by illuminating the film in air, so
the conditions for the existence of the interface plasmon at the air-film interface are
realized. As long as the metal film is not too thick, sufficient radiation can pene-
trate the film to excite the plasmon. In this three-phase ambient/overlayer/substrate
configuration the prism is the ambient. However, in the mathematics that follow, we
shall consider the air as the ambient, the film as the substrate, and the projection k||
as an independent variable that can exceed ka .

Fig. 5.2 Kretschmann con-
figuration for exciting an
interface plasmon at the air-
metal interface by illumination
through a prism
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We note that the denominator of Eq. (5.21) can also equal zero for ka⊥ and ks⊥
both real. This solution of the homogeneous equation corresponds to plane waves
that propagate outward from both sides of the interface. However, Eqs. (5.22a, b)
cannot be satisfied with one propagating and one evanescent wave.

B. Dispersion of Interface Plasmons

With na|| as the independent variable, Eqs. (5.25a–c) show that with a given na|| and
εs<− εa the homogeneous equation has a solution only for a particular value of εs ,
i.e., for a particular value of ω. To investigate its behavior we assume that εs(ω) is
given by Eq. (5.17), which we now write as

εs(ω) = ε∞ − ω2
p

ω2 = ε∞ − x2, (5.26)

where x = ωp/ω is defined for convenience. With this definition Eqs. (5.25a–c)
become

n2
a|| = n2

s|| = n2|| = c2k2||
ω2 = εsεa

εs + εa
= εa(ε∞ − x2)

εa + ε∞ − x2 . (5.27)

We identify 3 ranges: for sufficiently small ω, x2 > εa + ε∞, Eq. (5.27) is positive
and n|| is real; for εa + ε∞ > x2 > ε∞ Eq. (5.27) is negative and n|| is imaginary;
and for sufficiently large ω, ε∞ > x2 Eq. (5.27) is again positive and n|| is real. The
first range is the plasmon; the second violates the requirement that na⊥ and ns⊥ must
have the same phase, and the third corresponds to the solution with two outgoing
plane waves.

The solution of Eq. (5.27) for energy as a function of angle of incidence in Fig. 5.3
for εa = 1, E p = 2.19 eV, ε∞ = 3.80, and εBK−7 = 2.31, which are parameters
describing the example data that we will present in Sect. D. The higher-energy radia-
tive branch begins at n|| = 0 and terminates at n2|| = εsε∞(ε∞ + εs) ∼= 0.79,
which occurs at θ ∼= 35.5 ◦. The lower-energy plasmon branch begins at the pole
at x2 = εa + ε∞, which occurs at θ ∼= 41.1 ◦, and ends at an energy E ∼= 0.93 eV.
We plot the solution in this form for easier comparison to the data of Fig. 5.4. These
solutions are usually plotted as k|| versus E.

With a finite real value of k||, the plasmon propagates along the interface. If εs

has an imaginary part, then the interface plasmon is attenuated in the propagation
direction with a characteristic length L = 1/(2Im(k||)). The situation for small
losses is discussed in Raether [32]. We note that the cylindrical geometry discussed
in Sect. C also has propagating solutions, where the radial dependences of the fields
are Hankel functions.
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Fig. 5.3 Solution of
Eq. (5.27) as described in
the text. The red segment
shows the result in the angle-
of-incidence range of Figs. 5.4
and 5.5
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C. Three-Phase (Substrate/Overlayer/Ambient) Systems

In the above section the existence of three phases was incidental to the generation of
the interface plasmon at the air-overlayer interface. However, when all three phases
are considered, new possibilities emerge. The reflectance rsoa of the three-phase
substrate/overlayer/ambient system for either TE or TM polarization is given by the
Airy equation [33]

rsoa = roa + rsoe2iko⊥d

1 + rsoroae2iko⊥d
, (5.28)

where d is the overlayer thickness and rTE
oa = na⊥−no⊥

na⊥+no⊥ and rTM
oa = εona⊥−εano⊥

εona⊥+εano⊥ are
the oa reflectances for TE- and TM-polarized light, respectively, with corresponding
expressions for the so interface. The notation is the same as that used in the previous
section. Setting the denominator equal to zero yields a variety of solutions ranging
from the bulk plasmon for d ≈ 0 to the interface plasmons that were discussed in
the above section, and if d is sufficiently large, to waveguide modes for both TM and
TE polarizations.

Possibly the most interesting case is the bulk plasmon that occurs for very thin
films. Expanding Eq. (5.28) for d/λ � 1 for TM polarization, we obtain

rTM
soa≈rTM

sa

⎛
⎜⎜⎝1 + 4π idna cos θ

λ

εs − εo

εs − εa

1 −
(

1

εo
+ 1

εs

)
εa sin2 θ

1 −
(

1

εa
+ 1

εs

)
εa sin2 θ

⎞
⎟⎟⎠ . (5.29)
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The interesting part of Eq. (5.29) is the term (1/εo) in the numerator. As noted by
Abeles [18], this indicates a singularity (plasmon) at εo(ω) = 0.

However, the above conclusion is not quite accurate owing to the fact that the
first-order term becomes infinite for εo = 0, and hence the first-order approximation
fails drastically. We can obtain a better representation by expanding Eq. (5.28) for
small εo and d. This yields

0 = εod(εsna⊥ − εans⊥)+ 4π iεsε
2
a sin2 θ. (5.30)

We see from Eq. (5.30) that the singularity is not a pure resonance, as suggested by
Eq. (5.29), but has an imaginary part that cannot be set to zero.

D. Example

We illustrate some of these results with the data presented in Fig. 5.4. These data
are the relative reflectances RTM/RTE of indium tin oxide (ITO) films of increasing
thickness on glass [34]. These films were prepared with a bulk plasma frequency
of 2.19 eV by controlling the carrier concentration during deposition and annealing.
The purpose of these data is to highlight the points made above. Being driven by an
external field, the features in these spectra are technically plasmon polaritons, but
the underlying plasmon resonances are evident. For the thinnest films only the bulk
plasmon polariton is seen, with a frequency that is essentially independent of angle
of incidence, as indicated by Eq. (5.29). For increasing d this feature gradually damps
out, as suggested by Eq. (5.30). It is supplanted by an interface plasmon polariton,
which exhibits substantial dispersion. A more complete discussion of these results,
including a more thorough discussion of plasmons and a comparison of these data
to calculations done with the material parameters and the Fresnel equations, is given
in Ref. [34].

For intermediate thicknesses the upper and lower interfaces are coupled, and the
results are more complicated. However, for thick films the upper and lower interfaces
are effectively decoupled, and the dispersion curve of Fig. 5.3 is applicable. Evident
in Fig. 5.4 is the movement of the plasmon-polariton structure to higher energies with
increasing angle of incidence, as also illustrated in Fig. 5.3.

The fact that the intermediate-thickness situation is complicated suggests that to
genuinely compare theory and experiment we must calculate the reflectance ratio
using the exact equations. The result is shown in Fig. 5.5. This agreement is achieved
with no free parameters. Every parameter used in the calculation was determined by
independent measurements. The agreement is striking. All features are present, and
Figs. 5.4 and 5.5 show the same evolutions of the different features with increasing
thicknesses and angles of incidence. This is further confirmation that plasmonic
effects are already built into the Fresnel equations and do not need to be added in an
ad hoc fashion.
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Fig. 5.4 Ratio RTM/RTE of indium tin oxide films of indicated thicknesses deposited on BK-7
glass, measured in the Kretschmann configuration of Fig. 5.2. Angles of incidence range from 42 ◦
(orange) to 53 ◦ (purple) in increments of 0.35 ◦. The bulk plasmon polariton structure seen in panel
A evolves into an interface plasmon polariton structure at the air-ITO interface at panel I, after
which attenuation in the film significantly reduces optical contact to the air-film interface (after
Ref. [34])

More generally, the dynamic response of a configuration can be described beyond
the range of validity of EMTs with the approach introduced by Ewald and Oseen,
which leads to the Ewald-Oseen extinction theorem [35, 36]. Here, an optical
response is treated as a four-step process [27]. First, the local field is evaluated at a
charge site. Second, the relevant force equation is solved for the motion of q. Third,
the radiation from q is calculated. Fourth, the radiation from all q is superposed. For
linear optics this is a difficult challenge, because the wavelength of the emerging
field is the same as that of the incident field, and the intensities are comparable. Thus
the entire calculation must be done self-consistently. Nevertheless, the 4-step process
highlights the essential physics. For nonlinear optics this approach works excellently
well, since the emerging radiation is much weaker and occurs at a different λ. This
is one of the few examples where a nonlinear problem is actually simpler than its
linear equivalent [27].



222 D. E. Aspnes

Fig. 5.5 Reproduction of the data of Fig. 5.4 calculated with no adjustable parameters (after
Ref. [34])

5.5 Lateral Inhomogeneities and Scattering

Scattering of incoming radiation is described by solutions of the inhomogeneous
Maxwell Equations, a topic that is far too large to be discussed here. For example
most of Raether’s monograph [7] is devoted to the optical properties of systems
with rough surfaces, and CD analysis is now an intrinsic part of integrated-circuits
technology [6]. However, we gain perspective by briefly summarizing some aspects.

Rough interfaces break the coupling between n|| and E with interesting conse-
quences. The Fourier transform of the autocorrelation function of the rough surface
supplies momentum so the wave vector of the plasmon can couple to the radiation,
leading to a situation where the combination (k|| − kAC)

2 can be less than (εa + ε∞),
although it may still be greater than ε∞. In this case the n|| become a continuum [17].
Although the plasmon-radiation coupling is a second-order effect, it allows the inci-
dent radiation to generate plasmons and therefore for energy to be extracted. These
plasmon-absorption features appear as locally decreased intensities of the reflected
beam. The Kretschmann and Kröger work [17] also places more traditional scattering
formulations [37] in context, showing that these result from the scalar limit where
no plasmon generation is possible.

As also mentioned in the Introduction, the diffraction grating represents an
extreme case of a rough surface, where the inhomogeneities are not only of the scale
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of λ but also periodic. Hessell and Oliner [8] describe the grating as a waveguide
interacting with a resonant cavity, where the incident and reflected waves correspond
to the propagating modes of the waveguide, and the role of the resonant cavity is
filled by the plasmon. The theory is cast as a Fourier series, with the intensities of
the scattered orders expressed as a continued fraction and evaluated analytically for
the case of a single sinusoidal component. Although the mathematics is challenging,
it provides a concise explanation of Wood’s anomalies [38] and identifies the origin
of previously unidentified structures in the reflected beams.

5.6 Summary

Plasmonic phenomena and their description have been well known for many years,
although the marked increase in general interest has occurred only recently. Solu-
tions of the homogeneous Maxwell equations are not generally considered in standard
formulations of electrodynamics, but can be implemented in a straightforward man-
ner. The present work represents an attempt to make plasmonics more accessible to
readers who are familiar with classical electrodynamics.
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Chapter 6
Thin Films of Nanostructured Noble Metals

Herbert Wormeester and Thomas W. H. Oates

Abstract The optical characterisation of nanostructured noble metal films is dis-
cussed. A good description of the optical response of a 2D layer of identical metal
particles on a support is obtained with the so-called Thin Island Film theory, which
is based on the polarisability of an individual nanoparticle. The influence of particle
shape, density, and the optical properties of both the support and the surrounding
ambient is discussed as well as the ability of the commonly used Maxwell Garnett
approximation to model these films. The possibilities and limits of this approach is
illustrated with several examples. A short outlook towards the ellipsometric analysis
of metamaterials is given.

6.1 Introduction

The plasmonic effects observed in noble metal particles makes them very interesting
for a variety of applications, including bio-medical and information technology. The
plasmon resonance is related to the confinement of the free electrons in the particles.
Although silver and especially gold are widely used, plasmon resonances are also
observed for semiconducting particles and thin transparent conducting oxide layers.
The dominance of gold and silver in plasmon research is due to the rather simple
ways these can be produced. Probably the oldest manufacturing method is in the
production of stained glass, a very nice example of which is the so-called Lycurgus
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cup, demonstrating the high level of craftsmanship in Roman times. Yellow and red
colours were produced with the aid of silver and gold nanoparticles, respectively.

In the early 19th century, Faraday produced gold and silver particles via colloidal
chemistry, the colours of which depend on the size and the dielectric properties of
the nano particles and the solution. A first explanation of the origin of the observed
colours was given by Maxwell Garnett [1, 2] in his seminal papers entitled “Colours
in Metal Glasses and in Metallic Films”. He showed that the coloration is the result
of a mixing of the optical properties of the metal particles and the glass. As such,
these articles are a landmark in the development of Effective Medium Approxima-
tion (EMA) theories that describe the average optical response of a material that is
constituted of more than one material.

For many contemporary technological applications, particularly in sensing and pho-
tovoltaics, a thin layer of noble metal particles on a suitable substrate is required.
Characterisation of this layer consists of describing not only the particle density, but
also the optical properties of such a layer, or the change in the plasmon resonance
position if molecules are adsorbed on the metal particles. Another area of interest is
the growth of a metal film, initially consisting of isolated entities, towards a perco-
lated metal film, with a corresponding change in the electrical resistance. Around the
percolation threshold, such a film displays very characteristic and interesting optical
behaviour. The real part of the dielectric function at low photon energies has to transit
from a positive value characteristic of non-conductive isolated particles to a large
negative value characteristic of a conductive continuous metal film. These optical
features can be monitored with ellipsometry as it provides a reproducible and fast
method for thin film characterisation with great potential for in situ monitoring.

The analysis of ellipsometric spectra requires a model of the measured sample that
incorporates the essential features that are optically monitored. Modeling the opti-
cal response of thin films which are much thinner that the wavelength of the light
generally proceeds by one of two methods [3]. For extremely thin films the dielec-
tric properties of the layer are used to define a dimensionless surface susceptibility
which then acts as a correction to the Fresnel reflection coefficients from a single
interface (modified two-layer model). For thicker films the thickness and (effec-
tive) dielectric properties of the film are used to construct a three-layer model (sub-
strate/film/ambient) and the Airy formulas or Abelès matrix formalism is used to
compute the optical response. The effective dielectric properties may be described
by an EMA if the material consists of two or more different entities with a char-
acteristic length scale much smaller than the wavelength of the light used to probe
the layer. Several EMA’s have been developed, among them the Lorentz–Lorenz
model, the Maxwell Garnett model and several models developed by Bruggeman
[4–6]. Bruggeman’s approach for the mix of spherical entities is usually regarded
as the most robust. These models were developed for materials that show a similar
behaviour in all three orthogonal directions; i.e. isotropic materials.

However, as already noted by Maxwell Garnett, the isotropic situation no longer
holds for particles deposited as a thin film. Such a film will show a uniaxial dielectric
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Fig. 6.1 Ellipsometric measurement of a Au nanocolloidal film deposited on Si. From SEM mea-
surements a surface coverage of 12 % (8 % film volume) was determined for this film. The lines
show simulations of the ellipsometric response with different EMA’s, i.e. the Thin Island Film, the
Bruggeman and the Maxwell Garnett approach

response, with the direction perpendicular to the surface different from the in-plane
direction. This effect is illustrated by Fig. 6.1, which compares the measured spec-
trum of a film of 13 nm gold nanocolloids with known polarizability and surface
coverage deposited on a silicon substrate with models using the Bruggeman (BEMA)
and Maxwell Garnett (MG) EMA. The presence of the gold particles on the surface
is directly observed by the characteristic plasmon resonance at 2.3 eV. All model
parameters required to calculate the optical response with BEMA and MG were
measured prior with different techniques [7]. Since there are no fitted parameters
Fig. 6.1 depicts the accuracy of the models used. Both BEMA and MG fail to accu-
rately describe the measured spectrum at the still low surface coverage of 12 %. The
BEMA approach is quite reasonable at low and high energies, but it predicts a red
shifted plasmon resonance energy which is the important characteristic of this sam-
ple. The MG approach gives the correct plasmon resonance energy which explains
its popularity in the characterisation of noble metal particle layers. However, the
intensity of the plasmon resonance is much smaller than experimentally measured.

Also shown in Fig. 6.1 is the prediction of the Thin Island Film (TIF) model using
the pre-measured parameters, which gives a much better representation of measured
spectra [7]. The TIF model provides an improved result due to incorporation of the
effects of substrate and dipole interactions and also the uniaxial anisotropy of the
layer. We shall show in this chapter that for the MG and TIF models the in-plane
plasmon resonance can be characterized by a Lorentzian line shape, whose resonance
energy provides information about surface coverage and particle shape. Without a
detailed modelling of ellipsometric spectra, this fact already allows an interpretation
of (in situ) recorded spectra. We will also discuss the limits of the applicability of
MG approach and anisotropic particles and metamaterials.
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6.2 The Optical Response of a Thin Layer of Metal Particles

6.2.1 The Polarisability of a Drude Metal Nanoparticle

The origin of the various colours of noble metal nanoparticles was a challenging
physics problem in the late 19th century. In 1908 Gustav Mie solved Maxwell’s
equations for spherical geometry that explained the observed red colour of nanometer
sized gold particles [8]. This landmark theory provided a complete solution for the
scattering and absorption of electromagnetic radiation by a sphere. The full Mie
solution for a spherical geometry is not required when the particle size is much
smaller than the wavelength of the light used. In this case the so-called quasistatic
approximation is applied, where the effects of the phase variation of the electric field
at different points on the particle (retardation) are ignored [9]. The electrons in the
particle thus oscillate in a dipolar mode. The polarizability of a spherical particle in
the dipolar limit is given by:

α = 4πa3 ε − εm

ε+2εm
(6.1)

where a is the radius of the particle ε(ω) = ε′ + iε′′ is the dielectric function of the
sphere material and εm is the real dielectric constant of the medium surrounding the
sphere.

The metallic behaviour of a material is the result of a finite density of states
of electrons at the Fermi energy. The optical response as a result of this part of the
electronic structure is described by the Drude theory [9, 10]. In this, three parameters
are used to characterize the dielectric behaviour: the density of free carriers Ne, the
effective electron mass m∗ and the characteristic damping time τ . This provides a
dielectric function according to:

εD = ε∞ − Ne
�2e2

m∗ ε0

E2 + i E
τ

= ε∞ − E2
p

E2 + i�E
. (6.2)

The combination of the electron density and effective mass are often expressed
as the plasma energy Ep. Their individual numbers can not be determined from
the optical response of a metal but require a more elaborate characterisation, for
instance with the (optical) Hall effect. The damping time is often expressed by the
broadening�. The Drude formula is valid in the spectral region in which no interband
transitions occur. However, the influence of these interband transitions is present
since the real and imaginary part of dielectric function have to be Kramers-Kronig
consistent. This consistency is obtained with the quantity ε∞. For a pure Drude metal
the value of this quantity is 1. Deviations from this number reflect the influence of
the interband transitions [10].

The combination of the dipole approximation for a spherical particle and the
Drude response provides a Lorentzian line shape for the polarisability of a single
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Table 6.1 Lorentzian parameters for the dipolar spherical particle, Maxwell Garnett and Thin
Island Film model. The derivation of these parameters is provided in Appendix A.1, A.2 and A.3

Spherical particles MG model TIF model

E2
p,L

3 εa

(ε∞ + 2εa)
2 E2

p 3f
εa(1 + ks)[

ε∞(1 − f)+ εa(ks+f )
]2 E2

p f
εa(1 + kP)

2

(ε∞ +kPεa)
2 E2

p

E2
0,L

E2
p

ε∞ + 2εa

(1 − f)
ε∞(1 − f)+ εa(ks+f )

E2
p

E2
p

ε∞ +kPεa

ε∞,L
ε∞ − εa

ε∞ + 2εa
1 + 3f(ε∞ − εa)

ε∞(1 − f)+ εa(ks+f )
1 + f(1 + kP)

ε∞ − εa

ε∞ +kPεa

metal particle:

α = 4πa3

(
ε∞,L + E2

p,L

E2
0,L − E2 − i�E

)
(6.3)

The limited size of a spherical metal particle changes the optical response.
A plasmon-like oscillation is observed and the polarisability has a maximum at
the resonance energy:

E0,L = Ep√
ε∞ +2εa

(6.4)

The equations for the strength and the offset are given in Table 6.1 and the deriva-
tion is provided in Appendix A.1. The expression for the resonance energy includes
a number of factors that influence the actual position of the resonance energy [9, 10]:

1. The value of ε∞: Interband transitions define this parameter. Its influence on the
resonance position is illustrated with the comparison of gold and silver. Both
materials have a similar electron density and electron mean free path resulting
in a similar value for both the plasma energy and the broadening. If the dielec-
tric response is described by Eq. 6.2, the difference between these two metals is
the value of ε∞; 10 and 4 respectively. As a result, the resonance energies for
gold and silver nanoparticles are very different, explaining their red and yellow
appearances, respectively.

2. The value of εa: A change in the nature of the ambient can induce a distinctive shift
in the resonance energy, with a larger dielectric constant resulting in a stronger
redshift.

3. The value of Ep: The plasma energy is determined by the density of the free elec-
trons. Its magnitude can be influenced by factors such as the chemical adsorption
of molecules on a small particle.

4. The value 2: This value is valid for spherical particles. For non-spherical par-
ticles, this value increases in the extended direction, while it decreases for the
compressed direction. This results in two plasmon resonances for prolate and
oblate particles, one at energy below and one above that of a spherical particle.
This value is also changed if the particles start to interact with their surrounding,
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i.e. other particles or a surface. The latter effect can be very important for the
ellipsometric characterisation of a particulate film.

In this analysis, the assumption is still made that the dielectric function of the particle
is the same as that for a bulk crystal. However, a few more effects have an influence
on the actual dielectric function [9]. Most important is the limited size of a particle
compared to the electron mean free path of the bulk material. If this is the case, the
value of the broadening, �, can be considerably enlarged. Also polydispersity of a
particle ensemble can manifest itself as a broadening of the optical response.

6.2.2 Maxwell Garnett EMA for a Drude Metal

The effective dielectric function formulated by Maxwell Garnett for a layer consisting
of particulates with dielectric function ε and occupying a volume fraction f in a host
medium with dielectric function εa is:

εeff − εa

εeff +2 εa
= f

ε − εa

ε +ksεa
. (6.5)

The screening factor ks takes into account the shape of the inclusions. Rearrangement
of the parameters yields an expression for the effective dielectric function:

εeff

εa
= ε(1 + 2f)+ εa(ks − 2f)

ε(1 − f)+ εa(ks + f)
. (6.6)

The effect of metal particles with a Drude metal characteristic leads to an effective
dielectric function with a Lorentzian line shape [11]. The Lorentzian parameters,
i.e. the plasma energy, the resonance energy and the interband transitions for this
effective dielectric function are given in Table 6.1. The derivation of these parameters
is provided in Appendix A.2. These Lorentzian parameters are a generalization of
the results of Yamaguchi [12], who considered spherical particles (ks = 2) and
an ideal metal (ε∞ = 1) in vacuum (εa = 1). In this special case, the Lorentz
plasma energy is E2

p,MG = fE2
p and the resonance energy E0,MG = √

(1 − f)/3)Ep.
However, as discussed above, not even silver shows such ideal Drude behaviour.
The influence of these interband transitions via the ε∞ on the Lorentz line profile
parameters is considerable, see Fig. 6.2. Both the location and the strength of the
plasmon resonance are strongly affected by the interband transitions, although the
plasmon resonance and the interband transitions do not overlap. The dependence on
the volume fraction of the particles is also quite different. The plasmon resonance
energy is hardly affected by the density of particles f for ε∞ = 10, i.e. for Au like
particles. This was also experimentally observed in the range up to 40 % surface
coverage [7].

Maxwell Garnett already discussed that for deposited particles two resonances
should be observed. A nice illustration of this can be found in the work of Hilger
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Fig. 6.2 Lorentz line profile parameters as a function of surface coverage for the TIF theory (solid
lines) and the MG approach (dashed lines). The parameters are evaluated for ε∞ = 1 (black),
4 (blue) and 10 (red). These represent the values found for a real Drude metal, silver and gold
respectively

and Kreibig who studied the optical response of deposited silver particles [13]. They
observed two separate resonances, one that can be excited with light polarized parallel
to the interface and one that can be excited with light polarized perpendicular to the
interface. The split in resonance energy increases with coverage and is virtually
zero for very low coverage. These in-plane and out-of-plane resonances reflect the
interaction between particles; the in-plane resonance is red shifted, and the out-of-
plane resonance is blue shifted. This effect was already discussed by Maxwell Garnett
himself, who limited the discussion to the in-plane component [1, 2]. His approach
shows the red shift in resonance energy, as also illustrated in Fig. 6.2. However, the
out of plane resonance for deposited particles is not accounted for by the standard
formulation of the MG approach.
The split in resonance energy can also be found using the MG EMA if one takes
into account that a monolayer of nanoparticles form a very thin layer. In this case
the Drude thin film approach should be valid, which is a special case of the Airy
equations [3]. For a film with a thickness d much smaller than the wavelength of
light, the Drude thin film expression (first formulated by Rijn van Alkemade [14])
makes a first order approximation and includes only the dipolar terms. The change
in the ratio of the p- and s-polarized light measured in ellipsometry is found to be
proportional to a value J, called an invariant [15]. The proportionality constant is
determined by the incidence angle, the wavelength and the substrate and ambient
(εa) dielectric function. The value of J is given by the variation in the dielectric
properties of a film between the substrate at height zero and the film thickness d.

J =
d∫

0

εP(z)− εa + εa

(
1

ε⊥(z)
− 1

εa

)
dz. (6.7)



232 H. Wormeester and T. W. H. Oates

A difference between the dielectric function of the thin film parallel εp and per-
pendicular ε⊥ to the interface is used. Although these are the same within the MG
approach, they effect the optical response in a different manner as in general ε �=1/ε.
For a Lorentzian profile of the dielectric function, the reciprocal value is also a
Lorentzian:

εa

εeff
= 1

ε∞ + E2
p

E2
0−E2−i�E

= 1
ε∞

+ E∗2
p(

E∗2
0 − E2 − i�E

) (6.8)

with

E∗2
0 = E2

0 + E2
p

ε∞
and (E∗

p)
2 = −

(
Ep

ε∞

)2

. (6.9)

The Lorentz line shape has an attenuated strength and a blue shifted resonance
energy. The MG approach thus indeed gives rise to a blue shift of the resonance
energy of the perpendicular component of the dielectric function. The difference in
resonance energy between the in plane and out of plane component depends again on
the interband transition parameter ε∞. This explains the stronger features and larger
resonance splitting observed for Ag compared to Au.

Figure 6.3 shows the measured and evaluated ellipsometric spectra for silver
nanocolloids with a surface coverage of 44 %. A difference in resonance energy
between the parallel and perpendicular component of about 0.8 eV is measured. The
measured spectra could be adequately modelled with the MG theory using a modified
Ag dielectric function. The broadening in the Drude part of the original silver dielec-
tric function was changed to incorporate the finite size of the 5 nm diameter silver
particles. The MG combined with the Drude thin film approximation gives a 1.0 eV
peak splitting, slightly larger than the 0.8 eV from experimental results. The effect of
this differences on the ellipsometric angles is relatively small. The applicability of
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Fig. 6.3 The measured value of the ellipsometric parameter � for a nanocolloidal Ag film on
HOPG (o). The solid line is from the TIF model, the dashed line represents the result of the MG
model
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the MG approach is in this case limited by the slight difference in resonance energy.
However, it does not explain the strong difference in simulated and measured spectra
observed for gold, see Fig. 6.1. This can only be explained by a more appropriate
treatment of the electro-magnetic interactions of particles with each other and the
substrate on which they are deposited.

6.2.3 The Thin Island Film Theory

A particle deposited on a surface experiences two interactions that are very different
from that in a diluted solution or bulk crystal. First of all, the presence of the substrate
interface breaks the symmetry. As a result the optical response will change, which
may be mathematically described as an interaction with a mirror image. A second
effect is that the surface coverage can easily exceed a few percent and the interactions
between particles have to be taken into account. These neighbouring particles also
have images with which the original particle will interact. These interactions for the
in-plane component are schematically depicted in Fig. 6.4. The incorporation of the
effect of the image dipole of a particle on the depolarization factor was explicitly
incorporated into a simple dipolar model by Yamaguchi [16] and at virtually the
same time by Bedeaux and Vlieger [17]. The image effect leads to an effective
polarizability of each individual particle that is different for directions parallel and
perpendicular to the interface. The incorporation of the image effect was the start of
the development of the Thin Island Film (TIF) theory by Bedeaux and co-workers
[18] which also incorporates the neighbor interaction effect and the description of
non-spherical particles. This TIF theory is essentially a multipole expansion of the
electro-magnetic problem of the response of identical particles by an incident electric
field. As shown by Haarmans et al. [19] a noble metal particle film with a coverage

Fig. 6.4 Optical interactions between nanoparticles on a surface giving different contributions to
the in-plane excess polarizability γ. These interactions are with the image of the particle, with
neighbouring particles and with the images of neighbouring particles
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up to 50 % is well described by dipole and quadrupole terms. Wormeester et al. [20]
showed that if image effects are negligible, dipolar terms are sufficient to describe
the optical response in this coverage range. A computer program that calculates the
optical response with the TIF theory up to arbitrary order, called Granfilm, has been
published by Lazarri and Simonsen [21].
The TIF theory treats the influence of the shape and the interaction between identical
particles as a modification of the polarizability α of the individual particles. The pres-
ence of the particles in a 2D layer results in an effective dimensionless polarizability
α′ that is different parallel and perpendicular to the substrate interface. Similar to the
MG approach a dielectric function parallel and perpendicular to the interface can be
defined as [11]:

εP
eff

εa
= 1 + fα′

P and
ε⊥eff

εa
= 1

1 − fα′⊥
. (6.10)

For an ellipsoidal particle, the polarizability is modified via the depolarization
factor L. For a spherical particle without any interaction this is 1/3. This depolariza-
tion is directly related to the screening factor ks = (1 − L)/L. With only dipolar
interaction the effective polarizability and the parallel component for the dielectric
function are:

α′
P,⊥ = 1

LP,⊥
ε − εa

ε + kP,⊥εa
= (1 + kP,⊥)

ε− εa

ε + kP,⊥εa

εP
eff

εa
= 1 + f(1 + kP)

ε − εa

ε + kPεa
(6.11)

For Drude metal particles, the effective dielectric function is again a Lorentz profile
with the parameters listed in Table 6.1. The derivation is provided in Appendix A.3.
The effective dielectric functions are not the common quantities used within the TIF
formulation. Instead surface excess polarizabilities are used, reducing the problem to
a two-layer model described by modified Fresnel expressions. These quantities are
related to the dielectric function via the invariant J from the Drude thin film approach
[18] (Eq. 6.7):

J = γ + εaεsβ (6.12)

with γ and β the surface excess polarizability parallel and perpendicular to the inter-
face, respectively. For particles represented by dipoles on the surface with surface
coverage φ this excess quantity is written as:

γ = φ 4aεa
ε − εa

ε+ ks,pεa
= φ

4aεa

3
δ ε

1 + Lpδε
(6.13)

β = φ 4a
εa

ε − εa

ε + ks,zεa
= φ

4a

3εa

δ ε

1 + Lzδε
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Fig. 6.5 The surface coverage determined with SEM and ellipsometry of a series of samples
containing 13 nm diameter Au nanocolloids deposited on a silicon substrate with a thin native
oxide. The modelling of the ellipsometric spectra was done with the TIF theory employing a fixed
depolarization factor of 1/3 (red square symbols) and incorporating image and neighbour interaction
effects (blue stars). The dashed line is a guide to the eye, while the black solid line signifies a one-
to-one relation between the two methods

In this the term δε = (ε − εa)/εa is referred to as the dielectric contrast. These excess
polarizabilities show again a Lorentzian lineshape.

The simplest approach to using TIF is to neglect at first any image and neighbour
effects, i.e. ks = 2. This route was employed initially by Kooij et al. to analyze their
ellipsometric measurements of deposited gold colloid layer as depicted in Fig. 6.1
[7]. They found that the measured spectra could be well represented with only the
surface coverage as fit parameter. However, a comparison of the fitted coverage and
the coverage determined with SEM showed two differences, see Fig. 6.5. Below
20 % surface coverage, the ellipsometric data overestimated the actual coverage,
while for a surface coverage above 20 % an underestimation was found. These were
attributed to the effect of image dipoles and the mutual interaction between particles,
see Fig. 6.4. If these effects are taken into account a one-to-one relation between the
surface coverage determined with ellipsometry and with SEM was found. Note that
this approach works well for gold particles as the resonance position is only slightly
effected by a change in ks. This is the result of the dominance of the high value of
ε∞ compared to ksεa. For silver particles the effect of a change in ks is much larger.

The optical response of an ensemble of interacting dipoles was analyzed by Barrera
et al. [22]. They considered particles with radius a placed on a regular lattice with
r0 the nearest neighbor distance. The interaction between the dipoles changed the
depolarization factor for the directions parallel and perpendicular to the interface
according to:

Lp = 1
3

(
1 − 1

2

(
a
r0

)3
S

)

Lz = 1
3

(
1 +

(
a
r0

)3
S

) (6.14)
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Fig. 6.6 The influence of the surface coverage on the depolarization factor. The lower branch (red)
and upper branch (blue) represent the in plane and out of plane depolarization factor, respectively.
The solid line represents a uniform distribution while the dashed line represents the hexagonal
distribution. From Ref. [10], reproduced with permission from Elsevier

With S the weighted sum over all lattice sites. Note that the summation of the depo-
larization factors 2Lp + Lz = 1. For a lattice normalized to the nearest neighbor
distance, the weighted summation is given by S = �1/r3. For a hexagonally close-
packed lattice S = 11.034 while S = 9.03 for a cubic lattice. The factor a/r0 reflects
the surface coverage. The precise relation depends on the actual distribution of the
particles on the surface, i.e. hexagonal, square, uniform etc. Figure 6.6 shows the
effect of surface coverage for a hexagonal lattice (dashed) and uniform distribution
(solid line) on the depolarization factor.

The excess polarizability can be used to evaluate the dielectric response parallel and
perpendicular to the interface [11]. Both the parallel and the perpendicular compo-
nent have their own Lorentzian lineshape. The resonance energy depends via the
depolarization factor on the surface coverage. Stronger collective interactions (i.e. a
larger surface coverage) results in a stronger deviation of the depolarization factor
from 1/3 and as such a larger separation between the two resonances. This inter-
action thus creates an effective polarizability that mimics a set of non interacting
oblate particles. For the already mentioned system of Ag particles on HOPG [20],
the TIF model provides a description of the measured data that explains the split
in the in-plane and out-of-plane plasmon resonances (see Fig. 6.3). The differences
between measurement and simulation were attributed to faults in the description of
the dielectric properties of the silver colloids while they are still in solution. Note
that no fit parameters were used to generate the simulated spectra.

The coverage dependence of the split in resonance energy explains qualitatively the
observations of Hilger and Kreibig [13] for a varying coverage of silver nanoparticles.
The measured resonance energies as a function of coverage are shown in Fig. 6.7.
The solid lines are a calculation of the variation in resonance energy according to

E0 =
√

E2
p / ε∞ + kpεa. The surface coverage effects the depolarization and thus
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Fig. 6.7 The resonance energy of the in-plane (red dots) and out-of-plane (blue squares) plasmon
resonance observed for silver nanoparticles deposited by Hilger et al. [13]. The solid lines indicate
the change in resonance energy according to the surface coverage dependence of the depolarization
factor. From Ref. [10], reproduced with permission from Elsevier

the screening factor k. The value of Ep was used as a scaling parameter and chosen
such that for zero coverage the resonance energy is 3.26 eV. This figure also implies
that the reciprocal path can be used: the shift in resonance energy can be used to
evaluate the depolarization factor. The value of this factor can be explained in terms
of coverage and shape of the particles.

The value of this resonance energy in Fig. 6.7 is smaller than expected for a spherical
silver particle. This can be the result of an image effect that would red shift the
resonance energy for both the parallel and perpendicular component. The influence
of image effects is discussed in detail elsewhere [10]. For spherical particles this
effect is relatively small. This is even further reduced in the case of the discussed
silver colloids on HOPG. This is because the silver is in a polymer matrix which
effectively increases the distance between the center of the metal nanoparticle and
the HOPG interface and diminishes the image contribution. The neglect of the image
effect also has the consequence that a more precise quadrupole evaluation within TIF
theory reduces again to the dipolar form (see also the Appendix). As a result, the
simple dipole approach can be used for spherical particles to a coverage of at least
50 %. The quadrupole expansion is given in Appendix A.4. For oblate particles, the
image effect is much larger and has to be incorporated at lower coverages. However,
also in this case the depolarization factor is strongly affected. As a result, the Drude
free electron part will still contribute as a Lorentzian lineshape.

The dipolar approximation of the surface excess strengthens the importance of the
depolarization factor and the possibility to analyze experimental spectra from the
location of the surface resonance. Equation 6.13 shows that the in plane and out of
plane surface resonance will occur at the so-called Fröhlich condition:
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Fig. 6.8 The dielectric contrast of Au (orange) and Ag (purple) in air as a function of photon
energy. The black dashed line indicates the Fröhlich resonance condition for spherical particles.
The red and blue dashed lines reflect the in-plane and out-of-plane Fröhlich condition for a surface
covered by 44 % with spherical particles. The intersection of the dashed lines and the solid material
lines provide the resonance energies

Re
(
1 + Lpδε

) = 0
Re(1 + Lzδε) = 0

(6.15)

Next to the value of the depolarization factor, which is mainly determined by shape
and surface coverage, it is the dielectric functions of both the nanoparticle and the
ambient that determine the resonance energy. For a non-absorbing ambient, this
leaves only the real part of the dielectric function as a valid parameter. At the reso-
nance this leads to a value of the dielectric contrast of:

Re(δε) = −1/Lp
Re(δε) = −1/Lz

(6.16)

Figure 6.8 shows the dielectric contrast for gold and silver particles surrounded by a
thiol shell, the situation encountered for the Ag particles on HOPG. For 44 % surface
coverage, the values of Lp and Lz are respectively 1/4 and 1/2. The dashed blue and
red lines indicate the values at which the Fröhlich condition is fulfilled. The plasmon
resonance energy for silver particles can be evaluated to occur at 2.6 and 3.3 eV.
For gold particles this would be at 2.2 and 2.4 eV. This is a reduction by almost a
factor 4 in the split between the in-plane and out-of-plane resonance energy. Taking
into account the life time broadening of the resonance peak, these two peaks are
difficult to discriminate at this already rather high coverage. Note that the thiol shell
enhances the split as it increases the dielectric contrast, see also Eq. 6.16 [20].

A comparison of the Lorentzian parameters in Table 6.1 for both the MG and TIF
model is depicted in Fig. 6.2. Only small differences between these two approaches
are noted. This explains why the silver particles on HOPG can be described by both
MG and TIF. A detailed analysis [11] shows that the fill fraction used in the MG
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model nicely mimics the effect of the depolarization factor. However, Fig. 6.1 shows
that in case of Au colloids, the MG approach fails to describe the ellipsometric
spectra. The reason for this lies in the optical coupling between the nano-entities and
the substrate.

6.2.4 The Incorporation of TIF in Ellipsometry

The computation of the optical response of a layer of nanoparticles with TIF does not
stop at the evaluation of the surface excess polarizability. This excess polarizability
also has to couple to the underlying layer and the ambient above. Effectively, the
Fresnel coefficients have to be determined. The formulation of this problem in terms
of the Abelès matrix formalism was described by Bohmer et al. [23]. The reflection
and transmission coefficients for s-polarized light are:

rs
	 = Xs

1 − Xs and ts
	 = 1

1 − Xs (6.17)

with

Xs = πiγ

λn1 cos(θ1)

and for p-polarized light

rp
	 = Xp

1 − Xp − Yp

1 − Yp and tp
	 = 1 + Xp + Yp − 2XpYp

(1 − Xp)(1 − Yp)
(6.18)

with

Xp = πiβ(n1)
3 sin2(θ1)

λ cos(θ1)
and Yp = πiγ cos (θ1)

λn1
.

The Abelès film matrix for the interface reflection of a particulate film in terms of
these reflection and transmission coefficients is given by

F = 1

t	

(
1 −r	
r	 t2

	 − r2
	

)
(6.19)

Note that this matrix describes a non-invariant beam, i.e. the response from the
opposite side of the interface is different. The overall matrix becomes

A′ = FLFI1,3L3I3,4. (6.20)

In this the matrices In,m and Lm are the normal Abelès matrices. The layer matrix LF,
identical to the layer matrices Lm used in the Abelès formalism, has a phase factor
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Fig. 6.9 Simulated values of the ellipsometric parameter � with the TIF (solid line) and MG
(dashed line) approach for (left) use of the actual dielectric function of nanocolloidal Au particles
on silicon. (middle) use of the Drude function for the Au particles on silicon and (right) use of
the Drude function for the Au particles on HOPG. An Au volume fraction of 15 % and a particle
diameter of 13.6 nm was used

� = 2π
λ

hn1 cos θ1, where h is the height of the excess dipoles above the Fresnel
interface. If the particles are directly on the substrate surface, h = r.

The influence of the particular coupling between a nanoparticle layer and its under-
lying layer via the above Fresnel coefficients is the reason for the failure of the MG
approach in specific situations. The nature of these specific situations was evaluated
for deposited Au particles [11]. Figure 6.9 shows a comparison of ellipsometric spec-
tra evaluated with MG and TIF. The first situation deals with nanoparticles that are
made of a Drude metal, i.e. a metal in which the interband transition are far outside
the experimental window. If these so-called Drude gold particles would be deposited
on HOPG, the two approaches give a similar answer. If instead of HOPG a dielectric
substrate like silicon is used, differences are observed. These differences are in the
region in which the silicon behaves as a dielectric, far below the first critical point
of silicon at 3.4 eV. In the energy range in which silicon has a considerable absorp-
tion, the discrepancy vanishes. In the third situation, the dielectric function of real
gold is used for the metal particles. In this case a discrepancy between TIF and MG
is observed over the whole spectral range. These simulations show that MG works
pretty well in the Drude metal region on non-dielectric substrates, i.e. for example
silver particles on HOPG. However for Au particles on glass MG predicts the energy
resonance quite well, but the intensity is incorrect.

6.3 Examples

6.3.1 The Growth of Silver Films Deposited by Magnetron
Sputtering

The initial deposition of silver on a SiO2 substrate follows the Volmer-Weber (island)
growth mode. Initially a large density of silver nanoparticles nucleates on the sub-
strate. These nanoparticles evolve into a conducting ultrathin film with deposition
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Fig. 6.10 Cross sectional TEM image of silver nanoparticles deposited by magnetron sputtering
on SiO2 at 150◦ C. From Ref. [24], reproduced with permission from Institute of Physics

time. Figure 6.10 shows a TEM image of the silver nanoparticles in the initial stage
[24]. A considerable size distribution is observed. The growth and evolution of these
nanoparticles into a continuous conducting thin film was characterized with in situ
spectroscopic ellipsometry. Figure 6.11 shows the change in dielectric function as
obtained from an Arwin-Aspnes (AA) analysis of the measured optical spectra [25].
This is an elegant method that employs the optical interference of the 500 nm thick
SiO2 film to establish a value for both the thickness and the real and imaginary
part of the dielectric function. The imaginary part of the dielectric function shows a
plasmon resonance peak which red-shifts with increasing film thickness. For films
beyond 16 nm thickness, the peak maximum lies outside the spectral range. The per-
colation threshold, marking the transition from a film consisting of isolated particles
to a closed film that shows good macroscopic conductivity, can be inferred from the
behaviour of the real part. A positive real part signifies a system of isolated nanopar-
ticles while a negative part is related to a continuous film. This rule of thumb puts
the percolation threshold around 17 nm. The change in dielectric function with thick-
ness shows that the dielectric properties can be described by a Lorentzian lineshape.
Beyond percolation this lineshape transform to a Drude lineshape. This is essentially
a Lorentzian with a resonance energy at zero. The evolution of the resonance energy
with film thickness is depicted in Fig. 6.12. A sudden drop in resonance energy sig-
nifies the percolation threshold. Around this point also the width of the Lorentzian
strongly decreases signifying a large increase in the electron mean-free-path. This
effect is also directly correlated to percolation. The TIF model couples the decrease
in resonance energy directly to a decrease in the depolarization factor of the in-plane
plasmon resonance. This is a direct result of the increase in surface coverage of the
nanoparticles. At percolation, the depolarization factor will assume its thin film limit
value of 0. This results in a resonance energy at 0 eV, i.e. a transition from Lorentzian
to Drude lineshape.
It was found that the optical response before percolation could be more accurately
described by using two Lorentzians. The second oscillator shows about 0.5 eV lower
energy. The data can not resolve whether in the very initial stage this second oscil-
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Fig. 6.11 Evolution of the effective dielectric function during silver deposition. Indicated are the
evaluated film thicknesses. From Ref. [24], reproduced with permission from Institute of Physics

Fig. 6.12 Change with thickness of the oscillator energy and the Mean Free Path used to represent
the measured spectra with a Lorentzian lineshape. From Ref. [24], reproduced with permission from
Institute of Physics
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lator splits of from the original one or that it is a single entity by itself. These two
oscillators do not signify an in plane and out of plane plasmon resonance. For such
an assignment, they should show an opposite change in resonance energy with sur-
face coverage. The limited size of the particles also excludes a breakdown of the
dipole approximation and the observation of a quadrupole contribution. A more
likely explanation is in terms of two sets of particles with a different depolarization
factor. Initially, the first set characterized by a higher resonance energy is observed.
The contribution of this set diminishes with increasing coverage while the second
set with the lower resonance energy becomes more prominent up to percolation. The
difference in depolarization factor can be attributed to a local variation in the sur-
rounding of the particles or a variation in the particles themselves. TEM images show
the presence of particles with a very different size. The size itself should not effect
the depolarization factor. However, the larger particles seem to have a slightly oblate
shape. Oblate particles have a smaller in plane depolarization factor. A detailed TEM
analysis shows that the smaller particle is single crystalline while the larger particle
is composed of several crystallites. The two Lorentzians could thus be explained
with the initial growth of small spherical particles followed by a coalescence of two
or more small particles and the formation of slightly oblate particles with increasing
coverage.

6.3.2 A Growing Silver Film

The difference in free energy between silver and an insulating substrate prohibits the
growth of an ultra thin film using physical vapour deposition at room temperature and
above. Also for electroless deposition of a silver film an island growth is observed
initially. In this case the nucleation of small silver islands in the initial phase can be
quite difficult leading to very rough films. By using gold colloids as seed particles,
the problematic nucleation phase can be circumvented and only a local outgrowth of
silver on the already present nuclei can be obtained [26]. Ellipsometric spectra at 3
instants during outgrowth are depicted in Fig. 6.13. Also shown are SEM images at
the same point in time as the spectra. After 300s, a spectrum very similar to that of
bulk silver is observed. The low energy region of these spectra can be modelled by a
growing layer with the dielectric properties represented by a single Lorentzian line
shape. The Lorentzian parameters provide the electron density, resonance energy and
width of the plasmon resonance. The latter two parameters are shown in Fig. 6.14,
with the width transferred to the electron mean free path (MFP). The MFP shows
a discontinuous jump around 130s, indicating percolation. The SEM image taken
after 150s also shows that percolation has occurred although an additional 150s is
required to obtain a continuous layer. At this point, also the fit of the resonance
energy reaches 0 eV, signifying the transition towards a Drude behaviour. Note that
just before percolation the plasmon resonance energy has considerable red shifted
and is outside the measured range. This requires caution in the determination of its
position and therefore the determination of the percolation moment. However, as with
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Fig. 6.13 Ellipsometric spectra taken during successive stages of the silver outgrow of gold colloids.
The SEM images show the corresponding morphological situation. From Ref. [26], reproduced with
permission from Institute of Physics

the previous example, the MFP shows a clear signature of this. Also the sign of the real
part of the effective dielectric function of the thin layer helps to limit the error in the
resonance energy position. As observed in the previous example, before percolation
the low energy tail of the real part is positive, whereas it becomes negative after
percolation. However, it also clear that sensitivity in the infrared region is required
for an accurate determination of percolation. The value of the MFP is considerably
smaller than that of the magnetron deposited film. A comparison with ellipsometric
measurements on a silver single crystal as well as resistance measurements showed
a factor of 3 smaller MFP.
Within the dipole approximation, the value of the resonance energy can be directly
used to calculate the in-plane depolarization factor. It was found that this factor
decreases rapidly towards 0, the value of a thin metal sheet [11, 26]. This rapid
decrease and thus the strong red shift of the SPP was explained by a non-spherical
outgrow of the original spherical gold particles. The formation of slightly oblate
particles results in a shape related red shift. However, this does not explain the very
strong red shift observed. This can be understood from the fact that for oblate particles
the in-plane electromagnetic coupling and image effects are much stronger [18]. An
analysis of these effects indicate that these can reduce the depolarization factor by
an order of magnitude, leading to a strongly enhanced red shift [11].
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Fig. 6.14 The resonance energy and MFP obtained from a fit of Lorentzian shape dielectric function
to the measured ellipsometric spectra. The dashed line indicates percolation

6.3.3 The Characterization of Anisotropic Silver Particles

As discussed above, the dielectric function of nanoparticle films is in general uni-
axially anisotropic due to the influence of the substrate and the anisotropic particle
distribution. This requires us to define an ordinary and extra-ordinary dielectric func-
tion for the in-plane and out-of-plane directions, respectively. Experimentally this
can be done by making multiple angle-of-incidence ellipsometry measurements and
fitting the parameters of a uniaxial model to the measurements simultaneously. Such
a study was performed on a magnetron deposited silver island film using incident
angles from 15◦ to 75◦ [27]. A uniaxial model was defined with a Lorentzian-Tauc
Lorentz model for the in-plane dielectric function and a Drude-Tauc Lorentz model
(describing the free and bound electrons, respectively) for the out-of-plane dielectric
function. As seen in Fig. 6.15a, b an isotropic model cannot accurately describe the
out-of-plane resonance near 3.5 eV, while the uniaxial model gives a good fit to the
data. Fitting simultaneously over all angles (Fig. 6.15c, d) gives the in-plane (εx , εy)

and out-of-plane (εz) dielectric functions, as shown in Fig. 6.16.
While there is little surprise as to the nature of the in-plane DF, showing a strong
plasmon resonance at around 2.6 eV, we make note of the nature of the out-of-
plane DF. Rather than showing an intrinsic resonance, as would be predicted by
the Yamaguchi model (0 < Lz < 1), the resonance stems from the entire film
polarization (longitudinal mode) when the real part of the effective dielectric function
is zero and the imaginary part is small. The out-of-plane DF is thus better described
by a simple linear mix of the dielectric and metal, which is equivalent to Lz = 0 in
the Yamaguchi model. The model therefore describes the particles as cylinders or
rods, which is partially correct when one considers the truncation of the spheres on
the surface. This also has the advantage that if the islands grow into rods or wires
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(a) (c)

(d)(b)

Fig. 6.15 Ellipsometric spectra of a silver nanoparticle film. Depicted are the measured values
of a � and b � for an incidence angle of 55◦ and the results of an isotropic and an uniaxial
model. c � and d � as a function of the angle of incidence and the fit of a model with an uniaxial
dielectric function for the silver particles. From Ref. [27], reproduced with permission from the
Optical Society of America

in the z direction (e.g. via oblique angle deposition) that the effective DF remains
constant and only the thickness of the layer changes.

6.4 The Puzzle of Metamaterials

Ongoing advances in miniaturization have reached the point where complex struc-
tures can now be accurately fabricated on scales that are far smaller than visible light
wavelengths. Composite materials containing arrays (periodic or random) of such
tiny structures appear optically homogenous, with the optical properties of the struc-
tures (or “meta-atoms”) incorporated into the “meta-material”. If the meta-atoms are
fabricated from metallic materials, sub-wavelength arrays of plasmonic resonators
(analogous to electronic circuit elements) may be designed to guide the wave-fronts
inside the material—a concept described as transformation optics. The effective
macroscopic optical properties of the metamaterials are described by their effective
permittivity εeff , permeability μeff and refractive index neff , with particularly inter-
esting cases occurring for εeff near zero (ENZ), zero refractive index materials (ZIM)
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Fig. 6.16 Uniaxial dielectric functions of the silver particles. The confinement of the silver in the
x-y direction results in a plasmon resonance simulated with a Lorentzian, while the z direction is
well represented with a Drude lineshape. Also shown is the dielectric function of silver. From Ref.
[27], reproduced with permission from the Optical Society of America

and negative refractive index materials (NIM) where both εeff and μeff are negative
(since n = (εμ)1/2).
Experimentally characterizing the optical properties of metamaterials is particularly
important for device applications. While spectroscopic ellipsometry is the method of
choice for determining the isotropic dielectric function of bulk and thin film materials,
extension to anisotropic materials requires the use of generalized ellipsometry. If the
material additionally has an inherent magnetic resonance that defines a permeability,
or lower symmetry that results in chirality, further measurements and analysis are
required.

6.4.1 Sub-Wavelength Wire Arrays

Conceptually stretching the island films of the previous section in the z-direction
results in an array of needles or wires standing vertically on the substrate. Such a
material has been fabricated by filling the holes of self-organised anodized alumina
arrays with silver via electroplating [28], and similarly by oblique angle deposition
of silver (albeit with a tilted z-axis)[29]. As pointed out by Pendry [30], if the wires
are extremely thin one may assume that the polarization across the wires is negligi-
ble and that the medium therefore acts as a diluted metal with a red-shifted plasma
frequency (since the electron density is now reduced by an amount proportional to
the fill factor). A further surprising result comes when one considers the refraction of
light in wire arrays. Due to the extreme anisotropy of the effective dielectric function,
a transverse EM wave will be negatively refracted at the interface between the mater-
ial and an isotropic medium. This does not arise due to a negative refractive index but
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(a) (b) (c)

Fig. 6.17 Isofrequency curves of isotropic, anisotropic and indefinite materials. The wavevectors
(thin arrows) at a given frequency in an isotropic medium (blue curve) and the material (red curve)
form an acute angle. The group velocity (thick grey arrow) is normal to the isofrequency surface,
which for a hyperbolic dispersion makes an obtuse angle with the wavevector and results in negative
refraction. From Ref. [27], reproduced with permission from the Optical Society of America

due to the difference in sign of εx,y and εz . Such materials are termed indefinite and
the dispersion relations are hyperbolic (compared to circular for isotropic materials
and elliptical for materials with comparatively small anisotropy). Figure 6.17 illus-
trates the observation of negative refraction at the interface between a material with
an isotropic dielectric function and three different materials with isotropic, weakly
anisotropic and hyperbolic anisotropic dispersions of the dielectric functions, respec-
tively. A light vector incident from the isotropic medium (blue) is refracted at the
interface. The angle of incidence is indicated by the angle of the wavevector. Upon
refraction, the parallel component is conserved (dashed line) and the angle of the
refracted wave in the red medium is easily obtained. The group velocity in the red
medium is normal to the isofrequency contour. In anisotropic media, the wavevector
and the group velocity are no longer parallel. In case of a hyperbolic dispersion an
obtuse angle is found between the two. This results in negative refraction effects.
Strong anisotropy can also be introduced in the plane of the substrate by depositing
metal island films at an oblique angle onto periodic templates. Numerous varia-
tions have been utilized for these templates, ranging from lithographically produced
gratings to vicinal surfaces on crystals. Recently the use of low-energy ion beam
sputtered rippled patterns as templates has been demonstrated [31, 32]. Aligned sil-
ver spheres, rods and wires have been prepared in this way. The plasmon resonances
are anisotropic in the plane due to different effective coverage of the particles in
the orthogonal directions. By defining a biaxial model and fitting the parameters to
measurements made at multiple rotation angles, the orthogonal dielectric function
elements have been determined. In this case, generalized ellipsometry must be used
since the off-diagonal elements of the Jones matrix will no-longer be zero. The real
and imaginary parts of the orthogonal dielectric functions for aligned spheres and
rods are shown in Fig. 6.18. The in-plane plasmon resonance is now split into two
plasmon peaks, and the splitting increases as the particles go from spheres to rods,
i.e. in the direction of the long axis of the particles (y-direction) the plasmon peak is
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(a) (b)

(d)(c)

Fig. 6.18 Real (ε1) and imaginary (ε2) parts dielectric functions of the aligned spheres a, c and
aligned rods b, d determined using an anisotropic effective medium model

red-shifted. As more material is deposited the rods eventually connect to form wires
and εy evolves to resemble the DF of silver with a reduced electron density. Such a
DF can be effectively modelled by a linear effective medium approximation.
Wire array metamaterials have also been discussed in the context of ENZ materials.
The idea is to move the plasma frequency into the visible and infrared by changing the
effective free electron density. While the idea of playing with the plasma frequency
has been around for some time, the discussion of ENZ materials has led to some
interesting optical concepts. The main interest is the fact that at ε = 0 the phase of
the wave in the material is infinite. This implies that EM waves can be tunnelled
and squeezed through very narrow channels filled with ENZ materials, and that the
incoming planar wavefront is replicated at the output surface, independent of the
geometry of the channel [33]. Similar proposals have been made for metamaterials
where the permeability, μ, is near zero (MNZ).

6.4.2 Artificial Permeability and Negative Refractive Index

Since there are natural materials where ε is less than zero, manipulating the perme-
ability by fabricating composites of positive and negative ε materials is relatively
straightforward. In contrast, at infrared and optical frequencies there are no naturally
occurring materials that exhibit permeability other than unity. Therefore manipulat-
ing the permeability is not as straightforward. A breakthrough came at the turn of the
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(a) (b) (c)

Fig. 6.19 Meta-atoms designs used for artificial magnetism. Shown are a concentric split ring
resonator, b U shaped resonator and c coupled rod pair

century when Pendry et al. suggested a material with artificial magnetism composed
of dual concentric split ring resonators (SRRs) [34], see Fig. 6.19. A magnetic field
directed through the rings will induce a current which will in turn create a mag-
netic moment, an effect that is enhanced by creating a resonance with a capacitive
element—the split in the ring. This concept was demonstrated at microwave frequen-
cies, showing not just artificial magnetism but negative effective permeability and,
when combined with a negative permittivity in the form of a wire array, also negative
refractive index (NIM) [35].

By shrinking down and simplifying the SRRs to U-shaped resonators a magnetic res-
onance was also reported in the near infra-red [36]. It was shown that these resonances
were in fact due to anti-symmetrically coupled dipolar localised plasmon resonances.
In a single SRR, reduced to a U-shaped metallic element, the anti-symmetric reso-
nance was driven by coupling to the base of the “U”, (see Fig. 6.19.) Alternatively,
coupling can be achieved in parallel rods by using the phase of the incoming light
to excite anti-parallel resonances. In such structures one observes at least two reso-
nances; a low frequency symmetric mode and a high frequency anti-symmetric mode.
The anti-symmetric mode is associated with a magnetic dipole moment and may be
described by an effective permeability. Combining a metamaterial of coupled rods
(negative μ) with a wire array medium (negative ε) resulted in the “fishnet” design
that has been used to demonstrate negative refractive index in the infrared and visible
regions [37].

Characterizing the optical properties of SRRs and fishnets by ellipsometry is chal-
lenging. The measurements are relatively straightforward however the modelling
required is complicated by spatial dispersion. The original idea of fabricating a
material with effective homogenous parameters, ε and μ, being dependent only on
the temporal frequency of the electric field, and not on the spatial frequency, is thus
invalid. Spatial dispersion must also be considered. This is easily seen when one
considers that the difference in phase of the light is used to excite the anti-symmetric
resonances in the parallel rods. The dimensions of the unit cell must therefore be
appreciable with respect to the wavelength of light. In fact, it is well documented
that weak spatial dispersion may in some cases be equivalently described using
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ε and μ [38]. Thus the description of an effective permeability is more generally
described by spatial dispersion.

6.4.3 Chiral Metamaterials

Chirality has also been proposed as a method to NIMs [39] since the gyrotropic or
chiral parameter ξ (which is zero in most materials) is also present in the definition
of the complex refractive index

NL ,R = √
εμ± ξ

If a material could be produced with ξ > (εμ)1/2 then in theory a negative refractive
index should be possible. In practice ξ is usually very small. It is interesting to note
however that chirality (or optical activity) is also a direct result of spatial dispersion
in materials without inversion symmetry (see e.g. Landau and Lifschitz [40]). There-
fore diffractive arrays should show evidence of chirality. This was recently demon-
strated using Mueller matrix (MM) ellipsometry on sub-wavelength hole arrays in
gold films [41]. The off-diagonal elements of the MM showed significant resonances
which would usually be associated with optical activity in isotropic materials. The
authors were able to reconstruct the MM using a model that accounted for spatial
dispersion. When interpreting MMs one should always be aware that the off-diagonal
elements may also show strong signals due to structural anisotropy (form birefrin-
gence) and that decomposing MMs into optical dichroism, birefringence and form
dichroism and birefringence is a complicated task [42].

Appendix

A.1 Lorentzian Line Shape for the Polarizability
in the Dipole Approximation

The polarizability of a particle with radius a and screening parameter k to incorporate
shape effects is:

α = 4πa3 ε − εa

ε + kεa
(A1)

Inserting the Drude dielectric function:

α = 4πa3
ε∞ − εa − E2

p

E2+ i�E

ε∞ + kεa − E2
p

E2+ i�E
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= 4πa3

(
ε∞ − εa
ε∞ + kεa

) (
E2 + i�E

) − E2
p

ε∞ + kεa

E2 + i�E − E2
p

ε∞ + kεa

= 4πa3
χ

(
E2 + i�E

) − E2
0,dip

E2 − E2
0,dip + i�E

= 4πa3
χ

(
E2 − E2

0,dip + i�E
)

+ (χ − 1)E2
0,dip

E2 − E2
0,dip + i�E

= 4πa3

(
χ + (1 − χ)

E2
0,dip

E2
0,dip − E2 − i�E

)
. (A2)

This is a Lorentzian line shape with the same broadening � as the Drude lineshape
and with

χ = ε∞ − εa

ε∞ + kεa
and E2

0,dip = E2
p

ε∞ + kεa
. (A3)

A.2 Lorentzian Line Shape in the Maxwell Garnett Approach

The Maxwell Garnett approach provides an effective dielectric function according
to:

εeff

εa
= ε(1 + 2f)+ εa(ks − 2f)

ε(1 − f)+ εa(ks + f)
. (A4)

For a Drude metal particle this leads to:

εeff

εa
=

(
ε∞ − E2

p

E2+ i�E

)
(1 + 2f)+ εa(ks − 2f)

(
ε∞ − E2

p

E2+ i�E

)
(1 − f)+ εa(ks + f)

= ε∞,MG
(
E2 + i�E

) − E2
0,MG

1+2f
1−f

E2 − E2
0,MG + i�E

= ε∞,MG + E2
p,MG

E2
0,MG − E2 − i�E

(A5)

which is a Lorentzian line shape with

ε∞,MG = 1 + 3f(ε∞ − εa)

ε∞(1 − f)+ εa(ks + f)
(A6)
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E2
0,MG = (1 − f)

ε∞(1 − f)+ εa(ks + f)
E2

p.

The width � of the Lorentzian is the same as the original Drude broadening. The
enumerator E2

p,MG in the last term of Eq. 6.14 can be rewritten

E2
p,MG = E2

0,MG

(
1 + 2f

1 − f
− ε∞,MG

)

= 3f
εa(1 + ks)

[ε∞(1 − f)+ εa(ks + f)]2 E2
p. (A7)

A.3 Lorentzian Line Shape in the TIF Approach

The derivation of the dimensionless polarizability lineshape for a Drude metal is very
similar to A1:

α′ = (1 + k)
ε∞ − εa − E2

p

E2+ i�E

ε∞ + kεa − E2
p

E2+ i�E

= (1 + k)

(
χ + (1 − χ)

E2
0,dip

E2
0,dip − E2 − i�E

)
. (A8)

This is again a Lorentzian line shape with the same broadening � as the Drude
lineshape and with as for the polarizability

χ = ε∞ −εa

ε∞ + kεa
and E2

0,dip = E2
p

ε∞ + kεa
. (A9)

The parallel component of the dielectric function is thus (Eq. 6.6):

εeffP

εa
= 1 + f(1 + kP)χ + f(1 + kP)(1 − χ)E2

0,dip

E2
0,dip − E2 − i�E

(A10)

= ε∞,dip + f
εa(1 + kP)

2

ε∞ + kPεa

E2
0,dip

E2
0,dip − E2 − i�E

= ε∞,dip + E2
p,dip

E2
0,dip − E2 − i�E

(A11)
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with

ε∞,dip = 1 + f(1 + kP)
ε∞ − εa

ε∞ + kPεa
(A12)

E2
p,dip = f

εa(1 + kP)
2

(ε∞ + kPεa)
2 E2

p.

The resonance energy E0,dip in the dipolar approximation of the TIF model looks
at first the same as that of the isolated particles. However, do note that the screening
factor k not only includes shape effects, but also image and neighbour interaction
effects.

A.4 Quadrupole Expression for the Excess Polarizability

Haarmans and Bedeaux [18] derived an explicit form for the expression up to quadru-
pole order for excess surface polarizability γ and β:

γqu = φ
4aεa

3
δε

(
1 + L1pδε

)
(
1 + Lpδε

) (
1 + L1pδε

) +�pδε
2

(A13)

βqu = φ
4a

3εa

δε (1 + L1zδε)

(1 + Lzδε) (1 + L1zδε)+�zδε
2 (A14)

Here, Lp and Lz represent the dipolar correction terms and L1p and L1z,�p and�z
are the quadrupole depolarization factors.
The image effect is modulated by the factor Bsa that describes the contrast between
ambient and substrate:

Bsa = (εa − εs) / (εa + εs) (A15)

This contrast is quite considerable for semiconductors and metals (Bsa≈− 1), while
it is quite reduced for dielectrics. For instance for a glass substrate in a water ambient,
Bsa and thus the image effect, is reduced by an order of magnitude.
The dipolar and quadrupole depolarization factors as a function of surface coverage
are:

Lp = 1

3

[
1 − φ

2
+ Bsa

(
1

8
− φ

4
√

2

)]
(A16)

Lz = 1
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3

8

))]
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L1z = 2

5

[
1 + 3 φ

16
+ 3Bsa

16

(
1 − φ

(
1√
2

3

8

))]

�p = − B2
sa
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(
−1 + φ√

2

)2

�z = −3B2
sa

640

(
−1 + φ√

2

)2

The factors �p and �z are quite small and are only present if image effects play a
role. Very often, �p and �z << 1 in a coverage range up to 50 %. In this case the
quadrupole contribution vanishes, and only the dipole contribution remains. Note
that as a results of the image effect the sum of the depolarization factors

2Lp + Lz = 1 + Bsa

3

(
1

2
− φ√

2

)
(A17)

no longer equals 1. This rule is broken as a result of the image effect.
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Chapter 7
Spectroscopic Ellipsometry on Metallic
Gratings

Michael Bergmair, Kurt Hingerl and Peter Zeppenfeld

Abstract During the last decades light was successfully modelled by micro and
nano structures such as photonic crystals, gratings, wave couplers, and, in past years,
also negative index materials. For the visible range a further miniaturization of the
feature sizes of these metamaterials is necessary. Advanced fabrication facilities as
well as investigation techniques are required by science and industry. This chapter
deals with spectroscopic ellipsometry (SE) applied to the investigation of metallic
gratings and the comparison with theoretical simulations. The comparison of theo-
retical and experimental spectra of metallic gratings provides a useful basis for more
complicated metamaterials, such as negative index materials. This analysis is shown
in the beginning of this chapter. Deviations in the structure are identified and it is
shown that RCWA and SE constitute a powerful combination to analyze nanostruc-
tures. It is followed by the study of surface plasmons on metallic grating which are
excited due to the periodic structure. These excitation frequencies are clearly visible
in the ellipsometric spectra due to a phase shift and the ratio of reflected intensities
between s and p polarization.
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7.1 Introduction

During the last years the fabrication of structured surfaces has made remarkable
progress towards the nano scale. Various techniques now open the possibility to
create structures that are highly reproducible, have sharp contours and even offer
three dimensional structures by precisely orientated stacking of layers [5].

One of these techniques is nanoimprint lithography (NIL) which allows scientists
and industry the realization of ordered structures over large areas. A stamp which
is fabricated by electronic beam writing is used as a positive or negative template.
Therefore the desired structure can be reproduced in short fabrication time as only
the writing of a large-scale master structure with e-beam is time consuming. This
provides a method to fabricate nanostructures with very small feature sizes (around
100 nm) over several centimeters.

The characterization of nanostructures is an important issue as many break-
downs may occur in the fabrication process. In general, micro- and nano-structures
are investigated by techniques that spatially resolve the structure (scanning elec-
tron microscopy (SEM), transmission electron microscopy (TEM), atomic force
microscopy (AFM), . . .). These investigation tools provide images of the sample
and its composition but the investigation time is large and the scanning techniques
are cumbersome, as e.g., vacuum is needed. Micro- and nano-structured samples
that are extending over centimeters can be characterized by other techniques. One of
them is spectroscopic ellipsometry (SE). The reflectivity spectrum of a sample yields
next to the absolute values also phase information of the structure and is therefore
sensitive to structural variations on the nanometer scale. Furthermore, this method is
non-invasive and non-destructive and can also be used in-situ to monitor fabrication
processes.

In this part we study gratings that are fabricated by NIL. Metallic gratings exhibit
special optical features which are seen as resonances in the spectrum. These reso-
nances are sensitive to the periodicity of the structure. We show that one dimensional
metallic gratings exhibit these surface plasmonic resonances because their lattice vec-
tor and its multiples close the wavevector gap in reciprocal space between the incident
light and the surface plasmon dispersion relation. Contrary to the Kretschmann con-
figuration [28], where a prism is used to provide the missing wavevector, metallic
gratings allow more than one resonance energy.

This part is organized as following: First we give a short introduction to the
fabrication procedure that allows us to make different gratings. The gratings differ
in their geometrical parameters and material composition. It is necessary to study
the gratings with cross correlation techniques, that are explained in Sect. 7.3.1 to
ensure perfect periodicity and regularity of the structure. As the main goal is the
characterization of gratings and their geometry by SE, we give a short introduction
of this technique in the following section. Before introducing the exact calculation
procedure in Sect. 7.4.1 we summarize the results that are obtained by effective
medium theories. They provide a first approximation as the gratings can be roughly
approximated by homogeneous layers of mixed materials. We compare the results
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with the exact one of the real grating structures; the latter is obtained by the rigorous
coupled wave analysis (RCWA). We introduce this powerful tool to calculate reflected
and transmitted fields in Sect. 7.4.1.

Before comparing the measured and calculated optical spectra for silicon, gold
and silver gratings (Sects. 7.5.1–7.5.3), we introduce a model to explain certain peaks
in the spectrum. We show that surface plasmonic resonances are clearly visible in
ellipsometric spectra and match with the predictions of the exact calculations. We
analyze the line shape of the resonances and identify them as Fano type. Finally, we
calculate the complex reflection and transmission spectra for normal incidence in
Sect. 7.6. These spectra are used to test a homogenization algorithms discussed in
recent literature and the resulting effective parameters are presented and analyzed.

7.2 Sample Structure and Fabrication

The gratings that are subject of our investigation in this work are fabricated by
nanoimprint lithography (NIL) and a subsequent two layer resist lift-off process.
First the transfer layer LORA1 and the UV-curable resist mr-UVCur21 are spin
coated on top of a Si wafer [56]. The NIL stamp with a structured area of a few cm2

contains line and space structures of different periods, e.g., ranging from P = 2.4 µm
to P = 800 nm which are located on different fields of the stamp. Using this NIL
stamp the mr-UVCur21 is structured by bringing stamp and substrate into contact and
curing the resist with UV light. After separation a negative copy of the stamp remains
on the substrate (see Fig. 7.1a). A subsequent etching step through the transfer layer
down to the substrate and controlled development of the transfer layer ends up in a
line and space resist structure (b) with recessed sidewalls (c) which are necessary
for a successful final lift-off process (e). After creating recessed sidewalls thin layers
of metal are deposited. The deposited layer thicknesses of the metals determine the
height of the grating (d). A Ti layer is needed to increase the adhesion of Au or Ag to
the substrate. The resist and, hence, also the metal deposited on top of the resist are
removed by putting the sample in the developer again (e), such that only the metal
which was deposited on the substrate remains. The results are gold or silver gratings
on an area of 2 × 2 cm2 with periods ranging from 2.4 µm to 800 nm for our stamp
designs.1

In Fig. 7.2a we see a schematic of the fields produced by the stamp. There are 16
fields arranged in four different sectors. Each field is 3 × 3 mm2 and four different
periods are realized [16]. Therefore, we have four different gratings which are four
times repeated on a single sample. This allows us to investigate reproducibility of
the structures by SE and cross correlation measurements. The lines and spaces of
the grating are always orientated in north (N)–south (S) direction. We identify the
fields according to their periodicity, i.e., Field (a) has a period of 2400 nm, at Field
(b) P = 1600 nm, Field (c) P = 1200 nm and at Field (d) the period is 800 nm

1 The fabrication of the grating was performed at PROFACTOR GmbH by Iris Bergmair.
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(a)

(b)

(c)

(d)

(e)

Fig. 7.1 Fabrication steps a–e to produce a metallic grating: a imprinting in two layer resist system;
b etching of residual layer of UV-NIL resist and through transfer layer; c development of transfer
layer to obtain recessed sidewalls; d deposition of metal (gold); e lift-off

(a) (b) (c) (d)

Fig. 7.2 Schematic drawing and pictures of gratings: a the schematic of the sample with four times
four different Fields. In b is a piece of a reference wafer with an area of gold and titanium (left side).
At the edges of the wafer no metal was evaporated and, therefore, the thickness of natural silica on
top of silicon can be determined. A silicon grating is shown in c with the 4 × 4 different fields. In
d we show the various fields of a gold grating

(see Fig. 7.2c, d for the fields on the sample). The line and space width have a ratio
of 1:3 on the original stamp. This means for the period of 2400 nm the linewidth is
L = 600 nm whereas the space has a width of P − L = 1800 nm. For the fabrication
of the metallic grating working stamps are used [38], this means a negative copy of
the stamp. By replicating the working stamp twice one gets a positive copy of the
stamp. These two different copies give the possibility to fabricate gold gratings with
two different linewidths but the same period. One time with a small protruding metal
linewidth and one time with wider metal linewidth.

To characterize the produced grating it is necessary to know the thickness of all
materials evaporated on the silicon wafer. The determination of these layer thick-
nesses is demanding without destroying the sample. The easiest way is to measure the
oxide thickness by SE before evaporating the various metals on it. The thickness of
the metallic layers are obtained by placing an unstructured wafer in the evaporation
chamber and afterwards measuring the SE spectrum (see Fig. 7.2b—homogeneous
control wafer). In the visible range this works quite well except for optically thick
metals (e.g., for a gold thickness >40 nm). In the case of optically thick metal lay-
ers one can prepare a small lamella of the control wafer by focused ion beam and
investigate the cross section by TEM. Therefore, we have a good cross-check on
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the sample geometry and can compare it with the results from SE (we describe the
procedure in detail in the next section) and from theoretical simulations. By fitting
the thickness of the control wafer we find out whether our deposited metal has voids
as the dielectric response of the metal is changed due to the evaporation procedure.
This has to be considered in the simulations.

The gratings have several parameters that are still unknown. Besides the different
materials and their composition, the geometrical parameters like the period P of
the structure, the linewidth L , the spacewidth P − L and height h of the (metallic)
grating have to be checked. To this end, we use several cross-checking techniques
which are introduced in the next section.

7.3 Measurement of Gratings

7.3.1 Cross Correlation Techniques

The measurement of nano structures is a necessity to ensure a correct fabrication
process. There are several techniques which we introduce below that are more or less
time intensive. Furthermore some methods need special facilities like high vacuum.

The nano structured gratings that we investigate in this work are produced on
an area of several square millimeters which provides the possibility to investigate
them by SE. One main goal of this work is to show that ellipsometry is a good
choice in the characterization of nano structures as it is a fast, non-invasive and
non-destructive method. We also want to emphasize that for a complete character-
ization other methods than SE are needed, which are introduced below (for further
information, see [15]).

7.3.1.1 Scanning Electron Microscopy

The surface morphology of a sample can be investigated by scanning electron
microscopy (SEM). The surface is scanned with an electron beam and the back-
scattered electrons are detected. In Fig. 7.3 we see two typical top view pictures2 of
a grating.

In (a) we see the top view of a silicon grating. As the substrate and the lines of
the grating consist of the same material the structure has a low contrast in the SEM
image. We see that the grating bars are almost rectangular and have a well defined
periodicity. The SEM software allows the user to set markers on the sample image
to determine the geometrical dimensions of the sample. Therefore, by SEM we
determine the periodicity, the line and the space width. In (b) we show the SEM
picture of a gold grating. As the grating lines are made of gold and the underlying

2 The SEM pictures and the analysis were made by Iris Bergmair at the University Linz on behalf
of Profactor GmbH.
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(a) (b)

Fig. 7.3 SEM images of a silicon grating with P = 1600 nm (a) and a gold grating with a periodicity
of P = 800 nm (b)

substrate is silicon, we get a high image contrast. From the image we conclude that
the structure is well fabricated. Some bright spots at the edge of the lines and between
them indicate left-overs of gold.

7.3.1.2 Atomic Force Microscopy

An atomic force microscope (AFM) is an appropriate investigation tool to measure
a height profile of a nano structured sample. In an AFM, which was invented by
Binning et al. [7], the vertical force between the sample and a tip is measured. The
tip, which has a radius of around 20–50 nm, is fixed at the end of a cantilever, which
oscillates with its resonance frequency. The forces (long and short range as, e.g.,
chemical binding, frictional, Van der Waals, electrostatic) between the tip and the
surface are detected by the reflection signal of a laser beam which is pointed at the
cantilever. Two main modes can be used: In contact mode, the tip touches the sample
surface. The surface scan can be done in constant height or constant force mode.
In the other, so called non-contact mode, the tip and the surface are separated and,
therefore, mainly long-range interactions are measured as the cantilever oscillation
frequency and amplitude are changed due to forces between the tip and surface.

The AFM tip is moving relative to the sample and may show some artificial
broadening effects due to the finite size of the tip and/or a too fast scanning velocity.
In Fig. 7.4 we see two AFM screenshots of the software of (a) a silicon grating
and (b) a gold grating. The surface profile is recorded in a very clear way; we get
information about the period, linewidth and the height of the structure. The first
two parameters are slightly enhanced by possible broadening effects but for gratings
with a sufficiently large spacewidth the height of the grating is exactly determined by
AFM.3 In this example the height of the silicon grating is determined to h = 21 nm
and the gold bars have a height of h = 55 nm. In addition, we obtain information on

3 The AFM measurements were done by Ahmed Saeed. The measurement was done in the tapping
mode which is partially contact mode.
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(a) (b)

Fig. 7.4 Two AFM images of samples: a a silicon grating with a period P = 1200 nm and a height
of h = 21 nm; b a gold grating with P = 800 nm and a height of h = 55 nm

Fig. 7.5 A TEM image of a
thin lamella of a gold layer on
a silicon wafer (control wafer)

the periodicity of the sample and the overall shape of the grating (e.g., in (b) we see
a spike on one gold bar indicating a left-over of the resist stripping).

7.3.1.3 Transmission Electron Microscopy

In a transmission electron microscope (TEM) a beam of electrons is transmitted
through a very thin sample. In our case the grating is placed on a silicon substrate in
vertical direction and in horizontal direction we have dimensions on a macroscopic
scale.

Therefore we have to provide a thin lamella which is cut with a focussed ion
beam (FIB) which takes several hours. After the small specimen is prepared we
have to transfer the sample to the TEM chamber which is at ultra-high vacuum.
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Table 7.1 A list of various characterization techniques, their advantages and the average time for
a measurement

Technique Information Time

SE thickness, ε(ω) minute(s)
AFM Geometrical parameters of a grating: P, L , h hour(s)
SEM Geometrical parameters P and L , lineshape hour(s)
Fib-Rem/TEM Layer thickness, layer composition (diffusion) hour(s)

Therefore an investigation of a sample takes about a full day. We can only visual-
ize cross sections with TEM to obtain information about layer thicknesses. Using
EDX (electron-dispersive X-ray spectroscopy) we further obtain information on the
material distribution at certain spots in a sample (see three circles in Fig. 7.5). We,
therefore, obtain information about possible diffusion or mixing effects which may
occur during or after the evaporation process.

In Fig. 7.5 we have investigated a lamella of a homogeneous gold layer from the
control wafer (thickness h ∼ 50 nm).4 We estimate the thickness of the gold layer
(at Po 3) and can also make a rough guess about the interface with the Si substrate
(Po 2). The large area (Po 4) is a copper layer which is the actual sample holder.

Summarizing, in Table 7.1 we show the cross correlation techniques in comparison
with SE. We list the information that can be obtained with each technique.

Note that, with SE and numerical simulations we also determine layer thicknesses
and/or the dielectric function of the materials. It is by far the fastest technique to char-
acterize structures. SE does not give any direct information about feature sizes or
surface compositions. Therefore, we first have to check with unstructured, homoge-
neous test samples the structure by other techniques to be sure to have the desired
structure and periodicity. Then we measure the ellipsometric spectrum and compare
the result with simulations of the appropriate sample geometry to get confidence
about the model.

The real power of SE is always based on a combination with theoretical sim-
ulations. The model we introduce in Sect. 7.4.1 is exact and allows us to derive
reflectance and polarimetric spectra for given geometries. Thus we determine in
which way deviations change the spectra and, therefore, SE can be (an in industry
is) used for the control of fabrication processes.

7.4 Theoretical Description

As we have seen in the previous section, a metallic grating with structure sizes
comparable to the incident wavelength cannot be modelled by effective medium
approximations. Therefore, we follow an analytical formalism that allows us to cal-

4 This work was performed by Sajjad Tollabimazraehno.
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culate the reflection and transmission properties of structured materials exactly. We
further discuss features in grating spectra that do not appear in EMA results and
introduce a theoretical model to predict the excitation frequencies of these surface
plasmonic resonances.

7.4.1 Simulation Procedure

As mentioned before, the standard ellipsometry software only allows the user to cal-
culate SE spectra for homogeneous layers, which might also be an effective medium
of randomly mixed constituents.5 We are interested in structured, periodic surfaces
and therefore have to simulate the SE spectra (Ψ as well asΔ) by a different method
than the stratified layer approach implemented in standard ellipsometry software.
This model, based on Fourier expansion of the structure, is called rigorous coupled
wave analysis (RCWA).

For a system without free carriers and currents, the curl equations of Maxwell
read

∇ × E = −μ∂H

∂t
(7.1a)

∇ × H = ε
∂E

∂t
(7.1b)

We assume a harmonic time dependence of the field and use the convention E(t) =
E0e−ıωt . Due to our geometrical setup, we further reduce the six differential equations
for the two times three field components of Eq. (7.1) and by assuming s-polarization,
i.e., the electric field has only one component perpendicular to the plane of incident
or p-polarization, where the magnetic field has one component perpendicular to the
plane of incidence we end with the two Helmholtz equations in one variable.

As shown in Fig. 7.6, the sample is decomposed into several layers and the
Helmholtz equations are solved by expanding the fields and dielectric functions in a
Fourier series. From the continuity conditions the reflected and transmitted complex
fields are derived.

We use a commercial program called reticolo [23] which is a numerical
implementation and improvement of the RCWA method [17, 22, 29, 36, 37, 43].

As we have periodic boundary conditions along the grating, reticolo derives
the electric and magnetic fields diffracted by the structure according to the Rayleigh
expansion. Some of the diffracted orders, which are determined by the number of
Fourier harmonics, are evanescent waves. The exact number depends on the energy,
angle of incidence and period of the structure.Reticolo returns propagating orders
in the far field.

5 Besides this limitation, the ellipsometry software is still at a very high standard, including models
for anisotropy, depolarization, roughness, . . .
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Fig. 7.6 A sinusoidal structure is approximated by layers (staircasing method) in the RCWA cal-
culation. The reflected and transmitted fields, here for normal incidence, are calculated exactly for
all diffraction orders

Technically, the RCWA method is a scattering matrix approach comparable to the
transmission matrix method. We do not describe the algorithm in detail, here, but
only mention that textures like those in Fig. 7.6 have to be defined. For a metallic
grating one needs to define five different textures:

• Si substrate (wafer) with infinite thickness (The top and bottom layer extend to ∞
and −∞, respectively, independent on the chosen thickness value in the software.
The thickness of the bottom layer defines the origin of the coordinate system
perpendicular to the grating),

• SiO2 layer (homogeneous),
• Ti (line) and air (space) layer—the Ti underneath the gold grating with the same

linewidth L as the grating,
• Au (line) and air (space) layer—the grating linewidth L ,
• air as top layer.

For each layer the user has to provide the optical data of the constituting materials.
We use the same material data as given in the Woollam software WVASE32 [55] and
material parameters for Si and SiO2 as listed in [20].

For a given polarization (s or p) and angle of incidence the program reticolo
returns the reflected, scattered and transmitted fields and efficiencies for all propa-
gating diffraction orders. The ellipsometric angles Ψ andΔ are derived, as no cross
polarization occurs if the lines of the grating are orientated perpendicular to the
plane of incidence.

When characterizing a nanostructured sample by SE, the MSE is of limited use-
fulness. The mean square error represents the difference from measured to fitted data.
In the case of nanopatterned structures it is more important to correctly fit main fea-
tures, such as peak positions, of the experimental spectra. A good reliability factor, or
r-factor (as discussed in [41]) should be sensitive to peak positions rather than small
variations in the amplitude of the signal. At a later part in this work we exclusively
use second derivatives of the Ψ spectrum with respect to the energy to characterize
the surface plasmon resonances caused by the metallic gratings.
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Finally, we remark that the simulations presented here and below were carefully
checked for convergence. This means that the spectrum (and the MSE) does not
change by further increasing the number of Fourier coefficients. In the next sections
the MSE is used to compare the measured spectra which those computed for different
geometrical parameters.

7.4.2 Surface Plasmons at Gratings

At the interface of metals and dielectrics surface bound electromagnetic excitations
can be excited due to the sudden change of the permittivity across the interface.
This excitation can be localized, e.g., on a metallic particle or propagating along
the interface. Localized surface plamsons arise from the electromagnetic boundary
conditions at the surface of metallic particles and due to the effective restoring forces
on the electrons, which are driven by an external electromagnetic field, resonances
can occur. These resonances may rise large field amplifications on the surface and
can be excited directly by illumination with light at specific frequencies.

On planar surfaces these states are called surface plasmon polaritons, but are
propagating electromagnetic waves confined in only one dimension (z-direction).
The dispersion relation describing their propagation along the surface (x, y) is derived
from the continuity conditions from Maxwell’s equations. The dispersion relation
provides a resonance condition for a certain frequency ω(k‖ → ∞) which is called
the surface plasmon frequency. This resonance is the more pronounced the smaller the
intrinsic damping of metal, as an increasing imaginary part reduces the divergence
of the dispersion relation. In the long-wavelength regime (k → 0) the dispersion
relation is linear. A special property of the plasmon dispersion curve is that it always
lies below the light line, i.e., c′ < c, where c is the speed of light within the dielectric
medium (see e.g. [31, 44, 59]). This implies that the surface excitation is decaying
exponentially in the direction normal to the surface as k⊥ must be imaginary. On the
other hand surface plasmons cannot be coupled in or out from a metallic surface in
the form of propagating electromagnetic waves, due to the mismatch of the in-plane
wavevector k‖. This mismatch can be overcome in several ways: The simplest one is
roughness of the surface but this coupling cannot be controlled and is random. Surface
plasmons can be excited in a more controllable way by attenuated total reflection
(ATR) [28, 31, 39, 44] which means that the additional wavevector is provided by
the material of the prism.

In this work we use metallic gratings as periodic structure with period P provide
a fundamental reciprocal (in-plane) lattice vector

k‖ = kP = 2πm

P
(7.2)

and multiples mkP where m ∈ Z is a positive or negative integer number. The
reciprocal lattice vectors match the difference between surface plasmon dispersion



268 M. Bergmair et al.

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3

en
er

gy
 (

eV
) 

wavevector (1240 x nm-1)

Gold

60o

30o

Fig. 7.7 Dispersion relation of surface plasmons at the gold/air interface (red). For the gold dielec-
tric function, experimental data from [40] were taken. The blue and green straight lines indicate
light lines for an incidence under φ = 60◦ and incidence under φ = 30◦. The plasmonic dispersion
curve is also drawn for negative wavevectors indicating plasmons travelling in the opposite direction
as the incident light

relation and the light line at specific energies Em = �ωm . These frequencies depend
on the surface projection of the light line, i.e., the angle of incidence φ:

ω(φ) = ckφ
sin φ

(7.3)

In Fig. 7.7 we plot the dispersion of surface plasmons and the light line (in green
for an angle of incidence φ = 30◦ and in blue for φ = 60◦). The resonance condition
for ωm thus becomes6

ksp = kφ + mkP = ωm

c
sin φ + 2πm

P
(7.4)

To solve this equation for ωm we have to consider the surface plasmon dispersion
relation, i.e., the parallel wavevector component ksp as a function of frequencyω. This
relation is given by the dispersion of surface plasmons on a flat metallic interface [44]

ksp = ±ω
c

√
ε1(ω)ε2(ω)

ε1(ω)+ ε2(ω)
(7.5)

where ε1(ω) and ε2(ω) are the dielectric functions at the interface. In the present
case (in Fig. 7.7) we have used the dielectric function for gold ε1(ω) = εAu(ω) from
literature [40] and a constant ε2(ω) = 1 for air.

6 The ideas of exciting surface plasmons by negative lattice vectors were developed by Peter
Zeppenfeld.
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The arrows in Fig. 7.7 represent the reciprocal lattice vectors mkP according to
Eq. (7.2). Both positive and negative values of m can bridge the gap between surface
plasmon and light line dispersion, indicating that the incident light may excite surface
plasmons with ±ksp, i.e., propagation in opposite directions. Likewise multiples of
the fundamental lattice vector give rise to more than just one resonance at each value
of φ. One notices that shorter fundamental wavevectors kP (or larger periodicities
P) provide a larger set of resonances. The bold arrows in Fig. 7.7 connect the surface
plasmon dispersion curve and the light line for incidence under an angle ofφ = 30◦ to
the normal of the grating surface and the thin arrows with the light line for an angle
of incidence φ = 60◦. Surface plasmonic excitation including negative m values
show a red shift with increasing φ, whereas excitations with a positive wavevector
mkP yield a blueshift. For normal incidence (φ = 0◦) the solution for the positive
and negative reciprocal lattice vectors become degenerate (ksp = ±2π/m according
to Eq. (7.4)).

The coupling of surface plasmons and incident light can be regarded in a slightly
different view as well. For a highly periodic system it is sufficient to consider the
dispersion in the first Brillouin zone, only. Due to the lateral symmetry, the dispersion
curve is backfolded at the zone edges and forms a band structure consisting of
multiple branches. This causes crossings of the back folded branches with the straight
dispersion curve of the incident light beam and an excitation of surface plasmons
becomes possible: wherever the wavevector of the light line matches one of the
branches of the backfolded surface plasmon dispersion. In Fig. 7.8 this alternative
view is depicted.

From Eq. (7.4) we see that for a fixed period of the grating and a fixed angle
of incidence we can excite surface plasmons at several energies. For special values
of the grating period and angle of incidence φ, two different, counter propagating

Fig. 7.8 The dispersion
relation of surface plasmons
is backfolded in the first
Brillouin-zone due to the
periodicity of the grating in
the in-plane direction. The
backfolded dispersion crosses
the light line, indicating a
possible excitation of surface
plasmons at certain resonance
energies for various angles of
incidence
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branches of the surface plasmon dispersion can have the same excitation energy
(e.g., at E ∼ 1 eV the −3kP and +kP wavevector in Fig. 7.7). These two counter
propagating and degenerate surface plamsons will create a standing wave, i.e., a
localized, non-dispersive state. In other words, the two plasmon dispersion branches
do not cross and may hybridize for an existing perturbation and an energy gap may
be formed [21, 44]. We will investigate this anticrossing behavior in experiments
and simulations in Sect. 7.5.3.3.

As we investigate metallic gratings by SE we now want to address the question
how these resonance transitions show up in the ellipsometric spectra. Surface
plasmons can only be excited with light where the magnetic field vector component
is parallel to the surface of the metal which corresponds to p-(or TM)polarization.
We expect that rp will decrease if we excite a surface plasmon and therefore we
should observe a dip in the SE spectrum forΨ according to the definition of tanΨ =
|rp|/|rs |.

Surface plasmons are collective oscillations of the electrons in a metal. By the
incident light we obtain a resonant scattering phenomena with two scattering channels
(amplitudes). One is due to scattering within a continuum of states, namely the
simple reflection of light from the sample surface, which shows a smooth variation
of the scattering amplitude with the photon frequency ω. The second one is due
to an excitation of a discrete state (the resonant excitation of a surface plasmon)
at a well defined resonance frequency which lies within the continuum of the so-
called “background states”. In this constellation, the interference between these two
scattering amplitudes gives rise to an effective cross section (reflectance) with an
asymmetric lineshape, the so-called Fano resonance lineshape. This phenomena was
also found for the optical response of photonic crystals [18] and was originally
derived by Fano [13].

In the next sections we present measurements and simulations of various gratings.
We show that besides the agreement between simulation and experiment, we can
clearly identify surface plasmonic excitations at specific frequencies in the spectrum.
The transition matrix element and hence the spectral lineshape of this excitation is,
indeed, well described by Fano’s formula which has the form of

RP ∼ (qγ /2 + ω − ωr )
2

(ω − ωr )2 + γ 2/4
(7.6)

where ωr is the frequency of the resonance, γ is a damping parameter and q is the
Fano parameter which measures the ratio between the resonant and the direct (or
background) scattering amplitudes.

7.5 Analysis of Gratings

In the previous sections we have introduced the fabrication procedure, cross correla-
tion measurements, SE and numerical simulation techniques for gratings. Addition-
ally, we have shown that metallic gratings support the excitation of surface plasmons
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Fig. 7.9 A schematic of the
silicon grating fabricated by
NIL

at more than one energy. In this part we analyze silicon, gold and silver gratings by
spectroscopic ellipsometry, simulate their spectra by rigorous coupled wave analysis
(RCWA) and focus on details of the obtained results.

7.5.1 Silicon Gratings

The simplest gratings are produced by structuring the plane wafer without evapora-
tion of any additional material. To this end, we apply the fabrication procedure as
illustrated in Fig. 7.1 directly to a silicon wafer. After structuring the residual resist
with the stamp we perform a reactive ion etching to obtain the silicon grating. Finally
we remove the resist from the sample. A schematic drawing of the resulting pattern
is presented in Fig. 7.9.

Before studying the SE spectra of the gratings we take a closer look on the dielec-
tric function of silicon, which we take from [20] and the according Ψ andΔ spectra
of a natural wafer with a thin overlayer of SiO2 in Fig. 7.10. The dielectric function of
silicon is governed by two resonances in the visible at 3.4 and 4.25 eV, respectively.
These resonances are excitations between different bands at the so-called critical
points where an occupied and an unoccupied band are almost parallel in reciprocal
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Fig. 7.10 a Real (red) and imaginary (green) part of the dielectric function of silicon. b Calculated
SE spectra (Ψ and Δ) of a silicon wafer without oxide for several angles of incidence φ between
55◦ and 75◦
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Fig. 7.11 SE spectra (Ψ (a) and Δ (b)) for Field (c) (P = 1200 nm) for two different sample sets
with a linewidth L ∼ 720 nm: in red, the height of the grating is h = 35 nm and in green h = 20 nm
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Fig. 7.12 SE spectra (Ψ (a) and Δ (b)) for Field (d) (P = 800 nm) for two different sample sets
with a linewidth L ∼ 460 nm: in red, the height of the grating is h = 35 nm and in green h = 20 nm

space [58]. The critical points of Si are also recognized in the SE spectrum (b) but
not as sharp peaks. To characterize critical points from SE spectra several numerical
manipulations of the SE data, such as Fourier transformation and analysis of the
coefficients, have to be performed. This is known as critical point analysis ([57] and
references therein). The dielectric function of silicon is positive below E = 4.15 eV
and negative above.

Due to the small fields of 3 × 3 mm2 we have to use the focussing probes of the
SE [55]. In Fig. 7.11 we present the ellipsometric spectra for Field (c) with a period
of P = 1200 nm and in Fig. 7.12 for Field (d) for P = 800 nm (see Fig. 7.2a). We
clearly distinguish peaks due to the grating at certain energies. The two different
curves in each plot represent measurements of two sample sets which only differ in
height and linewidth. The difference in height is simply realized by a longer etching
time which also causes a reduced linewidth.

We have measured the ellipsometric data for three different angles of incidence,
namely for φ = 55◦, 65◦ and 75◦ as for silicon Ψ andΔ are more sensitive for large
angles of incidence. The deeper grating shows enhanced features in the spectrum.
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Fig. 7.13 Measured (red curve) and simulated (blue and green) curve for a silicon grating of Field
(d) for Ψ (a) and Δ (b). We compare two different simulations with the experiment to deduce the
real height of the grating

Comparing Figs. 7.11 and 7.12 with Fig. 7.10b, we see that the overall shape of Ψ
and Δ is characteristic for silicon. Two critical points of silicon are also visible in
the spectrum of the gratings but are slightly reduced in amplitude due to the natural
oxide on the surface.

The peaks/dips, especially for the measurements of the deeper grating, are
explained by surface plasmon excitations. Although Si is not metallic in this energy
range we are allowed to insert the dielectric function of silicon for ε2(ω) in Eq. (7.5).
The measured resonance frequencies indeed match with the ones calculated from
Eq. (7.4) using the periodicities of P = 1200 and P = 800 nm of the real samples.

In Fig. 7.13 we compare the simulation results with the measured spectra. In
Sect. 7.3.1 we already saw from AFM and SEM images that the linewidth and height
may slightly vary around a mean value. Only the period is constant as it is given by
the stamp design and repeated all over the sample. In the simulations, geometrical
parameters of the grating have been varied. In this way we are able to adjust the
simulated spectrum to the measured one and derive the best fit parameters for the
geometry from the best agreement between simulation and experiment. In the present
example we have verified the period P = 800 nm (Field (d)) and concluded that
the lineshape is almost rectangular with a mean value of L = 480 nm which is in
agreement with the SEM images.7

The only unknown geometrical parameter is the height of the grating h. The green
line in Fig. 7.13 shows the SE spectra of a grating with h = 20 nm and the blue one
the spectrum for h = 15 nm. From the Ψ spectra we see that both simulations do
not exactly match with the measured spectrum (red curve) but the simulation for
h = 20 nm shows the same qualitative features as the measured one and only has a
vertical offset of around 2◦ in Ψ .

The quantitative analysis yields an MSE = 35 for the experiment and simulation
with h = 20 nm and an MSE = 54 for the experiment compared with calculations

7 Similar to the one presented in Fig. 7.3a but for a period of P = 800 nm.
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assuming h = 15 nm. We thus conclude that the grating height must be around
h = 20 nm which was confirmed by AFM measurements (see Fig. 7.4).

We have performed various simulations concerning the influence of the silicon
surface oxide layer. First, we investigate whether a thin SiO2 layer on the side walls
of the grating influences the spectra. Second, we changed the thickness of the top
oxide layer (1, 2 or 3 nm). All these variations had no significant effect on the SE
spectra and we conclude that we can neglect the oxide on the sidewalls and a rough
estimate of the oxide thickness is enough.

7.5.2 Gold Gratings

In science there is a growing interest in metallic and especially gold structures. The
search for negative index materials whose resonant frequency band is in the near
infrared or even in the visible spectral range is a driving force for this interest.
The aim is to create “magnetic resonances”, which are needed to tune the effective
permeability to negative values. For this reason split rings, rods or fishnet structures
containing metallic elements are investigated (Ref. [50] and references therein).

These metallic nanostructures have a complicated geometry and we rather describe
and analyze the ellipsometric response of one dimensional gold gratings in this
section as a simple model case. Before doing this, we present and discuss the various
dielectric functions for gold found in literature and measured by ourselves. Next, we
show the modelling of the grating and compare the results to actual SE measurements.
Finally, we again study surface plasmonic excitations which are more pronounced
then in Si gratings as we have metal-dielectric interfaces enhancing surface plasmonic
effects.

7.5.2.1 Bulk Gold

In literature several approaches have been applied to measure the dielectric function
of gold. As the data sets differ considerably, a summary and qualitative analysis of
the optical properties of gold was done in [4]. It was shown that the spectrum of gold
consists of two different parts around a band gap at E = 2.5 eV. Below this value the
optical response is Drude like due to the free electron contribution and the imaginary
part ε′′(ω) of the dielectric function is influenced by grain size which affects the
damping constant (relaxation time) as well as by roughness. The lowest values for
ε′′ were achieved for non-annealed samples. In the interband region for energies
E > 2.5 eV a different effect influences the dielectric function, namely the amount
of voids which are described by an effective medium approximation (Bruggeman).
This is why the lowest values of ε′′ in this spectral range were achieved for annealed
samples as the amount of voids was reduced.

In Fig. 7.14 we present data sets which are included in the ellipsometry soft-
ware [55] and found in literature. The first two are the permittivity data sets of
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Fig. 7.14 Different dielec-
tric functions of gold from
literature: ε′ = Re(ε) and
ε′′ = Im(ε) (from [40])
(red curves), ε′ and ε′′ from
Woollam software (green
curve), dielectric functions
from [24] (blue) and from [53]
(magenta)
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Palik [40] (red curve) and of the Woollam company (green curve). The latter is
only available in an energy range from E ∈ [1.2, 5]eV and has to be extrapolated
for smaller energies. The next one from literature is found in [53] and plotted in
magenta. These three data sets are obtained from actual measurements of gold.

The other data set which we present in blue are obtained by fitting gold data to
a model dielectric function [24] (we label this as MIT-data set). All metals can be
approximated by a Drude-Lorentz model which consists, as the name indicates, of a
Drude and a Lorentz part

ε(ω) = ε∞ − ω2
p

ω(ω + ıγp)
+

∑
i

Ai

ω2
r,i − ω2 − ıγiω

(7.7)

The Drude part describes the free electron contribution with a plasma frequency ωp

and damping coefficient γp and of several Lorentzian like parts with resonance fre-
quenciesωr,i , oscillator strengths Ai and damping factors γi . The Lorentzian oscilla-
tor (or possible Tauc-Lorentz oscillators for semiconductor or amorphous materials)
represent interband transitions [1, 53]. Therefore, the total dielectric function con-
sists of a low energy part where interband transitions or free electron motion is mainly
and a high energy part with dominating intraband contributions.
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Fig. 7.15 SE data (green) for a control sample consisting of a Si wafer with natural oxide. Above
a thin Ti layer was deposited for the adhesion of the gold layer on top. In red we show the model fit
according to the parameters plotted in the right panel. The negative fraction indicates a more dense
material than the original data set

Within this model we can try to fit measured data of gold: As described before,
intraband transitions are dominating below energies of E ∼ 2.5 eV which can be
fitted by the classical free electron model (Drude). Grain sizes influence the mean
free path of the electrons and thereby γp. Above this energy, interband transitions
occur, which are modelled by (Tauc)-Lorentz models [1, 4, 58]. In Fig. 7.14 we see
that the theoretical values in blue and the compiled data from literature of [53] (in
magenta) match almost perfectly. Unfortunately no information about grain sizes
and surface roughness was given in the corresponding publications.

As described previously, we have used a control wafer during the evaporation
process to determine the height of the gold layer. The measured SE data (green
spectra) are presented in Fig. 7.15a for five different angles of incidence fromφ = 55◦
to 75◦.

We have tried to fit the measured data by constructing a multilayer model con-
sisting of homogeneous Si/SiO2, Ti (we use the dielectric function of polycrystalline
titanium for the evaporated film) and Au layers using the known thickness of the
oxide (a measured before evaporation). This ansatz yields an MSE of around 100.
Also the use of different gold models in the fitting process does not reduce the error
significantly.

The best fitting result for the control wafer was achieved by creating a complicated
model which is presented in Fig. 7.15b. We replace the gold layer by an effective
medium. This effective medium is derived by Bruggemans formula and consists of
three different materials (MIT gold, voids and titanium). Several parameters as filling
fractions, thickness of this EMA and the thickness of the titanium were assumed as
free fit parameters (indicated in blue in Fig. 7.15). To reduce the MSE we have added
a “intermix” surface which consists of a 50 % mixture between air and the underlying
Au layer. This “intermix” is mainly used to mimic the surface roughness. With this
model, the MSE was reduced to ∼16 which seems perfect at first glance.

Although we have reduced the MSE significantly with this model, we know that
the result is unphysical. During the evaporation process we made a rough guess that
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Fig. 7.16 Pseudo dielectric function 〈ε〉 calculated from ellipsometric spectra before and after
annealing (in UHV at 350 ◦C for 4 h) of a thin gold film of 20 nm on a natural Si/SiO2 wafer. The
angle of incidence was 65◦

not more than 5 nm of titanium were evaporated on the sample (the fit yielded 7 nm
plus some volume fraction in the gold layer). Also the thickness of the gold layer
was overestimated. Therefore, we conclude that the real result must be somewhere in
between: the metals segregate and form intermixed layers whose contribution could
only be determined exactly by a FIB-REM cut (see Fig. 7.5) and X-ray photoelectron
spectroscopy (XPS). Assuming that the Ti layer is diffused completely and thus
neglecting Ti in the fitting procedure, we could reach a reasonable MSE with a
thickness of the Au layer of ∼50 nm which is more consistent with the expectation
based on the evaporation settings. This shows that the lowest values of the MSE does
not guarantee correct results as the precise sample composition and other constraints
have to be considered. Without an incomplete model structure, the MSE is a rather
useless quantity.

To further investigate the gold layer we have annealed the sample after evaporation.
The annealing was done under ultra high vacuum at 350 ◦C for 4 h. In Fig. 7.16 we
present the pseudo dielectric function for the annealed and non annealed sample,
calculated from the ellipsometric spectra using the formula for the pseudo dielectric
function (which depends on ρ and angle of incidence). The measurements were done
on a thin film (20 nm) of gold on a natural Si wafer. We see that the real part of the
dielectric function has increased after annealing. The imaginary part is enhanced
for energies E < 1 eV and reduced above. According to [4] this would suggest a
reduction of the voids and an increase of the grain size, which was indeed confirmed
by AFM measurements.8

Although annealing improves the material properties of gold [8], we focus in the
next sections on non-annealed samples. First of all, the fit to the SE data of thin
gold films is better for non annealed samples, also yielding a lower MSE as well.
Furthermore, annealing of grating structures changes its profile and the lines become

8 The annealing procedure and AFM investigations were performed by Maria Losurdo at the IMIP,
Bari, Italy.
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rounded. This effect cannot be avoided as annealing before the lift off destroys the
resist.

Therefore, in all RCWA simulations of the gratings below we will model the gold
lines by an effective medium of MIT bulk gold [24] with ∼−11 % voids indicating
a rather dense gold film (this is the gold model which yielded SE spectra that were
closest to the measured ones without assuming any surface roughness and mixtures
with other materials than air). As stated above, an EMA of gold and voids is appro-
priate for E > 2.5 eV but due to the decent agreement also for lower energies and for
reasons of simplicity we use the same EMA mixture throughout the whole energy
range.

7.5.2.2 Modelling of Gratings

In the previous sections we have described the fabrication of gold gratings and their
structure and have discussed the overall shape and certain features appearing in the
ellipsometric spectra. Now, we focus on the comparison of measurements of gold
gratings with RCWA simulations and highlight the sensitivity of the SE data with
respect to changes in the geometrical parameters. We study in detail a variation of
the linewidth L , period P and the height h of the grating as well as the thickness
of the homogeneous layers underneath. As mentioned before, the first two/three
parameters are rather well known from the cross correlation techniques SEM/AFM.
Thicknesses or possible diffusion effects could only be investigated by TEM images
of cross-sections (and would therefore destroy the sample).

In Fig. 7.17 we present several simulations and compare them to SE measure-
ments of Field (d) which has a period P = 800 nm and a height h ∼ 50 nm.
This comparison is done for the whole spectrum but for a single angle of incidence
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Fig. 7.17 SE spectra of a grating of field (d) (P = 800 nm) with h ∼ 50 nm (red curve) in
comparison with different simulations (h/L): 50/330 in green, 45/330 in blue, 40/330 in magenta,
45/340 in turquoise, 45/320 in black. In a the low energy region of the spectrum is shown to highlight
the sensitivity of the simulation with respect to the variation of geometrical parameters. In b the
whole spectrum is displayed
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Table 7.2 MSE for different simulations of linewidth and period

Geometry (h/L) 50/330 45/330 40/330 45/340 45/320 50/bulk
MSE 56 65 103 47 86 44

(φ = 65◦). We have determined the thickness of the SiO2 to be 2.8 nm and assumed
a homogeneous layer of 2 nm of titanium consistent with the SE data recorded on
the homogeneous reference sample. The other geometrical parameters as h, P and L
were measured by SEM and AFM. In the simulations we vary them to see the effect
in Ψ andΔ. The numbers shown in the legend of Fig. 7.17a indicate the height h and
the linewidth L of the grating (numbers in nm) used in the simulations. Generally
speaking, the line shape is in good agreement with the measured spectrum for the
first three parameter sets in green (50/330), blue (45/330) and magenta (40/300) but
deviates, especially in the range of E ∈ [0.75−1.4]eV (see Fig. 7.17a), for the last
two simulations (turquoise (45/340) and black (45/320) dotted curves). Obviously,
changing the linewidth L results in different shapes of the spectra, even for a variation
of 10 nm in lateral direction, only. This highlights the sensitivity of the simulations
with respect to the linewidth.

The green, blue and pink dotted curves illustrate the variation of the height of
the gold grating. According to the simulation, h should be closer to 40 nm than to
50 nm—a result not completely consistent with the AFM measurements (h = 50 nm).
The origin of this discrepancy is manifold: The gold lines have a rough surface and
residual resist was present after stripping (see Fig. 7.4b). Furthermore, geometrical
details like the somewhat trapezoidal shape of the gold lines were neglected in the
simulations.

The calculation of the MSE for gold gratings is not very useful as it yields values
of MSE ∼ 2000 for the whole spectrum. The deviation between the simulations
and the experiment is particularly large for high energies. If we restrict the MSE
to an energy range E < 3.1 eV we obtain the results presented in Table 7.2. For
comparison, in the last column the MSE for a homogeneous, reference sample with
h = 50 nm is also shown, which is the lower limit for the MSE. Concluding, in this
energy range, the simulations of the gold gratings match the experimental spectrum
rather well as the best MSE is just slightly larger than the error for an unstructured
gold layer.

We see that the MSE is best for a simulation with a wrong linewidth. Apart from
that, we get a better MSE for a height of h = 50 nm than for h = 45 nm. Therefore,
we conclude that in this case the MSE is not a reliable quantity for interpreting the
simulations. Much more important is the fact that the simulation correctly reproduces
the sharp plasmon related features in the spectra, rather than the smooth regions in
between.

We have shown the sensitivity of the simulations to variations in h and L . We
now focus on the variation of the period for a gold grating of Field (a) on the same
sample set (h = 50 nm). To this end, we have fixed the linewidth to L = 760 nm in
the simulations. In Fig. 7.18 the results are presented. The periodicity was assumed
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Fig. 7.18 Simulation of field a of a gold grating with h = 50 nm. In green, blue and magenta,
different simulation results are displayed for P = 2350, 2400 and 2450 nm. The left plot (a) shows
the low energy part of the spectrum; in b the whole spectrum is presented

to be P = 2350 nm (green), P = 2400 nm (blue) and P = 2450 nm (magenta).
In the left figure (a) where we show the low energy part of the spectrum, the three
simulated spectra are compared to the measurement (red curve). We can clearly see
that the dips at ∼1.1, 1.35 and 1.9 eV strongly shift with the period as predicted by
Eq. (7.4). Therefore, the periodicity of the grating can be precisely determined from
SE and the corresponding simulations with a very high accuracy.

In Fig. 7.18b the whole spectrum is displayed. Apart from a shift of the dip position
the simulated spectra can reproduce the overall shape of the measured curves. This
indicates that the height h and the linewidth L closely match the values of the real
sample (in the simulation we have used h = 45 nm and L = 760 nm which was in
good agreement with the SEM images).

7.5.2.3 SE and Surface Plasmonic Response

As a first example we have investigated in Sect. 7.5.1 a silicon grating which only
consists of silicon and its oxide. In this case, the surface plasmonic effects are not
well pronounced due to the semiconducting properties the material.

Due to its metallic behavior we expect much stronger surface plasmonic reso-
nances on a gold grating. As the imaginary part of the dielectric function of gold
is much smaller than that of silicon for energies above E > 3.2 eV, the resonance
peaks are expected to be sharper.

In Table 7.3 we have listed the resonance energies as calculated from Eq. (7.4) for
two different periods. For grating Field (a) with P = 2.4 µm we have used an angle
of incidence of φ = 65◦ and for grating Field (d) with P = 800 nm, the energies
were derived for φ = 55◦, 65◦ and 75◦. The subscript of E corresponds to the integer
number (resonance order) m in Eq. (7.4).

In Fig. 7.19 we present the measured and simulated spectra of a gold grating
with P = 2400 nm. The resonance frequencies from Table 7.3 (fourth column) are
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Table 7.3 Resonance energies for an angle of incidence of φ = 55◦, 65◦ and 75◦ for Field (d)
(P = 800 nm) and Field (a) (with P = 2400 nm) and for φ = 65◦

Field (d) 55◦ (eV) Field (d) 65◦ (eV) Field (d) 75◦ (eV) Field (a) 65◦ (eV)

E−1 = 0.85 E−1 = 0.81 E−1 = 0.78 E−3 = 0.81
E−2 = 1.68 E−2 = 1.61 E−2 = 1.56 E−4 = 1.08
E−3 = 2.47 E−3 = 2.34 E−3 = 2.28 E−5 = 1.35
E−4 = 3.40 E−4 = 3.24 E−4 = 3.14 E−6 = 1.61
E−5 = 4.24 E−5 = 4.05 E−5 = 3.93 E−7 = 1.86

The subscript of E denotes the order of the resonance m
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Fig. 7.19 Measurement and simulations of Field (a): The surface plasmonic excitation energies
only shift for a change in the periodicity as we have fixed φ = 65◦. The arrows indicate the
excitation energies from Table 7.3. The height and width of the gold lines were assumed 45/780
(green), 40/740 (blue), 45/780 (magenta) and 45/760 with P = 2450 nm (turquoise)

marked by arrows. Similar to the previous section the numbers at the top right in the
plot indicate the height and width of the gold lines, respectively. As the periodicity
is now three times larger than for the grating shown in Fig. 7.17, the sensitivity of
the simulations with respect to a change in line width decreases. We see that all
simulations show kinks in the spectrum at these energies except for the turquoise
curve. The latter was calculated for a periodicity of P = 2.45 µm which shifts
the excitation energy of surface plasmons to lower energies ∼20 meV. Therefore, the
plasmon resonances are clear indicators for the angle of incidence and the periodicity.

In the measured spectrum the low energy resonances are identified but certain
plasmonic excitations, e.g., E6 are hardly visible in the measured spectrum. Further-
more, we see that the simulations sometimes deviate from the experiment in certain
energy regions. These differences have their origin, as we mentioned before, in

• the modification of the dielectric functions due to the evaporation process (we use
the experimental determined dielectric function of gold for simulations)

• possible statistical variations of the fabricated gratings
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Fig. 7.20 Resonance energies for a gold grating with a period of 800 nm as a function of the angle
of incidence for three different gold dielectric functions (Palik, Woollam, MIT)

For a better illustration of the first point, we have plotted the surface plasmonic
resonance energies over the angle of incidence for a grating with P = 800 nm in
Fig. 7.20. For the simulations have used the three different gold dielectric functions
which were introduced in Sect. 7.5.2.1. We see that the choice of the dielectric func-
tion has only a minor influence on the resonance energies except for the m = −3
excitation around E ∼ 2.5 eV, where the data of Palik exhibit a pronounced kink
(see Fig. 7.14).

Concerning the second point, we note that the simulations are based on a structure
that consists of perfectly periodic, sharp lines of gold, where the height of the gold
lines does not vary and the grating has no surface roughness. This cannot be realized
when fabricating the real grating samples. However, we can conclude from these
results that the better the agreement between experiment and simulation is, the better
the sample quality.

In Fig. 7.21 we present the phase spectrum Δ(E) for Field (d) for three different
angles of incidence. We plot the spectrum for the lower energy range, as in the Δ
spectrum the peaks of the surface plasmons can be easier identified. The arrows again
indicate expected resonance energies as listed in Table 7.3 which all correspond quite
well to the experimental observations.

To demonstrate the sensitivity of the surface plasmonic resonances we focus on
the first peak (m = −1) in Fig. 7.21 which is strongly enhanced compared to the
resonances at high energies. The surface plasmons, that are excited for m < 0 show a
blueshift with decreasing angle of incidence which is also seen from Fig. 7.20. This
shift becomes stronger the smaller φ gets. However, as we have to use focussing
probes, measurements belowφ = 45◦ are prohibited. Betweenφ = 45◦ andφ = 55◦
the peaks, which are best seen in theΔ spectrum, shift by about 6 meV per degree of
φ. As the detector is sensitive to 2 meV in this energy region, we reach a sensitivity
of one third to one fourth of a degree.
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Fig. 7.22 Supercell calculations where the central gold bar is shifted to the left in order to create
a new period doubling the one of the original grating

7.5.2.4 Supercell Calculations and Effects of Linewidth

We have shown that the ellipsometric spectrum is affected by changing the geo-
metrical parameters of the grating. Now, we focus on large-scale variations of the
period P and line width L . As the stamp has a fixed design we exclusively perform
simulations for these two parameters.

The variations are interesting because we demonstrate that dips and peaks in
the SE spectra are really caused by surface plasmonic excitations. As a first hint,
the effect is polarization dependent. We have highlighted the sharp features in the
spectra of Ψ and Δ in the previous section. The latter one represents the phase shift
between the two different polarizations (p and s, respectively) (Fig. 7.22).

To emphasize the relation between periodicity and resonance frequencies we set
up a supercell with a periodicity of P = 1600 nm. Within this supercell we place an
additional gold bar. By putting this exactly in the middle, we create a periodicity of
P = 800 nm—the red curve in Fig. 7.23 shows the corresponding result. During the
other simulations the central bar is shifted in steps of 40 nm out of its central position
(blue curve indicates a shift of δ = 40 nm and the pink curve of δ = 80 nm). All
gold bars were assumed to have a height of 45 nm and a linewidth L = 100 nm. The
angle of incidence was φ = 65◦.
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of P = 1600 nm (blue and pink curves) remains. This doubles the number of surface plasmonic
resonances which are indicated by the larger (P = 800 nm) and shorter arrows (P = 1600 nm)

Table 7.4 Additional resonance frequencies (odd values of m) for a periodicity of P = 1600 nm

Order of resonance -3rd -5th -7th -9th
Energy E = 1.2 eV E = 1.99 eV E = 2.827 eV E = 3.653 eV

The angle of incidence was φ = 65◦

The larger arrows in Fig. 7.23 are the plasmon peaks for a period of P = 800 nm
whereas the shorter arrows indicate the additional resonances occurring for a peri-
odicity of P = 1600 nm. We see that the simulations for the offset bar (green and
blue) exhibit the additional resonances of the larger periodicity, whereas the simula-
tion for the central bar and, hence, reduced periodicity of P = 800 nm shows only
resonances at the larger arrows. The additional resonance energies for P = 1600 nm
are displayed in Table 7.4 for φ = 65◦ (and the excitation energies for P = 800 nm
are listed in Table 7.3).

From these supercell simulations we conclude that the resonances in the SE spectra
are very sensitive to the periodicity. Resonances are strictly related to the appropriate
reciprocal wavevector 2π/P and even a small deviation of the gold bars affects the
resonance frequencies of the surface plamsons.

Next, we investigate a change in linewidth and its effect on the SE spectrum. We
perform simulations for gold gratings with a height of h = 45 nm on a homogeneous
layer of SiO2 = 2 nm for a period of P = 800 nm and an angle of incidence of
φ = 65◦. For this structure we know the surface plasmon resonance frequencies
from Table 7.3 (second column). In the following we have changed the linewidth of
the gold bars between 1 and 640 nm and the simulation results are plotted in Fig. 7.24.
The vertical lines indicate the expected SP resonance positions.
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Fig. 7.24 Simulated spectra for gratings with a periodicity of P = 800 nm and a height of
h = 45 nm. The linewidth was changed for the different spectra: L = 1 nm (red), L = 10 nm
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The simulation for a grating with very small linewidth of L = 1 nm (red spectrum)
is similar to the bulk behavior of silicon and the grating has only an effect in the
low energy region where a peak at around 1 eV occurs. Already an increase of the
linewidth to 10 nm (green curve) yields several surface plasmonic resonances due to
the periodicity.

We focus now on the lowest three excitations, namely E−1 = 0.81 eV, E−2 =
1.61 eV and E−3 = 2.34 eV. The resonance for the first lattice vector (m = −1)
becomes more pronounced with an increasing linewidth. Below L = 40 nm this
resonance is hardly visible. Further, with increasing width the resonance becomes
sharper, which is caused by vertical surface plasmon resonances as explained in detail
in Sect. 7.5.3.3. The resonances E−2 and E−3 have different strengths and are not
visible for certain values of L . This behavior may be a consequence of the Rayleigh-
Rice theory (RRT) which states that the reflectance of a structure is determined by the
power spectrum of the surface geometry [14, 45]. RRT is only valid for small heights
of a structure but as we are changing the linewidth, we are pronouncing different
Fourier coefficients of the power spectrum of the grating.

Apart from this, the E−3 excitation shows a strong blueshift with increasing
linewidth between L = 10 to about 40 nm. We see that in the low energy region
an increase of L leads to a positive offset of Ψ and negative one in the high energy
region. This cross over is caused by the fact that for small line width the signal is
dominated by the underlying silicon substrate, whereas for large values of L a gold
like spectrum is obtained.
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7.5.3 Silver Gratings

In the previous section we have characterized gold gratings and studied the surface
plasmon energies for different angles of incidence. Surface plasmons are excitations
on metallic surfaces and their excitation/propagation becomes more enhanced the
smaller the damping of the metal is. The absorption of silver is in some regions smaller
than the one of gold and, therefore, we expect that surface plasmonic excitations are
more pronounced.

The main disadvantage of silver regarding technology aspects is its aging effect
as (thin) silver films oxidize relatively fast. Therefore, the material properties change
after some time of exposing of the silver grating to air. Thus, in literature and appli-
cations mainly gold is used for the fabrication of nanostructures [50].

As a consequence, the technology for the fabrication of gold gratings is better
developed as for silver structures. However, we have processed a silver sample with
the same stamp (and geometric dimensions) as the gold and silicon gratings. This
silver sample was not as perfect as the gold samples but some areas on the sample were
well processed and, therefore, a proper measurement of the ellipsometric response
using the focussing probes was possible.

7.5.3.1 Bulk Silver

Similar to gold, many measurements and data for bulk silver exist. In Fig. 7.25 we
present several different dielectric functions for the metal. The first one is the well
known Johnson Christy data set [26] and the according real and imaginary part of
the permittivity are presented in red. The next data set (plotted in green) are Palik’s
data [40], which have a slightly larger imaginary part in the low energy range. The
physics data booklet of Weaver [53] also contains silver data, which are presented
by the blue curve. The discretization of the permittivity in the visible spectral range
is not sufficient and, therefore, we reject this data set.

The data set plotted in magenta is included in the Woollam software and is a
sum of Lorentz oscillators as described by Eq. (7.7). It is only valid for energies
E < 4.1 eV as seen by the artificial oscillator for E > 4.1 eV. It contains a Drude
term with the parameters �ωp = 8.53 eV and γP = 0 and four Lorentzians at
resonance energies E0 = {0.33, 3.51, 4.09, 4, 28}eV with the amplitudes Ai =
{2.46, 8.8, 5.4, 0.586}eV2 and damping parameters γi = {0.18, 0.47, 0, 0.5}eV−1.
This dielectric function yields the best description of the silver films we have fabri-
cated, among all data sets in the energy range E < 4 eV. As the surface plasmonic
resonances are best visible below this range this limited spectral range is sufficient.

The pseudo dielectric function 〈ε〉 obtained from the SE measurement of a silver
film of 50 nm thickness is presented in turquoise. We have performed this measure-
ment directly after processing the film. In addition, the black curve shows the pseudo
dielectric function for the same sample but measured after six months of exposure to
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Fig. 7.25 Different dielectric
functions of silver from litera-
ture: ε′ and ε′′ from [26] (red
curve), from [40] (green),
from [53] (blue), dielectric
model function described by
four Lorentz oscillators and
a Drude term as included in
Woollam software (magenta).
The pseudo dielectric func-
tion 〈ε〉 derived from mea-
surements of a 50 nm silver
film are shown in turquoise
(directly after evaporation)
and black (several month after
sample processing)
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air. The imaginary part as well as the real part of ε(ω) have increased considerably,
indicating oxidation effects of silver.

We see that the measured sample shows a kink in the dielectric function slightly
below 4 eV. This peak is not visible in published data sets and is clearly not an effect
of silver. In general, the reason for the difference in the measured values for silver
and the tabulated ones from literature is due to the evaporation process, similar as
for gold. Grain size, surface roughness and the density of silver, i.e., the amount of
voids, influences the quality of the silver film.

In Fig. 7.26 we compare the Drude-Lorentz silver (taken from the Woollam soft-
ware) data to the gold dielectric function of [53]. We have chosen these two data
sets as they describe our samples best. We see that ε′ of silver (red curve) is always
lower than the real part of gold (green). The imaginary part of gold (magenta line)
is smaller than for silver (blue) below E ∼ 1.5 eV but becomes larger above. There-
fore, in our samples the conductivity of gold is better than for silver for low energies,
which should not be the case for well prepared silver films. In this case, ε′′ for silver
is always smaller than gold, which can be seen, e.g., by comparing the gold data of
Weaver with Johnson/Christy data for silver.
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Fig. 7.26 Comparison between the silver Drude-Lorentz model (real part—red curve and imaginary
part of the permittivity—green curve) and the gold data [53] (real part—blue and imaginary part—
magenta)

7.5.3.2 Ellipsometric Response and Surface Plasmons

Although the technology for the fabrication of gold nanostructures is advanced, silver
gratings are highly interesting due to the smaller damping constant of silver for well
prepared films. The small imaginary part of the dielectric function of silver requires
a higher number of Fourier components in the RCWA simulation to avoid artefacts
and ensure convergence.

For silver gratings, we have fabricated samples with the same geometrical para-
meters as discussed before, e.g., the grating in Field (d) with a period of P = 800 nm,
a linewidth of L = 330 nm and a height of h = 50 nm, which can thus be compared
directly with the corresponding gold grating.

In Fig. 7.27a, b we present the measured Ψ and Δ spectra, respectively, for a
silver (red) and a gold grating (blue) for the given geometry. The spectral range is
reduced as we discard values larger than 4 eV due to the artificial peak of the used
silver dielectric function at E = 4.1 eV. For low energies E < 2.5 eV, the gold and
silver gratings show qualitatively very similar spectra although the absoluteΨ values
are slightly lower for the silver grating. Above E > 2.5 eV the spectra are clearly
different which is caused by the different behavior of the dielectric function (see
Fig. 7.26).

The lower plasmonic resonance energies E−1 and E−2 are basically equal as the
slope of the surface plasmon dispersion is close to the light line for small frequencies.
We see that the E−3 peak for the silver sample is more pronounced than for a gold
grating as ε′′(ω) of silver is smaller than that of gold in this energy range.

In Fig. 7.28 we compare the SE measurement of a silver grating (Ψ in (a) and Δ
in (b)) with the RCWA simulations with parameters P = 800 nm, L = 330 nm and
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Fig. 7.27 Measured Ψ spectra (a) for a silver grating (red) and a gold grating (blue) of type (d)
with a period P = 800 nm, linewidth L = 330 nm and height h = 50 nm. b Δ-spectra of the same
samples

h = 50 nm. The agreement between simulation and experiment is almost perfect up
to 3 eV although the silver grating is far from ideal. The linewidth of L = 330 nm
was determined by SEM.

For Ψ as well as Δ the simulated results differ from the measured ones in the
energy range between E ∈ [3, 3.5]eV. This deviation arises from material issues as
a variation of both, L and h, did not yield any better results and periodicity changes
are clearly visible as a shift in the surface plasmonic resonances.

The surface plasmon resonance energies for silver are again calculated by Eq. (7.4)
(ε(ω) is the permittivity of silver). The resonances for a fixed periodicity of a grating
depend on the energy as well as the angle of incidence φ. In Fig. 7.28a, b the black
dotted lines are the solutions of Eq. (7.4) and show the dispersion of surface plasmons
excited with different integer multiples m of the fundamental reciprocal lattice vector.
As mentioned in Sect. 7.4.2, the dispersion of the positive and negative solution with
the same |m| become degenerate at normal incidenceφ = 0◦. By increasing the angle
of incidence the surface plasmons propagating in opposite direction to the incident
light (solution with negative m) show a red shift whereas the resonances with positive
values of m shift to higher energies.

At certain energies and angles of incidence two different dispersion lines for
different values of m can cross. The color map in Fig. 7.29b shows a 2D representation
of the amplitude of the second derivative of theΨ spectrum with respect to energy. In
this way, peaks in the SE spectra (surface plasmonic resonances) are better identified.
We see, that for all experimentally accessible angles of incidence φ ≥ 44◦ and below
E < 2.5 eV, the dispersions of the surface plasmon resonances coincide well with
the ones predicted by Eq. (7.4).

For smaller values of φ the agreement between the resonance position as calcu-
lated with RCWA and those predicted by Eq. (7.4) is only good up to an energy of
E ∼ 2 eV. At φ = 20◦ and E ∼ 2.2 eV the E1 and E−2 solutions cross. In simula-
tions this happens at slightly higher energies than predicted by the simple model of
Eq. (7.4). From the color map it cannot be seen whether the crossing is avoided by
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Fig. 7.28 a Measured (red) and simulated (green) Ψ spectra for a silver grating of type (d) with
period P = 800 nm, linewidth L = 330 nm and height h = 50 nm. b The Δ spectrum of the same
sample. The grid shows the predicted resonance energies and serves as a guide for the eye

forming a hybrid solution and introducing a band gap. Concerning the E1 solution
it is astonishing that the surface plasmonic resonance curve does not follow the pre-
diction of the simple model, as for larger energies and angles of incidence than this
crossing, the resonance positions in the RCWA calculations lie well below the black
line for m = 1. This indicates that another effect is influencing the dispersion which
is not identified, yet.

In (a) we show a measurement (left) and a simulation (right) of the Ψ spectrum
for φ ∈ [44, 75]◦ in steps of 1◦. The simulated spectra exhibit more features, which
are also visible in the d2Ψ

d E2 color map, than in the experimental ones. This is due
to the imperfection of the grating as peaks are broadened and some features may
be washed out. The additional streaks in the double differentiated RCWA spectrum,
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(a)

(b)

Fig. 7.29 a MeasuredΨ spectra (left) compared to the RCWA simulations (right) for various angles
of incidence (φ ∈ [44, 74]◦ in steps of 1◦), for a field of type (d) with P = 800 nm, L = 330 nm and
h = 50 nm. b Double differential spectra d2Ψ/d E2 plotted over E and φ for the same structure.
The black lines indicate the resonance conditions for various values of m calculated from Eq. (7.4)

which do not follow the black lines, can be separated into two different classes:
In the low energy region, lines appear that change with the angle of incidence and
energy but cannot be described by Eq. (7.4), whereas in the medium energy region
E ∼ 1.75–2.5 eV horizontal streaks appear at constant energies over large ranges of
φ. The latter effects are caused by the material and not by the grating structure itself.

In Fig. 7.30a we show the measurement (left panel) and corresponding RCWA
simulations (right) for a silver grating with a period P = 2400 nm, L = 800 nm
and a height h = 55 nm. The Ψ spectra were again measured over the accessible
range φ = 44◦ and φ = 75◦ with Δφ = 1◦. The measured spectra are compared to
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(a)

(b)

Fig. 7.30 a Measured Ψ spectra (left) compared to RCWA simulations (right) for various angles
of incidence (φ ∈ [44, 74]◦,) for a field (a) with P = 2400 nm, L = 800 nm and h = 55 nm. b
Double differential spectra d2Ψ/d E2 plotted over E and φ for the same structure. The black lines
indicate resonance conditions for various values of m calculated by Eq. (7.4)

the simulated ones in the top panel. As can be clearly seen, we obtain more surface
plasmonic solutions due to the larger periodicity. As before, we see more features
in the simulated spectra but all surface plasmonic resonance peaks are also found
in the experimental spectra. In (b) we plot the double differentiated spectrum d2Ψ

d E2

over the angle of incidence and energy and compare the resulting color map with
the dispersion of the resonance energies calculated from Eq. (7.4) (black lines). The
number and dispersion of the resonances differs from Fig. 7.29 as the period of the
structure is changed to P = 2400 nm. The dispersion curves for negative values of m
are well reproduced by the simulated and measured results of the sample. However,
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the resonance energies for positive orders of m are only correct for small angles of
incidence and the deviation between calculated energies and experimental/RCWA
spectra increases above.

In conclusion, although silver suffers from the well known aging effects, the
investigation of the surface plasmonic excitations is very interesting as the peaks are
sharp and meet theoretical predictions over a wide range of energies. Especially for
low energies, experiment and RCWA simulations match quite well. At larger angles
of incidence or higher energies, we observe discrepancies of both with respect to the
simple analytical predictions of the resonance positions which indicates additional
effects that are not included in the simple theory leading to Eq. (7.4).

7.5.3.3 Mode Pattern of Surface Plasmons

The excitation of surface plasmons at metallic gratings is clearly visible in SE spectra
and their derivatives as this effect is strongly dependent on the polarization of the
incident light. The fields are enhanced and confined at the metal-dielectric interface
and decay exponentially perpendicular to the metallic surface. Therefore, it is very
interesting to investigate the field distributions within one period of the grating, mon-
itor the energy flow across the boundaries and check the reflection and transmission
coefficients.

We only perform numerical simulations in this section and use a model grating
with P = 800 nm, L = 300 nm and h = 50 nm. The dielectric function of silver in
this part is taken from Johnson and Christy [26] as this data set is widely used in
literature.

In Fig. 7.31a we present the ellipsometric spectrum (red) of the grating together
with the number of non-evanescent diffraction orders (green—right scale). The num-
ber of diffracted orders increases with increasing energy and as soon as a new order
shows up, the parallel wavevector component kx+G = kx + 2πm

P becomes real for an
increasing integer number |m|, which denotes the diffraction order. At the threshold
energy, each newly arising order m < 0 has an angle of φm = −90◦.

In Fig. 7.31b, we investigate the field distribution |Hy |2 within the x−z plane,
which is the total sum of all diffraction orders of the grating described above. The
angle of incidence is chosen to be φ = 65◦. The dashed lines show the structure, i.e.,
the silicon wafer, the 2 nm thick SiO2 layer and the silver grating on top of it. For
the chosen p-polarization the magnetic field component is parallel to the silver bars
of the grating.

The energies for which the field distributions are plotted, were chosen such that the
frequency of the incident light is slightly below or above a change in diffraction orders
(m = −1: 0.81 eV, m = −2: 1.62 eV, m = −3: 2.4 eV) and at energies away from
plasmonic resonances (E = [0.74, 1.21, 2.00, 2.80]eV). We see that the amplitude
of the magnetic field is largest at the silver/air interface for energies around the
calculated plasmonic excitation frequencies. If a new propagating diffraction order
is allowed, the field is lowered as energy can propagate in a new diffraction channel.
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Fig. 7.31 a Ellipsometric Ψ spectrum (red) and the number of non evanescent diffraction orders
(green) for a silver grating with P = 800 nm, L = 300 nm and h = 50 nm. b Magnetic
field distributions for p-polarization (where Hy is perpendicular to the plane of incidence) at
different energies of the incident light (φ = 65◦). The energies are denoted at the top right:
E = [0.735, 0.813, 0.815, 1.210, 1.625, 1.628, 2.000, 2.432, 2.440, 2.801]eV

For intermediate values of the energy, the field distribution has its maxima between
two silver lines and the amplitude of |Hy |2 is smaller.

The time evolution of the fields can also be monitored by RCWA (the origin of the
coordinate system has to be varied to obtain all phases) or by using finite elements
method (FEM)9 by multiplying the solutions with eıωt . Another possibility are real
space methods like the finite difference time domain method (FDTD) [51].

9 Martin Huber has visualized the time evolution using an FEM code. The movies are available on
request.
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With RCWA and its implementation in reticolo, we are able to investigate the
energy flow inside a grating by evaluating the energy balance equation. This relation
is the main subject of the second part of this thesis (“Energy density in absorbing
media”) and it is discussed in detail there. The relation reads

−
∫

V
∇(E × H)d3r = −

∮

S
(E × H)da =

∫

V

(
d

dt
w + ωε2(ω)E

2
)

d3r (7.8)

The volume integral of the negative divergence of the Poynting vector S = E × H is
transformed into a surface integral which yields a term that is proportional to a time
derivative of the energy density w and a lossy term ν = ωε2(ω)E2. In the next part
we show that the averaged energy density w vanishes for monochromatic excitations
(which are used in RCWA) and we are able to derive the loss of an arbitrary structure
from Eq. (7.8).

This is done by either evaluating the loss in a direct way by the volume inte-
gral

∫
V ν d3r or indirectly by

∮
S E × H da which is the integration of the normal

component of the Poynting vector over the surface of a unit cell. As we have a two
dimensional problem and our system has a continuous symmetry normal to the plane
of incidence, the dimensions of the integrals are reduced by one. For the indirect
expression

∮
S E × H da (which becomes

∮
E × H dx), the normal component of

Poynting’s vector is integrated along the boundaries of a unit cell. As we have peri-
odic boundary conditions, the energy flow through the right boundary is equal to the
flow at the left boundary. Therefore, the loss is determined by the flow through the
top boundary, which is equal to the total reflection, minus the flow through the bot-
tom boundary, which is the transmission. The direct expression

∫
V ν(r) d3r reduces

in the case of metallic gratings to an integral of the loss over the area of a unit cell∫
A ν(r) da.

In Fig. 7.32a we show the loss of one period of the silver grating with the same
dimensions as before P = 800 nm, L = 300 nm, h = 50 nm. The loss was calculated
by the flow of the Poynting vector (green) and the direct expression via the surface
integral over ν (blue). The results are identical except for a slight deviation above
4 eV. We compare this result for a silver grating with a homogeneous silver layer,
which has the same thickness as the grating (50 nm). In order to excite a surface
plasmon, we use in our simulations the Kretschmann geometry, i.e., the ambient has
a refractive index n = 1.4 and the substrate is air. The resulting resonance frequency
is at E ∼ 3.4 eV for an angle of incidence of φ = 65◦.

From this comparison we see that the absorption of a homogeneous silver layer
and a silver grating have the same qualitative shape. In the energy region where the
wavelength is comparable with typical structure sizes of the grating (E < 3 eV), we
obtain a more complicated loss spectrum with additional features arising from the
grating structure.

In Fig. 7.32b, c we analyze these features by plotting the line integral of the energy
flux along the left/right boundary Sx (left and right boundary of a unit cell have to
be equal due to the periodic boundary conditions) and along the bottom surface
(Sz) of the silver layer/grating, respectively. The in-plane component of the Poynting
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Fig. 7.32 a Absorption (loss ν) in a unit cell of a grating derived by line integrals of the Poynting
vector along the boundaries (green) and by volume integration (blue) compared with the absorption
of a Ag layer (h = 50 nm) with a fictive periodicity (P = 800 nm) (red). b The line integral along
the left boundary of the unit cell compared for a layer of silver (red) and a grating (green). c The line
integral of the Poynting vector along the bottom interface of the silver layer (red) and the grating
(green). d Averaged Poynting vector at the bottom of the silver structure (green) and inside the
substrate (red). The angle of incidence is φ = 65◦ for all plots

vector Sx for a homogeneous layer is enhanced for the surface plasmonic resonances,
whereas it shows pronounced dips at the resonance energies of the silver grating
(E−1 = 0.8 eV, E−2 = 1.6 eV, E−3 = 2.4 eV). This is caused by the different
propagation characteristics as the surface plasmons in the grating are excited by
negative in plane wavevectors (m < 0).

Investigating the energy flow through the bottom interface of the silver (Fig. 7.32c)
we see, that the energy flux is enhanced at the plasmonic resonances, especially
for the first energy resonance Em=−1. Therefore, we plot in (d) the angle of the
averaged Poynting vector tan φ = ∑

xi
Sx (xi , z0)/

∑
xi

Sz(xi , z0) in the substrate
(i.e., z0 is in the substrate—red curve) and at the interface of the silver lines to
SiO2 (i.e., z0 is chosen to be at the interface—green curve). We average along the
x-direction over one period (at an according height (z0) in the structure) and see that
the energy flux changes at the resonance condition. This method can also be used to
investigate negative index materials as the angle φ representing the energy flow has
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to be negative. However, as the result changes strongly in the vicinity of the grating
one has to average at a suitable vertical position z0.

The effect of surface plasmon resonances is also seen in the specular reflec-
tion and transmission spectra, which are shown in Fig. 7.33a. The amplitude of the
reflectance R = |r |2 and transmittance T = |t |2 for a silver grating are plotted. For
p-polarization and angle of incidence φ = 65◦ we have indicated the calculated sur-
face plasmon resonance energies by arrows. The first, very sharp, resonance differs
from the other two resonances, as we obtain a very high transmission. Additionally,
we see discontinuities in the spectrum at the energies indicated by the dotted vertical
lines. As a new propagating diffraction order appears, intensity is removed from the
specular reflection and transmission and transferred into this new channel (Woods
anomaly [44]). As a consequence, a sharp feature appears in the R and T spectra.

Figure 7.33b shows R and T for s-polarization. One can distinguish two broader
peaks at 1.8 and 2.75 eV, respectively, and several sharp peaks between 1 and 1.8 eV.
The broad peaks are caused by the finite thickness of the silicon (Fabry-Perot reso-
nances) as they change their position upon variation of the thickness (increasing the
thickness of the silicon substrate layer leads to a redshift of these peaks). The sharp
peaks in the transmission spectra occur due to the possibility of coupling out one
diffraction order.

Contrary to the previous results, for the simulation of R and T we have used a
silver grating structure on top of a 100 nm thick silicon layer instead of a semi infinite
substrate in order to obtain a finite transmission through the absorbing silicon layer.
We fixed the thickness of the silicon layer to 100 nm to avoid too many Fabry-
Perot resonances. The sample was again illuminated under an angle of incidence of
φ = 65◦.

From the field plots in Fig. 7.31b and from Fig. 7.33a we see that the transmission
is enhanced at the first resonance at E−1 = 0.8 eV. This phenomenon was previ-
ously observed and discussed for sub-wavelength hole arrays [12]. In our case, the
enhanced transmission is also a sub-wavelength phenomenon as we have a period-
icity of P = 800 nm but a plasmon wavelength of λm=−1 = �c/Em=−1 = 1530 nm
which is about twice as large as the grating period P (a very similar geometry situation
compared to the 2D hole array presented in the literature). In Fig. 7.34 the transmis-
sion spectrum of the grating can be compared with the results from literature [12]. At
higher wavelengths, the spectrum has the same shape as found in [12] supporting the
findings that the extraordinary transmission for λ > P does not depend on the shape
of the holes [33]. For slightly lower wavelengths than the zero order transmission
peak at λ ∼ 1520 nm and λ ∼ 1280 nm, respectively, both spectra exhibit a kink,
which is caused by the appearance of the first diffraction order (Wood’s anomaly). In
the relevant figure in [12] the thickness of the silver film was 200 nm, the cylindrical
holes had a diameter of 150 nm and were orientated in a 2D array with a periodicity
of P = 900 nm. In our case the transmission peak is much more intense as we have a
thin silver grating and present simulation results from a perfect grating. From the field
distribution in Fig. 7.31b we observe an enhancement of the field between the grating
lines indicating this large transmission effect (which is also apparent in the movies).
In a recent study [33] a transmission model was derived to describe the extraordinary
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Fig. 7.33 Reflectance R and transmittance T of a silver grating of type (d) with a period
P = 800 nm, linewidth L = 330 nm and h = 50 nm placed on a layer of 100 nm of silicon.
The angle of incidence is φ = 65◦. The incident light is p-polarized in a and s-polarized in b

transmission of the 2D hole arrays. Using RCWA the experimental spectra could be
retrieved exactly as it uses the transmission matrix formalism explicitly and yields
exact results.

Finally, we investigate the lineshape of the resonance which we assume to be
Fano type as a direct scattering process is coupled with an indirect one. Therefore,
we use Eq. (7.6) to investigate three surface plasmon resonances (m = −1,m = −2
and m = −3) in the reflectivity spectra for p-polarization. In Fig. 7.35 we present
these resonances for 4 different linewidths. The silver grating again has a period
P = 800 nm, a height h = 50 nm and the linewidth takes the values of L = 200 nm
(magenta), L = 300 nm (blue), L = 330 nm (green) and L = 350 nm (red). In (a)-
(c), where we present the m = −1,m = −2 and m = −3 resonance, respectively, it
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Fig. 7.34 Transmission of a silver grating with P = 800 nm, L = 300 nm and h = 50 nm on a
100 nm thick silicon layer. The angle of incidence is φ = 65◦
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is clearly visible that the resonances change significantly by varying the linewidth.
We have analyzed this quantitatively by fitting the Fano formula to the resonance.
From Table 7.5 we see that the values for q are significantly different for L = 200 nm
compared to the other linewidths. We further see, that the Fano parameters are not
very large (e.g., in [18] Fano parameters of q ∼ 1.4−3 were presented for a photonic
crystal) which indicates a weak re-radiation of the surface plasmons and, therefore,
a weak coupling of surface plasmons to the scattered light. However, by changing
the linewidth of the structure we influence this coupling and may enhance it.

The influence of the linewidth is not considered in the simple model to describe
the resonance position which we have presented in Sect. 7.4.2. Here, we clearly see
that for a more sophisticated description we have to go beyond the model presented
in this work.

In conclusion, we have shown that different kinds of surface plasmons are excited
on a metallic structure. Following the notation from [10] we can divide them into
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Table 7.5 Fano parameter q for different geometries and resonance types (m = −1,−2,−3)

L (nm) qm=−1 qm=−2 qm=−3

200 0.772 ± 0.05 [0.75;0.85] 0.30 ± 0.02 [1.5;1.8] 2.04 ± 0.18 [2.3;2.74]

300 1.46 ± 0.11 [0.75;0.85] 1.82 ± 0.11 [1.58;1.7] 0.27 ± 0.02 [2.3;2.55]

330 1.29 ± 0.08 [0.75;0.85] – 0.33 ± 0.04 [2.3;2.55]

350 1.14 ± 0.08 [0.75;0.85] 0.79 ± 0.10 [1.59;1.68] 0.43 ± 0.03 [2.3;2.6]

The numbers in the square brackets indicate the fit range

“horizontal” surface plasmons which are propagating in the plane at the metallic
grating surface. These are absorbed at the metal/air (and substrate) interface. In
contrast, in the long wavelength region where λ > P one “vertical” excitation exists
that may enhance the transmission significantly.

7.6 Homogenization Methods

In the past years there was a rising interest in artificial materials which exhibit specific
optical characteristics. This was achieved by creating structures with dimensions
comparable with the operated wavelength, as for instance the gratings described in
the previous sections or photonic crystals [25].

During the last decade, special attention has been paid to negative index materials
(NIMs) which consist of structure sizes that are well below the operation wavelength.
These materials are “artificial” concerning their optical response, as materials with
a negative n cannot be found in nature.

In case such a material would be available, very exciting properties such as perfect
lensing [42] and cloaking [46] could be realized. In 2006, the first negative refraction
was experimentally demonstrated in the microwave region [46] and since then big
efforts were set on the goal, to find smaller structures that allow to have negative
refraction in the visible spectral range. A good overview and summary up to the
beginning of 2007 is given in [50].

The key ideas about materials with a negative effective refractive index [32, 52],
pointed out, that one has to use the correct sign of the square root in the equation

n = √−ε√−μ = −√
εμ (7.9)

as the square root has to be taken from ε and μ separately. This relation points out
that if the permeability and the permittivity are both negative, the negative sign of the
square root has to be used and the resulting refractive index will be negative. In the
visible, a negative dielectric function is realized by using metallic structures as ε(ω) is
negative in this frequency range (see, e.g., the dielectric function of gold in Fig. 7.14).
A negative permeability however, cannot be found for optical frequencies as spin
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resonances occur in the Gigahertz regime but not for higher energies. Therefore, all
materials have a permeability μ ∼ 1 in the visible range.

To overcome this limitation, structures were fabricated that should cause magnetic
resonances. The first theoretical and experimental approaches were done with split
ring resonators [42], later on with open split rings in a “U” shaped form, followed
by small rods and fishnet-structures. In the last two years mainly fishnet and swiss
cross designs were investigated, mostly fabricated of gold.

Although many efforts were undertaken to find better structures and to scale
them down, the concept of resonant micro- and nanostructures for creating magnetic
resonances is doubtable. By comparing the magnitude of electric and Lorentz-forces
we see, that magnetic effects are a factor 1/c smaller than electric features. Therefore,
electric resonances are dominating and magnetic resonances caused by the electric
field, even by induction, are very weak.

In general, for all artificial structures the same theoretical problem arises than
discussed before in ellipsometry, namely how one defines and calculates effective
parameters? For nanostructures, the homogeneity is lost and due to highly oriented
and periodic structures a spatial dependence of the response is expected.

7.6.1 Effective Parameters

For bulk materials the electric fields vary on atomic scales a0 and a homogenization
procedure over larger length scales l � a0 is done [2]. The electric field varies
significantly on the atomic scale, but if the optical wavelength is large compared
to atomic dimensions λ � a0 the response field shows no features of these atomic
variations.

In linear response theory the response to an applied electric field is given by

D(r, t) =
∫∫

dt ′dr′ε(r′, r; t ′, t)E(r′, t ′) (7.10)

with a similar expression concerning the magnetic fields B and H. For homogeneous
media, the response function ε(ω) does not explicitly depend on the coordinates r
and r′ but only on the distance of |r − r′|. Then Eq. (7.10) becomes

D(r, t) =
∫∫

dt ′dr′ε(|r′ − r|; |t ′ − t |)E(r′, t ′) (7.11)

(time is always homogeneous) which now has the form of a convolution integral. A
convolution integral becomes a simple multiplication in Fourier space and we obtain

D(k, ω) = ε(k, ω)E(k, ω) (7.12)
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When talking about permittivities and permeabilities we think of quantities in Fourier
space (k, ω) and keep in mind the assumption of homogeneity. A possible k depen-
dence can be dropped if the distance |r−r′| on which ε is changing, is small compared
to the wavelength of the incident light.

At this point a serious problem arises: Gratings, NIMs, or generally speaking
all metamaterials, are not homogeneous and often even not periodic media in the
direction of the incident propagating light. This destroys the basic assumption of
homogeneous media as we have a layered medium and further, the internal structure
size is on the same lengthscale of the incident wavelength.

In literature, several ways have been presented to extract effective parameters.
One possible way is to use the pseudo-dielectric formula

〈ε〉 = sin2 φ

[
1 +

(
1 − ρ

1 + ρ

)2

tan2 φ

]
(7.13)

which is the inversion of ellipsometric data assuming a semi-infinite effective
medium. For a thin overlayer a three phase model is derived [34]. Both inversions are
analytically correct and can be applied to homogeneous layers. The limits of applica-
bility are well known in ellipsometry, and violations, e.g., too thick overlayers yield
an effective permittivity with a negative imaginary part due to interference effects.

Another ansatz is to use effective medium approximations which are useful in
finding an effective index for random mixtures of materials. In the EMTs, the models
are restricted to random mixtures of mainly spherical inclusions as the Clausius-
Mossotti formula is used as a basis to describe the relation between external and
local field (see e.g. [47]). Previously, we have shown that the Bruggeman EMA
fails to describe the ellipsometric response of a metallic grating due to the highly
orientated periodic structure.

The most recent idea in assigning effective parameters to a metamaterial whose
internal structure is smaller than the incident wavelength was done by inverting the
Airy formula for a three phase system: The refractive index of the ambient n1 and the
substrate nS are well known and the layer in between (homogeneous or structured)
with a thickness d is described by effective parameters

εeff = neff

zeff
μeff = neff zeff (7.14)

with the effective refractive index neff and effective impedance zeff . The two complex
reflection and transmission parameters for each polarization are now measured or
simulated and by solving the inversion problem (for normal incidence φ = 0◦) we
obtain from

zeff = ±
√
(1 + r)2 − t2

(1 − r)2 − t2 neff = ± 1

kd

[
arccos

(
1 − r2 + t2

2t

)
+ 2πm

]
(7.15)
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all effective parameters. In Eq. (7.15) it was assumed that the slab we want to “homog-
enize” was placed in air or vacuum [48], i.e., n1 = nS = 1.

The term 2πm represents the different branches arising from Fabry-Perot reso-
nances of the slab. To obtain the correct branch, the right values of m as well as the
correct signs have to be found in order to guarantee that the physical constraints of the
effective parameters are fulfilled. These requirements are that “for passive materials,
Re(z) and Im(n) must be greater than zero” [48]. This is not equivalent to positive
imaginary parts of ε′′ = (−n′z′′ + n′′z′)/|z|2 and μ′′ = n′z′′ + n′′z′. This issue is
discussed in [9] yielding the additional condition of

|n′z′′| ≤ n′′z′ (7.16)

In various publications this inversion algorithm was extended to more compli-
cated systems as the slab was composed of a NIM with a glass substrate, a NIM
on ITO and a glass substrate [27] or a fishnet structure on a dielectric spacer,
metal film and glass substrate [30]. This kind of retrieval algorithm allows to
calculate effective parameters for slabs which may be arbitrarily complicated, as
long as one can measure or calculate the complex transmission and reflection data
(Fig. 7.36).

The theory of homogenization was generalized by a group from Jena [35] to arbi-
trary angles of incidence. They derived the complex transmission and refraction coef-
ficients by introducing an in-plane wavevector component (kx in the publication—the
angle of incidence is therefore given by tan φ = kx/kz = k||/k⊥). For this case,
the degeneracy between TE (or s-polarization) and TM (p-polarization) is lifted and
the transmission and reflection parameters become polarization dependent. For a sys-
tem that consists of substrate, film and a cladding these coefficients can be inverted
and effective parameters are derived. The authors show that for normal incidence the
equations of Ref. [48] (Eq. (7.15)) are retrieved.

d

effective medium

d

d

(a)

(c)

(d)

(b)

Fig. 7.36 Metamaterials like a negative index material (fishnet) (a), a grating (b) or a photonic
crystal (c) with thickness d are replaced by an effective layer (d) with the same thickness. The
cladding/substrate above and below are assumed to be the same
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This ansatz of inverting Airy’s formula without approximations looks promising
at a first glance: The complex reflection and transmission coefficients for a slab are
derived exactly and two complex parameters are obtained. These parameters are
inverted to a complex refractive index neff and a complex impedance zeff and finally
a complex effective permittivity and effective permeability is derived.

The homogenization algorithm in the form of Eq. (7.15) as well as in the general
formulation [35] fail under certain conditions. First, the structure is not homogeneous
in propagation direction and, therefore, we expect a wavevector dependent (or φ
dependent) effective index. Second, for structure sizes comparable to the wavelength,
diffraction occurs and the higher diffraction orders are neglected in the derivation.

In general, effective permittivities and permeabilities have to fulfill certain bound-
ary conditions which were derived in static an quasi static approximations. The
dielectric properties of any mixture of materials are constrained by the dielectric
function of the components in the sense that

min{ε1, ε2} ≤ εeff ≤ max{ε1, ε2} (7.17)

and similar for the permeability. For mixtures of two materials with ε1 and ε2 and a
volume fraction of f and 1 − f , respectively, these so called Wiener bounds were
derived in the beginning of the last century and read

εeff,max = f ε1 + (1 − f )ε2 (7.18a)

εeff,min = ε1ε2

f ε2 + (1 − f )ε1
(7.18b)

depending on whether the inclusions are orientated in the direction along the flux of
the electric field or perpendicular to it [3, 6, 47, 54].

Stricter bounds than formulated by Wiener were found by using variation theo-
rems [19] and the resulting Hashin-Shtrikman bounds read [47]

εeff,max = ε2 + 3 f ε2
ε1 − ε2

ε1 + 2ε2 − f (ε1 − ε2)
(7.19a)

εeff,min = ε1 + 3(1 − f )ε1
ε2 − ε1

ε2 − 2ε1 − (1 − f )(ε2 − ε1)
(7.19b)

The Hashin-Shtrikman bounds are equal to the Maxwell-Garnett mixing rules for
spherical inclusions. Both, the Wiener and the Hashin-Shtrikman bounds, are fully
symmetrical to the exchange of materials, i.e., ε1 → ε2, ε2 → ε1 and f → 1 − f .
Due to the duality between electrostatic and magnetostatic problems, the Hashin-
Shtrikman bounds are also valid for the permeability. Therefore, these results
from electrostatics suggests, that no effective magnetic permeability different from
μeff = 1 is possible as all components of metamaterials posses a permeability very
close to unity.

In the next section, we retrieve the effective parameters for a metallic grating and
compare them with effective medium theories and the Hashin-Shtrikman bounds.



7 Spectroscopic Ellipsometry on Metallic Gratings 305

7.6.2 Testing the Retrieval Algorithm

As an example to test retrieval algorithms, we simulate reflection and transmission
coefficients for a silver grating with a periodicity P = 300 nm, linewidth L = 100 nm
and a height of h = 50 nm for normal incidence (φ = 0◦). This grating is completely
embedded in air and for simplicity no layer or substrate underneath is present. We
have chosen a rather small periodicity as in cases where the wavelength is comparable
to the structure sizes, diffraction occurs (in this case for λ ∼ P ⇒ E ∼ 4.1 eV). For
shorter wavelength than the period, energy is lost in higher diffraction orders and is
not considered in the homogenization algorithm as the effective parameters are only
retrieved from specular orders. Therefore, we restrict ourselves to the limitation of
k P � 1 [49].

Although we have normal incidence we have to distinguish between s- and p-
polarization as the grating breaks the symmetry. The configuration corresponds to
a filling factor f = L/P = 1/3 for material 1 with ε1 = εAg(ω). In the RCWA
simulation for rs,p and ts,p as well as for the calculation of the Hashin-Shtrikman
bounds we use the Johnson-Christy data for silver [26].

In Fig. 7.37 we show the bounds for an effective material that consists of 2/3 air
and 1/3 of silver. The red curves in (a) and (b) show the real and the green curves
the imaginary part of the maximum/minimum effective dielectric index derived by
Hashin-Shtrikman bounds Eq. (7.19). By comparison, we see that the minimum
bound corresponds to effective dielectric function for s-polarization, which we have
obtained from the retrieval algorithm (7.15). The real part, which is shown in blue is
always larger than the minimum bound in red up to an energy of around E ∼ 3.6 eV.
The imaginary part obtained by the retrieval formula (magenta) is always smaller
than the Hashin-Shtrikman bound. Further we see, that the minimum effective index
has a kink at around E = 3.8 eV which is caused by the vanishing real part of the
denominator in the formula for the minimum bound Eq. (7.19b). At E = 4.1 eV the
retrieved index shows a dis-continuous behavior coming from the arising first order
reflection and transmission order.

The result of the retrieval procedure for p-polarization is shown in Fig. 7.37b. For
energies below E ∼ 3 eV the retrieved real index is lower than the maximum bound
Eq. (7.19a). The Hashin-Shtrikman bound shows a strong resonance 3.24 eV which
is caused by the vanishing real part of the denominator in Eq. (7.19a). This resonance
is also present in the retrieved dielectric function but the resonance frequencies is
0.1 eV lower than predicted by the maximum bound.

These results show, that we have violated the quasi static limit which is approxi-
mated by λ/2π > P . Wiener bounds and Hashin-Shtrikman bounds are, similar to
all effective medium theories, derived for the electrostatic problem. This implies that
wave propagation features, i.e., time and space variation of the incident electric and
magnetic field, were neglected.

In Fig. 7.38 we show the result for the effective magnetic permeability as retrieved
from Eq. (7.15) for the two different polarizations (red/blue: real part of μeff for s-
/p-polarization; green/magenta: imaginary part). According to the homogenization
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Fig. 7.37 Comparison of Hashin-Shtrikman bounds (red real part of the permittivity, green imag-
inary part) and results of the retrieval algorithm (blue real part, magenta imaginary part of the
effective dielectric function) for a silver grating with P = 300 nm, L = 100 nm and h = 50 nm
embedded in air. The angle of incidence was φ = 0◦. In a, the incident light was s-polarized, in b
we used p-polarization

algorithm, we obtain an effective permeability different from one for both polariza-
tions (we did not take care about the correct sign as only the magnitude is relevant
here). This shows that the retrieval algorithm yields wrong results and artificially
creates magnetic effects even for wavelengths smaller than the structure sizes. In the
used grating structure no materials were used withμ �= 1 and no magnetic resonance
structure was provided.

We therefore conclude, that the concept of the underlying homogenization algo-
rithms is misleading. Periodically structured materials have a dielectric function
that is changing over distances comparable to the wavelength and the characteris-
tic length scale is not vanishingly small compared to the incident wavelength. We
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Fig. 7.38 Effective permeability for a silver grating with P = 300 nm, L = 100 nm and h = 50 nm
surrounded by air for normal incidence (φ = 0◦). Due to the structured surface we obtain two
“effective” indices

therefore expect that a suitable description of metamaterials should be based on a
spatial dispersion with a resulting effective dielectric function ε(k, ω). For NIMs, it
was already shown, that the effective refractive index obtained by homogenization
algorithms is a function on the angle of incidence [11]. The effective magnetic per-
meability however, should not be different from unity since the Hashin-Shtrikman
bounds for materials with μ = 1 only allow an effective permeability of unity and
any possible “magnetic resonances” are a factor 1/c smaller than electric effects.

7.7 Conclusion and Outlook

Micro- and nanostructures gained more and more interest in science and technol-
ogy during the last two decades. Since the development of nanoimprint lithogra-
phy a production over macroscopic scales can be realized which allows the use of
spectroscopic ellipsometry for their characterization. Ellipsometry is an easy, fast,
non-invasive and non-destructive technique. As one dimensional, metallic gratings
provide a good basis for typical nanostructures we have investigated the optical
properties by variable angle spectroscopic ellipsometry and numerical simulations.

After giving a short introduction about the fabrication process and necessary cross
characterization techniques we have demonstrated the principles of ellipsometry
and have introduced the simulation procedure based on the rigorous coupled wave
analysis (RCWA). With this technique, we have simulated ellipsometric spectra.
Specifically, silicon and gold gratings were investigated with respect to their material
and geometric parameters, the matching of experimental and simulated spectra was
analyzed and possible deviations were identified. By comparing the exact results with
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those obtained with effective medium theories, we have shown that the response of
metallic gratings is beyond the reach of standard effective medium approximations
and a proper modelling of the structure is necessary.

In the ellipsometric spectra of gold and silver gratings resonances have shown up
which are sensitive to the angle of incidence, the energy and the periodicity of the
structure. As these resonances were sensitive to one polarization of the incident light
and by their characteristic field distribution we have identified them as surface plam-
sons. We have introduced a model which includes the coupling of surface plasmons
and the incident light via the reciprocal lattice vector of the grating. The resulting
solutions of this model match the resonances in the spectra exactly. In detail, we have
investigated the dispersion of surface plasmons on silver gratings and analyzed the
energy flow inside a unit cell.

In this chapter we have considered the question of effective indices and the optical
response. We have introduced the pseudo-dielectric function, the three phase model
for thin overlayers, various effective medium approximations and, finally, recent
homogenization algorithms and have discussed their limits of applicability. We have
proposed that nanostructures yield a wavevector dependent response function as
homogeneity is lost.

The techniques and results presented in this part are already used to analyze two
dimensional structures, e.g., fishnet and swiss cross designs but the computational
effort becomes quite large in two dimensions. For these geometries it is important to
investigate sidewall effects as trapezoidal layers change reflection and transmission
properties. For complicated structures the energy flow can be analyzed as presented
in this work. Further it would be interesting to study non specular reflection and
transmission orders experimentally, as they are accessible with numerical simula-
tions.

In future works, we investigate the Fano resonances in detail. As the coupling
parameter serves as a measure for the coupling between direct scattering and second
order processes (excitation of a surface plasmon and re-radiation), the Fano formula
can be exploited to find appropriate grating geometries to foster surface plasmonic
resonances.

Another interesting point is to reduce the height of the gratings and apply
Rayleigh-Rice theory to describe the specular reflection of one and two dimensional
structures. Although effects of surface plasmonic resonances become weaker, it is
interesting to compare the results of the Rayleigh-Rice theory to those of the exact
RCWA theory and to experimental data.
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Chapter 8
Ellipsometry at the Nanostructure

Yasuhiro Mizutani and Yukitoshi Otani

Abstract Recently, surface profiles of nanostructures have been reduced in size in
order to develop microfabrication techniques. In particular, feature sizes of a few
tens of nanometers are common in the semiconductor industry. This chapter mention
about the Stokes vector, the Mueller matrix, the Mueller matrix decomposition to
evaluate the surface profiles of nanostructures. The profile of the structure is deter-
mined from the Mueller matrix, which expresses all the polarization properties of
the sample by experimental measurements and calculated values. Furthermore, the
Mueller matrix is decomposed for more precise detection. In the final part of this
chapter, the experimental results after decomposition are compared to the values
obtained by numerical analysis.

8.1 Ellipsometry for Nanoscale Structures

The expansion of the field of semiconductors has resulted in a rapid advance of
micromachining technology, which has entailed a demand for increased preci-
sion of measurements during processing. Currently, memory modules using 32 nm
circuit patterns are available as commercial products manufactured with semi-
conductor micromachining techniques such as lithography and nanoimprinting. In
addition, optical elements making use of polarization characteristics of nanoscale
structures, such as wire-grid polarizers and antireflection structures, are becom-
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ing increasingly widespread. According to Moore’s law, the integration density of
semiconductors increases exponentially, and there is demand in micromachining
technology for in-line shape evaluation methods with precision of the order of
nanometers.

At present, nanoscale shape evaluation methods make use of devices such as
scanning electron microscopes (SEM), which scan the sample surface with an elec-
tron beam, and atomic force microscopes (AFM), which measure surface shapes by
scanning the sample surface with a cantilever. Such methods perform direct evalu-
ation of shapes on the sample surface and achieve a level of precision allowing for
sub-nanometer shape evaluation. However, in-line shape evaluation based on such
methods has problems such as large device size, damage to the sample surface and
long measurement times.

Ellipsometry is used in scatterometry as a fast method for evaluating nanoscale
shapes, enabling the characteristics and shape of the sample material to be evaluated
from certain optical properties of nanostructures, such as their absorption and polar-
ization characteristics [1–3]. Scatterometry allows for contactless non-destructive
evaluation, with the advantage of being faster than scanning based on spot measure-
ments since evaluation is performed within the area of the measuring beam.

When a nanoscale structure is irradiated with light, the polarization characteristics
of the reflected light change in accordance with the shape of the structure as a result
of birefringence [4]. In this way, the nanostructure can be evaluated by measuring
changes in the polarization characteristics. Since light irradiated onto a nanostructure
is scattered due to the anisotropy and non-uniformity of the structure, ellipsometry
analyzing depolarization is required.

Mueller matrix measurements are effective for ellipsometry with depolarization
since in addition to properties of fully polarized light such as birefringence, absorp-
tion and optical rotation, Mueller matrices can also represent depolarization [5].
Furthermore, Mueller matrix reconstruction as reported in recent years allows for
evaluation through decomposition of the sample into depolarization components,
phase difference components and absorption components.

8.2 Nanoscale Phenomena in Ellipsometry

Light reflected from nanoscale structures is affected in various ways depending on
the structure. Although higher-order diffracted light carries shape information if the
scale of the nanostructure is larger than the wavelength, at the nanometer scale, shape
information is carried by zero-order diffracted light in the form of polarization. For
example, according to the effective medium theory, nanostructures can be regarded
as thin films; thus, changes in the polarization of reflected light can be considered
in a straightforward manner, which in turn allows for ellipsometry to be used for
measurements [4, 6].

Furthermore, Rayleigh scattering occurs when high-precision nanostructures have
minuscule dimensional variations [7]. For this reason, while the polarization does
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not change in the case of nanostructures repeating with ideal dimensional accu-
racy, in reality dimensional variations result in depolarization, and such dimensional
variations can be evaluated by analyzing depolarization. Therefore, the conven-
tional parameters � and � are insufficient when using ellipsometers for depolar-
izing nanoscale objects, and the characteristics of fully polarized light (including
depolarization) have to be measured. In other words, the Mueller matrix has to be
evaluated.

8.3 Mathematical Treatment of Polarization
Characteristics at the Nanoscale

8.3.1 The Stokes Vector

The Stokes vector S is used to characterize arbitrary polarization states. The Stokes
vector is expressed using the intensity of polarized light, and its definition is as
follows:

S =

⎛
⎜⎜⎝

S0
S1
S2
S3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Ix + Iy

Ix − Iy

I45◦ − I−45◦
IR + IL

⎞
⎟⎟⎠ . (8.1)

Here, S0 is the intensity of irradiated light, and S1 represents the difference of the
intensity Iy in the y direction and the intensity Ix in the x direction for linearly
polarized light. Furthermore, S2 represents the difference of the intensity I−45◦ in
the −45◦ direction and the intensity I+45◦ in the +45◦ direction for linearly polar-
ized light, and S3 represents the intensity IL of left-hand circularly polarized light
subtracted from the intensity IR of right-hand circularly polarized light. The Stokes
vector can be expressed as follows by using the respective electric field vectors Ex

and Ey in the x and y directions and the phase difference δ between Ex and Ey :

S =

⎛
⎜⎜⎝

S0
S1
S2
S3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

E2
x + E2

y

E2
x − E2

y

2E2
x E2

y cos δ

−2E2
x E2

y sin δ

⎞
⎟⎟⎟⎟⎠
. (8.2)

8.3.2 The Mueller Matrix

Taking Sin and Sout as the Stokes vectors of the polarized light before and after
irradiation onto the sample, the relation between Sin and Sout can be expressed



316 Y. Mizutani and Y. Otani

through a linear transformation as

Sout = M Sin (8.3)

=

⎡
⎢⎢⎣

m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

S0
S1
S2
S3

⎤
⎥⎥⎦ . (8.4)

Here, the 4 × 4 matrix M is referred to as a Mueller matrix, which reflects the
polarization characteristics of the object. For more details also check Chap. 2.

8.3.3 Mueller Matrix Decomposition

Changes in the polarization characteristics caused by nanostructures involve a mix-
ture of various components, such as birefringence, depolarization and absorption, in
which case the Mueller matrix have to be reconstructed for each polarization charac-
teristic. In this section, we introduce a reconstruction method proposed by Chipman
et al. [8], in which the Mueller matrix M can be decomposed into a phase difference
component MR , a depolarization component M� and an absorption component MD

as follows:
M = M�MR MD. (8.5)

The absorption component MD can be expressed as

MD =
[

1 �D
�D m D

]
, (8.6)

where the element D of M is

�D = 1

m00

[
m01 m02 m03

]T
. (8.7)

Furthermore, from Eq. (8.7), m D can be written as

m D =
√

1 − D2 I + (1 −
√

1 − D2)
�D

| �D|
( �D
| �D|

)T
, (8.8)

where I is the identity matrix.
Eliminating the absorption coefficient from M , we obtain

M ′ = M M−1
D = M�MR . (8.9)

http://dx.doi.org/10.1007/978-3-642-33956-1_2
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With the absorption component eliminated, the matrix M ′, the depolarization com-
ponent M� and the phase difference component MR can be written as

M ′ =
(

1 �0
�P� m′

)
, (8.10)

MR =
(

1 �0
�0 m R

)
, (8.11)

M� =
(

1 �0
�P� m D

)
. (8.12)

Here, m′ is a submatrix of M ′, and �P� can be expressed as

�P� = �P − m �D
1 − D2 , (8.13)

�P = 1

m00

[
m10 m20 m30

]T
. (8.14)

From Eqs. (8.8) and (8.9), the relation between submatrices can be derived as

m′ = m�m R . (8.15)

From this, the submatrix m is written as

m� = ±
[
m′(m′)T + (

√
λ1λ2 + √

λ2λ3 + √
λ3λ1)

]

×
[
(
√
λ1 + √

λ2 + √
λ3)m

′(m′)T + √
λ1λ2λ3

]
, (8.16)

where λ1, λ2, λ3 are the eigenvalues of m′. The phase difference component MR can
be calculated from Eqs. (8.9) and (8.12).

Using the above relations, the Mueller matrix M can be decomposed into a phase
difference component MR , a depolarization component M� and an absorption com-
ponent MD .

8.3.4 Rigorous Analysis

Rigorous solutions to the Maxwell equations have to be obtained in order to cal-
culate the fluctuations in electromagnetic waves caused by nanostructures. Existing
calculation methods include the finite differential time domain method and rigorous
coupled-wave analysis (see also Chap. 7) [9]; however, in this chapter we discuss a
method where numerically calculated [[fluctuations in]] electromagnetic waves are
substituted for the elements of the Mueller matrix. Denoting the Jones vectors of

http://dx.doi.org/10.1007/978-3-642-33956-1_7
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Fig. 8.1 Light reflected at the
nanostructure

i n c i d e n t p l a n e

nanostructure

azimuth angle α

Εip

Εis

Εrp
Εrs

incident and reflected light as Ei and Er , the electromagnetic fields incident to and
reflected from the sample are shown in Fig. 8.1.

First, the zero-order electromagnetic waves in the direction of each axis of the
xyz coordinate system in the numerical model are calculated as shown in Fig. 8.1.
Denoting the respective electric fields in each direction as Ex , Ey and Ez , the respec-
tive electric field components E∗

p and E∗
s in p and s direction can be expressed as

follows by combining the electric field vectors in the xyz coordinate system:

E∗
p = Ex + Ez, (8.17)

E∗
s = Ey . (8.18)

Here, the p and s components E p and Es with respect to the incidence plane can
be written as follows by using Eq. (8.18) and the rotation matrix A of the incidence
azimuth angle αo:

E p = AE∗
p, (8.19)

Es = AE∗
s . (8.20)

Next, the electric field components corresponding to the p and s components of
the incident electric field in Fig. 8.1 are denoted as Eip and Eis , and their respec-
tive amplitudes and phases are rip, δi p and ris , δis . Furthermore, the electric field
components corresponding to the p and s components of the reflected electric field
are denoted as Er p and Ers , with respective amplitudes and phase differences rr p,
δr p and rrs , δrs . Consequently, the relation between the incident electric field Ei and
the reflected electric field Er can be written as follows by using the Jones matrix T
together with the amplitude ratio rnm and phase difference δnm of the incident and
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reflected electric fields.

T =
[

T1 T2
T3 T4

]
(8.21)

=
⎡
⎢⎣

[ |rrp | exp(iδrp)

|rip | exp(iδi p)

]
Eis = 0

[ |rrp | exp(iδrp)

|ris | exp(iδis )

]
Eip = 0[ |rrs | exp(iδrs )

|rip | exp(iδi p)

]
Eis = 0

[ |rrs | exp(iδrs )
|ris | exp(iδis )

]
Eip = 0

⎤
⎥⎦ . (8.22)

Next, the Mueller matrix can be expressed through the Jones matrix T and the
transformation matrix A:

M = A < T T ∗ > A, (8.23)

where the transformation matrix A is

A =

⎡
⎢⎢⎣

1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎤
⎥⎥⎦ . (8.24)

Solving Eq. (8.23), the Mueller matrix M is obtained as

A =

⎡
⎢⎢⎢⎢⎢⎣

1
2 (E1 + E2 + E3 + E4)

1
2 (E1 − E2 − E3 + E4) F13 + F42 −G13 − G42

1
2 (E1 − E2 + E3 − E4)

1
2 (E1 + E2 − E3 − E4) F13 − F42 −G13 + G42

F14 + F32 F14 − F32 F12 + F34 −G12 + G34

G14 + G32 G14 − G32 G12 + G34 F12 − F34

⎤
⎥⎥⎥⎥⎥⎦
,

(8.25)

where

Ei = Ti T
∗

i = |Ti |2, (8.26)

Fi j = −Fi j = Re(Ti T
∗
j ) = Re(Tj T

∗
i ), (8.27)

Gi j = −G ji = I m(Ti T
∗
j ) = −I m(Tj T

∗
i ), (8.28)

i, j = 1, 2, 3, 4. (8.29)

Furthermore, the elements of the matrix can be expressed through the amplitude ratio
and the phase difference as follows:

m00 = 1

2
(|rpp|2 + |rss |2 + |rsp|2 + |rps |2), (8.30)

m01 = 1

2
(|rpp|2 − |rss |2 − |rsp|2 + |rps |2), (8.31)
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m02 = |rpp||rsp| cos(δpp − δsp)+ |rps ||rss | cos(δps − δss), (8.32)

m03 = −|rpp||rsp| sin(δpp − δsp)− |rps ||rss | sin(δss − δps), (8.33)

m10 = 1

2
(|rpp|2 − |rss |2 + |rsp|2 − |rps |2), (8.34)

m11 = 1

2
(|rpp|2 + |rss |2 − |rsp|2 − |rps |2), (8.35)

m12 = |rpp||rsp| cos(δpp − δsp)− |rps ||rss | cos(δps − δss), (8.36)

m13 = −|rpp||rsp| sin(δsp − δpp)+ |rps ||rss | sin(δss − δps), (8.37)

m30 = |rpp||rps | sin(δpp − δps)+ |rsp||rss | sin(δsp − δss), (8.38)

m31 = |rpp||rps | sin(δpp − δps)− |rsp||rss | sin(δsp − δss), (8.39)

m32 = |rpp||rss | sin(δss − δpp)+ |rsp||rps | sin(δps − δsp), (8.40)

m33 = |rpp||rss | cos(δpp − δss)− |rsp||rps | cos(δsp − δps). (8.41)

This method allows us to calculate the Mueller matrix for the incident and reflected
electric fields for nanoscale structures.

8.4 Application of the Mueller Matrix Polarimeter
to Nanostructures

In this section, some experimental results measured by a double rotating retarder
polarimeter after decomposition which agree well with the values obtained by numer-
ical analysis based on RCWA analysis are shown [9–12]. Figure 8.2 shows a surface
profile and a typical cross sectional profile of a subwavelength structure measured by

width [nm]
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(a) 3D-view (b) cross-sectional view

Fig. 8.2 Cross sectional profile of subwavelength structure for anti-refrection obtained by CD-AFM
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Fig. 8.3 Mueller matrix of subwavelength structure before decomposition. Dots are experimental
results and solid lines are simulation results

a critical dimensional atomic force microscope. The structure was manufactured by
nanoimprinting process. A material of the structure is PMMA and it is suitable for
anti-reflection of the light of 633 nm. The structure has a width of 200 nm, a height
of 355 nm, and a period of 433 nm. Using the obtained profile, a simulation model
for RCWA was constructed.

Figure 8.3 shows an undecomposed Mueller matrix of the subwavelength structure
detected by the Mueller matrix polarimeter using He-Ne laser as a light source. The
experimental results are not in agreement with the simulation results, especially, the
elements of m01, m10, m22, m23, m32 and m33, because there are some structural
fluctuation as shown in Fig. 8.2.

Figures 8.4 and 8.5 show diattenuation and depolarization of the measured Mueller
matrix, respectively. In Fig. 8.4, results obtained by experimental and simulation are
in good agreement. However, in Fig. 8.5, the experimental results are not agreement
with the simulation results. The simulation results represent the unit vector which
means there are no depolarization effect because there are no fluctuation in the sim-
ulation model. In other words, there are manufacturing errors in the subwavelength
structure. There is a possibility of estimation for the frequently errors of the sub-
wavelength structure less than 0.1λ.

The Mueller matrix for the subwavelength structure was measured by double
rotating polarimeter and was calculated using RCWA. Comparing the experimen-
tal results with the calculated values demonstrated the effectiveness using Mueller
matrix to detect the surface of the subwavelength structure. By decomposition of
the Mueller matrix, the frequently error of the subwavelength structure has been
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Fig. 8.4 Diattenuator Mueller
matrix of subwavelength
structure after decomposition.
Dots are experimental results
and solid lines are simulation
results
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Fig. 8.5 Depolarization
Mueller matrix of sub-
wavelength structure after
decomposition. Dots are
experimental results and solid
lines are simulation results
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detected and possibility of an estimation by the depolarization Mueller matrix. This
will require using an analysis that considers the depolarization due to scattering.
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Chapter 9
Spectroscopic Ellipsometry and
Magneto-Optical Kerr Spectroscopy
of Magnetic Garnet Thin Films
Incorporating Plasmonic Nanoparticles

Satoshi Tomita

Abstract Ferrimagnetic yttrium iron garnet (YIG) thin films incorporating
plasmonic Au nanoparticles were prepared. Magneto-optical (MO) Kerr spec-
troscopy was carried out. The polar MO Kerr spectra in wavelength between 400
and 800 nm show that, by incorporating the Au nanoparticles, Kerr rotation angles
become negative values in the region where the localized surface plasmon (LSP)
resonance of the Au nanoparticles is located. Spectroscopic ellipsometry was per-
formed and complex electric permittivity (dielectric function, ε) of the films was
obtained. An anomalous dispersion of Re[ε] is clearly observed in the visible region
originating from LSP of Au nanoparticles. The influence of ε on the MO Kerr prop-
erties of the nanocomposite films and the physics underlying the anomalous Kerr
rotation are discussed.

9.1 Introduction

Localized surface plasmon (LSP) is a coupled mode of electromagnetic waves and
collective oscillations of free electrons in nanostructures of noble-metals, for exam-
ple, gold (Au) or silver (Ag). The LSP is accompanied by an optical near-field [1].
Manipulating the optical near-field at a submicronic scale and enhancing the local
field in nanostructured metals is now one of the central problems in the growing
field of plasmonics, which is of importance for surface-enhanced Raman scattering
(SERS) [2], electromagnetic waveguide [3], sub-wavelength lithography [4], and
non-linear optical effect [5]. When the noble-metal nanoparticles are embedded in
a magneto-optical (MO) medium, it is expected that the LSP of the nanoparticles is
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coupled to the MO effects of the medium, leading to a modification and enhancement
of the MO properties; this might be considered as an MO counterpart of SERS [6].

Coupling between MO effects and bulk plasma of charge carriers in metals was
initially investigated by Feil and Haas [7] and by Katayama et al. [8]. Safarov et al.
[9] studied an MO Kerr property of Au/Co/Au multilayer structures in total reflec-
tion geometry, and demonstrated a strong enhancement of the MO figure of merit of
the system. This indicates that the traveling surface plasmon polariton (SPP) gener-
ated in the Au layers successfully coupled to the MO effect of the Co layer via an
evanescent field. Such surface-enhanced MO effects in multilayer systems have been
studied intensively owing to their potential application for MO media [10–13]. On
the other hand, little is known about an MO effect coupled with the LSP of noble-
metal nanoparticles via an optical near-field, although such kind of contribution has
been theoretically predicted [6, 14].

We consider plasmonic metal nanoparticles, which are MO-inactive, to be included
in an MO-active medium. Owing to the large specific surface of the nanoparticles,
a small volume fraction of the particles effectively influences MO properties of the
surrounding medium. In contrast to the SPP on planar metal surfaces, the LSP of
the nanoparticles can be excited directly by the traveling light wave. Frequency
of the LSP depends on the size, shape, and arrangement of the nanoparticles, as
well as the kind of metal. This results in a tailored LSP resonance located in a wide
range from visible to near-infrared. Moreover, the penetration length of the near-field
by the LSP depends not on the wavelength of the incident light but on the size of
the nanoparticles. These enable us to study how the near-field contribution influences
the MO properties and to provide an insight into the physics underlying the coupling
between the LSP and MO effects.

Ferrimagnetic Y3Fe5O12 (yttrium iron garnet: YIG) is a well known insulating
MO medium, which is almost transparent in the visible region above 500 nm [15].
In this work, we prepared YIG thin films incorporating Au nanoparticles, the LSP
resonance of which is located at about 600 nm [16, 17], as described in Sect. 9.2.
Volume fraction of Au ( fAu) was increased up to 27 %. In Sect. 9.3, the structures of
the films were studied using X-ray diffraction and transmission electron microscopy.
Polar MO Kerr effects of the films were studied in the visible region in Sect. 9.4. It
was found that, by incorporating the Au nanoparticles at least fAu = 4.8 %, the Kerr
rotation angles at about 600 nm show negative values, indicating a possible coupling
between the MO effect of YIG and the LSP of Au nanoparticles [16]. In order to
study the influence of the permittivity tensor on the MO Kerr properties, we carried
out spectroscopic ellipsometry (SE) for the films [17] in Sect. 9.5. SE is the sole
technique to evaluate the permittivity (ε) of films [18–20]. The diagonal part of ε
around 600 nm of YIG thin films with fAu of 4.8 % is almost identical to that of
pure YIG. This suggests that the negative Kerr angle observed in the polar MO Kerr
spectra originates from the modification of the off-diagonal part due to the excitation
of the LSP of Au nanoparticles. The physics underlying the anomalous Kerr rotation
is discussed in Sect. 9.6. Section 9.7 concludes this chapter.

MO properties of matter have been addressed mainly from chemistry so far. For
example, Bi was doped into YIG to enhance the MO effect [21, 22]. On the other hand,
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Table 9.1 Deposition conditions and microstructures of samples

fAu (%) dsp (min) tsp (nm) tel (nm)

0 90 531 359
4.8 90 531 380
27 30 177 136

fAu is the volume fraction of Au in the films. dsp is duration of deposition. tsp is the film thickness
estimated using dsp. tel is the film thickness evaluated from ellipsometry

in this study the MO effect is modified by introducing artificial nanostructures of Au.
Artificial materials consisting of subwavelength-sized units are called metamaterials
[23]. Metamaterials manifest several intriguing properties, for example, negative
index of refraction [24, 25], electromagnetic cloaking [26], and narrow-band perfect
absorption [27], which are never observed in nature. A key concept of metamaterials
is an assignment of distinct functions to different units. When realizing negative
index of refraction by metamaterials [28], one may assign magnetic resonance to
split-ring resonators [29] and electric response to metallic cut-wires [30]. In this
context, the composite consisting of Au nanoparticles and YIG matrices created in
this study is a sort of metamaterial for MO effect—MO effect are assigned to YIG
matrices, and the modification are assigned to Au nanoparticles instead of Bi. The
assignment to different units may help us to tune the wavelength of modification and
obtain tailored MO effects by changing the size, shape, and arrangement of the Au
nanoparticles, as well as the kind of metal.

9.2 Film Preparation

A mixture of Au and YIG was deposited onto quartz substrates (1 mm in thickness)
using rf co-sputtering [31] of a YIG target (4 in. in diameter) with Au chips in an Ar
gas atmosphere (20 mTorr). The sputtering power was 50 W. The sputtering rate of
YIG (sYIG) measured using a quartz microbalance was 5.9 nm/min. The number of
Au chips was varied in order to obtain different volume fractions of Au [ fAu (%)] in
the films. In this work, we study three films: with fAu values of 0, 4.8, and 27 %. The
atomic ratio of Au and Y in the films (RY/RAu) was measured using electron-probe
microanalysis (JEOL JXA-8200). The fAu was evaluated with

fAu = 3 × 100(MAu/ρAu)

3(MAu/ρAu)+ (RY/RAu)(MYIG/ρYIG)
, (9.1)

where MAu = 197 (the atomic weight of Au) and MYIG = 738 (the molecular
weight of YIG). ρAu = 19.28 g/cm3 and ρYIG = 4.45 g/cm3 are the densities of Au
and YIG, respectively.

Table 9.1 shows the fAu, duration of deposition [dsp (min)], and film thickness
[tsp (nm)] (roughly estimated from sYIG × dsp). The thickness was decreased in
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Fig. 9.1 XRD profiles for films with fAu = 0 (black line), 4.8 (blue line), and 27 % (red line)
annealed at 900 ◦C

proportion to the fAu increase because, in order to study the ultraviolet-visible (UV-
Vis) transmission spectroscopy on the samples, optical density of the films should
be kept almost constant. All the films were annealed in N2 gas at 900 ◦C for 30 min.
During the post-annealing, YIG matrices were crystallized and Au nanoparticles were
grown. We obtained crystalline YIG thin films containing metallic Au nanoparticles
on quartz substrates.

9.3 Sample Structures

Figure 9.1 shows X-ray diffraction (XRD) profiles of the films annealed at 900 ◦C.
MAC Science M21X with a Cu Kα radiation (λCuKα = 1.54 Å) was used. A XRD
profile of a film without Au, i.e., fAu = 0 %, (black line) is consistent with that of
YIG having the garnet structure. This suggests that deposited YIG is crystallized
and a polycrystalline YIG film is formed by annealing at 900 ◦C. The XRD profile
of a film with fAu = 4.8 % (blue line) exhibits diffraction peaks, where positions
agree with those of polycrystalline YIG film. However, it shows no traces of Au.
This is probably caused by the low volume fraction of Au in the film. In a profile of
a film with fAu = 27 % (red line), five diffraction peaks assigned to fcc-Au emerge
in addition to weak signals corresponding to YIG, demonstrating that metallic Au is
grown and crystalline YIG and Au coexist in the film.

A cross-section of the film was observed with a transmission electron microscope
(TEM) operated at 200 kV (JEOL JEM-2000EX). The specimens for the TEM obser-
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Fig. 9.2 A cross-sectional TEM image of a film with fAu = 27 %
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Fig. 9.3 UV-Vis transmission spectra of films with fAu = 0 % (black dot-dashed curve), 4.8 %
(blue dashed curve), and 27 % (red solid curve)

vations were prepared through standard procedures including mechanical and Ar-ion
thinning techniques. Figure 9.2 shows a cross-sectional TEM image of a film with
fAu = 27 %. We see that spherical particles are embedded randomly in the film.
These are most likely Au nanoparticles. The average diameter of the Au nanopar-
ticles observed was about 12.3 nm. The XRD and TEM studies allow us to depict
that, in a film with fAu = 27 %, spherical metallic Au nanoparticles about 12 nm in
diameter are embedded in the crystalline YIG matrices.

Figure 9.3 shows UV-Vis transmission spectra for the films in wavelength (λ)
ranging from 190 to 2000 nm. The spectra were obtained with a double-beam-type
spectrometer (Shimadz UV-3101PC). A YIG film with fAu = 0 % (black dash-dotted
curve) shows strong absorption below 500 nm corresponding to a charge transfer
(CT) type electron transition in YIG [22]. Contrastingly, the film is almost transpar-
ent above 500 nm even though there are weak dips at 620 and 1000 nm caused by
interference.
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Incorporation of Au with fAu = 4.8 % (blue dashed curve) results in a strong
absorption at about λ = 600 nm. In a spherical small inclusion with permittivity εi (λ)
embedded into a medium with εm(λ), a surface mode (Fröhlich mode) is excited at
λF , where Re[εi (λF )] = −2Re[εm(λF )] is satisfied [32]. If we adopt permittivity
of Au [33] to εi (λ) and that of YIG [15] to εm(λ), λF is calculated to be about
600 nm. Therefore, the strong absorption originates from the LSP of Au nanoparticles
in YIG matrices. This indicates that a film with fAu = 4.8 % contains metallic Au
nanoparticles, which are similar to those in a film with fAu = 27 %, in the crystalline
YIG matrices although an XRD profile shows no traces of Au. The absorption at about
600 nm becomes stronger with increasing fAu up to 27 % as shown by a red solid
curve.

9.4 MO Kerr Spectroscopy

The polar MO Kerr spectra at room temperature were measured in λ ranging from
400 to 800 nm using a polarization plane modulation technique with a Faraday cell.
A Xe lamp was used for the light source. The monochromatic light was illuminated
on a film under the magnetic field applied up to ±15 kOe in a perpendicular direction
to the film plane. The Kerr angle was determined from a rotation angle at about 3 kOe
because magnetization hysteresis curves obtained with a superconducting quantum
interference device magnetometer (not shown here) indicated that the film magne-
tization was saturated at about 3 kOe. The resolution of the Kerr rotation angle was
about 0.001◦.

Figure 9.4 shows the Kerr spectra of the samples with fAu = 0 % (black crosses),
4.8 % (blue triangles), and 27 % (red circles). For a YIG film ( fAu = 0 %), we see a
large Kerr rotation and strong oscillation of the spectrum at about 450 nm, which is
probably due to a CT transition at λ = 490 nm in YIG. Above λ = 500 nm, although
the Kerr angle still oscillates, it retains positive values between 0.07 and 0.01◦. This
is thought to be caused by a tail of the CT transition. For the fAu = 4.8 % sample, the
Kerr spectra below λ = 500 nm is similar to that for fAu = 0 %. Contrastingly, the
spectrum above 500 nm is much different from the control spectrum. In particular, it
should be noted that the Kerr rotation in the fAu = 4.8 % sample changes the sign
at λ = 530 nm and the rotation angles become negative in λ ranging between 540
and 600 nm. As fAu increases up to 27 %, the negative Kerr angle appears in a wider
range of λ from 520 to 710 nm although the oscillation below λ = 500 nm is smeared
out.

Figure 9.5 shows the Kerr loops between ±15 kOe obtained for the fAu = 27 %
sample. In Fig. 9.5a, the loop at λ = 400 nm exhibits a positive Kerr angle of about
0.04◦ at 3 kOe. On the other hand, the Kerr loop at λ = 650 nm (Fig. 9.5b) shows
a negative Kerr angle of about −0.01◦ although the value is relatively small. These
results verify that the polarization plane of the incident light rotates into the opposite
direction between 400 and 650 nm in the fAu = 27 % sample.



9 Spectroscopic Ellipsometry and Magneto-Optical Kerr Spectroscopy 331

0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

K
er

r 
an

gl
e 

(D
eg

re
e)

800700600500400

Wavelength (nm)

5

4

3

2

1

0

A
bs

or
ba

nc
e 

(a
rb

.u
ni

ts
)

: fAu = 0 % (YIG)
: fAu = 4.8 %
: fAu = 27 %

fAu = 27 %

fAu = 4.8 %

fAu = 0 %

Fig. 9.4 Polar Kerr spectra for films with fAu = 0 % (black crosses), 4.8 % (blue triangles), and
27 % (red circles). Absorption spectra in wavelength ranging from 400 to 800 nm are also shown
for fAu = 0 % (black dot-dashed curve), 4.8 % (blue dashed curve), and 27 % (red solid curve)

-60

-40

-20

0

20

40

60

K
er

r 
an

gl
e 

(1
0-3

D
eg

.)

-15 -10 -5 0 5 10 15

Magnetic field (kOe)

-20

-10

0

10

20

K
er

r 
an

gl
e 

(1
0-3

D
eg

.) fAu = 27 %

(a) λ = 400nm

(b) λ = 650nm

Fig. 9.5 Kerr loops of a film with fAu = 27 % at wavelength of 400 nm (a) and 650 nm (b)



332 S. Tomita

In Fig. 9.4, the absorption spectra converted from the transmission spectra in
Fig. 9.3 are also exhibited. The absorbance at λ [A(λ)] was calculated through an
equation, A(λ) = −log10[T (λ)/100], where T (λ) is the transmittance at λ. The LSP
in Au nanoparticles is excited in the vicinity of 602 nm for the fAu = 4.8 % sample
and of 634 nm for the fAu = 27 % sample. An increase in fAu leads to a red-shift
of the LSP absorption peak [34]. It should be noticed here that the position of the
absorption peaks due to the LSP excitation is consistent with the region, where the
Kerr rotation angles assume negative values. A red shift of the absorption peak for
fAu = 27 % brings about the negative Kerr rotation angle at a longer wavelength up
to 710 nm. These point out a possible coupling between the MO Kerr effects of YIG
and the LSP of Au nanoparticles.

9.5 Spectroscopic Ellipsometry

The angle of the polar MO Kerr rotation is phenomenologically determined by both
the diagonal (εxx) and off-diagonal part (εxy) of electric permittivity tensor. The εxx of
the films is modified by incorporating Au into YIG films and forming the composite.
In order to study the influence of εxx on the MO Kerr properties, SE analysis was
performed with a spectroscopic phase-modulated ellipsometer (HORIBA Jobin Yvon
UVISEL NIR). The incident angle was 60◦. A pair of ellipsometrical angles� and�
was measured for each wavelength. Detailed measurement and analysis procedures
are reported elsewhere [35].

Figure 9.6 shows the measured � (dotted) and � (crosses). Figure 9.6a corre-
sponds to the fAu = 0 % YIG thin film. To analyze this, we constructed an optical
model consisting of void (substrate) and three layers: quartz, (composite) film, and
surface layer (from bottom to top). By representing the substrate as a void in this
model, the reflection at the bottom of the quartz layer was taken into considera-
tion [36]. The quartz layer in the model is assigned to the quartz substrate in the
measurement. To represent the surface roughness of the film, a surface layer several
nm in thickness, using an effective medium approximation with voids of 50 %, was
considered. Optical constants of SiO2 available in the database of the SE apparatus
were used to represent the quartz substrate.� and� were calculated using our opti-
cal model with a dispersion formula consisting of four oscillators for the film. The
oscillators were Lorentz oscillators for the pure YIG film. In order to evaluate the
thickness of the YIG layer from ellipsometry [tel (nm)], fitting was carried out by
varying the values of the parameters in the dispersion formula and the tel to achieve
minimization of mean square error χ2 between the measured and calculated � and
� spectra. The tel (nm) for the YIG film was 359 nm. The calculated spectra (not
shown here) matched those that were measured (χ2 = 1.0523).

Using the calculated thickness and the measured � and �, point-by-point cal-
culation was performed to obtain directly the refractive index n and extinction
coefficient κ. � and � spectra after point-by-point calculation are shown by solid
lines in Fig. 9.6a. The matching between measured and calculated spectra was better
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Fig. 9.6 Measured � (dotted, blue) and � (crosses, red) of (a) a pure YIG thin film and (b–c)
YIG thin films with Au nanoparticles of fAu = 4.8, and 27.0 %. Solid lines correspond to the
point-by-point calculated spectra

after the point-by-point calculation (χ2 = 0.9367). From the obtained n and κ, we
evaluated the complex ε using ε = (n + iκ)2. Real and imaginary parts of the ε are
plotted in Fig. 9.7a, b. The values of the Re[ε] of YIG in the region of 275–2000 nm
are between 4.5 and 6.7. There is a broad peak around 375 nm. That peak can be
assigned to charge transfer (CT) type transitions in YIG [15, 22]. Crystal field (CF)
type transitions at about 610 and 700 nm of YIG were not observed owing to the
parity forbidden character.

Figure 9.6b, c shows the� and� of the YIG thin films that have Au nanoparticles
with an fAu of 4.8 and 27.0 %, respectively. A fitting was performed to determine the
tel using a dispersion formula based on a quantum-mechanical theory of absorption
[37, 38], which is better than the formula with Lorentz oscillators in the quality of the
fit. The quantum-mechanical approach is based on the existence of band gap energy
for which κ has its absolute minimum. In addition, if the Kramers-Kronig dispersion
relation is used to derive n from κ, the number of independent parameters can be
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(a)

(b)

(c)

Fig. 9.7 Real (a) and imaginary (b) parts of ε of a YIG thin film (black) and composite films with
fAu = 4.8 (blue) and 27.0 % (red) as a function of wavelength. c MO Kerr rotation angle is also
plotted

reduced significantly. This relation has been widely used because of its simplicity and
ability to provide a good fit for various materials [39]. The tel (nm) for the composite
film with a fAu of 4.8 and 27.0 % was 380 and 136 nm, respectively. The evaluated
tel are also summarized in Table 9.1. We see that tsp is overestimated because it is
roughly evaluated using sYIG and the density of bulk YIG.

We derived the n and κ from the point-by-point calculation and evaluated the
Re[ε] and Im[ε] as plotted in Fig. 9.7a, b. χ2 of samples with fAu of 4.8 and 27.0 %
are 3.4528 and 2.2499, respectively. Figure 9.7a shows that an anomalous dispersion
of the Re[ε] emerges around 590 nm because Au nanoparticles were incorporated.
The dispersion causes a peak in the Im[ε] at about 590 nm, as shown in Fig. 9.7b. As
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the fAu increases up to 27 %, the dispersion of the Re[ε] and the peak in the Im[ε]
become significant. These results suggest that the anomalous dispersion originates
from the LSP of the Au nanoparticles in the YIG matrices. The spectra of the Im[ε]
are very similar to the absorption spectra obtained by a UV-Vis spectrometer shown
in Fig. 9.4.

Of special note is the region of 500–600 nm in Fig. 9.7a because the negative Kerr
rotations are observed in the polar MO Kerr spectra, as shown in Fig. 9.7c. In this
region, a YIG thin film shows an almost constant Re[ε] of about 5.0, as in Fig. 9.7a.
Although Au nanoparticles of fAu = 4.8 % were incorporated, the Re[ε] did not
change significantly. The Re[ε] was around 4.5. Contrastingly, when fAu = 27.0 %,
the incorporation of Au nanoparticles brings about a significant modification of the
Re[ε].

The complex polar MO Kerr rotation (�K) is described as

�K = −iεxy{√εxx(εxx − 1)}, (9.2)

where εxx is the diagonal part and εxy is the off-diagonal part of the dielectric tensor.
The equation indicates that the Kerr angle is determined by both εxx and εxy. In
the present SE study, we obtained the εxx of the nanocomposite films. The εxx in
the MO response is less dependent on the magnetization (M) of materials because
the εxx(M) is developed by the even order of the M . Therefore, although somewhat
over-simplified, the following is a discussion of the MO response with the use of
εxx, which we obtained in the present SE study without an applied magnetic field
[40–42].

9.6 Mechanism for Anomalous Kerr Rotation

The present experimental results show that Au nanoparticles only about 4.8 % in
volume fraction influence the MO properties of YIG matrices. This is primarily due to
a large specific surface of the nanoparticles. When we discuss the physics of the LSP
of particles, we should take the particle size compared with the wavelength of light
into consideration [32]. TEM studies showed that Au nanoparticles in the fAu = 27 %
sample were about 12 nm in average diameter. In the film with fAu = 4.8 %, the size
is much smaller. Since the size of Au particles in both films is sufficiently small
compared with the wavelength, in which the Kerr rotation angles change the sign
and show negative values (500–700 nm), the retardation effect of light is negligible;
the LSP wavelength of the particles is not affected by the particles size. Therefore,
we think that a small variation in the Au particle diameter in this study does not
influence the sign of the Kerr rotation.

The Re[εxx] of the nanocomposites with Au nanoparticles of fAu = 4.8 % embed-
ded in YIG are similar to that of pure YIG thin films. It is unlikely that only such
small modification causes the negative Kerr rotation in the region of 600 nm even if
the multiple reflection is taken into consideration. The incorporation of Au nanopar-
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ticles and excitation of the LSP probably modifies the εxy around 590 nm of the films
[14, 43].

From the microscopic point of view, εxy is related to the electron transition energy,
oscillator strength of the transition, and spin-orbit (SO) splitting of the excited states
[22]. It is known that YIG in the visible region has one CT transition at 490 nm and
two crystal field (CF) type transitions at about 610 and 700 nm. The CT transition
is responsible for an MO Kerr rotation in the visible region due to the large oscilla-
tor strength, while the CF transitions at 610 and 700 nm do not contribute. This is
because of intra-3d transition nature having even parity of the CF transitions; owing
to the parity forbidden character, the oscillator strength of the CF transitions is very
weak. The oscillator strength is, however, enhanced when electric-dipole-allowed
excitation, which can be mixed to relieve the parity constraint, lie close by in energy
[15]. In the present study, the excited LSP (Fröhlich mode) in Au particles can be
considered as an electric dipole. The excitation energy of the LSP lies close by that
of the CF transitions of YIG. This may relieve the parity constraint and enhance the
oscillator strength of the CF transitions, resulting in an anomalous Kerr rotation in
the vicinity of 600 nm.

Furthermore, a modification of SO coupling of the excited states in the CT tran-
sition is possible. In a Bi substituted rare-earth iron garnet, the MO Faraday rota-
tion angles in the visible region become negative with increasing Bi concentration
[21, 44]. The negative rotation was believed to be caused by the change of the sign
of the SO coupling constants in the excited CT states in the iron garnet due to the
substitution by Bi [22]. However, in the present study, the formation of an Au substi-
tuted YIG can be ruled out from the XRD study. The Hamiltonian of the SO coupling
is described as

HSO = (�/4mc2)(∇V × �p) · �σ, (9.3)

where V is the external potential, �p is the momentum, and �σ is the Pauli spin operator
[45, 46]. This equation indicates that the external electric potential V may influence
the SO coupling in the magnetized materials. As already mentioned above, the elec-
tromagnetic energy concentration in the resonant state of the LSP causes a strong
optical near-field around the nanoparticles even with modest input power. It is thus
plausible that the LSP accompanied by an enhanced electric field modifies the sign
of the effective SO coupling constant in the excited CT states of YIG in the vicinity
of the interfaces with Au nanoparticles.

Recently Belotelov et al. [47] reported a theoretical consideration for enhanced
MO Faraday and Kerr effects in bilayer heterostructures consisting of an Au film,
periodically perforated with hole arrays, deposited on a thin uniform magnetic garnet
film. The periodically perforated Au film is similar to the two-dimensional plasmonic
crystal. By choosing an appropriate thickness of the magnetic garnet, the edges of the
photonic band gaps for both principal modes coincide, leading to the enhancement
in Faraday effect with high optical transmittance. Moreover, they studied experi-
mentally transverse MO Kerr effect for magnetic garnet films with Au grating [48].
An enhanced Kerr effect with this artificial material was observed. These works,
however, utilize traveling SPP.
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Very recently, several experimental works concerning enhanced MO effects using
LSP were reported [49, 50]. Jain et al. [49] demonstrated a Faraday rotation enhance-
ment at 530 nm using LSP in Au-coated iron oxide nanoparticles, which is chemi-
cally synthesized. The excitation of LSP in the core-shell type nanoparticles provides
strong electric dipoles spectrally and spatially close to a spin-flip electron pair tran-
sition that has a weak oscillator strength. They suggested that the LSP could lead to
an increase in the transition strength, allowing this transition to contribute the MO
response. The true origin of the LSP-enhanced MO effect is still under debate.

9.7 Conclusion

In conclusion, we have studied the MO Kerr spectroscopy and spectroscopic ellip-
sometry of YIG thin films incorporating Au nanoparticles prepared using a co-
sputtering technique. TEM and XRD studies suggested that metallic Au nanoparticles
are grown in the YIG matrices. UV-Vis transmission spectroscopy showed the LSP
resonance of Au nanoparticles at about 600 nm. The polar MO Kerr spectra obtained
at wavelength ranging from 400 to 800 nm demonstrated that, by incorporating the
Au nanoparticles, the Kerr rotation angles exhibit negative values in the vicinity of
600 nm. These results indicate a plausible coupling between the MO effect of YIG
and the SPP through the near-field contribution.

Spectroscopic ellipsometry analysis was used to evaluate the diagonal part of
permittivity tensor (εxx) of the composite films. In general, the incorporation of Au
affects the εxx. However, the εxx in the region of 500–600 nm of YIG thin films with
fAu of 4.8 % is almost identical to that of pure YIG. This suggests that the observed
negative Kerr angle in the polar MO Kerr spectra originates from the modification of
the off-diagonal part (εxy) due to the excitation of the LSP of Au nanoparticles. As
fAu was increased up to 27.0 %, the εxx of the nanocomposite films nearly reaches
unity around 560 nm.

An enhancement of the oscillator strength of the CF transitions in YIG is plausible
for the anomalous Kerr rotation. A modification of effective SO coupling of YIG via
the strong optical near-field is also a possible mechanism. The present study suggests
a possibility of controlling magnetic properties of nanocomposite magnetic materials
via an optical near-field.

Acknowledgments The author thank T. Kato, S. Iwata, M. Fujii, S. Hayashi, A. Terai, and N.
Nabatova-Gabain for their valuable contribution in this work. The TEM observation by K. Aka-
matsu, EPMA study by K. Watanabe, and XRD measurement by D. Hashizume are acknowledged.
The author is also grateful for fruitful discussions with K. Shinagawa, C. Mitsumata, and S. Ushioda.
This work was supported by PRESTO, JST.



338 S. Tomita

References

1. R. Luppin, in Electromagnetic Surface Modes, ed. by A.D. Boardman (Wiley, Chichester, 1982)
2. S. Nie, S.R. Emory, Science 275, 1102 (1997)
3. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Nat.

Mater. 2, 229 (2003)
4. X. Luoad, T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004)
5. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, Nature 453, 757 (2008)
6. V.A. Kosobukin, SPIE Proc. 2535, 9 (1995)
7. H. Feil, C. Haas, Phys. Rev. Lett. 58, 65 (1987)
8. T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, N. Koshizuka, Phys. Rev. Lett. 60, 1426

(1988)
9. V.I. Safarov, V.A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, C. Marlière, Phys. Rev. Lett.

73, 3584 (1994)
10. T.J. Silva, S. Schultz, D. Weller, Appl. Phys. Lett. 65, 658 (1994)
11. C. Hermann, V.A. Kosobukin, G. Lampel, J. Peretti, V.I. Safarov, P. Bertrand, Phys. Rev. B 64,

235422 (2001)
12. J. Bremer, V. Vaicikauskas, F. Hansteen, O. Hunderi, J. Appl. Phys. 89, 6177 (2001)
13. N. Bonod, R. Reinisch, E. Popov, M. Nevière, J. Opt. Soc. Am. B 21, 791 (2004)
14. M. Abe, T. Suwa, Phys. Rev. B 70, 235103 (2004)
15. F.J. Kahn, P.S. Pershan, J.P. Remeika, Phys. Rev. 186, 891 (1969)
16. S. Tomita, T. Kato, S. Tsumnashima, S. Iwata, M. Fujii, S. Hayashi, Phys. Rev. Lett. 96, 167402

(2006)
17. S. Tomita, M. Fujii, S. Hayashi, A. Terai, N. Nabatova-Gabain, Jpn. J. Appl. Phys. 46, L1032

(2007)
18. D. Dalacu, L. Martinu, J. Appl. Phys. 87, 228 (2000)
19. D. Dalacu, L. Martinu, J. Opt. Soc. Am. B 18, 85 (2001)
20. J.C.G. de Sande, R. Serna, J. Gonzalo, C.N. Afonso, D.E. Hole, A. Naudon, J. Appl. Phys. 91,

1536 (2002)
21. H. Takeuchi, Jpn. J. Appl. Phys. 14, 1903 (1975)
22. K. Shinagawa, in Magneto-Optics, ed. by S. Sugano, N. Kojima (Springer, Berlin, 1999)
23. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)
24. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)
25. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)
26. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science

314, 977 (2006)
27. X. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, W.J. Padilla, Phys. Rev. Lett. 107, 045901

(2011)
28. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184

(2000)
29. J.B. Pendry, A.J. Holden, D.R. Robbins, M.J. Stewart, IEEE Trans. Microwave Theory Tech.

47, 2075 (1999)
30. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996)
31. S. Tomita, M. Hagiwara, T. Kashiwagi, C. Tsuruta, Y. Matsui, M. Fujii, S. Hayashi, J. Appl.

Phys. 95, 8193 (2004)
32. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley,

New York, 1983)
33. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1997)
34. J.C. Maxwell-Garnet, Philos. Trans. R. Soc. London 203, 385 (1904)
35. T. Tsuboi, Y. Wasai, N. Nabatova-Gabain, Thin Solid Films 496, 674 (2006)
36. M. Kildemo, R. Ossikovski, M. Stchakovsky, Thin Solid Films 313–314, 108 (1998)
37. A.R. Forouhi, I. Bloomer, Phys. Rev. B 34, 7018 (1986)
38. A.R. Forouhi, I. Bloomer, Phys. Rev. B 38, 1865 (1988)



9 Spectroscopic Ellipsometry and Magneto-Optical Kerr Spectroscopy 339

39. G.E. Jellison Jr, F.A. Modine, Appl. Phys. Lett. 69, 371 (1996)
40. X. Gao, D.W. Glenn, S. Heckens, D.W. Thompson, J.A. Woollam, J. Appl. Phys. 82, 4525

(1997)
41. R.J. Lange, S.J. Lee, K.J. Kim, P.C. Canfield, D.W. Lynch, Phys. Rev. B 63, 035105 (2000)
42. J.L. Menéndez, B. Bescós, G. Armelles, R. Serna, J. Gonzalo, R. Doole, A.K. Petford-Long,

M.I. Alonso, Phys. Rev. B 65, 205413 (2002)
43. G. Armelles, J.B. Gonzalez-Diaz1, A. Garcia-Martin, J.M. Garcia-Martin, A. Cebollada, M.U.

Gonzalez, S. Acimovic, J. Cesario, R. Quidant, G. Badenes, Opt. Express 16, 16104 (2008)
44. Z. Šimša, H. Le Gall, J. Šimšova, J. Koláček, A. Le Paillier-Malécot, IEEE Trans. Magn.
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Chapter 10
Generalized Ellipsometry Characterization
of Sculptured Thin Films Made by Glancing
Angle Deposition

Daniel Schmidt, Eva Schubert and Mathias Schubert

Abstract Generalized ellipsometry, a non-destructive optical characterization
technique, is employed to determine geometrical structure parameters and anisotropic
dielectric properties of highly spatially coherent three-dimensionally nanostructured
thin films in the spectral range from 400 to 1700 nm. The analysis of metal slanted
columnar thin films fabricated by glancing angle deposition reveals their mono-
clinic optical properties and their optical response can be modeled with a single
homogeneous biaxial layer. This homogeneous biaxial layer approach is universally
applicable to sculptured thin films and effective optical properties of the nanos-
tructured thin films are attained. We provide a nomenclature and categorization for
sculptured thin films based on their geometry and structure. A piecewise homo-
geneous biaxial layer approach is described, which allows for the determination of
principal optical constants of chiral and achiral multi-fold and helical sculptured thin
films. It is confirmed that such sculptured thin films have modular optical properties.
This characteristic can be exploited to predict the optical response of sculptured thin
films grown with arbitrary sequential substrate rotations. As an alternative model
approach, an anisotropic effective medium approximation based on the Bruggeman
formula is presented, which provides results comparable to the homogeneous biaxial
layer approach and in addition provides the volume fraction parameters for slanted
columnar thin films and their depolarization factors.

10.1 Introduction

Nanotechnology in the twenty-first century enabled revolutions in the fields of
information technology, cellular, and molecular biology with profound impact on
our economy and society. Progress in the interdisciplinary field of nanotechnology
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allowed for miniaturization of electronic components leading to portability of afford-
able products with improved functionality. Engineering research in nanotechnology
provided and continuous to provide the key component for further technological
enhancements.

Today’s nanotechnology is mostly a planar (two-dimensional) technology. Another
technology leap is foreseen with appropriate utilization of the third dimension
employing self-assembled nanostructures as building blocks, for example. Sophis-
ticated techniques and growth processes lead to self-organized three-dimensional
nanostructures and novel materials and phenomena are currently incorporated into
next generation micro- and nanosystems. The fabrication of metallic nanostructures
with tailored geometry and material is a very interesting challenge in nanotechnol-
ogy because geometrical and material parameters are responsible for the resulting
optical, electrical, mechanical, chemical, or magnetic properties of such structures.

Amongst the emerging technologies for fabrication of metallic nanostructures
is a physical vapor deposition process called glancing angle deposition. The par-
ticular growth geometry combined with dynamic substrate movement allows for
in-situ sculpturing of self-organized, highly spatially coherent, three-dimensional
achiral and chiral geometries at the nanoscale. This type of nanostructure growth was
demonstrated using many elemental and compound materials and, in principle, can
be achieved with any material that can be sputtered or evaporated. Such engineered
nanostructured materials, which have been termed sculptured thin films (STFs), con-
stitute a new realm of solid state materials, and carry a huge potential for applications
in the fields of nano-photonics [1], nano-electromechanics [2], nano-magnetics [3],
nano-electromagnetics [4], and nano-sensors [5–8]. For example, tailored effective
optical constants by controlling porosity and shape of the nanostructured films are
highly desirable for many applications such as broadband antireflection coatings [9,
10], omnidirectional reflectors [11, 12], Bragg reflectors [13, 14], optical resonators
[15], light emitting diodes [16], and optical interconnects [17]. The controllable
porosity and the large surface area may also be considerably beneficial for existing
technologies such as solar cells [18–20] and thin film batteries [21]. Ferromagnetic
sculptured thin films, in particular, exhibit interesting magnetic phenomena due to
anisotropic structure effects and hence can be exploited for new magnetic or magneto-
optical storage media [22–25].

An entire new material class is envisioned when combining the inorganic nanos-
tructures with functionalized polymers or chemical and biological recognition ele-
ments thereby creating nanohybrid functional materials. The new nanohybrids are
anticipated to offer unmatched tunability in terms of electronic, optical, mechanical,
ferroelectric, magnetic, and magneto-optical properties, thereby opening the door to
a new family of sensing principles and, ultimately, new classes of ultra sensitive,
broad range, portable, inexpensive sensors and detectors [26–28].

Figure 10.1 depicts conceptualized areas of interest for sculptured thin films.
Hollow-core nanohelices fabricated with an inner diameter matching dimensions
of helical viral protein shells (capsids with typical diameters in the range of 5–
30 nm) may become useful for purification and detection. Nanostructure surfaces can
be coated with self-assembled monolayers and functional groups to facilitate viral
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(a) (b) (c)

H
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Fig. 10.1 Schematic illustration of novel application areas for sculptured thin films in sensing
and detection, and nanomagnetism: a selective capsid (protein shell of virus) capturing in hollow-
core nanohelices with matched dimensions, b viral attachment on bio-functionalized nanoscaffold
surfaces, and c chiral magnetic domain alignment in ferromagnetic nanohelices (Capsid in (a)
modified from [29], and Hepatitis B virus in (b) adapted from [30])

attachment. The adsorbed biomaterial will change the anisotropic optical response
of the functionalized hybrid nanostructures and can be detected by generalized ellip-
sometry, for example [7]. Nanomagnetism and the arrangement and switching of
chiral magnetic fields is in the scope of interest also because ferromagnetic nanos-
tructures might have the ability, upon application of external magnetic fields, to
control capture or release of modified adsorbates [24, 25].

In order to systematically utilize sculptured thin films in future applications, how-
ever, physical properties of these nanosized objects need to be understood such
that targeted geometry engineering with tailored properties from selected materials
will be possible. Non-invasive and non-destructive optical techniques are preferred,
however, due to the complexity of sculptured thin films, optical characterization is a
challenge. Spectroscopic generalized ellipsometry within the Mueller matrix formal-
ism is the most general polarization-dependent linear-optical spectroscopy approach
and provides an excellent tool to determine the dielectric functions of anisotropic
optical systems. Generalized ellipsometry allows for characterization of sculptured
thin films of arbitrary geometry and materials upon analyzing the anisotropic polar-
izability response.

This section elucidates fundamental linear optical properties of complex sculp-
tured thin films in the visible and near infrared spectral region and is organized as
follows:

The physical vapor glancing angle deposition technique used for fabrication of
the sculptured thin films is presented in Sect. 10.2. Also, a nomenclature for STFs
based on their geometry and structure is introduced.

The concept of spectroscopic generalized ellipsometry is presented in Sect. 10.3.
Necessary mathematical formalisms to describe light propagation in stratified media
are outlined and the treatment of the external electromagnetic plane wave response
of an optical system using the Mueller matrix formalism is given. Model approaches
for analysis of ellipsometry data, valid for complex sculptured thin films, are dis-
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cussed. Sections 10.4 and 10.5 summarize experimental and structural parameters
for samples discussed here. Optical properties of metal sculptured thin films of type
F1-STFS are discussed in Sect. 10.6. Metal F1-STFs are found to possess monoclinic
optical properties. A model is proposed that explains the origin of the monoclinic-
ity due to the specific spatial arrangement of the nanostructures. It is demonstrated
that the homogeneous biaxial layer approach is a universally valid approach for
slanted columnar thin films. Subsequently, optical properties of more complex STFs
are presented. It is discussed why the optical plane wave response of STFs can be
reduced to the determination of the optical constants of the individual building blocks.
These building blocks can be assembled in a modular conception mimicking the true
geometry, and the optical properties of the film can be predicted from this model
arrangement. It is further discussed how optical properties of sculptured thin films
are influenced upon ambient changes. The section ends with a comparison of results
obtained with the homogeneous biaxial layer approach and anisotropic Bruggeman
effective medium approximation calculations.

The present chapter concludes with a summary of the fundamental findings and
a brief outlook in Sect. 10.7.

10.2 Fabrication of Sculptured Thin Films: Glancing Angle
Deposition

Glancing angle deposition (GLAD) is a bottom-up fabrication technique that employs
a physical vapor deposition (PVD) process at oblique angles where the trajectory
of the incoming particle flux is not parallel to the substrate normal. The tech-
nique allows to engineer the columnar structure of PVD grown films and is a
promising self-organized fabrication process for micro- and nanotechnology. The
three-dimensionally shaped, highly orientationally coherent but randomly distrib-
uted nanostructured thin films are called sculptured thin films (STFs). The GLAD
process is schematically shown in Fig. 10.2.

The first report on growth of metallic thin films by PVD at oblique angles with
a stationary substrate was published more than 120 years ago. Kundt [31], credited
for growing the first slanted columnar thin films (F1-STFs, see Table 10.1), observed
birefringence in these metal thin films and concluded that the optical anisotropy was
due to the microstructure.

In 1950, König and Hellwig [32] recognized the self-shadowing mechanism
responsible for a columnar microstructure developing during deposition at oblique
angles. The incident atoms stochastically condense on the substrate and form nucle-
ation clusters. At oblique angles, due to physical shadowing at the atomic scale, a
competing three-dimensional growth of these clusters starts since no incoming parti-
cles can reach the geometrically shadowed area. Given favorable conditions, such as
limited adatom mobility (surface diffusion) and collimated particle flux, the resulting
thin film consists of self-organized, highly spatially coherent, slanted nanocolumns.
The columns are oriented toward the vapor source, however, the growth direction is
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not parallel to the incoming vapor flux but rather tilted toward the substrate normal
[33, 34].

Another important step toward the emergence of three-dimensionally shaped thin
films was reported by Young and Kowal [35] in 1959. The authors introduced a con-
tinuous substrate rotation around the substrate normal during deposition at incident
angles of 30◦ < θi < 60◦ to realize chiral1 polarization filters. Substrate rotation is
equivalent to a constant angular change of the incoming particle flux direction and
hence equivalent to an apparent rotation of the vapor source around the substrate nor-
mal [36, 37]. This changes the shadowing dynamics and the column growth follows
the perceived change in source location.

Robbie et al. [38] demonstrated that at very oblique incident angles (θi > 60◦)
highly porous nanostructured thin films can be fabricated with densities as low as
15 % bulk and coined the term glancing angle deposition. At glancing angles of θi >

80◦ and in combination with a controlled substrate motion distinct nanostructures
can be “sculpted” in-situ [39].

Depending on the azimuthal substrate motion, different STF geometries and com-
binations thereof can be achieved: simple slanted columnar thin films (F1-STFs) will
form at oblique angles with no substrate rotation. If the substrate is rotated stepwise
at fixed growth intervals chevron-like (lF2-STFs; 180◦ steps)2 or staircase-like with
a square footprint (lF4±-STFs; 90◦ steps) can be fabricated, for example. Slow and
continuous rotation will result in chiral hollow-core helical sculptured thin films
(tH±-STF) where the rotation speed determines the inner diameter of the H-STFs
(Fig. 10.2). The pitch of the helices is a measure of the vertical periodicity and defined
as the vertical distance between two adjacent windings. As the angular velocity of
the substrate rotation is increased the inner diameter and the pitch decreases until
eventually solid-core screw-like structures will form. Yet faster rotation speed where

Structure shadow
Particle flux

Surface
diffusion

Substrate

Rotation

Substrate

Fig. 10.2 Schematic drawing of two representative GLAD situations in case of lateral ordering
(deposited on patterned substrate). (left) With a steady substrate and an obliquely incident particle
flux highly spatially coherent F1-STFs (slanted columns) will grow. (right) Slow and continuous
substrate rotation, which is equivalent to a steady change in the direction of the incoming particle
flux, results in H-STFs (hollow-core nanohelices) (Reprinted with permission from [40] Copyright
2010, Schmidt)

1 The term chiral is derived from the Greek word for hand and is used to describe an object that is
non-superposable on its mirror image.
2 New nomenclatures are introduced for different sculptured thin film geometries. See Table 10.1.
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Table 10.1 Proposed nomenclature for STFs derived from basic building block configurations

Proposed Chiral Footprint Example Description
nomenclature geometry

F1-STF No (Slanted) columnar thin film

l F2-STF No Chevron or zig-zag;
example shown: 3F2

l F4±-STF Yes Four-fold staircase;
example shown: 9F4+

t H±-STF Yes Helical thin film;
example shown: 2H−

V-STF No (Vertical) columnar thin film

The x in Fx stands for the number of equally spaced rotation steps within one full substrate turn and
with same rotation sense during fabrication. l is an integer number (>1) and denotes the number
of layers. Chiral STFs, starting with 2F3±-STF (three-fold symmetry, not shown here) and higher-
order folds, have to be additionally characterized by their handedness—indicated by a ‘+’ for
right-handed (clockwise) and a ‘−’ for left-handed (counterclockwise). For helical (continuously
rotated) STFs (H±-STF), t indicates the number of turns

the pitch becomes smaller than the column diameter will result macroscopically in
the loss of the helical geometry, and the structure degenerates into vertically oriented
columns (V-STFs) [33, 34]. An additional degree of freedom can be introduced by
also changing the deposition angle during growth, which alters the lateral density of
the respective STF [6, 41].

Sculptured thin films by GLAD can be fabricated from a wide variety of materi-
als, including insulators, metals, semiconductors, and organic materials, vaporized
by sputtering [42–44], pulsed laser deposition [45], thermal or (most commonly)
electron beam evaporation [33, 34, 46, 47]. Electron-beam evaporation is particu-
larly favorable since the impinging atoms have very low energy (<1 eV) and larger
amounts of material can be vaporized at constant conditions compared to thermal
evaporation. STFs are fabricated under low-adatom-mobility conditions, where the
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sticking coefficient (ratio of adsorbed adatoms and total number of adatoms arriving
within the same period of time) is essentially unity, and hence substrate tempera-
tures of less than 10 % of the melting point of the evaporant are desired for columnar
growth [33]. Therefore STFs can be deposited on virtually any substrate material
(e.g., glass and polymers) because the substrate can be kept at room-temperature.

10.2.1 Organized In-plane Growth

GLAD on flat substrates results in random in-plane distribution of nanostructures
with a “quasi-periodic” topology because of an average intercolumnar spacing due
to the shadowing characteristics [48, 49]. The random in-plane distribution originates
from the self-organized growth due to the stochastic condensation process on the sub-
strate surface and the subsequent competing growth mechanism. Lateral coherence
can be achieved when depositing on patterned substrates. Patch- or dot pattern, for
example, may determine initial shadowing conditions and serve as nucleation and
condensation seeds for the incoming particle flux [50]. Electron-beam lithography
is a widespread method for prepatterning substrates, however, only small areas can
be patterned (in the order of 100 × 100μm2), it is costly, and the resulting seeds
are >20 nm in diameter [51–54]. Self-assembly large-scale patterning techniques
such as nanosphere or diblock-copolymer nanolithography are advantageous over
electron beam lithography because smaller seed sizes can be achieved and yet they
are more economical [55–61].

Diblock-copolymer nanolithography. Diblock-copolymer or micelle nanolitho-
graphy is a self-assembly process to place metal nanodots in a regular pattern onto a
flat substrate. Diblock copolymers comprise a polar and non-polar polymer block dis-
solved in a non-polar solvent. Once a certain concentration is reached these diblock
copolymers aggregate into inverse micelles thereby forming a core-shell structure.
The micelle nanoreactor permits selective dissolution of metal salt into the polar
micelle core. A dip-coating process step with a flat substrate allows for surface coat-
ing of a regular monolayer of metal-loaded micelles. After solvent evaporation, the
organic part of the film is selectively etched away by an oxygen plasma treatment
leaving the inorganic nanodot pattern behind. The micelle diameter and hence inter-
particle spacing can be controlled by the size of the block copolymers whereas the
nanodot size is predominantly controlled by the amount of metal salt added to the
micelle solution [56, 57, 60, 62].

10.2.2 Proposed Sculptured Thin Film Nomenclature

Reports on a wide variety of differently shaped STFs have been published in recent
years, and each research group has used their own terminology to describe the specific
shape of the STF under investigation. Therefore, a universal nomenclature scheme



348 D. Schmidt et al.

for STFs based on their building blocks is proposed here to unambiguously identify
the STF geometry (Table 10.1). Further simplification for large Fx-STFs with many
substrate rotations can be achieved by using the first unit as the building block and
the number of repetitions as a subscript in analogy to structure formulas in organic
chemistry: for example, a four-fold staircase with five full turns, 20F4+-STF, may
be written as (4F4+)5. A combination of different geometries can be described by
concatenation of individual building blocks. This nomenclature is used throughout
this chapter.

10.3 Generalized Spectroscopic Ellipsometry

Spectroscopic ellipsometry (SE) determines the complex-valued ratio ρ of linearly
independent electric field components of polarized electromagnetic plane waves; i.e.,
the change of the polarization state of an electromagnetic plane wave upon interaction
with a sample. Traditionally, this ratio is measured in reflection or transmission for
light polarized parallel (p), and perpendicular (s)3 to the plane of incidence and
expressed by the two real-valued ellipsometric parameters Ψ and Δ [63]4:

ρ =
(

Bp

Bs

)
/

(
Ap

As

)
= tanΨ eiΔ, (10.1)

where amplitudes A stand for incident and B for exiting plane waves with p- and s-
polarization components with respect to the plane of incidence as defined in the reflec-
tion arrangement in Fig. 10.3.5 The absolute value of the complex ratio is defined by
tanΨ , and Δ denotes the relative phase change of the p and s components of the
electric field vector [64–67].

The complex ratio ρ can be addressed within different presentations of the elec-
tromagnetic plane wave response. Also, depending on the sample properties, i.e., for
anisotropic samples, which cause mode conversion between p- and s-polarized light
upon reflection (or transmission), the ellipsometric parameter set must be further
expanded into the so-called generalized ellipsometry parameter set. In such cases
the Jones matrix presentation provides a convenient and sufficient frame. However,
depolarization of light upon interaction with an optical system cannot be treated with
the Jones formalism. In this case the Mueller matrix presentation is the appropriate
choice.

3 The abbreviation “s” comes from the German word senkrecht for perpendicular.
4 Unless used unambiguously as running index, the symbol “i” addresses the imaginary unit

√−1.
5 Considerations are given for a reflection set up, but hold for the complex-valued ratio of polarized
plane wave components in the transmission arrangement as well.
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Fig. 10.3 The wavevectors of the incident and emerging plane waves (incident and reflected at an
angle Φa) and the sample normal define the plane of incidence (x-z plane). Ap , As , Bp , and Bs ,
denote the complex amplitudes of the p and s modes before and after reflection, respectively. P and
A are the azimuth angles of the linear polarizers used, for example, in the standard arrangement of
rotating-analyzer (polarizer) ellipsometers (Redrawn from Ref. [68])

10.3.1 Definition of the Optical Constants

The ellipsometric quantities Ψ and Δ are related to wave optics through a solution
of the wave equation: E = E0 exp{ikr}, with E0 being the amplitude of the electric-
field intensity E at spatial variable r. The propagation vector k is a function of the
complex-valued refractive index (optical constants) of the medium N = n + ik. The
refractive index n follows experimentally from Snell’s law:

n1 sin θ1 = n2 sin θ2, (10.2)

where θ j is the angle of incidence counted toward the interface between two materials
with n1 and n2. The extinction coefficient k is connected to the absorption, measured
by intensity (I = EE∗) loss upon wave propagation over a distance d,

I = I0 exp{−α′d}, (10.3)

with the absorption coefficient α′ being

α′ = 4π

λ
k. (10.4)

Refractive index n and extinction coefficient k, also known as “propagation con-
stants”, are defined for propagating waves along direction k in a material, and for
a given direction E, such that both n and k would occur as in (10.2) and (10.4). As
will be discussed later, for materials with monoclinic and triclinic optical proper-
ties such experiments cannot be designed, instead, coupling of propagating waves
with different propagation constants will occur in general. Generalized ellipsometry
(GE) is the only appropriate tool to differentiate by experiment between the intrin-
sic propagation constants, the refractive index and extinction coefficient for major
polarizability axes a, b, and c, and to determine axes a, b, and c.
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10.3.2 Jones and Mueller Matrix Presentation

The Jones Matrix Presentation. For non-depolarizing samples, the so-called
Jones matrix provides a complete mathematical description for the electromagnetic
plane wave response and allows for ellipsometric data analysis [63, 68–71].

The Jones reflection matrix J in the p − s reference frame, for a sample with
plane parallel boundaries, connects the incident A modes (p, s) with emergent B
plane wave modes (p, s):

(
Bp

Bs

)
= J

(
Ap

As

)
=

(
rpp rps

rsp rss

) (
Ap

As

)
. (10.5)

The Jones matrix J contains four complex-valued elements, which are also known
as the anisotropic Fresnel reflection coefficients.6 The off-diagonal elements of J are
nonzero for optical systems that convert p into s waves and vice versa.

The Mueller Matrix Presentation. An alternative description of the polarized sam-
ple response is the Mueller matrix and the Stokes vector formalism. This approach is
equivalent to the Jones matrix formalism for non-depolarizing samples, and can fur-
thermore completely account for depolarization. The four real-valued Stokes para-
meters7 (S j , j = 0 . . . 3) of an electromagnetic plane wave are defined in terms
polarized intensities:

S0 = Ip + Is, (10.6a)

S1 = Ip − Is, (10.6b)

S2 = I45 − I−45, (10.6c)

S3 = Iσ+ − Iσ−, (10.6d)

where Ip, Is, I45, I−45, Iσ+, and Iσ− denote the intensities for the p−, s−,
+45◦,−45◦, right-, and left-handed circularly polarized light components, respec-
tively [63, 72]. The degree of polarization DP for any state of polarization can be
expressed by the Stokes parameters as [73]

DP = Ipol

Itot
= (S2

1 + S2
2 + S2

3 )
1/2

S0
, 0 ≤ DP ≤ 1, (10.7)

where Ipol is the intensity of the sum of polarization components and Itot is the
total intensity of the beam. A value of DP = 1 corresponds to completely polarized
light, DP = 0 corresponds to unpolarized light, and 0 < DP < 1 corresponds to

6 In this notation the first index denotes the incident polarization mode, and the second index refers
to the outgoing polarization mode.
7 The Stokes parameters have dimensions of intensities.
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partially polarized light. Arranging the Stokes parameters into a column vector, the
Mueller matrix then describes the changes of each quantity upon interaction of the
electromagnetic plane wave with an optical system8 as

⎛
⎜⎜⎝

S0
S1
S2
S3

⎞
⎟⎟⎠

out

=

⎛
⎜⎜⎝

M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

S0
S1
S2
S3

⎞
⎟⎟⎠

in

. (10.8)

The advantage of the Mueller matrix concept is the ability to handle situations with
partial polarization of the electromagnetic plane wave. Further details, the application
to ellipsometry, and the relation to the Jones concept have been outlined previously
by Azzam and Bashara [63], Röseler [72], and Jellison [74–76].

In a rotating-analyzer-ellipsometer, for example, the Mueller matrix elements of
the 4th row and the 4th column cannot be measured. However, this does not impair the
accessibility of the normalized Jones matrix elements, (10.5), except for its relative
phase, which can only be obtained by including compensator(s) [67, 72].

For a non-depolarizing system, a one-to-one relation exists between matrices J
and M [63]:

M11 = 1

2

(
rppr∗

pp + rssr∗
ss + rspr∗

sp + rpsr∗
ps

)
, (10.9a)

M12 = 1

2

(
rppr∗

pp − rssr∗
ss − rspr∗

sp + rpsr∗
ps

)
, (10.9b)

M13 = Re
(

rppr∗
sp + r∗

ssr ps

)
, (10.9c)

M14 = Im
(

rppr∗
sp + r∗

ssr ps

)
, (10.9d)

M21 = 1

2

(
rppr∗

pp − rssr∗
ss + rspr∗

sp − rpsr∗
ps

)
, (10.9e)

M22 = 1

2

(
rppr∗

pp + rssr∗
ss − rspr∗

sp − rpsr∗
ps

)
, (10.9f)

M23 = Re
(

rppr∗
sp − r∗

ssr ps

)
, (10.9g)

M24 = Im
(

rppr∗
sp − r∗

ssr ps

)
, (10.9h)

M31 = Re
(

rppr∗
ps + r∗

ssrsp

)
, (10.9i)

M32 = Re
(

rppr∗
ps − r∗

ssrsp

)
, (10.9j)

M33 = Re
(

rppr∗
ss + r∗

psrsp

)
, (10.9k)

M34 = Im
(

rppr∗
ss − r∗

psrsp

)
, (10.9l)

8 Sample, mirrors, rotators, optical devices within the light path, and any combinations thereof.
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M41 = −Im
(

rppr∗
ps + r∗

ssrsp

)
, (10.9m)

M42 = −Im
(

rppr∗
ps − r∗

ssrsp

)
, (10.9n)

M43 = −Im
(

rppr∗
ss + r∗

psrsp

)
, (10.9o)

M44 = Re
(

rppr∗
ss − r∗

psrsp

)
, (10.9p)

where {·}∗ denotes the complex conjugate. The Mueller matrix for an isotropic
sample is given by [76]

M =

⎛
⎜⎜⎝

1 −NM 0 0
−NM 1 0 0

0 0 CM SM

0 0 −SM CM

⎞
⎟⎟⎠ . (10.10)

The quantities NM, SM, and CM provide access to the ellipsometric parameters

NM = cos 2Ψ, (10.11a)

SM = sin 2Ψ sinΔ, (10.11b)

CM = sin 2Ψ cosΔ. (10.11c)

NM, SM, and CM are not independent, and are constrained for non-depolarizing sam-
ples by the relation:

N 2
M + S2

M + C2
M = 1. (10.12)

The complex ratio ρ can be obtained from NM, SM and CM

ρ = CM + i SM

1 + NM

. (10.13)

10.3.3 Generalized Ellipsometry

In contrast to standard ellipsometry, in the generalized ellipsometry situation Ψ and
Δ depend on the polarization state of the incident plane wave. This concept is valid
within both, the Mueller matrix as well as within the Jones matrix formalism. Within
the Jones matrix presentation six real-valued generalized ellipsometry angles Ψi j

andΔi j are defined by three ratios of the four available complex-valued elements of
the Jones reflection matrix J:
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Rpp ≡ rpp

rss
= tanΨpp exp(iΔpp), (10.14a)

Rps ≡ rps

rss
= tanΨps exp(iΔps), (10.14b)

Rsp ≡ rsp

rpp
= tanΨsp exp(iΔsp). (10.14c)

Note that the on-diagonal elements from the same column of the Jones matrix are
used to normalize the off-diagonal matrix elements. This choice is convenient for
rotating-analyzer ellipsometry [69].

The generalized ellipsometry concept is required if the response of the optical
system is anisotropic, i.e., p modes are converted in s modes and vice versa. This
results in non-zero off-diagonal elements of the Jones (rps and rsp) and Mueller
matrix (Mkl and Mlk with k = 1, 2; l = 3, 4).

10.3.4 Anisotropic Dielectric Function Tensor

10.3.4.1 General Description

In condensed matter with non-cubic symmetry, the dielectric function is represented
by a complex-valued second-rank tensor ε, which can be expressed in Cartesian
coordinates (x, y, z):

D = ε0 (E + P) = ε0εE = ε0

⎛
⎝
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞
⎠ E, (10.15)

where the field-phasors displacement D, polarization field P, and electric field E are
given along the unit directions x, y, z (ε0 is the vacuum permittivity):

D = xDx + yDy + zDz, (10.16a)

E = xEx + yEy + zEz, (10.16b)

P = xPx + yPy + zPz . (10.16c)

In general, the dielectric function tensor ε is a function of the photon energy �ω due
to non-local response within the time domain (frequency dispersion). Furthermore,
the ε tensor may be non-symmetric due to non-local response (chiral) in space [77].

10.3.4.2 Orthogonal Rotations

Interior and exterior Cartesian coordinate axes of a sample under consideration are
related by orthogonal rotations. In order to address the ε tensor appropriately, a
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Fig. 10.4 Definition of the
Euler angles ϕ, θ , and ψ and
the orthogonal rotations as
provided by A. (ξ, η, ζ ), and
(x, y, z) refer to the Cartesian
auxiliary and laboratory coor-
dinate systems, respectively
[Redrawn from Ref. [68]]

z

y

x

right-handed Cartesian system (x, y, z) with origin at the sample surface as defined
in Fig. 10.3 is set by the plane of incidence (x, z) and the sample surface (x, y).
The real-valued Euler angles ϕ, θ , andψ can be used to rotate between the Cartesian
laboratory (x, y, z) and the Cartesian auxiliary coordinate system (ξ, η, ζ ) as defined
in Fig. 10.4:

ε(x, y, z) = Aε(ξ, η, ζ )A−1, (10.17)

where the unitary matrix9 A is the orthogonal rotation matrix [73]

A =
⎛
⎝

cosψ cosϕ − cos θ sin ϕ sinψ − sinψ cosϕ − cos θ sin ϕ cosψ sin θ sin ϕ
cosψ sin ϕ + cos θ cosϕ sinψ − sinψ sin ϕ + cos θ cosϕ cosψ − sin θ cosϕ

sin θ sinψ sin θ cosψ cos θ

⎞
⎠ .

(10.18)
First, rotation ϕ is performed around the z-axis, then the coordinate system is rotated
by θ around the new x-axis, and a final rotation of ψ around ζ completes the coor-
dinate system rotation.

10.3.4.3 Bond Polarizability Model

Intrinsic bond polarizations (eigenvectors) set up a spatial non-Cartesian (monoclinic,
triclinic), or Cartesian (orthorhombic, tetragonal, hexagonal, trigonal, and cubic)
center-of-gravity system, with axes described by vectors a = xax + yay + zaz ,
b = xbx + yby + zbz , and c = xcx + ycy + zcz . The linear polarization response is
additive, and may be split into

P = Pa + Pb + Pc, (10.19)

where

Pa = �a (aE) a, (10.20a)

Pb = �b (bE) b, (10.20b)

Pc = �c (cE) c. (10.20c)

9 Note that A−1 = AT , where {·}T denotes the transpose of a matrix.
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The complex-valued scalar major polarizabilities �a, �b, �c must obey Kramers-
Kronig consistency, and correspond to the intrinsic center-of-gravity bond polariza-
tion system. Under restrictions to linear polarization, the second-rank susceptibility
tensor χ is defined by

P = ε0χE = ε0

⎛
⎝
χxx χxy χxz

χyx χyy χyz

χzx χzy χzz

⎞
⎠ E, (10.21)

and the electric displacement can be written as

D = ε0(1 + χ)E = ε0

⎛
⎝

1 + χxx χxy χxz

χyx 1 + χyy χyz

χzx χzy 1 + χzz

⎞
⎠ E. (10.22)

Accordingly, the corresponding part of the symmetric10 dielectric function tensor ε

is easily deconvoluted by expanding (10.22) and (10.20) [68]:

εxx = 1 + ax ax�a + bx bx�b + cx cx�c, (10.23a)

εxy = ax ay�a + bx by�b + cx cy�c, (10.23b)

εxz = ax az�a + bx bz�b + cx cz�c, (10.23c)

εyy = 1 + ayay�a + byby�b + cycy�c, (10.23d)

εyz = ayaz�a + bybz�b + cycz�c, (10.23e)

εzz = 1 + azaz�a + bzbz�b + czcz�c. (10.23f)

Note that εi j = ε j i and that (10.23) describe the most general form of an anisotropic
dielectric symmetric tensor. For anisotropic materials, besides the coordinates of
the unit axes a, b, and c, three polarizability functions � j ( j = a, b, c) need to
be differentiated, which can be identified by major-axes dielectric function spectra
ε j (ω) for certain symmetries only.

For orthorhombic, tetragonal, hexagonal, trigonal, and cubic symmetry, a real-
valued rotation matrix A independent of wavelength can be found such that ε is
diagonal in a given orthogonal axes system a,b, c:

ε = A

⎛
⎝
εa 0 0
0 εb 0
0 0 εc

⎞
⎠ A−1, (10.24)

where εa ≡ 1 + �a , εb ≡ 1 + �b, and εc ≡ 1 + �c.

10 For purely dielectric material without internal or external magnetic fields, due to invariance upon
time-reversal, there is no directional dependence along one axis (Onsager principle).
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For the monoclinic and triclinic crystal systems such a wavelength-independent
rotation matrix does not exist, in general.
Isotropic Materials. In the most simple case, with no directional dependence, ε is
a scalar and the electric displacement reads

D = ε0εE. (10.25)

Uniaxial Materials. For uniaxial materials with trigonal, tetragonal, and hexagonal
symmetry, ε has two identical in-plane components εa = εb = ε⊥ and one out-of-
plane component εc = ε‖, and the electric displacement takes the form

D = xε0ε⊥Ex + yε0ε⊥Ey + zε0ε‖Ez . (10.26)

Orthorhombic Materials. For biaxial materials with orthorhombic symmetry, with
their coordinate system coincident with a given laboratory system (ay = az = bx

= bz = cx = cy = 0, ax = by = cz = 1) one obtains from (10.23)

D = xε0(1 + �a)Ex + yε0(1 + �b)Ey + zε0(1 + �c)Ez, (10.27a)

D = xε0εa Ex + yε0εb Ey + zε0εc Ez, (10.27b)

where the polarization vector in a given direction exclusively depends upon the
electric field component in that same direction.

Monoclinic and Triclinic Materials. For biaxial materials with non-Cartesian mon-
oclinic and triclinic systems, (10.23) can be represented by a virtual orthogonal basis
for a,b, c and a projection matrix U [78]:

U =
⎛
⎝

sin α (cos γ − cosα cosβ)(sin α)−1 0

0 (1 − cos2 α − cos2 β − cos2 γ + 2 cosα cosβ cos γ )
1
2 (sin α)−1 0

cosα cosβ 1

⎞
⎠ .

(10.28)
Parameters α, β, γ are the internal angles between major polarizability axes a,b, c,
and which differentiate monoclinic (β 
= α = γ = 90◦) and triclinic (α 
= β 
= γ )
biaxial optical properties. In the definition of U, use was made of the following choice
of free coordinates: within the auxiliary Cartesian system, c is chosen to coincide
with the z-axis, thus cx = cy = 0 in (10.23). a is chosen to be located within the

{x, z}-plane, thus ay = 0 and ax =
√

1 − a2
z , and bx , bz follow accordingly where

by =
√

1 − b2
x − b2

z . Thus, free parameters in (10.28) are az , bx , bz , or equivalently

α, β, γ as depicted in Fig. 10.5. If all angles α = β = γ = 90◦ then the so called
direct structure matrix U takes the form U = diag{1, 1, 1}, where diag{·} indicates
the diagonal 3 × 3 matrix, which represents the orthorhombic symmetry. Explicitly,
the dielectric tensor εm for a biaxial material with monoclinic symmetry takes the
form
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y

z

x

b

c

a

Fig. 10.5 Definition of the angles α, β, and γ as used in WVASE32�(J. A. Woollam Co., Inc.).
Orthorhombic (α = β = γ = 90◦), monoclinic (α = γ = 90◦ 
= β), and triclinic (α 
= β 
= γ 
=
90◦) systems can be distinguished amongst materials with biaxial (�a 
= �b 
= �c) properties when
evaluating their external Euler angles as a function of wavelength (Reprinted with permission from
[40]. Copyright 2010, Schmidt)

εm = U

⎛
⎝
εa 0 0
0 εb 0
0 0 εc

⎞
⎠ UT =

⎛
⎝

1 + �a 0 0
0 1 + sin2 β�b sin β cosβ�b

0 sin β cosβ�b 1 + cos2 β�b + �c

⎞
⎠ ,

(10.29)
where β is the monoclinic angle between axes b and c.11 In the most general form,
the dielectric tensor εt for a triclinic system reads

εt =

⎛
⎜⎜⎝

�a sin2 α + �b
1

sin2 α
�2 �b

1
sin2 α

�� (�a + �b
1

sin2 α
�) sin α cosβ

�b
1

sin2 α
�� −�b

1
sin2 α

ϒ �b
1

sin α cosβ�

(�a + �b
1

sin2 α
�) sin α cosβ �b

1
sin α cosβ� �a cos2 α + �b cos2 β + �c

⎞
⎟⎟⎠ ,

(10.30)
with

� = − cosα cosβ cos γ + cos γ, (10.31a)

� = (− cos2 α − cos2 β + 2 cosα cosβ cos γ + sin2 γ )
1
2 , (10.31b)

ϒ = cos2 α + cos2 β − 2 cosα cosβ cos γ + cos2 γ − 1. (10.31c)

Experimentally, monoclinic and triclinic properties can only be distinguished by
analyzing measured GE data over a wide spectral range. This phenomenon is due
to dispersion, i.e., wavelength dependencies of functions �a(ω), �b(ω), �c(ω). The
rotations to diagonalize (10.23) depend explicitly on �a, �b, �c and are thus wave-
length dependent. Within a narrow spectral region an orthogonal rotation matrix
with Euler angles ϕ, θ, ψ can always be found such that ε can be diagonalized
(Sect. 10.3.4.2). However, choosing a different spectral region, this rotation matrix
will be different exhibiting the wavelength-dependent character and revealing mon-

11 Note the uncommon assignment of unit cell angles. This notation is chosen here because it is
equivalent to the definition of the ellipsometric analysis software WVASE32� [79] and is illustrated
in Fig. 10.5.
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Table 10.2 Symmetries and dielectric tensor properties of dielectric materials with symmetric
dielectric tensor

Symmetry Classification Major dielectric Internal angles
polarizabilities (ε j = 1 + � j )

Isotropic Cubic εa = εb = εc α = β = γ = 90◦
Uniaxial Trigonal εa = εb 
= εc α = β = γ = 90◦

Tetragonal
Hexagonal

Biaxial Orthorhombic εa 
= εb 
= εc α = β = γ = 90◦
Monoclinic �a 
= �b 
= �c β 
= α = γ = 90◦
Triclinic �a 
= �b 
= �c α 
= β 
= γ 
= 90◦

For definition and explanation of major dielectric polarizabilities refer to Sect. 10.3.4.3

oclinic or triclinic properties. Considering for intrinsic monoclinic or triclinic prop-
erties by using projections U and allowing for internal angles α, β, γ , a wavelength-
independent set of Euler angles ϕ, θ, ψ must be found.

10.3.4.4 Connection Between Intrinsic Polarizabilities and Dielectric Tensor

In general, symmetric ε-tensor materials can be organized in three distinct groups
with respect to their optical properties, as summarized in Table 10.2:

• Materials with a cubic symmetry are optically isotropic (for example, amorphous
material). All three axes of major dielectric polarizabilities are equivalent and
mutually orthogonal.

• Materials with trigonal, tetragonal, and hexagonal symmetry (three-fold, four-
fold, and six-fold rotation axes exist, respectively) have uniaxial optical properties.
All axes of major dielectric polarizabilities are mutually orthogonal, however, only
two out of the three are equivalent axes. One dielectric principal axis coincides
with the rotation axis, while any two remaining and equivalent directions are
perpendicular to the principal axis of rotation.

• Materials with orthorhombic, monoclinic, and triclinic symmetry are optically
biaxial. All three major dielectric polarizabilities are different.

If (10.15) of a transparent material is transformed to its principal axes (Sect. 10.3.4.2),
the principal refractive indices n j ≡ √

ε j ( j = a, b, c) geometrically represent, in
general, an ellipsoid, also called the index ellipsoid [73, 80]. The terms uniaxial and
biaxial refer to the number of optical axes. An optical axis is defined as the normal to
a plane intersecting the ellipsoid, where the circumference of the section is a circle,
and its center coincides with the center of the ellipsoids. The optical axis presents a
direction along which the speed of propagation is independent of polarization. Two
such axes can be found in a general ellipsoid (biaxial), a spheroid has one (uniaxial),
and a sphere an infinite number (isotropic). Materials with more than one principle
dielectric constant exhibit birefringence.
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Fig. 10.6 Schematic presentation of incident A, reflected B, and transmitted C plane waves across
a sample with plane parallel interfaces, and multiple layer stacks at the front side of the supporting
substrate. D modes (if present) are incident from the right. The substrate may totally absorb C and/or
D (Reprinted with permission from [68]. Copyright 2004, Springer-Verlag Berlin Heidelberg)

10.3.5 Light Propagation in Layered Anisotropic Media

The electromagnetic response of stratified anisotropic materials with plane parallel
boundaries can be conveniently calculated in either Jones or Mueller matrix presen-
tation with a 4 × 4 matrix approach, often cited as the Berreman-formalism [63,
68, 70, 81, 82]. Whereas the Jones and Mueller matrix formalism describe the mea-
surable electromagnetic field components, the 4 × 4 matrix algebra treats the elec-
tromagnetic field components within the sample, i.e, internal sample polarization-
modifying processes responsible for the external polarizing sample properties. The
response of the entire multiple-layered structure (Fig. 10.6) is described by a transfer
matrix T: ⎛

⎜⎜⎝
As

Bs

Ap

Bp

⎞
⎟⎟⎠ = T

⎛
⎜⎜⎝

Cs

Ds

C p

Dp

⎞
⎟⎟⎠ . (10.32)

A so-called characteristic transfer matrix, Tp, accounts for the optical properties
of a single homogeneous layer within a stratified sample.12 Matrices for incident
(ambient, La) and exit mediums (Lf) embed the layer stack according to the layer
stack surrounding. The transfer matrix T results from the ordered product of all m
layers’ matrices Tp according to their position within the layer stack, starting and
ending with the incident and exit matrices [69, 82]:

T = L−1
a T−1

p1 . . .T
−1
pmLf. (10.33)

12 Further details and analytical solutions for Tp can be found in the literature [68, 82].
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The ambient matrix

L−1
a = 1

2

⎛
⎜⎜⎝

0 1 −(na cosΦa)
−1 0

0 1 (na cosΦa)
−1 0

(cosΦa)
−1 0 0 1/na

−(cosΦa)
−1 0 0 1/na

⎞
⎟⎟⎠ (10.34)

depends on the angle of incidenceΦa and the index of refraction na of the (isotropic)
ambient material. The exit matrix depends on the angle of propagation within the
exit medium Φa and its complex valued index of refraction Nf = √

εf = nf + ikf:

Lf =

⎛
⎜⎜⎝

0 0 cosΦf − cosΦf
1 1 0 0

−Nf cosΦf Nf cosΦf 0 0
0 0 Nf Nf

⎞
⎟⎟⎠ . (10.35)

The angle Φf is calculated from Snell’s law:

cosΦf =
√

1 − ([na/Nf] sinΦa)
2. (10.36)

For a given layer of thickness d with index of refraction N , the matrix Tp can be
obtained from the exponential function

Tp ≡ exp
{

i
ω

c
�d

}
, (10.37)

where c is the speed of light, ω is the light wave orbital frequency, and � is the
characteristic coefficient matrix of the layer. The characteristic coefficient matrix �

is derived from Maxwell’s equations as shown by Schubert [82] and depends on the
dielectric tensor ε and the wavevector component kx :

� =

⎛
⎜⎜⎜⎝

−kx
εzx
εzz

−kx
εzy
εzz

0 1 − k2
x
εzz

0 0 −1 0
εyz

εzx
εzz

− εyx k2
x − εyy + εyz

εzy
εzz

0 kx
εyz
εzz

εxx − εxz
εzx
εzz

εxy − εxz
εzy
εzz

0 −kx
εxz
εzz

⎞
⎟⎟⎟⎠ , (10.38)

kx = na sinΦa . (10.39)

The matrix � should not be confused with the real-valued ellipsometric parameter
Δ. Tp connects the in-plane components of the electric and magnetic fields at layer
interfaces separated by d and includes the effects of all multiple reflections if a part
of the wave is traveling along a direction with no or weak absorption. Tp is computed
with � as input:



10 Generalized Ellipsometry Characterization of Sculptured Thin Films 361

Tp ≡ exp
{

i
ω

c
�d

}
= β0E + β1� + β2�� + β3���. (10.40)

The scalars β j are obtained from the following linear relations:

exp
{

i
ω

c
qkd

}
=

3∑
j=0

β j q
j

k , k = 1 . . . 4, (10.41)

where qk denote the eigenvalues of � associated with one of the four electromagnetic
eigenmodes �k within the layer (k = 1 . . . 4). Two solutions have a positive real
part and constitute the forward traveling plane waves with respect to the chosen
laboratory coordinate system. The other solutions with negative real parts are due to
the backward-traveling wave components.

In order to calculate Tp parameters�a, �b, �c,ϕ, θ, ψ , andα, β, γ are needed, and
which then represent the current orientation of the polarizability system (a,b, c) rel-
ative to the laboratory coordinate system (sample surface and plane of incidence) and
relative to the ellipsometry measurement (plane of incidence and angle of incidence).

Piecewise homogeneous layers. Explicitly, the transfer matrix for a 3F2-STF
(chevron with three layers) depicted in Fig. 10.9a reads

T = L−1
a T−1

p1 T−1
p2 T−1

p3 Lf. (10.42)

The STF is virtually separated into three layers with specific thickness d such that
each partial transfer matrix accounts for each slanted columnar layer, and together
with incident and exit matrix result in the transfer matrix of the layer stack. Note
that within each layer the dielectric tensor ε of the (virtual) orthorhombic basis for
a,b, c is in diagonalized form when εa = εx , εb = εy , and εc = εz , and oriented as
depicted in Fig. 10.15. Hence, as discussed also later, if the slanting planes are parallel
to the plane of incidence in Fig. 10.9a, the Euler angles within Tp1, for example, are
ϕ = +90◦, θ = +45◦, and ψ = 0◦.
Continuously rotated layers. Similar to the piecewise homogenous layer, the trans-
fer matrix for a continuously rotated H-STF (Fig. 10.9b) explicitly takes the form

T = lim
δd→0
m→∞

L−1
a

⎛
⎝

m∏
j=1

T−1
p j (δd)

⎞
⎠ Lf. (10.43)

Here, it is implied in that �a, �b, �c, α, β, γ, θ , and ψ are identical for each layer
and layers differ only by δϕ. The total number m of partial transfer matrices depends
on the level of discretization of the structure, i.e., in how many sublayers (slices)
with thickness δd the structure is split up. A higher level of discretization results in
more, thinner slices, and therefore finer approximations can be achieved. However,
the computational effort increases considerably.
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Explicit solutions have been reported for continuously rotated layers at normal
incidence as well as a fast approximation scheme for oblique angles of incidence
[83, 84].

10.3.6 Ellipsometry Model Description for Sculptured
Thin Films

10.3.6.1 Homogeneous Biaxial Layer Approach

It is known that a thin film with columnar microstructure causes optical birefrin-
gence [31]. The microstructural asymmetry described as shape anisotropy (columns
exhibit a slightly elliptical shape due to non-existence of structure shadowing in
the direction perpendicular to the incoming particle flux) or preferentially bunched
columns along the direction perpendicular to the deposition plane causes one setup
of the so called form birefringence [85]. Also due to these “non-idealities” the optical
nature of a slanted columnar thin film is biaxial. Hodgkinson and Wu [86] adapted
the Herpin index method13 to transparent biaxial thin films and concluded that non-
absorbing slanted columnar thin films (F1-STFs) can be considered as an effective
medium with biaxial properties.

This consideration has been adapted and augmented here to create a generalized
optical model, which is valid for slanted columnar thin films of any material (absorb-
ing and non-absorbing). Examples for absorbing STFs prepared from different metals
are presented in Sect. 10.6.

The optical equivalent description for a F1-STF can be, in general, a single dielec-
trically homogeneous (along z) biaxial layer, thereby describing an effective medium
(Fig. 10.7). The biaxial layer comprises parameters thickness d, corresponding to
the actual thickness of the nanostructured thin film, three complex, wavelength-
dependent functions �(ω)a , �(ω)b, and �(ω)c pertinent to intrinsic axes a, b, and c,
their internal angles α, β, and γ , and (external) Euler angles ϕ, θ , andψ determining
the orientation of the columns and sample during a particular measurement [88, 89].

Substrate

Biaxial Layer

Fig. 10.7 Optical layer model of an absorbing F1-STF (slanted columnar thin film). The anisotropic
nanostructure can be described as an effective medium with a single biaxial layer on top of a substrate

13 At one wavelength, a symmetrical thin-film combination (periodically stratified medium) is
equivalent to a single film, characterized by an equivalent index and equivalent thickness [87].
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Fig. 10.8 Effective medium scenarios with mixtures of elliptical inclusions [depicted in (c)] and a
homogeneous host medium. The mixture with randomly oriented inclusions a exhibits an average
effective polarizability 〈Peff〉 whereas the mixture with aligned inclusions b shows anisotropic prop-
erties with three effective polarizabilities Peff, j according to the shape of the inclusions (Reprinted
with permission from [90]. Copyright 2012, American Institute of Physics)

This homogenous biaxial layer approach has major advantages over other existing
effective medium approximations: (i) no initial assumptions such as optical properties
of the constituents or packaging fractions are necessary, (ii) it is valid for absorbing
and non-absorbing materials, (iii) it does not depend on packaging fractions, and
(iv) it does not depend on the structure size. Note that the actual structure size is
disregarded in this homogenization approach. This procedure is considered valid
since the lateral dimension of the nanostructures (diameter) is much smaller than the
probing wavelength. Care must be taken when properties at shorter wavelengths are
evaluated, because diffraction and scattering phenomena may be present.

10.3.6.2 Anisotropic Bruggeman Effective Medium Approximation

Effective medium approximations (EMAs) are physical models based on the prop-
erties and the relative fraction of its components and describe the macroscopic prop-
erties of a medium. The Bruggeman formalism, for example, is a homogenization
process with absolute equality between the phases in mixture, and was originally
developed for a randomly inhomogeneous medium with, for example, spherical
inclusions [91]. This Bruggeman approach has been extensively discussed and gen-
eralized to treat materials consisting of crystallites of arbitrary shape by introducing
depolarization factors [93, 96]. Depolarization factors LD

a , LD
b , LD

c are proportional
to the polarizabilities along major polarizability axes a,b, c and are representative
for relative dimensions of elliptical inclusions. In case of a host medium with ran-
domly oriented inclusions the mixture macroscopically exhibits an isotropic effec-
tive polarizability 〈Peff〉 with an isotropic effective dielectric function εeff due to
an averaging over all major polarizability axes. The generalized Bruggeman EMA
can also be applied ad-hoc to highly oriented inclusions and may then be called
anisotropic Bruggeman EMA (AB-EMA). For aligned inclusions with ellipsoidal
shape embedded in a host matrix the average for the biaxial (orthorhombic) effective
dielectric functions εeff,a, εeff,b, εeff,c is then only taken along a,b, and c, respectively
(Fig. 10.8) [94, 95]. The AB-EMA formulae for the three effective major dielectric
functions εeff, j ≡ ε j for a mixture of m constituents in implicit form are:
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m∑
n=1

fn
εn − εeff, j

εeff, j + LD
j (εn − εeff, j )

= 0, j = a, b, c, (10.44)

where permittivities εn are the bulk dielectric functions of the respective film con-
stituent with material volume fractions fn . The sum of all material fractions fn has
to equal unity. LD

j are the depolarization factors of the inclusion ellipsoids along the
three orthogonal major polarizability axes a,b, c, and the sum of all three depolar-
ization factors must obey unity [92, 96]:

LD
a + LD

b + LD
c = 1. (10.45)

Note that in order to preserve the symmetry of the original Bruggeman theory, struc-
tural equivalence between constituents is assumed (one set of LD

j renders the effective
medium geometry).The upper and lower bounds on εeff, j , where the depolarization
factors are 0 and 1, correspond to minimum and maximum charge screening effects,
respectively, and are called Wiener bounds [91, 97, 98]. These two cases can be under-
stood considering capacitors connected either in parallel or in series. The effective
permittivities of prolate spheroids aligned along the substrate normal can be approx-
imated from (10.44) with LD

a = LD
b = 0.5 and LD

c = 0. Consequently, the case of
LD

a = LD
b = LD

c = 1
3 corresponds to spherical inclusions, and for two constituents

simplifies to the original quadratic equation derived by Bruggeman [86, 96, 99].
A real-valued rotation matrix A with wavelength-independent Euler angles

ϕ, θ, ψ can then be found to transform the Cartesian laboratory coordinate frame
into the material coordinate frame 10.3.4.2. In order to describe biaxial materials
with a non-Cartesian system the obtained virtual orthogonal basis from 10.44 has
to be transformed by the projection matrix U (Sect. 10.3.4.3). Examples of metal
slanted columnar thin films with monoclinic optical properties (Peff,b is not parallel
to the semiaxis b of the ellipsoid but rather tilted towards c by a monoclinic angle
β) are presented in Sect. 10.6.4.

In general, the AB-EMA is only valid in the long wavelength approximation and
hence if the structure size approaches the order of the wavelength of the probing light
this model procedure may result parameters which are not representative anymore
for the film under investigation [67, 91, 100].

10.3.6.3 Piecewise Homogeneous Biaxial Layer Approach

If substrate rotation is involved during the growth process of STFs, a single biaxial
layer accounting for the film is not sufficient anymore to describe the dielectric polar-
ization response.14 For the piecewise homogeneous biaxial layer approach two types

14 Very fast substrate rotation (<2 nm vertical growth per revolution) results in V-STFs, i.e., a screw
degenerates to a straight column because the pitch is too small. Optical properties of V-STFs are not
discussed in this chapter, however, the nanostructured film has uniaxial properties with the ordinary
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Fig. 10.9 Optical layer model for arbitrarily oriented STFs. a A 3F2-STF (chevron with three
layers), for example, is optically modeled with three biaxial layers with alternating orientations.
b A H-STF is approximated by n biaxial layers, which are rotated with respect to each other by
δϕ. Tpm corresponds to the partial transfer matrix in the 4 × 4 algebra for layer m, and depends on
�a, �b, �c, α, β, γ , ϕ, θ, ψ , and d

of STFs are distinguished here: (i) F-STFs (except F1; fabricated with sequential
substrate rotations) and (ii) H-STFs (fabricated with continuous substrate rotation).
It is assumed that the STF is made of m F1-STF slices, where within each slice (layer)
the dielectric properties are homogeneous [33, 101].
F-STFs. F-STFs (all but F1) are grown while the substrate is rotated step-wise
(abruptly) after a certain pause time. If a sequential substrate rotation of 180◦ is
employed, for example, the resulting F2-STFs, also called chevrons or zig-zags, can
be considered as stratified (or a cascade of) F1-STFs with opposite slanting direc-
tions in adjacent slabs. Consequently, the optical model for the chevron thin film
with three layers (3F2-STF),15 depicted in Fig. 10.9a, consists of three homoge-
neous anisotropic (biaxial) layers on top of a layer accounting for the substrate. The
Euler angles for each layer (ϕ j ,θ j ,ψ j ), which transform the Cartesian coordinate
system (x, y, z) into the sample coordinates (ξ, η, ζ ), represent the orientation of
each slanted column (building block) in the nanostructure. In case the angle of the
incoming particle flux θi was kept constant during deposition, a common dielectric
tensor, with three major polarizabilities �a , �b, �c pertinent to the intrinsic axes a, b,
c, and internal angles α, β, γ and Euler angles ϕ, θ, ψ can be assigned to each biaxial
layer. Deposition at constant θi results in equal packaging fractions in subsequent
layers and therefore common major polarizabilities may be assumed. Furthermore,
all layers have an individual thickness parameter d j such that the total thickness is
equal to the overall film thickness (d = d1 +d2 + . . .+dm). This approach is valid, in
general, for arbitrarily oriented F-STFs and examples are presented in Sect. 10.6.3.
As will be shown later, the Euler angle θ is identical to the geometrical slanting

(Footnote 14 continued)
dielectric constant in the substrate interface and the extraordinary along the columns and normal to
the substrate.
15 For nomenclature see Table 10.1.
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angle, ϕ is the rotation of the slanting plane with respect to the laboratory coordinate
frame, and ψ is found to be zero.
H-STFs. If the substrate is continuously rotating around the normal during deposi-
tion, helical STFs (H-STFs) are growing since the sample rotation is equivalent to
a constant angular change of the incoming vapor flux direction around the substrate
normal and thus the self-shadowed regions change dynamically. H-STFs, schemati-
cally shown in Fig. 10.9b, represent rotationally inhomogeneous anisotropic material
with a twist along the sample normal. Such chiral nanostructured thin films can be
considered as “frozen” cholesteric liquid crystals [82–84]. Here the dielectric tensor
ε(z) depends on the spatial position with respect to the z axis. In order to model the
electromagnetic plane wave response of H-STFs the thin film has to be virtually sep-
arated into m homogeneous anisotropic layers with subsequently shifted Euler angle
parameters ϕ1, ϕ2, . . . , ϕm with individual thickness parameters δd = d/m. These
layers represent piecewise rotation with respect to each other by δϕ to resemble the
twisted character such that

ε j = (z) = A(ϕ j )εA(ϕ j )
−1, j = 1, . . . ,m. (10.46)

Here, ε j is the dielectric function tensor that describes the first virtual layer corre-
sponding to its orientation during measurement with respect to the plane of incidence.
Physical quantities such as principal dielectric functions (as a function of photon
energy and z), orientation, overall thickness, handedness, and thickness of the heli-
cal structure can be thereby retrieved from the ellipsometry model calculations. In
contrast to F-STFs, for H-STF the Euler angle ψ is found to be not equal to zero
(Sect. 10.6.3.4).

10.3.7 Ellipsometry Data Analysis

The Jones (ri j ) or Mueller (Mkl ) matrix elements are functions of the photon energy
�ω, the (major-axes) dielectric functions ε j (ω)

16 ( j = a, b, c) and its Euler orienta-
tion anglesψ ,ϕ, and θ , the thickness d, the ambient material’s dielectric function, and
the angle of incidence Φa . For multiple layers, ε j , the Euler angles, internal polar-
izability angles (α, β, γ ), as well as d may be layer-specific. The standard model
for analyzing ellipsometry data is based on a sequence of homogeneous (isotropic
or anisotropic) layers with smooth and parallel interfaces. In case of an anisotropic
sample, the ellipsometric measurement depends also on the orientation of axes a,b, c
with respect to the plane of incidence, and the polarization state of the incident light
beam [63, 71, 82]. Depending on the parameters of interest and the sample properties
(layer sequence, anisotropy) different analysis approaches can be employed.

16 For materials with monoclinic and triclinic symmetry ε j (ω) depend on the polarization functions
�a, �b, �c and their non-Cartesian axes a, b, and c as described in Sect. 10.3.4.
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10.3.7.1 Wavelength-by-Wavelength Analysis

Traditionally, wavelength-by-wavelength best-match model calculations (point-by-
point best-match model calculations) are performed when the dielectric function
values of interest are extracted from the experimental data for each wavelength, and
independent of all other spectral data points. For this procedure, the thickness of the
particular layer as well as the dielectric functions and the thicknesses of all other
sample constituents have to be known. However, in order to obtain values of physi-
cally relevant parameters (such as critical point energies and broadening parameters)
and to ensure Kramers-Kronig consistency the dielectric function obtained from the
point-by-point best-match model calculation needs to be compared with a line-shape
model.

10.3.7.2 Parameterized Model Dielectric Function Analysis

A commonly employed, robust procedure is matching parameterized model dielectric
functions (MDFs) to experimental data simultaneously for all spectral data points.
This provides a direct connection between measured data and physical parameters of
interest. Parametric models further prevent wavelength-by-wavelength measurement
noise from becoming part of the extracted dielectric functions and greatly reduce
the number of free parameters. With the use of parametric models a certain risk is
involved for subtle spectral features to be neglected by the lineshape of the model
function. Nevertheless, parameterizations of ε j based on a physical model is the best
choice for ellipsometry data analysis, especially when the wavelength-by-wavelength
best-match model calculation method is inapplicable.

In this work, two physical lineshape parameterization models have been used in
order to match experimental data in the measured visible to near-infrared spectral
region.
Harmonic Lorentzian oscillator model. A simple calculation of the complex dielec-
tric function assumes that the response of the material to electromagnetic radiation
can be represented by an ensemble of non-interacting harmonic oscillators. The har-
monic Lorentz oscillator model equation is given by

ε(E) = (n + ik)2 = εoff +
∑

j

A j

E2
c, j − E2 + iγ j E

, (10.47)

for the dielectric function expressed in terms of the photon energy E . Parameters A j ,
Ec, j , γ j are determined in the best-match model calculation and denote amplitude,
center energy, and broadening of the jth oscillator, respectively. εoff is an offset
parameter to account for contributions outside the measured spectral range.
Drude model for free-charge carriers. The classical Drude expression for free-
charge carrier contributions is given by setting Ec = 0 in (10.47):
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ε(E) = (n + ik)2 = − Nvq2

meffε0(E2 − iγ E)
. (10.48)

The amplitude parameter A = Nvq2/meffε0, where meff denotes the effective mass of
the free-charge carriers with volume-density Nv. The vacuum dielectric permittivity
and the charge of the free-charge carriers is given by ε0 and q, respectively. The
broadening parameter γ is related to the energy-independent relaxation time τ and
the free-charge carrier mobility μ as

γ = τ−1 = q

meffμ
. (10.49)

Equation (10.48) leads with ε = iσ/(ε0 E) in the low frequency limit (E → 0)
to the classical DC Drude conductivity expression σ0 = Nvq2τ/meff [66, 68].

10.3.7.3 Ellipsometry Test Functions

During the data analysis model parameters are varied until calculated and measured
data match as close as possible (best-match model calculation). For fast convergence
the Levenberg–Marquardt algorithm can be used, for example, in order to vary the
adjustable model parameters until the weighted test function ξSE (mean square error,
MSE) is minimized (maximum likelihood approach) [102]:

ξ2
SE = 1

2S − K + 1

S∑
j=1

⎡
⎣

(
Ψ j − Ψ c

j

σΨj

)2

+
(
Δ j −Δc

j

σΔj

)2
⎤
⎦, (10.50)

where S denotes the number of measured data pairs (Ψ j ,Δ j ), K is the number of
real-valued model parameters,Ψ c

j andΔc
j are the calculated ellipsometric parameters

at photon energy E = �ω j , and (σΨj , σ
Δ
j ) are the standard deviations obtained during

the measurement [103, 104].
For the generalized ellipsometry situation, the test function is set up accordingly

for the Jones (ξ2
GE-J) and Mueller (ξ2

GE-M) matrix presentation:

ξ2
GE-J = 1

6S − K + 1

S∑
j=1

⎡
⎣

(
Ψpp, j − Ψ c

pp, j

σΨpp, j

)2

+
(
Ψps, j − Ψ c

ps, j

σΨps, j

)2

+
(
Ψsp, j − Ψ c

sp, j

σΨsp, j

)2
⎤
⎦
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+ 1

6S − K + 1

S∑
j=1

⎡
⎣

(
Δpp, j −Δc

pp, j

σΔpp, j

)2

+
(
Δps, j −Δc

ps, j

σΔps, j

)2

+
(
Δsp, j −Δc

sp, j

σΔsp, j

)2
⎤
⎦ ,

(10.51)

ξ2
GE-M = 1

16S − K

S∑
j=1

3∑
k=0

3∑
l=0

(
Mkl, j − Mc

kl, j

σ
Mkl
j

)2

. (10.52)

Similar to standard ellipsometry, in addition to Ψpp,Δpp, Ψps,Δps, Ψsp,Δsp, and
Mkl (k, l = 0 . . . 3), their respective standard deviations σΨ , σΔ, and σMkl are mea-
sured and propagated into the test functions.

Note that generalized ellipsometry MSE values for anisotropic samples cannot be
directly compared with MSE values obtained with standard ellipsometry best-match
model calculations for isotropic samples, where the “rule-of-thumb” indicates best
achievement for MSE near or less than unity. The data set included for GE model
analysis is generally larger than for SE analysis. In GE data analysis, in addition
to closeness of the best-match model data to a given particular measured spectrum,
match to the same data set versus sample rotation as well as its angle of incidence
dependence is of equal importance.

In the result of the regression analysis, the correlation between different adjusted
parameters and the confidence limit of the individual model parameter are of partic-
ular importance. Both quantities can be derived from the curvature matrix α:

αkl =
N∑

j=1

(
1

σ 2
Ψ j

δΨ C
j δΨ

C
j

δαkδαl
+ 1

σ 2
Δ j

δΔC
j δΔ

C
j

ΔαkΔαl

)
, (10.53)

which is the inverse of the covariance matrix C ≡ α−1. The standard 90 % confidence
limit L for the j th parameter is then given by [105]

L j = ±1.65
√

C j j ξ, (10.54)

where 1.65 is a statistically derived constant. Since ξ (MSE) has been also introduced
into the expression, the confidence limits become larger when the quality of the best-
match model calculation degrades. If not otherwise stated, the uncertainties given in
this work are the respective confidence limits. The parameter correlation coefficients
η jk can be obtained from C by:

η jk = C jk√
C j j

√
Ckk

. (10.55)
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Fig. 10.10 J. A. Woollam M-2000VI� ellipsometer (1, 2) with automated rotation stage (4) and
alignment laser (3) for automated z-alignment (Reprinted with permission from [40]. Copyright
2010, Schmidt)

A value of η jk ∼ 1 indicates correlation between the j th and the kth parameter. For
correct and unique analysis no or only small correlation may occur between model
parameters.

10.3.7.4 Multi-Sample and Multi-Sample-Configuration Analysis

If model parameters correlate or confidence limits are too large, either modifications
to the model or other options have to be considered such as including further ellipso-
metric experimental data from similar samples and employ the multi-sample-analysis
technique. In this approach, measured data sets of multiple samples are simultane-
ously analyzed with different models, which share a common set of parameters.
These common parameters are assumed to be identical for each individual sample.

In a similar manner, measurement data obtained from a single sample but with
a modified external parameter (applied magnetic field or temperature, for example)
can be analyzed simultaneously. The effect of the varied quantity on the MDF has to
be known and implemented in the model analysis. This approach is referred here to
as multi-sample-configuration analysis.

10.3.7.5 Difference Spectra Analysis

The difference spectra analysis is particularly useful when changes of the sample’s
optical response due to a modification of an external parameter are small. Difference
spectra are obtained by subtracting measured data sets acquired, for example, at
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opposite (externally applied) magnetic field directions. This approach reveals most
directly the change in the optical response upon variation of the external parameter.

10.3.8 Experimental Setup

Spectroscopic ellipsometry measurements were performed with a commercial
J. A. Woollam Co., Inc. M-2000VI� multichannel ellipsometer covering the vis-
ible to near infrared spectral region, and which is mounted on an automated stage
(Fig. 10.10). The polarization state generator unit (1) comprises a polarizer and rotat-
ing compensator and a 50 W halogen lamp serves as the light source. After reflection
off the sample surface the light passes a rotating analyzer (part of the polariza-
tion state analyzer, 2), is spectrally separated by a prism and directed onto two
CCD arrays. One CCD array detects a total of 390 wavelengths within the spec-
tral range of 371–1000 nm (1.24–3.34 eV) whereas the second one detects another
200 wavelengths between 1000 and 1690 nm (0.73–1.24 eV). Hence, data for all 590
wavelengths can be acquired at the same time. The rotating-compensator-type ellip-
someter is capable of measuring 11 out of 16 Mueller matrix elements normalized
to M11 (except for elements in fourth row).17 The sample tilt adjustment proce-
dure is done with an additional alignment laser and four-quadrant detector (3) and
is followed by a computer-controlled z-alignment (sample height adjustment). The
motorized goniometer together with the horizontal sample stage (4) enables auto-
mated angle resolved (angle of incidence Φa and rotation angle φ) measurements,
where Φa can be varied from 45◦ to 90◦ and φ from 0◦ to 360◦. Furthermore, the
M-2000VI� is equipped with a beam shutter to perform automated DC offset cal-
ibrations.18 The WVASE32� software, which controls the ellipsometer hardware,
allows for programming customized measurement routines through the add-on pro-
gram WVASEscript [79].

10.4 Experimental Parameters

STFs discussed in this section were deposited at room-temperature in a customized
UHV chamber onto (001) Si substrates with a native oxide of approximately 2.0 nm.
All deposition materials were purchased in form of pellets (1/4” diameter×1/4”
length) from the Kurt J. Lesker Company.19 Alumina (Al2O3) crucible liners were
used for the deposition of Co, whereas graphite liners were used for Ti and supermal-

17 Mueller matrix elements of the fourth row cannot be resolved because the polarization state
analyzer (2) does not comprise a rotating compensator [66, 67].
18 A DC offset calibration determines the detector noise level without source illumination.
19 Cobalt has a specified purity of 99.95 % and titanium 99.995 %. Supermalloy is composed of
79.8 % Ni, 15.1 % Fe, and 5.1 % Mo.
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Table 10.3 Overview of STF samples and their material discussed in this chapter with sample
identification number (ID)

ID Material Geometry Deposition rate (Å/s) Growth recipe [pt, ct] =min, [rt] = s

1 Co F1 5.0 ± 0.3 pt = 10
2 Ti F1 4.0 ± 0.1 pt = 10:30
3 NiFeMo F1 3.6 ± 0.2 pt = 11
4 Ti 2F2 5.1 ± 0.1 pt1 = 5; rt(−π) = 15, pt2 = 5
5 Ti 2F4+ 5.0 ± 0.2 pt1 = 5; rt(− π

2 ) = 10; pt2 = 5
6 Ti 2F4− 5.0 ± 0.1 pt1 = 5; rt(+ π

2 ) = 10; pt2 = 5
7 Co 3F4+ 4.2 ± 0.3 pt1 = 16; rt1(− π

2 ) = 10; pt2 = 16;
rt2(− π

2 ) = 10; pt3 = 16
8 Co 1H+ 4.0 ± 0.1 ct(−0.1) = 11
9 Co 1H− 4.0 ± 0.2 ct(+0.1) = 11

A detailed growth recipe is given for each sample with coded substrate dynamics: rt(±x) denotes
a stepwise substrate rotation by x rad, ct(±y) denotes a continuous rotation at y rpm, and pt stands
for pause time. Values for pt and ct are given in minutes whereas rt is given in seconds

loy. For all STFs discussed here, the deposition angle θi was set to 85 ± 1◦. The
deposition rate was monitored with a quartz crystal microbalance. The electron-
beam power was controlled manually by adjusting the emission current to maintain
a constant rate typically between 4 and 5 Å/s (with respect to the deposition controller
at normal incidence θi = 0◦). This rate results in a growth time of approximately
10 to 12 min for a 100 nm thick STF deposited at θi = 85◦. The base pressure was
approximately 10−9 mbar and did not rise above 10−8 mbar during depositions.

Table 10.3 summarizes deposition parameters of all samples, for which optical
analysis is discussed in the following sections. A growth recipe is given with respect
to substrate action. For example, sample #4 is a Ti 2F2-STF where the first layer
was grown for pt1 = 5 min, then the substrate was rotated 180◦ counterclockwise
in 15 s (rt(−π) = 15), and afterwards kept still for pt2 = 5 min to grow the second
layer. During growth of samples #8 and #9, the substrate was continuously rotated at
0.1 rpm (counterclockwise for the 1H+ and clockwise for the 1H−) for 11 min, which
results in a total substrate rotation of 396◦. The additional 10 % have been added to
compensate for the formation of the nucleation layer during the initial growth period,
based on investigations on previous H-STFs.

10.5 Structural Properties of Metal Sculptured Thin Films

10.5.1 Scanning Electron Microscopy Micrograph Analysis

Examples for metal F1-STFs resulting from the deposition procedure on flat sub-
strates discussed in Sect. 10.4 are presented in Fig. 10.11. Cross-sectional and top-
view high resolution SEM images of Co (sample #1), Ti (sample #2), and supermalloy
(sample #3) F1-STFs illustrate the different film morphologies.
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Fig. 10.11 SEM micrographs of F1-STF from different materials. The panels show cross-sectional
and top-view images of cobalt, titanium, and supermalloy, respectively. For all of the images the
incoming particle flux direction is from the right. Scale bars are 500 nm (Reprinted with permission
from [40]. Copyright 2010, Schmidt)

500 nm

10 mm

Fig. 10.12 Scanning electron micrograph of a cobalt F1-STF taken at a sample tilt of approximately
15◦ and photograph of an almost identical film deposited on a glass slide. The approximately 100 nm
thick Co F1-STF is highly transparent as can be seen in the photograph, where the glass slide with
deposited F1-STFs is placed onto a printed image (Reprinted with permission from [40]. Copyright
2010, Schmidt)

Figure 10.12 shows a side view of a Co F1-STFs on top of a Si substrate tilted by
15◦ and a photograph of a 100 nm thick F1-STF deposited under similar conditions
as sample #1 onto a glass slide. The stack was then placed on a printed image and
details of the image can still be seen, which illustrates the high degree of transparency
of ferromagnetic Co F1-STFs.
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10.5.2 Determination of Structural Parameters by Ellipsometry
Data Analysis

As will be shown for different STF samples in Sect. 10.6, Euler angles θ and ϕ, deter-
mining the orientation of major polarizability axes, are identical to the geometrical
slanting angle and the rotation of the slanting plane with respect to the laboratory
coordinate frame, respectively. Furthermore, the thickness d is obtained as a direct
result of the best-match model calculations. These parameters can be individually
determined for each layer within complex layered STFs and are in very good agree-
ment with SEM image analysis.

10.6 Optical Properties of Metal Sculptured Thin Films

This section discusses the determination of intrinsic optical properties of metal STFs
deposited on flat Si substrates. Monoclinic optical properties of slanted columnar
thin films (F1-STFs) are determined by the analysis of spectroscopic generalized
ellipsometry measurements with a homogeneous biaxial layer approach. A univer-
sality regarding the monoclinic and intrinsic major polarizability functions is found
in F1-STFs. Complex layered STFs can be considered as cascaded F1-STFs with
different slanting directions. Therefore, optical properties of manifold STFs can be
predicted by using the optical model developed here for the F1-STFs. The optical
model for complex STFs comprises appropriately stacked model layers accounting
for F1-STFs in a modular conception thereby mimicking the cascaded STF geometry.
It is shown that the piecewise homogeneous biaxial layer approach is also valid for
hollow-core helical STFs. All samples discussed here are analyzed using the multi-
sample-configuration analysis method including multiple in-plane orientationsφ into
the best-match model calculations.

10.6.1 Monoclinicity of Metal F1-STFs

Analysis of spectroscopic GE measurements have revealed that metal F1-STFs
exhibit monoclinic optical properties. A model based on the specific thin film geom-
etry is proposed, which explains this monoclinic behavior based on dielectric polar-
ization charge coupling effects across neighboring slanted but electrically isolated
nanocolumns. A detailed explanation is presented on the example of an achiral Co
F1-STF (sample #1).

10.6.1.1 Optical Constants

Experimentally obtained Mueller matrix spectra (as described in Sect. 10.3) for the
Co F1-STF were analyzed with an optical model containing a single anisotropic
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(biaxial) layer on top of the substrate as discussed in Sect. 10.3.6. Consequently, the
computed wavelength-independent Euler angles (ϕ, θ, ψ) that transform the Carte-
sian coordinate system (x, y, z) into the sample coordinates (a,b, c) represent the
orientation of the nanostructure and the internal angles α, β, γ differentiate between
orthorhombic, monoclinic, or triclinic properties of the film.

The linear polarizability response of F1-STFs due to an electric field E is
a superposition of contributions along certain directions and may be written as
P = �aa + �bb + �cc. Axis a,b, c and major polarizability functions �a, �b, �c

in F1-STFs are determined by nanostructure geometry rather than crystallographic
unit cells. The experiment shows, that for F1-STFs, a, b, and c span a monoclinic
coordinate system with c along the long axis of the columns, a perpendicular to
b and c and parallel to the substrate surface, and a monoclinic angle β between c
and b. Along these axes, major polarizability functions 1+� j = ε j ( j = a, b, c) can
be determined which may vary with frequency (see also Sect. 10.3.4). � j were first
determined on a wavelength-by-wavelength basis. The point-by-point extracted data
have then been parameterized with MDFs (Lorentzian oscillators and Drude terms)
and the best-match model calculation procedure was repeated facilitating the MDF
approach for final results.

For the Co F1-STF, functions �a and �b were parameterized with three Lorentz
oscillators, respectively, and four Lorentz oscillators and one Drude term were incor-
porated for �c. Individual parameters are listed in Table 10.9.

The MDF parameters are presented exemplarily only without further evaluation.
The identification of physically meaningful quantities is not within the scope of
this chapter. Hence, for other STF discussed below MDF parameters are not listed
individually.

Note that principal refractive indices and extinction coefficients along major
polarizability axes (a,b, c) do not exist for monoclinic (and triclinic) materials,
instead intrinsic polarizability functions (�a, �b, �c) need to be discussed. Intrin-
sic complex-valued optical constants (Na, Nb, Nc) imply that directions exist, along
which wave propagation with such indices can be obtained (and measured upon
refraction). However, such directions do not exist in materials with monoclinic and
triclinic symmetry and therefore, Na, Nb, Nc do not exist. Alternatively, since pre-
sentation of optical functions in terms of �a, �b, �c is not common, in this chapter,
N j ≡ √

1 + � j = n j + ik j with j = a, b, c, are presented and may be considered
as effective optical constants.
Experimental data. Figure 10.13 depicts selected GE Mueller matrix data for four
different angles of incidence obtained from a ferromagnetic Co F1-STF (sample #1)
at an exemplary wavelength of λ = 630 nm. The film was measured approximately
1 h after deposition, therefore it is assumed that data are representative for pure Co
nanostructures and a possible oxide shell can be neglected at this point. The graphs
show non-redundant20 Mueller matrix elements of the measured 4 × 3 part of the

20 In case the sample under investigation does not exhibit non-reciprocal properties, Mueller matrix
elements not shown in Fig. 10.13 can be obtained by symmetry operations: M21(ϕ) = M12(ϕ+π)
and M3 j (ϕ) = −M j3(ϕ+π)with j = 1, 2. No inversion operation is necessary to convert M12(ϕ)
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Fig. 10.13 Exemplary experimental (circles) and best-match calculated (solid lines) GE data of a
Co F1-STF versus sample azimuth angle φ at λ = 630 nm. The four graphs for each Mueller matrix
element are four different angles of incidence Φa = 45◦, 55◦, 65◦, 75◦. Note the pseudo-isotropic
orientations (indicated by the vertical bars); i.e., the sample positions φ at which all off-diagonal
Mueller matrix data (M13, M14, M23, M24) vanish and M22 = 1, which is the case near φ = 0◦ and
φ = 180◦. Such orientations occur when the slanting plane coincides with the plane of incidence.
Element M14 is magnified ×4 (Reprinted with permission from [40]. Copyright 2010, Schmidt)

matrix versus sample azimuth. Model and experimental data are in excellent agree-
ment for all wavelengths in the investigated spectral region from 400 to 1700 nm. The
off-diagonal Mueller matrix data (M13, M14, M23, M24) exhibit the highly anisotropic
nature of the F1 nanostructures. These elements are zero for all angles of incidences
Φa at all wavelengths for isotropic samples. So-called pseudo-isotropic sample ori-
entations can be identified at φ ≈ 0◦ and φ ≈ 180◦, which coincide with orientations
of the sample when the slanting direction of the nanocolumns is parallel to the plane
of incidence (Euler angles ϕ = 90◦ and ϕ = 270◦). Hence, no p-polarized light is
converted into s-polarized light and vice versa in this particular setup. It can be seen
that there is no repetition of data over one full rotation except for symmetry with
respect to pseudo-isotropicφ positions, and data over one full in-plane rotation should
be measured in order to fully evaluate the optical properties. The element with the

into M21(ϕ + π) because these elements depend on the symmetric cos function only whereas this
is not true for all other elements. See for example (10.10). π denotes a sample rotation by 180◦.
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Fig. 10.14 Refractive indices n j and extinction coefficients k j along major polarizability axes a,
b, c with monoclinic arrangement of a Co F1-STF, and isotropic bulk optical constants of Co. The
bulk properties taken from Palik [106] are also compared to wavelength-by-wavelength determined
optical constants from the AB-EMA approach (Sect. 10.6.4). From the anisotropic optical constants
of the F1-STF only those along axis c have a similar dispersion with the isotropic bulk optical
constants

smallest amplitude is M14 (multiplied by a factor of 4), which carries information on
circularly polarized light. Interestingly, M22 exhibits a four-fold symmetry, whereas
M33 only shows a two-fold symmetry with respect to sample in-plane orientation.

Functions Na, Nb, Nc obtained with parameterized MDFs (Table 10.9) are
depicted in Fig. 10.14. Refractive indices n j and absorption coefficients k j are per-
tinent to axes a, b, and c of the coordinate system shown in Fig. 10.15 and differ
drastically from those of bulk material (right panel).21 Note that the reported opti-
cal constants are effective values since the optical model assumes a homogeneous
layer. Strong birefringence and dichroism can be observed in the investigated spec-
tral region between all polarizabilities. The index of refraction nc along the slanted
nanocolumns (c-axis) is intersecting with both other refractive indices nb and na

(Fig. 10.14). Such intersections are not present for the extinction coefficients k j which
follow the same order as the refractive indices above λ = 800 nm (kc > ka > kb).
In general, nc and kc have a strong wavelength dependence in contrast to the opti-
cal constants along the a- and b-axes. There is almost no absorption along axis b.
Amongst the three directions, the polarizability along the c-axis of the nanostructures
is the only one with a similar dispersion compared to bulk Co.

The optically determined structural parameters film thickness (d = 106.9 ±
0.1 nm) and inclination angle (Euler angle θ = 63.68 ± 0.01◦) are in very good
agreement with data from SEM micrograph analysis (d = 115 ± 5 nm and θ =
65 ± 3◦, respectively). Note that the GE thickness parameter is an optical thickness,
which is generally less than SEM estimates. Even though thickness estimates from

21 Optical constants for bulk Co have been taken from Palik [106].
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Fig. 10.15 Schematic drawing of the electric charge transfer mechanism causing monoclinic optical
properties. The polarization Pb due to an electric field E within the plane of incidence is tilted toward
the substrate normal (Reprinted with permission from [40]. Copyright 2010, Schmidt)

cross-sectional SEM images are typically obtained from a different region of the thin
film than that measured optically, the optical thickness is assumed to originate mainly
from differences between the idealized model and the real STF. In particular, the
optical model at this present point does not account for a nucleation layer (typically
<5 nm) or a surface roughness layer, for example. Besides that, in the homogenization
approach, the columns are assumed to be homogeneous along the long axis. These
idealizations might affect the optically determined thin film thickness parameter (for
SEM micrographs of F1-STFs see Fig. 10.11).

The investigated Co F1-STF possesses monoclinic optical properties with an angle
β = 83.69 ± 0.09◦ (α = β = 90◦). The MSE, which is a measure for the quality of
the match between model and experimental data is 7.77. The Euler angle ψ = 0 and
hence not included in the best-match model calculations. This can be seen by the
pseudo-isotropic orientations in the angle-resolved experimental Mueller matrix data
(Fig. 10.13). Such orientations with no conversion between p- and s-polarization
states would not occur if the sample coordinate system was further rotated by ψ
(b out of the slanting plane, and a out of the substrate surface).

10.6.1.2 Monoclinicity

The monoclinic angle reveals an intrinsic optical thin film property of F1-STFs and
results also from the specific arrangement of the coherently tilted nanostructures. As
discussed in Sect. 10.3.4, monoclinic properties can only be identified by considering
a broad spectral range during data analysis.

The monoclinic angle can be understood as a characteristic due to charge transfer
leading to anisotropic charge distribution in slanted columnar thin films (F1-STFs)
prepared from electrically conductive materials. At the bottom of the structure, charge
exchange is possible due to a conducting nucleation (wetting) layer whereas charge
transfer is not possible at the isolated top of the column. The slanting of nanocolumns
causes an anisotropic distribution of charges due to the mutual screening of charge
dipoles across adjacent columns (Fig. 10.15). Therefore, the effective overall dipole
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moment for electric fields perpendicular to the columns and within the slanting plane
(Pb) is tilted toward the surface normal. Further examples of monoclinic F1-STF are
discussed in Sect. 10.6.2. It can be expected that the monoclinic angle depends on the
overall film thickness, the tilting angle of the columns, the intercolumnar spacing,
and the properties of the nucleation layer. Systematic investigations have yet to
be conducted, however, trends observed in currently available samples hint in this
direction.

10.6.2 Universality of Metal F1-STFs

Analysis have shown that there are several characteristics common for metal F1-STF
investigated here. Angle-resolved Mueller matrix data for F1-STF prepared from
different materials exhibit two pseudo-isotropic orientations, which occur when the
slanting plane is parallel to the plane of incidence. The consequence is that the Euler
angle ψ = 0 and can be excluded from best-match model calculations. For each
Mueller matrix element versus φ, except element M34, the graph representing data
for Φa = 75◦ exhibits less azimuthal variations than Φa = 45◦.

The attained refractive indices and extinction coefficients along major polariz-
ability axes for each material show similar dispersion relations and exhibit strong
birefringence and dichroism. The order of the refractive indices in the near-infrared
spectral region found here is always identical with nc > na > nb, and which is also
the order of the extinction coefficients within the entire investigated spectral region.
nc and kc exhibit bulk-like dispersion, whereas k along axes a and b shows almost
no absorption. nc always intersects na and then nb within the visible spectral region.
Furthermore, all investigated F1-STFs exhibit monoclinic optical properties.

The observed universality is demonstrated here for two additional F1-STFs made
from titanium (sample #2) and supermalloy (Ni80Fe15Mo5, sample #3). Experimen-
tally obtained angle-resolved Mueller matrix data for both films have been analyzed
in the same manner as explicitly described for Co F1-STFs in Sect. 10.6.1.1.

10.6.2.1 Titanium F1-STFs

The optical model for Ti F1-STFs contains parameterized MDFs for optical constants
along the major polarizability axes a, b, and c of a monoclinic system. �a and �b

can be parameterized by two and three Lorentzian oscillators, respectively, and �c

by four Lorentzian oscillators and a Drude term.
Refractive indices n j and absorption coefficients k j , depicted in Fig. 10.14, differ

significantly from those of bulk material (right panel, taken from Palik [106]). In
general, the optical constants have similar properties and dispersion relations com-
pared to the ones from ferromagnetic Co F1-STFs (Sect. 10.6.1.1). Again, nc and kc

exhibit similarities with bulk optical constants from Ti. Especially the local maxi-
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Fig. 10.16 Refractive indices n j and extinction coefficients k j along major polarizability axes a,
b, c with monoclinic arrangement of a Ti F1-STF, and isotropic bulk optical constants of Ti. The
bulk properties taken from Palik [106] are also compared to wavelength-by-wavelength determined
optical constants from the AB-EMA approach (Sect. 10.6.4)

mum in k around 800 nm caused by interband transitions is present, although not as
pronounced as in the case of bulk Ti [107].

The investigated Ti F1-STF possesses monoclinic optical properties with an angle
β = 80.2 ± 0.1◦ (α = γ = 90◦). Other structural parameters determined from
optical analysis and in comparison to SEM micrograph analysis are summarized in
Sect. 10.6.4, Table 10.7.

10.6.2.2 Supermalloy (Ni80Fe15Mo5) F1-STFs

The optical model for supermalloy F1-STFs contains parameterized MDFs for major
polarizabilities �a, �b, �c, where for model analysis two and three Lorentzian oscil-
lators are incorporated into �a and �b, respectively; �c contains two Lorentzian
oscillators and a Drude term (Fig. 10.16).

Refractive indices n j and absorption coefficients k j , depicted in Fig. 10.17, differ
significantly from those of bulk material (right panel).22 nc and kc exhibit similari-
ties with bulk optical constants, however, the broad shoulder in nc between 800 and
1200 nm (Fig. 10.17) is flattened out for the F1-STF. Supermalloy STF optical con-
stants are almost identical to the ones from ferromagnetic Co F1-STFs (Fig. 10.14).

The obtained monoclinic angle β = 89.52 ± 0.08◦ indicates almost purely
orthorhombic properties. Structural parameters determined optically through best-
match model calculations are summarized in Sect. 10.6.4, Table 10.8.

22 Bulk optical constants have been generated with an isotropic Bruggeman EMA (LD
iso = 1

3 for
spherical inclusions) and optical constants for Ni, Fe, and Mo were taken from Palik [106]. For
further details on Bruggeman EMA see also Sect. 10.3.6.
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Fig. 10.17 Refractive indices n j and extinction coefficients k j along major polarizability axes a,
b, c with monoclinic arrangement of a supermalloy F1-STF, and isotropic bulk optical constants
of Ni80Fe15o5. The bulk properties taken from Palik [106] are also compared to wavelength-by-
wavelength determined optical constants from the AB-EMA approach (Sect. 10.6.4)

10.6.3 Modularity of Complex Sculptured Thin Films

Optical constants determined for an F1-STF (for a certain material and deposition
setup) can be used in principle to predict the optical response for any STF with an
arbitrary sequence of rotation steps during growth (lFx-STFs as well as H-STFs).
Complex layered STFs can be considered as cascaded F1-STFs with different slanting
directions. Therefore, optical properties of manifold STFs can be predicted by using
the optical model discussed above for F1-STFs as a basic module. The optical model
for complex STFs then comprises appropriately stacked model layers accounting for
F1-STFs in a modular conception thereby mimicking the cascaded STF geometry.
The modularity is exemplary discussed for a total of four differently grown complex
layered STF from cobalt and titanium. Furthermore, it is shown that this piecewise
homogeneous biaxial layer approach is also valid for hollow-core helical STFs.

Information on growth conditions for each sample discussed here can be found
in Sect. 10.4 and Table 10.3.

10.6.3.1 Chevron-like Sculptured Thin Films (2F2-STFs)

Morphologically one step advanced with respect to F1-STFs are F2-STFs. These
nanostructured thin films, also called chevrons or zig-zags, consist of m layers of
slanted columns with alternating tilting direction and may therefore be considered as
cascaded F1-STFs (Fig. 10.18). The change in geometry required for this growth can
be obtained by rotating the substrate by half a turn around its normal axis. Note that
all layers of a chevron nanostructure share a common plane containing the slanted
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Fig. 10.18 SEM micrograph of the Ti 2F2-STF. The scale bar is 500 nm (Reprinted with permission
from [40]. Copyright 2010, Schmidt)

column and the substrate normal and therefore, 2F2-STFs are achiral. Exemplarily,
the optical analysis of a 2F2-STF from titanium (sample #4) is discussed here.

In contrast to the previously discussed F1-STFs (Sect. 10.6.2.1), the optical model
for the achiral 2F2-STF is composed of two anisotropic (biaxial) layers with opposite
azimuthal orientation (ϕ1 = −ϕ2), which account for both slanting directions. Hence,
the thin film is virtually separated into two F1-STFs for optical analysis. The single set
of major polarizabilities �a, �b, �c used in both layers has been parameterized with
MDFs. Functions �a and �b contain two and three Lorentz oscillators, respectively,
and four Lorentz oscillators and one Drude term were incorporated for �c.

Selected experimental and best-match model calculated GE Mueller matrix data
for four different angles of incidence obtained from the Ti 2F2-STF are depicted in
Fig. 10.19. A single wavelength λ = 630 nm was chosen for the graphs and similar
results with an excellent agreement between model and experimental data have been
obtained for all wavelengths in the investigated spectral region from 400 to 1700 nm.
Also for 2F2-STFs pseudo-isotropic sample orientations can be identified at φ ≈ 0◦
and φ ≈ 180◦, which coincide with sample directions when the set of slanting planes
is parallel to the plane of incidence. This reveals that also for a two-layered STF,
where both slanting directions share the same plane, similar properties as for F1-STFs
can be found.

The obtained set of optical constants common for both biaxial layers is in very
good agreement with optical constants determined from Ti F1-STFs deposited in
a comparable manner (Fig. 10.20). Even the shoulder in nc and kc around 800 nm
caused by interband transitions [107] can still be observed. Differences between Ti
2F2- and F1-STF optical constants are attributed to structure non-idealities, differ-
ently chosen deposition rates, and the assumed ideal interface between bottom and
top layers in the optical model.

10.6.3.2 L-shape Sculptured Thin Films (2F4-STFs)

The most primitive chiral STF is a 2F4-STF, “L-shape” STF, where handedness is
introduced based on the rotation direction of the substrate during growth. The required
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Fig. 10.19 Exemplary experimental (circles) and best-match calculated (solid lines) GE data of a
NiFeMo F1-STF versus sample azimuth angle φ at λ = 630 nm. The four graphs for each Mueller
matrix element are four different angles of incidence Φa = 45◦, 55◦, 65◦, 75◦. Note the pseudo-
isotropic orientations; i.e., the sample positions φ at which all off-diagonal Mueller matrix data
(M13, M14, M23, M24) vanish and M22 = 1, which is the case near φ = 0◦ and φ = 180◦. Such
orientations occur when the slanting planes of both layers coincide with the plane of incidence.
Element M14 is magnified ×2 (Reprinted with permission from [40]. Copyright 2010, Schmidt)

change in geometry for this growth can be obtained by rotating the substrate by ±90◦
around its normal axis after depositing the first layer. If the second layer is rotated
counterclockwise by 90◦ with respect to the first one, the nanostructured L-shape
thin film is termed here 2F4+-STF (right-handed; sample #5; Fig. 10.21), otherwise
2F4−-STF (left-handed, sample #6). Both, a right- and left-handed 2F4-STFs from
titanium are discussed and compared.

Similar to 2F2-STFs, the optical model for the chiral 2F4-STFs is composed of
two anisotropic (biaxial) layers, which are azimuthally rotated with respect to each
other by Euler angle ±δϕ. Hence, the thin film is virtually separated into two model
layer F1-STFs for optical analysis.

Here, the single set of major polarizabilities �a, �b, �c used in both biaxial model
layers is similar for the right- and lefthanded chiral STF and has been parameterized
with MDFs. Functions �a and �b contain two Lorentz oscillators each, and four
Lorentz oscillators and one Drude term were incorporated for �c.
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Fig. 10.20 Refractive indices n j and extinction coefficients k j along major polarizability axes a,
b, c with monoclinic arrangement of a Ti 2F2-STF (left panel) in comparison with Ti F1-STF (right
panel) (Reprinted with permission from [40]. Copyright 2010, Schmidt)

Fig. 10.21 Cross-section and top-view SEM micrographs of the Ti 2F4+-STF. The left and middle
images are orientated such that the first and the second layer are in the plane of the image, respec-
tively. The top-view image (right) illustrates the high porosity and reveals that structure fanning
(broadening) is comparable to that of a single layer (Fig. 10.11). Scale bars are 500 nm (Reprinted
with permission from [40]. Copyright 2010, Schmidt)

Experimental and best-match model calculated GE Mueller matrix data for four
different angles of incidence obtained from the Ti 2F4+-STF and 2F4−-STF are
shown in Fig. 10.22a and b, respectively. Each graph depicts eight non-redundant
Mueller matrix elements versus sample azimuth at an exemplary wavelength λ =
630 nm. For ideal samples, off-diagonal elements M13, M14, M23, and M24 from
the Ti 2F4+-STF can be transferred into the same elements of the Ti 2F4−-STF by
inversion around (180◦,0), whereas a mirror operation at φ = 180◦ is necessary
for elements M12, M22, M33 and M34. Another characteristics for this chiral STF
is that there is no symmetry within a single Mueller matrix elements as compared
to all other achiral STFs discussed above. Most importantly, in both chiral STFs no
pseudo-isotropic orientation can be observed.

Optical constants obtained from both chiral nanostructured films depicted in
Fig. 10.23 are very similar and show the same dispersion relation. Differences
between left and right handed 2F4-STF can be observed in absolute values of nc
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(a) (b)

Fig. 10.22 Exemplary experimental (circles) and best-match calculated (solid lines) GE data of a Ti
2F4+-STF (a) and a Ti 2F4−-STF (b) versus sample azimuth angleφ atλ = 630 nm. The four graphs
for each Mueller matrix element are four different angles of incidence Φa = 45◦, 55◦, 65◦, 75◦.
Note that for these chiral STFs no pseudo-isotropic orientation is present. Elements M14 and M22
are magnified ×2 (Reprinted with permission from [40]. Copyright 2010, Schmidt)

(a) (b)

Fig. 10.23 Refractive indices n j and extinction coefficients k j along major polarizability axes a,
b, c with monoclinic arrangement of a a Ti 2F4+-STF and b a Ti 2F4−-STF. Optical constants
depicted here are in good agreement with optical constants of Ti F1-STFs and Ti 2F2-STFs shown
in Fig. 10.16 and Fig. 10.20, respectively (Reprinted with permission from [40]. Copyright 2010,
Schmidt)

and kc. In general, both sets of optical constants are in good agreement with the
optical constants obtained from Ti F1-STFs (Fig. 10.16). Furthermore, n and k along
major polarizability axes a,b, c of the 2F4+-STF are in excellent agreement with
optical constants obtained from the 2F2-STF (Fig. 10.20). Differences may be well
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Table 10.4 Best-match model results for the Ti 2F4+- and 2F4−-STF and results from SEM
micrograph analysis of Ti 2F4+

Parameters 2F4+ 2F4− SEM 2F4+

d1 (nm) 65.3(3) 63.7(2) 63(3)
d2 (nm) 50.7(1) 50.7(1) 65(5)
θ1 (◦) 60.4(1) 60.5(1) 63(6)
θ2 (◦) 62.0(1) 65.4(1) 67(5)
β1 (◦) 78.0(2) 76.5(3) –
β2 (◦) 90 90 –
δϕ (◦) 73.3(2) 85.7(2) –
MSE 13.34 15.01 –

The error limits given in parentheses denote the uncertainty of the last digit (90 % reliability)

explained with structure non-idealities due to non-constant evaporation source con-
ditions, differences in deposition rates (Sect. 10.4), and the model assumption of
ideal interfaces between bottom and top layers.

Other optically determined best-match parameters for both 2F4+-STF and 2F4−-
STF are summarized in Table 10.4. Thickness d j and slanting angle θ j for bottom
( j = 1) and top ( j = 2) layer, and the monoclinic angleβ1 are in very good agreement
between both films. The main difference between both STFs is the angle between the
two deposition steps δϕ, which is nominally 90◦. A deviation from 90◦ indicates that
the two slanting planes are not orthogonal as expected from the growth parameters.
It is not clear where the deviation of almost 17◦ for the 2F4+-STF is coming from
but a possible source could be sample manipulator rotation non-idealities (see also
Sect. 10.6.3.4). Best-match model calculations revealed that β2 was not changing and
stayed constant around 90.0 ± 0.1◦. Consequently it was not included into the final
best-match calculation. The monoclinic angle of the bottom layer (β1) is comparable
to the monoclinic angle of the Ti F1-STF discussed in Sect. 10.6.2.1. Hence, the
second layer with perpendicular slanting direction has almost no influence on the
monoclinic properties of the bottom layer in contrast to 2F2-STFs (Sect. 10.6.3.1). On
the other hand, similar to 2F2-STFs, the top layer exhibits orthorhombic properties
because there is no lateral conductive channel along which the necessary charge
transfer could occur.

Best-match model parameters are well within the range determined by SEM
micrograph analysis and the only discrepancy is the thickness of the second layer.
This might be due to differences in density between both layers and hence, since
identical optical constants for both layers are assumed, the denser layer is optically
less thick.

10.6.3.3 U-shape Sculptured Thin Films (3F4-STFs)

Adding another layer to a 2F4-STF by further rotating the substrate 90◦ in the same
direction as for the second layer results in a chiral U-shaped nanostructure abbreviated
according to the proposed nomenclature 3F4-STF. Hence, slanting planes of top and
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Fig. 10.24 SEM micrographs of the Co 3F4+-STF: (left) cross-section view where both top and
bottom layer are in the plane of the image, (middle) view on a structure ruptured from the substrate,
which exhibits the homogeneous columns in form of a U-shape, and (right) top-view image revealing
that some column bunching occurs but also free standing structures can be observed. Scale bars are
500 nm (Reprinted with permission from [40]. Copyright 2010, Schmidt)

bottom layer are parallel and nanocolumns are tilted in opposite directions, and the
slanting plane of the sandwiched middle layer is perpendicular to top and bottom
layers. The optical analysis of a 3F4+-STF (sample #7) from cobalt is exemplarily
discussed (Fig. 10.24).

For the optical analysis the three-dimensional chiral Co 3F4+ nanostructures were
decomposed into three individual F1-STF layers. Consequently, the optical model
was similar to the 2F4+-STF but with a third biaxial layer accounting for the third
deposition sequence (for model details see Sects. 10.3.6 and 10.6.3.2). The single set
of major polarizabilities �a, �b, �c used in all three biaxial model layers has been
parameterized with MDFs. Functions �a and �b contain three Lorentz oscillators
each, and two Lorentz oscillators and one Drude term were incorporated for �c.
For this particular thin film, the large error associated with the monoclinic angle
and correlation between β and θ hindered best-match model calculations with a
monoclinic arrangement. Therefore, intrinsic biaxial properties were assumed to be

orthorhombic (α = β = γ
!= 90◦). Experimental and best-match model calculated

GE Mueller matrix data for four different angles of incidence obtained from the
Co 3F4+-STF are shown in Fig. 10.25. The graph depicts selected Mueller matrix
elements versus sample azimuth at an exemplary wavelength λ = 630 nm. Similar
to the chiral Ti 2F4±-STFs, no pseudo-isotropic orientation can be observed. Note
in particular the discrepancy of Φa = 45◦ in element M24, and which does not
intersect with the other Φa-graphs at M24 = 0. However, sample orientations with
minimum p − s mode coupling can be identified near φ = 180◦ and φ = 360◦,
which coincide with sample directions when both slanting planes of bottom and
top layer are parallel to the plane of incidence. Note that value and position of the
minimum are wavelength-dependent. This behavior of orientations with minimum
p−s mode coupling is not due the non-perfect alignment δϕ between two deposition
steps (Table 10.5) but rather a characteristic of 3F4±-STFs, as calculations with
δϕ jk = 90◦ have revealed.

The set of optical constants derived under conditions of the above described
model, common for all three biaxial layers, is in good agreement with optical con-
stants determined from Co F1-STFs (Fig. 10.26). Deviations are attributed to the
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Fig. 10.25 Exemplary experimental (circles) and best-match calculated (solid lines) GE data of a
Co 3F4+-STF versus sample azimuth angle φ at λ = 630 nm. The four graphs for each Mueller
matrix element are four different angles of incidence Φa = 45◦, 55◦, 65◦, 75◦. Note that for this
chiral STF no pseudo-isotropic orientation is present. Elements M14 and M24 are magnified ×4
(Reprinted with permission from [40]. Copyright 2010, Schmidt)

idealized interface between subsequent layers and the assumption of an orthorhom-
bic symmetry for the optical model of the 3F4+-STF.

Further optically determined best-match parameters for the 3F4+-STF are sum-
marized in Table 10.5. The MSE is considerably higher than for F1-STF, which is
probably due to structure non-idealities such as column bunching as well as the
non-consideration of possible monoclinic properties.

10.6.3.4 Helical Sculptured Thin Films (H-STFs)

In contrast to F-STFs, which are fabricated by sequential substrate rotations, helical
chiral STFs are the consequence of a slow continuous substrate rotation. Optical
analysis of a right- and left-handed Co H-STF with one turn each, 1H+ (sample #8)
and 1H− (sample #9), are discussed exemplarily here. Cross-sectional and top-view
SEM images of both H-STFs are depicted in Fig. 10.27.
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Fig. 10.26 Refractive indices n j and extinction coefficients k j along major polarizability axes a,
b, c with orthorhombic arrangement of a Co 3F4+STF (left panel) in comparison with Co F1-
STF (monoclinic arrangement; right panel) (Reprinted with permission from [40]. Copyright 2010,
Schmidt)

Table 10.5 Best-match model results for the Ti 3F4+ in comparison with values determined by
SEM micrograph analysis

Parameters GE SEM

d1 (nm) 99(1) 135(10)
d2 (nm) 87.1(8) 130(15)
d3 (nm) 117.2(4) 130(15)
θ1 (◦) 71.5(4) 66(3)
θ2 (◦) 68.4(2) 65(5)
θ3 (◦) 66.6(1) 65(7)
δϕ12 (◦) 93.9(6) –
δϕ23 (◦) 75.3(2) –
MSE 21.56 –

Subscripts 1, 2, and 3 denote bottom, middle, and top layer, respectively. δϕ jk is the angle between
layer j and k. The error limits given in parentheses denote the uncertainty of the last digits (90 %
reliability)

The optical model for H-STFs consists of multiple sublayers (slices) with dielec-
tric function tensor descriptions rotated stepwise with respect to the sample nor-
mal between adjacent layers according to the handedness. This in-plane rotation
ϕ (ideally homogeneous) from the substrate interface to the top of the structure
accounts for the helical nature of the chiral nanostructures (for further model details
see Sect. 10.3.6.3). The major polarizabilities �a, �b, �c, common to all sublayers,
have been parameterized with MDFs. For both H-STFs with different handedness,
function �b contains two Lorentz oscillators and �c one Lorentzian oscillator and
a Drude term, respectively, �a was parameterized with two and three Lorentzian
oscillators for 1H+- and 1H−-STF, respectively.
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Fig. 10.27 Cross-sectional (top row) and top-view (bottom row) SEM micrographs of the Co 1H+-
and Co 1H+-STF. The arrows in form of a circle in the top-view image denote the handedness of
each H-STF. Scale bars are 400 nm (Reprinted with permission from [40]. Copyright 2010, Schmidt)

Each H-STF was subdivided into 21 homogeneous anisotropic layers with a piece-
wise δϕ rotated orthorhombic axes system (a,b, c; α = β = γ = 90◦; Fig. 10.9).
This level of discretization was sufficient to reach close match between model and
experiment. However, in order to achieve best-match model results, it was not pos-
sible to find a homogeneous ϕ rotation along z (substrate normal). A stepwise z
profile for ϕ(z) was introduced with 8 nodes, and each node was divided into 3
slices. The nodes were fixed and equally spaced along z (spacing depends on the
overall film thickness), and the rotation δϕ between two nodes was an additional
free parameter during best-match model calculations (Fig. 10.28). Sample 1H+-STF
reveals fairly homogeneous rotation with a small disturbance around 225◦. Sample
1H−-STF reveals a similar profile with a more pronounced disturbance around the
same ϕ rotation. These deviations from a homogeneous z-profile might be due to a
sample wobble during substrate rotation.

Experimental and best-match model calculated GE Mueller matrix data for four
different angles of incidence obtained from the Co H+- and H−-STF are shown in
Fig. 10.29a and b, respectively. The graph depicts selected Mueller matrix elements
versus sample azimuth at an exemplary wavelengthλ = 630 nm. No pseudo-isotropic
sample orientations can be identified.

Similar to the Ti chiral 2F2-STFs with opposite handedness, in case of ideal
structures, off-diagonal elements M13, M14, M23, and M24 from the H+-STF can
be transferred into the same elements of the H−-STF by inversion around (180◦, 0)
whereas a mirror operation at φ = 180◦ is necessary for elements M12, M22, M33,
and M34. Another characteristics for these chiral STFs is that there is no symmetry
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Fig. 10.28 Non-homogeneous piecewise layer model for rotation of the principal dielectric function
along z (Reprinted with permission from [40]. Copyright 2010, Schmidt)

(a) (b)

Fig. 10.29 Exemplary experimental (circles) and best-match calculated (solid lines) GE data of a
Co H+-STF (a) and a Co H−-STF (b) versus sample azimuth angleφ atλ = 630 nm. The four graphs
for each Mueller matrix element are four different angles of incidence Φa = 45◦, 55◦, 65◦, 75◦.
Note that for both chiral H-STFs no pseudo-isotropic orientation is present. Numbers in upper or
lower right corner of elements denote the factor with which data are magnified (Reprinted with
permission from [40]. Copyright 2010, Schmidt)

within a single Mueller matrix elements as compared to other achiral STFs discussed
above.

Optical constants obtained from both nanostructured thin films compare well and
are depicted in Fig. 10.30. Note that the order of ka and kb is exchanged between
both chiral H-STFs.
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Fig. 10.30 Refractive indices n j and extinction coefficients k j along major polarizability axes a,
b, c with orthorhombic arrangement of (left panel) a Co H+-STF and (right panel) a Co H−-STF.
Optical constants depicted here are in good agreement with optical constants of Co F1-STFs and Co
3F4-STFs shown in Fig. 10.14 and Fig. 10.26, respectively (Reprinted with permission from [40].
Copyright 2010, Schmidt)

Table 10.6 Best-match model results for the Co H+- and H−-STF

Parameters H+-STF H−-STF

d (nm) 70.7(2) 76.2(2)
δd (nm) 3.37 3.63
ϕtot (◦) 365(3) 356(3)
θ (◦) 55.1(1) 59.6(1)
ψ (◦) 25.4(9) −15.2(5)
∅h (nm) 48.6 45.2
MSE 8.457 6.353

The error limits given in parentheses denote the uncertainty of the last digit (90 % reliability)

Other optically determined best-match parameters for both H+- and H−-STF
are summarized in Table 10.6. Note that here the major polarizabilities within an
orthorhombic arrangement are rotated with all three Euler angles and hence no prin-
cipal axis is parallel to the substrate interface anymore. The inclination angle θ is
representative of the tilt of the c-axis, which determines the slope of the helical
“windings”. The a- and b-axes orientations with respect to the substrate surface nor-
mal can be understood as effective polarization radii (due to the coordinate system
rotation) of the chiral nanostructures. One may interpret these radii as effective cou-
pling distances within which the individual nanostructures couple their dielectric
polarization response.
Helix diameter estimation. Together with the total film thickness d, the inclination
angle θ , and the overall in-plane rotation ϕtot the pitch P = 2π

ϕtot
· d and consequently

the diameter ∅h of a single helix can be computed as ∅h = P/ tan θ . This calculated
diameter is not accounting for any “wire” thickness and has to be compared with an
average between inner (∅in) and outer (∅out) diameter of the true helix determined

from SEM image analysis [∅h
∧= ∅avg = 0.5 · (∅in + ∅out)]. The calculated
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diameters for both H-STFs are with approximately 45 nm in good agreement with a
SEM image estimates of the averaged diameter of ∅avg = 50 ± 5 nm.

10.6.4 Effective Medium Approximations for F1-STFs

Bulk material optical constants can be modified using effective medium approxima-
tions (EMAs) to attain approximate effective optical constant of a thin film compris-
ing more than one constituent. The advantage of using EMAs for ellipsometric data
analysis is the direct access to a material fraction parameter related to the amount of
the mixed constituents. The anisotropic Bruggeman EMA (AB-EMA) as described
in Sect. 10.3.6.2 has been applied here to estimate the void fraction in F1-STFs by
mixing bulk optical constants (determined during analysis) with void. Note that no
satisfactory match between experimental and model generated was achieved by using
available literature values for bulk dielectric functions. Therefore, bulk-like optical
constants for the respective F1-STF material have been determined by wavelength-
by-wavelength and parameterized MDF analysis. The effective anisotropic optical
constants obtained by MDFs are compared to results from the homogeneous biaxial
layer approach.
Model description. The optical model for F1-STFs comprises a single biaxial (mon-
oclinic) layer. Optical constants of the respective bulk material are determined with
simple parameterized MDFs (Lorentzian oscillators), mixed with fractions of void
fv (optical constants nv = 1, kv = 0), and weighted with depolarization factors (LD

j ,
j = a, b, c) for the three biaxial effective dielectric functions. LD

j is proportional to
the polarizability of the j th axis of the “inclusion” and hence ratios define the shape
of the aligned particle. Depolarization factors determine the difference between n j

and k j along axes a, b, c. Euler angles ϕ, θ, ψ transform the Cartesian laboratory
coordinate frame into the material coordinate frame and the internal (monoclinic
angle) β converts the virtual orthogonal basis into a monoclinic system. The total
film thickness d completes the best-match model parameter list.

10.6.4.1 Cobalt F1-STF

The Co bulk-like optical constants determined with the AB-EMA model approach
are compared to values found in Palik [106] and are depicted in Fig. 10.14. The
extinction coefficients are comparable within the visible spectral range only and
differ significantly in the near-infrared wavelength range. The refractive index as a
result of the AB-EMA model is considerably larger than bulk literature values but
exhibits a similar dispersion. The difference might be due to the idealized optical
model as well as nanostructure confinement effects and the inherent large surface to
volume ratio of the F1-STF used here (approximately 200 m−1), which may affect the
overall polarizability of the material. Besides that, a readily grown native metal oxide
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Fig. 10.31 Refractive indices n j and extinction coefficients k j along major polarizability axes a,
b, c of a Co F1-STF determined by the homogeneous biaxial layer approach (HBLA solid line)
compared to optical constants determined by the AB-EMA (symbols)

and airborne contaminations which are not taken into account but may also affect
the film birefringence and hence the AB-EMA bulk Co optical constant best-match
results. Resulting effective optical constants are compared to data obtained with
the homogeneous biaxial layer approach (Sect. 10.6.1.1)23 and plotted in Fig 10.31.
The general trend of optical constants determined with both approaches is in very
good agreement, especially within the visible spectral region. The MSE is 11.9 and
slightly higher than for the homogeneous biaxial layer approach (MSE = 7.8, see
Table 10.9). Also structural parameters such as thickness d = 101.4 ± 0.1 nm and
columnar slanting angle θ = 62.9 ± 0.02◦ are in very good agreement with values
determined with the homogeneous biaxial layer approach and the best-match value
for the monoclinic angle is β = 80.8◦. The void fraction fv = 75.38 ± 0.01 %
reflects the high porosity of the film and which is characteristic for GLAD at very
oblique angles [108]. The depolarization factors (LD

a = 0.378, LD
b = 0.504, and

LD
c = 0.118) show that the structural unit is extended in the c-direction since LD

c
is considerably smaller than the other two parameters, and the fact that LD

a 
= LD
b

indicates that the film is rendered with biaxial properties [109].
Based on existing literature [109, 110] and investigations presented in this con-

tribution an empirically found order of depolarization factors for absorbing metal
F1-STFs is LD

a > LD
b > LD

c 
= 0. Because the columns are not infinitely long along
the c-axis the depolarization factor LD

c should not be assumed to be equal to zero
as suggested previously [108]. These depolarization factors then are representative
for a prolate ellipsoid extended along the c-axis, since LD

c is smaller than the other
two parameters, and LD

a 
= LD
b shows that the film has biaxial properties. LD

a > LD
b

is also in agreement with the observed elliptical shape of the columns with a longer
axis perpendicular to the incoming vapor flux due to anisotropic shadowing effects

23 Here, data is compared that has been taken immediately after deposition and consequently no
oxide layer was included within the AB-EMA.
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Fig. 10.32 Refractive indices n j and extinction coefficients k j along major polarizability axes a,
b, c of a Ti F1-STF determined by the homogeneous biaxial layer approach (HBLA solid line)
compared to optical constants determined by the AB-EMA (symbols)

during oblique angle deposition [54, 86]. In general, structural parameters and void
fraction attained with the AB-EMA are in very good agreement with SEM analysis
and may serve as a good estimate. The additionally gained information about the
film porosity is very valuable and is key for the importance of this approach.

10.6.4.2 Titanium F1-STF

The Ti bulk-like optical constants determined with the AB-EMA model approach
are compared to values published in Palik [106] and found to be in very good agree-
ment (Fig. 10.16). Even the shoulder around 800 nm caused by interband transitions
is present. Figure 10.32 shows the effective optical constants determined with the
homogeneous biaxial layer approach and with the AB-EMA for Ti F1-STFs. Para-
meters for the Ti F1-STF obtained with both approaches as well as SEM image
analysis are summarized in Table 10.7. Structural values and the monoclinic angle
determined with both approaches are in very good agreement and especially the
slanting angle matches SEM estimates very well. In general, depolarization factors
and the void fraction compare well to values determined for the Co F1-STF above.

10.6.4.3 Supermalloy F1-STF

Supermalloy bulk optical constants for the AB-EMA layer have been generated as
described in Sect. 10.6.2.2 and are depicted in Fig. 10.17. The comparison to bulk-
like values determined by the AB-EMA model analysis reveals similar discrepancies
as found for Co F1-STFs. Especially the refractive index n is larger compared to the
literature values. Figure 10.33 shows the effective optical constants determined with
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Table 10.7 Best-match model results from homogeneous biaxial layer approach (HBLA),
AB-EMA, and SEM analysis for the Ti F1-STF

Parameters HBLA AB-EMA SEM

d (nm) 100.2(2) 103.5(2) 112(4)
θ (◦) 57.27(6) 56.95(3) 58(4)
β (◦) 80.2(1) 81.3(1) –
fv (%) – 78.30(4) –
LD

a – 0.394(1) –
LD

b – 0.494(1) –
LD

c – 0.112(1) –
MSE 6.23 10.86 –

The error limits given in parentheses denote the uncertainty of the last digit (90 % reliability)

Fig. 10.33 Refractive indices n j and extinction coefficients k j along major polarizability axes a,
b, c of a NiFeMo F1-STF determined by the homogeneous biaxial layer approach (HBLA solid
line) compared to optical constants determined by the AB-EMA (symbols)

the homogeneous biaxial layer approach and with the AB-EMA for supermalloy
F1-STFs. Obtained parameters with both approaches as well as SEM image analysis
are summarized in Table 10.8. The monoclinic angle and the void fraction is com-
parable to values obtained for the same F1 geometry from Co and Ti, respectively.
Interestingly, best-match depolarization factors for supermalloy are almost identical
to the ones from a Ti F1-STF, which is not apparent from top view SEM micrographs
(Fig. 10.11).

In summary, optically determined structural properties obtained with the
AB-EMA model approach are in very good agreement with parameters calculated
by the homogeneous biaxial layer approach and hence may serve as excellent esti-
mates. The key advantage of the AB-EMA is a direct access to the material fractions.
Furthermore, the number of model-parameters is reduced with respect to the homo-
geneous biaxial layer approach since the effective optical constants along the major
polarizability axes are not determined individually. The empirically found order of
depolarization factors for metal F1-STFs is LD

a > LD
b > LD

c 
= 0 and LD
c should not
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Table 10.8 Best-match model results from homogeneous biaxial layer approach (HBLA), AB-
EMA, and SEM analysis for the NiFeMo F1-STF

Parameters HBLA AB-EMA SEM

d (nm) 88.4(1) 80.4(1) 100(4)
θ (◦) 63.16(3) 61.13(2) 64(4)
β (◦) 89.53(8) 82.40(6) –
fv (%) – 75.0(1) –
LD

a – 0.393(1) –
LD

b – 0.494(1) –
LD

c – 0.112(1) –
MSE 5.18 10.12 –

The error limits given in parentheses denote the uncertainty of the last digit (90 % reliability)

be zero because the columns have a finite length. Similarly to the modularity prin-
ciple discussed with regard to the piecewise homogeneous biaxial layer approach,
appropriately stacked “F1-STF AB-EMA model layers” accounting for the cascaded
STF geometry may be used to forward calculate approximate optical responses of
more complex STFs.

10.6.5 Aging Effects and Environmental Influences
on Optical Properties

As soon as a metal STF leaves the ultra-high vacuum environment of the deposition
chamber and is exposed to ambient conditions the large pristine metal surface area
reacts with air. Typically a self-limiting native metal oxide layer starts to grow at
room-temperature but the self-termination depends on the surface quality and small
changes may still be observed after months [111]. Furthermore, water molecules due
to the ambient humidity and airborne contaminations may adsorb on any exposed
surface area. These uncontrolled processes add additional constituents to the initially
pristine metal film, affect the nanostructure polarizability and thus the effective opti-
cal constants. Hence, care must be taken when evaluating the optical properties since
the oxide layer may grow over a longer period of time and subtle changes in the
ambient cause differences in the film birefringence. If the uncontrolled native oxi-
dation can be prevented, however, such anisotropic metal STFs may be used as very
sensitive sensing elements.

10.6.5.1 Effective Optical Constant Changes due to Aging

In Fig. 10.34 optical constants of the Co F1-STF (sample #1) determined by the
homogeneous biaxial layer approach from measurements taken 1 h after deposi-
tion are plotted (same as Fig. 10.14) and compared to n j and k j resulting from
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measurements acquired 90 d after deposition (for model and analysis details see
Sect. 10.6.1.1). Between both measurements, the sample was stored in a closed yet
not airtight container and thus exposed to ambient air. Therefore, differences between
both results are attributed mainly to the growth of a metal oxide layer; however, also
changes in ambient humidity, and airborne contaminations are possible. In general,
directions a and b show a very similar dispersion. In both cases, na,b and ka,b from
data taken after 90 d exhibit a positive offset, fairly constant over the investigated
spectral region with respect to data acquired 1 h after deposition. No common trend is
observed along direction c. The MDF parameterization delivered excellent results for
both measurements and best-match model parameters are summarized in Table 10.9.
Structural parameters are in very good agreement with SEM micrograph analysis
(d = 114 ± 4 nm and θ = 65 ± 3◦).

10.6.5.2 STF Passivation by Atomic Layer Deposition

In order to prevent uncontrolled native oxidation of metal layers a thin stable oxide
capping layer can be deposited. For coating the three-dimensionally shaped STFs
a deposition technique is desired which allows for a thin homogeneous passivation
shell. It has been shown that atomic layer deposition (ALD) is an excellent technique
to conformally coat complex nanostructures and STFs [112–114]. To passivate an
Co F1-STF, the thin film was transferred immediately after the growth process to
the ALD reactor (Fiji 200, CambridgeNanoTech Inc.). A subsequent thermal Al2O3
process [115] of 60 cycles was carried out at a substrate temperature of 60 ◦C in
order to avoid sample property alterations by annealing effects. Both precursors,
trimethylaluminum and nanopure water, were pulsed at 60 ms each followed by a 30 s
purge time, which warrants a homogeneous and conformal coating of the columns.
Note that even though ALD is a well-known technique to achieve highly conformal
coatings of high aspect ratios the uniformity is affected by non-ideal sample areas
where columns are partially in contact. A schematic drawing of the final core-shell
nanocolumnar thin film as well as cross-section scanning electron microscope (SEM)
micrographs before and after ALD are depicted in Fig. 10.35. In order to determine
the Al2O3 layer thickness a 100 nm thick solid Co reference sample has been coated
under identical ALD conditions. The resulting growth per cycle for the first 60 cycles
determined with ellipsometry was 0.548 Å.

Two measurements of the same sample (Co F1-STF passivated with a thin Al2O3
coating) are compared, which have been conducted both immediately after deposi-
tion and again 60 d later. The stratified optical model is composed of three layers
accounting for Si substrate, native SiO2, and a AB-EMA layer for the F1-STF. The
best-match model parameters within the AB-EMA layer for all for measurement
scenarios are summarized in Table 10.10 and respective wavelength-by-wavelength
determined optical constants depicted in Fig. 10.36.

The AB-EMA layer of the Al2O3 passivated Co SCTF comprises bulk-like
optical constants of three constituents: Co (model parameters), Al2O3, and void
(n = 1, k = 0). Notably, except for material fractions, all best-match model parame-



10 Generalized Ellipsometry Characterization of Sculptured Thin Films 399

Table 10.9 Best-match model results for Co F1-STF 1 h and 90 d after deposition, respectively

Structural parameters MDF parameters along direction
a b c

1 h after deposition (MSE = 7.77)
d = 106.9(1)nm A1 (eV) 1.00(1) 0.348(4) 0.3(3)
θ = 63.68(1)◦ Ec1 (eV) 0.633(4) 0.685(6) 1.43(6)
β = 83.69(9)◦ γ1 (eV) 0.90(3) 1.18(5) 0.6(3)

A2 (eV) 0.08(1) 0.12(2) 0.7(6)
Ec2 (eV) 1.96(1) 2.56(9) 1.83(4)
γ2 (eV) 1.1(1) 2.4(2) 1.2(5)
A3 (eV) 0.88(1) 0.416(8) 0.8(7)
Ec3 (eV) 5.2(1) 4.18(9) 2.7(1)
γ3 (eV) 8.2(5) 2.2(3) 2(1)
A4 (eV) – – 1.5(5)
Ec4 (eV) – – 5(2)
γ4 (eV) – – 3(5)
ρ (�cm) – – 7.58(4)× 10−4

τ (fs) – – 0.325(3)
εoff 1.41(1) 1.62(1) 1.2(4)

90 d after deposition (MSE = 6.77)
d = 106.5(1)nm A1 (eV) 1.13(1) 0.435(4) 0.5(5)
θ = 62.95(3)◦ Ec1 (eV) 0.672(3) 0.700(5) 1.42(9)
β = 80.92(9)◦ γ1 (eV) 0.89(2) 1.16(4) 0.9(3)

A2 (eV) 0.13(2) 0.25(2) 0.8(8)
Ec2 (eV) 2.02(1) 2.89(8) 1.85(5)
γ2 (eV) 1.4(1) 2.7(1) 1.3(6)
A3 (eV) 1.05(1) 0.47(2) 1.0(7)
Ec3 (eV) 5.2(1) 3.90(9) 2.8(1)
γ3 (eV) 8.2(5) 1.0(2) 2.3(9)
A4 (eV) – – 1.5(4)
Ec4 (eV) – – 5.6(1.5)
γ4 (eV) – – 3.2(4.6)
ρ (�cm) – – 7.11(4)× 10−4

τ (fs) – – 0.459(4)
εoff 1.50(2) 1.97(1) 1.5(3)

Parameters A j , Ec j , γ j correspond to amplitude, center energy, and broadening of the jth
Lorentzian-type oscillator, respectively, whereas ρ, τ represent the resistivity and scattering time
of a Drude term, respectively. The error limits given in parentheses denote the uncertainty of the
last digit (90 % reliability)

ters are virtually identical between measurements taken on the day of deposition and
60 d thereafter, respectively. This shows that the film properties of passivated STFs
are not affected by storage in ambient air and expected aging effects due to material
oxidation not present due to the conformal Al2O3 capping layer. The determined
layer thickness t and slanting angle θ are in very good agreement with cross-section
SEM analysis (Fig. 10.35). The observed imbalance between fvoid and fAl2O3 as well
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Fig. 10.34 Comparison between refractive indices n j and extinction coefficients k j along major
polarizability axes a, b, c with monoclinic arrangement of a Co F1-STF determined from measure-
ments taken 1 h (solid line; same as Fig. 10.14) and 90 d (dashed line) after deposition, respectively
(Reprinted with permission from [40]. Copyright 2010, Schmidt)

as the slight changes in best-match Co bulk optical constants are mainly attributed
to differences in ambient humidity at the two measurement days. This is supported
by the fact that there is virtually no effective optical constant variation along c.
It is well-known that such nanostructured thin films are very sensitive high-speed
capacitive humidity sensors [116, 117]. The wavelength-by-wavelength determined
best-match Co bulk optical constants obtained from model analysis for the passivated
Co SCTF after deposition and after 60 d are in excellent agreement with each other;
however, differ from literature values found in Palik [106] (see also Sect. 10.6.4).
The effective biaxial optical constants only differ for na and nb, which suggests
no material change due to oxidation (nc unaffected) but rather changes in the void
regions cause by possible humidity changes (Fig. 10.36). Investigations of water
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(b)(b)

(c)

Fig. 10.35 Schematic drawing of a core-shell Co F1-STF coated with an Al2O3 passivation layer
(3 ALD cycles depicted, a). High-resolution cross-section SEM micrographs reveal the structural
equivalence before (b) and after (c) the ALD passivation process (Reprinted with permission from
[90]. Copyright 2012, American Institute of Physics)

Fig. 10.36 Wavelength-by-wavelength determined optical constants for the Al2O3 passivated Co
F1-STF measured immediately after deposition (solid lines) and 60 days later (dashed lines), respec-
tively. The right panel shows the bulk-like optical constants n and k, which are input parameters
for the AB-EMA approach and also compared to literature values from Palik [106]. The left panel
depicts the effective optical constants (neff and keff) along major axes of polarizability a, b, c, which
are due to the different depolarization factors

vapor adsorption in a controlled environment show that even small differences of
only 5 % in relative humidity can be easily measured as a change in the film bire-
fringence.

The calculated Al2O3 shell layer thickness based on best-match AB-EMA con-
stituent fraction parameters is with 2.4 nm in excellent agreement with the reference
sample layer thickness of 3.29 nm. Note that for this calculation ideal and separated
nanocolumns with an average diameter of 17.5 nm are assumed. High resolution
SEM top-view and cross-section image analysis show that the diameter of individual
columns is increased by approximately 4 nm after ALD Al2O3 coating [90, 118].
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Table 10.10 Overview of the best-match model parameters for both measurement scenarios, after
deposition (0 d) and 60 days later (60 d), respectively for the passivated Co SCTF

Parameter Co+Al2O3 (after deposition) Co+Al2O3 (60 d later)

t (nm) 89.46(3) 89.86(3)
θ (◦) 62.69(1) 62.80(1)
β (◦) 82.96(2) 83.39(2)
fvoid (%) 62.03(7) 59.33(6)
fAl2O3 (%) 13.98(8) 16.74(6)
LD

a 0.4035(2) 0.4030(2)
LD

b 0.5267(2) 0.5283(2)
LD

c 0.0698(7) 0.0688(6)
MSE 8.45 10.82

t = thickness; θ = tilting angle with respect to the substrate normal; β = monoclinic angle between
axes c and a; fx = volume fraction of x ; LD

j = depolarization factor along j . The error limits given
in parentheses denote the uncertainty of the last digit (90 % reliability)

10.6.6 Discussion

10.6.6.1 Early Optical Investigations on Sculptured Thin Films

Kundt [31] reported on birefringence in metal thin films deposited at oblique angles
already in 1886 and concluded that the specific microstructure may be the origin,
while electron microscopy or similar techniques were unavailable. Smith, Cohen,
and Weiss [119] determined with polarized transmission measurements that the
absorption coefficient in obliquely deposited metal films is a periodic function of
the sample azimuth and that the differential absorption (parallel versus perpendicu-
lar to the slanting plane of the columns) increases with increasing deposition angle θi.
King and Talim [120] considered the effect of columnar microstructure on the optical
anisotropy of thin films deposited onto substrates at normal incidence with the help of
ellipsometry and other techniques and postulated an uniaxial model. Inspired by this
work, Hodgkinson et al. [121] performed polarization dependent reflection measure-
ments on obliquely deposited transparent ZrO2 and TiO2 F1-STFs. They proposed
an orthorhombic biaxial model due to the existence of form birefringence; i.e., the
obliquely deposited columns do not exhibit a perfectly round shape but are rather
elliptically in shape. The authors realized that there is no mode coupling between p
and s polarization for light incident in the plane containing the direction of deposition
and the substrate normal. These orientations are equivalent to the pseudo-isotropic
orientations discussed for example in Sect. 10.6.1 (Fig. 10.13).

10.6.6.2 Effective Medium Approximations for F1-STFs

In order to quantify birefringence and porosity values of F1-STFs in the visible
and near-infrared spectral region from transparent oxides (metal oxides and SiO2),
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initially empirical equations [122, 123] have been reported and then existing EMAs
were applied (Bragg-Pippard [86, 124], Maxwell-Garnett [101, 125], and AB-EMA
[126–130]).

Hodgkinson and Wu [86] reported, based on optical constants determination with
EMAs, that in dielectric biaxial F1-STF the optical constants generally follow the
empirically found order nc > na > nb. The same order is found here for all inves-
tigated STFs in the near infrared spectral region. However, presented data in this
chapter over an extended spectral region reveal the order of refractive indices for
metal STFs is different in the visible spectral region since nc is intersecting with na

and nb.
Depolarization factors deliver information about the shape of the inclusions. How-

ever, it is controversially discussed, which value of LD
c should be used for F1-STF.

Often, it is claimed that the depolarization factor along the long axis of ellipsoids
(c-axis) should be zero because of minimum charge screening effects along this
direction and many authors have therefore assumed LD

c = 0 for their best-match
model calculations in order to determine optical constants and porosity values of F1-
STFs [86, 96, 108, 124–127, 131, 132]. Mbise et al., however, reported on analysis
of polarized transmittance measurements using an orthorhombic AB-EMA to quan-
tify optical anisotropy of Cr F1-STFs. The authors determined depolarization factor
values 0.14 < LD

c < 0.45 and found that optically determined structural proper-
ties such as film thickness and column inclination are in fair agreement with SEM
investigations [109, 110]. Gospodyn and Sit also determined LD

c based on model
calculations using the Bruggeman EMA for a variety of MgF2 and SiO2 F1-STFs
grown at different deposition angles. They report values of LD

c between 0.01 and
0.1 for their lossless nanostructured films [128]. Recently, Wakefield et al. published
an extensive experimental characterizations and a model for metal oxide F1-STFs.
The authors provide a recipe to calculate the in-plane birefringence and other film
parameters of slanted columnar thin films deposited with different variable azimuthal
substrate rotation techniques. Within their approach they fix the depolarization factor
LD

c = 0.1.
Hofmann et al. have investigated 500 nm thick Co F1-STFs in the THz spec-

tral range and found that an orthorhombic AB-EMA approach leads to a very good
approximation of structural and physical properties. While the structural parame-
ters (thickness, slanting angle, and void fraction) are in good agreement with SEM
data and generalized ellipsometry in the visible spectral region, depolarization fac-
tors differ significantly from values determined by model analysis of experimental
data obtained within the visible spectral range [133]. These results suggest that
depolarization factors might be wavelength-dependent and a Bruggeman approach
with a different (energy-dependent) depolarization factor definition could possibly
be applied here [134, 135]. Furthermore, the authors have shown that also at THz
frequencies the optical response strongly depends on the dielectric properties of the
surrounding ambient medium. These findings indicate that with sensors comprising
STFs minute amounts of dielectrics can be detected also with millimeter long wave-
lengths [8]. The interested reader is also referred to Chap. 11 for a detailed description
of the aforementioned investigations within the THz spectral range.

http://dx.doi.org/10.1007/978-3-642-33956-1_11
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10.6.6.3 Optical Properties of Complex and Hybrid STFs

Chevron-like nanostructures (l F2-STFs). Motohiro and Yaga [136] rotated their
sample manually by 180◦ to grow two successive F1-STF layers with opposite slant-
ing direction and experimentally determined that a non-absorbing metal oxide 2F2-
STF can be used as a quarter-wave plate and can compete with conventional types
of retardation plates. The authors realized that 2F2-STFs show superior retardation
properties with respect to F1-STFs.

Podraza et al. [101] matched Jones matrix data of a non-absorbing MgF2 2F2-STF
with a similar approach than the one used in this chapter and found good agreement
between optically determined structural properties and their SEM analysis. How-
ever, they assumed uniaxial properties in the transparent region of their MgF2 films
and included measured data from only one in-plane orientation into their best-match
model calculations. For determination of optical properties and thin film birefrin-
gence the authors used the Maxwell-Garnett EMA [96, 137] with depolarization
factors LD

a = LD
b = 1 and LD

c = 0 perpendicular and parallel to the long axis of the
nanostructure, respectively, to parameterize both principal dielectric functions.
Four-fold staircase nanostructures (l F4-STFs). The geometry of a 3F4-STF can
be seen as the three-dimensional equivalent of a two-dimensional split ring resonator
[138–140]. Such three-dimensional metamaterials from metal have gained research
interest because effective negative index and magnetic resonances have been pro-
posed [141, 142]. Besides that, dielectric (4F4)x -STFs with x = 4, 5 are found
to act as three-dimensional photonic bandgap crystals with wide bandgaps [143].
However, no reports on intrinsic optical properties of F4-STFs have been found.
Helical nanostructures (t H-STFs). In search of new materials to miniaturize exist-
ing polarization rotators (Reusch rotator) and potentially create thin film Šolc color
filters [144], Young and Kowal [35] were the first ones to report on in-situ substrate
rotation during oblique angle evaporation thereby creating CaF2 H-STFs. However,
even though optical activity and large polarization rotation was experimentally con-
firmed their paper from 1959 went largely unnoticed. Recently efforts have been
made mostly in the theoretical description of light propagation in H-STFs lead by
Lakhtakia [33, 145, 146]. Experimental reports about chiral H-STFs are dealing with
selective transmission of left- and right- circularly polarized light and optical rotary
power. H-STFs, which can be physically considered as “frozen” cholesteric liquid
crystals [147] are found to be good circular polarizers since light with the same hand-
edness as the helix is blocked, whereas the other handedness is transmitted (within
a certain frequency range) [148–153].

However, except for Zhong et al. [154], who modeled the optical properties of
helical ITO thin films with a Cauchy dispersion model, all other reports mentioned
above do not report on intrinsic optical properties of the investigated H-STFs.
Hybrid STFs. Photonic characteristics, for example, may be modified and tuned by
infiltrating a dielectric material in void [124, 155, 156]. Active control over optical
properties of hybrid materials can be achieved by either combining nanoparticles with
polymers, which change their properties upon exposure to gases [157] or inorganic
porous layers with temperature sensitive liquid crystals [158], for example. There-
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fore, optical constants of hybrid nanoporous thin films are effective optical constants,
which depend not only on the geometry but also on the dielectric properties of the
material infiltrated into void [26].

10.7 Summary and Outlook

Glancing angle deposition was presented as an advanced physical vapor deposition
technique capable of bottom-up fabrication of three-dimensionally shaped, highly
spatially coherent nanostructures. Paired with a dynamic substrate motion, this tech-
nique allows for engineering self-assembled, self-organized highly spatially coherent
achiral and chiral sculptured thin films. A new nomenclature scheme has been pro-
posed based on basic building blocks to unambiguously identify sculptured thin film
geometries by their name.

Spectroscopic generalized ellipsometry in the visible and near-infrared spectral
region was demonstrated to be a highly suitable, non-destructive tool for investiga-
tion of low-symmetry and highly anisotropic absorbing sculptured thin films. The
intrinsic polarizabilities inherent to the biaxial nanostructured materials examined
here have been determined for a series of different metal sculptured thin film geome-
tries and effective principal optical constants are reported. Strong optical birefrin-
gence and dichroism are quantified for different sculptured thin film samples, and
the complex-valued dielectric function tensor differs significantly from the respec-
tive bulk material. In particular, achiral metal slanted columnar thin films (F1-STFs)
are found monoclinic due to dielectric polarization charge coupling effects across
neighboring slanted but electrically isolated nanocolumns. The validity of the homo-
geneous biaxial layer approach applied to model the anisotropic electromagnetic
plane wave response of metal F1-STFs was discussed for F1-STFs from three differ-
ent materials: cobalt, titanium and supermalloy (Ni80Fe15Mo5). Physical properties
such as birefringence, dichroism, and monoclinicity, for example, are found to be
common amongst all F1-STFs discussed here (universality).

For the first time, accurate sets of optical constants for complex manifold and
helical sculptured thin films are presented. It is found that complex sculptured thin
films may be considered cascaded F1-STFs building blocks and can be optically
approximated as a stratified medium comprising F1-STFs with different slanting
orientations. Therefore, once the building blocks are characterized the anisotropic
polarization response of complex layered sculptured thin films can be predicted by a
modular conception. The piecewise homogeneous layer approach enables modular
assembly of F1-STF building blocks thereby creating an optical model that mimics
the true geometry of the sculptured thin film. The modularity was exemplarily dis-
cussed for a total of six different sculptured thin film geometries from cobalt and
titanium.

It has been shown that structural properties including multiple constituent frac-
tions of F1-STFs determined with the anisotropic Bruggemann effective medium
approximation may serve as good estimates. Based on existing literature and investi-
gations presented in this chapter an empirically found order of depolarization factors
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is presented (LD
a > LD

b > LD
c 
= 0), which is in accordance with the shape of the

columns (ellipsoids).
With the findings presented in this contribution it is now possible to predict optical

properties of sculptured thin films. This will allow for engineering desired anisotropic
physical properties of three-dimensionally nanostructured thin films and pave the
way for next generation micro- and nanosystems, especially with respect to the
exploitation of nanohybrid functional materials for novel detection principles.
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Chapter 11
THz Generalized Ellipsometry
Characterization of Highly-Ordered
Three-Dimensional Nanostructures

Tino Hofmann, Daniel Schmidt and Mathias Schubert

Abstract Routine generalized ellipsometry measurements at terahertz (THz)
frequencies have become available only very recently, and we present and discuss
the application to highly-ordered three-dimensional nanostructure thin films. Such
nanostructure thin films are obtained from glancing angle deposition, and consist of
slanted columnar structures with high spatial coherence. The slanted columnar thin
films reveal strong birefringence due to electronic coupling and screening phenom-
ena. Despite their extreme smallness compared with the THz wavelength equivalent,
slanted columnar nanostructure thin films can be used as sensors for dielectric fluids
in transmission or reflection geometries, where measurements can be made through
the back side of THz-transparent substrates. We describe an anisotropic biaxial
effective medium dielectric function approach which comprises structural, geomet-
rical and constituent fraction information, and which enables quantitative analysis
of THz generalized ellipsometry measurements. We further describe a frequency-
domain generalized ellipsometer setup which incorporates backward wave oscillator
sources.

11.1 Introduction

Ellipsometric investigations with electromagnetic radiation at THz frequencies offer
unique access to high-frequency electrical properties that are of great interest for
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materials research, for design of high-speed communication systems, and for novel
security screening applications [1–3], for example. Recent success in development of
THz source and detector technologies has spurred growing interest in spectroscopic
THz instrumentation and in novel sensing and communication systems [4–9]. Avail-
ability and access to spectroscopic ellipsometry instrumentation is a prerequisite for
successful characterization of THz optical properties of materials, and optical sys-
tem components for novel sensing and communication devices [10, 11]. In the same
way as for infrared-visible-ultraviolet (IR-VIS-UV) optics, accurate THz material
optical constants are needed for designing components, verifying those designs, and
for developing and controlling manufacturing processes. Accurate measurements of
optical properties of materials at THz frequencies are of fundamental importance
also for basic scientific research [9]. There exists a wealth of fascinating excitation
mechanisms with eigenfrequencies in the THz domain in condensed and soft matter
such as spin transitions, collective modes of biological molecules, local free charge
carrier oscillations, dynamic motion of magnetic domains, ferroelectric domains,
or collective charge phenomena, as examples. Measurement of the complex opti-
cal properties at THz frequencies may further allow exploration of novel physical
phenomena as observed in artificially structured meta-materials [12].

Ellipsometry is established as the preeminent method used to precisely deter-
mine the optical properties for wavelengths from the far infrared (FIR) through
the vacuum ultra violet (VUV) [13]. Ellipsometers are employed in a wide vari-
ety of applied and basic research fields because they can produce highly accurate,
non-destructive measurements suitable for quantitative analysis. Ellipsometry in tra-
ditional FIR-VIS-VUV spectral ranges utilizes essentially steady-state illumination
and modulation frequencies much lower than the illuminating light optical frequency.
The key element of ellipsometry, as compared to other optical measurement tech-
niques, is that measurements are made synchronously with the modulation of the
optical polarization state. At the most basic level, one polarization state is measured
relative to another polarization state. Ellipsometry is therefore much less sensitive
to non-idealities of the measurement system than intensity-normalized measurement
techniques. Ellipsometry in the THz frequency-domain has only recently become
available as a research tool, and experimental reports are not exhaustive [14–17].

THz Ellipsometry THz ellipsometry instrumentations were reported in both the
time-domain as well as in the frequency-domain configurations. The first time-
domain THz ellipsometry setup was demonstrated by Nagashima and Hangyo [18].
Nagashima and Hangyo augmented a THz time-domain spectrometer by fixed
polarizers in order to measure the p- and s-polarized reflectivities. Thereby the
complex optical constants of a moderately phosphorous-doped n-type silicon sub-
strate were determined. A similar approach was used later by Ino et al. [19] in
magneto-optical Kerr effect measurements on InAs. The first frequency-domain
THz generalized spectroscopic ellipsometry (GSE) experiments and magneto-optic
GSE experiments using highly brilliant THz Synchrotron radiation were reported
by Hofmann, Schubert and others for the determination of free charge carrier prop-
erties in ZnMnSe/GaAs and highly oriented pyrolytic graphite [20]. Recently, a
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frequency-domain THz ellipsometer setup using a high-power, spectrally tunable,
single-wavelength backward wave oscillator was described and applied for the deter-
mination of free charge carrier diffusion profiles in silicon [21, 22]. A similar setup
is used here for analysis of optically anisotropic highly-ordered three-dimensional
nanostructure thin films.

Sculptured Thin Films Sculptured thin films (STFs) present an interesting class of
self-organized, artificially made materials with three-dimensional, highly spatially
coherent arrangements of nanostructures. The intrinsic building block is formed
of columns with a controllable inclination angle towards the substrate surface
(Fig. 11.1). Geometry, dimension, and fabrication material are accessible design
parameters, and STFs can be tailored to obtain desired physical properties. STF prop-
erties such as reflectance, transmittance, and conductance may differ significantly
from the constituent material’s bulk form [23–25]. Contemporary interest in materi-
als for THz electronic, optoelectronic, and optical applications is redrawing attention
to STFs that may enable designed optical properties for the THz frequency region.
In this frequency range, existing materials are either purely dielectric and transpar-
ent, or electrically conductive and highly absorbing. STFs prepared from electrically
conductive materials offer the interesting opportunity to design transparent materials
with very large dielectric polarizabilities. The strong polarizability originates from
the highly coherent electrically insulated arrays of sub-wavelength dipole antennas.
Coupling between adjacent dipoles leads to a directionally dependent electromag-
netic response, observable as optical anisotropy. Few information is available on
the optical properties and anisotropic refraction and extinction coefficients of metal
STFs. Recently, we have demonstrated that GSE in the visible spectral range serves
as an ideal tool for the determination of the anisotropic dielectric properties of STFs

Fig. 11.1 SEM micrograph (sample tilted 15◦) of a STF composed of slanted Co nanocolumns
(F1-STF) which was deposited by glancing angle deposition onto a silicon substrate. The slanting
angle is 65◦ (Reprinted with permission from Ref. [12]. Copyright 2011, American Institute of
Physics.)
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as described in detail in Chap. 10 of this editorial. No information seems to exist on
metal STF optical properties in the THz region.

11.2 THz Ellipsometry Instrumentation

The THz ellipsometer system used in this work is described in Ref. [14]. The
instrument operates in both the polarizer-sample-rotating analyzer as well as in the
polarizer-sample-rotating compensator analyzer arrangements [13] and permits ellip-
sometric measurements in the spectral range from 0.2 to 1.5 THz. The experimental
setup is based on a θ−2θ high precision goniometer which allows for measurements
at angles of incidenceΦa from 30◦ to 90◦. A sketch of the experimental setup is given
in Fig. 11.2. A backward wave oscillator (BWO) is employed as the radiation source.
The nearly linearly polarized light emitted from the BWO is collimated by a lens
(L) before passing an optical copper (C). A polarization rotation system (PR) [26] is
used in combination with a wire-grid polarizer (P) to control the incident polarization
state. The mirrors M1-M3 steer the beam and focus the THz radiation to the sample
stage (S) on the high-resolution goniometer (HG). A continuously rotating polarizer
is used as the polarization state analyzer (A). The THz radiation reflected from the
sample is focused (M4) on a Golay cell (GC) which serves as detector. The BWO
tube used here emits quasi linearly polarized light with a very narrow bandwidth of
approximately 2 MHz and a very high output power of 0.1–0.01 W in the frequency
range from 107 to 177 GHz. The high output power in this base band is converted
to higher frequency bands using a set of frequency multipliers. Further instrumen-
tation details, data acquisition and analysis procedures, and demonstration for the

M4

M3

S

HG

A

M2

M1

L

BWO

C

GC

P

PR
a

Fig. 11.2 Beam path of the THz ellipsometer employed for the spectral range from 0.2 to 1.5 THz.
The system is operating in a polarizer (P)—sample (S)—rotating analyzer (A) configuration [13].
See text for descriptions, and Ref. [14] for details (Reprinted with permission from Ref. [14].
Copyright 2010, American Institute of Physics.)

http://dx.doi.org/10.1007/978-3-642-33956-1_10
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Fig. 11.3 Schematic drawing of deposition process for highly-ordered three-dimensional nanos-
tructure thin film by glancing angle deposition. Left with steady substrate orientation columnar thin
films with common slanting direction are obtained. Right slow and continuous substrate rotation,
which is equivalent to a steady change in the direction of the incoming particle flux results in helical
structures, for example. See Refs. [27, 28, 34] for further details, or Chap. 10 in this editorial [35]

determination of complex-valued dielectric constants in semiconductor materials are
reported in Ref. [14].

11.3 Sculptured Thin Films

Highly-ordered three-dimensional nanostructure thin films such as sculptured thin
films can be fabricated by glancing angle deposition (Fig. 11.3) from a wide vari-
ety of materials, including insulators, metals, semiconductors, and organic mate-
rials, vaporized by sputtering [27–29], pulsed laser deposition [30], thermal or
(most commonly) electron beam evaporation [24, 31–33]. STFs are fabricated under
low-adatom-mobility conditions, where the sticking coefficient (ratio of adsorbed
adatoms and total number of adatoms arriving within the same period of time) is
essentially unity, and hence substrate temperatures of less than 10 % of the melting
point of the evaporant are desired for columnar growth [31]. STFs can be deposited
on many substrate materials (e.g., glass, polymers, etc.) since the substrate may be
kept at room-temperature (Fig. 11.3).

11.4 THz Ellipsometry Data Analysis

The experimental THz Jones or Mueller matrix elements depend on the thickness
d and the dielectric function ε of all constituents of the sample. However, in order
to obtain ε and d of materials in layered samples, stratified model calculations have
to be performed [36]. The standard model for analyzing spectroscopic ellipsometry
data is based on a sequence of homogeneous (isotropic or anisotropic) layers with
smooth and parallel interfaces. The light propagation within the sample is calculated
using standard matrix formalism for (isotropic or anisotropic) multilayered systems
with plane parallel interfaces.

http://dx.doi.org/10.1007/978-3-642-33956-1_10
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Two approaches are commonly used to determine the ε values of interest. In the
wavelength-by-wavelength analysis approach the ε values are extracted from the
experimental data for each wavelength and independent of all other spectral data
points. For this procedure d and ε spectra of all other sample constituents have to
be known. Physically relevant parameters, such as phonon mode frequencies and
broadening parameters, for instance, are determined by comparing the dielectric
function obtained from the wavelength-by-wavelength analysis with a line shape
model. Alternatively, parameterized model dielectric functions can be fitted directly
to the experimental data to extract relevant physical parameters. The major advan-
tage of this approach is that it prevents experimental noise in the ellipsometric data
from becoming part of the extracted dielectric function. However, in some cases,
e.g., for bulk samples, the wavelength-by-wavelength analysis is preferable because
the experimental data are directly inverted numerically without additional model
assumptions to obtain the ε values of interest.

11.4.1 THz Model Dielectric Function Approaches
for Slanted Columnar Thin Films

The anisotropic dielectric functions of Co F1-STFs can be described by an anisotropic
Bruggeman effective medium approximation (AB-EMA) [12]. The Bruggeman for-
malism describes the homogenization for randomly oriented elliptical inclusions in
a homogeneous host medium. This formalism can be generalized for the case of
highly oriented elliptical inclusions (Fig. 11.4) [37–40]. For highly spatially coher-
ent, oriented elliptical inclusions the effective dielectric function tensor is described
by the three major components εa , εb, and εc along the major axes a, b, and c of an
orthorhombic system. ε j with j = a, b, c are given in implicit form by [41]:

ε j = εm + f (εi − εm)ε j

ε j + L j (εi − ε j )
, (11.1)

where the dielectric permittivity and volume fraction of the nanocolumnar inclusions
are denoted by εi and f , respectively. εm is the permittivity of the host medium. L j

are the depolarization factors of the elliptical inclusions along the major polarizability
axes. Regardless of the ellipsoidal shape, the sum of the three depolarization factors
satisfies La + Lb + Lc = 1 [40].

For metal nanocolumnar structures the THz dielectric permittivity of the metal
inclusions, εi, can be described here by the classical Drude formalism [42, 43]:

εi(ω) = ε∞ − ε∞
ω2

p

ω(ω + i/τ )
, (11.2)

where ωp is the screened plasma frequency, τ is the average energy-independent
scattering time. The DC conductivity σdc is related to ωp by σdc = ε∞ε̃0ω

2
pτ , where
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Fig. 11.4 Effective medium scenario with mixtures of ellipsoidal inclusions and a homogeneous
host medium. The aligned inclusions produce anisotropic effective properties with three effective
polarizabilities Peff,j according to the shape of the inclusions [35]

ω2
p = Nq2/(ε∞ε̃0m) and μ is the mobility given by μ = qτ/m, ε̃0 is the vacuum

permittivity, N is the free charge carrier concentration, and q denotes the charge. The
high frequency dielectric constant and the effective mass of the free charge carriers
are denoted by ε∞ and m, respectively.

The dielectric permittivity of the host medium, εm, is equal to 1 if the host medium
is air as for the measurements obtained from as-grown Co nanocolumnar structures
described in Sect. 11.6. However, if the nanostructures are immersed in a polar liquid,
water for instance, the dielectric permittivity of the host medium has to be changed
accordingly as described in Sect. 11.7. A Debye model with two relaxation terms
was used to describe the dielectric permittivity of water here [44, 45]:

εm(ω) = ε∞ +
2∑

j=1

ε j − ε j+1

1 + iωτ j
, (11.3)

where ε1 is the static dielectric constant, ε2 is an intermediate step in the dielectric
function and ε3 = ε∞ is the high frequency limit. τ1 and τ2 are the relaxation time
constants of the two relaxation processes.

11.5 THz Dielectric Function of Isotropic Thin Film
Materials

The THz ellipsometric data of two different phosphorous-doped n-type Si substrates
are examined to demonstrate the analysis of thin film materials with an isotropic
THz optical response. One sample has a high dopant concentration and a nominal
resistivity of 0.02�cm, the other sample a low dopant concentration and a nominal
resistivity of 5�cm. The low-doped sample is transparent in the THz range and was
double side polished in order to provide two well-defined plane parallel interfaces.

The experimental and best-model calculated −M12,21-specta and M33-spectra of
the highly phosphorous-doped n-type Si substrate obtained at an angle of incidence
Φa = 75◦ are depicted in Fig. 11.5a, b, respectively. The data obtained from the
THz ellipsometer setup and the commercial mid infrared (MIR) ellipsometer are in
excellent agreement with the calculations derived from a common model. A five
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(a) (b)

Fig. 11.5 Experimental (dotted lines) and best-model calculation (solid lines) −M12,21-spectra (a)
and M33-spectra (b) of the highly doped n-type Si substrate atΦa = 75◦ (Reprinted with permission
from Ref. [14]. Copyright 2010, American Institute of Physics.)

phase model (ambient/ native oxide/depletion region/highly doped Si/ambient) was
employed for the simultaneous analysis of the THz and MIR data sets.

The dielectric function ε(ω) for doped silicon, governed by Eq. (11.2), dominates
the features in the THz and infrared spectral domains. However, in order to fully
describe the experimental data throughout the entire THz-MIR region, the contri-
butions of the oxide layer and the carrier depletion region at the substrate surface
have to be included in the model. The dielectric function of the oxide consists of
three Lorentzian harmonic oscillators modeling the optically active Si–O rocking
and stretching vibrations [46]. The oxide produces very subtle effects in the M33-
spectra between 13 and 37 THz. The presence of the depletion layer is expressed as
small offsets primarily in the MIR spectral region. The model analysis yields the
thickness of the SiO2 layer and the carrier depletion region of dSiO2 = 2.2 ± 0.2 nm
and ddepl = 25 ± 4 nm, respectively. For the substrate resistivity and scattering time
we obtain ρ = 0.023 ± 0.001�cm and τ = 26.9 ± 0.5 fs. Assuming an effec-
tive electron mass of 0.26 m0 (Ref. [47]) this corresponds to a free charge carrier
concentration N = (1.51 ± 0.01)× 1018 cm−3 and a mobility μ = 182 ± 3 cm2/Vs.

Figure 11.6 shows the experimental and best-model calculated −M12,21-spectra
and M33-spectra obtained from the low phosphorous-doped silicon substrate for two
angles of incidence Φa = 55◦ and 65◦. The spectra are dominated by oscillations
which originate from multiple internal reflections between the top and bottom silicon-
air interface. It can be clearly seen that the amplitude of the Fabry-Pérot oscillations
pattern is decreasing for lower frequencies. This can be attributed to free charge
carrier absorption in the sample. The effects of the surface depletion and the SiO2
layer to the −M12,21-spectra and M33-spectra are negligible and a simple three phase
model (ambient/Si/ambient) was used for the data analysis consisting only of a doped
Si layer. The best-model parameters obtained for the resistivity and scattering time
are ρ = 5.01 ± 0.16�cm and τ = 239 ± 9 fs, respectively. This corresponds to
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(a) (b)

Fig. 11.6 Experimental (dotted lines) and best-model calculation (solid lines) −M12,21-spectra (a)
and M33-spectra (b) of the low doped n-type silicon substrate atΦa = 55◦ and 65◦ (Reprinted with
permission from Ref. [14]. Copyright 2010, American Institute of Physics.)

Fig. 11.7 Wavelength-by-wavelength extracted (dotted lines) and Drude model calculated real (ε1)
and imaginary (ε2) part of the dielectric function of the low phosphorous-doped n-type silicon sub-
strate (Reprinted with permission from Ref. [14]. Copyright 2010, American Institute of Physics.)

a free charge carrier concentration of N = 7.7 ± 0.4 × 1014 cm−3 and mobility of
μ = 1617±80 cm2/(Vs) if an averaged electron effective mass of 0.26 m0 (Ref. [47])
is assumed. The plasma frequency is approximately 0.14 THz. For the thickness of
the wafer we obtain 384.2 ± 0.1 µm which is highly consistent with the results
obtained from the infrared spectral range.

The real (ε1) and imaginary (ε2) part of the spectroscopic dielectric values for
the doped silicon were also extracted on a model free wavelength-by-wavelength
basis (dotted lines) and are compared with the previous determined Drude functional
model (solid lines) in Fig. 11.7. The wavelength-by-wavelength extracted data are
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in excellent agreement with the Drude model calculated data and show the typical
increase in ε2 for lower frequencies.

11.6 THz Dielectric Anisotropy of Metal Slanted Columnar
Thin Films

Highly-ordered three-dimensional nanostructured metal thin films exhibit unique
anisotropic optical properties in the THz spectral range. A 450 nm thick nanostruc-
tured cobalt film composed of slanted nanocolumns was grown by electron-beam
glancing angle deposition is investigated. A high-resolution field-emission SEM
edge view image of the sample is shown in Fig. 11.1. The film was deposited in a
customized ultrahigh vacuum chamber onto a low phosphorous-doped n-type (001)
silicon substrate. The deposition was carried out at an angle of 85◦ between the
incident particle flux direction and the substrate normal. Further details about the
growth process are omitted here and the interested reader is referred to Ref. [48].
The slanting angle of the Co nanocolumns is 65◦.

The THz-GSE measurements were carried out in the spectral range from 0.65
to 1.00 THz with a resolution of 1 GHz using the custom-built frequency-domain
THz ellipsometer described in Sect. 11.2. Experimental THz-GSE data, which are
represented here using the Mueller matrix formalism, were obtained at two differ-
ent angles of incidence Φa = 55◦ and 65◦ and for three different in-plane sample
rotation angles ϕ = 90◦, 135◦, and 180◦, and for which the columnar slanting plane
is oriented parallel, oblique (135◦), and perpendicular to the plane of incidence,
respectively.

The experimental THz-GSE data sets were analyzed using a stratified layer model
calculation where all model calculated data were matched simultaneously as closely
as possible to the experimental THz-GSE data by varying relevant physical model
parameters.

For best-match model calculations, a three phase model consisting of a low doped
n-type silicon substrate/Co F1-STF layer/ambient was implemented. Figure 11.8
depicts the normalized block-diagonal THz-GSE data M12, M21, and M33 of the
Co F1-STF sample at an angle of incidence Φa = 55◦ for three different in-pane
rotations ϕ = 90◦, 135◦, and 180◦. For comparison, the Mueller matrix spectra of the
silicon substrate before Co F1-STF deposition are plotted. The experimental (dotted
lines) and best-model calculated (solid lines) data are found to be in very good agree-
ment. The Mueller matrix spectra are dominated by Fabry-Pérot interference pattern
originating from the entire sample. The frequency of the Fabry-Pérot interference
pattern is determined by the layer thicknesses of all sample constituents, but it is
dominated by the thickness of the substrate which is 378 ± 1 µm. At the first glance,
one can observe that the interference amplitude is reduced for the Co F1-STF sample
in comparison to the bare silicon substrate due to the presence of the nanocolum-
nar film. It can be seen in Fig. 11.8 that the Fabry-Pérot pattern observed for the
Co F1-STF sample change as a function of the in-plane rotation angle. With
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Fig. 11.8 Experimental (dot-
ted lines) and best-model
calculated (solid lines) block-
diagonal Mueller matrix spec-
tra (upper panel M12 and
M21, lower panel M33) for
the Co F1-STF sample for
three different in-plane rota-
tion angles ϕ = 90◦, 135◦,
and 180◦. The spectra for the
silicon substrate before Co
STF deposition are shown for
comparison (Reprinted with
permission from Ref. [12].
Copyright 2011, American
Institute of Physics.)

Fig. 11.9 Experimental (dot-
ted lines) and best-model
calculated (solid lines) off-
diagonal Mueller matrix spec-
tra for the Co F1-STF sample
for an in-plane rotation angle
ϕ = 135◦ (Reprinted with
permission from Ref. [12].
Copyright 2011, American
Institute of Physics.)

increasing ϕ the orientation of the slanted nanocolumns change from parallel to
perpendicular to the plane of incidence and the amplitudes of the interference oscil-
lations decrease.

Figure 11.9 depicts off-diagonal block elements of the Mueller matrix of the
Co F1-STF sample obtained at an angle of incidence ofΦa = 55◦ andϕ = 135◦.1 The

1 The instrument which was employed for the THz GSE measurements operates in a polarizer-
sample-rotating analyzer scheme which gives access to the upper 3×3 block of the Mueller matrix
only [13, 14].
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anisotropy of the optical response of the nanocolumnar thin film is evident from the
non-zero off-diagonal block elements M13, M31, M23, M32 which would vanish for an
isotropic sample. The best-model parameters for the AB-EMA depolarization factors
(Eq. 11.1) are: La = 0.3333(1), Lb = 0.3355(1), and Lc = 0.3312(1). The depolar-
ization factors render the dipole shape at the location of the inclusion, and are wave-
length dependent. In the THz frequency range, the polarization fields are produced by
thousands of neighboring nanocolumns over which one wavelength equivalent of the
electric field averages the sample response. Probed at large wavelengths, factors L j

render the shape of the induced polarization almost as a sphere, however, with subtle
differences along and perpendicular to the columnar axis. These subtle differences
are responsible for the anisotropic dielectric functions, which differ all drastically
from the corresponding bulk (cobalt) dielectric properties. The best-model parame-
ters for the STF thickness and volume fraction of the nanocolumns, d = 441(5)nm,
and f = 33(1), respectively, are in good agreement with SEM data obtained from
Fig. 11.1 and GSE measurements in the NIR-VIS spectral range.2 As additional
structural parameter, we also determined the slanting angle of the intrinsic Carte-
sian coordinate system of the polarizabilities ε j , as described previously [48–50],
and which is identical with the physical slanting angle of the nanocolumns. For the
Drude model parameters (Eq. 11.2) of the Co nanocolumns ρ = 1.2(3)× 10−5�cm
and τ = 239(7) fs were obtained. These parameters were found to be in very good
agreement to those obtained for a bulk-like 100 nm thick Co film on a low doped
silicon substrate which was analyzed in the same spectral range for comparison. The
resistivity model parameter of the Co nanocolumns is approximately twice as large
as reported for bulk Co samples [51]. Overall, the agreement with bulk and thin
film conductivity is exciting given the limitations of the AB-EMA model approach.
The best-model parameters for the silicon substrate are N = 1.08(4) × 1015 cm−3

and μ = 1375(111)cm2/(Vs) if an electron effective mass of 0.26 m0 (Ref. [47])
is assumed. The anisotropic dielectric functions ε j and their coordinate system are
depicted in Fig. 11.10. The anisotropy induced by the columnar film structure is very
large. Note that while the dielectric polarizability (real part of ε j ) is larger than for
most dielectric materials, the absorption (imaginary part of ε j ) is reduced by approx-
imately two orders of magnitude compared with bulk or thin film Co. The AB-EMA
model approach predicts upon slight modifications of Drude, fraction and/or depo-
larization parameters that targeted optical properties of STF in the THz range can be
achieved by variation of slanting angle, lateral column density, and material.

2 A commercial instrument (M2000VI, J. A. Woollam Co., Inc., Lincoln, NE) was used for the angle-
resolved GSE measurements with the spectral range from 400 to 1680 nm. On the fully automated
system Φa was varied from 45◦ to 75◦ in steps of 10◦, while ϕ was varied from 0◦ to 360◦ in steps
of 6◦. Further details on the analysis of the NIR-VIS GSE measurements are omitted here.
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Fig. 11.10 Real (upper panel
ε1,a , ε1,b, and ε1,c) and imag-
inary (lower panel ε2,a , ε2,b,
and ε2,c) part of the THz
orthorhombic dielectric func-
tions obtained from the best-
model calculation for the Co
F1-STF sample. The inset
depicts the axes locations of
the intrinsic Cartesian polariz-
ability system (Reprinted with
permission from Ref. [12].
Copyright 2011, American
Institute of Physics.)

11.7 THz In-situ Ellipsometry Sensing of Dielectric Fluids
Using Metal Slanted Columnar Thin Films

The anisotropic optical response at THz frequencies strongly depends on the dielec-
tric properties of the ambient surrounding the slanted columnar thin films. Exemplar-
ily the difference in the THz range response between STFs in air and STFs immersed
in water is discussed. A 450 nm thick STF composed of Co nanocolumns was grown
by glancing angle deposition on a THz-transparent silicon substrate. THz measure-
ments were carried out with the sample mounted onto a custom-built liquid cell with
the Co STF facing the inside of the cell (Fig. 11.11).

Measurements were recorded in the spectral range from 0.65 to 1.00 THz with a
resolution of 1 GHz: (i) with the empty cell (air ambient) and (ii) with the cell filled
with nanopure water. Further details can be found in Ref. [52]. The angle of incidence
was Φa = 55◦. The in-plane orientation of the sample was ϕ = 225◦ during these
experiments, i.e., the columnar slanting plane was oriented oblique to the plane of
incidence in order to maximize the anisotropic optical response [12]. Figure 11.12
shows the non-zero experimental (dotted lines) and best-model calculated (solid
lines) Mueller matrix spectra M13, M31, M23, and M32 which are evidence for the
anisotropy of the optical response of the STF. The experimental and model calculated
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Fig. 11.11 Measurement configuration with THz beam reflected off the backside from the THz-
transparent silicon substrate with the STF in contact with fluid ambient. For the in-situ experiments
described here, the angle ϕ is 225◦ and accordingly the slanting plane is at an oblique angle with
respect to the plane of incidence (Reprinted with permission from Ref. [52]. Copyright 2012,
Cambridge University Press.)

data are in very good agreement for both the STF in air and water ambient. The
Mueller matrix spectra are dominated by a Fabry-Pérot interference pattern, which
originates from the double-side polished silicon substrate. One can observe a decrease
of the amplitude of the Fabry-Pérot oscillations if the ambient of the STF is changed
from air to water. The THz response of the metal STF strongly depends on the
dielectric properties of the ambient surrounding the slanted columnar thin films,
as well as the dielectric properties of particles attached within the nanostructures.
Model calculations using the AB-EMA approach described above deliver quantitative
information about amount and THz dielectric constants of the material attached or
incorporated within the nanostructures.

For the analysis of the experimental data obtained for the Co F1-STF on a silicon
substrate a two layer model composed of air ambient/Co F1-STF/Si substrate/air
ambient was used. The measurements for the Co F1-STF on a silicon substrate,
where the Co F1-STF side was immersed in a liquid medium, were analyzed using
a stratified four layer model calculation composed of air ambient/Si substrate/Co
F1-STF/liquid cell medium. The following best-model parameters were obtained
for the STF thickness and volume fraction of the nanocolumns: d = 441(5)nm
and f = 33(1), respectively. These parameters are in good agreement with SEM
data obtained from Fig. 11.1. The best-model parameters for the free charge carrier
concentration and mobility of the silicon substrate are N = 1.08(4) × 1015 cm−3

and μ = 1375(111)cm2/(Vs), respectively, assuming an electron effective mass of
0.26 m0 [47]. The slanting angle of the intrinsic Cartesian coordinate system of
the polarizabilities εa , εb, and εc was found to be identical to the physical slanting
angle of the nanocolumns. The following best-model parameters have been obtained
for the AB-EMA depolarization factors: La = 0.3333(1), Lb = 0.3355(1), and
Lc = 0.3312(1) [12]. The best-model Drude parameters resistivity and scattering
time for the Co nanostructures were ρ = 1.2(3) × 10−5�cm and τ = 239(7) fs,
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Fig. 11.12 Experimental
(dotted lines) and best-model
calculated (solid lines) THz
ellipsometry (Mueller matrix)
spectra of a Co F1-STF in
air and immersed in water
(Reprinted with permission
from Ref. [52]. Copyright
2012, Cambridge University
Press.)

respectively. If immersed in water the dielectric response of the Co nanostructures is
screened. This can be clearly observed in a change of the AB-EMA depolarization
factors: La = 0.3375(1), Lb = 0.3373(1), and Lc = 0.3252(1). Furthermore
changes in the best-model Drude parameters resistivity and scattering time for the
Co nanostructures are observed. The resistivity increases to ρ = 1.1(5)×10−4�cm
and the scattering time decreases to τ = 144(37) fs. This might be attributed to
continued oxidation of the Co nanocolumns. The best-model parameters obtained
for the dielectric contribution of water are ε∞ = 3.3(5), ε1 = 71(4), ε2 = 5.0(1),
τ1 = 8.3(2)ps, and τ2 = 0.18 ps (not varied during analysis) which are in very good
agreement with literature values [44].

The data shown in Fig. 11.12 suggest a new avenue for detection of dielectric
properties of liquid materials through THz-transparent windows in fluidic channels
or containers. Figure 11.13 depicts calculated off-diagonal Mueller matrix elements
M13 based on the best-match model obtained from the experimental data shown in
Fig. 11.12 for ultra-pure water. In Fig. 11.13 the best-match optical model was recal-
culated by varying the dielectric optical constant parameter of the fluid constituent,
εH2O +δεoff , and the differences for M13(εH2O +δεoff)− M13(εH2O) are plotted as a
3D surface versus THz frequency. Strong variations of the anisotropic mode coupling
properties of the structure substrate + STF can be seen at spectral positions where
the Fabry-Pérot interference pattern indicate reflection maxima. The sensitivity to
small changes in the fluid dielectric constant suggests this sample system as a sens-
ing device for the actual dielectric constant of the fluid immersing the metal slanted
columnar thin film. Note that the sensitivity increases substantially if spectroscopic
measurements (data over multiple Fabry-Pérot interferences) are included for data
analysis.
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Fig. 11.13 Simulated THz off-diagonal Mueller matrix element difference data for the slanted Co
nanocolumns in Fig. 11.12, if immersed in fluids of varying dielectric polarizability, relative to data
shown in Fig. 11.12 for ultra-pure water (δεoff )

11.8 Summary and Outlook

In summary, we have presented and discussed the application of generalized ellip-
sometry measurements at THz frequencies for the investigation of highly-ordered
three-dimensional nanostructure thin films. We demonstrate that frequency-domain
generalized ellipsometric measurements of the anisotropic optical properties of metal
nanostructure thin films in the THz spectral range are readily available by using
backward wave oscillator light sources emitting intense and highly coherent THz
radiation in standard rotating analyzer (or compensator) ellipsometry configura-
tions. The sculptured thin films consisting of three-dimensional, highly spatially
coherent arrangements of nanostructures can be routinely obtained from glancing
angle deposition. THz GSE measurements of thin films composed of slanted metal
nanocolumns reveal strong birefringence due to electronic coupling and screening
phenomena. Despite the extreme smallness of the nanostructures compared with the
THz wavelength equivalent, screening effects caused by changes in the ambient per-
mittivity lead to measurable changes in the THz birefringence. This effect can be
used for sensors of dielectric fluids in transmission or reflection geometries, where
measurements can be made through the backside of THz-transparent substrates. We
describe an anisotropic biaxial effective medium dielectric function approach which
comprise structural, geometrical and constituent fraction information, and which
enables quantitative analysis of THz generalized ellipsometry measurements.
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Our investigations suggest controlled variability of dielectric polarizability and
anisotropy in the THz range by choice of geometry, material, and structure. This
represents a new avenue for false-mode-suppressing nanostructured sensors with a
wide application range. As a read-out technique THz generalized ellipsometry is
envisioned and which will provide non-contact, non-destructive access to the nanos-
tructured sensor properties and allows accurate determination of structural, geomet-
rical and constituent fraction information which are valuable for basic research, and
industry.
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Chapter 12
Infrared Ellipsometric Investigations of Free
Carriers and Lattice Vibrations in
Superconducting Cuprates

Jiří Chaloupka, Dominik Munzar and Josef Humlíček

Abstract Since the discovery of superconductivity in copper oxides by Bednorz and
Müller [1] in 1986, these compounds attracted unprecedented interest of solid state
researchers, both experimentalists and theoreticians. The understanding of cuprates
at the microscopic level remains one of central problems of the present solid state
physics [2, 3]. Among the key issues, the origin of the superconductivity and the
unusual pseudogap phase are most intensely debated. In this chapter we discuss the
spectral ellipsometry as a very powerful experimental technique used to gain insight
into the peculiar nature of the cuprates. Since the energy scales of the superconducting
phenomena belong to the far-infrared range, the corresponding experimental setup
is rather different to that commonly used in the visible and ultraviolet spectral range.

12.1 Superconducting Cuprates

The phenomenon of superconductivity was discovered by Heike Kamerlingh-Onnes
in 1911 by measuring the dc resistivity of mercury at low temperatures [4]. Using
liquid helium to cool down the sample, he observed a sudden drop of the resistivity
at 4.2 K. In the following years superconductivity was observed in many metals
and alloys. The first phenomenological theory of superconductivity was established
by London brothers in 1935 [5, 6]. The next important step represents the work
by Ginzburg and Landau [7] providing its description in terms of a complex order
parameter ψ . A microscopic understanding of the phenomenon was missing for
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Central European Institute of Technology, Masaryk University,
Kamenice 735, 62500 Brno, Czech Republic
e-mail: chaloupka@physics.muni.cz

J. Chaloupka · D. Munzar · J. Humlíček
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Fig. 12.1 Time evolution of the highest superconducting transition temperature achieved since the
discovery of the superconductivity in 1911. The dashed lines indicate two temperatures of practical
interest—the boiling temperature of liquid helium and that of liquid nitrogen

almost fifty years after the discovery until the famous theory by Bardeen, Cooper
and Schrieffer was developed in 1957 [8].

One of the most important parameters of a superconductor is its transition tem-
perature Tc. Below this temperature, the superconductor is characterized by a dissi-
pationless dc transport due to the absence of excitations below a certain energy gap,
an ideal diamagnetism and other unusual phenomena. The history of the transition
temperature records is captured by Fig. 12.1. Until eighties, the transition tempera-
ture has grown roughly linearly reaching about 30 K. The materials include metallic
elements and intermetallic compounds like Nb3Sn, widely used nowadays in high
magnetic field applications. The linear trend seemed robust for a large part of the last
century, giving only a little hope to reach high temperatures in a reasonable time.
A great surprise came in 1986, when Bednorz and Müller found superconductivity
with Tc of about 30 K in an oxide system La5−x Bax Cu5O5(3−y) [1]. Shortly thereafter
the low temperature properties of this family of copper oxides were intensively stud-
ied and superconductivity was found in many of them, sometimes with Tc well above
the liquid nitrogen boiling point. The highest Tc under ambient pressure observed
so far is 138 K in HgBa2Ca2Cu3O8+δ [9]. Unfortunately, the initially steep increase
in Tc saturated quite quickly so that achieving room temperature superconductivity
still remains one of the greatest challenges of solid state physics. Later many other
so-called unconventional superconductors were found, usually having a small Tc.
A notable exception is the recent discovery of superconductivity with Tc up to 55 K
in iron pnictides [10–14].
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Fig. 12.2 Crystal structures of (a) La2−x Srx CuO4 and (b) YBa2Cu3O7−δ cuprate superconductors.
(c) Single CuO2 plane of the cuprates formed by Cu ions arranged in an approximately planar square
lattice and connected via oxygen ions. The lattice parameter of the square lattice is determined by
the size of Cu and O ions and varies only slightly among the cuprates

In the following we concentrate on the basic properties of the superconducting
cuprates, usually labeled, due to their high transition temperature, as high temperature
superconducting cuprates (HTSC) [2, 3].

The superconducting cuprates possess rather complex layered crystal struc-
tures related to the cubic perovskite structure of, e.g., BaTiO3. Two examples—
La2−x Srx CuO4 and YBa2Cu3O7−δ—are presented in Fig. 12.2a, b. The common
element of these structures is the CuO2 plane depicted in Fig. 12.2c. It is formed
by an approximately planar square lattice of copper ions bound together via oxygen
ions. The lattice parameter of the Cu sublattice is determined by the length of the
Cu-O bonds and equals about 3.8 Å. The direction perpendicular to the CuO2 planes
is commonly labeled as the c-axis direction while the planes themselves are usually
referred to as the ab-planes, following the crystallographic convention for tetrago-
nal/orthorhombic crystal structures. One of the important parameters of the cuprate
superconductors is the number of CuO2 planes per unit cell. La2−x Srx CuO4 shown
in Fig. 12.2a is a single-layer cuprate while YBa2Cu3O7−δ belongs to the so-called
bilayer cuprates, where pairs of closely spaced CuO2 planes enclosing the intrabilayer
regions are separated by the thicker interbilayer regions. Series of several adjacent
CuO2 planes within a unit cell are realized in Bi-, Tl-, and Hg-based cuprate families.
It is found that Tc first increases with the number of the planes per unit cell, achieving
a maximum value for three planes, this is followed by a decrease. The number of the
CuO2 planes per unit cell and the composition of the spacing layers determine the
c-axis lattice parameter which varies greatly among the cuprates. For the two mate-
rials presented in Fig. 12.2a, b it is equal to c = 13.2 Å (La2−x Srx CuO4, the distance
between the planes being c/2) and c = 11.7 Å (YBa2Cu3O7−δ), respectively. In con-
trast, Bi2Sr2CaCu2O8+x , another often studied cuprate superconductor, has a bilayer
structure with a much larger value of the c-axis lattice parameter c = 30.9 Å (the
distance between the bilayer blocks being c/2).
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Fig. 12.3 Schematic phase diagram of electron-doped (left) and hole-doped cuprates (right). The
scales correspond to Nd2−x Cex CuO4 and La2−x Srx CuO4. Adapted from Ref. [15], Copyright
(2003) by the American Physical Society

The essential physics of the superconducting cuprates is believed to be hosted by
the CuO2 planes. The crucial parameter here is the number of charge carriers in the
CuO2 planes. This number is controlled either by changing the ratio of different-
valence ions of the material as, e.g., the ratio La3+/Sr2+ in La2−x Srx CuO4, or by
varying the oxygen content as, e.g., in YBa2Cu3O7−δ . In the majority of cuprates
this so-called doping introduces holes into the CuO2 planes. A representative of the
opposite category of electron-doped cuprates is, e.g., Nd2−x Cex CuO4.

As can be observed in the schematic phase diagram in Fig. 12.3, the behavior
of cuprates is strongly doping-dependent. The undoped cuprates, where the formal
valence of Cu ions in the CuO2 planes is 2+, are antiferromagnets below the Néel
temperature of several hundred kelvins. With the introduction of mobile holes, which
eventually destroy the antiferromagnetic order, the cuprates switch to the highly
debated pseudogap phase and further (at temperatures above Tc) to a normal state
phase, which, however, still shows a fairly anomalous behavior. On the very right
side of the phase diagram the usual Fermi liquid behavior is observed. The super-
conducting phase of dx2−y2 -wave symmetry of the order parameter is found in the
doping range of 0.05–0.25 holes per Cu site in the CuO2 planes, with maximum Tc

at the doping level of about 0.15 holes per Cu site. As already presented in Fig. 12.1
the maximum transition temperature is strongly material dependent and often much
higher than that of conventional superconductors. For example, the widely known
superconductor YBa2Cu3O6.95 has the transition temperature of Tc = 92 K and the
magnitude of the gap separating the ground state from the excited states is about
Δmax = 30 meV at T � Tc. The superconducting dome in the phase diagram usu-
ally serves as a reference when characterizing the doping of a particular sample. One
distinguishes three doping regimes: underdoped, optimally doped (with the high-
est Tc) and overdoped. The most mysterious is the underdoped regime where the
superconducting phase is preceded by the pseudogap phase when cooling down the
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material. Although the excitations seem to be gapped in this phase, similarly as in
case of a superconductor, the phase does not exhibit long-range coherence and super-
conductivity. Several microscopic scenarios have been proposed for this pseudogap
state [16], but its origin is still to be understood.

Let us conclude this paragraph by briefly outlining the microscopic mechanisms
particularly important for cuprates. In contrast to the conventional superconductors,
where the mechanism of superconductivity involves phonons as the mediators of the
pairing interaction among electrons, the dominant part of cuprate physics originates
in the electron subsystem itself. The interactions with lattice vibrations seem to play
a minor role [3]. The relevant electronic states close to the Fermi level are derived
from the valence 3d states of Cu ions and partially also from the p states of O ions.
The energy levels corresponding to the five 3d orbitals of Cu (see Fig. 12.4a) split
due to the crystal field generated by the negative charges of the neighboring oxygens.
A schematic picture of the 3d9 valence shell of Cu2+ ion is presented in Fig. 12.4b.
The t2g orbitals and eg orbital of 3z2 − r2 symmetry are completely filled, while the
planar eg orbital of x2 − y2 symmetry contains a single electron (or, equivalently, a
single hole), which can to some extent move to neighboring ions.Therefore, mainly
the 3dx2−y2 orbital participates in the states near the Fermi level.

Based on the band structure, the cuprate superconductors should be metallic in
the whole doping range. However, in reality, the undoped cuprates are strongly cor-
related insulators of charge-transfer type [17], where a large energy penalty prevents
the charge transfer processes Cu2+–O2− → Cu1+–O1−, i.e., the motion of the holes.
Since the presence of two holes at the same Cu site is disfavored by a strong Coulom-
bic repulsion, the Cu ions in the undoped CuO2 plane retain the 3d9 configuration
and the holes move to neighboring sites only virtually like in the superexchange
process depicted in Fig. 12.4c. Such processes lead to antiferromagnetic interactions
among the spins of the Cu ions.

The doping introduces additional holes, and the insulating state with localized
holes eventually melts down. The doped carriers can travel through the lattice of
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Cu ions, but their motion and the interactions among them are strongly affected by
the inherent antiferromagnetic nature of the system. The theoretical approaches to
treat this difficult situation can be roughly divided into two classes, according to the
physical limit they start with. One possibility is to start with the antiferromagnetic
Mott insulator limit. This is the case of the theory developed by Anderson and col-
laborators [18, 19] and coined RVB theory. Approaches of the second class start with
a metallic system, corresponding to highly doped cuprates, and reflect the antiferro-
magnetic nature by, e.g., coupling of the holes to antiferromagnetic spin waves (for a
review see [20, 21]). Despite numerous successes on both sides, the ultimate theory
of HTSC—in the sense of the BCS theory for conventional superconductors and its
extensions—has not been formulated yet.

12.2 Experimental Setup of the Far-Infrared Spectral
Ellipsometry

Optical characteristics of materials, usually in the form of the frequency-dependent
dielectric function or the optical conductivity, are a valuable source of information
about the electronic structure and elementary excitations such as lattice vibrations.
During an optical measurement, the system is probed by photons of various energies.
Whenever the energy is such that the photons induce a symmetry allowed electronic
transition, resonate with a particular lattice vibration or create an excitation of other
kind, a characteristic absorption feature appears in the spectra. The wide range of
experimentally available photon energies which extends over several orders of mag-
nitude enables us to explore a large number of microscopic phenomena. The energy
scale of the pairing which leads to superconductivity belongs to the far infrared spec-
tral range; for instance, the energy gap 2Δ of about 60 meV in some of the cuprates
corresponds to about 500 cm−1. Therefore, it may be expected that the most relevant
information to the microscopic mechanisms of cuprates from optical measurements
is obtained in this spectral range.

The conventional experimental technique consists in the measurement of the
normal-incidence reflectivity followed by Kramers-Kronig analysis to obtain the
dielectric function or, equivalently, the complex conductivity. The analysis is neces-
sary for absorbing materials since the information about the phase of the reflected
light is lost. For the Kramers-Kronig analysis the reflectivity has to be known on a
wide spectral range and extrapolated toward zero and infinite frequency.

The analysis of the reflectivity is complicated for samples which have high reflec-
tivity (close to 1) such as the superconducting cuprates. In addition, problems with
the normalization—the determination of the absolute intensity—reduce the accuracy
of the dielectric function obtained. In such cases it is very convenient to employ the
technique of spectral ellipsometry. This technique is able to measure almost directly
the complex dielectric function with high accuracy and reproducibility of the results.
For each frequency it gives two ellipsometric angles simply related to the complex
dielectric function of the sample. This is in contrast to the reflectivity measurement
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where only a single number for each frequency is obtained. In addition, ellipsometry
is a self normalizing technique so that it does not suffer from the slow temporal
variations of the intensity of the light source, which are difficult to avoid.

The high-quality HTSC samples suitable for optical measurements are typically
flux-grown single crystals with a small size of a few millimeters. Combined with the
lack of intense conventional sources of the far-infrared radiation, this makes the opti-
cal measurements on cuprates particularly challenging. Therefore the measurements
are best performed using synchrotron light sources [22]. Their brilliance is several
orders of magnitude higher than that of the conventional infrared light sources such
as glowbars and the spectral range extends to the far infrared region. The synchrotron
radiation emitted by electrons moving at ultra-relativistic velocities is concentrated
into a narrow cone in the direction of the electron motion and is thus naturally col-
limated. This is another advantage, particularly for an ellipsometric measurement,
which requires the angle of incidence to be well-defined.

A simple ellipsometric setup utilizing a synchrotron source is sketched in Fig. 12.5.
Synchrotron beam passes through an interferometer which provides the spectral
resolution in the experiment. Because of its importance in the far-infrared spec-
troscopy, and in particular because of its relative complexity compared to the use
of a monochromator, we give later in this paragraph a detailed discussion of the
interferometer-based approach. The light from the interferometer is linearly polar-
ized using a polarizer. The polarizers need to be of a good quality with a high degree
of polarization, having rather large and homogeneous area. In the far-infrared range,
wire grid polarizers, free standing or evaporated onto thin transparent substrates,
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may be used. The degree of polarization as high as 99.9 % may be achieved. The
polarizer angle P is such that the polarized electric field has non-zero components
perpendicular to the plane of incidence (s-component, Es) and in the plane of inci-
dence (p-component, Ep). In the case of a non-depolarizing sample, the reflection at
the sample surface may be described by two complex Fresnel coefficients, rs and rp

for the s- and p-components of the electromagnetic wave, respectively. The reflected
light becomes, in general, elliptically polarized, and it is the analysis of this ellipse
that gave the technique its name. The polarization state of the reflected beam is ana-
lyzed using a rotating analyzer by varying the analyzer angle A. In the simple case
shown, the intensity turns out to have the form

I (A) = I0(1 + α sin 2A + β cos 2A). (12.1)

The coefficients α, β and the constant component I0 may be obtained by Fourier
analysis of the intensity I (A) recorded by the analyzer. They determine the complex
ratio of the Fresnel coefficients rp and rs ,

ρ = rp

rs
= tanΨ eiΔ, (12.2)

which is the fundamental result of the ellipsometric measurement. For an ideal semi-
infinite sample, the dielectric function can be reconstructed out of this quantity using
the formula

ε(ω) = sin 2ϕ

[
1 +

(
1 − ρ

1 + ρ

)
tan 2ϕ

]
, (12.3)

where ϕ is the angle of incidence indicated in Fig. 12.5. In a real situation of a
measurement on a HTSC, the analysis is more complex. For these strongly absorbing
samples the ellipsometric determination of the dielectric function is most precise in
the grazing incidence geometry with the angle of incidence around ϕ ≈ 85 ◦. This
not only brings enhanced surface sensitivity (requiring to take a special care of the
surface quality) but also polarization dependent diffraction effects which become
very pronounced in the far-infrared range even for millimeter-sized samples [23].
Next, the HTSC samples are highly anisotropic—the conductivity in the ab-plane
being much larger than that along the c-axis. Even in the most isotropic samples like
YBa2Cu3O7−δ the difference is an order of magnitude. Therefore, the c-axis data
can suffer from the leakage of the ab-plane response and vice versa and a great care
has to be taken to separate the two contributions.

Let us return back to the problem of obtaining the spectral resolution using an
interferometer device. As already mentioned, one of the major problems of the far-
infrared ellipsometry is the small light intensity. The use of dispersive elements, such
as usual diffraction-grating based monochromators, would lead to a large decrease
of the intensity and an alternative method of spectral decomposition is thus required.
The problem can be solved in the same way as in the Fourier transform infrared
spectroscopy (FTIR), i.e., by using interference phenomena to obtain the information
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Fig. 12.6 Schematic sketch of an interferometer of Michelson type with a beamsplitter (a semi-
transparent mirror). The light from the source passes to the detector either through reflection at the
fixed mirror 1 or at the moving mirror 2

about the spectral distribution of the measured light [24]. The interferometric method
uses the whole intensity of the measured beam and is thus very convenient for infrared
applications. The advantage comes at the expense of high-frequency data sampling
and their successive computer processing. Thanks to the fast development of com-
puters in the last decades such tasks are feasible now and FTIR spectrometers are
widely used.

In the rest of this paragraph, we give an elementary discussion of the principle of
Fourier spectroscopy. For the sake of simplicity, we will analyze a setup depicted in
Fig. 12.6 based on a Michelson interferometer. More sophisticated variants of this
device can be used in actual FTIR spectrometers.

Let us first assume, that the source emits coherent monochromatic light described
by the electric field E(r, t) = E0 exp[i(k · r − Ωt)], where k = 2πν and ν is the
wavenumber of the light. This light is incident on the beamsplitter, where the beam
is partially reflected onto the mirror 1 with a fixed position, and partially transmitted
to the moving mirror 2. After reflections at the respective mirrors the light is trans-
mitted/reflected to the detector where the interference determined by the optical path
difference 2Δx occurs. Both interfering beams underwent two equivalent reflections
and one transmission, so that they should have the same intensity. Neglecting the
loss of intensity, the electric field in front of the detector can be expressed as

E(Δx, t) = 1

2
[E0 cosΩt + E0 cos(Ωt − 4πνΔx)]. (12.4)

The detected intensity is proportional to the time average of the squared electric field,
I = cε0〈E2〉, and depends on the shift Δx of the mirror 2 as

I (Δx) = cε0
E2

0

4
[1 + cos(4πνΔx)] . (12.5)
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Now we generalize the above result by introducing the spectral density IS(ν) of the
source. For example, a monochromatic source emitting light with the wavenumber
ν0 is described by the spectral intensity IS(ν) = (cε0 E2

0/2)δ(ν − ν0). By summing
up the spectral contributions, we arrive at the following formula for the intensity at
the detector:

ID(Δx) =
∫ ∞

0
IS(ν)

1

2
[1 + cos(4πνΔx)] dν. (12.6)

Note that the maximum intensity IDmax is obtained with Δx = 0. We rearrange the
above formula by introducing a new quantity I ′(ν) given by

I ′(Δx) = ID(Δx)− 1

2
IDmax =

∫ ∞

0
IS(ν) cos(4πνΔx) dν. (12.7)

The quantity I ′(Δx) is usually called the interferogram and equals the cosine Fourier
transform of the spectral intensity. At this point, the advantage of the Fourier spec-
troscopy compared to methods involving a monochromator becomes clear. While the
latter methods decompose the analyzed beam into many quasi-monochromatic chan-
nels to be measured separately, here all the monochromatic components contribute
at the same time and the intensity measured by the detector is therefore comparable
to the intensity of the entire incoming beam. This enables us to analyze even very
weak signals.

The spectral intensity IS(ν) is obtained from the interferogram by means of the
cosine transform of I ′(Δx). A complete reconstruction would require to measure
I ′(Δx) for an infinite range of Δx . The motion of the moving mirror is however
limited by the construction of the interferometer. As will be shown below, this lim-
its the resolution of the spectrometer. Assuming, that Δx is bound to the interval
〈−Δxmax,+Δxmax〉, we perform the cosine transform via

I ′
CT(ν) =

∫ +Δxmax

−Δxmax

I ′(Δx) cos(4πνΔx) dΔx, (12.8)

which—after insertion of I ′(Δx) from (12.7)—becomes

I ′
CT(ν) = 1

2

∫ ∞

0
IS(ν

′)
[∫ +Δxmax

−Δxmax

cos(4πνΔx) cos(4πν′Δx) dΔx

]
dν′. (12.9)

The inner integral is easily evaluated, leading to

1

2

∫ ∞

0
IS(ν

′)
{
sinc [4π(ν − ν′)Δxmax] + sinc [4π(ν + ν′)Δxmax]

}
Δxmax dν′.

(12.10)
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If the range Δxmax of the mirror motion is large enough, we may use the limit

lim
Δxmax→∞

sin[4π(ν − ν′)Δxmax]
4π(ν − ν′)

= 1

4
δ(ν − ν′). (12.11)

Then I ′
CT(ν) = (1/8)IS(ν) and the spectral intensity of the source is recovered. In the

case of Δxmax not sufficiently large, I ′
CT(ν) is a convolution of the original spectral

intensity IS(ν) and the function (1/2)Δxmaxsinc (4πνΔxmax). The spectral features
become broader and the resolution is limited to about (Δxmax)

−1. The disturbing
side maxima of the sinc function are removed by the so-called apodization, which is
a multiplication of the interferogram by a suitable function smoothing out the step
of I ′(Δx) at Δx = ±Δxmax.

Further complications are related to the discrete sampling of I ′ on the Δx inter-
val. According to the Nyquist theorem, there is a limit of the highest frequency
that can be captured with a discrete sampling and higher frequencies become
“aliased” into the measured frequency range. In our case the limiting wavenumber is
1/(2×the step inΔx). It is thus necessary to perform high frequency sampling of the
detector signal while moving the interferometer mirror. This is usually not a serious
problem in infrared but becomes difficult for shorter wavelengths.

12.3 Optical Response of Superconducting Cuprates

The experimentally observed electromagnetic response of the cuprates is highly
anisotropic. This is a natural consequence of the layered structure consisting of
highly conductive CuO2 planes separated by weakly conducting spacing layers. In
case of radiation polarized in the CuO2 planes, we talk about the in-plane or ab-plane
response. Similarly, the response to radiation polarized perpendicularly to the CuO2
planes is denoted as the out-of-plane or the c-axis response.

The optical response reflects the microscopic processes induced by the electro-
magnetic field of incident photons. It has the potential to capture the nature of the
electronic structure as well as the dynamics of the ions forming the crystal lattice.
In this chapter we concentrate on two contributions dominant in the infrared part
of the spectra—the response of free charge carriers and that of lattice vibrations
(phonons)—and, in particular, on the influence of the transition into the supercon-
ducting state on these two contributions.

The understanding of the electronic contribution to the spectra is complicated by
the fact that it is a complex quantity reflecting contributions of many different types
of scattering events which the electrons participate in. This includes scattering on
impurities and excitations such as lattice vibrations or spin waves as well as the mutual
interaction among the electrons. As a result, the electronic part of the spectra contains
the Drude peak broadened by the scattering and possibly accompanied by further
absorption features. The c-axis response is, in addition, influenced by interesting
multilayer effects.
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Somewhat simpler are manifestations of infrared-active phonons. The absorption
by lattice vibrations leads to sharp peaks in the spectra. Their profiles can be mostly
well fitted by the Lorentz oscillator model. The phonon line is then characterized by
three quantities: the frequency of the vibration, the linewidth indicating the degree
of damping, and the oscillator strength as a measure of the coupling of the phonon
to the electromagnetic field.

In the following two paragraphs, we discuss the characteristics of the in-plane and
out-of-plane optical response of cuprates. Since only selected aspects of this response
are covered here, an interested reader should also consult [25] for a detailed review
and [26] for a review of the electrodynamics of the strongly correlated materials in
general.

12.3.1 In-plane Optical Response

The in-plane optical response reflects mainly the microscopic processes occurring
within the CuO2 planes. The analysis of the superconducting-state profiles of the
in-plane optical conductivity suggests [27, 28] that the charge carriers are coupled
to spin excitations with the characteristic energy of several tens of millielectronvolts
as observed in neutron scattering experiments.

Before dealing with the specifics of cuprates, let us first discuss general aspects
of the effect of the superconducting transition on the optical conductivity of charge
carriers. A typical situation is sketched in Fig. 12.7. Above the transition temperature
Tc, we start with a normal metallic response (Fig. 12.7a). The low energy response of
free carriers generates a Drude-like peak broadened by various scattering processes.
In the superconducting state the charge carriers undergo pairing and condense into
a macroscopically coherent state. The condensate is characterized by an undamped
response manifesting itself as a δ-peak at zero frequency in the real part of the
optical conductivity. Deep below Tc, the scattering mechanisms can only have an
effect above the frequency of 2Δ/� as it costs the energy of 2Δ to break an electron
pair. HereΔ is the excitation energy gap characterizing the superconductor. The zero-
frequency δ-peak in the real part of the conductivity is accompanied by a component
∼1/Ω in the imaginary part, following from the Kramers-Kronig relations. In this
context, the electron density is usually divided into the superfluid (condensate) part
ns characterized by the undamped (singular) response σcond and a normal part nn

providing the regular dissipative response σreg at finite frequencies. The conductivity
can then be written as

σ(Ω) = σcond(Ω)+ σreg(Ω) = πnse2

m∗ δ(Ω)− nse2

iΩm∗ + σreg(Ω), (12.12)

where m∗ is the effective mass of the electrons. For an s-wave superconductor at
T � Tc (Fig. 12.7b), there is no absorption in the spectral range up to 2Δ, therefore
Re σreg(Ω) is essentially zero in this range. In the case of a d-wave superconductor
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Fig. 12.7 Schematic profiles of the real part of the conductivity of a metallic system in the nor-
mal state (a), an s-wave superconductor deep below the transition temperature (b), and a d-wave
superconductor deep below the transition temperature (c). In the superconducting state, the conduc-
tivity contains the singular condensate contribution. (d) Illustration to the Ferrell-Glover-Tinkham
sum rule

at T � Tc, the superconducting gap spans the range [−Δmax,+Δmax] and the
excitations do not have a finite-frequency threshold as in an s-wave superconductor.
Nevertheless, the conductivity below 2Δmax is reduced with a typical profile shown
in Fig. 12.7c. In both cases, if the temperature is elevated to a value comparable to
Tc, there will be a significant number of thermally excited charge carriers leading to
a restoration of the Drude peak in σreg.

Since the zero-frequency δ-peak is not directly accessible, its spectral weight,
which is proportional to ns , has to be obtained by analyzing the imaginary part of the
conductivity or by measuring the magnetic penetration depth that is also determined
by ns . A practical tool is also provided by the so-called sum rules [29] obeyed by
the electronic contribution to the conductivity. For example, the partial sum rule for
the normal state states that

∫ W

0
Re σ(Ω) dΩ = πne2

2m∗ . (12.13)

The integration is performed up to the electronic bandwidth W and n, m∗ are the elec-
tronic density and the effective mass of the conduction band, respectively. When inte-
grating up to very high energies reaching the X-ray range (which is rarely possible due
to experimental constraints), all the electrons—both valence and core—successively
contribute to the electromagnetic response and n, m∗ are then the total electronic
density and the true electronic mass me. The relevant sum rule for the superconduct-
ing case is the Ferrell-Glover-Tinkham sum rule [30], which can be used to obtain
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the condensate weight at zero frequency by comparing the finite-frequency profiles
of the real part of the conductivity above and below Tc. Because of the temperature
independence of the expression on the right-hand side of (12.13) with W → ∞
(spectral weight conservation) the condensate weight is equal to the missing spectral
weight at finite frequencies:

∫ ∞

0+
[Re σ(Ω, T > Tc)− Re σ(Ω, T < Tc)] dΩ = πnse2

2m∗ . (12.14)

As illustrated in Fig. 12.7d, the major part of the condensate spectral weight is col-
lected from the region of the dip in the regular part of Re σ below 2Δ that appears
below Tc. There are also other redistributions of the spectral weight between the
zero frequency peak and the high-energy part of the spectra, but mostly they are less
apparent [25].

Representative experimental data of the in-plane optical response of optimally
doped HTSC are presented in Fig. 12.8. It can be seen that the electronic contri-
bution to the conductivity is fairly high and the phonon peaks less visible. Several

(a) (b)

Fig. 12.8 a Real part of the (i) conductivity along the a-axis and (ii) the dielectric function obtained
by spectral ellipsometry on optimally doped YBa2Cu3O6.95 (Tc = 91.5 K) at 100 K (thin solid line)
and 10 K (thick solid line). Reprinted from Ref. [31], Copyright (2002), with permission from
Elsevier. b Frequency dependent effective mass and scattering rate obtained from the optical data
of an optimally doped Bi2Sr2CaCu2O8+x . In the bottom panel, the high-frequency parts of selected
spectra are fitted by lines. Reprinted figure with permission from Tu et al., Ref. [32]. Copyright
(2002) by the American Physical Society
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peaks marked in Fig. 12.8a correspond to phonons or to more complex collective
excitations consisting of lattice vibrations accompanied by a large electronic con-
tribution. A comparison of T = 100 K and T = 10 K curves in Fig. 12.8a shows
the depression of the real part of the conductivity associated with the opening of the
superconducting gap. The temperature evolution is consistent with the picture of a
d-wave superconductor as sketched in Fig. 12.7c. Some details of the interpretation
will be given further in this paragraph. The inset of the bottom panel of Fig. 12.8a
shows the reflectivity calculated using the ellipsometric data. The corresponding
values are very close to 1, which clearly demonstrates the difficulties of the determi-
nation of the dielectric function using reflectivity measurements and the advantages
of ellipsometric measurements, which enable to obtain reliably even fine details of
the spectra, if diffraction effects can be eliminated.

The optical response is often analyzed in terms of two frequency dependent quanti-
ties of the extended Drude model [33]—the scattering rate (inverse lifetime) τ−1(Ω)

and the effective mass m∗(Ω). The conductivity is expressed as

σ(Ω) = ε0Ω
2
pl

τ−1(Ω)− iΩm∗(Ω)/me
, (12.15)

whereΩpl denotes the plasma frequency. In case of frequency independent τ−1 and
m∗, (12.15) coincides with the well-known Drude model. Example data of these
quantities obtained on optimally doped Bi2Sr2CaCu2O8+x samples are presented
in Fig. 12.8b. The interesting quantity here is the scattering rate, which exhibits
a totally different behaviour above and below 1000 cm−1. Above 1000 cm−1, it
increases linearly with increasing frequency. This trend may be continued to lower
frequencies for T > Tc but with the onset of superconductivity, a gap appears in the
spectra below 1000 cm−1.

The in-plane data can be interpreted within a model where the charge carri-
ers are coupled to antiferromagnetic spin waves, i.e., they emit and absorb these
waves while moving in the crystal. The antiferromagnetic waves, which can be
directly observed in neutron experiments, have a characteristic energy of several
tens of millielectronvolts. For example, in YBa2Cu3O6.92, the energy density of the
spin waves peaks at about Emode ≈ 40 meV [34]. For a detailed discussion of the
in-plane infrared spectra see [35, 36] and references therein. Here we only mention
the main results. The model predicts the following features: (i) A gradual onset of the
real part of the conductivity and 1/τ around Emode; (ii) A knee feature in the spectra
of 1/τ around Emode +Δmax (and the corresponding maximum in the second deriva-
tive of the spectra); (iii) An overshoot of the spectra of 1/τ , i.e., 1/τ(T � Tc) above
1/τ(T ≈ Tc), in the frequency region around Emode + 2Δmax. The predicted posi-
tions of the spectral features of 320, 560 and 880 cm−1 (obtained using Emode = 40
meV) and Δmax = 30 meV are in reasonable agreement with the data. Finally, the
Drude peak visible in the data originates in those parts of the Brillouin zone near the
Fermi surface, where the superconducting energy gap is close to zero.
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12.3.2 Optical Response Along the c-Axis

If the probing radiation is polarized along the c-axis, a fairly different response
is found than that in the in-plane case. The c-axis conductivity is much smaller
than the in-plane conductivity and is strongly material-dependent. In the normal
state, the dc c-axis conductivity of the most three-dimensional high-Tc super-
conductor YBa2Cu3O7 is about 400�−1cm−1, that of a highly two-dimensional
Bi2Sr2Ca2CuO8 is four orders of magnitude lower [25]. Due to the relatively low
electronic contribution to the conductivity compared to the in-plane response, the
most apparent features of the c-axis spectra are sharp phonon peaks. In this para-
graph we concentrate on the interesting case of cuprates with two CuO2 planes per
unit cell such as YBa2Cu3O7−δ , where further complexity results from multilayer
effects.

The basic doping and temperature trends of the c-axis conductivity are shown in
Fig. 12.9 displaying the c-axis conductivity of Y0.86Ca0.14Ba2Cu3O7−δ samples with
oxygen content given by δ = 0.4 (slightly underdoped), δ = 0.3 (optimally doped),
and δ = 0.1 (strongly overdoped) [37]. By comparing the conductivity spectra for
different dopings and temperatures we can observe the following trends: At low
temperatures, the conductivity in a region below a certain doping dependent energy

(a) (c) (e)

(f)(d)(b)

Fig. 12.9 Doping- and temperature-dependent trends observed in the c-axis conductivity obtained
by far-infrared ellipsometry measurements on Y0.86Ca0.14Ba2Cu3O7−δ crystals. Data measured on
underdoped (a, b), optimally doped (c, d), and overdoped (e, f) samples are presented. The upper
panels show the complete conductivity data, in the bottom panels, the phonon peaks are subtracted.
Reprinted figure with permission from Bernhard et al., Ref. [37]. Copyright (1999) by the American
Physical Society
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is suppressed. In the overdoped and optimally doped regime, this energy is approx-
imately two times the superconducting gap amplitude and the suppression starts at
the transition temperature Tc. In the underdoped regime, the pseudogap phenomenon
causes a similar suppression that starts already above Tc. The superconducting tran-
sition and the emergence of the superconducting gap leads to an additional decrease
of the conductivity. Note also, that the normal state conductivity profile and the
dc-conductivity at the highest temperatures are strongly doping dependent. In the
spectral region shown, the normal state conductivity is an increasing, approximately
constant and decreasing function of energy for the underdoped, optimally doped and
overdoped case, respectively.

A closer look at the temperature dependence of the c-axis spectra reveals two
interesting spectral features appearing in the superconducting state. The first one is
localized between the phonon peaks at 320 and 560 cm−1. It is fairly pronounced
in strongly underdoped samples, in the moderately underdoped sample of Fig. 12.9a
it shows up around 500 cm−1. Originally it was attributed to a phonon, its position
and spectral weight, however, are strongly doping dependent so that it has to be of
electronic origin. The second feature is a less pronounced mode around 1000 cm−1,
best visible for optimally-doped and overdoped samples [38, 39]. An important
observation related to these features is that they are specific to cuprates with two or
more CuO2 planes per unit cell, see, e.g., [40].

The lower mode is clearly visible around 400 cm−1 in Fig. 12.10, where we show
the c-axis conductivity spectra of an underdoped YBa2Cu3O6.5 sample (two CuO2
planes per unit cell) for a wide range of temperatures. The electronic contribution
to the spectra obtained by subtracting that of the phonon modes is presented in
Fig. 12.10b. The mode is visible already at temperatures somewhat above Tc though
with a small magnitude. It rapidly gains spectral weight upon transition to the super-
conducting state. The presence of the mode also influences the surrounding phonon
peaks leading to the so-called phonon anomalies. The phonon at 320 cm−1 is the
most susceptible to this influence.

A sophisticated theory explaining the electronic modes on a microscopic level was
developed recently [42]. It involves a microscopic model with the electronic coupling
between the CuO2 planes. Here we recall an earlier and simpler interpretation of the
lower mode around 400 cm−1 in terms of the transverse plasmon of an effective
medium based model of the superlattice of the CuO2 planes. This phenomenological
approach was first introduced by van der Marel and Tsvetkov [43] and later extended
by Munzar et al. [44] to explain the observed phonon anomalies. In the limit of
weakly coupled CuO2 planes, the phenomenological approach is consistent with the
fully microscopic one of [42].

The model is introduced in Fig. 12.11 for the case of YBa2Cu3O7−δ with two
CuO2 planes per unit cell. A generalization of the following considerations to the
case of cuprates with more CuO2 planes per unit cell is straightforward. Within this
model the CuO2 planes are represented by homogeneously charged planes, separated
by intrabilayer (bl) and interbilayer (int) spacing regions. The electric field applied
along the c-axis induces current densities jbl and jint flowing in the intrabilayer
and interbilayer regions, respectively. The currents carry charge between the CuO2
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(b)(a)

Fig. 12.10 a Temperature dependence of the real part of the c-axis conductivity measured on
a strongly underdoped YBa2Cu3O6.5 crystal with Tc = 52 K. b Temperature dependence of the
electronic contribution obtained by subtracting the contributions of the phonon modes. Reprinted
figures with permission from Bernhard et al., Ref. [41]. Copyright (2000) by the American Physical
Society

planes. The resulting excess charge densities ±ρ then modify the external electric
field producing the local electric fields Ebl and Eint. To account for these effects
quantitatively and to derive a formula for the macroscopic c-axis conductivity, we
describe the response of the intrabilayer and interbilayer region by the local con-
ductivities σbl and σint such that the current densities are given by jbl = σbl Ebl and
jint = σint Eint. At this point we divide the processes contributing to the conductivity
according to their characteristic energy. We keep the contribution of the low-energy
processes with the characteristic energy below 102 meV related to the superconduc-
tivity in σbl/int explicitly. Next we assume, that the high-energy interband processes
(characteristic energy 100–101 eV) merely provide an effective medium with the
relative permittivity ε∞. The dielectric function then takes the form

ε = ε∞ + iσ

ε0Ω
(12.16)

for both local and macroscopic response. A realistic value of ε∞ is about 5.
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Fig. 12.11 a Layered crystal structure of bilayer cuprate YBa2Cu3O7−δ and b its model representa-
tion by a system of charged conductive sheets. The structure is divided into the (intra)bilayer regions
between the closely spaced CuO2 planes and interbilayer regions between these pairs of the CuO2
planes. The local fields and currents are labeled accordingly. c Representation of YBa2Cu3O7−δ as
a multilayered composite consisting of two constituents of thicknesses dbl and dint respectively

The macroscopic c-axis conductivity is defined as the ratio of the macroscopic
current density to the macroscopic electric field. Assuming, that the fields and currents
in the intrabilayer and interbilayer regions are homogeneous, we get the macroscopic
(averaged) current density as 〈 j〉 = (dbl jbl +dint jint)/d and the macroscopic electric
field as 〈E〉 = (dbl Ebl + dint Eint)/d, where dbl and dint are the thicknesses of the
intrabilayer and interbilayer regions respectively, and d = dbl + dint is the total
thickness of one period of the multilayer. The resulting formula for the macroscopic
conductivity thus reads

σ = 〈 j〉
〈E〉 = dblσbl Ebl + dintσint Eint

dbl Ebl + dint Eint
. (12.17)

The local electric fields differ from each other due to the fact that the planes are
charged. Considerations based on elementary electrostatics lead us to the relation

Ebl − Eint = ρ

ε0ε∞
. (12.18)

The Coulomb field due to the charge density ρ is screened by the higher-energy
processes providing ε∞ as discussed above. The charge accumulated on the planes
is determined by the currents and obeys the continuity equation
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∂ρ

∂t
= jint − jbl, in frequency domain − iΩρ = σint Eint − σbl Ebl. (12.19)

By eliminating ρ from (12.18) and (12.19) and inserting into (12.17) we arrive at the
multilayer formula

d

σ∞ + σ
= dbl

σ∞ + σbl
+ dint

σ∞ + σint
(12.20)

with σ∞ = −iΩε0ε∞. In terms of the local dielectric functions, the macroscopic
dielectric function is given by

d

ε
= dbl

εbl
+ dint

εint
. (12.21)

This formula is equivalent to the result of the effective medium theory for the mul-
tilayer depicted in Fig. 12.11c and the electric field applied along the c-axis (for an
introduction to the effective medium theory, see e.g. [45]).

We address the implications of the mixing formulas (12.20) or (12.21) for the
macroscopic c-axis conductivity of cuprates below Tc by considering, for the sake of
simplicity, a superconducting electromagnetic response of the intrabilayer regions
and a normal response of the interbilayer regions, εint = ε∞.1 This roughly corre-
sponds to the actual physical situation in cuprates. Explicitly, we take the conductivity
of the intrabilayer regions of the pure condensate form σbl(Ω) = iε0Ω

2
bl/Ω , i.e.,

neglect σreg in (12.12). The corresponding dielectric function is εbl = ε∞ −Ω2
bl/Ω

2.
It is easy to show, that the resulting macroscopic c-axis conductivity has a resonance
(singularity) at the frequencyΩp = Ωbl

√
dint/dε∞, which for realistic values of the

parameters gives Ωp ≈ 400 cm−1. Physically, the undamped condensate response
at zero frequency was shifted to a finite frequency due to charging of the planes
resulting in a plasmon-like collective mode. It is usually denoted as a transverse
Josephson plasmon, because the plasma oscillations are perpendicular (transverse)
to the direction of propagation of the electromagnetic wave and because the mul-
tilayer of alternating normal and superconducting regions can be described as a
superlattice of Josephson junctions. Note that the simple effective-medium picture
describes correctly the stack of very thin layers (dbl ≈ 0.33 nm, dint ≈ 0.84 nm).

We conclude this chapter by commenting on the interesting interplay between
the collective electronic mode around 400 cm−1 and the lattice vibrations of nearby
frequencies, clearly visible in Fig. 12.10a. It is essentially a local-field effect, where
the charging of the CuO2 planes modifies the electric fields acting on the ions and
thus influences lattice vibrations. From Eqs. (12.18) and (12.19) we can extract the
frequency dependent ratio of the local fields

1 When dealing with the experimental data, one can successfully fit the spectra using the multilayer
formula with both σbl and σint involving a superconducting condensate contribution (much weaker
in σint) and phonon contributions.
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Fig. 12.12 a Polarization diagrams for the two phonon modes that exhibit the most pronounced
anomalies [46]. The left and the right diagram correspond to the 320 cm−1 and the 560 cm−1 mode,
respectively. b Oscillator characteristics of the oxygen bond-bending mode as obtained from the
ellipsometric data measured on underdoped YBa2Cu3O6.5 with Tc = 52 K. Shown are the oscillator
strength S, the eigenfrequency Ω0 and the half-width Γ . Reprinted figure with permission from
Bernhard et al., Ref. [41]. Copyright (2000) by the American Physical Society

Ebl

Eint
= σ∞ + σint

σ∞ + σbl
= εint

εbl
. (12.22)

This ratio is quite different from unity in the multilayer cuprate, where the intrabi-
layer region becomes superconducting and the interbilayer region exhibits a nor-
mal response. In the simplest case we considered above, the ratio is equal to
Ebl/Eint = (1 −Ω2

bl/ε∞Ω2)−1 having a singularity at Ωs = Ωbl/
√
ε∞, i.e., very

close to the frequencyΩp of the plasmon peak, and being negative belowΩs . From
the phonon polarization diagrams in Fig. 12.12a it may be deduced, that the oxygen-
bending mode with the frequency of 320 cm−1 is driven mainly by the local field
acting on the planar oxygens [≈ (Ebl + Eint)/2] while the mode at 560 cm−1 involv-
ing vibrations of the ions in the interbilayer region is driven by the interbilayer local
field. The changes of the spectral weight of the two phonons below Tc can be inter-
preted as follows. In the frequency range of the 320 cm−1 phonon, Ebl and Eint have
the same sign in the normal state above Tc (Ωbl = 0), but opposite signs below Tc

(in the presence of Ωbl). As a consequence, the magnitude of the local field driving
the phonon decreases upon entering the superconducting state and this leads to the
decrease of the spectral weight. The appearance of nonzero Ωbl below Tc similarly
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leads to a decrease of the field Eint driving the 560 cm−1 phonon and to the corre-
sponding decrease of the spectral weight of the phonon. For a careful discussion and
for the model equations see [44, 47].

Several other interesting effects have been discovered in the c-axis conductiv-
ity, for example those related to the pseudogap phenomenon and its connection to
the superconductivity [39, 48], or the changes induced by strong magnetic fields
[49, 50], but they are beyond the scope of the present introductory chapter.

12.4 Conclusion

Infrared ellipsometry proved to be a powerful technique for the studies of numerous
peculiar properties of cuprates. In particular, electronic excitations and lattice vibra-
tions in both normal and superconducting state have been examined with an excep-
tional precision and accuracy. Recent advances in the ellipsometric instrumentation
overcome the difficulties encountered in measurements of small single-crystalline
samples in the far-infrared range.
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Chapter 13
Real-Time Ellipsometry for Probing
Charge-Transfer Processes at the Nanoscale

Maria Losurdo, April S. Brown and Giovanni Bruno

Abstract Nanoscale charge transfer is important to both the frontier of fundamental
science and to applications in molecular electronics, photonic, electronic, optical,
imaging, catalysis, sensing devices, photovoltaics, and energy savings and storage.
For many of those applications, plasmonic metal nanoparticles are coupled with
molecules and/or semiconductors, where nanoparticles act as an electron-bridge.
Metal nanoparticles experience charge transfer either by a hopping mechanism
involving transient charging of the nanoparticle and/or by electron storage and delo-
calization among/in the nanoparticles. This electron transfer affects the electron
density in the metal, and the plasmon resonance, and therefore, can be detected
spectroscopically. This chapter discusses examples of exploitation of spectroscopic
ellipsometry as a real time research tool that advance description and understanding
of charge transfer phenomena involving (i) chemisorption of metals on semicon-
ductor surfaces, (ii) growth of plasmonic nanoparticles on polar semiconductors,
(iii) coupling plasmonic nanoparticles to graphene, and (iv) charge transfer between
plasmonic nanoparticles and biomolecules, activating sensing processes.
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13.1 Introduction

Charge transfer mediated by nanoscale materials is important to both the frontier of
fundamental science and to applications in molecular electronics, sensors, photonics,
electrocatalysis, and light energy conversion.
The building blocks for such photonic/electronic nanodevices are single or small
groups of (usually organic) molecules as well as semiconductors and ultrathin metal
layers and nanoparticles, because of their high surface areas and other size-dependent
properties. All these nanoscale entities have in common the capability of charge
storage and transfer.
As an example, for metal nanoparticles passivated by a dielectric organic layer, the
particles exhibit a sub-attofarad (aF, 10−18 F) molecular capacitance [1, 2]. A review
of the fundamentals of nanoscale charge-transfer processes is given in Ref. [3].
In a unifying simple scheme, a semiconductor, a metal nanoparticle and a molecule
can all function as a donor, acceptor and/or a bridge for electrons (see scheme in
Fig. 13.1).
Plasmonic metal nanoparticles are interesting because of the localized surface plas-
mon resonance (LSPR) phenomenon, which consists in coupled resonant oscillations
of electron density and an evanescent electromagnetic field (collectively known as
plasmons) that are excited near the particle surface by the incident light of specific
wavelengths. LSPR leads to characteristic extinction (absorption plus scattering)
bands that may span through UV, visible and near-IR parts of the energy spectrum
[4]. Explorations of the coupling of light and charge via localized surface plasmons
have led to the discovery that plasmonic excitation can influence macroscopic flows
of charge (coupling plasmons to electron flow) and, conversely, that charging and
discharging events of a nanoparticles can change the plasmonic excitation (coupling
electron flow to plasmons) (see also Chaps. 5 and 6 in this book). This has recently
captured significant interest because of the possibility to induce large optical changes
in devices such as smart windows and displays. Moreover, such plasmon-electron
tunable materials have potential applications in signal transduction and process-
ing, where electronically tunable plasmonic waveguides are emerging as a potential

e-

e-

bridge

e-

e-

e- e-

Metal 
nanoparticle

Semiconductor

Fig. 13.1 Scheme representing the electron transfer between a semiconductor dot and a molecule
bridge by a metal nanoparticle
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solution to the miniaturization of metallic interconnects in integrated circuits, and to
the design of responsive materials for thermal imaging and spectroscopy [5].
Semiconductor-metal nanocomposites are interesting because they are widely
employed in photocatalysis, where the metal in contact with the semiconductor
greatly enhances the overall photocatalytic efficiency [6], and in photovoltaics,
where metal nanostructures are used to improve absorption in photovoltaic devices,
permitting a considerable reduction in the physical thickness of solar photovoltaic
absorber layers, and yielding new options for solar-cell design [7].
Recent studies have shown that semiconductor-metal nanocomposites exhibit shifts
in the Fermi level to more negative potentials [8]. Such a shift in the Fermi level
improves the energetics of the nanocomposite system and enhances the efficiency of
the interfacial charge-transfer process.
A well-known example of metal nanoparticles deposited on semiconductor surfaces
with catalyzed interfacial charge-transfer process is given by the TiO2-silver (TiO2-
Ag) and TiO2-gold nanocomposites that have been shown to store photogenerated
electrons and discharge them on demand, enabling application of such nanocompos-
ites in optics, microelectronics, catalysis, sensors, information storage, and energy
conversion [9–12].
Interestingly, the dynamics of this charging process can be monitored by optical
spectroscopies through variation of the absorption coefficient as schematized in

(b)(a)

Fig. 13.2 a Absorption spectrum of TiO2-Ag nanocomposite showing the LSPR of Ag blue-shifting
under UV-light irradiation. b Shift in the plasmon peak during on-off cycles of light irradiation. The
scheme of the charge transfer from the TiO2 to the Ag nanoparticles during light on is also schema-
tized. [Adapted with permission from Ref. [6]. Copyright (2011) American Chemical Society]
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Fig. 13.2. The absorption spectrum of the TiO2-Ag nanocomposite exhibits a local-
ized surface plasmon resonance (LSPR) absorption band at 430 nm due to the Ag
nanoparticles. When the system is irradiated with UV light a blue shift to 410 nm
in the plasmon absorption band occurs. At light off, the plasmon absorption reverts
to a position close to the original absorption at 430 nm. This occurs because under
UV excitation, charge separation takes place within the TiO2 semiconductor. While
the holes are scavenged by the surrounding medium, the electrons are injected into
the silver core (Fig. 13.2), and the electron transfer continues until the two systems
achieve Fermi level equilibration [10].
The interesting aspect is the ability to charge the metal core with electrons under UV
excitation and discharge them on demand and probe this electron variation optically.
The charging and discharging effects in TiO2-Ag nanocomposites can be monitored
from the shift in maximum plasmon absorption. The shift in the plasmon absorption
is quick and can be reproduced during repeated charge and discharge cycles.
Molecule-metal nanocomposites obtained by the assembly of nanosized metal parti-
cles with functionalizing molecules is a field of great fundamental and technological
interest because charge transfer between photoactive molecules and nearby metal-
lic nanostructures produce modulated optical and electrochemical properties that
are desirable for applications including electrocatalysis [13], photoenergy conver-
sion [14], and molecular sensing, including surface enhanced Raman spectroscopy
sensing (SERS) [15].
In the case of hybrid assemblies having metal nanoparticles as the core, the (C)
electron transfer depends critically on the size and shape of the nanoparticles and
the distance between the photoactive molecule, and it is a process that competes
with many others including (A) intermolecular interactions of the photoexcited flu-
orophore bound to a gold nanoparticle, (B) energy transfer, and (D) emission from
the chromophores bound on the metal nanoparticles, as summarized in Fig. 13.3.
As an example, the nonmetallic property of ultrasmall metallic particles can also
be utilized to capture electrons from an excited sensitizer and thus mediate a
photoinduced electron-transfer process. Controlled charging of the Au nanoassem-
bly, e.g. by applying a potential to the Au nanoparticles, enables one to modulate the
excited-state interaction between the gold nanocore and surface-bound fluorophores,
and therefore modulate the emission of light from the fluorophores: as schematized
in Fig. 13.4, charging the Au nanoparticles with an electron may lead to emission of
light, while electron transfer from the molecule to a positively charged Au nanopar-
ticles may actually suppress emission of light [17].
Therefore, an understanding of the interactions between metallic nanoparticles and
photoactive molecules and/or semiconductors is crucial for the realization of appli-
cations.
The question we address in this chapter concerns spectroscopic ellipsometric methods
to probe in real time those interface charge transfer phenomena. Changes in the
electronic distribution of nanoparticles perturb the optical excitation of the SPR band
or the interband or intraband transitions, allowing the dynamics of the electrons and
the lattice to be revealed by probing changes in the SPR band absorption.
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Fig. 13.3 Photoexcitation of the chromophore bound to gold nanoparticles followed by its deactiva-
tion via energy transfer, electron transfer, and intermolecular interactions [Adapted with permission
from Ref. [16]. Copyright (2003) American Chemical Society]

In this chapter we explore spectroscopic ellipsometry for monitoring electronic trans-
fer processes at interfaces of various metal-based nanocomposites. The method relies
on the fact that, for some metals, the transfer of electronic charge results in optical
changes of the absorption spectrum of the metal, as described in the next paragraph.
Owing to its noninvasive character, ellipsometry is a versatile in situ real-time tech-
nique for studying a large variety of surface and interface processes, such as nanopar-
ticles nucleation and growth as well as the deposition of materials, chemisorption
of molecules, redox reactions, (bio)sensing, alloying, and electrochemical processes
involving small metal nanoparticles that exhibit localized surface plasmon modes.
In particular, we analyze the use of ellipsometry in probing interface phenomena in
the following three nanoscale systems:

(1) Semiconductor-ultrathin metal film, which allows us also to demonstrate the
applicability of ellipsometry in monitoring chemisorption on semiconductors.
We show how real-time spectroscopic ellipsometry can be usefully exploited to
probe fast chemisorptions kinetics of metals on semiconductor surfaces and the
growth of metal nanoparticles on semiconductors. The chemical-kinetic analy-
sis of the kinetic ellipsometric profile monitored directly on the surface of the
semiconductor during chemisorptions of the target specie highlights phenomena
of charge-transfer-induced adsorption.

(2) Semiconductor-metal nanoparticles, which serves also as an example of the
applicability of real-time ellipsometry in tuning the localized surface plasmon
resonance of metal nanoparticles. The optical response of metallic nanoparticles
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Fig. 13.4 Modulation of photoinduced electron transfer between excited chromophore and gold
nanoparticles. [Adapted with permission from Ref. [16]. Copyright (2003) American Chemical
Society]

with sizes of a few tens of nanometers can lead to localized surface plasmon
resonance (LSPR) resulting from the coupling of the collective excitation of the
conduction electrons with the incident light. The frequency at which the maxi-
mum response due to the charge oscillation in the metallic nanoparticle occurs
is defined as the localized surface plasmon resonance (LSPR) frequency [4].

(3) Metal nanoparticle-molecule, which provides a good example of the applicabil-
ity of spectroscopic ellipsometry in chemo and bio-sensing. Through the ellip-
sometric probing of the variation of the plasmon resonance of plasmonic metal
nanoparticles functionalized with optically active molecules, we also extend this
ellipsometric analysis to electron transfer driving the self-assembling of mono-
layers (SAMs).

This is highly interdisciplinary, involving the chemistry of surfaces, optics and
physics: it is shown how spectroscopy and the optical concept of plasmonics can
serve a better understanding of chemical surface and interface kinetics and dynamics
also involving biomolecules, in order to realize a novel class of sensing and energy
conversion, molecular opto-electronic switching and storage devices.

13.2 Real-Time Spectroscopic Ellipsometry

Real-time ellipsometry refers to in situ measurements performed during materi-
als growth or surface modifications. It requires performing the measurements at
all accessible wavelengths simultaneously, which enables parallel processing of all
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Fig. 13.5 Schematic configuration for closed-loop control using spectroscopic ellipsometry mea-
surements. A pair of windows, Wi and Wr, enables the incident and reflected polarized light to enter
and exit the reactor

wavelengths, and which is essential for many real-time applications at high speed
while retaining the precision and accuracy necessary to follow the time scale of the
dynamics of interest at the sample surface, e.g. it should be possible to acquire data
in the 10 ms–1 s time scale.
Standard ellipsometric setups can be adapted for monitoring and controlling processes
in real-time. The schematic of the assembly is shown in Fig. 13.5. For real-time stud-
ies, there are considerations that pertain to the reactor itself, to the ellipsometer itself
and to their interface which need attention. As an example, most reactors have a
rotating sample disk for homogeneity of samples and are equipped with strain-free
window ports, between the polarizer (P) and optional compensator (C) and sample
for incident light and the sample, optional compensator and analyzer for the reflected
light beam, for optical access to the growth interface. A fast variant uses phase modu-
lators (PM) in either of the light beams. Typically, the windows are located relatively
far away from the substrate and are purged with carrier gas, so that deposition on
the windows is avoided. Furthermore, the windows can influence the polarization
state of light and have to be properly characterized. As for sample rotation, to obtain
useful results with an ellipsometer it is essential that the rotation of the sample is
synchronized to the rotation of the appropriate element of the ellipsometer [18].
Spectroscopic reflection ellipsometry has been developed and applied as a powerful
tool for the study of thin film growth and surface modification. The most widely used
instrument designs for real-time spectroscopic ellipsometry are the rotating-element
ellipsometers, in which a polarizer (RPE), analyzer (RAE), or compensator (RCE) on
the polarization generation or polarization detection arm of the instrument is rotated
continuously as a function of time, and the phase modulated (PME) instruments,
which have the advantage of no moving parts (see Chaps. 1 and 2 of this book).
An overview of ellipsometer designs, characteristics, calibration and procedures is
given by Collins et al. in [19]. Here, we just summarize the basic considerations
for real-time applications. The first key issue for real-time spectroscopic ellipsom-
etry is the data acquisition mode, which determines the measurement interval and
the precision. The advantage of the rotating-element ellipsometer design is that the

http://dx.doi.org/10.1007/978-3-642-33956-1_1
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readout time of the photodiode array used as the detector, ∼5 ms, is shorter than
the rotational period accessible to the rotating element (∼50–100 ms). As a result, the
photodiode array can be operated in an integrating mode for fully parallel data acqui-
sition, in contrast to a subsequent phase-modulation ellipsometer design that employs
serial data acquisition. A rotating-polarizer multichannel ellipsometer (RPE) allows
to acquire (�,�) points at 64 spectral positions with an acquisition time of 25 ms
[20]. Conversely, with phase modulated ellipsometers (PME), spectra in (�,�)with
32 spectral positions have been collected at 16 ms [21]. The second issue concerns
the spectral range/ resolution: both types of spectroscopic ellipsometers have made
available the very broad range 1.5–6.5 eV (825–190 nm) with wavelength detection
bandwidths of 2 nm at 190 nm and 11 nm at 825 nm. The third key issue is measure-
ment accuracy. The rotating-polarizer (RPE) and rotating-analyzer (RAE) config-
urations exhibit disadvantages stemming from their inability to measure spectra in
the fourth component of the 4 × 1 (real) Stokes vector of the light beam reflected
from the sample. Because RPE and RAE measured cos�, their accuracy was poor
when � ∼ 0◦ and ±180◦, leading to poor accuracy when measuring processing
of dielectric materials with � ∼ 0◦ or dielectric materials on metallic and semi-
conductor substrates for which � periodically crosses 0◦ and 180◦ as a function
of wavelength. The accuracy was also lower in PME when � ∼ 45◦ (when mea-
suring at the polarizer, modulator and analyzer angles of 45◦, 0◦ and 45◦, i.e., the
so-called configuration II) or when � ∼ ±90◦ (when measuring at the polarizer,
modulator and analyzer angles of 0 ◦, 45 ◦ and 45 ◦, i.e., the so-called configuration
III). However, nowadays with the advancement of instrumentation, both issues have
been solved. The single-rotating-compensator (RCE) configuration was developed
to overcome the limitations of the rotating polarizer through measurement of spectra
in the full Stokes four-vector, providing the sign of the ellipticity for the polarization
state of the reflected beam. In contrast to RPE and RAE systems, which are only sen-
sitive to three of the four Stokes parameters, RCE systems measure the sign and the
cosine of the relative phase � and, thereby, uniquely determine �, which removes
the previously encountered loss in data where� ∼ 0 or 180 [22]. Nevertheless, RCE
was limited in its ability to characterize anisotropic thin films. Therefore, a dual-
rotating compensator multichannel ellipsometer with the ability to extract spectra in
the full 4 × 4 (real) Mueller matrix of the sample in a single optical cycle of the two
synchronized compensators [23] was developed for real-time ellipsometry.
The Mueller matrix can over-determine the quantities that define the non-diagonal
(complex) Jones matrix, the latter providing a mean for analysis of anisotropic media,
even when partial depolarization occurs. Many designs have been proposed, and
demonstrated, for Mueller polarimeters and ellipsometers, and in addition to the pre-
viously mentioned one, a Mueller polarimeter based on modulation and analysis of
light polarization by ferroelectric liquid crystal cells has also been developed. It pro-
vides non-resonant polarization modulation that can be easily adapted to a CCD array
coupled to a dispersion grating in order to do fast real-time spectroscopic measure-
ments. In this way the acquisition of a complete Mueller matrix with 1 nm resolution
in the range from the visible to the near infrared can be obtained in approximately
1 s. The design of the polarimeter was based on an objective criterion that allowed
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optimizing the accuracy of the measurements. As a result, we measured a complete
Mueller matrix with a relative error lower than 0.5 %. Whenever the polarimeter
is used as an ellipsometer, it is possible to profit the information given by the 16
Mueller matrix coefficients to enhance the accuracy and precision of the measured
ellipsometric angles � and � [24].
Description of Mueller Matrix ellipsometry and examples of its application are given
in Chaps. 2 and 9 of this book.
For the real-time studies in this chapter, the samples did not show in-plane or out-
of-plane anisotropy; this was verified by measuring some samples by Mueller ellip-
sometry and by ellipsometry at various angles of incidence and angle of in-plane
rotation. Therefore, under the isotropy assumption, standard phase modulated ellip-
sometry has been applied in real-time acquiring a spectrum with 64 wavelengths per
second.

13.3 Rationale for Probing Charge-Related Phenomena
with Spectroscopic Ellipsometry

The key concept is the dielectric function of the metal.
The dielectric function can be written as a combination of interband transitions,
εIB(ω), accounting for the response of the d-electrons, and a Drude term, εD(ω)

considering the free conduction electrons only

ε(ω) = εIB(ω)+ εD(ω) (13.1)

The optical probing of the electron transfer processes by ellipsometry is based on the
fact that the conduction electrons dominate the response of metals at optical wave-
lengths, and the Drude theory [25] describes their dielectric function ε(ω) throughout
the visible part of the spectrum according to

ε(ω) = ε∞ − ω2
p

ω2 + iγω
(13.2)

where γ is a phenomenological damping constant and equals the plasmon bandwidth
for the case of a perfect free electron gas. The damping constant γ is related to the
lifetimes of all electron scattering processes in the bulk material that are mainly due
to electron-electron, electron-phonon, and electron-defect scattering, i.e., γ = 1/τ
where τ is the mean relaxation time of conduction electrons.
The bulk plasma frequency, ωp, is given by

ω2
p = Ne2

m · ε0
(13.3)
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where e is the electron charge, m is the effective mass, ε0 is the permittivity of
vacuum, ε∞ is the high-frequency contribution from interband transitions, and N is
the conduction electron concentration.
Therefore, the real, ε1(ω), and imaginary, ε2(ω), parts of the Drude dielectric function
are given by

ε1 (ω) = ε∞ − ω2
p

ω2 + γ 2

ε2 (ω) = ω2
p · γ 2

ω
(
ω2 + γ 2

) (13.4)

Therefore, both the real and imaginary parts of the dielectric function depend on the
conduction electron concentration, N, and changes to the particle charge alter N and
thereby the dielectric function by an amount �ωp given by:

ε1 (ω) = ε∞ − ω2
p +�ω2

p

ω2 + γ 2 (13.5)

In the case of metal nanoparticles showing a localized surface plasmon resonance
(LSPR), the frequency of the LSPR (ωLSPR) is proportional to the bulk plasmon
frequency (ωp), and, hence, to the square root of the free carrier concentration in the
nanoparticle volume

ωLSPR ∝ ωp ∝ √
N (13.6)

Thus, as we inject charge into the nanoparticle, the SPR peak shifts to higher energy.
The optical effects due to electron charging can be dramatically enhanced by altering
the particle geometry and/or by supporting the nanoparticles on semiconductors
or charged substrates; as an example the surface plasmon band shift, caused by
the electron injection, is larger for nanorods than for small spheres. The effect of
geometry can be taken into account by introducing a shape-dependent depolarization
factor, L.
Within the dipole approximation [3], the absorption modes of a small metal particle
of arbitrary shape consist of several plasmon modes that fulfil the condition

(1 − L) εm + Lε1 (ω) = 0 (13.7)

where εm is the dielectric constant of the non-absorbing matrix embedding the
nanoparticle, normally equated to the square of the refractive index. Introducing
Eq. (13.7) into Eq. (13.5) yields

(1 − L) εm + Lε∞ − L
λ2

λ2
p

(
1 + �N

N

)
= 0 (13.8)
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Fig. 13.6 Calculated scattered light spectra (dipole approximation) of charged gold nanorods. Vari-
ation of the plasmon resonance of noble metal nanoparticle as a function of the increase of electron
concentration �N; the sketch schematizes the blue-shift or red-shift of the plasmon resonance by
accepting or donating an electron from a donor (D+) or to an acceptor (A−) molecule

Here, λ is the measured surface plasmon peak wavelength and λp is the bulk metal
plasma wavelength. Provided �N/N �1, we can simplify this as

λ = λp

(
1 − �N

2N

) √
ε∞ +

(
1

L
− 1

)
εm (13.9)

By indicating

λ0 = λp

√
ε∞ +

(
1

L
− 1

)
εm (13.10)

the plasmon peak position for the case of no electron injection, we can relate the
wavelength shift to the variation of electron concentration as:

�λ = λ− λ0 = −�N

2N
λp

√
ε∞ +

(
1

L
− 1

)
εm (13.11)

When N is increased, the SPL band is blue-shifted, and there is little change in
bandwidth and a slight damping. This is due to the increase in imaginary component
of the dielectric function when N is increased as shown in Fig. 13.6.
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Thus, changes in particle charge can be followed spectroscopically, also by ellip-
sometry.
The surface plasmon resonance is sensitive to the number of injected electrons,
although the example below develops some limiting considerations. As an example,
for a gold ellipsoid with transverse semiaxes of 2 nm and a major semiaxis with a
length of 10 nm, for which the number of gold atoms is ∼9800, the injection of just
one electron would yield a blue shift of ∼0.05 nm according to Eq. (13.11), which is
lower than the resolution of current spectrometers. However, the differential change
in the intensity around the surface plasmon peak as a result of the blue shift can still
be significant [26] to be detected.
The influence of charge density on the properties of localized surface plasmons in
metallic nanoparticles was first qualitatively studied by Henglein and Mulvaney in
1991 [27]. Almost ten years later, Mulvaney provided quantification and evidence
of the capability of probing optically charge transfer by combining ellipsometry
measurements of the SPR variation with electrochemical measurements [28]. They
showed the absorption spectra of silver nanoparticles as a function of the potential
applied to the electrode. The silver nanoparticles plasmon resonance blue-shifted
from 430 to 393 nm and became narrower and more intense when a potential of
−2 V was applied. Upon application of a positive potential, the plasmon peak red-
shifted back towards its original position [28].
The relationship between electron flow and plasmon resonance can be used to under-
stand the broad range of accessible plasmon resonance wavelengths by selecting
materials with different electron concentrations; this is illustrated in Fig. 13.7, which
shows that plasmon resonances are tunable from the ultraviolet to infrared by varying
the electron density from 1023 to 1019 cm−3.
One of the challenges in achieving even larger SPR shifts in metals is that for most
metals, the high initial electron concentration ni (∼1023 cm−3) implies that large net
flows of electrons are needed to induce large changes in the SPR maximum (see
Eq. 13.11). These large net flows are limited by the constraints of material stability
and the stability of the medium in which the nanoparticles are suspended. There-
fore, materials with lower electron concentrations are extremely attractive because a
similar net flow of electrons can lead to larger relative changes in electron concen-
tration (and therefore plasmon resonance), as depicted in Fig. 13.6. This opens up
new possibilities for highly tunable plasmoelectronic devices in which the flow of
small amounts of current induces a large plasmonic response.

13.4 Gallium: A Non-Noble Plasmonic Metal with Non-Linear
Optical Properties

In this chapter we discuss examples involving the non-noble plasmonic metal gallium
(Ga), which has been reported to possess non-linear optical properties [29]. Recently,
researchers have been increasingly drawn to the enhanced nonlinear effect of phase
transitions in polyvalent metals, which can have different charges, such as gallium
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Fig. 13.7 Coupling electron flow to plasmonic excitation. By either injecting or “withdrawing”
electrons, one can tune the plasmon resonance of a material. The degree to which the resonance
can be manipulated is strongly dependent upon the material’s carrier concentration. Materials that
have a higher initial electron concentration (i.e., metals) are generally limited to smaller shifts in
plasmon resonance, as the injection or removal of even large numbers of electrons results in a small
relative change in the electron concentration (see Eq. 13.11 for justification). Conversely, materials
with low carrier concentrations typically have plasmon resonances in the infrared, but much larger
relative changes in electron concentration and, therefore, plasmon resonance are possible. [Adapted
with permission from Ref. [5]. Copyright (2012) American Chemical Society]

(Ga). The significant difference in optical properties between the two phases of Ga—
α and metallic—make it a very suitable material for plasmonic switches.
Gallium is a trivalent element of group IIIA, like the much more studied aluminium.
However, little is known about its optical and plasmonic properties. Therefore, we
have applied spectroscopic ellipsometry to investigate its optical properties at the
nanoscale, which are reported herein.
Gallium has a unique combination of a high refractive index, several structural phases
with widely different optical properties, a phase transition at very accessible tem-
peratures close to room temperature, and most importantly, a susceptibility to light-
assisted structural transformations. When Ga is prepared in the form of nanoparticles,
it exhibits a huge optical nonlinearity via light-assisted surface metallization with
switching times in the picosecond–microsecond range.
Gallium is known for its polymorphism; Ga(II), Ga(III) and liquid gallium, in terms
of their optical and electronic properties, are very close to an ideal free-electron metal
[30, 31] and, hence, applicable to plasmonics.
Figure 13.8 shows the Ga phase diagram for bulk Ga and for Ga nanoparticles [32];
α-gallium, the stable ‘ground-state’ phase, has a unique structure in which molecular
and metallic properties coexist: some inter-atomic bonds are strong covalent bonds,
forming well-defined Ga2 dimers (molecules), and the rest are metallic bonds.α-Ga
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Fig. 13.8 Phase diagram for bulk gallium (left panel) and for gallium nanoparticles (right panel)
showing liquid gallium, Ga(III) and Ga(II), α-gallium, and the metastable phases β, δ, ε, γ; for the
Ga nanoparticles phase transitions also depend on nanoparticles’ size

has a very low melting point of 29.88 ◦C. Interestingly, for nanoparticles, phase
transitions also depend on nanoparticles’ size.
The gallium nonlinearity is associated with a light-induced structural phase transi-
tion in the common form of α-gallium in the solid phase. It is believed that in the
nanosecond-microsecond regime of optical excitation, the mechanism of the phase
transition is predominantly non-thermal. Optical excitation is highly localized and
destabilizes covalent bonding within the crystalline structure of α-gallium, thus pro-
voking a surface assisted transition to a more metallic, more reflective metastable
phase. The structural phase transition drives a considerable change in the electronic,
and in particular, in the optical properties of the material, also across a very broad
spectral range [32]. The light-induced structural phase transition in a confined geom-
etry like that of Ga nanoparticles, is achieved more easily by bringing the material
near to the phase-transition temperature, thus increasing the magnitude of the optical
nonlinearity.
The band structure, shown in Fig. 13.9, has been investigated by Hunderi et al. [30]
and it shows a number of parallel bands, most notably around the 
 point along �

and T. Another set is found around the Z point along T’ and U and a third from the
M point along W. All these bands will give transitions in the range 1.25–2.4 eV.
The dielectric functions of liquid gallium and α-Ga are different, and at a wavelength
of 1.55 μm the difference

∣∣εliquid
∣∣−|εα| ≈ 180. The reflectivity of α-Ga is more like

that of semiconductor materials, in contrast with the high reflectivity of the metallic
phases.
The dielectric function of gallium has been measured by spectroscopic ellipsometry
in a broad experimental range of 0.7–6.5 eV by undercooling a continuous and very
smooth gallium film. The determined spectra are shown in Fig. 13.10.
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Fig. 13.9 Brillouin zone of gallium and its energy bands along major symmetry lines (re-arranged
from Ref. [32])
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Fig. 13.10 The dielectric function of gallium at 300 K

Evaporation of gallium onto substrates tends to form nanoparticles that are interesting
for plasmonics [33] and UV-SERS applications [34] because they are characterized
by a LSPR that can be tuned from the UV to the VIS and NIR by tailoring the
nanoparticle size. As an example, the DDA method (Discrete Dipole Approximation)
predicts that Ga nanoparticles with a diameter of 20 nm have a LSPR at approximately
3.4 eV, as shown in Fig. 13.11, showing that gallium is a possible candidate to cover
the UV part of the spectrum differently from gold and silver.
In this regime of Ga nanoparticles, real-time spectroscopic ellipsometry has been
demonstrated to probe non destructively, in situ accurately and thereby tune the
surface plasmon resonance of metal Ga nanoparticles deposited on various trans-
parent and absorbing substrates. Spectroscopic ellipsometry, as it monitors changes
in the polarization state of a linearly polarized beam reflected at oblique angles of
incidence, is therefore a tool capable of investigating the full optical behavior of
a plasmonic sample in the far field, allowing the pseudodielectric function, 〈ε〉, of
the sample to be determined directly from SE measurements, for both the parallel
and perpendicular measurement configurations. As an example, Fig. 13.12 shows the
real-time evolution of 〈ε2〉, during deposition of Ga nanoparticles with increasing
size on an Al2O3 substrate. The pseudodielectric function is an effective dielectric
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Fig. 13.11 Scanning electron microscopy image and DDA calculations of the normalized absorp-
tion efficiency (Qabs) of isolated spheres (R = 20 nm) made of aluminium, gallium, gold and silver
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Fig. 13.12 Real-time spectra of the imaginary part 〈ε2〉 recorded during deposition of Ga nanopar-
ticles on Al2O3. Spectra are shown every 10 s of deposition. The spectra continuously redshift with
increasing Ga deposition time, i.e., increasing of the nanoparticles size, as indicated by the atomic
force microscopy 1μm×1μm images (each panel reports deposition of 5 MLs = monolayers of Ga)

function describing the optical behavior of the system assuming a simple two-phase
sample/ambient optical model. The asymptotic behavior of the NP layer on top of
the substrate follows that of the bare Al2O3 dielectric function. A distinct resonance
emerges just as the deposition begins, which results from incident photons coupling
into plasmon modes of the Ga nanoparticles. The plasmon peak continuously red-
shifts as the deposition time increases, which correlates to an increasing average
particle size. The imaginary part, 〈ε2〉, of the pseudo-dielectric function appears to
be the simple sum of the substrate and of plasmonic peaks, whose position and
intensity depend on the nanoparticles geometry and can be, therefore, tailored at the
desired wavelength. Real-time data provide a means by which the deposition can be
monitored and the plasmon resonance tuned to specific photon energy without prior
knowledge of the particle size or distribution.
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Beyond enabling plasmon resonance tuning of metallic nanoparticle ensembles, real-
time monitoring of their collective plasmon resonance can also be applied while
modifying the nanoparticles’ surrounding environment such as for gas sensing or
thermal treatment to understand the optical manifestation of physical modifications,
as shown in the next paragraphs.

13.5 Real-Time Ellipsometric Monitoring of Metal Layers
Chemisorption on Semiconductors: The Role of Electron
Transfer Between the Metal Adsorbate and the Surface

This paragraph discusses the use of spectroscopic ellipsometry to monitor in real time
the chemisorption and formation of ultrathin metal layers on semiconductors. The
unique capability of real-time ellipsometry to be sensitive to surface coverage even at
the monolayer level allowed highlighting and modeling charge transfer phenomena
occurring between the metal and the semiconductor, and how they determine the
metal surface coverage.
From the scientific point of view, thin metallic adlayers on semiconductor surfaces
have attracted research interest as they are model systems for highly correlated 2d
and 1d electron gases [35]. The investigation of chemisorption of ultrathin layers
of metals on semiconductors is also of interest for applications such as catalysts,
since such ultrathin metallic films can exhibit unexpected, but often magnificent,
macroscopic quantum catalysis, whose magnitude increases superlinearly with the
decrease of film thickness [36].
Furthermore, metal adlayers are also important to grow good quality semiconductors,
as they can act as surfactants. As an example, metal adatoms on a semiconductor
prefer to incorporate and diffuse between the adlayer and the substrate. This mecha-
nism, which is called adlayer enhanced lateral diffusion (AELD) becomes activated
already at rather low temperatures, thereby enabling the growth of materials having
a high melting temperature even at modest temperatures. The materials systems for
which this mechanism is important are the group-III nitrides (GaN, InN, AlN, and
their alloys) [37]. In the field of III-nitrides epitaxial growth, recent experimental
studies indicated that the presence of an In or Ga adlayer leads to a smooth surface
morphology and a better crystal quality of InN and GaN nitrides.
The adsorption and desorption kinetics of metal adlayers are generally investigated
in the “standard” framework of the Langmuir theory [38].
Indeed, it is quite often neglected that in the case of semiconductors, chemisorption
occurs by electron transfer between the adsorbate and the surface [39].
Unlike the Langmuir’s approach, Wolkenstein’s theory of chemisorption [40] takes
into account these electronic interactions between the semiconductor surface and the
adsorbate and their effect on the adsorptivity of semiconductors.
The Wolkenstein theory considers both chemical equilibrium between the surface
and the gas phase and electronic equilibrium at the semiconductor surface.
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The cardinal feature of Wolkenstein’s theory is that localized electronic states are cre-
ated in the semiconductor band gap by the chemisorbed species. These states serve as
traps for electrons or holes (acceptor-like or donor-like states, respectively), depend-
ing on their nature. The adsorbed species, depending on electron transitions between
those states and semiconductors bands, may be chemisorbed on the semiconductor
surface in three ways:

(1) “weak” chemisorption involving a neutral adsorbate species: in this case free
carriers (electron or holes) from the substrate do not participate in the adsorption
process;

(2) “strong acceptor chemisorption” occurring when an electron from the surface
is captured by the adsorbate species and denoted as CeL (where eL denotes the
free electron participating from the substrate);

(3) “strong donor chemisorption” occurring when a hole is captured by the adsorbate
species and denoted as CpL (pL is the free hole from the substrate).

The possibility of those different types of chemisorptions stems from the ability of
the chemisorbed species to draw or donate a free electron and/or hole from/to the
substrate lattice (L), with a consequent variation in surface band bending. A diagram
representing these three forms of chemisorption is shown in Fig. 13.13.
Here we show how time resolved ellipsometry can be used to monitor and model the
adsorption of metals on semiconductor surfaces, metal adlayer formation and charge
transfer between the metal and the semiconductor, discussing the example of gallium
(Ga) on gallium nitride (GaN), but its validity can be extended to other III-nitrides,
III-V (e.g. GaAs, InSb) and II-VI (e.g. ZnO) semiconductors.
Figure 13.14 shows the real and imaginary parts of the pseudodielectric function of
a GaN bulk template grown by hydride vapour epitaxy; it is the pseudodielectric
function because it includes the effect of the surface roughness. GaN has a band gap
of 3.4 eV clearly visible as onset of the absorption in 〈ε2〈 (see Fig. 13.14b) and by
the corresponding Van Hove singularity in the spectrum of 〈ε1〉 (see Fig. 13.14a).
When a monolayer or bilayer of Ga (whose dielectric function has been reported in
Fig. 13.10) is deposited on GaN, an increase of 〈ε2〉 is experimentally observed above
the bandgap of GaN, as shown by the experimental spectra in Fig. 13.14d acquired
during the deposition of Ga on GaN in a molecular beam epitaxy system, and also
supported by the simulation shown in Fig. 13.14c, which shows the variation of the

E D

E A

E C

E V

Fig. 13.13 Scheme of chemisorption of a metal on a semiconductor surface involving charge
transfer between states of the semiconductor and the metal charge; A (acceptor level)—particle
with an affinity for a free electron; D (donor level)—particle with an affinity for a free hole
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Fig. 13.14 a real, 〈ε1〉, and b imaginary, 〈ε2〉 parts of the pseudodielectric function of GaN. c
Simulation of the variation of the GaN pseudodielectric function during chemisorption of 1–10 Å
of Ga on GaN; the various curves are for an increment of the Ga thickness of 1 Å at the temperature
of 680 ◦C. d GaN experimental spectra measured at 680 ◦C before and after deposition of two
monolayers of Ga. e Variation in the imaginary part, 〈ε2〉, of the GaN pseudodielectric function
probed at the photon energy of 4 eV during Ga adsorption when the Ga shutter is on (shadow
area), and its desorption at the Ga shutter off, at a constant Ga flux of 9.63×10−8 Torr and at a
temperature of 680 ◦C. The various times are the timing of the Ga shutter aperture to flux Ga on
GaN; this determines different amounts of Ga chemisorbed

GaN pseudodielectric function by depositing 0–10 Å of Ga with an increment of 1 Å
to show the sensitivity of the ellipsometric monitoring. From Fig. 13.14 c–d it can be
inferred that the chemisorption of few monolayers of Ga on GaN can be monitored
by ellipsometry through the temporal variation of the pseudodielectric function.
Although spectra have been acquired during Ga chemisorption, in Fig. 13.14e only
the data at the probing photon energy of 4 eV are shown. Any probing photon energy
above 3.4 eV (the bandgap of GaN) is extremely sensitive to the chemisorption of
ultrathin layers and/or cluster because the light penetration depth is limited to few
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Angstrom due to the GaN absorption. Specifically, Fig. 13.14f shows the variation of
the imaginary part of the GaN pseudodielectric function, 〈ε2〉, during chemisorption
of different amount of Ga and its desorption. The various curves in Fig. 13.14e are
obtained by chemisorbing different amounts of Ga controlled by the time the Ga
shutter is open. Therefore, the data in Fig. 13.14 show the suitability and sensitivity
even of single wavelength ellipsometry in monitoring the deposition of few Angstrom
of Ga.
Noteworthy, GaN has the wurtzite structure, which is characterized by faces, i.e.,
crystallographic planes with different charge. The most common +c (0001) and –c
(000-1) planes have fixed negative and positive polarization charges, respectively, at
the surface, as schematized in Fig. 13.15, while the m-plane (1-100) is neutral. During
chemisorption, electronic charge transfer between the GaN semiconductor and the
chemisorbed species may occur, modifying the electronic structure at the surface and
in the adjacent space charge region, which in return affects the chemisorption process
in a nonlinear manner. This concept of electron transfer between the adsorbate and
the surface has been previously considered for adsorption on ZnO [41].
The Ga adlayer adsorption/desorption kinetics can be monitored for the different
planes with different charge of GaN recording in real-time the variation in the real,
〈ε1〉, and imaginary, 〈ε2〉, parts of the semiconductor (GaN) pseudodielectric func-
tion, as shown in Fig. 13.15. The different profiles for the different planes of GaN
with different surface charge provide an indication that electron transfer is driving
the chemisorption of Ga on GaN.
Specifically the chemisorption rate follows the order

(0001) negative charge > (000 − 1) positive charge > (1 − 100) neutral

This is consistent with the electropositive character of Ga, which is an electrophilic
specie and, hence, possibly chemisorbs according to the scheme in Fig. 13.13 as
strong acceptor chemisorption.
In order to explain the effect of the different surface charge on the metal chemisorp-
tion, the real-time ellipsometric profiles of 〈ε2〉 were recorded at various temperatures
and time of Ga fluxing and they were analyzed to determine the critical coverage for
Ga depending on the GaN surface charge, and they are shown in Fig. 13.16.
The critical thickness occurs at an increase,�〈ε2〉 ∼0.7 and�〈ε2〉 ∼1.2 with respect
to bare GaN for the N-polar and Ga-polar surfaces. The Ga surface coverage and/or
equivalent thickness can be estimated from the modeling of ellipsometric spectra
knowing the dielectric function of GaN and Ga as described in Ref. [42], and by
applying a simple 2-layer model (GaN/Ga/air). Thus, for Ga a critical coverage of
4.48 Å is determined, corresponding to 2.5 ML (ML = monolayer) on the negatively
charged (0001) surface, and of 3.2 Å corresponding to 1.5 ML on the positively
charged (000-1) surface [42, 43]. Thus, also the critical coverage thickness, which
is lower for the positively charged (000-1) surface than for the negatively charged
(0001) one supports a chemisorption driven by surface charge and charge transfer
between the semiconductor and the metal adsorbate.
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Fig. 13.15 GaN Wurtzite structure and main crystallographic planes with their fixed polarization
charge. Variation in the imaginary part, 〈ε2〉, of the GaN pseudodielectric function probed at the
photon energy of 4 eV during Ga adsorption and its desorption at the Ga shutter Off, at a constant Ga
flux of 9.63×10−8 Torr and at a temperature of 680 ◦C for the +c (0001) Ga polar face, -c(000-1)
N-polar face and for the m- (1-100) non polar surfaces. The initial point of all ellipsometric profiles
corresponds to bare GaN surface. 〈ε2〉 increases during Ga chemisorption and decreases during Ga
desorption

Data in Fig. 13.16 also show that the critical Ga thickness decreases with increasing
temperature, an observation that can be explained by a decrease in the adsorption
rate constant and an increase in desorption rate constant with the increase in the tem-
perature, indicating that the adsorption on those charged surfaces is not a thermally
activated process. This is another indication that the driving force for the chemisorp-
tion of Ga metal on GaN comes from surface charge.
Another interesting feature revealed by the direct sampling of the surface modi-
fication by real-time ellipsometry is the delay existing between the Ga OFF-time
and the onset of 〈ε2〉 decrease, i.e., of desorption. This delay is highlighted by the
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Fig. 13.16 Variation in the imaginary part, 〈ε2〉, of the GaN pseudodielectric recorded at the
sampling photon energy of 4 eV function during Ga adsorption and its desorption from N-polar and
Ga-polar GaN, at a constant Ga flux of 9.63 × 10−8 Torr for temperatures of 680, 710, 730 and
750 ◦C and Ga pulse times in the range 5–90 s as indicated in the plots. The dotted lines represent
the critical Ga coverage level reached for the various surfaces. The shadow regions indicate the
delay between the Ga OFF time and the starting of 〈ε2〉 decrease, i.e., desorption. The sketches
representing the polarization surface charge for Ga-polar and N-polar GaN are also shown
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yellow-shadow areas for the 180 s/730 ◦C, 180 s/710 ◦C and 90 s/680 ◦C profiles for
the N-polar surface and for the 180 s/730 ◦c, 90 s/710 ◦C and 45 s/680 ◦C profiles for
the Ga-polar surface. This delay is an additional indication that a strong (charged)
form of chemisorption is involved.
If we focus on the analysis of one of those adsorption/desorption profiles, e.g. the
45 s Ga at 680 ◦C for the Ga-polar surface, we see that the adsorption and S-shaped
desorption profiles, that include the observed delay time, cannot be fitted to a Lang-
muir profile. Only considering electron transfer (e-) from the semiconductor to the
neutral adsorbed gallium Ga*L, forming a negatively charged surface species, Ga-eL
according to the reaction schematized in Fig. 13.13, a consistent analysis of all the
measured adsorption/desorption profiles can be achieved. Specifically, a neutral form
of Ga, N0, from the gas phase approaches the surface and captures a free electron
(indicated as eL in the chemical reactions below) at the GaN surface, becoming a
chemisorbed negatively charged Ga− (denoted as Ga-eL) in the chemical reaction
below. This is the charged form of chemisorption, referred to as the “strong” form
in Wolkenstein’s theory.
Therefore, it can be calculated that the time dependence of the Ga concentration on
the surface will be the sum of the neutral N0 and charged N− gallium according to:

N (t) = N0 (t)+ N− (t) (13.12)

where

N0(t) = N0∞
(τ2 − τ1) τ

{
τ2 (τ2 − τ1)

[
1 − exp

(
− t

τ2

)]
+ τ1 (τ2 − τ) ·

[
1 − exp

(
− t

τ1

)]}

and

N−(t) = N−∞
τ2 − τ1

{
τ2

[
1 − exp

(
− t

τ2

)]
− τ1

[
1 − exp

(
− t

τ1

)]}
(13.13)

where τ1 and τ2 are complex functions of τ (1/τ = k−1 is the desorption probability),
τ0 and τ− as reported in Ref. [44].
During desorption, the electronic equilibrium is maintained through two balancing
processes: the discharging of charged Ga and desorption of neutral Ga. This desorp-
tion mechanism can be summarized by the reaction in Fig. 13.17 which leads to the
following expression for the Ga concentration as a function of time:

N(t) = N∗ − N∗ · 〈pL〉∗ · {
1 − exp

[(〈pL〉∗ − N∗) · k2 · t
]}

〈pL〉∗ + N∗ exp
[(〈pL〉∗ − N∗) · k2 · t

] (13.14)

where N* is the Ga concentration impinging on the surface and 〈pL〉* is the number
of surface site where Ga is adsorbed.
This charge-transfer based analysis of chemisorption can be understood considering
that for an ionic polar surface to be stabilized, the surface charge density must be
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Fig. 13.17 a Fit according to the Langmuir and Wolkenstein theories for Ga adsorption for profile
at 680 ◦C—45 s, and b fit according to Wolkenstein theory for Ga desorption

modified so as to balance the polarization electric field, and the charge compensation
is operated by the Ga surface metallization.
The final result of this analysis is that fitting all the ellipsometric real-time profiles
obtained as a function of temperature to the appropriate electronic model, the kinetic
constant and activation energy for metal layers adsorption/desorption on semicon-
ductor surfaces can be obtained. In the specific case of Ga chemisorption on GaN,
an activation energy Ea = 2.85 eV for Ga desorption from the Ga-polar GaN has
been determined.
Thus, this analysis demonstrates that it is possible to transform an ellipsometric input
into a chemical-kinetic output.
From a technological perspective, it indicates a way of tailoring the band bending of
semiconductor surfaces to tune the critical coverage and metallization of surfaces.

13.6 Charge Transfer in Substrate Supported Ga Nanoparticles:
Implications for Plasmonics

13.6.1 Ga Nanoparticles Deposited on SiC

The properties of supported metal nanoparticles differ substantially from homoge-
neous films or bulk material, since spatial confinement of the electronic wave function
in metallic nanoparticles leads to the surface plasmon resonance and to the unusual
property of quantized double-layer charging effects [45]. This charging characteristic
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Fig. 13.18 Sketch of the relaxation processes in a metallic nanoparticle including electron–electron
(e–e) scattering, electron–phonon (e–ph) coupling, electron-surface (e-S) scattering (S = surface),
energy transfer from the particle to the surrounding medium through the phonon–phonon (p–p)
coupling and charge transfer between the nanoparticles and the substrate

of metal nanoparticles allows semiconductor-metal nanocomposites to be effective in
facilitating photocatalytic processes, in catalysis, sensors, information storage, and
energy conversion. When nanoparticles are supported by substrates, the substrate can
act as source or drain for excited electrons leading either to energy gain or loss for
the electron gas inside the nanoparticles. Accordingly, a modified electron relaxation
behavior in supported nanoparticles might substantially influence the photochemistry
on their surfaces and the chemical reactivity in general. This perturbation of electron
gas in the nanoparticle can induce chemical surface reactions that are inhibited under
equilibrium conditions.
Therefore, it is important to investigate the electron relaxation and charge transfer
phenomena in supported nanoparticles.
The charge transfer at the interface between nanoparticle and substrate is also relevant
for single electron tunnelling devices. In this context supported nanoparticles are
of special interest since their small capacitance leads to nonlinear current–voltage
characteristics even at ambient temperature.
The coupling strength between the nanoparticles and the substrate determines the
charge transfer probability and therefore influences the electron relaxation dynamics
[46] and the mechanisms for damping of a collective resonance in metallic nanopar-
ticles. The plasmon can also decay due to a transfer of energy involving electron-hole
pairs, electron-surface scattering, phonon scattering and electron-electron-scattering
or reemission of photons (radiation damping, which might be altered by finite size
effects, depending on the mean free path of the electrons [47]. Different time scales
[48] are involved in those relaxation processes, as schematized in Fig. 13.18.
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A convenient way to probe the electron storage in a metal nanoparticle is by moni-
toring its plasmon resonance frequency and amplitude. The addition of electrons to
silver and gold nanoparticles causes a blue shift in the absorption spectrum due to the
increasing surface plasmon frequency of the electron gas, as explained in paragraph
3. Corresponding changes of the real �〈ε1〉 and imaginary part �〈ε2〉 as a func-
tion of time, induced by the charge transfer are the physical quantities of interest to
understand the electron dynamics as also shown in Ref. [48].
Here we demonstrate that spectroscopic ellipsometry is a well suitable probe to
monitor in real time the charge transfer between substrate and Ga nanoparticles,
and to investigate its effect on the dynamics of the surface plasmon resonance and
on the growth of the nanoparticles itself.
We show this by the example of Ga nanoparticles on polar SiC substrates. Funda-
mentally, SiC is intriguing because it is a polar semiconductor, like GaN discussed
in the previous paragraph.
The non-centrosymmetric structure and the partial ionicity of the bonds, which results
from the different Pauling electronegativity of gallium and nitrogen, yield a net
spontaneous polarization field along the c-axis of +0.043 C/m2. Therefore, the Si-
polar SiC(0001) and C-polar SiC(000-1) are characterized by different surface charge
of opposing sign, with the Si-polar surface having a positive charge and the C-polar
surface a negative one (see scheme in Fig. 13.19).
When Ga nanoparticles are grown on the C-face or the Si-face of SiC, a differ-
ent surface plasmon dynamics is observed by real-time spectroscopic ellipsometry
monitoring as shown in Fig. 13.18. Indeed, for equivalent Ga nanoparticles size, the
position and amplitude of the plasmon resonance vary for the opposing polarity sur-
faces, despite the constant refractive index for the SiC substrate for the two faces.
In order to better emphasize the difference in NPs plasmon evolution on the oppos-
ing polarity surfaces, the energy (wavelength) of the longitudinal plasmon mode was
extracted from the real-time data and plotted as a function of total Ga dosage (in
MLs) in Fig. 13.18c. The Si-surface exhibits faster Ga plasmon evolution compared
to the C-surface, implying that blue-shifted plasmon resonances are observed for the
C-polar SiC.
In keeping with the opposite signs of the surface polarization charge (shown in the
inset of Fig. 13.19), we measured by X-ray photoelectron spectroscopy (XPS) larger
barrier potentials at the C-polar surface than at the Si-polar surface, namely 1.81 and
0.72 eV, respectively [49]. This larger barrier indicates a much larger positive upward
band bending at the Ga/C-polar SiC interface, implying a larger electron transfer to
the Ga nanoparticles than at the Ga/Si-polar interface. Noteworthy, as a consequence
of the charge transfer between the Ga nanoparticles and the SiC surfaces, the nanopar-
ticles grow with a different shape on the two surfaces, as revealed by atomic force
microscopy (AFM) measured at the end of the growth. Since the two polished faces of
SiC have the same dielectric function and, hence, refractive index, and similar surface
roughness and morphology, the only difference being the sign of the polarization, we
can infer that the different density and size of the NPs assemblies and their plasmonic
behavior is driven by the surface charge of the opposing polarity surfaces. The larger
charge transfer between the C-face SiC (with negative surface polarization charge)
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Fig. 13.19 Real-time evolution of the ellipsometric spectra of the pseudoextinction coefficient, 〈k〉,
recorded during Ga NP formation on a C-polar and b Si-polar SiC (spectra are shown every 20 s
with corresponding nanoparticles size –measured aposteriori); only the longitudinal SPR is visible
in the investigated photon energy range. c Comparison of the plasmon energy peak position as a
function of size for the two SiC polarities, which the inset shows having different surface charges.
The corresponding final atomic force microscopy images are also reported

and Ga determines a stronger coupling for the Ga NPs/C-face SiC and, consequently,
the metal cluster surface mobility is reduced while the contact area between the metal
and the substrate is increasing, leading to flatter nanoparticles [50].
The impact of the interface charge transfer on the nanoparticle morphology and,
therefore, on the plasmon resonance can be explained by the Young-Lippmann the-
ory of electrowetting [51], which relates the wetting and, hence, the geometry of
nanoparticles through the contact angle θ to the interface potential, U, according to

cos θ = cos θY + f
(
U − Upzc

)
(13.15)

where the Young contact angle, θY, is defined by cos θY = σSiC−σSiC/Gainterf
σGa

with
σ SiC, σ Si/Ga, and σGa being the surface free energies of the SiC semiconductor solid,
SiC semiconductor/gallium interface, and of gallium, respectively. According to the
Young-Lippman theory, the larger Upzc potential measured at the interface with
C-polar SiC favors wetting of Ga NPs on those surfaces, decreasing their surface
mobility, and ultimately increasing the NPs density and decreasing their diameter,
as schematized in Fig. 13.20.
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Fig. 13.20 Scheme of the effect of interface charge on the geometry of a semiconductor-supported
nanoparticles, i.e. contact angle varies with Upzc (interface potential) strength (see text Eq. (13.1))

Therefore, the real-time monitoring by spectroscopic ellipsometry allows not only
tuning the plasmon resonance wavelength/energy, but also explaining the different
shape of nanoparticles forming on surfaces with the same refractive index.

13.6.2 Ga Nanoparticles Deposited on Graphene/SiC

As a latest development, graphene has also been reported to be a good electron transfer
platform [52], and epitaxial graphene has been grown on both Si- and C-faces of SiC
by the sublimation method [53]. Therefore, we also used spectroscopic ellipsometry
to detect charge transfer between Ga NPs and graphene/C-face SiC and its impact
on the plasmon resonance. Figure 13.21 compares the Ga nanoparticles plasmon
resonance dynamics for SiC (see Fig. 13.21a) and graphene/SiC (see Fig. 13.21b);
spectra are plotted with the same time resolution (i.e., every 1 s). The LSPR peak
for Ga on graphene is observed to dampen and broaden with growth and is slightly
blue-shifted (365 nm) in comparison to that on the SiC (390 nm) (see Fig. 13.21d).
In the context of the Drude model, the plasmon peak becomes narrower and its inten-
sity increases with increasing particle size due to the increased lifetime of the col-
lective plasmon oscillation resulting from reduced electron-surface scattering relax-
ations (i.e., the 1/R effect, where R is the radius of the NPs). This can be clearly seen
in the evolution of the LSPR for Ga nanoparticles on SiC. Conversely, broadening
with nearly constant amplitude is observed for Ga nanoparticles on graphene, despite
the NPs enlargement.
In the absence of a better analytical model, we can describe the surface plasmon
resonance due to an ensemble of Nv absorption oscillators/unit volume (i.e., the Ga
NPs) with a Lorentzian oscillator of the form

ε(ω) = 1 + Nve2

ε0m

1

ω2
p − ω2 + iβω

(13.16)

The damping coefficient β mainly depends on electron- phonon interaction in all
materials and is independent of size and distance distribution of the Ga NPs. The
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Fig. 13.21 Real-time ellipsometric spectra of the plasmon resonance of gallium nanoparticles
grown directly on C-face SiC (a) and on graphene/SiC (b); the corresponding atomic force
microscopy images of the nanoparticles morphology are shown, indicating that they are very sim-
ilar. A representative tilted scanning electron microscopy image of the same Ga nanoparticles on
graphene is also shown in (c). The blue shift of the SPR energy as a function of the nanoparticles
size for the Ga/graphene/SiC compared to Ga/SiC is shown in (d). The sketch at the bottom shows
(e) the bands and Fermi level EF for the isolated graphene and SiC, (f) the alignment of SiC bands
with graphene, inducing the upward band bending due to the electron transfer from SiC to graphene
lowering its work function and n-doping of graphene, and (g) the further electron transfer to gallium
nanoparticles that have a work function of 4.2 eV

plasmon resonance is centered around ωp = Ne2

ε0m , with N being the number of elec-
trons per unit volume, m their effective mass and ε0 the vacuum permittivity. We infer
from Eq. (13.16) that an increase of ωp by an enhancement of the electron density in
the nanoparticles leads to a blueshift of the resonance.
It is important to point out the role of the SiC substrate in determining the electron
transfer to the metal NPs. Specifically, the electron doping of graphene induced
by SiC (i.e. charge transfer from SiC to graphene) causes a decrease of the work
function of the graphene/SiC ensemble, which becomes approximately 4.0–4.2 eV
[53]—lower than the work function of Ga (4.2 eV) and, therefore, activating transfer
of electrons from graphene to Ga to ensure Fermi level equilibration between the
nanoparticles and graphene/SiC, as schematized at the bottom of Fig. 13.21.
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Thus, real-time spectroscopic ellipsometry allows investigating plasmonic coupling
also on novel systems such as graphene/metal nanoparticles

13.7 Molecule-Metal Nanoparticle Interfacial Charge Transfer
Absorption: Application to Nanoparticles Functionalization
and Self-Assembled Monolayers—The Working Principle of
a Molecular Sensor

Metal nanoparticles provided a new opportunity to study interfacial charge-transfer
with molecules because of their size-dependent properties differing from the same
metal in the bulk state. Among other characteristics described in the previous para-
graphs and chapters, metal nanoparticles, because of their high surface-to-volume
ratio, have many sites for adsorption of molecular donors/acceptors, so that the prob-
ability of charge-transfer absorption is increased relative to comparable adsorption
on a bulk material.
As an example, for a spherical nanoparticle, the fraction, fs, of atoms, N, on the surface
is fs = 4/N2/3, and some numbers are given in the table in Fig. 13.21, depending
on the size of nanoparticles, taking the well known gold as an example. From the
electronic-optical point of view, also discreteness of the electronic states becomes
important as the size of the metal nanoparticles decreases. Depending on the size of
the nanoparticle, there may be a gap Eg,N between filled and empty electronic levels as
schematized in Fig. 13.22, (known as the Kubo gap) [54], given by Eg,N = 4EF/3N ,
where EF is the Fermi level of the bulk metal and N is the number of valence electrons.
Some typical values for the most investigated gold nanoparticles are also given in the
table of Fig. 13.21. This means that exciting nanoparticles will also lead to interband

A

B

(a)

(b)

Fig. 13.22 Energy level scheme for a metal-molecule system. The evolution of the electronic levels
from metal atoms to nanoparticles to bulk shows the decrease in the gap, Eg,N, between filled and
empty states with the increase of number of atoms N. The (a)-arrow indicates the molecule-to-
metal charge transfer, while the (b)-arrow indicate the charge transfer from the metal to the excited
molecular level. The table summarizes number of atoms, diameter, gap and fraction of surface atoms
for gold nanoparticles
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transitions that can be size dependent [55], allowing the possibility to tailor the
bandgap of nanoparticles to HOMO-LUMO levels of molecules in order to activate
electron transfer, as schematized in Fig. 13.21. Specifically, considering a molecular
redox couple in contact with a metal nanoparticle, light absorption may induce

(a) molecule-to-metal electron transfer: electron transfer from the reduced form of
the molecule (Red), i.e., a molecular electron donor, to an empty energy level
(B) of the metal nanoparticle, ie., Red-B( ) → Ox-B(e-)

(b) metal-to-excited molecule electron transfer: electron transfer from an occupied
level A(e-) of the metal to the molecular electron acceptor (Oxidized, Ox)
Ox-A(e-) → Red-A( )

If the metal shows plasmonic characteristics, the plasmon resonance of metal
nanoparticles has important consequences when molecules are near the nanoparti-
cles. When incident light excites coherent oscillations of the free electrons in metallic
nanoparticles, inducing localized surface plasmon resonance (LSPR), a strong optical
near-field decays exponentially away from the metal nanoparticle surface with length
scales on the order of 10–200 nm [56] The molecule interacts with this electromag-
netic field and absorption of photons can occur, leading to electronic excitations and
vibrational excitations like the enhancement of Raman signals of nearby molecules,
i.e., the SERS (surface enhanced Raman spectroscopy) effect [57, 58].
Due to the strong field-enhancement effects, surface plasmons can couple strongly
to the molecular electronic transitions to form hybrid molecular-plasmon states.
The LSPR can also interact with the excited states of the molecules, which results
in phenomena such as shortening of molecular radiative lifetime, energy transfer,
charge transfer, and mediation of molecular energy redistribution [59].
The electron transfer involving interband transitions and the plasmon induced elec-
tromagnetic enhancement are the basis of the chemical mechanism (CM) and elec-
tromagnetic mechanism (EM) of the SERS of molecules.
The EM is due to local electric fields in the surroundings of the metal nanoparticles
which are enhanced due to the surface plasmon excitation, leading to more intense
electronic transitions in molecules located near the nanoparticles.
The CM mechanism, also called the “charge transfer model” considers that the Fermi
level of the metal lies between the molecular ground state and one or more of the
excited states of the molecule, so that transitions from the Fermi level to the excited
state of the molecule, which is photoreduced, or from the molecule ground state to
the Fermi level (in this case the molecule is photo-oxidized) can be involved (see
Fig. 13.22).
Here we show the use of real-time spectroscopic ellipsometry in real time to probe
the interaction Ga nanoparticles-molecule, which is the basis of sensors and of SERS
mechanisms.
For optical sensors, a major advantage is that ellipsometry, being a reflection tech-
nique, is sensitive to changes occurring on the sensor surface or in its near-surface
region. Furthermore, the real-time advantage implies that continuous measurements
are possible. As far as concerns sensitivity, most of research ellipsometers have a
resolution better than 0.001◦ in � and �, which corresponds to thickness changes
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Soret band Q-bands

film

film

Hemin solution

Fig. 13.23 Spectra of the molar extinction coefficient (left) and of the imaginary part of the dielectric
function (right) of, respectively, hemin in solution and as self assembled monolayers. The hemin
formula is also shown

of 0.0003 nm of an organic layer on a silicon surface in air and aqueous ambient.
Experimentally, detection limits of 0.01 ng/ml for proteins [60] and of 10 ppm for gas
sensor [61] have been reported in the approximation of a thin layer. On the other hand,
exploiting the surface plasmon resonance of nanoparticles in SPR-based sensors, the
intensity change and wavelength shift based on conventional SPR are limited to a
refractive index unit (RIU) of 5 × 10−5 RIU and 2 × 10−5 RIUM, respectively,
which are insufficient to monitor low concentrations of small biomolecular analytes.
An improvement is achieved by SPR ellipsometry measuring the phase modulation
of the reflected light, achieving 10−7 RIU.
One of the molecular systems that have been extensively exploited to fabricate sensors
and to study molecule-nanoparticle charge transfer is alkanethiol due to the formation
of robust self-assembled monolayers (SAMs) on gold nanoparticles surfaces [62–64].
Another class of molecular wires, porphyrin-based systems, has been studied due
to high charge mobilities along the molecule. Porphyrins are aromatic, heterocyclic
macrocycles, which typically have intense absorption maximum in the visible regime
(see Fig. 13.23) [65, 66]. Porphyrins coupled to metallic nanostructures have been
shown to possess properties of charge transfer, plasmon-enhanced electrical conduc-
tion, and electrocatalyic activity. Among porphyrins, hemin (iron(III) protoporphyrin
IX chloride), which is often used as a model compound for the investigation of heme
c-cofactor that is present in hemoproteins, has the Soret band at ∼400 nm (3.4 eV)
and four distinct Q-bands in the range from 515 to 646 nm (see Fig. 13.23). The
relative intensity ratio of the Soret and Q-bands also depends on the interaction with
the support, as shown in Fig. 13.22 by the comparison of spectra in solution and
in the solid state. The hemin absorption can overlap significantly with the plasmon
band of Ga nanoparticles, and this is important because when photoactive molecules
possess absorption near the frequency of the LSPR, coupling is expected to be strong
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Fig. 13.24 Ellipsometric spectra of the imaginary part, 〈ε2〉, of pristine Ga nanoparticles and after
various times of 1 and 3 h of functionalization by hemin 2 mM solution. The table reports for some
common metals of interest, the work function, Wvac, the redox potential with respect to the hydrogen
standard electrode and the iron predicted state when iron is coupled to the other metal. The inset
shows the 1μm×1μm AFM topography of the Ga nanoparticles

[67, 68]. Therefore, we discuss here hemin attached to Ga nanoparticles because of
the tunability of their plasmon resonance.
Ga nanoparticles with the longitudinal (LO) SPR at 1.8 (below the onset of hemin
absorption, i.e., the Soret band of hemin) and the transverse (TO) SPR mode at 4.8 eV
(i.e., above the hemin absorption) are considered. Figure 13.24 shows the ellipso-
metric spectra of Ga nanoparticles at various time of dipping in a functionalizing
solution of hemin. Coordinating molecules such as hemin causes the LO surface
plasmon peak to shift to lower energy, and to increase in intensity. The increased
low-energy absorption is due to light-induced electron transfer from the Ga nanopar-
ticle to the adsorbate molecular layer derived from the direct interaction between the
porphyrin π and Ga sp-orbitals, in other words, the partial charge transfer between
the porphyrin and Ga.
In hemin, the charge transfer involves the metallic center Fe(III), and it can be
explained by considering the work function and bulk particle reduction potentials for
gallium and for Fe(III) also compared to other plasmonic metals, which are given in
the table included in Fig. 13.24.
The adsorption of iron derivative (E◦ typically +0.4 V), like hemin, onto Au (E◦
+0.5 V) yields adsorbed Fe(III); conversely if, as in the present case, Au is replaced
by Ga Nanoparticles ( E◦−0.8 V) [69] the molecular adsorbed is Fe(II) because of
the reducing potential of Ga compared to Fe(III). This supports the electron transfer
from the Ga nanoparticles to the hemin, with a net decrease of the electron concen-
tration in the Ga nanoparticle volume, and, hence of the plasma frequency, of the Ga
nanoparticles, leading to the red-shift of the plasmon resonance and increase of the
absorption, as discussed in paragraph 2.
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Fig. 13.25 SERS spectra
of the Hemin-Ga NPs after
flowing NO (bottom panel);
for comparison, the Raman
spectrum of bare Ga NPs is
shown in the top panel

This electron transfer and plasmon coupling yield a strong resonant enhancement
of the Raman signal of hemin. Indeed, we were able to observe the SERS spectra
of hemin functionalizing the Ga nanoparticles. Bands characteristic of totally sym-
metric A1g modes at 755 cm−1 associated with B1g modes of hemin have become
dramatically enhanced by chemisorption on Ga nanoparticles (see Fig. 13.25).
A peculiarity of hemin is that it is known to react with nitric oxide (NO) resulting in
substantial changes in the metal coordination environment and electronic structure,
serving therefore as a source of NO optical sensing. The formation of the axially
bound NO-hemin adduct affects modes localized on the chelating ring and that these
modified modes can serve as markers for the presence of the adduct. It has been
predicted that excitation of charge-transfer bands should allow resonance of iron-
nitrogen stretching modes because both the transition moments of these bands and the
vibrational modes are perpendicular (or z-polarized) relative to the porphyrin plane
[70]. Consequently, the band observed at 475 and 577 cm−1 in hemin exposed to NO
must have charge-transfer character. The shift to 200 cm−1 of the Fe(II)-imidazole
stretch, which is expected between 200 and 250 cm−1 also suggests an appreciable
weakening of the Fe-imidazole bond because of the electron transfer from Fe to NO
[71].
Once Ga nanoparticles have reduced Fe(III) to Fe(II) state, the reduced Fe(II) readily
binds the NO molecule that has an unpaired electron: NO bonds to Fe(II) with a
greater affinity than to Fe(III). Upon formation of the NO-Fe bond, electrons form
an electron pair and the FE-NO nitrosyl complex develops a stable closed-shell
character, as schematized by the sequence below

Hemin − Fe(III)+ Ga◦ → Hemin − Fe(II)+ Ga+

NO↓
Hemin − Fe(II)− NO
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Fig. 13.26 a Ellipsometric spectra of the imaginary part, 〈ε2〉, of pristine Ga nanoparticles and
after functionalization by hemin solution 2 mM and further exposure to 100 ppm of NO. The inset
sketches the electron transfer from the Ga nanoparticles to reducing Fe(III) to Fe(II) that, therefore,
binds NO. b 〈ε2〉 time evolution monitored at the maximum of the plasmon resonance (∼1.6 eV)
upon cycles of exposure to NO gas

Therefore, electrons are transferred from the Ga Nanoparticles to the NO binding,
causing a further red-shift of the Ga NPs plasmon resonance, as shown in Fig. 13.26a.
The energy shift and the amplitude variation of the plasmon resonance detected by
spectroscopic ellipsometry provide enough variables and sensitivity to sensing the
NO gas optically. Fig. 13.26b shows the variation of 〈ε2〉 during cycles of exposure
to NO and the reversibility of the ellipsometric signal by flowing in and out a gas
cell the NO gas.
The plasmon resonance energy and amplitude can change by refractive index or
electron transfer, however, the change in refractive index by NO is negligible, and
therefore the observed variation can be ascribed to electron transfer activated by
process in Eq. (13.16). On the basis of these ellipsometric observations, we can
assume that the formation of the axially bound NO-hemin adduct affects modes
localized on the chelating ring due to the charge transfer inducing variation of the
coordination geometry of Fe center, and that these changes can serve as sensor for
the presence of the NO, demonstrating how the charge transfer and its impact on the
plasmon resonance, which can be probed by ellipsometry, constitutes a diagnostic
methodology to study and develop sensors.

13.8 Conclusions and Outlook

The electrodynamic coupling of photons and electrons via localized surface plasmons
has been intensively studied for over 100 years. Nevertheless, an appreciation for the
material design considerations needed to fully harness this coupling has only begun
to emerge.
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Investigations on the charging of nanoparticles have led to the discovery that the
plasmon resonance (and therefore the light absorption and scattering) is sensitive
to charging events. These two sets of phenomena, which form the core of plasmo-
electronic effects, suggest that a complete description of the electronic behavior and
plasmonic response of a material requires knowledge of not only nanoparticle shape,
size, and dielectric environment, but also of charge.
The examples presented in this chapter show the unique properties of real-time spec-
troscopic ellipsometry in monitoring interface phenomena at the nanoscale which
involve charge transfer from/to an ultrathin layer and or nanoparticle of a metal
to/from semiconductors and/or organic molecules.
From a more fundamental perspective, highlighting these plasmoelectronic materials
provide new insights into the coupling of light with charge in complex heterogeneous
materials. As highlighted by the studies presented herein, significant progress has
been made in recent years in understanding the coupling of plasmons with net flows
of charge carriers, which has resulted in improvement in growth methodologies for
semiconductors, in novel plasmonics systems growth and in sensors with improved
performance.
In spite of the significant progress, however, we feel that the field of plasmoelectronics
is yet in its infancy and that fundamental insights as well as a full exploration of
potential applications are yet to be revealed.
From the ellipsometric perspective, real time spectroscopic ellipsometry is now well
established as interactive diagnostic tool, and is making a major contribution to the
study of surfaces and interfaces phenomena in general, and of nanostructure process-
ing in particular. Significant advantages of real time spectroscopic ellipsometry have
been demonstrated: all pressure ranges during growth processes are accessible; trans-
parent as well as opaque substrates can be monitored; insulators can be studied
without the problem of charging effects, and, therefore, no substrate/sample spe-
cific preparation is required; buried interfaces are accessible; sub-second temporal
resolution for kinetic studies can be achieved.
Enabling nanoscale materials real-time analysis under realistic conditions is a crit-
ical need. Ellipsometry provides a unique capability to measure in real time under
realistic environments; therefore, ellipsometry real time application has paramount
opportunities to speed the rate at which new information regarding the chemical and
physical behavior of nanomaterials could be gained thus enabling optimization of
manufacturing processes.
Therefore, the real-time spectroscopic ellipsometric approach can now be generalized
to an extensive array of device configurations utilizing organic as well as inorganic
compounds, on thin films, single crystals, and polycrystalline substrates, producing
a variety of molecule-nanoparticle combinations with unique and novel properties.
The extension of this work with other optical active molecules, chemistries, and
surfaces provides an unlimited number of variables to create varied hybrid device
structures with diverse property sets.
In the next few years, a major effort is expected in the exploration of laboratory
best practices for modelling data and the harmonization of preliminary stage devel-
opment of standards for ellipsometry characterization, as there is now a wealth of
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high-quality experimental data available on nanostructures. A vital element in the
development of effective and validated protocols (or standard practices) for applica-
tion of ellipsometry especially to nanomaterials is the conductance of interlaboratory
studies, commonly referred to as round robin testing.
These studies are necessary to provide estimates of measurement precision at the
nanoscale, and to ensure that modelling procedures generate accurate and meaningful
results while avoiding potential artefacts.
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Chapter 14
Polarimetric and Other Optical Probes
for the Solid–Liquid Interface

Kurt Hingerl

Abstract The rise of nanoscience and nanotechnology has induced a remarkable
change in the science of liquid surfaces and interfaces: from a macroscopic and
thermodynamic oriented approach the field is now steadily moving towards a micro-
scopic and atomistic understanding. However, the need to measure, monitor, under-
stand and ultimately control (electro-) chemical and physical processes occurring at
liquid interfaces and surfaces cannot been simply fulfilled by transferring the highly
successful electron beam or ion beam techniques into the liquid environment due to
the limited free path of electrons or ions. Optical techniques, especially polarimetric
techniques, have experienced a renaissance in the surface science of the liquid–solid
interface and will become even more important in the future. Despite the penetration
depth of light is for all materials at least of the order of 100 nm or above, surface
sensitive optical probes have been developed, capable of monitoring processes on
the nanosecond scale with thickness resolution of less than a monolayer. On the first
sight, however, the major disadvantage of optical probes, being of indirect nature
compared to electron microscopy or spectroscopy, proves then to be a fascinating
feature, because all polarimetric, linear or nonlinear intensity and sum frequency,
or scattering optical probes require modeling the full system for understanding the
interactions between the liquid and solid at the interface. In the following we will
demonstrate, after an introduction to electrochemistry, with a few selected exam-
ples the power of polarimetric techniques for understanding the liquid interface and
review prior work especially for the electrochemical interface by polarimetric probes.
The importance of correlation measurements, mainly current voltage measurements
and scanning probe techniques for a thorough understanding is finally highlighted.
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14.1 Introduction

When the properties of liquids and solutions are considered, attention is normally
focused on the bulk of the phase, and the properties of the system at its boundaries
are ignored. These boundaries, however, exhibit significant effects and understand-
ing their influence is a prerequisite for exploiting technological important processes.
The recent nanoscience and nanotechnology research aiming at a microscopic and
atomistic understanding of the liquid–solid interface has fostered a different approach
to liquid surfaces and interfaces: instead of working with thermodynamic relations,
microscopic approaches for measuring, monitoring and ultimately controlling the
liquid–solid interface have increased the use and the development of in-situ tech-
niques, scanning probe techniques, as well as optical ones. Furthermore much of the
current knowledge about the structure and properties of electrode-electrolyte inter-
faces has been obtained from a combination of electrochemical in-situ and ex-situ
spectroscopic methods. Ex-situ electron- based techniques, such as Auger electron,
and X-ray and UV photoelectron spectroscopies, low-energy electron diffraction,
have been used extensively to characterize electrodes before and after electrochem-
ical measurements especially with single-crystal metal surfaces (for applications
of ex-situ electron-based techniques to the study of electrochemical interfaces, see
Ref. [1]). The interpretation of results obtained with these powerful ultra high vacuum
(UHV) analytical methods, however, particularly in the case of post-electrochemical
examination, must be performed with caution. This is due to possible changes in
the surface resulting from the loss of potential control and subsequent exposure to
vacuum and electron and photon beams. UHV compatible surface analysis methods
refer to those experimental techniques that give chemical information on surfaces to
a depth of 2–3 nm and even less. These analysis methods like X-ray photoelectron
spectroscopy (XPS) or ultraviolet photoelectron spectroscopy (UPS) or scanning
Auger electron spectroscopy (AES) can be combined with ion sputtering, which
removes atomic layers from the surface and makes it thereby possible to measure
concentration variations over a depth of tens or even hundreds of nanometers.

The lack of suitable surface science measurements for the liquid–solid interface
leads to the use of optical and X-ray techniques. The optical ones will be discussed in
the subsequent sections of this chapter with a special emphasis on linear polarization
optical probes. It is out of the scope of this chapter to review the experimental realiza-
tions of spectroscopic ellipsometry and related techniques. In the following we will
refer to other chapters of this book (especially Chap. 1) and to previous books, espe-
cially the 1987 edition of Ellipsometry and Polarized Light by Azzam and Bashara
[2] for a general introduction to spectroscopic ellipsometry (SE) and Müller Matrix
polarimetry (MMP) and to the different chapters of the Handbook of Ellipsometry,
edited by Tompkins and Irene [3]. For further information on reflectance differ-
ence/anisotropy spectroscopy (RDS/RAS) the reader should consult the chapter by
Zahn on this technique in the book [4]. An introduction to Raman spectroscopy can
be found in the books [5, 6].

http://dx.doi.org/10.1007/978-3-642-33956-1_1
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Just to name a few applications, electrochemical deposition and corrosion, bat-
teries, charge storage and charge transfer, etching of semiconductors, etc. are major
commercial processes, which benefit from a basic understanding of the liquid–solid
interface. To start with the first, corrosion reaction rates are strongly dependent on
surface adsorption, oxidation, and (electrolyte/surface) segregation. These phenom-
ena can drastically modify the chemical composition of surfaces relative to that of the
bulk and consequently influence the reactivity and the corrosion behavior of metals.
From a kinetic point of view, three types of corrosion reactions, depending on the
rate-limiting step, have been identified [7]: (a) Corrosion controlled by the kinet-
ics of a charge-transfer reaction, either anodic or cathodic, at the metal-electrolyte
interface. An example is the corrosion of steel in acids. (b) Corrosion controlled
by the rate of mass transport of the oxidizing agent or of anodic reaction products.
A well-known example is the corrosion of steel in neutral, aerated solution. (c) Cor-
rosion controlled by the properties of the passive film. The reaction is then under
anodic control and the average corrosion rate is often quite small. Stainless steel in
aqueous solutions behaves in this manner. Therefore, there is a clear need for in-situ
compatible techniques, because only they can identify the relevant time scales, the
rate limiting steps, surface phase transitions or a present hysteresis behavior.

An industrial realization of electrochemical deposition in microelectronics is the
damascene process, i.e. depositing/interlaying copper. This is becoming more and
more important as the number of interconnect levels for logic devices has substan-
tially increased due to the large number of transistors that are now interconnected.
Connected with a change in the wiring material from aluminium to copper and from
the silicon dioxide to new low-k materials a performance enhancement comes at
a reduced cost via damascene processing that eliminates processing steps (through
silicon vias). In damascene processing, in contrast to subtractive aluminium tech-
nology, the dielectric–insulating-material is deposited first as a blank film, which is
then patterned and etched leaving holes or trenches. In single damascene process-
ing, poly-crystalline copper is deposited in the holes or trenches surrounded by a
thin barrier film resulting in filled vias or wire lines. In dual damascene technology,
both the trench and the via are fabricated before the deposition of copper resulting
in formation of both the via and line simultaneously, further reducing the number
of processing steps. A thin barrier film, called copper barrier seed, is necessary to
prevent copper diffusion into the dielectric. As the presence of excessive barrier film
competes with the available copper wire cross section, formation of the thinnest con-
tinuous barrier represents one of the greatest ongoing challenges in copper processing
[8]. The structural description of these systems at a molecular level can be used to
control reactions at interfaces.

The final application discussed in the introduction is the direct conversion of elec-
tric energy into chemical energy, either by primary (single use) or secondary batteries
(chargeable) or fuel cells. The oldest form of rechargeable battery is the lead—
acid battery, which is displayed via the cell diagram Pb(s)/PbSO4//PbO2/PbSO4.
The nomenclature is the following: left to the double forward slash // the anode is
indicated, where oxidation takes place. The first right forward slash represents the
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liquid–solid interface between Pb(s) and the oxidation product PbSO4 at the anode.
To the right of the double forward slash // the cathode reaction is given. The respective
chemical decharging reaction at the anode, establishing for this half cell a potential
difference of −0.36 V, is written as

Pb + SO2−
4 ↔ PbSO4 + 2e− (14.1)

The cathode is indicated to the right of the double forward slash, with its liquid–
solid interface between the oxidation product PbO2, which is reduced to PbSO4 by
the decharging reaction, establishing for this half cell +1.68 V,

PbO2 + SO2−
4 + 4H3 O+ + 2e− ↔ PbSO4 + 6H2 O (14.2)

Summing both, providing an electromotive force of 2.04 V the total reaction yields

Pb + PbO2 + 2H2SO4 → 2PbSO4 + 2H2 O (14.3)

where the arrow points to the right when decharging, and to the left, when charging
the battery. The lead acid battery is rather old and also heavy for the amount of
electrical energy it can supply. Furthermore, corrosion of the solid PbO2 electrode
limits the number of charging cycles.

The field of the liquid–solid interface is so rich and broad and interdisciplinary—
and treated by physicists, chemists, materials scientists and biologists—such that it
is impossible to cover all aspects of electrochemistry. On the other hand, physicists
and optical engineers are hardly trained in the foundations of electrochemistry.
Therefore this chapter repeats in the next section definitions from electrochemistry
(Sect. 14.2) and the nature of and models for the electrolyte interface (Sect. 14.3).
After giving the basics, the subsequent section deals with adsorption processes
(Sect. 14.4) and in a rather short presentation non-equilibrium processes are reviewed
in Sect. 14.5. Here the focus is mainly on optical techniques and the kinetic infor-
mation gained from them. However, the major progress arose from traditional
electrochemical correlation measurements, mainly techniques as cyclovoltammetry
(CyV) and electrochemical impedance spectroscopy (ECIS), but also atomic force
microscopy (AFM) and especially electrochemical scanning tunneling microscopy
(ECSTM), which are all reviewed in Sect. 14.6. Finally, in Sect. 14.7 we review
linear polarization optical techniques and their findings. We summarize and pro-
vide an outlook in Sect. 14.8, where a recommendation and warning is issued on
the use of SE and related techniques: all the optical techniques mentioned above
yield a wealth of indirect information since they require modeling the (effective)
dielectric function and thereby the processes occurring at the interface. There-
fore, polarization optical techniques can, on the one hand, provide otherwise unac-
cessible data, on the other hand can also easily lead to erroneous conclusions.
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Fig. 14.1 H2/O2 fuel cell. At the anode (left electrode) oxidation occurs (supply of electrons) which
generate an external (negative) current. At the cathode the supplied material (oxygen) is reduced.
The indicated anode reaction is a shorthand notation for 4H2 O + 2H2 ↔ 4H3 O+ + 4e−, the
indicated cathode reaction is a shorthand notation for O2 + 4H3 O+ + 4e− ↔ 6H2 O . Reproduced
with permission by EPFL Press from Ref. [7]

14.2 Basics of Electrochemistry

An electrochemical cell consists of two electrodes in contact with an electrolyte
and connected by an electric conductor. Corrosion cells, batteries and fuel cells
are examples of electrochemical cells. As an illustration, in Fig. 14.1 an H2/O2
fuel cell (defined by an external flow of gases providing chemical energy, which is
transformed into electrical energy) is shown. The anode is defined as the electrode,
where oxidation takes place, this is for the case of Fig. 14.1, the one where hydrogen
is oxidized (electrons are taken off the hydrogen) to H+(H3 O+). Oxidation means
that electrons are provided to the external wire, the ionized hydrogen is soluted in the
electrolyte and the electrons are leaving the electrode and flowing through the wire
and provide a current. At the cathode oxygen is reduced (i.e. electrons are taken up)
and reacts to H2 O . For each two moles of H2 four electrons are provided and with
one mole of O2, two moles of water are produced.

Because chemical energy and electrical energy can be (in principle) fully con-
verted into each other, the process of producing current by material flow and sub-
sequent reaction(s) can be reversed by producing an electrical power and splitting a
chemical compound into its parts; this is called electrolysis. In an electrolysis cell,
the anode is the positive pole, whereas in a fuel cell or battery it is the negative one.

Faradays law states: when ni moles of a given substance react, a proportional
electric charge Q passes across the electrode-electrolyte interface: Q = nFni , where
F is the Faraday constant F = 96, 485 C/mol and the charge number n, without
units, expresses the stoichiometric coefficient of the electrons in the equation for the
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electrode reaction. For example, for the reaction describing the anodic dissolution
of iron Eq. (14.4), n = 2.

In addition, electrochemical processes occur (often!) without the presence of an
explicitly present second electrode: for corrosion, e.g. an oxidation-reduction (redox)
reaction between the metal and an oxidizing agent present in the environment takes
place. Therefore the oxidation of the metal is inseparably linked to the reduction of
the oxidizing agent. If metallic iron is dropped into a bottle of an acidic (chlorinated)
water, the positive charge of the H3 O+ is transferred to the Fe, which is dissolved
in the water.

Fe + 2H3 O+
aq + 2Cl−aq → Fe2+ + H2,g + 2Cl−aq + 2H2 O (14.4)

with the oxidizing agent as the solvated proton H3 O+. The state of chlorine is
unaffected, therefore the reaction can also be written as Fe+2H+

aq → Fe2+ + H2,g .
This reaction is reversible. In neutral or alkaline conditions oxygen becomes the
oxidizing agent for iron forming rust: 4Fe + 3O2 + 2H2 O → 4FeO O H . This rust
(salt) is partially dissolved and the reaction becomes thereby irreversible. In a more
general form, both corrosion reactions can be written in the form

metal + oxidizing agent → oxidized metal + reducing agent. (14.5)

Despite on a first view, the schematic fuel cell and the electrolysis cell shown in
Figs. 14.1 and 14.2 function independently of the electrode material, it is important
which materials (metals) are used as electrodes, because the surface structure as well
as catalytic activities and kinetic effects drastically change the technically achievable
efficiency. The open circuit voltage, which builds up in the fuel cell reaction in
Fig. 14.1 is +1.229 V, if oxygen and hydrogen are bubbled over platinum electrodes.

Fig. 14.2 Electrolysis cell
for water. Again, at the anode
(now the right electrode)
oxidation occurs, produc-
ing besides electrons also
H+ (H3 O+). Reproduced
with permission by EPFL
Press from Ref. [7]
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The equilibrium potential or reversible potential of an electrode is defined as the
difference in electric potential between the metal and the solution at equilibrium.
It is named Erev under standard conditions (p = 1013 mbar, T = 25 ◦C) E0.
Potentials cannot be measured absolutely, only potential differences between two
electrodes in an electrochemical cell are measurable. By convention, a scale of stan-
dard electrode potentials, i.e. the open circuit voltage, which builds up between two
different chemical electrodes due to their ionic solution in water, has been defined
by arbitrarily assigning the value of zero to the equilibrium potential of the hydro-
gen electrode under standard conditions 2H+ + 2e− = H2 (normal (or standard)
hydrogen electrode- nhe, she). A list of standard potentials of electrode reactions
can be found e.g. in Ref. [9]. It is clear that these potentials depend on ambient con-
ditions (p, T ) as well as on the pH value and possible additional solvents. Taking
into account the solvation energy of protons, the energy gained by the reaction of the
gaseous proton with the electron, and the energy gained by forming H2, a relation
between nhe and the work function can be derived. For hydrogen, the vacuum level
is 4.44 eV above the nhe level.

Having an electrochemical cell with two different electrodes in contact with a
common electrolyte, the free reaction enthalpyΔG0 can be expressed by the number
(of moles) of electrons n, and the amount and activity of the reactants and reaction
products, called Bi . The relation between the electrode potential, the temperature and
the stochiometric coefficients as a function of the activity (concentration) of the ions is
called Nernst’s equation. (Its derivation is repeated to facilitate for the reader without
electrochemistry background the concepts and nomenclature). A chemical reaction is
usually denoted with the stoichiometric coefficients νi (positive for reaction products
and negative for reactants): ∑

i

νi Bi = 0 (14.6)

The Gibbs free energy of reactionΔG is defined through the chemical potentials
of the participating reactants and reaction products μi . The chemical potential of a
species i , present in a mixture, can be separated into two parts (by using the model
for ideal gases), where the first one depends only on temperature and pressure and
is denoted by a superscript 0 and the second one depends on the activity ai , which
itself depends on the concentration and can be approximated by it. In the case of a
pure substance, μi is equivalent to the molar free energy.

μi = μ0
i + RT ln(ai ) (14.7)

Using the equilibrium reaction constant K = ln(
∏

aνi
i ) the Gibbs free energy of

reaction ΔG can be expressed with ΔG0 = ∑
νiμ

0
i as

ΔG =
∑

i

νiμi = ΔG0 + RT ln(K ) (14.8)
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For an electrochemical cell the electrons that are produced at the anode are capable
of supplying electrical work (negative sign, because work performed outside the
system) W = −nF Erev and pass via the external conductor to the cathode, where
they participate in a reduction reaction. Therefore this electrical work has to be taken
into account in the Gibbs free energy of reaction ΔG

ΔG =
∑

i

νiμi = −nF Erev (14.9)

which allows us to calculate the reversible electrical work. Under standard conditions
these values are listed.

ΔG0 =
∑

i

νiμ
0
i = −nF E0 (14.10)

We have now set the basis for deriving Nernst’s equation (Eq. 14.13), which allows
the calculation of the equilibrium potential as a function of concentration (respec-
tively activity) and temperature: Writing Eq. 14.6 explicitly with oxidation and reduc-
tion products and the used H2 and writing also the equations forΔG and Erev leads
to ∑

i

νi,ox Bi,ox + n

2
H2 =

∑
νi,red Bi,red + nH+ (14.11)

ΔG=ΔG0 + RT ln
an

H+
∏

a
νi,red
i,red

p
n
2
H2

∏
a
νi,ox
i,ox

= −nF Erev (14.12)

Solving for Erev and setting at standard conditions aH+ = 1 and pH2 = 1 atm
leads to the following equation. If the activities are (in good approximation) replaced
by the concentrations, these can be calculated after measuring the potential difference.

Erev = E0 + RT

nF
+ ln

∏
a
νi,ox
i,ox∏

a
νi,red
i,red

(14.13)

For silver, Ag, the concentration of Ag+ ions in aqueous electrolyte can be calcu-
lated at T = 25◦C using the fact that metallic Ag has by definition a concentration
(activitiy) of 1 and using the tabulated standard electrode potential E0 of 0.799 V
as Erev = 0.799 + 0.059 ln cAg+ . When applying a certain open circuit potential
across an electrochemical cell, the concentrations are determined through the poten-
tial, and the increase/decrease of the potential increases/lowers the concentrations of
the Ag+ cations in the solution. Nernst’s equation immediately yields that the more
noble dissolved metal ions with the higher E0 will deposit immediately on the solid
less noble metal surface. The less noble metal will immediately be dissolved in the
electrolyte, yielding a cation exchange reaction M → Mn+(aq)+ ne−.

We will use the Nernst equation later, especially when discussing underpotential
deposition and surface effects driven by externally applied potentials. A discussion of
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the pH dependence of the Nernst equation Eq. 14.13 will lead to Pourbaix diagrams
and also corrosion currents can be derived (Tafel plots); however discussing these
topics would be out of proportion for this review. For readers educated in electro-
chemistry the above topics are well known and the other readers with an optics/solid
state physics background are referred to two recent online teaching resources at
http://www.doitpoms.ac.uk/ Refs. [10, 11].

In the next paragraph we focus on models of the electrode-electrolyte interface
for understanding electrochemical surface science effects such as underpotential
deposition and kinetic or non-equilibrium charge transfer processes, which have
been investigated with optical techniques. For a tutorial discussion on the electrode-
electrolyte interface we follow the book [12].

14.3 The Electrode-Electrolyte Interface

From an atomistic point of view, a metal surface could be modeled by a particle
in a semi-infinite potential well with finite height towards the interface. Electrons
are much more delocalized than ions and there is a finite probability density also
outside the metal, already in the vacuum or in the dielectric. This is called a jellium
model, because the attractive potentials of the single ion cores are smeared out. This
“spilling out” of the electrons (of the order of 5 Å) leaves positive charges at the metal
side of the interface and accumulates negative charge outside (shown schematically
in Fig. 14.3). Integrating Poisson’s equation yields the potential. If such a metal
is dipped into an electrolyte without applying an external potential, the previously
dissolved positive cations will preferably gather at the interface in order to minimize
the electrostatic energy, and will thereby build up the additional surface charge σ
and modify the potential.

For a metal-vacuum interface a charge separation is observed when a metal surface
is in contact with an electrolyte. The charge distribution at the metal-electrolyte
interface depends in addition to the simple scheme in Fig. 14.3 mainly on:

Fig. 14.3 Because electrons leak out of the surface and the ions are rigid—provided there is no
dissolution—, there is a positive charge density at the inner side and a negative charge density at
the outer side. The corresponding potential drops towards the electrolyte

http://www.doitpoms.ac.uk/
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1. the electronic properties of the solid,
2. the adsorption of water molecules and of hydrated cations,
3. the chemisorption of anions (surface excesses),
4. the externally controlled potential that is applied.

The zone of charge separation near the interface is called electric double layer, or
simply “double layer”. Depending on the applied potential, the charge of the metal
can either be positive or negative relative to the electrolyte. The structure of the
double layer therefore varies with the potential and with the chemical nature of the
ions present. Figure 14.4 gives a schematic representation of the double layer region,
for the specific case of excess negative charge at the metal surface. Water is a dipolar
molecule. Therefore, when it adsorbs, it preferentially orients itself according to the
charges located at the surface. For the case of a negative potential at the metal surface,
the first few water layers are immobile and oriented to minimize the electrostatic
energy (d � 2 nm). Within the electrolyte, ions are dressed by solvation shells of
polarized water molecules, which screen the fields originating from the ions. The
ions with their solvation shell carry a net charge. Consequently, a space charge layer
builds up near the solid surface, with a characteristic decay length depending on the
ion concentration in the electrolyte (�2–20 nm). At least for the larger lengths, the
electrical properties of this zone can be treated in a continuum approximation.

The Stern layer consists (i) of water molecules (see Fig. 14.4, for this charge state
with the hydrogens oriented towards the metal), (ii) cations, which have kept their

Fig. 14.4 Schematic model of the electric double layer; cations usually carry a solvation shell in
the electrolyte, whereas anions usually do not. The specific absorption of anions, despite the fact
that the metal is negatively charged, is also shown schematically. This specific adsorption can arise
due to strong chemical binding. Reprinted with permission from EPFL from Ref. [7]
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solvation shell and (iii) anions in a chemisorbed state directly at the interface (or in the
liquid, usually without solvation shells). Electrochemists call these adsorbed species
“specifically adsorbed ions” to distinguish between species that adsorb directly on
the solid surfaces and those ions that keep their solvation shell. Examples of “specif-
ically adsorbed ions” are Cl−, Br−, or SO=

4 . When these species are adsorbed on
the surface, they form structures similar to the reconstructions known from ultra high
vacuum. Depending on specific adsorption the potential changes: Without specific
adsorption the potential follows a curve as the one shown in Fig. 14.3. The first few
nanometers are called (rigid, inner) Helmholtz (or Stern) layer. The outer region is
called (diffuse) Guoy Chapman layer and is characterized by an exponential decay
of the potential. For the case of specific adsorption the potential curve varies rather
drastically: Due to the presence of negatively charged ions very close to the inter-
face, there is a huge potential drop towards the border of the inner Helmholtz layer,
showing even a minimum, and then an exponential rise. For the determination of the
spatial dependence of the potential the reader is referred to Sect. 3.2 in Ref. [13]. The
thickness of the Stern-layer is ≈0.3 nm, its static dielectric constant less than that
of free water since the water molecules in that layer cannot rotate freely as in the
bulk of the water. To the right the boundary of the Stern-layer, the potential decays
exponentially, this region is called diffuse layer. The decay length depends on the
concentration of ions in the electrolyte solution.

From a thermodynamic point of view Gibb’s thermodynamic potential, which
already depends on the electrical potential ϕ and the interface charge density σ , (and
in case of preferred absorbed species with a chemical potential μi on the surface
excess Γi ) is in the presence of surfaces amended with a term describing the sur-
face tension (“energy”) X = γ A. We use quotation marks for naming the addition
“energy”, because the term represents a linear combination of surface deformation
energy and the energy for breaking the bonds. The differential of γ can be written
as (please note that the same symbol also appears on the right side, but disappears
there for liquids, where strain cannot exist):

dγ (T, εkl , μi , ϕ) = − S

A
dT +

∑
kl

(τkl − γ δkl)εkl −
∑

i

Γi dμi − σdϕ (14.14)

For a surface, this equation shows the interrelation between the specific surface
free energy and the temperature, the surface stress, the surface excesses and the
surface charge. The definition of the charge density is herein only formal in the
sense that from a thermodynamic point of view we know nothing about the actual
distribution of the charge. It acquires its meaning only within a model (Helmholtz,
Guoy Chapman, etc.) in which the metal charge and the ionic charge are separated
along an interface.

The Gouy Chapman capacity CCG for a parallel plate capacitor is defined as
the ratio of the charge density σ at the interface divided by the potential φ; for a
not constant field respectively a nonlinear potential decay CCG is obtained by the
derivative of the charge density at the interface with respect to the potential at z = 0,

http://dx.doi.org/10.1007/978-3-642-33956-1_3
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CGC = ∂σ/∂φ.

CCG = εε0 cosh
Zeφ(0)

2kB T
(14.15)

At low electrolyte concentrations, up to about a 10−3 M solution, the
Gouy-Chapman theory agrees quite well with experimental values of the double
layer capacity for nonadsorbing electrolytes. The Gouy-Chapman capacitance, which
was derived by assuming Boltzmann statistics for the charges, has a minimum at the
potential where the charge is zero. The (DC) potential, where the minimum occurs, is
called point of zero charge. For the tightly bound species within the Stern layer mod-
ifications are needed. This is seen experimentally by plotting the measured capacity
(and this is the only measurable quantity) versus the calculated CCG with varying
electrolyte concentrations. At higher concentrations, the experimental values follow
an equation for an equivalent circuit of series connection of two capacitors:

1

Ctot
= 1

CCG
+ 1

CH
(14.16)

where the Helmholtz capacity CH is almost independent of the electrolyte con-
centration. The current models for the origin of the Helmholtz layer discuss either
electronic effects or structural origins coming from the periodic modulation not taken
into account by the jellium/continuum model [12]. In the absence of specific adsorp-
tion, the potential of zero charge (pzc) can be measured as the potential at which the
Gouy-Chapman capacity has a minimum. If this value is independent of the elec-
trolyte concentration, specific adsorption does not occur. The pzc coincides with the
maximum of the surface tension, which can be measured directly for liquid metals.

14.4 Adsorption

Adsorption is the adhesion of atoms, ions, or molecules from the liquid phase to a
surface. This can happen either by electrostatic interaction (e.g. cations adsorb on
a negatively biased electrode) or by chemical reaction (chemisorption) or usually
weaker physical (van der Waals) bonds. The exact nature of bonding depends on
details of the species involved, but the adsorption process is generally classified as
physisorption (characteristic of weak van der Waals forces, with a lower heat of
adsorption ∼50 meV/atom) or chemisorption (characteristic of covalent bonding,
with a higher one up to 500 meV/atom). The adsorption process creates a film of
the adsorbate on the surface of the adsorbent. Whenever adsorption occurs, the free
energy of the system is reduced by an amount which is called free energy of adsorption
ΔGads = ΔHads − TΔSads . Because the structure gets more ordered, the second
term is always positive and ΔHads = −Qads must be negative, which means that
the heat of adsorption is exothermic and a positive quantity. The heat of adsorption
can be varied by changing the concentration in the solvent and can be determined by
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measuring the coverage θ as a function of temperature. The underlying adsorption
isotherm models are called Langmuir, Frumkin, etc. For details see Ref. [14]. Without
going into details of chemisorption, the coverage θ can be measured by the overall
charge transfer e.g. in cyclic voltammetry (Sect. 5.2.1.1 in Ref. [15]).

The electrochemical solvent is always present at the interface; if specific adsorp-
tion occurs, the interaction of the cation or anion with the electrode has to be greater
than that of the solvent. Dissolved cations carry—in general—a hydration shell,
therefore they are unable to approach the surface any closer than the distance defined
by the radius of their hydration shell. Anions are not hydrated in general. Certain
anions such as chloride or other halides are capable of chemisorbing onto the sur-
face, replacing adsorbed water molecules. This may even take place, if the metal is
negatively charged.

Beside the adsorption of halides another well investigated adsorption process is
termed “underpotential deposition” (upd), when a single (maximum double) layer of
a less noble metal (or hydrogen) is attracted to a more noble electrode and adsorbs
there. As seen from Eq. (14.13), solution into the solvent is preferred at more positive
potentials, deposition would occur only at more negative potentials. However, it is
experimentally observed that a monolayer of a less noble metals gets deposited on
noble ones already at potentials higher than the calculated equilibrium potential. For
example, copper atoms in a solution attach at a bar of silver kept at the same electric
potential than the solvent. This is explained atomistically by an enhanced attractive
interaction between the first layer of the adsorbate and the substrate. Experimentally
the upd effect is detectable, by changing (i.e. reducing) the potential of the substrate
electrode rather slowly (mV/s) and detecting the current. At a more positive potential
than determined by Nernst’s Equation 14.13, the Ag substrate atoms are not dissolved,
because the potential is still below the equilibrium potential. Lowering the potential
should yield a current increase beginning at the Nernst potential Erev; nevertheless,
current peaks are already observed at higher voltages.

14.5 Electrochemical Kinetics

Thermodynamic principles can help to explain a corrosion situation in terms of
the stability of chemical species and reactions associated with corrosion processes.
However, thermodynamic calculations cannot be use to predict corrosion rates. Prin-
ciples of electrode kinetics have to be used to estimate these rates. Because the field
of electrochemical kinetics is extensive, here only the most important aspects are
introduced.

There is a basic distinction on the rate limiting cases: (A) When the electrode
reaction is controlled by electrical charge transfer at the electrode, then the Butler-
Volmer equation is valid, which is discussed below. (B) If the mass transfer to/from
the electrode surface from/to the bulk electrolyte limits the kinetics, then diffusion in
the electrolyte plays the major role. For the first case, most often, several electrode
reactions take place simultaneously at the metal-electrolyte interface. Such systems

http://dx.doi.org/10.1007/978-3-642-33956-1_5
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are referred to as "mixed electrodes" [7]. The important quantity for kinetics is the
activation overpotential η, defined as η = (E − Eeq).

i = i0 ·
{

exp

[
αanF

RT
η

]
− exp

[
−αcnF

RT
η

]}
(14.17)

where i is the measured electrode current, io the exchange current density, αc the
dimensionless cathodic charge transfer coefficient and αa the dimensionless anodic
charge transfer coefficient, both describing the behavior of the mixed electrodes.
The factors in the exponents beside η are the inverse Tafel coefficients. The values
Tafel coefficients depend on the precise mechanism of the electrode reactions, which
often consist of several elementary reactions. The Butler-Volmer equation describes
the charge-transfer kinetics in a global, mechanism-independent fashion, and can
be applied without detailed knowledge of the single steps. The three kinetic quanti-
ties αa , αc and β can be easily measured by polarizing the cell and measuring the
resulting current. Evaluating the Tafel lines and the Evans diagram [7] provides these
macroscopic kinetic quantities. Despite there have been recent approaches to calcu-
late these kinetic quantities with ab inito techniques, possible in-situ measurements
will contribute to understanding irreversible reactions at mixed electrodes.

14.6 Correlation Measurements

14.6.1 Cyclic Voltammetry

Even very small currents (fA) can be measured with electrometeramplifiers very
precisely. To obtain an estimation, if on a surface with an area of approximately
1 cm2 each atom changes its charge state with one electron per second, currents
between 100 µA and a few milli amperes result. Since the time of Faraday, time
resolved charge transfer reactions were used to study non-steady-state electrochem-
ical processes. In contrast to steady state polarization methods, these transient tech-
niques are able to distinguish reaction phenomena with different time constants.
Typically, a variation in either the current or the potential at the working electrode
is imposed and then the response as a function of time or frequency is recorded.
For corrosion measurements, sometimes potential step or current step measurements
are used obtaining information on (a) the mass transport of the reacting species in
the electrolyte, (b) the charging of the double layer and (c) the potential drop in
(series resistance of) the electrolyte as discussed more extensively in Ref. [7]. With
cyclic voltammetry (CyV) the electrode potential is varied periodically with a volt-
age change between 10 mV/s up to a few V/s. Depending on the reversal voltage and
the voltage change different physical effects can be detected.

As a tutorial example [15] we choose a system where electrolysis is present, Pt
in KOH. With Pt electrodes the hydrogen generation, the electrochemical double
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Fig. 14.5 Cyclic voltammogramm of polycrystalline Pt in 1M KOH The solution was purged at
T = 20◦ C with N2 and the scan rate was 100 mV/s. Reproduced with permission by Wiley-VCH
from Ref. [15]

layer and also the oxygen generation can be detected, as depicted in Fig. 14.5, taken
in de-aerated 1 molar KOH (pH = 14) with a potential variation of 100 mV/s.
For electrolysis measurements, it is advisable to use two electrodes of the same
material. Pt itself is inert and does not dissolve in the electrolyte. We start with
the discussion at 0V RHE = −0.812VSHE , which is at pH = 14 at the edge of
the stability region of water. Further negative potentials will immediately result in
hydrogen production 2H+ + 2e− → H2 and a large cathodic (negative) current.
Increasing the voltage at the electrode a positive current results displaying three
peaks between 0 and 0.5 V. The first one at �0.1 V is assigned to the oxidation of
the immediately before produced hydrogen, (which allows by varying the potential
variation rate to determine its diffusion constant) and the other two at �0.3 V and
at �0.4 V indicate the decomposition of a Pt-H adlayer. At �0.45 V the double
layer starts to form and will stay intact for at least �1.3 V. The exact value between
hydrogen and oxygen evolution is 1.223 V, but there is some small kinetic hindrance
detected. The minimum of the current jc indicates the onset of the double layer
formation. At �0.8 V, and �0.95 V a shoulder and two peaks can be detected, which
are assigned to different adsorbate layers involving oxygen (for details see Ref. [15],
Pt + O H− → Pt − O H +e−, 2Pt − O H → Pt2 − O + H2 O). From RHE ≥1.6 V,
oxygen evolution starts. Reducing the potential yields a cathodic current with only
one negative peak at �0.75 V, showing a few hundred mVs overvoltage, indicating
the dissolving of the oxygen adlayer. At �0.8 V an adsorbate layer assigned to atomic
hydrogen starts to form Pt + H2 O + e− → Pt − H + O H−.
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This example shows the power of CyV for detecting hydrogen and oxygen evo-
lution, but also for detecting equilibrium and non-equilibrium adsorption states. For
a more detailed discussion, especially highlighting differences in the electrolysis
between single crystalline faces of a metal, the reader is referred to Ref. [15]. For
the analytical modeling of CyV and the determination of rate constants, and also for
derived DC and AC electrochemical techniques (electrochemical impedance spec-
troscopy as the major AC technique), the reader is referred to Chaps. 9–11 of Ref. [16].
The assignment of some of the adsorbate states is plausible, but still hypothetical, and
therefore additional surface science techniques, mainly scanning probe techniques,
have been exploited.

14.6.2 Scanning Probe Techniques

Originally electrochemical microscopy has been developed by decreasing the size of
the electrodes using already commercially available systems as a scanning electro-
chemical microscope (SECM). SECM involves the use of a mobile ultramicroelec-
trode probe (or scanning droplet cell) to investigate the activity and/or topography
of an interface on a localized scale. The basic idea of this method is to position a
small drop of electrolyte with a capillary on the investigated surface. The wetted area
acts as a working electrode and the glass capillary contains the counter and refer-
ence electrodes, which are electrolytically connected to the surface through the drop.
This resulted in an effective, spatially resolved, in-situ investigation by all standard
electrochemical techniques such as cyclic voltametry, electrochemical impedance
spectroscopy, current transients of potentiostatic pulse steps etc. In the next para-
graph we discuss electrochemical scanning tunneling microscopy. The information
obtained by this kind of microscopy is equivalent to CyV and related techniques, but
on a scale of ∼1µm. By measuring faradayic currents, different grains of a poly-
crystalline material can be visualized, but the resolution is still far above atomic
levels.

Electrochemistry gained a new impetus by using single crystalline surfaces and
thereby questions of the atomic ordering and the atomic structure of the liquid–solid
interface were raised. Scanning probe microscopy forms images of surfaces using
a physical probe that scans the specimen as sensor for an action (current, force,
capacitance, etc.). An image of the surface is obtained by mechanically moving the
probe in a raster scan of the specimen, line by line, and recording the sensor signal as
a function of position. The resolution varies depending on the sensor principle, but
some techniques reach atomic resolution due to the ability of piezoelectric actuators
to execute motions with a precision and accuracy at parts of Å level. The data are
typically obtained as a two-dimensional grid of data points, visualizing the sensor
signal in false color as a computer image.

Despite atomic force microscopy, chemical force microscopy, near-field scanning
optical microscopy can be operated in liquids, we focus here on electrochemical scan-
ning tunneling microscopy (ECSTM). For the development of the scanning tunneling

http://dx.doi.org/10.1007/978-3-642-33956-1_9
http://dx.doi.org/10.1007/978-3-642-33956-1_11
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microscope its inventors, Gerd Binnig and Heinrich Rohrer, earned the Nobel Prize
in Physics in 1986. Seven years later Prof. Itaya transferred the STM into water [17].
As the distribution of anions or cations changes with the potential of the electrode,
it is necessary to control the reaction on the electrode. The potentials of the two
working electrodes (the sample and the tip) are controlled independently against a
reference electrode. In this case, the tunneling bias voltage is the difference between
the potential of the working electrode and the coated tip (to suppress faradaic cur-
rents) with a free apex. A counter electrode is used to complete the current-carrying
circuits with the working electrodes. By using these four electrodes, the electro-
chemical reaction is controlled precisely by the external voltage, and the surface in
liquid can be observed. It also became clear how to suppress the faradayic current
and measure (mainly) the tunnel current: by coating all the tip except the apex. The
tunneling current is exponentially decaying with the distance of the tip from the
surface and contains in addition information about the (surface) density of states and
the work functions of the tip as well as of the sample. Increasing the distance by
approximately 1 Å reduces the current approximately to one third.

A tutorial example taken from Ref. [18] shows in Fig. 14.6a the comparison
between a CyV of Au(111) surface in 0.1M H2SO4 and an ECSTM image, where
during the scan the potential was varied. In Fig. 14.6b an ECSTM image is shown,
where during the scan the potential was varied from 0.65 to 0.8 V. Each adsorbate
layer is providing faradayic currents, which are detected by CyV. These adsorbate
layers can simultaneously change the surface reconstruction. In this specific example
a gold-sulfur adlayer forms and within a narrow voltage region this yields an imme-

(a) (b)

Fig. 14.6 Part a of the figure shows cyclic voltammetry of a Au(111) surface in 0.1M H2 SO4. In
part b the ECSTM image is shown, where during the scan the potential was varied from 0.65 to 0.8 V,
yielding an immediate change in the surface reconstruction from atomic Au (above) to an adsorbed
layer comprising sulfur. Reproduced with permission by Bunsengesellschaft from Ref. [18]
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diate change in the surface reconstruction from atomic Au (upper part of Fig. 14.6b)
to an adsorbed layer comprising sulfur (lower part).

14.7 The Use of Polarization Optical Probes
for the Liquid–Solid Interface

Despite this chapter reviews polarization optical probes or epioptic probes [4], we
start, in order to issue a warning, with mentioning three major disadvantages of all
optical probes due to their indirect nature:

• The large penetration depth of optical radiation into condensed matter makes the
isolation of a surface or interface contributions difficult. Special experimental
efforts and techniques, partially supported by ab-initio calculations, are neces-
sary to overcome this limitation and to interpret the measured signals in terms of
physical processes.

• The optical response provides usually an indirect information, compared to elec-
tron microscopy or scanning probe techniques. Only with a model for the optical
response the requested physical or chemical parameters, such as composition, sur-
face excess, stress and resulting strain, interface energy as equilibrium quantities
or kinetic parameters such as diffusion coefficients, can be deduced. This model-
ing is often controversial and leads to scientific discussions, on the other hand it
fosters a thorough understanding of the optical and quantum mechanical effects
and often leads to unexpected conclusions. Especially the advent of high power
computing equipment made these modeling procedures possible.

• The quest for the true dielectric function of the material as well as the structural
dispersion relation. To explain this point in more detail, we discuss the exam-
ple of a metal or semiconductor quantum dot. If the dielectric function does not
change with the size of the inclusion or dot on the surface, i.e. no quantization
effects are occurring, solving the electrodynamic (ED) Maxwell equations is the
main difficulty to interpret the measurements in terms of geometrical parame-
ters. Because we physicists and chemists are used to use the Fresnel formulas as
“ad-hoc” approximations, even when the system is neither stratified nor homoge-
neous, effective media are introduced and their properties are deduced and dis-
cussed. However, this procedure can be totally wrong if the dielectric function
changes and this is well known for metal particles due to the scattering at the sur-
face [19] as well as for semiconductors of nanometer-sized particles [20]. These
two different origins fuel scientific discussions and rather seldom consensus can
be reached.1

1 Especially these discrepancies make the discussions exciting and the indirect nature of the optical
probes as well as the possible controversial origin provide a fascinating playground for physics.
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These shortcomings are complemented by major advantages of the optical probes:
The material damage and contamination associated with charged particle beams is
eliminated; in-situ, in-process, and real time experiments are possible and transpar-
ent liquids can be used for studying the liquid surface or interface. Insulators can
be studied without the problem of charging effects and also buried interfaces are
accessible owing to the large penetration depth of the optical radiation. There is no
influence nor a time limitation due to steric hindrance, which inhibits the use of
scanning probes in industrial process technology. In addition, epioptic probes offer
micron lateral resolution and picosecond temporal resolution.

Optical techniques, especially reflection and absorption measurements, were the
oldest and one of the few in-situ methods for investigating electrodes. The substan-
tial progress made in this area over the past two decades has been partly due to
technological advancements in spectroscopic instrumentation in general, including
detection systems, the advent of Fourier transform techniques, and the availability
of synchrotron radiation. Beside intensity based techniques, the only physical meth-
ods that can monitor the surface processes in liquids are polarimetric probes. For
the purpose of controlling physical parameters as thickness, growth rate, diffusion or
alloy compositions only optical techniques (including X-ray) are suited to be applied
simultaneously with coating/deposition/liquid phase epitaxy, because they are non-
invasive and non-destructive and light can be guided through any transparent liquid
onto the substrate.

Absorption measurements are mainly carried out by either using transparent and
conducting electrodes as indium tin oxide, or by attenuated total reflection (ATR),
where light experiences multiple internal reflections in the crystal of high refractive
index adjacent to the electrolyte with lower one. The evanescent field, which extends
into the electrolyte, probes also the species in the electrolyte and provides thereby
chemical information. The major disadvantage of ATR is, however, that the working
electrode has to be rather thin and can hardly be monocrystalline. For a collection
of monographs in the area of in-situ UV-VIS and IR spectroscopy as applied to
the study of electrochemical interfaces, see the book [21]. Additionally, nonlinear
optical techniques as second harmonic generation and some frequency generation
are applied to the liquid–solid interface; for a survey we recommend the recent
article Ref. [22] and the book chapter Ref. [23]. Raman spectroscopy (RS) has also
been used to investigate electrolytes and electrodes. Its major advantage for aqueous
systems is that the penetration depth of the carrier is usually much larger than for
the IR radiation, but this does not fully compensate the usually weak intensity of
the Raman process of a thin overlayer. Surface sensitivity can only be obtained with
surface enhanced Raman spectroscopy (SERS). Despite the causes for the sensitivity
of SERS are still discussed (probably a combination of field enhancement, resonant
excitation and charge transfer), the enhancement factor of 106 for SERS in scattering
efficiency over normal Raman scattering shows its potential to identify molecules
and complexes at the surface, combined with polarization information the orientation
and steric alignment are accessible. For Raman spectroscopy we refer the reader to
different reviews: The use of RS for measurements of dissociation rate to differentiate
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activity and concentration has been discussed in the book chapter [24], vibrational
spectra are discussed in the review [25], and SERS is reviewed in Ref. [26].

Ellipsometry has also been used since 1960, but mainly in its single wavelength
form. In its spectroscopic form right now (and even more in the future) it experiences
a renaissance due to its nondestructive and real time nature. Despite the penetration
depth of light is for all materials at least of the order of 100 nm or above, surface
sensitive optical probes have been developed, capable of monitoring processes on the
nanosecond scale with thickness resolution of less than a monolayer. On the first sight
the major disadvantage of the indirect nature of optical probes, compared to elec-
tron microscopy or spectroscopy proves then to be a fascinating feature, because all
polarimetric, intensity, linear or nonlinear or scattering optical probes require mod-
eling the full system for understanding the interactions between the liquid, solid and
interface properties. In this chapter we limit ourselves to report on the electrochem-
ical interface, where either in-situ Spectroscopic Ellipsometry (SE), in-situ infrared
Spectroscopic Ellipsometry (IRSE), or in-situ Reflectance Difference (Anisotropy)
Spectroscopy—(RDS) have been used.

14.7.1 Electroreflectance with Polarized Light

An overview of polarimetric probes applied to the liquid–solid interface should
start with measurements of Cardona, Shaklee and Pollak, who employed—to our
knowledge—for the first time polarized electroreflectance (ER) measurements on the
Si(110) face [27], with light polarized parallel to the [001] or to the [110] direction.
Their main intention was to observe in the spectra transitions due to critical points
in the joint density of bulk states for the semiconductor under study. Despite the Si
bulk has cubic symmetry and should provide polarization insensitive response, ER
spectra for the Si(110) sample orientation should depend on the direction of polar-
ization of the incident light, while that of a (111) and a (100) surface should not. The
measurements of the Si(110) surface for the two normal modes of light polarization
(electric field vector parallel to [001] and [110] direction) are shown in Fig. 14.7 for
a DC bias of +3 V, and in Fig. 14.8 for a DC bias of −3 V. Already these authors
found anisotropy: for light polarized along the [001] direction the structures are much
stronger than for light polarized along [110]. They also found a dependence of the
ER spectra on the bias voltage. Despite the labeling of the peaks has changed due to a
better understanding of the band structure in the last 45 years, (E ′

0 is called E1, etc.)
and some of these transitions are assigned in addition to excitonic states [28], the
sensitivity of a polarization optical probe on the bias voltage has been demonstrated
uniquely. By varying the bias from +3 V to −3 V, the signatures get inverted, which
is only possible due to the existence of an inversion layer beneath the native oxide of
silicon. So, this inversion is a typical bulk effect, especially, because the penetration
depth of light is smaller than the space charge region. However, it is also currently
not clear, why the relative changes in ER as well as the width of the transitions are
different for the different bias, as well as for different polarizations.
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Fig. 14.7 Electroreflectance spectrum of n-type silicon (110) face at room temperature in water.
The electric field of the light was either polarized along [001] or [110]. The DC bias voltage is
+3 V, the AC rms modulation is 4 V. Reproduced with permission by the APS from Ref. [27]

The measurements were performed on a semiconductor with a thin oxide layer sep-
arating the electrolyte from the metallic region and so possible surface states will not
play a major role. For the metal-liquid interface, it is an important question, whether
surface states, which have been observed by a variety of experimental techniques on
well-prepared single crystal surfaces in UHV, exist at metal-liquid interfaces. Such
states are highly localized at the metal surface. Since they are extremely sensitive to
surface contamination in UHV it might be expected that they would not exist at a
metal-liquid interface. Early electroreflectance (ER) measurements by Dieter Kolb
and coworkers [29] revealed anisotropic polarization dependence in reflected light
from noble metal/electrolyte interfaces Cu(110) and Ag(110) that were interpreted
in terms of contributions from interband transitions. In the cited article ER spectra
for normal incidence as well as for oblique angles are shown and discussed.

The dependence of ER (the change comes, as before, from the AC modulation,

which is in this example 0.5 V, i.e. ΔR
R = RVmax −RVmin

RVavg
) on the angle (the indicated

angle φ1 is the one in air) is shown in Fig. 14.9. The data were taken in a goniometric
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Fig. 14.8 Electroreflectance spectrum of n-type silicon (110) face at room temperature in water.
The electric field of the light was either polarized along [001] or [110]. The DC bias voltage is
−3 V, the AC rms modulation is 4 V. Reproduced with permission by the APS from Ref. [27]

setup with a parallel glass plate covering an electrolyte. It can be clearly distinguished
that for these high symmetry surfaces the usual argument of working with p- polar-
ization close to Brewster angle to enhance the sensitivity drastically is not correct;
for strongly absorbing substrates there are changes in the intensity of the s- as well
as the p- polarized light.

Changes in the reflectances can have various origins, when the potential is modu-
lated: (a) either a layer is adsorbed (chemisorbed) at the surface, or (b) the electronic
density at the surface varies or (c) the ER spectra are influenced by (e.g. periodic) cor-
rugations, where the steps induce, due to the periodic AC modulation, a rather high
local electric field, which supplies momentum for plasmon excitation. The authors
discuss the assignment to special transitions in the Brillouin zone (e.g. for Au the
2.5 eV structure is probably related to the interband transition and also the 3.5 eV
peak). For silver the ΔR

R data at 3.8 eV can be explained mainly in terms of a free
electron model (plasmonic resonance at 3.8 eV).

If electroreflectance monitors, as indicated above, interband transitions, this can
only be due a finite depletion or accumulation region at the surface. Therefore we
use these data to discuss the possible origins of the ΔR

R features. For this discussion
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(a) (b) (c)

Fig. 14.9 Electroreflectance spectra of Ag(111), Cu(111) and Au(l11) electrodes in 0.5 M NaCl O4,
as a function of the angle of incidence φ1. Full line: p-polarization, dashed line: s-polarization.
a Ag(111) with a DC bias voltage of −0.25 V, the AC peak to peak modulation is 0.25 V. b Cu(111)
with a potential and modulation as for Ag(111). c Au(111) with a potential and modulation as for
Ag(111). Reproduced with permission by Oldenbourg Verlag from Ref. [29]

we have to keep in mind that each optical transition occurs from a ground state to
an excited state and that the strength of this quantum mechanical dipole transitions
constitutes the origin of the dielectric function.

• The first possible origin are “bulk like” interband transitions. In semiconductors,
the energy of the ground state is modulated by the applied potential and the deple-
tion (accumulation) region is much wider than the penetration depth. The higher
lying excited states are less influenced by the external potential than the ground
state and therefore “bulk like” interband transitions with a slightly modified (by
the potential modulation) transition energy occur.

• For metals with an electronic density of 1023cm−3 the depletion or accumulation
region will only be of the orders of maximum a few Å. In this limit one does not
speak any more in terms of depletion regions and a single electron picture, but
of Friedel oscillations in the many particle picture. Furthermore, in this model
the electron density varies around the impurities or perpendicular to surfaces and
when applying external potential modulation the ground state of the many particle
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Hamiltonian will experience a different energy shift than the excited states. Density
functional theory calculations start by assuming a coherent many particle wave-
function (respectively density) which extends over all the computational cell.

• The difficulty to grasp conceptually and also analytically the physics of a many
particle Hamiltonian led Shockley and Tamm to a simplified model of the crystal
potential in one dimension. It can be shown analytically (Sect. 6.1 in Ref. [30])
that the one-dimensional single-electron Schrödinger equation gives two qualita-
tively different types of solutions. The first type of states extends into the crystal
and has Bloch character there, but decays exponentially when reaching into the
neighboring vacuum (liquid). The second type of states decays exponentially both
into the vacuum (liquid) and the bulk crystal. These types of solutions correspond
to states with wave functions localized close to the crystal surface and are either
called Shockley or Tamm states. It can be shown that the energies of these states
all lie within the band gap. As a consequence, in the crystal these states are char-
acterized by an imaginary wavenumber (perpendicular to the interface) leading to
an exponential decay into the bulk. In this picture an optical transition could occur
between two surface states, both characterized by an imaginary wavenumber, or
between a (single particle) surface state and a (single particle) “bulk” state, where
the energy of the excited (single particle) state is already resonant to the bulk band
structure. In the respect of one coherent wavefunction the question of transitions
involving bulk and surface states, surface states and states in the liquid, etc. are
meaningless; it can only be well posed, if single particle states are present.

• Adsorbates will also modify the optical response of a system, at least if there is
charge transfer present or the electron density (of the ground state) varies through
an applied potential. This process is called chemisorption. Physisorption is also
monitorable by optical techniques, if the refractive index of the adsorbate is dif-
ferent from the one of the repelled liquid.

Therefore resonance structures in ER signal ΔR
R are only seen due to a dynamic

(periodic) change. If the structures are due to modified bulk transitions, due to
adsorption of a species or due to surface states is an ad-hoc open question and can
only be answered by comparing the optical response to complementary kinetic mea-
surements. However, the sensitivity of polarization optics, combined with a lock-in
technique, usually allows to detect even very minor changes of ΔR

R down to 10−5.
Despite the assignment of the structures to either interband transitions, plasmonic
resonances, or adsorbates in Fig. 14.9 is plausible, it should be kept in mind that an
optical measurement alone can be misleading. Even on platinum, as shown before,
CyV indicates adsorbate layers and optics, especially polarization optics, on the other
hand, is strongly sensitive on these adsorbate layers.

For near normal incidence, however, the difference of the ER data between
s- and p- polarized light is negligible. The situation changes when ER data of fcc(110)
surfaces are measured as also presented for Ag and Cu in the reference above [29].
Here, we reprint these experimental findings in Fig. 14.10.

Polarized ΔR
R measurements of fcc(110) surfaces are published for Ag in Ref. [31].

The authors claim that the effect is due to a field induced indirect interband transition,

http://dx.doi.org/10.1007/978-3-642-33956-1_6
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Fig. 14.10 Normal-incidence electroreflectance spectra of Cu(110) in 1 m H2 SO4 for the electric
field vector of the light being parallel (—-) and perpendicular (-) to the [110] direction. DC potential
= −0.3 V; AC (= 100 mV peak-to-peak, f = 180 Hz). Reproduced with permission by Oldenbourg
Verlag from Ref. [29]

but they display the data only for one applied DC voltage. For Au and Cu, potential
dependent polarized ER are given in Ref. [32]. These authors discuss the unclear
origin of the ER changes.

Kolb et al. [33] obtained evidence by ER for the existence of surfaces states at
Ag(100)/electrolyte interfaces by extending the ER technique into the infrared and
they observed two additional ER resonances. Due to the strong potential dependence
of the ER spectra they modelled the spectra by transitions within the Ag(100) surface
band structure and argue that biasing the surface gives rise to shifts of the Fermi level.
The onset of the signal at a certain DC threshold is assigned to a transition between
two surface bands. However, as discussed before, ER results are influenced by the
concentration of the electrolyte and the presence of adsorbed species and so it is
unclear if this explanation can really hold.

14.7.2 Spectroscopic Ellipsometric Measurements

This chapter mainly focuses on spectroscopic ellipsometry. Single wavelength ellip-
sometry has been applied since the middle of the last century to the solid–liquid
interface and has been reviewed in detail by Beaglehole [34] and Hamnett [35], and
a decade ago by Christensen and Hamnett [36]. In the electrochemical scientific
community it has been understood that ellipsometry measurements are only taken
and published at He-Ne wavelength, therefore in some articles there is even no men-
tioning of the wavelength used. Despite this shortcoming, the sensitivity of (seldom
spectroscopic) ellipsometry has been clearly shown in the old literature; and hence
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most measurements have been interpreted on a kinetic basis at the He-Ne wavelength.
Occasionally the single wavelength data are also interpreted in terms of changes of
the real and imaginary part of the refractive index, but it is clear that hidden effects
can also contribute to their changes. Here, reviewing biological systems and protein
adsorption are out of the scope, therefore the reader is referred for these topics to a
recent article by Arwin [37].

In the following, we will discuss four examples from the recent literature, which
show spectroscopic ellipsometry measurements during (1) thin film deposition,
(2) monitoring underpotential deposition, (3) the etching of semiconductors and
(4) measuring the dielectric function of liquids. For two further examples, namely
the spectroscopic ellipsometric of (a) monitoring the freezing of alloys (and detecting
the onset of interband transitions) [38], and (b) spectroscopic ellipsometry results of
the gas-liquid interface [39], we refer to these original articles. As a side remark we
note that for the case of graded or continuous interfaces the usual Mc-Intyre-Aspnes
three phase model (applicable for discrete dielectric function changes) is replaced by
an integral expression, which is proportional to the surface excess. The underlying
equations are used e.g. in Ref. [39] to determine the surface excess and are derived
in the book of John Lekner [40]. This book, however, uses a different definition for
the reflection coordinate system and so the usual rp is replaced by −rp.

The first example covers the use of SE for electroplating. Electrochemical thin
film deposition or electrodeposition is a process in which metal ions in a solution
are moved by an electric field to coat an electrode. It is analogous to a galvanic
cell acting in reverse. The process uses electrical current to reduce cations of a
desired material from a solution and coat a conductive substrate with a thin layer
of the material, such as the Bi2T e3 semiconductor, as discussed by Broch et al.
[41–43]. Bismuth telluride thin films promise high thermoelectric efficiencies through
miniaturization and stacking. The deposition proceeds via a 1 M nitric acid electrolyte
with bismuth and telluride salts ([Bi3+] = [T eO+

2 ] = 10−2 M) dissolved and using
a chemical reagent to reduce the surface roughness. The deposition proceeds on a
Au substrate in the cathodic region. In this work SE measurements were combined
with electrochemical quartz crystal microbalance (EQCM) measurements and spe-
cial emphasis was put on fast (every 25 ms) data acquisition in the wavelength range
from 1.5 to 3.2 eV.

In Fig. 14.11 the time resolved deposition current as well as the frequency shift
is shown during deposition and dissolution. Figure 14.11 gives the impression that
the deposition is straightforward and the dissolution reaches the same endpoint. The
spectroscopic ellipsometry signal, however, recorded at 2.07 eV yields a much more
complex and only partly understood behavior. The trajectory for deposition (full dots)
as well as the trajectory due to dissolution (empty dots) can be seen in Fig. 14.12.
Even without quantifying the thickness of the film, because the two trajectories are
different, one can conclude that cathodic electrodeposition proceeds trough other
morphological stages than anodic film removal. Despite the kinetic process is dif-
ferent, the starting points/endpoints are identical. The thickness (respectively rough-
ness) of the film can be quantified by using the measured dielectric function of the
electrolyte as well as the deposited thin layer [42].
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Fig. 14.11 Current cycle (right ordinate, thin line) and consecutive frequency response (EQCM)
signal (left ordinate, thick line) during electrodeposition respectively stripping of Bi2T e3. Au marks
the starting point and the end point of the cycle, where the gold substrate is film-free. Bi2T e3 marks
the surface state, where the bismuth telluride layer covers the substrate. Reproduced with permission
by AIP from Ref. [41]

The second example treats underpotential deposition (Cu UPD on Au) [44]. As
already discussed before, UPD is an effect where a less noble cation adheres at
a potential less negative than the equilibrium (Nernst) potential at a more noble
substrate. UPD is an indication of a strong interaction between the electrodepositing
metal (Cu) with the substrate Au. The Cu-Au interaction is energetically more favored
than the Cu-Cu interaction in the crystal lattice. Depending on the strength of the
next nearest neighbor interactions, either one or two monolayers can be deposited.
It is known from cyclovoltammetry (by measuring the charge) that for the Cu-Au
system only one monolayer UPD occurs. As Au substrates, polycrystalline Au films
with a preferred texture (Au(111) from Arrandee company) have been used. The
electrolyte used was a 50 mM H2SO4 + 1 mM H2SO4. As a reference electrode, a
standard calomel electrode (SCE) was used, where the potential difference between
SCE and SHE is +0.241 V. The SE data were taken in the energy range 1.7 − 4 eV.
The experimental data are shown in Fig. 14.13. At very positive potentials Cu is fully
dissolved in the solutions. Approaching ESC E = 0.2 V from the cathodic scan shows
two peaks identified as “A” and “B”, which are known to be related to Cu adlayers
(UPD) (left side of Fig. 14.13). Decreasing the potential below the dashed line, Cu
now deposits on Au due to Nernst equation (Overpotential deposition, OPD).

In the time resolved SE data acquired during the cathodic scan two thresholds
can be observed. The first is related to the onset of the UP regime. Solid arrows
mark the position of the “A” and “B” peaks in the CyV. The second one, very sharp,
is related to the onset of the OP regime: the larger variations of the SE parameters
indicate Cu bulk deposition. In the OP regime, ψ as well as Δ apparently show a
strong dependence on the scan rate.
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Fig. 14.12 Response of ellipsometric parameters (�ω = 2.07 eV) to current cycle shown in
Fig. 14.11. Au marks the starting point and the end point of the cycle, where the gold substrate
is film-free. Bi2T e3 marks the surface state, where the bismuth telluride layer covers the substrate.
The fact that the ψ–Δ trajectory takes a very different path when electrodeposition occurs (a short
one from “Au” to “Bi2T e3”) respectively when redissolution occurs (a long one from “Bi2T e3” to
“Au”) indicates morphological differences, which cannot be followed by EQCM at all. Reproduced
with permission by AIP from Ref. [41]

In the UP region the overall trend of SE data is rather independent of the can rate.
Upon decreasing the scan rate, one can observe a well defined increase of the absolute
variations of the SE parameters. Because the change inΔ is, down to the monolayer
limit, for thin films proportional to the thickness change the phase difference is more
sensitive to the UPD regime than the ratios of the p- and s- reflectivities. Therefore
largerΔ variations are related to the deposition of a thicker film, or, more probably, to
a higher coverage. The authors assigned the stepwise behavior ofψ andΔ to the two-
step “A” and “B” peaks of CyVs, which represent a submonolayer and a monolayer
phase of Cu on Au(111). The authors measured SE data slightly negative at the “B”
peak, where a full Cu monolayer should already be developed. The data were fitted
with a three phase model with a Cu overlayer on Au, with the dielectric functions
taken from Palik’s handbook; the Cu adlayer thickness was determined to be 1.7 Å,
which is very close to the data reported in the literature. Despite the signal-to-noise
ratio of the ellipsometric data is inferior than the CyV measurements and the changes
are minor, these SE data represent—different from modulated reflectometry—a static
fingerprint of the liquid–solid interface. Finally, it should be mentioned that in the
OPD regime, where metal deposition occurs, the SE response is very sensitive to the
scan rate.

The underpotential deposition of Cu on Ru has been discussed in Ref. [45]. Besides
UPD of Cu on Ru, also the adsorption of polyethylene glycol (PEG) and chloride
on Ru has been investigated by SE. Two states of the Ru surface are investigated:
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(a) (c)

(b) (d)

Fig. 14.13 Left side cyclic current-potential curve for Cu deposition on polycristalline Au substrate
in 50 mMH2SO4 + 1 mMCuSO4 (Scan rate: 10 mV/s). The dashed line marks the equilibrium
Nernst potential for the Cu2+ + 2e− → Cu. Right side Progress of the ellipsometric parameters
during cathodic scan of the potential from 0.33 to−0.17 V versus ESC E at a wavelength of 632.2 nm.
Panels A and B refers to a scan rate of 1 mV/s while panel C and D refers to a 0.2 mV/s scan. The
arrows indicates the position of the UP deposition peaks. The dashed lines mark the equilibrium
Nernst potential for the oxidation/reduction of Cu. Reproduced with permission by Wiley VCH
from Ref. [44]

the activated state, where electrolytic reduction of the native oxide of Ru is elec-
trochemically obtained and the same with the addition of a Cu UPD layer. SE data
are summarized by fitting thickness of the adsorbed surface film as a function of
potential or solution composition. The investigation of interactions between poly-
ethylene glycol and chloride and the co-adsorption process is important for feature
filling in microelectronic circuits [46]. The combination of SE and CyV showed
that the 6 Å thick PEG/Cl layer does not block electron transport. The interaction of
organic accelerating agents for Cu deposition with the surface measured through SE
is described in Refs. [47, 48].

In a series of papers the industrially important process of electrochemical etching
of elemental as well as III–V semiconductors has been investigated. This topic was
mainly studied by Prof. Adachi and his group [49–54], and also by others [55, 56].
Comparative CyV and time resolved single wavelength ellipsometry measurements
of manganese oxide films are described in Ref. [57]. Experimental data on the inter-
action between water and thermally oxidized porous Si are shown in Ref. [58]. It
turned out for Si(111) surfaces that aqueous NH4 F and NH4HF2 solutions cause
the removal of the silicon native oxide. After the native oxide was removed com-
pletely, as additional XPS data confirmed, the SE data yielded the spectrum of a
slightly roughened surface. Further etching leads to gradual roughening of the sam-
ple surface. The roughening increases at higher solution temperature. This is due to
an increased dissolution rate with increasing solution temperature. Auger measure-
ments indicate that a 20 %NH4HF2 etching provides a cleaner silicon surface than
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etching with 40 %NH4 F . All etched surfaces are strongly hydrophobic, suggesting
that not only HF, but also 20 %NH4HF2 solution can lead to stable, H-terminated
silicon surfaces.

For GaAs (001), etched in either dilute or concentrated HF, it was found that both
etching solutions remove the native oxide (the diluted one needs around 15 min)
and attack the Ga atoms, leaving As behind. F-related peak was detected with XPS
only in minor quantities on the HF-etched surface. The measured wettability of the
degreased and not yet etched surface indicated that the as-degreased GaAs surface
is hydrophilic, while the HF-treated surfaces are (strongly) hydrophobic. Treating
GaAs after etching in an alkaline hydrazine-sulfide solution results in the forma-
tion of thin overlayers coherently bonded with the substrate. For alkaline (pH ∼ l2)
hydrazine-sulfide solution a layer of gallium nitride forms, which probably arises
through dissociative adsorption of the hydrazine molecules on the Ga-terminated
(001) surface. In low alkaline solutions Ga-S bonds are formed at the Ga(001) sur-
face. Finally, in Ref. [59] the correlation between wet chemical etchants, the Pourbaix
diagram of GaAs and the related pseudo-dielectric functions, depending on the chem-
ical pre-treatment are discussed, with the goal of measuring the Fermi-level pinning
in GaAs. The authors concluded that the ability to characterize the composition of
these surface layers, or determine whether the Fermi-level was essentially un-pinned,
appears unfeasible by SE.

Here I just want to refer to another technique, namely Reflectance Difference
Spectroscopy, described in Sect. 14.7.3. RDS is able to determine the Fermi level
pinning in-situ [60]. However, to my knowledge, this technique has not been applied
until now in an electrochemical environment for the purpose of determining Fermi
level pinning.

In measuring the dielectric function of liquids for evaluating the dielectric function
of adlayers, the knowledge of the refractive index of the liquid is a prerequisite.
For water, e.g, the wavelength dependent data scatter considerably and instead of
providing citations on the measurements of the different authors for the reader, a
compilation of data for water and ice can be found in the following website, tabulating
atmospheric data: http://reflib.wikispaces.com/.

The dielectric function of various other liquids has been determined with rotating
compensator SE by Bang et al. [61]. They used three different measurement config-
urations: (a) the direct measurement at the air-liquid interface, (b) the prism -liquid
interface, and finally the liquid-sample interface for determining the dielectric func-
tion of toluene, ethanol, methanol, methylene chloride, chloroform, ethyl acetate,
hexane, tetrahydrofuran, ether and dimethylformamide. In the transparent region the
dielectric function data can be fitted by a Sellmeier dispersion relation using in total
5 real parameters, which are: (1) the frequency independent dielectric constant and
two oscillators with resonance frequency and oscillator strength. For the liquids men-
tioned previously, the resonator energy is between 6 and 10 eV. Not surprisingly, the
Bruggeman effective medium theory is an excellent approximation for mixtures. In
the infrared a similar study has been performed by DenBoer in Ref. [62].

http://reflib.wikispaces.com/.
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14.7.3 Reflectance Difference Spectroscopy

Reflectance Difference Spectroscopy (RDS), also named reflection anisotropy spec-
troscopy, is a non-destructive optical probe of surfaces which is capable of operation
within a wide range of environments. Because light can penetrate transparent liquids,
RDS is applicable in liquid environments and also in electrochemical environments.
RDS utilizes a highly accurate method of determining the polarization state of light
reflected in perpendicular incidence from a surface. If the substrate has a fourfold
rotational symmetry the Fresnel reflectances yield the same value for s- and p- polar-
ized light and the RDS signal cancels. If, however, a disturbance destroys this 4-fold
rotational symmetry a net signal from the difference of the phases and from the ratio
of the amplitudes remains and provides a fingerprint of the disturbance. Symmetry
breaking can either occur via surface reconstructions or by anisotropic bulk strain,
or through surface related bulk effects. As examples, the surface reconstruction will
strain the underlying bulk and built in fields on semiconductor surfaces will create
anisotropy via the electro-optic effect. Symmetry breaking can also occur through
magnetic effects and other perturbations of the wave functions. Therefore, despite
RDS is a surface sensitive technique, the measured data should be interpreted with
extreme care. In 2005 a review by Weightman and coworkers covered the use of RDS
for different environments, including the liquid–solid interface [63].

Berkovits et al. [64] applied RDS for the first time in liquid for GaAs immersed
in sodium sulfide solutions. They obtained two major results: The first one is the
evidence of the existence of dimers at this semiconductor surface even in a liq-
uid environment. Using these dimers signals as a probe opened up the possibility
for investigating surface chemistry of semiconductor-liquid interfaces. The effect of
photobreaking surface chemical bonds has been shown by RDS when investigating
As-S bonds at the passivated GaAs semiconductor surface. The group of Borenstein
[65] applied RDS for the first time to the liquid–solid interface of metals (Au(110)),
and already compared the data with cyclic voltammetry—and as the authors write—
with “preliminary” in-situ ECSTM measurements. This combination of setups pro-
vided a wealth of data, the cyclo-voltammetric and the RDS data are shown in
Fig. 14.14. Mazine et al. monitored the phase transition between the different Au
reconstructions using RDS and obtained spectra that are associated with the three
surface structures. The change in RDS for different surface reconstructions is called
δr/r and is plotted in the right part of Fig. 14.14. The authors attributed the measured
anisotropy and its change at different surface reconstructions to interband transitions
of Au. The main features are indeed observed close to the structures related to the
interband transitions, in particular around 2.5 and 3.5 eV. The surface microscopic
order is expected to have an important effect on the intensities of the RDS signal at
the corresponding energies.
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Fig. 14.14 Left voltammogram curve of Au(110) in 0.1 M Na2SO4 solution; sweep rate 10 mV/s.
Middle RDS data, Δr̃

r̃ = 4π id
λ

Δε0
εs−1 (with εs as the dielectric function of the Au substrate and ε0

as the dielectric function of the overlayer) of an Au(110) surface in 0.1 M Na2 SO4 solution, for
applied potentials equal to −0.6,−0.2 and 0.6 V corresponding, respectively, to a (1×3) surface, a
poorly (1×2) reconstructed surface, and the (1×1) unreconstructed one. Right Differences between
the RA spectra of the different reconstructions of Au(110) surface. Reproduced with permission by
Wiley VCH from Ref. [65]

14.8 Conclusion and Outlook

The understanding and the control of the liquid–solid interface will be a major pre-
requisite for the solution of society related problems: generation of CO2-free energy,
maintaining a sustainable environment, using sustainable electrochemical processes,
etc. and research approaches in these directions play (already) a major role. These
electrochemical processes are on the one hand heavily used on an industrial scale,
and on the other hand, with the exception of electric AC and DC measurements,
right now hardly controlled at all. Research also focuses on improvements in the
efficiency of catalysts used in important chemical processes. Improvements in exist-
ing technologies in these fields are necessary, but they will only be realized if we are
able to develop new surface science techniques particularly for monitoring dynamic
processes occurring in ambient conditions, especially at liquid interfaces (and also
in high pressure gaseous environments). If we want to have an understanding driven
development in surface technology, instead of trial and error we have to develop
techniques, which allow an atomistic understanding of the reactions occurring at
the liquid–solid interface. Not only solar energy conversion, but also sophisticated
energy storage and delivery systems, batteries and fuel cells, corrosion science, elec-
trodeposition and etching, electrocatalysis and others, will profit from this progress.

As long as we do not have a complete, and contradiction-free understanding of
the electrochemical interface we will neither be able to apply the full potential of
our understanding for the solution of the above mentioned global problems, nor to
develop alternative processes converting energy and chemicals to the desired form.
In the last hundred years, basically since the “Haber Bosch” process, major progress
has been made in understanding surfaces in UHV, historically first of metals, then
of semiconductors and recently of small molecules and polymers. The equipment
developed for studying surfaces in UHV was a major enabler for the development of
the modern semiconductor industry. Using first the UHV equipment for understand-
ing semiconductor surfaces, and later, applying the concepts of surface science and
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solid state physics also to interfaces, has become a success story. Compared to the
multitude of surface techniques optimized for research in UHV, there are rather few
techniques that can operate in ambient conditions.

In the field of chemical engineering the progress is less direct. Industrial catalysis
takes place in ambient (or high pressure) conditions. Despite catalysis takes rapid
progress towards the concept of “designer catalysts” by understanding the compu-
tational concepts of hyper-energy surfaces and the minimum activation energy path.
Creating “designer catalysts” is still a dream and not yet realized for developing
suitable active materials resulting in the wanted catalytic reaction. In catalysis the
understanding, or even more important, the control of kinetic factors is central to
the catalytic process. This control and hopefully widespread use can be achieved at
different levels:

1. For industrial use, simple monitoring techniques (currently current–voltage based
techniques) are applicable.

2. In R&D departments, techniques like CyV as well as optical reflectometry, some-
times polarization optical probes, respectively Raman techniques, are currently
used on a singular basis. We expect that the progress in measurement automa-
tization, in data taking and data evaluation by modeling, will, within a decade,
transfer these slightly complex systems into a production environment, first in a
fingerprint way and later with data fitting.

3. Currently the most complex techniques in university labs are based on scanning
microscopy techniques, e.g. electrochemical scanning tunneling microscopy or
atomic force microscopy in liquids.

4. Considered as the currently most advanced techniques researchers are develop-
ing and applying nonlinear spectroscopy systems, e.g. second harmonic and sum
frequency generation. These techniques, presently measuring intensities, will be
adapted towards phase sensitive (nonlinear ellipsometric) measurements. The
most important advancement of these nonlinear techniques is the chance to map
and understand dynamic and kinetic processes on timescales down to femtosec-
onds for observing the temporal behavior and relaxation of samples to follow its
energy dissipation mechanisms by pump-probe studies.

5. Finally I consider also large scale research centers as a major, and currently not
enough utilized resource. Especially third-generation and fourth-generation syn-
chrotrons, using the full electromagnetic spectrum from THz to gamma rays,
have played and will play a major role in understanding surface reconstructions
in the liquid phase. Free electron lasers as fourth-generation sources operate with
short electron bunches which has the advantage that when the length of the elec-
tron bunch is less than the wavelength of electromagnetic radiation, a coherent
enhancement of the emission results. Even if water is not transparent to THz radi-
ation, technical concepts such as coupling the long wavelength radiation either
through the substrate or using waveguide structures, will allow the superposition
of the signal and the pump wave. Also neutron scattering research centers will
contribute enormously. The neutron scattering spectrum of H2 O can be compared
to the one of D2 O . The resulting vibrational difference spectrum will show the
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well known translational and vibrational bands of bulk water. Significant discrep-
ancies arise at low frequencies indicating that the diffusive motion is strongly
retarded by interactions with the surface.

What is certainly missing is the equivalent of XPS in UHV to obtain chemical
sensitivity of the water-liquid covered surface. This is approached in two ways: First
by using differential pumping systems precisely controlling the thickness of the
liquid through its thermodynamic equilibrium vapor pressure. The other approach
uses “very high energy” XPS, where the photoelectrons have such a high energy that
they penetrate through the adlayer without being scattered.

Summarizing, there will be “no-one-solves-all” technique available. Only their
combination and an interdisciplinary dialogue between experts in different fields
aiming at a common picture of the liquid–solid interface will help to exploit dynamic
processes at the liquid–solid interface in the future. After having understood the
anorganic chemistry at the interface, the final aim is to apply these concepts to
organic, and finally to biological processes. With creativity, new analytical tools,
and an improved theoretical understanding, we can finally understand (and hopefully
exploit) photosynthesis, the way how nature converts and stores energy, and master
some of the upcoming social challenges with scientific and technological progress.
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Chapter 15
Spectroscopic Ellipsometry for Functional
Nano-Layers of Flexible Organic Electronic
Devices

Stergios Logothetidis and Argiris Laskarakis

Abstract Flexible organic electronic devices (FEDs) will significantly improve and
revolutionize several aspects our everyday life. During the last years, there are numer-
ous advances in organic (semiconducting, conducting and insulating), inorganic and
hybrid (organic–inorganic) materials that exhibit customized properties and stability,
and in the synthesis and preparation methods, which are characterized by a signif-
icant amount of multidisciplinarity. The understanding of the optical and electrical
properties of these materials as well as their growth mechanisms can improve the
functionality and promote the performance of flexible organic electronic devices.
Spectroscopic Ellipsometry (SE) is a powerful technique that can be implemented
in-situ and ex-situ for the measurement and analysis of the optical response of a wide
variety of materials. In this chapter, we will describe briefly some of the advances
towards the implementation of SE for the study of state-of-the-art materials (flex-
ible polymer substrates, barrier layers, transparent electrodes) for flexible organic
electronics applications.

15.1 Introduction

Organic electronics is one of the most rapidly emerging sectors of the modern science
and technology and it is expected to significantly improve our everyday life in the near
future [1–4]. The applications for organic electronics include the devices for visu-
alization of information, such as flexible displays (organic light-emitting diodes—
OLEDs) and lighting, for generation of electricity from sunlight (organic photovoltaic
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cells—OPVs), for electronic circuits (organic thin film transistors—OTFTs), for
power generation (flexible thin film batteries), for sensing (flexible organic sensors
and biosensors), for security (radio frequency identification tags—RFID), etc.
[1, 4, 5]. Besides the consumer use, most of these applications will be implemented
in several industrial sectors, such as in automotive industry, architecture, buildings,
etc. Among the advantages of flexible electronic devices (FEDs) over the conven-
tional electronic devices, one can mention the lightweight, thin and conformable
design, the ability to be rolled when they are not in use, and the low cost [6, 7].

This field is characterized by fast paced progress concerning the efficiency and
the device function. This progress is mostly determined by the innovations and
advances in materials and processes, both at lab and production scale. The advances
in materials include the synthesis and thin film preparation of organic semiconductors
(small molecule and polymers) and transparent organic electrodes with high electri-
cal conductivity that can be deposited in thin film form by solution-based processes
(e.g. printing). Moreover, ultra barrier materials are required in order to encapsulate
the active layers (organic semiconductors) and the transparent electrodes from the
atmospheric gas (H2O and O2) molecule permeation that induces corrosion, and
eventually the device malfunction [8–12]. The above functional materials can be
deposited by wet, printing and vacuum processes onto flexible polymeric substrates,
such as PolyEthylene Terephthalate (PET), and PolyEthylene Naphthalate (PEN)
with the form of rolls, which will replace the rigid Si and glass substrates. The thin
film preparation of organic semiconducting and electrode materials onto plastic sub-
strates that have the form of web rolls will allow the cost-effective, roll-to-roll (r2r)
processing in high volumes for the production of FEDs in large scale [13–15].

The performance, efficiency and lifetime of FEDs are greatly affected by the opti-
cal, electrical, and structural properties of their individual nano-layers. These should
meet specific requirements, such as high optical transparency, high electrical con-
ductivity, structural stability, ultra low atmospheric gas permeability, film-substrate
adhesion, etc. [16]. These properties are defined by the materials bonding struc-
ture, and on the surface and interface nanostructure and chemistry [15]. The detailed
knowledge of the optical properties of the organic semiconducting, transparent elec-
trodes, barrier layers and flexible polymer substrates in the infrared (IR) to the visi-
ble and to the far ultraviolet (Vis–fUV) spectral region are of significant importance
since it will contribute to the understanding of the bonding and electronic structure
and microstructure, as well as on the optical transparency and structure-property
relationships. In situ and real-time Spectroscopic Ellipsometry (SE) is a powerful,
non-destructive and surface sensitive optical technique that has been used for the
investigation of optical properties, the deposition rate and the growth mechanisms
of inorganic and organic thin films [17–20]. The implementation of real-time SE
monitoring and control to large scale production of functional thin films for numer-
ous applications, will lead to the optimization of the materials quality and increase
in production yield [15, 21]. In the following, we will provide an overview of the
implementation of SE for the optical characterization of state-of-the-art materials
for FEDs in order to prove the potentiality of SE as an important tool to be imple-
mented in industrial processes for the fabrication of advanced materials for flexible
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organic electronic devices in combination to thin film quality control. Also, some of
the latest advances on the organic electronic materials (flexible polymeric substrates,
barrier materials, electrodes and organic semiconducting materials) will be discussed
in terms of their optical properties that can provide information on their structure
and to other functional properties.

15.2 Flexible Organic Electronic Devices

Among the most important applications of flexible organic electronics are the organic
photovoltaic cells (OPVs) and organic light emitting diodes (OLEDs). A typical struc-
ture of a flexible organic electronic device consists of a multi-layer stack consisted
of specific active and passive layers [2, 22, 23]. The active materials are the organic
semiconductor layers that perform the light-emitting (in the case of OLEDs) or
charge-generating (in the case of OPVs) functionalities [15, 22]. These are deposited
and encapsulated onto flexible polymeric substrates, such as PET or PEN.

Organic photovoltaics (OPVs) (Fig. 15.1) will be used for solar energy harvesting
and conversion. It is expected that the 1 % of the global energy up by 2015 and the
10 % until 2020 will be generated by OPVs [5, 24, 25]. However, their cost should be
reduced by a factor of 10 and their efficiency to reach the values of the inorganic PVs
(∼22.7 % on 780 cm2 area for crystalline Si) [25]. The most efficient kind of OPV is
the bulk heterojunction device that comprises of two organic materials (an electron
acceptor and a polymer) sandwitched between the anode and the cathode [24, 25].
The state-of-the-art materials for OPVs are blends of poly(p-phenylene vinylene)
derivatives (PPVs) or poly(3-hexylthiophene) (P3HT) (for exciton generation and
hole transport) and the organo-soluble fullerene derivative (PCBM) (for electron
transport) [15, 26, 27]. These conjugated molecules are electronically active because
of their highly polarizable π -systems [28, 29]. In order to reach power conversion
efficiencies of 5 % (1 cm2 area) advanced device architectures are developed includ-
ing many steps between photon absorption and electricity generation [28, 30, 31].

+

+-
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metal anode
Flexible 

transparent 
substrate

h ν
+

+-

-

i

transparent cathode(a) (b)

Fig. 15.1 a Schematic representation of an OPV device, b the four-step operation principle of a
bilayer OPV device [15]
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Fig. 15.2 Schematic energy-level diagrams of a modern multilayer OLED

During the photon absorption, an electron is excited from the highest occupied
molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). This
electron-hole pair (exciton) relaxes with a binding energy between 0.1 and 1.4 eV (in
contrast to inorganic semiconductors which is a few meV) [28]. The bound excitons
must migrate to an interface where there is a sufficient chemical potential energy
drop to drive dissociation into an electron-hole pair that spans the interface across
the donor (material with low electron affinity) and acceptor (high electron affinity).
After dissociation, each charge carrier must be transported through the device to
the appropriate contact while avoiding traps and recombination. The control of the
percolating pathways, in combination with broad band light absorption, long live
excited states and high charge carrier mobilities are essential for high efficiency,
whereas blend morphology is critical [5, 27, 32, 33].

Another major application of FEDs are the flexible OLEDs [16, 22]. A schematic
energy-level diagram of a multilayer OLED can be seen in Fig. 15.2 [15, 35]. In
OLEDs, the active organic (electroluminescent-EL) layer is formed in the mid-
dle of a high work-function (φ1) anode and a low-work-function (φ2) cathode.
The anode materials should allow easy hole injection and it is consisted by trans-
parent conductive oxides (TCOs) such as Indium Tin Oxide (ITO) (φ = 4.7 eV) or
Poly(3,4-ethylenedioxythiophene) poly(styrenesul-fonate (PEDOT:PSS). The cath-
ode should allow easy electron injection and it must have band gap values higher
than the one of the TCO. It is consisted of metals such as Ca, Mg, and Cd, whereas
the typical metals such as Ag and Al have work function values of 5.1 and 4.3 eV,
respectively. By applying an external driving voltage, electrons are injected into the
conduction band and holes into the valence band of a semiconducting polymer. Upon
injection from the electrodes, electrons and holes self-localize to form negative and
positive polarons, which travel under the apparent electric field in opposite directions.
When two oppositely charged polarons meet, they can form bound electron-hole pairs
(excitons), which produce photons [22, 34, 35].

Despite the advances in organic electronics materials, there are significant issues
that have to be addressed since they restrict the performance and stability of the
organic electronic devices. Some of the main challenges are the tuning of the organic
semiconductor morphology, the increase of the charge mobility and the optimization
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of the barrier response of the barrier materials that are used for the encapsulation of
the device (as it will be discussed below) [1, 15].

15.3 Spectroscopic Ellipsometry for Optical
Characterization

Spectroscopic Ellipsometry (SE) is a powerful technique for the measurement of the
bulk materials and surfaces, nanomaterials, thin film, their thickness and crystallite
size and optical constants such as refractive index or dielectric function [17–20]. SE is
used for characterization of all types of materials, such as dielectrics, semiconductors,
metals, organic materials, opaque, semitransparent or even transparent materials
[19, 20]. This technique and its instrumentation relies on the fact that the reflection
of a dielectric interface depends on the polarisation of the light while the transmission
of light through a transparent layer changes the phase of the incoming wave depending
on the refractive index of the material [17, 19, 20]. Applications include the accurate
thickness measurement of thin films, the identification of the optical properties of
materials and thin films, the evaluation of vibrational, electronic, compositional and
nanostructural properties, and the optical characterization of surfaces and interfaces
[17, 19, 20].

SE determines the optical properties of bulk materials and thin films as a function
of the photon energy ω. The determined properties are the complex refractive index
ñ(ω) and the complex dielectric function ε̃(ω). The complex refractive index is
related to dispersion and absorption of light from the medium by the relation:

ñ(ω) = n (ω)+ ik (ω) (15.1)

The complex dielectric function ε̃(ω) is actually the quantity directly related to the
material properties, and is connected to the refractive index through the following
equation:

ε̃(ω) = ε1 + iε2 ≡ ñ 2(ω) = (n + ik)2 ⇒
{
ε1 = n2 − k2

ε2 = 2nk
(15.2)

In the case of the reflection of a light beam at the planar interface between two
semi-infinite optically isotropic media 0 and 1, when the light beam does not penetrate
the medium (1), either due to its high absorption coefficient or its infinite thickness, we
are referred to a two-phase (ambient-substrate) system, or a bulk material surrounding
by medium (0). In this case the ratio of the p–, s– Fresnel reflection coefficients,
namely the complex reflection ratio is the quantity measured directly by SE and it is
given by the expression:

ρ̃ = r̃p

r̃s
=

∣∣∣∣
r̃p

r̃s

∣∣∣∣ ei(δp−δs) = tan�ei�. (15.3)
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Fig. 15.3 Schematic representation of the light reflection on the surface of a thin film that is
deposited onto a bulk substrate

In this expression,� and� are the ellipsometric angles, and for a bulk material take
values 0◦ < � < 45◦ and 0◦ < � < 180◦. From an ellipsometric measurement, the
complex reflection ratio ρ̃ is estimated, through the calculation of amplitude ratio
tan� and the phase difference �. From these two quantities one can extract all the
other optical constants of the material. For example, the complex dielectric func-
tion of a bulk material with smooth surfaces is directly calculated by the following
expression [19, 20]:

ε̃(ω) = ε1 + iε2 = η̃2(ω) = ε̃0sin2
θ0

{
1 +

[
1 − ρ̃(ω)

1 + ρ̃(ω)

]2

tan2
θ0

}
, (15.4)

where θ is the angle of incidence of the beam, and ε̃0 the dielectric constant of the
ambient medium (for the case of air ε̃0 = 1).

In the case of a film deposited on a substrate (see Fig. 15.3), we have the three-
phase model where the film with thickness d [medium (1)] is confined between the
semi-infinite ambient [medium (0)] and the substrate [medium (2)]. The complex
reflectance ratio is defined as [19]:

ρ̃ = R̃p

R̃s
(15.5)

R̃p = r̃01p + r̃12pei2β

1 + r̃01pr̃12pei2β , (15.6)

R̃s = r̃01s + r̃12sei2β

1 + r̃01s r̃12sei2β , (15.7)

where, r̃01i and r̃12i (i = p, s) are the Fresnel reflection coefficients for the interfaces
between medium (0) and (1), and medium (1) and (2), respectively. These depend
on film thickness due to the multiple reflections of light between the media (0)-(1)
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and (1)-(2), through the phase angle β given by [19]:

β = 2π(d/λ)(n2
1 − n2

0sin2
θ0)

1/2, (15.8)

where λ is the wavelength, θ is the angle of incidence and n0, n1 are the com-
plex refraction indices of the ambient and the film, respectively. Thus, the mea-
sured quantity is the pseudodielectric function 〈ε(ω)〉(= 〈ε1(ω)〉 + i〈ε2(ω)〉) which
contains information also about the substrate and the film thickness. As a result,
the phase angle β diminishes in the energy region of high absorption, leading to
R̃i = r̃01i = r̃i , (i = p, s) and consequently to 〈ρ〉 = ρ. Thus, at the absorption
bands we obtain information only of the optical properties of the bulk of the film.

The real ε1(ω) and the imaginary ε2(ω) parts of the dielectric function are strongly
related through the well-known Kramers–Kronig relation (is based on the principle
of the causality [19, 20, 36]:

ε1(ω) = 1 + 2

π
P

∞∫

0

ω′ε2(ω
′)

ω′2 − ω2 dω′ (15.9)

ε2(ω) = −2ω

π
P

∞∫

0

ε1(ω
′)− 1

ω′2 − ω2 dω′, (15.10)

where, P means the principal value of the integral around the characteristic of the
material electronic resonance (ω′ = ω) and

ε1(ω = 0) = 1 + 2

π
P

∞∫

0

ε2(ω
′)

ω′ dω′ (15.11)

is the static dielectric function, the material strength (deviation from the strength of
vacuum ε0 = 1), that describes all losses in the whole electromagnetic spectrum in
the material due to the electron absorption.

The optical response of the thin films can be deduced by the parameterization
of the measured 〈ε(ω)〉 by the use of appropriate theoretical models. One of these
models is the damped harmonic oscillator (Lorenz model), which is described by the
expression [17, 18, 36]:

ε̃ (ω) = 1 + f ω2
0

ω2
0 −ω2 +i�ω

, (15.12)

where ω is the energy of light and ω0 is the absorption energy of the electronic
transition. The constants f and � denote the oscillator strength and the damping
(broadening) of the specific transition, respectively. The quantity ε1(ω = 0) is given
by the relation ε1(ω = 0) = 1 + ω2

p /ω2
0 = f, which is the static dielectric constant
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and represents the contribution of the electronic transition that occurs at an energy
ω0 in the NIR-Visible-UV energy region, on the dielectric function [18] and ωp is
the plasma energy.

In the case that more than one electronic transition occurs, their contribution in
ε1(ω = 0) is accounted by the summation ε1(ω = 0) = 1+fi wherefi describes
the losses in the material in the whole electromagnetic region due to the electronic
transitions. In the case of semiconducting materials, interband electronic transitions
take place due to the interaction between the electromagnetic radiation (photons) and
the matter (electrons). According to classical Lorentz oscillator model, the dielectric
function is given by Eq. 15.12. However, one of the models that are used for the
modeling of the measured dielectric spectra of amorphous semiconductors is the
Tauc–Lorentz (TL) model [37]. This is based on the combination of the classical
Lorentz dispersion relation and the Tauc density of states in the proximity of the
fundamental optical gap ωg . This results to an asymmetrical Lorentzian lineshape
for the imaginary part ε2(ω) of the dielectric function. The TL dispersion model is
described by the following relations in which the real part ε1(ω) is determined by
the imaginary part ε2(ω) by the Kramers–Kroning integration (see Eq. 15.13) [37]:

ε2 (ω) =
⎧
⎨
⎩

A ω0 C(ω −ωg)
2

(ω2 −ω2
0)

2 + C2 ω2
1
ω

ω > ωg

0 ω ≤ ωg

(15.13)

whereωg is the fundamental band gap energy, A is related to the transition probability,
ω0 is the Lorentz resonant energy and C the broadening term, which is a measure of
the materials disorder [37].

In the following, we present some representative examples of the investigation
of the optical properties of various state-of-the-art materials by SE. These materials
are flexible polymeric substrates, and functional thin films used for flexible organic
electronic device applications.

15.4 Optical Properties and Electronic Structure of Flexible
Polymer Substrates

Among the flexible polymeric substrates that are used as substrates for the deposition
of active and passive layers by wet, vacuum and printing methods, are the polyester
sheets of Poly(Ethylene Terephthalate)—PET and Poly(Ethylene Naphthalate)—
PEN [13, 15, 38, 39]. In addition, Polyimide (PI) and Polycarbonate (PC) are can-
didates to be used as substrates, whereas another potential substrate for flexible
organic electronics is paper [40]. The latter has been used for printing antennas, and
as a support for sensors and various types of displays. However, the paper surface
is very rough compared to the other polymeric films, which limits its use. Also, its
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Fig. 15.4 Schematic representation of the monomer units of: a PET and b PEN

temperature capability is limited, and it is not generally compatible with solution
processing processes, such as printing [40].

The potentiality of the use of PET and PEN to be used as flexible substrates
for FEDs is justified by the combination of the desirable physical properties that
they exhibit. These properties include easy r2r processing, good mechanical and
chemical stability and reasonably good resistance to oxygen and water vapour pene-
tration [9, 14, 41, 42] The monomer units of PET and PEN are schematically shown
in Fig. 15.4 [13, 14]. The unit cell of PET, which is triclinic with a density of
1.455 g/cm3, presents a C2h point symmetry, and consists of an aromatic ring and an
ester function that form the terephthalate group, and by a short aliphatic chain that
constitutes the ethylene segment. PEN exhibits large similarities with PET and it has
a triclinic unit cell with the addition of a second phenyl ring, forming the naphthalene
group.

The roll-to-roll production of these polymers in the form of flexible sheets with
thickness in the range between 12 and 100μm includes the extrusion and/or stretching
process in order to achieve the necessary thickness and other desirable mechanical
properties [1, 43]. During this stretching process, their macromolecular chains obtain
a preferred orientation towards the stretching direction (otherwise called the Machine
Direction-MD), resulting to a composite material structure consisted of oriented
(“crystalline-like”) regions embedded in a non-oriented (non-crystalline-like) matrix
[13, 14].

On the other hand, the optical and electronic response of these materials is greatly
affected by the interrelation between the optical properties of a single molecule and its
local environment as well as to the structural arrangement of the monomer units and
furthermore of the macromolecular chains [1, 13, 14]. Therefore, the investigation of
the optical properties of PET and PEN and its relation to their bonding structure and to
the degree of the macromolecular orientation can contribute to the understanding of
the mechanisms that take place during the deposition of active and passive materials
onto their surfaces.

Spectroscopic Ellipsometry from the IR to the Vis–fUV spectral regions is a
powerful tool to investigate the optical properties of PET and PEN. The optical
response functions of PET and PEN films measured in the Vis–fUV spectral region
(1.5–6.5 eV) with an angle of incidence of 70◦ and with the plane of incidence parallel
to the MD, are shown in Fig. 15.5.

The measured 〈ε(ω)〉 of PET at energies above 4 eV, is dominated by four char-
acteristic features. These are located at 4.15 (called as peak I) and 4.3 eV (peak II),
whereas two stronger bands are centered at around 5.0 (peak III) and 6.3 eV (peak IV).
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Fig. 15.5 Measured pseudo-dielectric function 〈ε(ω)〉 of PET and PEN flexible substrates [44]

The measured 〈ε(ω)〉 of PEN shows similar features due to the similarities in the
molecular structure between the monomer units of PET and PEN. Also, an energy
shift of peaks I and II to 3.4 and 3.6 eV, respectively, is observed although this shift is
much more pronounced in the case of peaks III and IV, which are appeared at 4.4 and
5.1 eV, respectively, along with a characteristic split in three components [13, 14, 44].

As it has been discussed elsewhere, the peaks I and II have been attributed to the
electronic transition of the non-bonded electron of the carbonyl O atom from the n
state to the π* unoccupied valence state orbital (n → π* transition) [13, 14]. The
peak III of PET, which is possibly attributed to the spin-allowed, orbitally-forbidden
1A1g → 1B1u transition, is composed by two sub-peaks of parallel polarization
dependence. In the case of peak III of PEN, this is attributed to the same electronic
transition and it is composed by three sub-peaks. Finally, the peak IV in both polymer
substrates is composed by two sub-peaks with different polarization at 6.33 and
6.44 eV for PET (4.8 and 5.5 eV for PEN) after molecular orbital calculations, and
it can be attributed to the 1A1g → 1B1u electronic transition of the paradistributed
benzene (naphthanene) rings with polarization rules on the plane of the rings [1, 13,
14, 44].

Besides the electronic transitions, SE can be applied to study the optical anisotropy
of PET and PEN substrates by the analysis of the 〈ε(ω)〉 spectra measured at different
angles between the plane of incidence and the MD. Their optical anisotropy is
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(a)
(b)

Fig. 15.6 Measured 〈ε(ω)〉 of: a PET and b PEN flexible substrates at various angles between the
plane of incidence and the MD

the result of the arrangement of macromolecular chains during their production
process. This arrangement results to the formation of oriented crystalline-like regions
embedded in a non-oriented non-crystalline matrix. Therefore, the polymer films can
be regarded as effective dielectric media, composed by oriented and non-oriented
regions, and their optical response can be represented by a general dielectric ten-
sor containing information about both the optical response of the macromolecular
chains and their orientation with respect to the MD. In order to investigate the optical
anisotropy of PET and PEN, the dependence of the 〈ε(ω)〉 with the angle between
the plane of incidence and the MD (angle ϕ) has been analyzed. Figure 15.6 shows
the 〈ε(ω)〉 of the PET and PEN substrates measured at various ϕ angles [13, 14].

The measured 〈ε(ω)〉 = 〈ε1(ω)〉 + i〈ε2(ω)〉 has been analyzed using damped
harmonic Lorentzian oscillators, Eq. (15.12), in combination to two-phase (air/bulk
material) model as a function of the angle ϕ. As it has been reported, the deter-mined
values of the oscillator strength f corresponding to peaks I to IV has a harmonic
azimuthal dependence, with a period of half a complete rotation (180◦), due to the
light interaction with oriented and non-oriented regions. The azimuthal dependence
of f I and fII is similar in both PET and PEN. This is in agreement with the assignment
of peaks I and II to the n → π* electronic transition of the carbonyl group which is
dominated by selection rules perpendicular to the macromolecular chains. Moreover,
all the sub-peak components of peak III are characterized by same parallel azimuthal
dependence, as a result of the π → π* electronic transition selection rule parallel
to the MD. Finally, the azimuthal dependence of fIV appears different between PET
and PEN.

The above support the fact that PET and PEN are characterized by biaxial optical
anisotropy and their optical response can be approximated as the response of a
uniaxial material, with its optic axis parallel to its surface. This is also proved by the
calculation of the refractive index n at the transparent region, or more precisely at
n2(ω) = ε1(ω ≈ 0). In the case of a uniaxial material, with its optic axis parallel
to the surface, the dependence of n(ω = 0) with the angle ϕ is shown in Fig. 15.7
(n‖ and n⊥ are the principal values of the refractive index). In this analysis, the
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Fig. 15.7 Dependence of the determined refractive index n of PET with the angle between the MD
and the plane of incidence of light

formulation ϕ → ϕ +�ϕ has been used to shift from the polymer film axis system to
the optic axis system.�ϕ represents the angle between the optic axis, (high symmetry
axis corresponding to macromolecular chains), and the MD. It is clear that there is
excellent agreement between the calculated values of n and the fit, justifying the
approximation of PET and PEN as uniaxial materials with their optic axes parallel
to their surface. Furthermore, by the azimuthal dependence of n, the angle between
the optic axis and the MD can be determined. By the analysis, we obtain: n⊥PET =
1.680, n‖PET = 1.730,�ϕPET = 5.30◦ ± 0.70◦, n⊥PEN = 1.805, n‖PEN = 1.857
and �ϕPEN = 18.98◦ ± 1.44◦ [13, 14].

The optical response of PET and PEN films in the IR spectral region can be mea-
sured by the use of FTIRSE as it is shown in Fig. 15.8. The strong absorption bands, at
900–1800 cm−1, indicate the contribution of the vibrational modes corresponding to
the IR-active chemical bonds of PET and PEN and it shows several bonding vibration
modes. Among the more intense characteristic vibration bands in the FTIRSE spectra
of PET, one can observe the vibration modes at around 940 and 971 cm−1 (trans)
that are attributed to the C–O stretching mode, the aromatic CH2 stretching mode at
1125 cm−1, and the ester mode at 1255 cm−1. Also, the characteristic vibration band
at 1720 cm−1 corresponding to the stretching vibration of the carbonyl C=O groups
is shown [14, 43].

The vibration bands in PEN include the one at 1098 cm−1 that has been attributed
to the stretching and bending modes of ethylene glycol attached to the aromatic
structures of the PEN monomer units. Moreover, the characteristic band at 1184 cm−1

corresponds to the C–C stretching modes of the naphthalene group. The complex
bands at 1335 and 1374 cm−1 reveal the bending mode of the ethylene glycol CH2
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Fig. 15.8 Measured 〈ε2(ω)〉 of PET in the IR spectral region by FTIRSE. The measurements were
performed at various angles between the MD and the plane of incidence of light

group in the gauche and trans conformations, respectively. The C=C stretching
modes of the aromatic (naphthalene) ring structures of PEN are shown at 1635 cm−1.
Moreover, the stretching vibration of the carbonyl C=O group appears in lower
energy in case of PEN (1713 cm−1) than in PET (1720 cm−1) [14, 43].

In summary, the optical properties and anisotropy of stretch-oriented PET and
PEN films can be investigated by SE from the IR to the Vis–fUV spectral region
with detail. The analysis of the SE spectra measured at various angles between the
plane of incidence and the MD can lead to the identification and assignment of
the characteristic features corresponding to the different electronic transitions and
molecular vibrational modes. Also, by the analysis of the refractive index n with a
uniaxial model, PET and PEN substrates can be treated as uniaxial materials with the
optic axis parallel to their surface. The above contribute to the better understanding of
the structure-property relationships during the incorporation of PET and PEN films
to the large-scale production of flexible electronic devices.

15.5 Barrier Materials for Device Encapsulation

Although the optimization of the photon and electric charge generation functionalities
of the organic semiconductors is the primary scientific and technological challenge,
the protection of the entire multilayer structure of the organic electronic device from
corrosion is a main concern. The corrosion of the organic semiconductor materials
(polymers, small molecules) takes place due to the penetration of atmospheric gas
molecules (O2, H2O) through the device passive layers (polymer substrates, transpar-
ent electrodes) [1, 15]. Another result of the atmospheric gas molecule permeation
is the organic film delamination that also leads to the failure of the organic electronic
device [8–10]. The permeation is controlled by the defects of the flexible polymeric
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substrate and of the barrier nano-layers. These defects are the result of the intrinsic
surface roughness, the surface and structure in-homogeneities and by cracks of the
inorganic nano-layers created by the bending and/or tension of the flexible polymeric
substrates [8, 12, 45].

Therefore, the active layers should be encapsulated with transparent and non-
conductive layers in order to sustain their structure and performance during a con-
siderable lifetime and to ensure a stable device operation. The commercially supplied
polymer films that are used as flexible substrates, such as PET and PEN, exhibit gas
permeability values that are in the range of 10−1 to 102 cm3/m2dbar (for oxygen
transmission rate—OTR) and g/m2d (for water vapor transmission rate—WVTR).
These values are sufficient only for some food packaging applications [5, 8, 10].
On the other hand, the requirements for FED applications ask for OTR and WVTR
values that are lower by another 3 orders of magnitude; that is in the range below
10−5 cm3/m2dbar (OTR) and g/m2d (WVTR) [45]. Therefore, transparent barrier
layers have to be deposited onto the flexible polymeric substrates [15].

A common approach for encapsulation materials is the deposition of inorganic
thin films, as SiOx and AlOx onto the flexible polymeric substrate. The deposition
of an inorganic thin film of thickness of 50 nm onto a 50μm polymer substrate
reduces the O2 and H2O permeation rates by two to three orders of magnitude from
the permeation rate values of the uncoated plastic substrate. These thin films can be
prepared onto rigid and flexible substrates by vacuum processes, such as dc or rf
sputtering, as well as by electron beam evaporation [21].

Another class of materials that can be used as barrier layers includes the hybrid
(inorganic–organic) barrier materials, alternatively referred as Ormocer® [12, 46,
47]. These can be synthesized via the sol-gel processes from organoalkoxysilanes,
and they have strong covalent or ionic-covalent bonds between the inorganic and
organic components. One of the main factors that affect the barrier response of hybrid
polymers is the crosslinking between the inorganic and the organic components as
well as its adhesion on the substrate [21, 46–48].

In the following, we will discuss on some representative examples about the real-
time investigation of the optical properties of the growing barrier thin films (AlOx,
SiOx) onto PET and PEN flexible polymeric substrates. The investigation of the
optical properties has been performed in the Vis–fUV energy region (1.5–6.5 eV)
by an ultra-fast multi-wavelength phase modulated SE unit that were adapted onto
the UHV chamber at an angle of 70◦. This system is equipped with a 32-Fiber-optic
array detector for simultaneous measurements at 32 different wavelengths (MWL
mode), in the energy range 3–6.5 eV.

Figure 15.9 shows the imaginary part 〈ε2(ω)〉 in the 3–6.5 eV region measured
during the deposition of AlOx thin film onto PET flexible substrate by e-beam evap-
oration. The 〈ε2(ω)〉 of PET substrate is shown with solid circles (•), whereas the
gray lines represent individual “snapshots” of the optical properties of the growing
AlOx film onto the of PET substrate. The last spectrum composed of hollow squares
(�) is measured after the end of the deposition process and it represents the final
optical response of the AlOx/PET system. The duration of the deposition process is
240 s, whereas the thickness of the AlOx film is finalized at 33 nm [49].
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Fig. 15.9 Real-time measured 〈ε2(ω)〉 spectra during the deposition of: a AlOx and b SiOx thin
film onto PET flexible substrate by e-beam evaporation

The determination of the optical and electronic properties of the AlOx thin films
has been realized by the analysis of the measured pseudo-dielectric function 〈ε(ω)〉
with the TL dispersion model (Eq. (15.13)) [37]. The geometrical structure that has
been used for the analysis procedure includes a three-phase model that consists of
air, the inorganic layer of thickness d and the flexible polymeric substrate (shown in
the inset of Fig. 15.9a).
The AlOx films are characterized by a high optical transparency in the extended
UV-vis energy range and due to this transparency of AlOx materials, we have obtained
only a small spectral dependence on the 〈ε(ω)〉. Figure 15.10 shows the dependence
of the calculated ωg and ω0 values of the growing AlOx film as a function of the
deposition time. The ωg values follow an almost constant dependence with the depo-
sition time, with a slight reduction starting from ∼5.5 to ∼4.8 eV. This leads to the
conclusion that the AlOx films’ transparency slightly decreases with increasing film
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Fig. 15.10 Evolution of the calculated Penn gap ω0 and fundamental gap ωg of the AlOx thin film
as determined from the analysis of the real-time 〈ε(ω)〉 spectra
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Fig. 15.11 Evolution of the SiOx film thickness with the deposition time onto PET as determined
by in-situ and real-time SE, and calculated deposition rate of the SiOx film, which indicates an
island-type growth mechanism of SiOx onto PET [21, 49]

thickness. On the other hand, the Penn gap ω0 of AlOx increases only slightly from
6.5 to 7.25 eV. The calculated maximum electronic absorption (Penn gap ω0) values
are found below the 12.4 eV of the maximum electronic absorption of the stoichio-
metric AlOx (where x = 1.5) [21, 49]. The optical and electronic properties of the
AlOx film have been found to be almost constant throughout the entire deposition
process towards the final thickness value of ∼33 nm. These AlOx films are suit-
able to be used as gas barriers for flexible organic electronic devices encapsulation
[21, 49].

Another inorganic material that is used as a barrier coating for the encapsulation
of the active layers of flexible organic electronic devices is SiOx. Figure 15.9b shows
the imaginary part 〈ε2(ω)〉 in the 3–6.5 eV region measured during the deposition of
SiOx thin film onto PET flexible substrate by e-beam evaporation. The determination
of the optical and electronic properties of the SiOx thin films has been realized by the
analysis of the measured pseudo-dielectric function 〈ε(ω)〉 with the TL dispersion
model (see Eq. (15.13)) [37]. The geometrical structure that has been used for the
analysis procedure includes a three-phase model that consists of air, the inorganic
layer of thickness d and the flexible polymeric substrate. Based on the analysis of
the 〈ε(ω)〉 spectra, the evolution of the SiOx films thickness and optical properties
can be evaluated with the deposition time. The best-fit parameters for the evolution
of the SiOx film thickness d and the deposition rate (derivative of the thickness as a
function of the deposition time), are shown in Fig. 15.11.

The study of the deposition rate provides information about the growth mechanism
of SiOx nano-layers and how they are affected by the chemical structure and surface
properties of the substrates [21].

As it can be seen in Fig. 15.11, the deposition rate of SiOx onto PET is higher
than in the case of SiOx/PEN. In order to enhance the information deduced from the
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Fig. 15.12 a Evolution of the SiOx film thickness with the deposition time onto PEN substrate
as determined by in-situ and real-time SE, and calculated deposition rate of the SiOx film, which
shows that the growth mechanism of SiOx/PEN is dominated by a layer-by-layer type growth [21,
49]

evolution of the SiOx film thickness with time, we have calculated the deposition
rate d(thickness)/dt [21].

As it can be seen from Fig. 15.11, at the early stages of growth of SiOx/PET, the
deposition rate is increased up to 7.5 nm/s for t = 6 s, whereas at higher deposition
times it follows an oscillating behavior. The oscillation of the deposition rate is
characteristic of the island-type growth and defines the distinct growth stages. At the
initial stages of the SiOx deposition onto PET, separate clusters are formed with a size
that increases until the first 6 s with an incomplete coverage of the film. After t = 6 s,
the reduction of the deposition rate indicates the coalescence stage where the clusters
merge. At t > 12.5 s, the increase of the deposition rate indicates the formation of
SiOx clusters that merge again. This behavior is repeated again as indicated by the
oscillating of the deposition rate. On the other hand, the deposition of SiOx onto
PEN follows a layer-by-layer growth mechanism. As it can be seen in Fig. 15.12,
the cluster size increases in the first 2.5 s and then merge until t = 10 s. For t > 10 s
the SiOx film thickness increases linearly with time and the deposition rate is almost
stable, resulting in a homogeneous layer deposition [21].

Since PET and PEN are characterized by different values of roughness and peak-
to-peak distance, the growth mechanism of SiOx is affected by the surface roughness
of the substrate. The surface roughness (peak-to-peak distance) of PET and PEN are
1.18 nm (14 nm) and 1.75 nm (47 nm), respectively, whereas the surface roughness
(peak-to-peak distance) of SiOx grown onto PET and PEN substrates, are 1.35 (44.76)
and 0.95 (17.76) nm, respectively.

Finally, the above two examples clearly demonstrate the capabilities of real-time
SE towards the understanding of the growth mechanisms of materials during their
deposition onto polymeric substrates. This will contribute towards the optimization of
the materials and processes for the manufacturing of FEDs with the desired operation,
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lifetime and stability. SE has a significant potential for implementation to production
lines for state-of-the-art applications as a quality control tool. Also, its robustness and
high flexibility for adaptation gives numerous capabilities for the improvement of the
produced structures (thin films, nanomaterials, etc.) as well as for the optimization
of the production process in terms of cost and waste.

15.6 Optical Characterization of Inorganic and Polymer
Transparent Electrodes

A wide variety of transparent conductive oxide (TCO) materials has been developed
and investigated to be used as electrodes for organic electronic device applications.
One of the most widely used materials is indium tin oxide (ITO). This is used as anode
in OLEDs and in OPVs due to its excellent properties that include high electrical
conductivity, piezoelectricity, easy fabrication, low cost, non-toxicity, and ultraviolet
absorption [16, 50–52]. However, ITO is a brittle material, expensive and it has
low abundance in comparison with other materials. For these reasons, a systematic
research takes place during the last years in order to replace the ITO with other TCO
materials that can be either inorganic or organic [53–55].

One of these is zinc oxide (ZnO), which is a wide direct band-gap semiconductor
having the hexagonical crystal structure of wurtzite. It is a very promising material for
application in FEDs since it combines several benefits such as high electrical conduc-
tivity, piezoelectricity, easy fabrication, low cost, non-toxicity, ultraviolet absorption
behaviour and it is compatible with large scale applications [56]. In addition, dopants
of ZnO, such as aluminum zinc oxide (AZO) and gallium zinc oxide (GZO) have been
also studied during the last years, which have shown improved optical and electrical
properties [16, 52]. Several efforts have been performed in order to comprehend
the growth mechanisms of ZnO thin films, their functionality and combination with
organic–inorganic materials as well as the effect of the deposition parameters in
their optical, structural and electronic properties in order to reveal the full potential
of FEDs, such as flexible OLEDs and OPVs. Figure 15.13 shows the unit cell of ZnO
[52, 57].

In-situ and real-time SE has been applied to investigate the optical properties of
ZnO thin films during their deposition onto rigid and polymer substrates. Figure 15.14
shows the evolution of the imaginary part of the measured pseudo-dielectric function
〈ε2(ω)〉 with the deposition time of the ZnO film onto a rigid (c-Si) and a flexible
substrate (PET). The ZnO film has been deposited by dc magnetron sputtering onto
the c-Si and PET substrates on a ceramic ZnO target (with purity of 99.995 %). The
depositions were performed at room temperature (RT) and in argon atmosphere (total
pressure 13.6 mTorr) by setting the pulse frequency at 100 kHz. The final thickness of
the ZnO thin film after the end of the deposition process was 70 nm. The in-situ and
real-time measurements were performed using an ultra-fast multi-wavelength phase
modulated SE unit, adapted onto the UHV chamber at an angle of 70◦. This system
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Fig. 15.13 Unit cell of Zinc Oxide (ZnO)

is equipped with a 32-fiber-optic array detector for simultaneous measurements at
32 different wavelengths (MWL mode), in the energy range 3–6.5 eV. The sampling
time of MWL measurements (600 ms), is suitable for the real-time monitoring of the
growth mechanisms and optical properties of the deposited ZnO thin films.

In the case of the flexible polymer substrate, in order to avoid the warping due
to the heat load during the film deposition and to assure a flat surface suitable for
in-situ and real-time measurements, these were fixed in a special substrate holder.
The black squares (�) in Fig. 15.14 represent the 〈ε2t (ω)〉 of the bare substrate (c-Si
and PET), whereas the hollow circles (◦) represent the 〈ε2(ω)〉 of the ZnO/c-Si and
ZnO/PET. For the analysis of the measured 〈ε(ω)〉, the TL model has been employed
in combination to a four-phase theoretical model, consisting of PET/bottom ZnO
layer/surface ZnO layer/air. SE is very sensitive to the surface quality, encouraging
the use of the four phase model. The surface layer describes the effect of the surface
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roughness, consisting of a mixture of ZnO and voids, and its analysis has been
performed using the Bruggeman Effective Medium Approximation (BEMA).

Figure 15.15 shows the evolution of the growing ZnO film thickness with the
deposition time onto the different substrates (c-Si, PET) as determined by the analysis
of 〈ε(ω)〉 using the above mentioned model. The diagrams are quite similar indicating
similar, in general, growth characteristics.

Focusing on the early growth stages (first 120 s of deposition) as shown in more
detail in Fig. 15.16, it is clear that the chemical structure and surface properties of
the substrate affects the growth mechanism of ZnO film. The ZnO film growth can
be qualitatively separated into three stages (I, II and III), according to the growth
mechanisms taking place [52]. During the early stages of growth (Stage I), in the case
of ZnO/PET, there is a significant increase of the apparent thickness at t = 15 s for
ZnO/PET, attributed to polymer surface modification by the arrived ZnO and (neu-
tral and charged) Ar particles on the PET surface and the formation of an interface
layer (PET + ZnO). This modification includes the changing of the surface chem-
ical bonding and the formation of clusters consisting of the arriving ZnO particles
in the PET surface. This has been also justified by High Resolution Transmission
Electron Microscopy (HRTEM) measurements that revealed a composite nanocrys-
talline overlayer of ∼10 nm on top of PET surface, including an interface layer of
1–2 nm [57]. As it can be seen in Fig. 15.16, at t = 17 s the ZnO film thickness is
∼3 nm (ZnO/PET), and ∼1 nm (ZnO/Si), whereas the deposition rates are ∼0.24 and
∼0.06 nm/s, respectively [52].

During Stage II, in the case of ZnO/Si, it is shown from Fig. 15.16 that the ZnO
film is deposited directly to the aforedeposited layer, favoring the film growth (depo-
sition rate of 0.11 nm/s). In the case of ZnO/PET, the low deposition rate (0.01 nm/s)
indicates the early stages of ZnO deposition to the modified inter-face layer. Finally,
during stage III the ZnO film growth is dominated by a layer-by-layer mechanism
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(deposition rates: 0.11, and 0.07 nm/s for PET, and Si, respectively), lasting until the
end of deposition (1200 s), as it is shown in Fig. 15.15 [16, 52, 57].

Another material that is widely used as an anode buffer layer in FEDs is poly(3,4-
ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT/PSS). This is a transparent
conductive polymeric material that is expected to replace the inorganic, brittle and
expensive ITO and other TCO materials. This polymer is characterized by high
conductivity and it is used as hole-injecting material in applications such as sensors,
antistatic coatings, solar cells, etc. [16, 58]. PEDOT:PSS consists of a conducting
part PEDOT, which is a low molecular weight conjugated polymer, insoluble and
thus difficult to process and an insulating polymer (PSS), which is a high molecular
weight polymer that gives the desirable flexibility. PSS also increases the solubility
in water, making the whole system easy to process. The oligomer PEDOT segments
are electrostatically attached on the PSS polymer chains [16, 59, 60] (Fig. 15.17).

The optical properties of the PEDOT:PSS films have been measured by SE in
the Vis–fUV spectral region. The measured 〈ε(ω)〉 is shown in Fig. 15.18. In order
to extract quantitative information from the measured 〈ε(ω)〉, this has been ana-
lyzed by the use of three phase geometrical model, which consists of air (ambi-
ent), the PEDOT:PSS layer (with thickness d) on top of the PET (bulk) substrate
(air/PEDOT:PSS/PET substrate). For the ambient medium it has been used air in
which ε1(ω) = 1 and ε2(ω) = 0 for all energy values ω.

The optical properties and the thickness of the PEDOT:PSS layer have been mod-
eled by the use of the Tauc–Lorentz (TL) dispersion model. As it has been discussed
in detail elsewhere in this model the imaginary part 〈ε2(ω)〉 of the dielectric function
is obtained multiplying the equation of the Lorentz oscillator by the equation of the
Tauc joint density of states, and the real part ε1(ω) is determined by the imaginary
part ε2(ω) by the Kramers–Kronig integration. For the parameterization of the opti-
cal properties and thickness of the PEDOT:PSS films, we took into consideration
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Fig. 15.17 Structure of the PEDOT:PSS
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Fig. 15.18 Measured pseudodielectric function 〈ε(ω)〉 of a representative PEDOT:PSS film that is
deposited onto a PET flexible substrate by spin coating

only the characteristic optical absorptions of the π − π* transitions of the benzene
rings of PSS that appear at 5.3 and 6.33 eV respectively. This modeling procedure
provides in detail the thickness values of the PEDOT:PSS films. Figure 15.19 shows
the determined bulk dielectric function ε(ω) of the PEDOT:PSS film in the Vis–fUV
spectral region. This shows three absorptions in energies 0.47, 5.37 and 6.38 eV. The
absorbance peaks at high energies can be attributed to the π − π* transitions of the
benzene rings of PSS and the absorption in low energy attributed to the PEDOT [16].

Figure 15.20 shows the determined bulk dielectric function ε(ω) of the PEDOT:
PSS films with various PSS weight ratios. The results show that the increase of PSS
ratio in PEDOT:PSS solution leads to the reduction of ω1 optical absorption attributed
to PEDOT (decrease of oscillator’s amplitude) and to a slight increase of ω2 and ω3
absorptions attributed to the π − π* transitions of the benzene rings of PSS [16].
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Finally, the above two examples clearly demonstrate the capabilities of real-time
SE towards the understanding of the growth mechanisms of materials during their
deposition onto polymeric substrates. This nanometrology method has an enormous
potential for implementation to production lines for state-of-the-art applications as
a quality control tool. Also, its robustness and high flexibility for adaptation gives
numerous capabilities for the improvement of the produced structures (thin films,
nanomaterials, etc.) as well as for the optimization of the production process in terms
of cost and waste.



552 S. Logothetidis and A. Laskarakis

15.7 Incorporation of SE to the Process Line for FEDs
Fabrication

One of the major advantages of flexible organic electronic devices is their potential
for fabrication flexible polymeric substrates by r2r large-scale production processes.
This will offer a high throughput production combined with low cost of the final
device for consumer use. Organic materials are soluble and/or solution-processable
and they can deposited onto flexible polymeric substrates, which are in the form
of web rolls, by solution-based methods such as printing processes, as well as by
vacuum process, such as sputtering and e-beam evaporation [15].

During a large-scale process, the deposition of the individual organic (semicon-
ductors, conductors) and functional (e.g. barrier, TCOs, electrodes, etc.) layers is
realized on the moving web rolls. In this way, these processes are characterized by
high volume and lower cost in comparison with batch processes, as in the case of
the conventional microelectronics industry. In these r2r processes, the web rolls are
run with speeds of hundreds of m/min with webs several meters wide, and are used
to deposit and cure many different materials simultaneously [15].

Figure 15.21 shows such a future representative r2r process for the production of
flexible organic electronic devices in which all production steps are integrated into
a single production line. SE can be incorporated as a quality control tool in some or
all of these production steps to ensure the quality of the deposited nano-layers and to
contribute to the production of single and multi-layered stacks of organic, inorganic
and hybrid layers of high quality.

Fig. 15.21 Integration of the real-time control by SE units in the individual production steps for
flexible organic electronic devices, for the quality control of the deposited nano-layers
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15.8 Summary and Outlook

SE is a powerful tool for optical metrology of inorganic, hybrid and organic material
for state-of-the-art applications, such as for flexible organic electronic devices. The
optical constants, electronic structure, bonding vibrations, optical anisotropy can be
measured and modeled accurately, with nm precision. Important parameters such
as the energy band gap in organic and inorganic materials that can be used as elec-
trodes, well as the macromolecular chain orientation in flexible polymer films can
be obtained by the analysis of the measured 〈ε(ω)〉 spectra in a wide spectral region
from the IR to the Vis–fUV.

As the field of SE continues to grow with remarkable progress, more applications
will be found for novel materials and film structures. The advances in the materials
for organic electronics reveal new and complex structures that are essential to fulfill
the requirements for efficiency, performance and stability of the whole device. This
complexity requires more sophisticated modeling approaches of the optical measure-
ments, to lead to useful information for the materials structure and optical response,
as well as for the structure-property relationships.

Finally, an important aspect of the applicability of SE is its implementation to
several steps of industrial processes, in order to serve as a quality control tool and
to provide the ability to accurately and reproducibly measure their properties and
performance at the nanoscale. Its capabilities for in-situ and real-time measurement
and modeling, with measurement times in the order of ms, are an important factor
that will enable this implementation.
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Chapter 16
Spectroscopic Ellipsometry of Nanoscale
Materials for Semiconductor Device
Applications

Alain C. Diebold, Florence J. Nelson and Vimal K. Kamineni

Abstract Several years ago, the semiconductor industry began to refer to integrated
circuits as nanoelectronic devices [1]. Now, most realize that nanoelectronics is the
most prevalent nanotechnology. The continued decrease in device feature size has
challenged spectroscopic ellipsometry (SE) with nano-films, nanowires, and nano-
dots. There are many examples of the measurement of thin dielectric films [2, 3],
and now there are examples of crystalline semiconductor nanowires in the form of
the Fin in the transistor known as a Fin-FET [4]. The semiconductor industry is also
working on materials for “beyond CMOS” devices.

16.1 Introduction

Several years ago, the semiconductor industry began to refer to integrated circuits
as nanoelectronic devices [1]. Now, most realize that nanoelectronics is the most
prevalent nanotechnology. The continued decrease in device feature size has chal-
lenged spectroscopic ellipsometry (SE) with nano-films, nanowires, and nano-dots.
There are many examples of the measurement of thin dielectric films [2, 3], and now
there are examples of crystalline semiconductor nanowires in the form of the Fin in
the transistor known as a Fin-FET [4]. The semiconductor industry is also working
on materials for “beyond CMOS” devices. Graphene is the most prevalent exam-
ple of this. Some materials may transition between CMOS extension and Beyond
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CMOS. Some integrated circuits are fabricated on silicon-on-insulator wafers. This
includes extremely thin silicon-on-insulator (ETSOI). These layers are in fact crys-
talline silicon quantum wells (c-SI QWs). Although some predict that ETSOI will
be limited to 7 nm or greater thickness in manufacturing, research devices have used
2 nm thick top silicon layers. These samples provide an interesting study in the
fundamental physics. In this chapter, we discuss how SE has been applied to both
graphene and c-Si QWs. One key message of this chapter is that the optical proper-
ties of nanoscale crystalline materials are strongly influenced by nanoscale properties
such as quantum confinement and electron-phonon interactions. The impact of the
change in phonon dispersion with nanoscale dimensions has been mostly ignored in
understanding the optical properties of nanoscale materials.

16.2 Graphene

16.2.1 Electronic and Optical Properties

Graphene is a sp2 hybridized monolayer of carbon atoms. Its bonding configuration
gives rise to a band structure that may be approximated as a linear relationship
between energy and momentum at the K points, or corners, of the Brillouin Zone
(BZ), the so-called “Dirac points” after the relativistic equation obeyed by multi-
component spinors. This linear relationship mimics that of a photon’s dispersion,
giving the carriers in graphene an extremely high velocity when compared to that
of typical semiconductors (i.e. Si) [5]. The optical properties of graphene, like its
electronic properties, are also a result of its unusual bandstructure at different points of
the BZ. Graphene’s optical properties between the near IR to the UV are the result of
transitions between the valence π band and the conduction π∗ band. Near the Dirac
points, which have been of most interest due to the consequences for graphene’s
electronic applications, symmetric transitions from the valence to conduction band
result in a near-constant absorbance of ∼2.3 % of incident light from the visible into
the infrared (IR) region even though graphene is only one atomic layer thick. This
has been shown theoretically as well as experimentally [6–8], and is known as the
fine structure constant absorbance, derived from the fundamental constant describing
the coupling between light and electrons via an electromagnetic interaction. Moving
away from the Dirac points, however, allows one to observe the excitonic effects
that result from graphene’s two-dimensional (2D) structure [9]. An absorbance peak
in the UV region, due to a van Hove singularity in graphene’s density of states
[10], occurs at the M point of the BZ and is strongly influenced by electron-hole
(e-h) interactions due to a lack of screening. These e-h effects are observable in an
ellipsometric measurement and will be discussed in the Current Areas of Interest
section of this work. The K point and M point absorptions are shown in Fig. 16.1
through an extended zone scheme of Ref. [11].
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Fig. 16.1 Extended zone scheme of graphene showing the M point (right) in the π bands responsible
for the exciton-modified UV peak, and the K point (left) showing symmetric excitation of valence
(pink) to conduction (yellow) states responsible for the fine structure constant absorbance in the IR
region. Adapted with permission from Ref. [11]. Copyright 2011 American Chemical Society

Fig. 16.2 Bernal (left) and rhombohedral (right) stacking of bulk graphite

16.2.2 Graphene Fabrication Methods and Resulting
Questions for Ellipsometry

SE of thin graphitic structures has gained importance in recent years due to the
2004 discovery of graphene’s unique electrical properties [5]. While graphene is a
2D material, its bulk structure of graphite is optically anisotropic and has been the
subject of research and optical measurements since well before the recognition of
graphene’s unique band structure [12, 13]. The stacking structure of bulk graphite
(Fig. 16.2) is primarily composed of a Bernal layer offset, termed “ABA,” with the
remaining stackings being rhombohedral , “ABC”, and turbostratic (randomly mis-
oriented layers) [14]. The stacking configuration alters the electronic band structure
of the layers from the linear dispersion of one graphene monolayer in the low-energy
limit of the BZ. However, turbostratic graphene has shown a return to this linear
dispersion due to an electrical decoupling of the layers [15].

The early fabrication method of graphene samples consisted of applying scotch
tape to bulk graphite and mechanically exfoliating several layers that could be
stamped to an arbitrary substrate [5], the most notable of these being 90 or 300 nm
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SiO2/Si due to an interference effect that allowed one to locate few-layer-graphene
(FLG) simply be optical inspection [16]. The presence of monolayer or FLG could
then be verified using Raman spectroscopy from the ratio of specific phonon inten-
sities and the number/shape of the Lorentzian oscillator components used in the data
fitting process [17]. Such graphene flakes were on the order of tens of microns and
were sufficient for electrical property measurements given the spatial resolution of
lithographic patterning. However, standard ellipsometers possess spot sizes on the
order of millimeters. An SE measurement therefore required the use of focusing
probes that allowed the beam spot to fit within the area of one graphene flake. This
was shown to be possible using Woollam ellipsometers [10, 18].

Due to the fact that integration of graphene into the semiconductor industry will
require a large-area scalable growth process, several groups have begun to study
Chemical Vapor Deposition (CVD) on metallic foils [19–21]. Hydrocarbon-based
deposition on copper (Cu) foils has gained attention due to carbon’s negligible solu-
bility in the material, allowing for a surface-limiting process that produces primarily
monolayer graphene which may then be transferred to secondary substrates [19]. The
undulation of a foil when chucked to an SE vacuum stage inhibits the procurement
of meaningful data. The ability to transfer large-area graphene to a second substrate
allows for an SE measurement without the use of focusing probes.

Graphene grown by a CVD process is polycrystalline, meaning it consists of
“grains” or “domains” of graphene with different orientations separated by one-
dimensional grain boundaries [22]. The orientation and structure of these grain
boundaries has been shown theoretically to have a profound impact on the trans-
mission or reflection of carriers between two domains [23]. Two questions therefore
arise for the area of SE concerned with such thin graphitic structures: (1) Does
the polycrystalline nature of CVD graphene alter the dielectric function/complex
refractive index (CRI) when compared to exfoliated or single crystal samples, and
(2) what is the effect of graphene’s unique 2D electronic structure on the complex
refractive index? To address these questions, we first model the CRI values, n and k,
of polycrystalline graphene as an isotropic layer and compare our results to previ-
ously reported values for exfoliated graphene. We then use the obtained results in a
simulation study to obtain the effect of layer number on the validity of the isotropic
model when compared to an anisotropic model. The differences between the two
modeling approaches are gauged in terms of their magnitude when compared to that
of the raw Psi (ψ) and Del (�) error bars.

16.2.3 Thin Graphite Films and SE of Exfoliated Graphene

One of the initial publications on the optical response of thin graphite films used a
combination of reflectometry and ellipsometry to characterize the in-plane and out-
of-plane CRI [24]. Few layer graphene (FLG) exfoliated films were found to exhibit
birefringence when the data was analyzed with a Kramer’s-Kronig (KK) consistent
model on 300 nm SiO2/Si. The KK relationship enforces a physically valid solution
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Fig. 16.3 Optical ray diagram showing birefringence of bulk graphite

that relates any value of n or k over the measured energy range (P is the Cauchy
Principle Value):

n(E)− 1 = 2

π
P

∞∫

0

E ′k(E ′)d E ′

E ′2 − E2 (16.1)

Bulk graphite is a uniaxial anisotropic material, and when the C-axis is normal to
the surface the complex refractive indices are the same for the in-plane polarizations
of light, x and y, and different for the out-of-plane, or z polarization (Fig. 16.3). In the
simplest case of an isotropic material, reflection of light in the p (parallel) or s (per-
pendicular) polarization with respect to the plane of incidence may be described in
terms of the 2 × 2 Jones Matrix, shown in (16.2). In the absence of cross-polarization,
the rsp and rps elements of the matrix are zero. This is the case for isotropic samples
as well as anisotropic samples that are positioned in a particular geometry, such that
the optic axis is oriented along an axis of symmetry.
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For a typical ellipsometry measurement of graphene on substrate samples, the
basal plane of carbon atoms is perpendicular to the optic axis, yielding the geometry
that produces a Jone’s matrix equivalent to that of an isotropic sample in terms
of cross-polarization elements. The sensitivity of an ellipsometry measurement to
anisotropy is dependent on the distance the light has to traverse the film, and therefore
allow the two refracted beams to separate. In graphene, this path length is severely
limited (the nominal thickness of a graphene monolayer is 3.35 Å).

One of the first publications describing SE characterization of FLG was published
by the group of Novoselov and Geim [10]. FLG flakes were prepared by mechanical
exfoliation of bulk graphite. The experimental setup included focusing probes capa-
ble of reducing the beam spot to a dimension that could be contained within the area
of a flake. Analysis of the ψ and� spectra consisted of modeling the graphene layer
as an anisotropic material based on the properties of bulk graphite, and yielded opti-
cal functions for n and k that presented the two main features: (1) ∼2.3 % absorbance
of light from the IR into the visible region, and (2) the exciton—modified absorption
peak at ∼4.6 eV. This work was followed in 2010 by a second SE study of exfoliated
graphene which similarly incorporated the use of focusing probes for beam spot
reduction, but used B-spline parameterization to fit for the CRI in order to ensure
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a KK-consistent solution [18]. A more intense exciton-dominated absorption peak
was observed in the latter work [18].

SE of large-area graphene does not require focusing probes. In certain instances
the transfer process of graphene to a secondary substrate will yield sub-monolayer
films. In this case, an effective medium approximation (EMA), to be discussed, must
be incorporated to remove the effect of the ambient from the film’s CRI.

16.2.4 SE of CVD Graphene

Samples prepared in a previously described method [25] were measured with a dual
rotating compensator ellipsometer (RC2 - J. A.Woollam Co., Inc.). WVASE32 soft-
ware allows the analysis of the raw ψ and� data through development of an optical
dispersion model. Lorentz oscillators characterized by three parameters (energy E,
amplitude, and FWHM) represent absorptions in the film at different energies for the
imaginary portion of the dielectric function, ε(E), with the real part of ε(E) resulting
from the KK relationship imposed on the regression fitting. Three Lorentz oscillators
were implemented for graphene’s dielectric function, corresponding to the exciton-
dominated absorption peak, a Drude-like absorption at the IR end of the energy range,
and a broad absorption for the region of constant optical conductivity. The resulting n
and k values are shown in Fig. 16.4 for CVD graphene in comparison to those reported
for exfoliated graphene on SiO2/Si by two other groups [10, 18]. The absorbance
of the CVD film was found from the relationship between n, k and film thickness
for graphene in the visible region [26] and showed the fine structure constant over
the visible-IR wavelengths, as well as qualitative agreement with the position of the
exciton-dominated absorption peak predicted from theory [9]. Therefore SE of poly-
crystalline graphene shows the two main features predicted from theory and shown
experimentally for exfoliated graphene, with some differences in the intensity of the
van Hove peak. Differences between the data sets may be attributed to differences in
the substrate on which the graphene sits (glass vs. SiO2), the approaches to the mod-
eling, as well as the fabrication method of the graphene itself (CVD vs. exfoliated
flakes).

16.2.5 Aberration-Corrected STEM Imaging and Diffraction
Pattern Analysis for Grain Size Estimation of CVD
Graphene

Transmission Electron Microscopy (TEM) is an important characterization method
for the observation of graphene lattice structure/defects, and in the case of CVD
graphene, grain size measurement. The results of Fig. 16.4 were obtained from
graphene grown using CVD process conditions which produce grain sizes of the
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Fig. 16.4 Comparison of CVD graphene CRI to that reported for exfoliated graphene [10, 18].
The absorbance of CVD graphene was calculated from the experimental CRI values (black) and
compared to theory (red) [9] in the lower right. Reprinted with permission from Ref. [25]. Copyright
2010, American Institute of Physics

Fig. 16.5 DP’s showing the difference between smaller (left) and larger (right) grain sizes in CVD
graphene through the number of rotated hexagons present in the first order polycrystalline ring

order of hundreds of nanometers from Dark Field Transmission Electron Microscopy
(DF-TEM), a suitable technique due to the polycrystalline nature of the films [27,
28]. The diffraction pattern (DP) of a smaller grain film will show more reflections
than that of a film with larger grains, due to the multiple crystallographic orientations
present within the same-size area. As shown in Fig. 16.5, the CVD graphene DP on
the left has more hexagons rotated with respect to each other in the first polycrys-
talline ring, indicating multiple domain orientations within the measured field. The
DP on the right shows a single-crystal structure, suggesting only one domain orien-
tation, indicating larger grain size. Such imaging/diffraction can be accomplished at
fairly low magnifications and is used here to determine the effect of grain size on the
CRI of CVD graphene.

While grain size may be determined from imaging at low magnifications, obser-
vation of grain boundaries or lattice defects requires atomic resolution and may
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Fig. 16.6 Aberration-
corrected Nion UltraSTEM
images of CVD graphene at
60 kV from ORNL, show-
ing atomic resolution. The
authors acknowledge Juan-
Carlos Idrobo (ORNL) for his
assistance in the imaging

be accomplished through aberration-corrected STEM imaging (Fig. 16.6). CVD
graphene was imaged at Oak Ridge National Laboratory (ORNL) at 60 kV using
a Nion UltraSTEM. A spatial resolution of 1.06 Å was obtained, allowing the direct
observation of atomic positions in the graphene lattice. Such imaging allows for
study of the grain boundary structure produced from different CVD growth condi-
tions, which will affect the electronic properties of graphene devices.

16.2.6 Linear Effective Medium Approximation
for Incomplete Layers

Transfer of monolayer graphene films from a Cu foil to a substrate sometimes results
in graphene “patches” separated by regions of bare substrate, or sub-monolayer
films. In such cases n and k will show a decrease in magnitude due to the void space
in between these patches. A linear EMA has previously been reported to show a
sensitivity to the percentage of graphene surface coverage [25, 29] and provides a
simple tool with which to take the CRI of void space into consideration.

EMA’s such as the Bruggeman and Maxwell-Garrett approximations differ in
the assumptions made concerning host material as well as component geometry.
For the laminar geometry of a graphene layer and the accompanying void space,
the more simplistic linear EMA assumes a CRI that is a combination of the two
components weighted by their volume fraction [30]. With a linear EMA, one may fit
for the percentage of void space in an incomplete monolayer film, and subsequently
model the optical functions for only the graphene component. Previous work has
shown the proper choice of EMA to be, in some cases, material dependent. In the
case of amorphous carbon a linear approximation showed better agreement with
complementary EELS when comparing the sp2 and sp3 percentages of the films [31].
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16.2.7 Graphene Wafer Mapping

SE has previously been used in conjunction with Raman spectroscopy in order to
find the thickness of the graphene prior to the SE analysis. By fixing the thickness
to the nominal value of 3.35 Å, n and k may be extracted from the two parameters ψ

and� [10, 25, 29]. However the reverse process, that is using the CRI to determine
thickness, should allow for the mapping of graphene on any substrate. This capability
and verification of CRI values was shown through a 625 point mapping scan of a
300 mm SiO2/Si wafer that had been stamped with CVD graphene in a particular
layout [29]. Figure 16.7 shows the ψ map (bottom right) measured on the 300 mm
wafer and the locations to which the graphene was transferred (top right) using a
thermal release tape method [25]. Use of the CVD graphene CRI values from the
glass substrate analysis (Fig. 16.4) resulted in the detection of a 3.3 Å film in the
areas to which CVD graphene was transferred [29]. As graphene becomes a stronger
candidate for device structures its incorporation into inline thickness metrology will
become more important for films produced by growth processes capable of yielding
large area layers.

SE mapping of graphene on a smaller scale, such as would be required for exfo-
liated flakes hundreds of square microns in area, is also possible. Also shown in
Fig. 16.7 is a color-coded map of � at a wavelength of 746 nm for an area of 90 nm
SiO2/Si exfoliated with FLG by Graphene Industries. The optical image at the top
left shows the bilayer flake, which is pointed to in the outline of the � map. The
attractiveness of bilayer graphene lies in the fact that, unlike the monolayer system,
it is possible to induce a bandgap in the bilayer structure through electrostatic doping
which is necessary to produce an off-state in device structures [32].

16.2.8 Simulation Study of the Effect of Anisotropy

As the number of layers in FLG increases, the electronic structure eventually con-
verges to that of graphite, and our previous question addressing the anisotropic
demands of the modeling becomes an issue. Using the optical functions obtained
for the CVD graphene on glass, a simulated graphene/SiO2/Si stack generated with
WVASE32 software is used to show the difference between ψ and � values calcu-
lated with an isotropic versus anisotropic model. The study incorporates the SiO2/Si
substrate for its omnipresence in device electronics. The generated data is then com-
pared to the magnitude of the error bars in the experimental data of ψ and� that was
measured for CVD graphene on SiO2/Si. The model stacks consist of the graphene
sitting on top of the standard 300 nm SiO2/Si substrate, shown in Fig. 16.8. Optical
functions provided in the WVASE32 software were used for the substrate layers.

The CVD n and k values in Fig. 16.4 were used for the isotropic layer model, as
well as the x−y component of the refractive index for the anisotropic layer model.
For the latter, the z response values were chosen based on previously reported work
on graphite [33] and graphene [10]. For a c-cut uniaxial sample of highly oriented
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Fig. 16.7 Color-coded� (bottom left) and ψ (bottom right) maps of exfoliated and CVD graphene,
respectively. Top optical image on the left shows the bilayer outlined in the � map below, 400μm
scale bar. Top right image shows the locations of transferred CVD graphene on the 300 mm SiO2/Si
wafer

Fig. 16.8 Isotropic and anisotropic stacks for simulation of data to compare modeling of graphene
layer(s)

pyrolytic graphite (HOPG), the c-axis is essentially normal to the surface and parallel
to the plane of incidence during the SE measurement. This geometry prevents the
sensitivity of the measurement to cross polarization. Jellison et al. determined both
the ordinary (x−y) and extraordinary (z) responses of HOPG by combining two
measurements, one in which the c-axis was perpendicular to the sample surface, and
one in which the c-axis was parallel to the sample surface [33]. The real part of the
z-response in the visible region (nz) was determined to be within the range of 1.5.
The work of Kravets et al. also yielded an nz less than 2, with an assumed kz value of
zero [10]. Therefore, the generated data discussed below is simulated using n = 1.5,
k = 0 when the graphene is modeled as an anisotropic layer.
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Fig. 16.9 (Top) Error bars for ψ and � (top) measured for monolayer CVD graphene. (Bottom)
Difference in ψ and � values generated from an isotropic versus anisotropic model of graphene
based on layer number. The error bars are comparable in magnitude to the differences in the modeling
approach for one layer; the assumption of an isotropic film starts to break down as layer number
increases

Figure 16.9 shows the differences between the isotropically and anisotropically
modeled data for one to three layers of graphene, in comparison to the experimental
error bar size for the measurement of monolayer CVD graphene on 300 nm SiO2/Si.
The difference in isotropic versus anisotropic modeling becomes larger as layer
number increases, as one would expect while moving towards bulk graphite. The
validity of isotropic modeling would therefore not hold when the difference between
the models becomes significantly higher than the error bars of the raw ψ and� data.
This begins to become an issue at approximately three layers.

We may also observe how the value of nz directly affects the difference between
the data generated from an isotropic versus anisotropic model. The larger difference
between the x−y and z refractive indices is shown in the larger difference between
ψ and � values in Fig. 16.10 for a bilayer thickness.
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Fig. 16.10 Differences in generated ψ (left) and � (right) values between an isotropic and
anisotropic-modeled graphene layer assuming different values for the z-polarized refractive index.
The difference is more apparent for a lower value of n(n = 1) due to its greater difference from the
in-plane (x−y) refractive index

16.2.9 Current Areas of Interest for Graphene SE

As previously mentioned, graphene’s CRI contains a UV absorption peak, the line
shape and position of which is modified by excitonic effects [9]. Recent publica-
tions have shown graphene’s absorbance to have an asymmetric line shape in this
region [11, 34]. This is due to a Fano resonance caused by an interference effect
between a discrete exciton state and the continuum band at the saddle point at the
M-point of the BZ (see Fig. 16.1). The result is an asymmetric absorption profile.
Modeling of SE data may account for this effect through the incorporation of an
asymmetric oscillator that still maintains KK consistency. Recent modeling of CVD
graphene transferred to SiO2/Si using a PMMA-based process has incorporated this
type of model and is shown in Fig. 16.11 for films of different grain size. For the
purposes of this work, we define small-grain (SG) to mean domain size of several
hundred nanometers and large-grain (LG) to mean domain sizes of several microns.
We observe an increase in intensity of the absorbance peak for the film with smaller
grains. While there is an increased density of states along grain boundaries com-
pared to monocrystalline regions [35], greater amounts of contamination along these
interfaces may also contribute to the higher absorbance peak observed.

Thermal decomposition of SiC is also a growth method of interest due to its
scalability. In contrast to graphene transferred from a growth foil to a secondary
substrate, graphene produced from this method sits on a “buffer layer” that forms
between the SiC substrate and the graphene itself. This layer is thought to consist of
a mixture of sp2 and non-sp2 bonding due to the sp3 structure of the SiC. Samples
of ∼4 layer graphene grown on the Si-terminated face of 6H-SiC were measured
with SE. Due to the multilayer film thickness an anisotropic model was used to
extract the CRI, as required by our simulation study. The resulting n and k values
in the vicinity of the van Hove peak is plotted in Fig. 16.11 for comparison to CVD
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Fig. 16.11 Optical functions of small-grain (SG) and larger grain (LG) CVD graphene transferred
to SiO2/Si, compared to epitaxial graphene grown on 6H-SiC (optical functions of buffer layer
shown on lower right). The optical dispersion model uses an asymmetric oscillator for the exciton-
modified van Hove peak

graphene on SiO2/Si. We observe a decreased intensity of the epitaxial graphene k
response in comparison to the two CVD films on SiO2/Si, in addition to a slight
red-shift in the peak position. The latter difference may be due to the effect of the
buffer layer, the main k peak of which was found to occur at a lower energy (∼4.1 eV)
than that of the ∼4.5 eV peak in graphene (shown in lower right of Fig. 16.11) [36].
Characterization of the buffer layer is important for device work, as it has been shown
to possess a difference in mobility values when compared to those of the graphene
region [37].

SE of FLG has evolved over the past several years due to the progress in graphene
sample fabrication. The number of areas to be explored within graphene SE will
increase in the coming years as growth/transfer processes are improved. The effect
of different substrates on graphene’s optical response is an area of current investiga-
tion and will continue to be of interest as CVD processes gain better control of layer
number deposition. This work has shown the importance of SE in the characteri-
zation of “beyond CMOS” materials and highlights the necessity of consideration
of the material thickness/dimensionality when studying optical properties such as
anisotropy and excitonic effects on the dielectric function/CRI.

16.3 Nanoscale Single Crystal Silicon (c-Si) Films

Fundamental properties of dimensionally confined crystalline semiconductor mate-
rials are currently being explored by theoretical and experimental research groups.
These low-dimensional structures (nanofilms, nanowires and nanodots) are
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investigated for applications in transistor electronics, lasers, detectors, energy stor-
age, solar cells, etc. The device research efforts in the CMOS industry are moving
towards the use of nanoscale single crystal silicon quantum wells (c-Si QW) on
insulator structures called extremely thin silicon-on-insulator (ETSOI) [38]. At the
22 nm node several leading semiconductor companies have reported that the thick-
ness of the top silicon layer will be less than 10 nm. The research direction of the
semiconductor industry indicates that the thickness will continue to shrink for nodes
less than 22 nm. The reduced thickness of the top silicon layer impacts both device
properties and the optical properties of nanostructures.

The dielectric function of c-Si films from 2 to 10 nm is found to have a signif-
icant dimensional dependence [39]. A majority of optical characterization of these
nanoscale materials has previously been interpreted in terms of the effects of quantum
confinement. In this chapter, the impact of both carrier confinement and electron-
phonon interactions on the dielectric function of nanoscale films will be presented.
The phonon dispersion of the c-Si QWs was further altered through the presence
of dielectric layers above the nanoscale silicon. This points to the possibility of uti-
lizing the elastic properties of nanostructures to alter phonon dispersion and build
devices with new optical properties. In addition, the thickness dependent dielectric
functions can be used for measurement of technologically important structures for
the semiconductor industry. This fundamental study also has significant practical
implications in the semiconductor industry.

16.3.1 Critical Points in Semiconductors

Silicon has a diamond cubic lattice having a lattice constant of a0 = 0.543 nm with
two atoms per primitive cell. Two interlocking face center cubic lattices displaced
by (a0/4, a0/4, a0/4) form the diamond structure. Silicon has the FCC Brillouin Zone
(BZ), and the first BZ is a truncated octahedron as shown in Fig. 16.10a. The points
of high-symmetry in the BZ are labeled in Fig. 16.12a and the high-symmetry lines
along the [100], [110] and [111] directions from the center of the BZ (�-point) are
labeled as�,� and� respectively. The relationship between the band structure and
the linear optical response (dielectric function) has been the subject of considerable
research [40–42]; most studies represent a theoretical understanding of the optical
response at zero Kelvin [41]. The dielectric function of semiconductors have several
sharp features that can be related to direct band transitions, where there is a constant
energy difference between the valence band (VB) and the conduction band (CB).
This constant energy difference along the various high-symmetry directions in the
electronic band structure of Si is shown in Fig. 16.12b. This high joint density of
states can result in sharp features in the optical absorption known as critical points
(CPs) [42]. Silicon has several CPs between 1 and 6 eV as shown in Fig. 16.12c,
that are related to direct transitions in the electronic band structure. The E1 CP
(3.4 eV) arises due to the transition from �3 (VB) to �1 (CB) along k = (2π/ao)

〈1/4, 1/4, 1/4〉 to the edge of the BZ [43]. Rohlfing and Louie [40] showed that the
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(a) (b) (c)

Fig. 16.12 a First Brillouin zone of a Si FCC lattice, b electronic band structure of Si calculated
using k · p method [42] and b imaginary part of the dielectric function of bulk c-Si at room
temperature between 1 and 6 eV. Adapted from [61] used with permission

impact of strong electron-hole (exciton) interactions result in an increased oscillator
strength and energy of the E1 CP. This excitonic direct gap transition demonstrates
the strongest changes with dimensional confinement. The E′

0 CP (degenerate CP of
E1) is due to transitions from the �25′ (VB) to �15 (CB) at the center of the BZ and
the E′

1 CP (5.45 eV) is due to transitions from the �3 (VB) to the second CB along
the<111> direction. The E2 peak in the dielectric function does not correspond to a
single, well defined CP and it is due to contributions from a large range of transitions
close to the edge of the BZ along the � and � direction [44, 45].

The energy and lifetime broadening of a CP can be extracted using direct space
analysis. To enhance the CP structure and suppress the baseline effects a second
derivative of the dielectric function is taken [45]. A Lorentzian line shape as shown
in Eq. 16.3 is used to the fit the second derivative of the dielectric function of each
parabolic CP.

d2ε

d E2 =
{
μ (μ+ 1) Aeiβ

(
E − Eg + i�

)−μ−2
, μ �= 0

Aeiβ
(
E − Eg + i�

)−2
, μ = 0

}
(16.3)

where A is the amplitude, β is the phase angle, Eg is the threshold energy, � is
the broadening and μ is the order of singularity. The value of μ is based on the
type of CP and it is 1, 1/2, 0 and −1/2 for discrete excitons, one-dimensional (1D),
two-dimensional (2D) and three-dimensional (3D) one-electron transitions, respec-
tively [39].

16.3.2 Carrier Confinement and Electron-Phonon Interactions

At the nanoscale dimensions both carrier confinement and electron-phonon interac-
tions play a significant role on the dielectric function of semiconductor materials.
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In the case of c-Si QWs the electrons in the CB due to optical excitation are con-
fined between the buried-oxide layer and the top dielectric layer. This carrier con-
finement results in a change in the dielectric function with dimension. Also, the
direct gap transitions or critical point (E1 CP) in c-Si QW were shown to blue shift
with increased dimensional confinement [39, 46–48]. Primarily these changes at
nanoscale dimensions are related to quantum confinement of carriers, and disregard
the role of change in phonon dispersion. Here we will show experimental evidence
of both electron confinement and electron-phonon interaction effects on the direct
transitions in nanoscale c-Si QWs. The phonon modes are modified in nanostructures
and further altered when embedded within materials with large elastic mismatch [49].
In the case of bulk semiconductors the effect of electron-phonon interactions on the
temperature dependence of the indirect band gap and the direct transitions in bulk
semiconductors was reported by Cardona et al. [43, 45, 50, 51]. The phonon modes
in c-Si QWs have strong dimensional dependence and also vary with the surround-
ing dielectric layers. To study the effect of phonon modes on the direct transitions
due to dimensional changes, a temperature dependent study can be performed on
c-Si QWs. To further demonstrate that the dielectric function will change with the
surrounding layers the Si QWs can be embedded within different dielectric layers.
Here we will focus on the thickness dependent carrier confinement and the role of
electron-phonon interactions on the optical properties of nanostructures.

16.3.3 Low Temperature Measurements to Determine Average
Phonon Energy

The energy and lifetime broadening of direct transitions in semiconductors have
temperature dependence. This temperature dependence is primarily due to the con-
tributions from the electron-phonon interactions and the change in band structure
due to thermal expansion. Two types of electron-phonon interactions contribute
to the temperature dependence—the Debye-Waller term and Fan or “self-energy”
term. The Debye-Waller terms are obtained from the second-order electron-phonon
Hamiltonian and the Fan terms are the first-order electron-phonon interactions taken
in second-order perturbation theory [52]. The changes in the CP energy with temper-
ature are related to the thermal expansion of the lattice as one term and the combined
effect of the electron-phonon interactions [43] are accounted for by the other term
in Eq. 16.4. (

∂Eg

∂T

)

p
=

(
∂Eg

∂T

)

thermal exp
+

(
∂Eg

∂T

)

V
(16.4)

The thermal expansion is described by Eq. 16.5 which results in a constant term
in Eq. 16.4 assuming the bulk modulus (B) and coefficient of thermal expansion (αL )
are thickness independent.
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(
∂Eg

∂T

)

thermal exp
= −3BαL

(
∂Eg

∂T

)

T
(16.5)

The average interaction frequency ‘KBθ /�’ can be extracted by fitting the energy
shifts due to both thermal expansion and electron-phonon interactions by a phenom-
enological Bose-Einstein statistical equation [45] as shown in Eq. 16.6.

(
∂Eg

∂T

)

p
= EB − aB

(
1 + 2

eθ/T − 1

)
(16.6)

The impact of optical and acoustic phonons on the conduction and valence band
states has been reported by Cardona using temperature dependent electron-phonon
spectral function along the various high-symmetry lines [43]. These theoretical cal-
culations of the electron-phonon interaction terms for bulk silicon indicate that both
optical and acoustic phonon contribute to the temperature dependence of the energy
and lifetime broadening of the direct gap transitions.

16.3.4 Experimental Data for ETSOI

Nanoscale silicon films can be fabricated from bulk 300 mm SOI wafers (700 Å
c-Si/1400 Å oxide/bulk Si). The two major steps that are performed to achieve the
desirable thickness (∼2 to 10 nm) of the nanoscale silicon film are: (1) A wet oxi-
dation step to consume at a faster rate most of the silicon layer by forming a silicon
dioxide layer that is etched in dilute HF (100:1), and (2) to get a high quality surface
on the top silicon layer a dry oxidation step and etching in dilute HF (300:1). The
thicknesses of the ETSOI wafers were monitored using an in-line spectroscopic ellip-
someter (KLA-Tencor Aleris) at each thinning step. The quality of the single crystal
silicon in the QWs is maintained after thinning and can be verified by imaging using
a high-resolution transmission electron microscopy (HRTEM) [39]. It is important
to characterize the strain in the c-Si QWs as it has been shown to shift the E1 CP
energy [53]. The c-Si QWs developed no measurable strain during the thinning and
it was determined by using Raman spectroscopy and high-resolution x-ray diffrac-
tion (HRXRD) [48]. We can investigate the change in the dielectric response in c-Si
QWs by changing the top dielectric layers. The wafers are fabricated with a native
oxide (∼1 nm), thicker thermal oxide and hafnium oxide (∼10 nm) layers to show a
change in the phonon dispersions. To demonstrate the impact of changes in phonon
dispersions on the E1 CP energy and broadening a temperature dependent SE study
of the nanoscale silicon films with the native oxide is performed. The temperature
dependent measurements are performed on a dual rotating compensator ellipsome-
ter (RC2 - J. A.Woollam Co., Inc.) equipped with a variable temperature cryostat
that can go up to 4 K under liquid helium. Care should be taken during modeling
low-temperature SE measurements to include a layer of ice on the sample surface.
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(a) (b) (c)

Fig. 16.13 a Imaginary part of the dielectric function of c-Si QWs at room temperature, b second
derivative of the imaginary part of the dielectric function and c blue shift in the energy of the E1
CP with decreasing thickness. Adapted from [61] used with permission

The thickness dependence of the dielectric function in c-Si films with a native
oxide surface studied at room temperature is shown in Fig. 16.13a between 2 and
5 eV as measured by SE. The second derivative of the imaginary part of the dielectric
function near the E1 CP and the blue shift in the energy extracted from direct space
analysis with the scaling of thickness are shown in Figs. 16.13b, c, respectively. It can
be seen in Fig. 16.13a that the E1 CP exhibits maximum shifts in energy and lifetime
broadening with change in thickness and the E2 CP does not have a significant energy
shift but shows changes in oscillator strength. It has been reported by Jellison et al.
that the oscillator strength of the E2 CP is impacted by the surface preparation [54].

The dielectric function of the Bulk Si and nanoscale c-Si films is extracted at a
series of temperatures between 4 and 300 K. The E1 CP and the E′

0 CP are both clearly
separated (no longer degenerate) at low-temperatures in Bulk Si and nanoscale silicon
films due to difference in the thermal coefficient of critical point energy shifts. This
clear separation in the E′

0 and E1 CP energy are shown in Fig. 16.14 as a function of
temperature in the second derivative of the real part of the dielectric function. This
is in good agreement with what has been reported by several researchers who have
studied the temperature dependence of the CP energies of Bulk Si [45, 54, 55]. The
size effects more strongly influence the blue shift in the E1 CP than the E′

0 CP as can
been seen for 2.5 nm c-Si QW Fig. 16.14b.

The change in optical response with temperature for 9, 7, and 2 nm c-Si films
extracted using SE are shown in Fig. 16.15a–c. In the case of bulk Si and the 9 nm c-Si
film the oscillator strength of the E2 CP is stronger than the E1 CP at all temperatures.
However, in the case of 7 nm or less c-Si films with the native oxide surface layer
the E1 CP oscillator strength increases above that of the E2CP.

The temperature and thickness dependence of the E1 CP energy extracted using the
direct space analysis is shown in Fig. 16.16. All the nanoscale films follow a similar
trend with temperature as observed in bulk Si. This shift in energy with temperature
is fitted by Eq. 16.6 to extract the average phonon frequency (θ) and is shown in the
inset of Fig. 16.16. Lautenschlager et al. reported that the stronger the contribution
of acoustic phonons on the E1 CP the lower the average phonon frequency [43]. It is
evident from the average phonon frequency that the contributions of acoustic phonons
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(a) (b)

Fig. 16.14 Second derivative of the temperature dependent real part of the dielectric function for
a bulk Si and b 2.5 nm c-Si film. Adapted from [61] used with permission

(a) (b) (c)

Fig. 16.15 Temperature dependent imaginary part of the dielectric function (ε2) for a 9 nm, b 7 nm
and c 2 nm of c-Si QW [56]. Adapted from Ref. [61] used with permission

to the electron-phonon interactions increase with decreasing c-Si QW thickness. The
increased contribution of acoustic modes curves due to change in dimension can be
interpreted based on recent theoretical modeling studies published by Hepplestone
and Srivastava using the adiabatic bond charge method for the lattice dynamics of
silicon nanofilms [57]. Their work suggests that the lowest lying optical phonon
(LOP) modes are difficult to populate in nanofilms of Si and thereby increasing the
acoustic phonon mode contribution with decrease in thickness. The contributions
from all these phonon states effectively broaden the lifetime of the direct band gap
transitions and these modes should be observable using Brillouin Scattering [58].
Thus this study clearly indicates the importance of the electron-phonon interactions
in determining the optical properties of nanoscale solids.
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Fig. 16.16 The thickness and temperature dependence of the E1 CP energy of c-Si QWs (Inset
Table: Average phonon frequency with 90 % confidence limits). Adapted from Refs. [56, 61] used
with permission

16.3.5 Impact of Surrounding Dielectric Layers on ETSOI
Optical Properties

At the nanoscale dimensions, we provide here experimental evidence that the optical
properties of the c-Si layer changes when confined between various dielectric layers
of differing stiffness. We study the three sets of wafers previously mentioned: ETSOI
with top layers of native oxide (∼1 nm), thicker thermal oxide, and hafnium oxide
(∼10 nm). In Fig. 16.17 we show differences in imaginary part of the refractive index
of 5 nm c-Si QWs each with the three different surface layers. Although the SiO2
covered c-Si QW (5.7 eV) barrier depth is higher than the HfO2 covered c-Si QW
(2.7 eV), all the three samples with nearly identical thickness should have the same
amount of carrier confinement at room temperature. We interpret this change in the
optical properties as a representative of the effect of changes in the acoustic phonon
modes in the three samples due to the different Young’s moduli of HfO2 (∼370 GPa)
and SiO2 (∼75 GPa).

Another compelling piece of evidence is the small red shift versus decreasing
thickness of the E1 CP of hafnium oxide covered c-Si QWs as shown in Fig. 16.18.
This red shift is unexpected, and indicates that the electrons and holes excited at
the E1 CP of the hafnium oxide covered c-Si QWs are more strongly influenced
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Fig. 16.17 Imaginary part of the refractive index of c-Si QWs (∼5 nm) with native oxide, 20 nm
SiO2, and 10 nm HfO2 with a SiO2 interfacial layer. Adapted from [61] used with permission

(a) (b)

Fig. 16.18 Second derivative of the imaginary part of the dielectric function of c-Si QW with a
HfO2 surface layer. Inset: a energy and b lifetime broadening (�) of the E1 CP extracted using
direct space analysis. Adapted from [56] used with permission

by electron-phonon interactions than quantum confinement of carriers. The lifetime
broadening of the E1 CP increases for thinner c-Si, due to change in the electron-
phonon interactions induced by changes in the phonon modes of thin films. This
provides further proof of the importance of electron-phonon interactions on the opti-
cal response of nanoscale single crystal films. We would like the reader to take note
that the changes in energy of the E1 CP reported here are much larger than the surface
preparation dependent changes in the dielectric function reported by Aspnes et al.
[59, 60].

There are several fundamental and practical implications of the dimensional
changes in the dielectric function. One of the major practical implications of model-
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ing the top silicon thickness in ETSOI with bulk optical constants leads to inaccurate
thickness measurements as the optical properties are thickness and surface layer
dependent. Also, the carrier transport in devices can be improved by surrounding
the c-Si QWs with selective dielectric films to lower electron-phonon scattering and
thereby enhancing the mobility. We suggest that the electron-phonon interactions
and quantum confinement effects will significantly impact semiconductor nanowires
and nanodots. This section suggests that the optical properties of dimensionally
confined materials can be selectively altered through the design of structures with
dielectric layers having appropriate elastic properties. This chapter points to new
avenues into the fabrication of dimensionally confined structures with desired opti-
cal properties.

16.4 Implications of Nanoscale Properties on SE
Research & Development and Education

The examples of graphene and c-Si QWs illustrate the challenging nature of opti-
cal measurement of nanoscale materials and structures. This chapter presents some
evidence that the dielectric function/CRI of nanoscale materials can be altered by
surrounding materials. The two examples provided in this chapter were examples of
the influence of surrounding materials on direct gap transitions having an excitonic
nature. This leads to several suggestions for research, development, and educations
(R, D & E) for SE of nanoscale materials.

• Careful use of effective medium approximations shows great promise for measur-
ing nanoscale material dimensions for embedded materials and incomplete layers.
Thus EMA theory and application should receive attention from R, D & E.

• Optical properties of nanoscale materials are influenced by both quantum confine-
ment and changes in phonon dispersion. Exploration of these combined effects is
just beginning making it an important area for R, D & E.

• The success of the Rigorous Coupled Wave method for optical measurement of
the dimensions of features of ordered arrays of lines, holes, and more complicated
structures (i.e., scatterometry or optical critical dimension) in semiconductor man-
ufacturing provides a new approach for measurement of nanoscale materials in
other fields.

• R & D has yet to address challenging systems such as partially ordered materials
systems such as the fingerprint pattern observed for block co-polymers.

• Transfer of advances in research requires application of new optical modeling ideas
to a variety of materials in development before they can be used in manufacturing
applications.

• Application of Muller Matrix Spectroscopic Ellipsometry to fully capture the
anisotropic nature of nanoscale materials
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Chapter 17
Ellipsometry of Semiconductor Nanocrystals

Peter Petrik and Miklos Fried

Abstract In this chapter we make an attempt to give a comprehensive overview on
the optical modeling of layer structures that accommodate or are entirely composed of
semiconductor nanocrystals. This research field is huge both in terms of the theories
of effective dielectric functions and applications. The dielectric function of single-
crystalline semiconductors can be determined on high quality reference materials.
The accuracy of the reference data depends mostly on the numerical or experimental
elimination of the surface effects like oxides, nanoroughness, contamination, etc.

17.1 Introduction

Most techniques used for the preparation of semiconductor films (e.g. chemical vapor
deposition, evaporation, sputtering, pulsed laser deposition, etc.) result in polycrys-
talline materials with a structure that strongly depends on the parameters of the
sample preparation. Therefore, dielectric function references can only be used in a
parameterized form. The dielectric function of poly- and nanocrystalline1 thin films
can be derived from the single-crystalline dielectric functions using parameteriza-
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tion of the critical point features or using the effective medium theory by “mixing”
these single-crystalline components with voids, polycrystalline or amorphous com-
ponents. Finally, when the effective dielectric functions are calculated for a given
nanocrystalline structure in a given layer, the vertical change of the composition can
be measured by defining multi-layer models or models with analytical depth profiles.

17.2 Dielectric Function of Semiconductors

Dielectric functions have been measured and tabulated for a wide range of semi-
conductors (Si, Ge, SiC, SiGe, AlAs, AlGaAs, AlN, AlSb, BN, CdTe, CdS, CIGS,
GaAs, GaN, GaP, GaSb, HgTe, InGaAs, InAs, InN, InP, InSb, PbS, PbSe, PbTe,
ZnS, ZnSe, ZnTe, just to mention some relevant materials, found in a commercial
database). Most of these data have been published [9, 14, 60, 63], are available in
the databases shipped with commercial ellipsometers, or on community websites
[97]. Accurate reference dielectric functions of single-crystalline semiconductors
are crucial when aiming at sub-nanometer precision. Even the dielectric functions
of the purest and most perfect single-crystalline material, the microelectronic grade
silicon shows differences between different authors (Fig. 17.1). Using the various
references of Fig. 17.1 for a native oxide-covered single-crystalline silicon wafer, dif-
ferences of ≈0.2 nm in the oxide thickness are obtained.2 The major problem is how
surface imperfections (oxide layer, nanoroughness, contamination) are taken into
account.

Even amorphous dielectric functions have been tabulated as reference data [14, 41],
although their dielectric functions strongly depend on the preparation [41, 81, 110].
A relevant example is the dielectric function of the ion implantation-amorphized and
relaxed silicon [41]. The dielectric functions of the two kinds of amorphous silicon
differ significantly (Fig. 17.2).

Most of the reference dielectric functions of semiconductors are available in a para-
meterized form as well. The use of analytical functions has several advantages. First
of all, non-idealities, like in the case of polycrystalline materials can be derived
and taken into account using these parameterizations. Furthermore, measurements
at wavelengths other than those given in the data file of the reference dielectric
function can be interpolated and extrapolated with higher accuracy.

There are a range of approaches from using simple Lorentz oscillators through
quantum mechanical considerations (model dielectric function [1], generalized
oscillator model [22]) to empirical formulas like the generalized critical point
model [66].

2 Using the photon energy range of 2–5 eV covered by all the references.
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Fig. 17.1 Real (ε1) and imaginary (ε2 ) parts of the dielectric functions of single-crystalline silicon
from Refs. [60] (line 1,) [14] (line 2,) and [63] (line 3). Differences for lines 1–2 and 1–3 are also
plotted

17.3 Analytical Models

Dielectric responses of all materials follow some relatively simple rules and can be
understood in microscopic terms. Here we consider these rules for both homogeneous
and heterogeneous materials. Examples of generic dielectric functions for single-line
absorption processes, metals and semiconductors are given in Fig. 17.3 and discussed
individually below [53].

17.3.1 Drude

Simple metals are materials whose dominant characteristic is electronic charge that
is able to move more or less freely through the material. In the Drude model, the
equation of motion of any single carrier in an external field is

F = −eEexp(−iωt) = ma = md2x/dt2 = −ω2 m Δx exp(−iωt), (17.1)

where its position is assumed to be given by x(t) = x0 + �x exp(−i ωt). Solving
this equation for Δx and substituting the result in Maxwell’s equations leads to the
Drude expression,
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Fig. 17.2 Real (ε1) and imaginary (ε2) parts of the dielectric functions of single-crystalline silicon
(c-Si, [60]), deposited amorphous silicon (a-Si, [14]) and ion implantation-amorphized silicon
(i-a-Si, [41])

ε = 1 − 4 π ne2/meω
2 = 1 − ωp

2/ω2, (17.2)

whereωp = 4πne2/me is the plasma frequency, n and me are the electron density and
electron mass, respectively. The Drude model works quite well for most metals and
for free-carriers in semiconductors. Note that we derived this dielectric function from
purely classical-mechanical perspective of point charges accelerating in accordance
with Newton’s laws, i.e., the motion in an electric field.

More realistic calculations include electron loss due to scattering, in which case,

ε = 1 − ωp
2/ω(ω +i/ τ), (17.3)

where τ is the lifetime. The lifetime is an important parameter in poly- or nanocrys-
talline metal films of finite grain sizes. It is determined approximately as

1/τ = 1/τ0 + 2vf/d, (17.4)

where v f is the Fermi-velocity and d is the diameter of grain. The relevant length
scale is the electron mean free path v f τ0 , which in noble metals is on the order of
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Fig. 17.3 Examples of generic dielectric functions for single-line absorption processes (Lorentz,
Tauc-Lorentz and Cody-Lorentz oscillator), Drude metal, semiconductor (GaAs), and insulator
(glass) [Drawn by the WVASE software of the Woollam Co., Inc.]

a few dozen nanometers. Thus for Cu, Au or Ag the dielectric function is affected
when grain sizes drop below these values.

Another important application of the Drude model is to describe the optical contribu-
tion of free-carriers in heavily doped semiconductors. To the lowest order correction
is made simply by adding the Drude expression to the ordinary dielectric function
measured for undoped material. Note the material properties encoded: electron den-
sity and electron mass in the plasma frequency and grain size in the lifetime.

The calculations can be extended by adding a restoring term −K(x − x0) to the
force equations, where K is the force constant. The equation then approximately
describes the bound charge that dominates the optical response of dielectrics, oxides
and amorphous semiconductors. In this case ε becomes

ε = 1 − ω2
p/(ω

2 − ω2
0 + iω/τ), (17.5)
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where ω2
0= K/m is the resonance frequency squared. Resonance leads to strong

absorption in the refractive index at longer wavelengths. The above expression also
applies to excitons, impurity transitions and lattice vibrations.

An important aspect of the above derivations is generality; because the same funda-
mental considerations (mass, restoring forces, loss) apply to all charges, all dielectric
response functions have the same form. Consequently, any dielectric response for any
material can be represented as a superposition of terms of the above form (spectral
representation).

The same principles also apply to semiconductors, although the spectra are now more
complex. Crystalline semiconductors are characterized by relatively sharp struc-
tures, whereas amorphous semiconductors generally have only a single broad peak.
The transition between amorphous and crystalline behavior in semiconductors is ill-
defined, depending in part on the technique used to observe it, but usually considered
to extend approximately from 2 to 50 nm. On the other hand, optical excitations in
insulators are usually so well localized that size effects cannot be seen.

A realistic model becomes even more important when one wishes to simulate spectra
from alloys, such as AlxGa1−xAs or SixGe1−x, which contain critical points in the
optical spectrum that vary continuously with composition x. The best fits can be
obtained when the critical points are modeled with the use of one or more Lorentz
oscillators. For each oscillator, the peak photon-energy, width and amplitude are fit
as a function of x, allowing the composite dielectric function to be calculated as a
function of x. This approach works well near the critical point but breaks down at
small photon energies, where the absorption coefficient becomes small [130].

17.3.2 Lorentz

The Lorentz model is a classical model where a negatively charged electron is bound
to a positively charged atomic nucleus with a spring. Thus single-electron “two-level
atoms” (Ne = Na) are assumed for simplicity.
Each electron is assumed to be bound to its atom with a resonant frequency ofω0 in the
near-ultraviolet range; as a result, there is no free-electron or Drude component to the
dielectric function. If light is shone, the AC electric field of the light E = E0exp(iωt)
will induce dielectric polarization in the x direction. The Lorentz model assumes a
physical model in which the electron oscillates in viscous fluid. In this case, the
position of the atomic nucleus is fixed, since the mass of the atomic nucleus is far
larger than that of the electron. If we use Newtons second law, the physical model is
expressed as:

med2x/dt2 = −meΓ dx/dt − meω
2
0x − eE0exp(iωt), (17.6)

where me and e show the mass and charge of the electron, respectively. In Eq. (17.6),
the first term on the right represents the viscous force of the viscous fluid. In general,
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the viscous force is proportional to the speed of an object when the speed is slow.
The 	 in Eq. (17.6) represents a proportional constant of the viscous force, known
as the damping coefficient. (It is high in amorphous semiconductors.) The second
term on the right expresses that the electron moved by the electric field of light is
restored according to Hooks law F = −K Fx , and ω0 shows the resonant frequency
of the spring ω2

0 = K F/me . The last term on the right shows the electrostatic
force F = q E . Eq. (17.6) represents the forced oscillation of the electron by the
external AC electric field. By this forced oscillation, the electron oscillates at the
same frequency as the AC electric field [i.e., exp (iωt)]. Thus, if we assume that
the solution of Eq. (17.6) is described by the form x(t) = a · exp(iωt), the first and
second derivatives of x(t) are given by dx/dt = iaω exp(iωt) and d2x/dt2 = −aω2

exp(iωt), respectively. By substituting these into Eq. (17.6) and rearranging the
terms, we get

a = −(eE0/me)(1/(ω
2
0 − ω2 + i	ω)). (17.7)

On the other hand, if the number of electrons per unit volume is given by Ne, the
dielectric polarization is expressed as P = −eNex(t). From x(t) = a exp(iωt),
we obtain P = −eNea exp(iωt). By substituting P = −eNea exp(iωt) and E =
E0 exp(iωt) into ε = 1 + P/ε0 E = 1 + χ , where χ is the dielectric susceptibility
χ ≡ P/ε0 E , we obtain the dielectric constant as follows:

ε = 1 + (e2Ne/ε0me)(1/(ω
2
0 − ω2 + i	ω)) (17.8)

This equation represents the Lorentz model. If we multiply by (ω2
0 – ω2– i	ω) both

the numerator and the denominator of Eq. (17.8), we get

ε1 = 1 + (e2Ne/ε0me)(ω
2
0 − ω2)/((ω2

0 − ω2)2 + 	2ω2)), (17.9)

ε2 = (e2Ne/ε0me)(	ω /((ω2
0 − ω2)2 + 	2ω2)). (17.10)

In actual data analysis, we commonly express the Lorentz model using the photon
energy Eph:

ε = 1 +�jAj/(Eph0j2 − Eph2 + i	jEph) (17.11)

In Eq. (17.11), the dielectric function is described as the sum of different oscillators
and the subscript j denotes the jth oscillator. In general, A in Eq. (17.11) is called the
oscillator strength.

17.3.3 Tauc-Lorentz and Cody-Lorentz

The Tauc–Lorentz model has been employed to model the dielectric function of
amorphous materials ([65]; for a review see [26]) and of transparent conductive
oxides [52, 126]. The shape of ε2 peaks calculated from the Lorentz model is com-
pletely symmetric. However the ε2 peaks of amorphous materials generally show
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asymmetric shapes. In the Tauc-Lorentz model [65], therefore, ε2 is modeled from
the product of a unique bandgap of amorphous materials (Tauc gap [134]) and the
Lorentz model.

The Tauc gap Eg of amorphous materials is given by the following equation [134]:

ε2 = Atauc(Eph − Eg)
2/E2

ph (17.12)

The ε2 of the Tauc-Lorentz model is expressed by multiplying ε2 of Eq. (17.11) by
Eq. (17.12) [65]:

ε2 = AE0	(Eph − Eg)
2/((Eph2 − E2

0)
2 + 	2Eph2)Eph) (Eph > Eg) (17.13a)

ε2 = 0 (Eph ≤ Eg) (17.13b)

The ε1 of the Tauc-Lorentz model can be derived by using the Kramers–Kronig rela-
tions [53, 65] form Eq. (17.13). Although the equation for ε1 is rather complicated,
the dielectric function of Tauc-Lorentz model is expressed from a total of five para-
meters ε1 (∞), A, Γ , En0, Eg. Fig. 17.4 shows (a) the dielectric function and (b) the
n-k spectra of an amorphous silicon (a-Si) calculated from the Tauc-Lorentz model
[65]. The values of the analytical parameters in this calculation are A = 122 eV,
	 = 2.54 eV, En0 = 3.45 eV, Eg = 1.2 eV and ε1(∞) = 1.15. It can be seen from
Fig. 17.4a that ε2 = 0 at En ≤ Eg and the ε2 peak position is given by En0. The A and
	 of the Tauc-Lorentz model represent the amplitude and half width of the ε2 peak,
respectively, similar to the Lorentz model.

So far, the dielectric function of amorphous materials has also been described using
other models including the Cody–Lorentz model [36], Forouhi–Bloomer model [38],
MDF theory [2], and band model [74].

The Tauc-Lorentz and Cody-Lorentz [36] dispersion types are primarily designed for
modeling amorphous materials. The main difference between the two types is how
they model absorption at photon energies slightly larger than the energy gap. In this
region the Tauc-Lorentz model follows the Tauc law formula while the Cody-Lorentz
follows the Cody formula:

Tauc Absorption Formula: ε2 (E) ≈ [(E – Eg)2/E2]
Cody Absorption Formula: ε2(E) ≈ (E – Eg)2

The Cody-Lorentz type also includes an Urbach absorption term. The fit parameters
for the Tauc-Lorentz are the Amplitude (Amp), Broadening (Br), Center Energy
(Eno), and Band Gap (Eg). The Cody-Lorentz oscillator adds Ep (transition energy
where absorption changes from Lorentzian to Cody), and Et (transition energy where
absorption changes from Cody behavior to Urbach behavior). It has been shown that
the Cody model provides superior fitting to experimental spectra, compared with the
Tauc model [24, 25].
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(a)

(b)

Fig. 17.4 (a) Dielectric function and [36] n k spectra of amorphous silicon (a-Si) calculated from
the Tauc–Lorentz model [53]. Reprinted with permission from Wiley, Fujiwara, Spectroscopic
Ellipsometry: Principles and Applications. Copyright Wiley, New York, 2007

17.4 Dielectric Function of Poly- and Nanocrystalline
Semiconductors

17.4.1 Effective Medium Models

Materials composed of phases much smaller than the radiation wavelength but large
enough to retain their bulk properties can generally be modeled using the effective
medium approximation (EMA) [12, 20, 72, 132, 133]. Most poly- and nanocrys-
talline materials fulfill this requirement or at least can properly be modeled using
effective medium theories. The success of this approach is shown by the fact that
the first publication of the most frequently used self-consistent Bruggeman effective
medium approximation (B-EMA) (Ref. [20]) has been cited more than 3,000 times
(note that most articles using the B-EMA don’t cite the original paper any more, so
the influence of this approach is even much greater that the above number of citations
would suggest).
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Limitations of both increasing (finite wavelength [12, 32, 133]) and decreasing (finite
size [35, 98, 105]) component sizes have been extensively studied. Increasing com-
ponent size leads to scattering- [37], critical dimension- [6–8, 61, 62], patterned
wafer- [89] and photonic crystal-based [68, 76, 95, 96] theories and applications,
whereas decreasing component size leads to finite-size effects [35, 98], consequently,
to the use of fine- grained reference materials [104] or to the parameterization of the
dielectric function [1, 60, 94, 105, 127] (also combined with EMA [112]).

Using effective medium models microstructural information can be obtained by the
volume fraction of the components, e.g. the amorphous/(nano)crystalline ratio as a
function of growth conditions [23, 57, 58, 83, 84, 91, 92], during deposition [26,
56] or annealing [85, 106]. Using both nanocrystalline (nc-Si) and single-crystalline
(c-Si) components the nanocrystalline nature (the size of the nanocrystals or the
amount of grain boundaries per unit volume) of polycrystalline silicon films can be
determined [5, 105]. The same approach can be used for porous silicon [44, 114].

The success of effective medium models is due to their robustness. In most cases,
the samples can be fitted with a relatively small number of parameters, avoiding
parameter correlations, allowing a quick evaluation. The main disadvantage of the
method is that the dielectric function of the components can rarely be described
by bulk references. Furthermore, in most cases isotropic behavior, i.e. not oriented
grain boundaries are assumed, which might not be right in some cases. Usually the
self-consistent Bruggeman method is used, but the type of effective medium model
(i.e. Maxwell-Garnett or B-EMA) may depend on the volume fraction ratios.

Being a robust method, EMA is well suited for in situ ellipsometry [18, 26, 69, 85,
98, 106]. This way, the formation of nanocrystals, the transition between amorphous
and crystalline structures can be followed, as well as the evolution of nucleation and
surface roughness layers.

17.4.2 Analytical Function-Based Models

Analytical models can be used when EMA models fail (e.g. the dielectric functions
of the components can not be obtained from bulk or single-phase thin film refer-
ences), when the dielectric function has to be determined as a smooth function of
the wavelength, or when a direct connection with the electronic band properties is
investigated determining the change of band gap, stress, or broadening of critical
points (a recent, sophisticated example on CdTe photovoltaics is given in Ref. [75]).
The analytical functions used for polycrystalline materials can be derived from the
formulas described above for single-crystalline semiconductors.

The Lorentz oscillator is widely used when the EMA models don’t work well enough
[33] or simply to determine a smooth dielectric function that can further be analyzed
using EMA [35]. In this references ion implantation has been used as a way to create
damage and a vanishing long range order in a controlled way. Ion implantation is
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a versatile and effective method to prepare reference samples for the investigation
of the dielectric function of various disordered lattice structures [33, 35, 39–43, 45,
46, 78–80, 94, 104, 107–109, 111, 112, 120, 127].

The change of characteristic critical point features can be analyzed using the (second
or third) derivative method [13, 116]. In this approach one assumes that the crystal-
related structure is directly connected to the lineshape of the critical point features.
The vanishing long range order (e.g. as a result of ion implantation-caused disorder)
causes the sharp critical point features to broaden, which can be characterized by
second or third derivative amplitudes of the pseudo-dielectric function. The change
of the derivative amplitudes as a function of fluence can be connected to the size of
the single ion tracks. Neglecting a possible surface layer like oxide or nanoroughness
doesn’t cause a significant error in the derivatives, because these layers are practically
non-dispersive in the spectral range around the critical point energies.

The generalized oscillator model uses standard analytical line shapes for the interband
critical point features [11, 22, 28, 73, 117]:

ε(E) = Aeiϕ(ECP − E − i	)μ, (genosc)

where A, EC P ,	, and φ are the amplitude, the critical point energy, the broadening,
and the excitonic phase angle, respectively. Using this equation critical points of
different dimensionalities can be described by adjusting the value of μ. This method
allows the analysis of most important critical point features like the energy positions
or the broadenings as a function of temperature [73], disorder [117] or other process
parameters.

The dielectric function of numerous semiconductors (e.g. Si, Ge, CdS, and CdTe)
have been parameterized by Adachi using the Kramers-Kronig transformation. The
model dielectric function (MDF) calculated using this method has the advantage that
it provides a good fit using a set of dedicated oscillators with a few parameters for
each critical point [1]. This method has been successfully applied for disordered Si
[3, 71, 127], for III–V semiconductors [34] as well as for nanocrystals in porous
Si [118]. Similar parameterization can be applied for ferroelectric and dielectric
layers [47], but most importantly, it has been demonstrated that it can be applied
for nanocrystals in silicon nitride as well [17]. The fit of the MDF on a fine-grained
polycrystalline silicon reference is shown in Fig. 17.5.

When studying nanocrystalline semiconductors, the dielectric functions range from
the nearly single-crystalline to the nearly amorphous. In the latter case the parame-
trizations are simpler, because the critical point features disappear from the spectrum,
having only one broad peak. The most successful phenomenological model is the
Tauc-Lorentz (TL) model suggested by Jellison, which combines a Tauc gap with
a Lorentzian oscillator [65]. An important feature of the model is that a Kramers-
Kronig consistent analytical formula is given for ε1, which makes the calculation of
the model accurate and fast. This model has later been refined through a more accu-
rate description of the line shape at the gap energy using the Cody parameterization,
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Fig. 17.5 Lineshapes of the oscillators of the model dielectric function fitted on a nanocrystalline
polysilicon reference from Ref. [64]. Reprinted with permission from Petrik et al. [118]. Copyright
2009, American Institute of Physics

resulting in the Cody-Lorentz model [36]. The TL models have successfully been
applied for extremely small embedded crystals, carbon based thin films [21, 77, 113],
nanocrystalline diamond [82] as well as for amorphous SiC [81].

Finally, a general approach that provides the largest flexibility to describe the critical
point features was suggested by Johs et al. [66]. A detailed analysis of the method
termed ‘Generalized critical point model’ can be found in Ref. [28]. In this approach
the line shape of the dielectric function around the critical points are composed of
four Gaussian-broadened polynomials. The fit parameters are the so called control
points of the polynomials, their position, curvature, connection and the broadening
energy, and amplitude values of the critical point. Because of the large number of
fit parameters this model can only be used in a very careful and systematic way
to fit each critical point. For nanocrystalline materials coupling or fixing the most
parameters may be needed to avoid cross correlations [119].
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17.4.3 Quantum Confinement

Several papers studied silicon nanocrystals embedded in insulator matrix by theo-
retical calculations [101, 125] or experimentally [30, 31, 55, 99]. Ögüt et al. [101]
calculated quasiparticle gaps, self-energy corrections, exciton Coulomb energies, and
optical gaps in Si quantum dots from first principles using a real-space pseudopoten-
tial method. The calculations were performed on hydrogen-passivated spherical Si
clusters with diameters up to 2.7 nm (800 Si and H atoms). They showed that (i) the
self-energy correction in quantum dots is enhanced substantially compared to bulk,
and is not size independent as implicitly assumed in all semiempirical calculations,
and (ii) quantum confinement and reduced electronic screening result in appreciable
excitonic Coulomb energies. They fitted the calculated data to a power law of the
diameter as d−a , and found a = 0.7. The calculated optical gaps were in very good
agreement with absorption data [55].

Proot et al. [125] calculated the electronic structure of spherical silicon crystallites
containing up to 2058 Si atoms. They predicted a variation of the optical band gap
with respect to the size of the crystallites in very good agreement with available
experimental results [55]. They also calculated the electron-hole recombination time
which is of the order of 10−4–10−6 s for crystallites with diameters of 2.0–3.0 nm.
Their results were applied to porous silicon for which they confirmed that a possible
origin of the luminescence is the quantum confinement. The calculated optical gap
varies from 5 to 1.6 eV (size range from 0.8 to 4.3 nm) following approximately a
d−1.39 law where d is the crystallite diameter. (From a simple effective mass approx-
imation one would expect a d−2 law. The lower exponent 1.39 shows that the exact
nature of the bands has to be taken into account, in particular for the complex con-
duction band.)

Ding et al. [30, 31] studied Si nanocrystals (nc-Si) with different sizes embedded in
SiO2 matrix having been synthesized with various recipes of Si ion implantation. The
influence of nanocrystal size on optical properties, including dielectric functions and
optical constants, of the nc-Si has been investigated with spectroscopic ellipsometry.
The optical properties of the nc-Si are found to be well described by the four-term
Forouhi-Bloomer model [38]. A strong dependence of the dielectric functions and
optical constants on the nc-Si size is observed. For the imaginary part of the dielectric
functions, the magnitude of the main peaks at the transition energies E1 and E2
exhibits a large reduction and a significant redshift in E2 depending on the nc-Si
size. A band gap expansion is observed when the nc-Si size is reduced. The band gap
expansion with the reduction of nc-Si size is in good agreement with the prediction
of first-principles calculations based on quantum confinement [101]. They fit their
results with the Eg(D) = Eg0 + C/Dn formula, where D is the nanocrystal size in
nm, Eg(D) is the band gap in eV of the nanocrystal, Eg0 = 1.12 eV is the band gap
of bulk crystalline Si, C = 3.9, and n = 1.22.
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17.5 Modeling of Layer Structure and Composition

17.5.1 Single layers

Even when investigating single layers, in most cases not only the bulk layer is included
in the model, but the surface roughness [10, 70] and the nucleation layer [69] is also
taken into account. The systematic improvement of the fit quality during the intro-
duction of interface layers into the optical model has been investigated by numerous
authors (see Refs. [10, 44, 121, 136], just to mention a few examples). The for-
mation of the nucleation layer and the surface roughness has also been extensively
investigated using in situ spectroscopic ellipsometry [18, 19, 26, 51, 69].

The dielectric function of the bulk layer is modeled as described in the previous
chapter. When using single-layer models either the sample is close to perfect (e.g.
prepared by molecular beam epitaxy, atomic layer deposition or other methods that
can create nearly perfect layers), or the non-ideal interfaces are not taken into account.
In the latter case the error caused by not considering the interfaces will be transferred
to the determined layer parameters as errors (to both the layer thickness or the dielec-
tric function). The modeling of the interfaces leads us to the following chapters on
vertically inhomogeneous structures.

17.5.2 Ultrathin nc-Si RTSE Measurements

Nguyen et al. [98–100] studied the evolution of thin film Si nanostructure during
growing and etching processes that yields thin layer nanocrystallites. They performed
real-time spectroscopic ellipsometry (RTSE) measurements during the growth of
nanocrystalline silicon (nc-Si:H) or a-Si:H nanoclusters by plasma enhanced
chemical-vapor deposition on chromium at 250 ◦C. They focused on the regime
when the film consists of isolated nanocrystallites and intervening void volume. In
this regime, the observed three-dimensional growth behavior allowed to associate the
crystallite size with the physical thickness of the film. The RTSE measurements were
self-contained in that they provided not only microstructural information, including
film thickness and volume fraction, but also the effective optical functions of the
film. From this combination of results, the optical functions the Si crystallites, them-
selves, could be deduced by mathematically extracting the influence of the void-
volume fraction on the effective optical functions. A critical-point (CP) analysis of
E1 transitions visible near 3.3 eV in the crystallite optical functions provided infor-
mation on the electronic properties as a continuous function of crystallite size. Over
the physical thickness range in this experiments (max. 25 nm), the transition energy
and phase deduced in the CP analysis were constant (at the single-crystal values),
while the optical gap and broadening parameter decreased with increasing thick-
ness. (See Fig. 17.6) This behavior was consistent with a finite-size effect (quantum
confinement).
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(a)

(b)

(c)

Fig. 17.6 Optical gap determinations for ultrathin (a) a-Si:H and (b) nc-Si films at 250 ◦C deduced
from RTSE measurements. The optical gaps are obtained by extrapolating observed linear plots to
ε2 = 0; c optical gaps plotted versus thickness for ultrathin a-Si:H and nc-Si films at 250 ◦C, from
a and b. Values for thick a-Si:H and bulk c-Si are provided at the right. Reprinted with permission
from Nguyen et al. [100]. Copyright 1995, The American Physical Society

The etching [99] was performed with thermally generated atomic H in order to avoid
plasma damage. RTSE was applied to characterize the evolution of the thicknesses of
near-surface nc-Si:H and underlying a-Si:H layers, as well as their optical properties.
Using the end-point detection capability of RTSE, they could terminate etching to
obtain an ultrathin (<1.5 nm), single-phase layer of Si nanocrystallites ∼i. e., with no
detectable a-Si:H. These crystallites were densely packed on the substrate compared
to those of conventional, single-phase nc-Si:H prepared by PECVD [98].

17.5.3 Superlattices

In case of superlattices one should assume a periodic layer structure [129]. This can
simplify the optical model because the properties (mainly thicknesses) of the layers
within one period only have to be defined once, providing only the number of periods
as a required additional parameter [4]. Equivalently, in case of a fewer number of
layers it can be considered as a coupling of the repeated parameters [128]. Even
if the preparation conditions suggest a periodic structure, the structures are usually
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Fig. 17.7 Evolution of sublayer thicknesses in a layer stack of 10×([silicon rich oxide]/SiO2).
Silicon rich oxide (SRO) was modeled using an effective medium mixture of SiO2, a-Si, and voids.
The graph shows the increase of the SiO2 sublayer as a function of the annealing temperature.
Reprinted with permission from Agocs et al. [4]. Copyright 2011 Elsevier

not ideal on the scale of sensitivity of ellipsometry. First, the surface layer usually
has to be fitted independently because its contact with air modifies its properties
(due to oxidation [4] or hydrocarbon contamination [131]). Second, the layer quality
usually deteriorates with each new prepared layer [90] (caused by e.g. the interface
roughness), which results in a vertical inhomogeneity over the whole stack. Of course,
the ideality of the superlattice can be estimated from the fit quality. As sublayers in
superlattice stacks are usually very thin deposited layers, bulk-like references can be
used in very rare cases, and the dielectric function of each stack has to be fitted as
well. Fitting the dielectric function even structural changes can be followed during
e.g. oxidation (Fig. 17.7 from Ref. [4]).

17.5.4 Inhomogeneity in Vertical and Lateral Dimensions

Most methods of thin film preparation result in vertically inhomogeneous layers, at
least on the scale of the precision of ellipsometry. An ideal thin film for ellipsometry
would have atomically sharp interfaces and a vertical refractive index uniformity of
better than about 10−4. These requirements can rarely be met. Usually, at least an
interface layer of nucleation [28] and a surface roughness layer have to be taken
into account [53]. For example, in case of polysilicon, most layer properties depend
strongly on the layer thickness (Fig. 17.8, [105]).

Neither the amorphous layers created by ion implantation have sharp interfaces.
However, in this case the shape of the profile can be parameterized based on the theory
of ion implantation. This method reduces the number of fit parameters significantly,
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Fig. 17.8 Selected relevant fit
parameters of an optical model
as a function of thickness and
deposition temperature used
to measure low pressure
chemically vapor deposited
polycrystalline silicon. The
optical model consists of
a surface roughness layer,
a polysilicon bulk layer,
and a buried oxide layer
(both the surface roughness
layer and the polysilicon
bulk layer are a Bruggeman
effective medium composition
of single-crystalline Si, fine-
grained polycrystalline Si
and voids). Reprinted with
permission from Petrik et
al. [105]. Copyright 2000,
American Institute of Physics
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Fig. 17.9 Optical model for the ellipsometric measurement of the Gaussian damage profile created
by 100 keV Ar ions implanted into single-crystal Si. σ1 and σ2 are the standard deviations of the
coupled half-Gaussian distribution functions. Rp and f are the peak position and the height parameter
of the damage profile, respectively. The fifth parameter of the optical model is the thickness of the
surface oxide layer (Reprinted with permission from Petrik et al. [115]. Copyright 2008, John Wiley
and Sons.)

because only four key parameters describing the Gaussian profile need to be fitted
[42, 107, 115] (Fig. 17.9).

Depth profiles of voids in Si created for gettering at a depth as large as 400 nm can
sensitively be determined using spectroscopic ellipsometry [54, 111]. Although the
penetration depth of light is significantly less than 400 nm in a significant part of the
spectrum (at the critical point energies and even below, down to about 2 eV), a high
sensitivity on the void profiles has been demonstrated because of the large optical
contrast between the dielectric function of Si and voids. In Ref. [54] a sophisti-
cated parameterization of the depth profiles using a combination of normalized error
functions is suggested and successfully demonstrated.

Because the penetration depth of light at the most sensitive parts of the spectrum (i.e.
at the photon energies of the critical points—in Si about 3.4 and 4.2 eV) is only in
the range of 5–10 nm, high sensitivity structural characterization using ellipsometry
taking into account the line shape of the dielectric function at the critical points cannot
be performed for deep implanted profiles. However, using wedge etching [16] buried
profiles can be brought to the sample surface allowing sensitive characterizations [48,
59]. The bevels are made after ion implantation by pulling the sample out gradually
from the anodization liquid, growing an oxide with laterally increasing thickness. In
the experiment of Ref. [59] the wedge length and maximum height were 50 mm and
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Fig. 17.10 Imaginary part of the pseudo-dielectric function of Si implanted with 100 keV Xe
through a wedge mask created by anodic oxidation [59]. d denotes the lateral position on the
sample. The oxide thickness decreased from 180 to 0 nm from d = 50 to d = 5 mm. The oxide was
removed after ion implantation, prior to the ellipsometric measurement

Fig. 17.11 Side view of the optical arrangement of the divergent light source mapping spectroscopic
ellipsometer. (1) point source; (2) polarizer; (3) spherical mirror; (4) non collimated beam; (5)
sample; (6) cylindrical mirror; (7) corrected beam; (8) analyzer; (9) pinhole; (10) beam after pinhole;
(11) corrector-disperser optics; (12) ccd detector; (13) rectangular (narrow) aperture

200 nm, respectively. Finally, the oxide is removed by conventional HF etch. It has
to be taken into account that the growth of a unit of SiO2 consumes only about 0.45
unit of Si. So in the above case after etching the 200 nm SiO2 the thickness of the
removed Si is about 90 nm, resulting in a slope of about 1×10−4 degree, a slope so
small that is impossible to produce by other techniques. Using this technique even
the plotting of the pseudo-dielectric function as a function of lateral position shows
clearly the locations where the damage peak reaches the surface [115].

The second or third derivative analysis described in chapter “Analytical function-
based models” combined with Rutherford backscattering spectrometry (RBS) and
numerical track modeling can even be used to measure the 3D evolution of the ion
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tracks and the remaining nanocrystalline regions during ion implantation [116]. The
broadening of the critical point features measured by ellipsometry as a function of
fluence is proportional to the remaining non-damaged surface and therefore shows
an exponential dependence on the fluence. With RBS we can measure the relative
damage as a function of depth. In the numerical simulation we can define a vertical
distribution of damage and a track size. The dependence of relative damage on the
fluence and depth (obtained from the RBS and SE measurements) can be fitted using
the parameters of the numerical model, so the parameters like the track size and the
depth distribution can be obtained [116].

The complex optical models used for depth profiling often require the fitting of
numerous model parameters. In this case a crucial question is whether the result is
the global minimum? The final step in the fitting procedure is usually a Levenberg-
Marquardt gradient search algorithm that finds the minimum based on the change
of fitting error when changing a parameter locally. Therefore, this method can not
guarantee to find the global minimum. There is a range of techniques developed to
find the global minimum (random global search, genetic algorithms, neural networks,
simulated annealing, hill climbing, etc., see Refs. [122–124]). Even a simple global
search and a gradient fit from the best sets of parameters found by the global search
has been proven to be an effective way of avoiding to get into local minima [107].

Lateral mapping is usually performed by moving the samples stage or (in case of
larger substrates) moving the ellipsometer head over the sample [11]. Imaging ellip-
sometry provides a concept of measuring in different lateral positions simultaneously.
Both microscopic [15, 137, 138] and macroscopic [49, 50, 67, 87, 88] concepts have
been demonstrated. The size of the measured area and the resolution ranges from
several microns to several millimeters. For divergent light source non-collimated
beam macroscopic ellipsometric configurations there is theoretically no limit of the
maximum size—the resolution can be defined as the viewing angle of a pixel on the
CCD camera. The concept is shown in Fig. 17.11 [49] demonstrating a new design,
in which all the polarizing optical components can be small—the only component
that scales with the mapping size is the spherical mirror.
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Chapter 18
Spectroscopic Ellipsometry for Inline Process
Control in the Semiconductor Industry

Stefan Zollner

Abstract Building high-performance silicon CMOS or III/V devices requires many
structural process steps, where a physical layer (dielectric, epitaxial semiconductor,
gate electrode, or metal contact) is first deposited across the wafer and then par-
tially removed by a masked or blanket etch process. Whenever possible, the depo-
sition and etch processes are verified by a thickness metrology step. Typically, a
latest-generation CMOS process flow contains about 100 thickness measurements,
at least during the development of the technology. The metrology method of choice
in the semiconductor industry is spectroscopic ellipsometry, because it is fast, non-
destructive, and capable of measuring product wafers in small areas (30–50µm
beam diameter) set aside in the scribe grid. This chapter will describe several typical
applications of ellipsometry in CMOS and III/V device manufacturing and address
capabilities and limitations and how future basic research on optical properties of
materials can benefit the industry.

18.1 Introduction

Building a high-performance complementary metal-oxide-semiconductor (CMOS)
processor (see Fig. 18.1) with eleven layers of metals requires about 75 photolayers
[9]. Many of these are dopant implant layers and therefore only require after develop
inspection (ADI), overlay, and critical dimension (CD) metrology for optical litho-
graphy. However, there are about 40 structural process steps, where a physical layer
(dielectric, epitaxial semiconductor, gate electrode, or metal contact) is first deposited
across the wafer and then partially removed by a masked or blanket etch process (wet
or dry). Whenever possible, the deposition and etch processes are verified by a thick-
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Fig. 18.1 Left transmission electron micrograph (TEM) of an N-channel metal-oxide-semi-
conductor (NMOS) field effect transistor. In the center of the image, from the bottom, we see
the transistor’s Si channel (grey), followed by the metal oxide gate dielectric as a thin bright line, a
dark transition metal nitride acting as the thin metal gate, followed by a polycrystalline silicon gate
(grey), then the dark NiSi gate electrode contact. The gate is encapsulated on both sides by a thin
nitride spacer (grey), a thin L-shaped oxide spacer (bright), and a final nitride spacer (grey). Above
the gate, we see the dual stress nitride liner etch stop (grey). On both sides, there are tungsten plugs
(dark) with transition metal nitride barriers (not visible) landing on the NiSi contacts to the silicon
current electrodes. PMOS devices are similar, but have silicided Si1−x Gex source-drain stressors.
The gate width of this device is on the order of 30 nm. From Ref. [9]. c© 2009 The Japan Society
of Applied Physics. Right schematic of the same device

ness metrology step, at least during process development (before transferring the
process to manufacturing).

A (pre) measurement after deposition determines the initial thickness of the layer
just deposited and (if possible) the thicknesses of buried layers deposited previously.
A (post) measurement after the etch measures the thicknesses of the remaining layers,
see Fig. 18.2. Sometimes it is desirable to etch away most, but not all of the last
layer (underetch). In many cases, the last layer needs to be removed completely
without etching into the layer underneath. Sometimes, the last layer and some of
the layer underneath need to be removed (overetch). Ellipsometry is capable of
determining the amount of under-/overetch as well as potential roughening of the
surface (lateral variations in etch rate). Such measurements are usually performed
at several locations on a wafer (to check for across-wafer variations of deposition
and etch rates). Also, one usually measures 2–3 wafers per lot with a predetermined
sampling strategy, since many process tools have multiple chambers or chucks (with
potential variations in deposition or etch rates). Typical measurement results along
with the accuracy of the measurement and allowed tolerances are listed in a process
assumptions document for the specific technology. During manufacturing, a lot is
put on hold if the measurement result is outside of the specified range. Sometimes, a
manufacturing (deposition or etch) tool is restricted from processing additional lots,
until the measurement discrepancy is understood and (if needed) the manufacturing
tool repaired or tuned to avoid further misprocessing.
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Fig. 18.2 a Two layers were deposited on a substrate, followed by b patterning a line of photoresist
(black). The arrows indicate exposure to a directional dry etch. c Underetch: a thin residual layer 2
remains after the etch. d Layer 2 is removed completely, without etching into layer 1. e Overetch:
layer 2 and a portion of layer 1 were removed. f Nonuniform portions of layer 2 remain, leading to
a roughening of the surface. Ellipsometry measurements are usually not performed on these nano-
electronic devices, but on scaled-up (much larger) structures to accommodate the 30 by 50µm spot
size of the focusing ellipsometer

All measurement results are loaded in the factory data warehouse, together with
process data (e.g., photolithography exposure dose and focus, etch end point times)
and in-line electrical test results, which allows searching for correlations to improve
yield and performance. Results can also be used for advanced process control. For
example, if the thickness measurement is below target (but still within specifications),
the wafer can move on to the next process step, but the deposition time for the next
wafer is automatically adjusted to bring the next thickness closer to target.

A typical 32 nm CMOS process flow contains about 100 thickness measurements.
This includes about 15 step height measurements using profilometry or atomic force
microscopy (AFM, mostly in back-end metallization), 80 ellipsometry measure-
ments, and a handful of others, such as x-ray diffraction, x-ray reflectivity, x-ray
fluorescence, or experimental inline surface science techniques (mostly to verify
composition and thicknesses in the high-k metal gate stack).

The thickness metrology method of choice in the semiconductor industry is spec-
troscopic ellipsometry, because it is fast, non-destructive, and capable of measuring
product wafers in small areas (30–50µm beam diameter) set aside in the scribe
grid between functional chips. Also, ellipsometry is usually capable of determin-
ing several layer thicknesses in a single measurement. The beam focusing optics for
inline ellipsometers are quite complex (often involving reflective optics for the widest
spectral range) and therefore limited to a single angle of incidence (around 70–75 ◦).
Older inline ellipsometers had a spectral range of 250–800 nm, which made them
less sensitive to ultrathin oxides (where best accuracy is achieved near the E2 peak of
Si). More recently, the spectral range was extended to 190 or even 150 nm by using
two light sources, a deuterium lamp in addition to the common xenon short-arc
lamp. Measurements in the vacuum-ultraviolet (VUV) near 150 nm require purg-
ing of the ellipsometer with nitrogen or evacuating the wafer chamber (more time-
consuming). In comparison with research ellipsometers, inline ellipsometers often
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Fig. 18.3 Optical image of a scribe grid with metrology fields. The features in the center (the
saguaro cactus, the staircases, and the arrow) are unique alignment marks to find the metrology
fields (100µm wide by 70µm tall) to the left of the cactus

have very limited software options. A leading manufacturer only allows the follow-
ing models: tabulated optical constants, effective medium approximation, Lorentz
oscillator [18].

A typical CMOS semiconductor wafer factory (fab) will employ a dozen or more
spectroscopic ellipsometers with a typical acquisition cost of USD 500 k to 1 M.
This makes matching of the ellipsometry tools (to 0.2 Å oxide thickness) within the
same fab or between fabs and sharing of ellipsometry models and recipes (including
optical constants) a high priority. While pattern recognition (see Fig. 18.3) with white
light can be simple for some classes of films, it can be a challenge for ultrathin gate
oxides or for thick films, where small relative thickness variations can cause a strong
change in feature reflectivity. Often, spectroscopic ellipsometry is combined with
other measurement techniques in the same tool, for example broad-band dual-beam
reflectance, single-wavelength ellipsometry, or wafer bow stress measurements using
laser deflection.

Finally, it is well known that semiconductor surfaces age with time through grow-
ing of native oxides or adsorption of surface overlayers. In the semiconductor indus-
try with its extensive use of wet chemistry for wafer processing, this is known as
atmospheric molecular contamination (AMC). For reliable thin-film thickness mea-
surements, adsorbed films need to be removed inside the ellipsometer before the
measurement. This can be achieved by heating the wafer with a hot plate or by local-
ized exposure to an intense light source. Within a few seconds, adsorbed surface
overlayers can be removed, significantly improving the accuracy and repeatability
of the thickness measurement.
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Table 18.1 Recommended references for optical constants and dispersion of materials used in the
semiconductor industry

Material Reference Type Comments

Si (undoped, crystalline) [10, 11] Tabulated “Woollam silicon”
Si (implanted, annealed) [20] Tabulated Drude contribution
Si (implanted, not annealed) [6, 19] Tauc-Lorentz similar to a-Si
Si (poly-crystalline) [40] Gen. oscillator Depends on anneal conditions
Si (amorphous) [6, 19] Tauc-Lorentz Large variability
SiO2 [10, 11] Tabulated “Woollam SiO2”
Silicon nitride [3, 21, 37] Tauc-Lorentz Large variability
Silicon oxynitride [5] Tauc-Lorentz Large variability
Si1−x Gex alloys [39] Tabulated x-dependent (pseudomorphic)
Si1−yCy alloys [41] Tabulated y-dependent (pseudomorphic)
TiN [15] Tabulated Highly variable

Ge [23] Tabulated In progress
GeO2 [1, 2, 4, 14, 25] Tabulated
GaAs [36] Tabulated
GaAs native oxide [35] Formula Fitted to tabulated data

18.2 Legacy CMOS Applications

Up to the 90 nm node,1 the only front-end materials to be measured were silicon
(undoped or implanted and annealed single-crystalline, poly-crystalline, or amor-
phous), SiO2, and silicon nitride. Table 18.1 shows recommended references for the
optical constants of these materials.

For undoped single-crystalline Si and SiO2, accurate optical constants were deter-
mined from a multiple-wafer analysis (consisting of several Si wafers with different
oxide thicknesses). Assuming that the Si and SiO2 optical constants do not vary
with thickness, this set of wafers allows unambigious determination of the optical
constants [10, 11]. A slight variation of the SiO2 optical constants is possible, since
some oxides are denser than others. Within the effective medium approxation, this
can be modeled as a mixture of SiO2 and voids.

Amorphous Si (a-Si) is described with a Tauc-Lorentz model with variable para-
meters [6, 19]. Polycrystalline Si (poly-Si) produced by annealing of a-Si films,
by ion implantation followed by annealing, or by high-temperature chemical vapor
deposition have optical constants combining elements of both crystalline and amor-
phous Si. Peaks in the spectra are usually broadened and sometimes shifted. To
describe the optical constants of poly-Si, one first fits the tabulated optical constants
of Si with various oscillator shapes [40] and then allows variations of the oscillator
parameters to achieve a good fit. Depending on the crystallinity of poly-Si, large
variations in these parameters are possible. Free-carrier effects due to in situ doping

1 The node length is the dynamical random access memoriy (DRAM) half pitch of transistors for
the technology.
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or ion implantation followed by annealing lead to a Drude contribution (a Lorentz
oscillator with zero energy) and a broadening and red-shifting of the interband peaks
in the spectra. Unless the dopant concentration is near or above the solid-solubility
limit, such free carrier effects do not need to be considered within the limited spectral
range of inline ellipsometers (to 900 nm in the IR).

Silicon nitride is an amorphous material with a large band gap. It is used in the
semiconductor industry for many purposes, since it has a high dielectric constant
and is chemically distinguishable from SiO2. By changing the Si to N ratio, these
properties are tunable. The optical properties of silicon nitride depend strongly on
the growth conditions. This material is best described using the Tauc-Lorentz model,
where the parameters need to be varied over a broad range [3, 21, 37]. Inline ellip-
sometry usually measures the nitride thickness and its refractive index at 633 nm.

While layers used in nano-electronic device fabrication should be as smooth
as possible, some surface roughness is unavoidable. Surface roughness is modeled
within the effective medium approximation as a mixture of the underlying material
and voids.

18.3 Applications to Recent CMOS Gate-First Integrations

For the 90 and 65 nm CMOS nodes, new materials had to be introduced in front-end
semiconductor manufacturing to keep meeting the scaling requirements of Moore’s
Law. To avoid physical tunneling of charge carriers through the gate oxide, the
equivalent (SiO2) oxide thickness (EOT) had to be decreased while keeping the
physical oxide thickness constant (near 2–3 nm). This was achieved by incorporating
nitrogen into the gate oxide, which increases the static dielectric constant. Gate oxide
metrology no longer just requires measurement of an oxide thickness, but also the
determination of the nitrogen content. Since the N content has a strong impact on
the band gap of silicon oxynitride (SiON), VUV ellipsometry has become essential
for gate oxide metrology [5, 13]. It is obvious that VUV ellipsometry is also more
sensitive to ultrathin gate oxides (with 1–2 nm thickness) [5].

The second class of new materials comprises alloys of Si with Ge and C. The
mobility of the Si channel (see Fig. 18.1) can be increased by partially etching away
the Si in the source-drain regions, followed by selective epitaxial growth of pseudo-
morphic Si1−x−yGex Cy for the PMOS or Si1−yCy for the NMOS transistor. The
dielectric functions of such alloys are shown in Figs. 18.4 and 18.5. To maximize
the stress in the channel, to improve the quality of the source-drain (silicide) Ohmic
contacts, and for other process-related reasons, these layers may not necessarily be
uniform in composition. The source-drain alloy stressors also may be in situ doped
during the epitaxial growth. For silicon-on-insulator (SOI) CMOS technology, ellip-
sometry can measure the depth of the source-drain divot and the thickness of the
remaining silicon over the buried oxide after etching, similar to Fig. 18.2e. After
epitaxial growth, the optical contrast between silicon and the semiconductor alloy
allows the measurement of the epitaxial layer thickness and the average composition,
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(a) (a)

(b)(b)

Fig. 18.4 Real (a) and imaginary (b) parts of the dielectric function of Si1−x Gex (x = 0, . . . , 0.275)
and Si1−x−yGex Cy (x = 0.212, y = 0, . . . , 0.013) alloys grown pseudomorphically on Si.
Reprinted with permission from Ref. [39]. c© 2000, American Institute of Physics

see Fig. 18.6, since the dielectric function of the Si1−x−yGex Cy alloys as a function
of composition is reasonably well known [39, 41]. This application of ellipsometry
is much more complex than determining the thickness of an SiO2 layer on Si. The
factory needs to grow pseudomorphic alloy layers with discrete compositions (deter-
mined by high-resolution x-ray diffraction, a new type of inline metrology tool for
CMOS wafer fabs) and build a database of dielectric functions for Si1−x−yGex Cy

alloys, which are then used to determine thickness and composition from ellipso-
metric spectra. (For this application, the term composition means the effective Ge
content. While Ge increases the lattice constant of Si, inclusion of C decreases it.
The effective Ge content achieves the same stress as Si1−x−yGex Cy in the absence
of C, i.e., y = 0.) For SOI technologies, numerical fitting of the remaining Si thick-
ness (about 10 nm), the Si1−x Gex alloy thickness (about 50 nm), and the effective Ge
content is often numerically unstable. Layer swapping (switching the thicknesses of
the Si and Si1−x Gex layers during the fit) is common. The inline ellipsometry recipe
needs to have precisely defined starting values and parameter limits for the fit to be
successful.
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Fig. 18.5 Real and imaginary parts of the dielectric function of Si1−yCy alloys pseudomorphically
grown on Si (y = 0, . . . , 0.136). The E1 and E2 critical points shift to higher and lower energies,
respectively, with increasing carbon content. The dependence of ε1 on y is barely noticeable in the
visible. Nevertheless, it leads to interference oscillations for Si1−yCy alloys on Si, which allow the
determination of the alloy thickness and an estimation of the carbon content. Data from Ref. [41]

Fig. 18.6 Pseudodielectric function for a Si1−yCy alloy with 102 nm thickness and y = 1.4 %,
grown pseudomorphically on Si. A 2.1 nm thick native oxide is also assumed. Interference oscilla-
tions are clearly visible below the E1 critical point at 3.4 eV

The most difficult application of inline ellipsometry is in the gate stack module of
CMOS devices. The gate stack consists of a thin metal oxide as the gate dielectric,
a transition metal nitride (TiN, TaN, etc) metal gate, and a poly-Si gate to allow
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Fig. 18.7 Transmission electron micrograph of a metal gate stack, consisting of (from the bottom)
Si substrate (grey), buried oxide (BOX, bright), top silicon (SOI channel, grey), thin metal oxide
gate dielectric (HfSiON, bright), recessed TaAlN/TaN metal gate (dark), poly-Si gate (bright), and
silicide gate electrode contact (grey). On both sides of the gate, raised Si source-drains were grown
by selective epitaxy. c© 2010 IEEE. Reprinted with permission, from Ref. [33]

conventional silicide Ohmic contacts, see Fig. 18.7. Tuning the threshold voltage of
transistors requires adjustment of the work function of the metal gate. In conven-
tional CMOS devices, this is achieved by implanting dopants into the poly-crystalline
silicon gate. For metal gates, workfunction adjustment requires fine-tuning the com-
position (doping with N or Al) of the gate oxide and the metal gate electrodes using
proprietary (and often poorly understood) techniques [33].

The most basic metal oxide gate dielectric is HfO2, which has been character-
ized thoroughly using VUV ellipsometry [5, 32]. Thick HfO2 layers grown at high
temperatures (550 ◦C) crystallize in the monoclinic phase, which is thermodynam-
ically stable [26]. Such films show a sharp increase of the absorption at the band
edge near 5.8 eV along with a crystal-field splitting (monoclinic) absorption peak at
6 eV, see Fig. 18.8. Thick films grown at lower temperatures (350 ◦C) using metal-
organic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD) and
also very thin films crystallize in the higher-symmetry tetragonal or cubic phase or
they are amorphous. They also may contain a significant amount of carbon or other
residues from the precursor. In such films, the absorption peak at 6 eV is absent and
the main absorption peak at 7 eV is much broader. Such films also have significant
absorption below the band gap. The refractive index of films produced at higher tem-
peratures also tends to be higher, indicating a higher film density. The band gap of
HfO2 can be reduced by doping with Ti or Zr, see Fig. 18.9, which in turn increases
the low-frequency dielectric constant important for electrical performance [12, 31].
The work function of the metal gate deposited over the metal oxide gate dielectric
also can be tuned by doping with proprietary methods.

To avoid reaction of HfO2 with the Si substrate, the HfO2 layer needs to be
grown on a chemical oxide starting surface. This chemical oxide can be formed by
cleaning the wafer in a solution consisting of deionized water, hydrogen peroxide,
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Fig. 18.8 Real (dashed) and imaginary (solid) parts of the dielectric function of 20 nm thick HfO2
films grown by MOCVD at 325 and 550 ◦C using tetrakis diethylamido hafnium (TDEAH), as
grown and after annealing at 900 ◦C for 60 s. The peaks at 2 eV in the data for the annealed film
grown at 325 ◦C are probably an error in the measurement caused by the lack of surface sensitivity
at low energies. Data from Ref. [26]

Fig. 18.9 Imaginary part of the dielectric function of Hf1−x Tix O2 grown by atomic layer deposition
at 300 ◦C for various compositions x . With increasing Ti content x , the band gap decreases. Reprinted
with permission from Ref. [31]. c© 2005, American Institute of Physics

and hydrochloric oxide [31]. Similar oxide or oxynitride interfacial layers can also
be formed in a conventional gate oxide diffusion furnace.

Gate oxide metrology begins with a VUV ellipsometry measurement of the oxide
interfacial layer. Our goal is to determine the thickness and the composition of this
layer. The latter can be obtained from the VUV absorption coefficient. Since the
oxide intefacial layer is extremely thin (<5 Å), it may not be possible to determine
thickness and dielectric function independently. However, it is still possible to detect
deviations in the ellipsometric data (such as Fourier coefficients as a function of
photon energy) due to process drifts.

Once the thickness of the interfacial oxide has been established, the HfO2 (or
similar) gate oxide is deposited, followed by another ellipsometry measurement
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to determine thickness and composition of the metal oxide. The metal oxide may
consume all or part of the SiO2 interfacial layer, forming a silicate. This is known
as interfacial layer scavenging [7] and significantly reduces the total effective oxide
thickness. Since the dielectric function of HfO2 is strongly process-dependent, each
factory needs to build its own database of optical constants for commonly used
gate oxides. Separate measurements may be needed for NMOS and PMOS, since
different workfunctions of the metal gate may require different compositions of the
metal oxide. Details depend on the integration scheme. Since it often takes weeks
or even months from gate oxide deposition to the first reliable electrical data with
copper contacts, an early detection of thickness or compositional variations in the gate
sector is crucial. It should also be noted that the channel (on which the gate oxide is
deposited) may not be pure silicon. It may contain a thin buried SiGe channel with a Si
cap to overcome PMOS short-channel effects, which creates more complications for
the gate oxide ellipsometry measurement [34]. A SiGe channel with 6 nm thickness
and 55 % Ge, buried under a Si cap with 2 nm thickness, has been suggested [7, 8].
More exotic channels containing pure Ge or III/V compound semiconductors are
actively investigated by universities and research institutions.

On top of this complex channel/oxide stack, a variety of transition metal gate
electrodes (TiN, TaN, TaAlN, TaC, etc) can be deposited to achieve gate control of
the transistor [33]. On the same wafer, several electrode materials may be needed to
form NMOS and PMOS devices with different threshold characteristics. Even for
the same nominal material (say, TiN) materials properties (grain size, composition,
texture) may vary over a broad range. The dielectric function of such transition metal
nitrides displays a metallic Drude term at low photon energies and broad interband
transitions at higher energies [15]. The Drude parameters (carrier concentration and
relaxation time) are process-dependent, requiring optical characterization of each
transition metal nitride film used by the factory.

Because of all these complexities, inline ellipsometry applications on metal gates
are rare. However, we need to keep in mind that the integration scheme may allow
measurements on only parts of the gate stack. For example, the metal gate and poly-
Si gate can be deposited on SiO2 in the shallow trench isolation (STI) areas, which
are easier to model than the complex buried SiGe channels.

On top of the transition metal gate, a layer of amorphous or poly-crystalline silicon
is grown. Historically, the total gate height (transition metal plus poly-Si) has been
about 80–100 nm, but it is desirable to reduce this height to better fit the tungsten plug
contacts to the source-drain regions between narrowly spaced gates. Exact control
of the gate height is important not only for uniform electrical performance, but also
to allow tight control of the gate patterning. Modern lithography tools have a very
shallow focal range. Therefore, the height of the gate stack is extremely important
for good patterning and control of critical dimensions. Ellipsometry can, of course,
determine both the silicon thickness and its roughness, if the optical properties of
the transition metal gate are known.

Finally, the gate stack is finished with deposition of a thin SiO2 and silicon nitride
cap. These layers are needed as a hard mask to avoid growth of the epitaxial source-
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drain semiconductors on top of the gate. Tight process control of this sacrificial hard
mask can be aided with ellipsometry measurements.

18.4 Thickness Metrology Requirements in the International
Technology Roadmap for Semiconductors (ITRS)

As described in the previous section, the increasing complexity of the transistor
device structure and the use of many novel materials have made front-end semicon-
ductor metrology much more challenging than in older CMOS generations. Advance-
ments in research needed to continue scaling of CMOS circuits (to follow Moore’s
Law) have long been described in the International Technology Roadmap for Semi-
conductors (ITRS), see http://www.itrs.net [16], previously known as the National
Technology Roadmap for Semiconductors (NTRS). Since 1994, the NTRS (ITRS)
has had a section on metrology, which describes measurement needs, including layer
thicknesses, measurement precision, and potential measurement techniques, such as
spectroscopic ellipsometry, x-ray reflectometry, etc. The NTRS and ITRS have long
listed the equivalent gate oxide thickness (EOT) and the metal barrier thickness as
critical parameters for front-end and back-end thickness metrology. More recently,
the top silicon thickness has been added as a third critical parameter for silicon-on-
insulator (SOI) technologies.

The 1997 NTRS [24] specified a 40–50 Å thick gate oxide with a 3σ precision
of 4 % (about 2 Å) for the 250 nm DRAM half-pitch node. For this quarter-micron
technology, the gate oxide was a thin SiO2 layer. Measuring its thickness on a smooth
Si channel was quite straightforward, since only a single thickness had to be deter-
mined. (Spectrocopic ellipsometry, unlike x-ray reflectometry, is not usually able
to distinguish between an oxide overlayer, a different surface overlayer, or surface
roughness.) Single-wavelength, multiple-wavelength, and spectroscopic ellipsome-
ters could all be used for this measurement. Even spectroscopic reflectometry was
reasoably accurate. The UV spectral range was not particularly important in this
technology node for such a thick gate oxide.

The 2001 ITRS edition [17] listed a gate dielectric EOT of about 15 Å and a 3σ
precision requirement of 0.05 Å for the gate oxide thickness measurement of 130 nm
DRAM half-pitch logic devices. For this 130 nm technology, the gate oxide was
nitrided SiO2 (or silicon oxynitride) over a bulk Si channel. The EOT refers to an
SiO2 dielectric with the same capacitance. With recent improvements in accuracy of
spectroscopic ellipsometers (by emplyoying a compensator or similar phase-shifting
element) and extensions of the spectral range into the quartz- and vacuum-ultraviolet
(to take advantage of the low penetration depth of Si near 4.2 eV), this task can be
achieved with good (relative) precision, if the oxide layer is uniform and its refractive
index is known. In practice (since both assumptions are not true), one looks for
changes in the thickness for a constant refractive index. Such process changes include

http://www.itrs.net
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a change in thickness or a change in the refractive index (for example a deviation in
the nitrogen content or its distribution throughout the oxide film).

But what does an ellipsometry measurement of such an ultrathin gate oxide actu-
ally mean? Let’s assume that the gate oxide consists of a 15 Å thick nitrided SiO2.
Most certainly, this gate oxide has a graded refractive index. Let’s cut the gate oxide
into N layers (maybe N = 15 layers with a thickness of 1 Å each). The thickness
of layer j (from 1 to N ) is d j , its complex refractive index is ñ j and the angle of
refraction in layer j is φ j . Following Jellison’s notation[18] for the Abelés transfer
matrix formalism, the diagonal elements of the Jones matrix are given by

rp = M21,p

M11,p
and rs = M21,s

M11,s
. (18.1)

If the layers are sufficiently thin and the vacuum wavelength λ sufficiently large, then
the phase factors

b j = 2πd j

λ
ñ j cosφ j � 1 (18.2)

are very small, allowing an expansion of the products of the transfer matrices to first
order in b j . The characteristic matrices become

Mp = P0,p

⎛
⎜⎜⎜⎝

1 −i
N∑

j=1

b j cosφ j
ñ j

i
N∑

j=1

ñ j b j
cosφ j

1

⎞
⎟⎟⎟⎠ PN+1,p (18.3)

Ms = P0,s

⎛
⎜⎜⎜⎝

1 i
N∑

j=1

b j
ñ j cosφ j

i
N∑

j=1
ñ j b j cosφ j 1

⎞
⎟⎟⎟⎠ PN+1,s (18.4)

with the transfer matrices for the ambient ( j = 0) and substrate ( j = N + 1 = sub)
defined as

P0,p = 1

2

(
1 cosφ0

ñ0

−1 cosφ0
ñ0

)
and P0,s = 1

2

⎛
⎜⎝

1 1
ñ0 cosφ0

1
−1

ñ0 cosφ0

⎞
⎟⎠ (18.5)

PN+1,p =
( cosφsub

ñsub
0

1 0

)
and PN+1,s =

( 1
ñsub cosφsub

0
1 0

)
. (18.6)

It is not clear to this author how an ellipsometric measurement of the Jones ratio
ρ = rp/rs with characteristic matrices given by (18.3) and (18.4) allows the deter-
mination of the average refractive index
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ñave =
⎛
⎝

N∑
j=1

ñ j d j

⎞
⎠ /d with d =

N∑
j=1

d j (18.7)

of the gate oxide and its thickness d (or a combination of both), even if the off-
diagonal elements in the characteristic matrices are very small (for an ultrathin gate
oxide). This problem needs to be resolved to apply ellipsometry measurements to
nanostructures and ultrathin films.

The gate oxide measurement becomes even more difficult with more advanced
CMOS technologies. The 2011 ITRS edition [16] clearly states that device archi-
tecture has become a distinguishing element. There is no longer a “standard” planar
CMOS architecture used by most device manufacturers. Reverse engineering of
product samples or announcements from the manufacturers list SOI and bulk CMOS
devices, gate-first and gate-last integrations, or even FINFETs for future generations.
The gate oxide has become a metal oxide grown over a nitrided SiO2 interfacial layer.
The optical constants of the metal oxide depend on crystallinity, thickness, and var-
ious doping mechanisms to affect the work function of the metal gate for the NMOS
and PMOS transistors. The complexities of process integration usually cause the gate
oxide to have several layers with different compositions. Ideally, it is desirable to dis-
assemble the gate oxide atom by atom to determine its composition and properties. In
theory, this is possible using the atom probe technique, but extremely time-consuming
and not yet quite reproducible. Clearly, spectroscopic ellipsometry is not able to yield
the same amount of information as the atom probe. Nevertheless, the ITRS still lists a
single thickness of 8 Å and a precision of 0.03 Å for the 22 nm half-pitch technology.
Ellipsometry can certainly measure the thickness of an ultrathin oxide on silicon
with high precision (assuming a constant refractive index), but since the result of
the measurement depends on dozens of process inputs, it is difficult for the process
engineer to decide how to determine the root cause of changes in the measurement
results (i.e., how to address process drifts). For the year 2025 (the 8 nm half-pitch
node), the thickness and 3σ precision of the gate oxide are specified as 5 and 0.02 Å,
respectively. It is not clear how this oxide thickness can be measured over a rough
semiconductor channel with varying composition (silicon-germanium, GaAs, etc),
with spectroscopic ellipsometry, x-ray reflectometry, or any other inline technique.

The second thickness parameter listed in the ITRS metrology section is the top
Si thickness for SOI devices. The optical constants of this ultrathin silicon layer
depend on thickness, strain, and other process parameters. Details of this ellipsometry
measurement are described in the chapter by Diebold et al. in this volume.

The third critical thickness parameter in the ITRS metrology section is the metal
barrier thickness for contacts and planar interconnects. Typically, spectroscopic ellip-
sometry is not the method of choice for metal thickness measurements. X-ray fluores-
cence is much better suited for this purpose [38]. Nevertheless, work in the author’s
laboratory addresses applications of spectroscopic ellipsometry to metals used in
semiconductor devices.
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Table 18.2 Doping and layer content profile of a typical InGaP double heterojunction bipolar
transistor (DHBT)

Layer Material Doping Concentration (cm−3) Thickness (nm) Function

11 InGaAs n+ >1019 100 Emitter contact
10 GaAs n+ 5×1018 120 Contact buffer layer
9 InGaP n 3×1017 40 Emitter
8 GaAs p+ 5×1019 70 Base
7 GaAs n 3×1016 30 Collector
6 GaAs n+ 2×1018 5 Dopant spike for DHBT
5 InGaP n 3×1016 10 DHBT collector
4 GaAs n 3×1016 155 Collector layer
3 GaAs n 7.5×1015 400 Collector layer
2 GaAs n+ 5×1018 1000 Subcollector
1 AlAs (?) ? ? 30 Substrate isolation
0 GaAs ? ? NA Semi-insulating substrate

Compare Ref. [28]. See also Ref. [42]

18.5 InGaP Heterostructure Bipolar Transistors

Over the past decade, III/V devices have dominated the market for high-frequency
front end electronics in mobile handsets [22, 28–30]. A particularly popular device
is the InGaP heterojunction bipolar transistor (HBT), used as a power amplifier.
A typical InGaP HBT epitaxial layer stack is shown in Table 18.2 and Fig. 18.10.
The GaAs substrate (layer 0) is electrically and chemically isolated by a barrier.
For ellipsometry modeling purposes, we assume that this barrier is AlAs (layer 1).
Electrical connections to the collector are made through a highly doped thick GaAs
subcollector (layer 2). For improved electrical properties, the collector has a very
complex structure, including a thin GaAs collector (layer 7) separated from an InGaP
barrier (layer 5) by a thin GaAs dopant spike (layer 6) on top of two GaAs layers with
low doping (layers 3 and 4). Layer 8 is a thin GaAs base with high p-type doing. The
InGaP emitter (layer 9) is chemically isolated from the emitter contact (highly-doped
n-type InGaAs layer 11) by a thick GaAs contact buffer (layer 10). From this epi
wafer, an InGaP HBT device is produced by a double-mesa etch, see Fig. 18.10.

Qualification of a new epi reactor (from an existing supplier) for producing device
quality wafers can take up to a year. Qualification of a new supplier can take much
longer. Epi suppliers rely on characterization techniques such as double-crystal x-ray
diffraction (XRD, to determine lattice constant, strain, thickness, and alloy con-
tent), Hall measurements (for carrier concentration), and photoluminescence (PL,
for band gap, doping, strain, ordering in InGaP, and composition). Secondary ion
mass spectrometry (SIMS) also provides information on alloy composition, doping,
and thickness. Matching epi wafers from different suppliers or different reactors
requires identical procedures used in the interpretation of characterization data. For
example, XRD and PL data must be analyzed using identical expressions relating
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Fig. 18.10 Left transmission electron micrograph for an InGaP HBT epi wafer, from Ref. [42].
Non-exclusive c© GaAs Mantech, Inc. Right schematic for an InGaP heterojunction bipolar tran-
sistor (HBT) produced by a double-mesa etch (compare Fig. 18.2) from the epi wafer described in
Table 18.2. E, B, and C denote the contacts to the emitter, base, and collector, respectively. From
Ref. [29]

the measurements to materials properties such as composition and strain. In the case
of SIMS, identical calibrations standards must be used. In addition to the matching
using physical measurements, electrical matching is required, since subtle epi inter-
face mismatch can create significant discrepancies in transistor characteristics and
RF module performance [30].

Ellipsometry seems like a natural fit for epitaxial materials matching and process
monitoring in the compound semiconductor industry. Highly accurate reliable
thin-film metrology tools (ellipsometers) are offered by several instrument suppli-
ers. Their use is widely accepted in silicon wafer manufacturing. However, there
are significant challenges. For example, we know the optical constants for pure Si
and GaAs with high accuracy, but not for Ge, see Table 18.1. Similarly, SiO2 optical
constants are well known over the complete spectral range from the near-IR to the
vacuum-UV, but not those of GeO2 or of native oxides on compound semiconductors.
Epitaxial structures for III/V manufacturing usually contain many different layers
(see Table 18.2) including semiconductor alloys, whose optical constants depend on
alloy composition, doping, and ordering in complicated ways due to the shifts and
broadenings of critical points. Another issue is the following: GaAs wafer fabs often
utilize obsolete four-inch wafer processing tools for manufacturing. Obsolete ellip-
sometry tools often cannot measure accurately below 250 or 300 nm. Just this range
(near the E2 critical point) is most useful for thickness determination of thin oxide
or roughness overlayers.

Despite all these difficulties, ellipsometry can provide valuable insights of III/V
device epitaxial layer stacks such as that shown in Table 18.2. Let’s discuss this stack
in detail: The top layer in the epi stack is a 100 nm thick graded InGaAs layer with a
low band gap and high doping. This layer is needed to provide a low Schottky barrier
between the emitter of the InGaP HBT device and the Ohmic contact metal. (Both
high doping and low band gap reduce the specific contact resistivity.) This material
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Fig. 18.11 Real (green) and imaginary part (blue) of the pseudodielectric function for the epi stack
shown in Table 18.2, including layers 0–9 and a native oxide (after layers 10 and 11 were removed
by etching). The characters A–H indicate various features of the spectra as discussed in the text.
The red solid lines are the result of a model calculation using the layers and thickness similar to
those of Table 18.2

is often rough and of poor crystal quality (heavily dislocated, see Fig. 18.10) and has
no significant impact on the electrical characteristics of the HBT. An ellipsometry
measurement of the entire stack with layer 11 intact mostly provides information
about In content, layer 11 thickness, and surface roughness, none of which are very
important for epiwafer screening. If layer 11 is removed by etching, similar arguments
can be made about the thick GaAs emitter contact buffer (layer 10). An ellipsometry
measurement of the stack ending with layer 10 (after layer 11 has been removed by
etching) only reveals information about layer 10 thickness and native oxide thickness
(or roughness).

Let’s instead discuss ellipsometry measurements of the epiwafer in Table 18.2,
where layers 10 and 11 have been removed by etching, see Fig. 18.11. We find that
a wealth of information is obtainable. The maximum A in 〈ε2〉 is the E2 critical
point of InGaP. The height of this maximum determines the surface roughness or
the thickness of the native oxide (modeled as a mixture of native oxide on InP and
GaP following Ref. [35]). The shoulder B is related to the E2 peak of GaAs (layers
6–8), which leaks through the InGaP cap layer. From the strength of this shoulder,
the thickness of the InGaP layer 9 can be determined. The peaks C and D are mostly
influenced by the E1 and E1 +Δ1 peaks of GaAs (layers 6–8). Surprisingly, the E1
gap of InGaP does not influence the spectra very much, perhaps because layer 9 is
too thin and the absorption too low in the E1 region of InGaP. Structures E and F are
related to interference effects. Their spacings (position in photon energy) are due to
the total GaAs thickness between the InGaP barriers, i.e., the sum of the thicknesses
of layers 6–8. The amplitudes of the interference fringes E and F are related to the
magnitude of the electric fields reflected by the InGaP barriers and therefore contain
information on the thicknesses of layers 5 and 9. On the other hand, the change in
slope near symbol G is much too abrupt for an interference effect. This is indeed
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Fig. 18.12 Complex dielectric functions for Ge (dashed) [23], GaAs (solid) [36], and InGaP
(dotted) [42]

the band gap of InGaP, which depends on the alloy composition and ordering of
the InGaP alloy in layers 5 and 9. Finally, the period of the interference fringes H
is given by the thickness of the GaAs collector and subcollector (layers 2–4). The
amplitude of the fringes H determines the thickness of the AlAs (layer 1) substrate
buffer layer. For this analysis, we used InGaP alloy optical constants similar to those
published by Schubert [27] for completely disordered InGaP. We ignored the doping
and confinement effects in all layers. Using this model, we are able to obtain an
excellent fit to the data and we could obtain six different layer thicknesses (native
oxide, layer 9, layers 6–8, layer 5, layers 2–4, layer 1). Since different layers influence
the ellipsometry data in different spectral regions, we are confident that there is little
correlation between these six thickness parameters. The GaAs and InGaP optical
constants used for this fit are shown in Fig. 18.12.

As described in Ref. [42], several ellipsometry measurements were inserted in a
commercial six-inch InGaP HBT process flow. An initial measurement as described
above yields information of the InGaP emitter thickness and surface overlayers (oxide
and roughness). A second ellipsometry measurement (after removal of the InGaP
emitter, stopping on the GaAs base, layer 8) uses the small difference between the
optical constants of the heavily p-type (carbon-doped) GaAs (layer 8) and GaAs
with much lower dopant concentrations (layers 6–7) to determine the thickness of
the base. A third ellipsometry measurement occurs after the removal of the base and
the collector (layers 3–6). The purpose of this measurement is primarily to measure
the roughness of the subcollector. In manufacturing, it was sometimes found that
As precipitates (defects in the epi stack) caused excessive surface roughness (haze),
which was easily detectable with ellipsometry. Figure 18.13 shows plan-view SEM
image of a rough GaAs surface after a wet etch.
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Fig. 18.13 Plan-view scanning electron micrograph (SEM) of a rough compound semiconductor
surface after a wet etch. See Ref. [42]

18.6 Conclusion and Outlook

For about 15 years, since the mid-1990s, spectroscopic ellipsometry has been an
integral part of process control for the semiconductor industry, for manufacturing of
CMOS and bipolar silicon transistors as well as for III/V compound semiconductor
devices. At first, the applications were very simple, such as the measurement of
a rather thick oxide or silicon nitride on a single-crystalline silicon substrate. As
integration schemes have become more complex (involving the use of new materials)
and tolerances have become tighter to meet the scaling requirements of Moore’s Law,
ellipsometry models also have become more sophisticated to meet the metrology
requirements. Similarly, instruments were improved significantly to achieve better
accuracy and precision and a wider spectral range.

In many cases, inline metrology applications have exceeded our knowledge of
optical constants of materials. This is especially true for manufacturing of com-
pound semiconductors (where many different III/V alloys and their native oxides are
used) and for the complicated metal gate stack in modern CMOS devices. As other
industries (especially solar cells, solid-state lighting, flexible electronics) become
mature, we can expect that ellipsometry applications will become crucial for them
as well.
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Chapter 19
Thin Film Applications in Research
and Industry Characterized
by Spectroscopic Ellipsometry

Denis Cattelan, Céline Eypert, Marzouk Kloul, Mélanie Gaillet, Jean-Paul
Gaston, Roland Seitz, Assia Shagaleeva and Michel Stchakovsky

Abstract Spectroscopic ellipsometry is one of the most accurate and reliable optical
techniques to characterize a large variety of materials and thin films on any substrate.
Because today’s devices such as solar cells, light emitting devices and thin film tran-
sistors are formed by complex multilayers structures, including optical anisotropy,
absorbing and graded materials, the correct use of ellipsometry requires a combi-
nation of the proper choice of hardware for spectra acquisition and of models for
data analysis. This chapter aims at giving an industrial overview of applications of
thin films whose characterization can be performed by spectroscopic ellipsometry.
After giving some insights into the various addressed technology markets and a brief
explanation of the application fields, examples of thin film structures characteriza-
tion by spectroscopic ellipsometry are presented exploiting commercial available
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spectroscopic ellipsometers that differentiate for research and industrial applica-
tions. The examples cover the latest scientific and industrial applications in the areas
of optoelectronics, microelectronics and telecommunications, photovoltaics, optical
coatings and chemistry and biology engineering.

19.1 Introduction

Thin film technology is pervasive in many applications, including microelectronics,
photovoltaics, optoelectronics, flat panel display technology, nano- and bio-
technology, optics, and protective and decorative coatings.
The development and optimization of thin films technologies involve and result from
compromising process specifications, substrate material limitations, designed film
properties and final cost. Technically, the development of thin film devices depends
on the capability to selectively and controllably deposit thin films with thicknesses
ranging from a few Angströms to a few micrometers.
Spectroscopic ellipsometry (SE) is an optical characterization technique, mainly
used to measure the thickness, from a few Angstroms to several microns, and optical
constants of very thin films. It turns out that few tools are as accurate, economical, and
fast as ellipsometers for nanometer-scale dimensions. For example, a spectroscopic
ellipsometers can measure the 8-nm-thick gate oxide of a metal-oxide semiconductor
field effect transistor (MOSFET) with a precision of better than 0.01 nm.
The complex dielectric function, ε, identifies the optical properties and directly relates
to the electronic properties of the material (e.g. see Chap. 1 of this book). Through
measurements of the complex dielectric function, SE can provide detailed knowledge
of the electronic properties of the material such as the band gap, the interband critical
point energies, and the absorption coefficient. This in turn provides insight into
material properties such as the composition, the degree of crystallinity, the hydrogen
content, and many other physical properties such as the doping density that affect
the electronic structure.
Although ellipsometry has been around for nearly a century and has been applied
to problems in the microelectronics industry since the beginning of 1960s, the
rapidly advancing technology requiring thinner films, multiple film stacks, films
with complex and variable stoichiometries, and better precision of thickness and
refractive index has been the driving force for advancements in instrumentation, soft-
ware and analysis procedures. Therefore, spectroscopic ellipsometers have evolved
over the past twenty years, from research instruments to fully automatic character-
ization tools for in-line control in fabs. This development has gone hand-in-hand
with the explosion of technological breakthroughs in microelectronics and nano-
technology. Today, commercially available ellipsometers provide spectral coverage
from the vacuum ultraviolet to the infrared, and the angle of incidence can be con-
trolled by computer-driven stepper motors with a precision of better than 0.01◦. The
new and continuous developments of spectroscopic ellipsometers including imaging,
modeling capabilities in Mueller Matrix, microspots and improved spatial resolution

http://dx.doi.org/10.1007/978-3-642-33956-1_1
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provide the opportunity to fulfill the needs for three-dimensional and nanostructures
characterization. Moreover, advanced software, models based on effective medium
theories and/or new model for parameterization of optical constants permit sophis-
ticated analysis of complex materials systems. Once analysis of a particular system
becomes routine, software appropriate for technician use is available, including map-
ping material properties capabilities. As a result, despite the largest application for
spectroscopic ellipsometry continues to be the semiconductor industry, in which
the ability to characterize ever-smaller and more-complex architecture is critical to
development and production monitoring, ellipsometry can now be applied usefully
to a large variety of new industrial applications. Those include light emitting diodes-
LEDs lighting, multilayered films for solar cells and organic electroluminescent
displays, thin magnetic layers of computer read-write heads, photoresists for inte-
grated circuits, transparent conducting oxides (TCOs) on glass for thermally efficient
coatings, and quantum well superlattices for high-speed electronic materials.
This chapter aims at giving an industrial overview of thin film applications and their
characterization performed by spectroscopic ellipsometry. After giving some insights
into the various technology markets and a brief explanation of the application fields,
examples of thin film structures characterized by spectroscopic ellipsometry are
presented. The examples cover the latest scientific and industrial applications in the
areas of optoelectronics, microelectronics and telecommunications, photovoltaics,
optical coatings and chemistry and biology engineering.

19.2 Optoelectronics: Focus on LEDs

19.2.1 Market Trends

The light emitting diodes (LEDs) industry entered a rapid growth stage in 2010 with
an impressive expansion in LED manufacturing and new facility projects. Digitimes
Research projects that the global high-brightness LED industry will see year-on-year
growth of 13.4 % in 2012, with output rising to US$10.1 billion. The global LED
market is projected to grow rapidly to $14.8bn by 2015, driven by the increasing
demand for more efficient and larger electronic displays for TVs, lighting, notebooks
and mobile handsets.
The main challenges for general LED lighting include reducing overall production
costs and increasing efficiency and lifetimes. LED lighting is already used in a
wide variety of applications as shown in Fig. 19.1, such media-tablets and displays,
signs, back-lighting of TV/LCD displays, traffic signals, automotive (dashboard and
external lights), and for architectural displays. In terms of applications for high-
brightness LEDs, large-size LED backlights will remain the biggest sector with
34.1 %, with lighting trailing behind with 16.7 %.
Gallium Nitride based (GaN) LEDs drive the market and now account for 81 % of
the total market.
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Fig. 19.1 LED lighting and their sectors of applications

A semiconductor LED is a solid-state device that emits incoherent light in a narrow
spectral range when a forward bias is applied. The wavelength of the emitted light
is dependent on the energy bandgap (Eg) of the material used in the active region of
the device. A LED consists of a p–n junction with a multiple-quantum well (QW)
active region and carrier-confined layers [1].
Nowadays the most common LEDs are based on III-nitrides materials, i.e., GaN,
InGaN, AlGaN emitting over 150 lm of white, blue, or green light.
The LED structure is normally formed on a lattice-matched, or nearly lattice-
matched, substrate with a low dislocation density. However, in the case of III-nitride
semiconductors, sapphire (which has about 16 % lattice mismatch with GaN) is the
most common substrate of choice owing to the fact that high quality GaN bulk
lattice-matched substrates are not readily available or extremely expensive.
A typical GaN-based UV LED structure, shown in Fig. 19.2, has a thin low-
temperature nucleation layer (often referred to as a buffer layer) of GaN or AlN,
which is used to accommodate the lattice mismatch with sapphire, and an n-type
AlGaN contact layer followed by the active, top p-type and p-contact layers. The
active region typically consists of confinement layers (n-type and p-type) with either
a single or multiple QWs between them. The alloy compositions of the AlGaN well
and GaN barrier layers and their thicknesses are chosen based on the desired emis-
sion wavelength. The confinement layers are used to introduce an energy barrier on
either side of the wells to prevent carriers—electrons and holes—from escaping the
QWs without radiatively recombining. The p-contact layer is highly doped for ohmic
contact formation. Most of the III-nitride-based UV LED structures are grown by
metalorganic chemical vapor deposition (MOCVD), although other methods such as
molecular beam epitaxy (MBE) and hydride-vapor phase epitaxy (HVPE) have also
been used to a less extent [2].
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Fig. 19.2 a Structure of UV LED based on III-nitrides semiconductors. b Scheme of a typical
365 nm Water Clear UV LED structure. c Image of a 280 nm metal package deep UV LED

19.2.2 Ellipsometry Characterization

The performance of a LED depends on the design and on material properties as well
as on the precise control of each layer of the LED thin film structure. The charac-
terization by spectroscopic ellipsometry aims at determining thin film thickness and
optical constants of the contact and buffer layers, and of the multi-quantum well
(MQW) layers. The composition of alloys AlxGa1−xN included in the MQW can
also be determined.
The two examples below illustrate the non-destructive characterization of LED struc-
tures carried out by spectroscopic ellipsometry. The first example intends to develop
a blue LED and we show the determination of thicknesses and optical constants in the
NIR/visible range using the UVISEL Spectroscopic Phase Modulated Ellipsometer.
The second example shows an industrial application where the automatic Auto SE
Ellipsometer, intended as a metrology tool (as opposed to analytical tools) with pat-
tern recognition function, is used for quality control of the LED during its production
process.
The UVISEL Spectroscopic Phase Modulated Ellipsometer uses photoelastic devices
to perform the polarization modulation without any mechanical movement, resulting
in improved signal-to-noise ratio from FUV to NIR and no insensitive regions [3]
(see also Chap. 2 of this book). Measured data are expressed as (Is, Ic), which are
functions of the main ellipsometric parameters (ψ, �), according to the equations:

Is = sin 2 ψ sin�

Ic = sin 2 ψ cos�

The UVISEL is a research ellipsometer optically designed to perform measure-
ments with high accuracy and high resolution on a wide spectral range from FUV to
NIR (145–2100 nm). The light is analyzed by a grating monochromator that directs
sequentially each individual wavelength into the detector.

http://dx.doi.org/10.1007/978-3-642-33956-1_2
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Photon Energy (eV)

Fig. 19.3 Ellipsometric measurements of a sapphire/AlN/AlGaN sample

The Auto SE, the automatic version of the MM-16 ellipsometer, allows full automatic
analysis of thin film samples with simple push button operation. The innovative
liquid crystal modulation technology used provides an ellipsometer that is very fast,
accurate, compact and simple to operate. It acquires full spectral ellipsometric data at
high resolution and calculates the complete 16-element Mueller Matrix (see Chap. 2)
in less than 2 s [4].

19.2.2.1 Example of Ex-Situ Characterization of a Multilayer Structure
Used in a III-Nitrides-Based LED

Spectroscopic ellipsometry was used to determine the thickness and the optical prop-
erties of AlN and AlGaN layers in a Sapphire substrate/AlN/AlxGa1−xN multilayers
structure. The ellipsometric measurements were collected at an angle of incidence
of 70◦ in the spectral range 0.6–6.5 eV (equivalent to 190–2066 in nm), and they are
shown in Fig. 19.3.
Two regions can be clearly distinguished in the spectra:

• The spectral region from 0.6 to 4.5 eV, which corresponds to the transparent range
of materials, exhibits interference fringes stemming from multiple reflections at
the substrate/film interface. This spectral region enables accurate determination of
film thicknesses.

• The region from 4.5 to 6.5 eV is characterized by the absence of interference
fringes due to the AlxGa1−xN semiconductor material absorption. Therefore, this
spectral range mainly provides information on the sample surface. It also enables
the calculation of the bandgap of the AlxGa1−xN using the Tauc Plot method [5].
The boundary between those two regions (∼4.5 eV) relates to the onset of absorp-
tion of the AlxGa1−xN layer, and we can determine a bandgap of approximately

http://dx.doi.org/10.1007/978-3-642-33956-1_2
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Fig. 19.4 Best-fit model with thicknesses results
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Fig. 19.5 Fitting results of the multilayer structure sapphire/AlN/AlGaN

4.5 eV, from which information on the AlxGa1−xN composition can also be
inferred.

The model depicted in Fig. 19.4 has been used to fit the experimental data in Fig. 19.3.
A roughness surface layer, modeled by 50 % AlxGa1−xN + 50 % void, improves
significantly the goodness of the fit (described by the χ2 value).
Figure 19.5 shows the excellent agreement (χ2 = 0.77) between the experimental
data and the corresponding fit in the spectral range 0.6–4.0 eV dominated by the
interference system.
The fitting process determines simultaneously the AlN and AlGaN thicknesses and
the corresponding optical constants. Parameterization of the optical constants of the
AlN and AlxGa1−xN layers is needed because they are crystallinity and composition
dependent. Therefore, the optical constants have been determined using dispersion
formulae, specifically Lorentzian oscillators, which are included in the DeltaPsi2™
software, expressed as:

ε = 1 + (εs −1)ωt
2

ωt
2 −ω2 + i�0ω
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(n,k)=f(E) of AlN layer
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Fig. 19.6 Optical constants of the AlN layer
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Fig. 19.7 Optical constants of the AlxGa1−xN layer

The Lorentz formula is based on the classical theory of the interaction between
light and matter and it is used to describe the frequency dependent polarization due
to bound charges. ωt represents the energy of the resonant oscillator representing
the main optical transition and, hence, absorption of the material. �0 (in eV) is the
broadening of the oscillator also known as the damping factor. For the AlN layer,
which has a bandgap above 6 eV, the extinction coefficient, k, is equal to 0 in the
analyzed range, implying �0 = 0. For the AlxGa1−xN material, k increases with the
increase of energy. In this case, the �0 parameter has a value different from 0.
The optical properties calculated for the AlN and AlxGa1−xN layers are shown in
Figs. 19.6 and 19.7:
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(a) (b)

Fig. 19.8 Ellipsometric beam inside the LED pattern: a left part of the pattern; b right part of the
pattern

19.2.2.2 Example of In-Line Process Control of LED Production

The transfer of the measurement technique from the laboratory scale up to industrial
production scale under fast moving inline conditions represents a large challenge
particularly in terms of determining the optical properties of a complex layer stack.
This example illustrates the use of ellipsometry for quality control of a GaN based
light-emitting diode production process. The structure includes a thick photoresist
layer used to form an etching mask on top of GaN deposited on a Sapphire substrate.
Ellipsometry is used regularly in the optical characterization of new photoresists and
for process control of photoresists in production lines.
The Auto SE ellipsometer was used to characterize the thin film structure directly
inside a pattern in the wavelength range 440–850 nm. Using the MyAutoView vision
system coupled to the microspot of the Auto SE, it is a straightforward procedure to
easily locate the measurement spot on the sample, as shown in Fig. 19.8.
Using the spot size 100 × 100 μm, different locations within the pattern can be
measured, as shown in Fig. 19.8, with the corresponding ellipsometric measurements
reported in Fig. 19.9. The ellipsometric measurements overlap quite well, indicating
that the layers were deposited uniformly.
The model used to describe the sample is represented in Fig. 19.10, and it also
takes into account the anisotropy of the sapphire substrate. Specifically, the sapphire,
Al2O3, substrate is considered uniaxial and the ordinary (O) and extraordinary (E)
reference dielectric function present in the software library are used. The model
includes a rough GaN film that is modeled using two layers: a homogeneous bottom
GaN layer of 7200 nm (layer 1), and a top rough graded GaN overlayer of 222 nm
(layer 2) composed of a mixture of GaN and photoresist (indicated as PR), which
simulates an interface layer that forms between the GaN active layer and the pho-
toresist. Ontop the GaN there is the thick photoresist layer of 2.55μm (layer 3), with
a thin roughness layer (3.4 nm) at the surface of the photoresist film (layer 4). The
determined thicknesses displayed in the model are expressed in nanometers.
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Fig. 19.9 Ellipsometric spectra taken inside the a left part of the LED pattern; b right part of the
pattern, as in Fig. 19.8
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In the measured region the GaN can be considered transparent since its optical gap
of 3.4 eV (365 nm) is outside the range. Therefore, the optical constants, i.e., the
dielectric function, ε, of both the GaN and Photoresist layers have been modeled
using a single Lorentz oscillator dispersion equation, given by

n2 = ε = 1 + (εs −1)ω2
t

ω2
t − ω2

where n is the refractive index, and ωt is the frequency of the oscillator describing
the main optical absorption transition.
Figure 19.11 shows the good agreement between the experimental data (dots) and
the corresponding fit (line) with a fit goodness of χ2 = 1.60. It can be observed that
the photoresist may have some absorption peak around 700 nm. For the purpose of
thickness determination, this absorption could be neglected to keep the dispersion
formula simple. Furthermore, a damping of the fringes is observed, which can be
due to a significant roughness of the GaN layer.
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Fig. 19.11 Fitting results for the sapphire/GaN/Photoresist structure
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Fig. 19.12 Optical constants of the GaN layer

Figures 19.12 and 19.13 show the refractive index, n, determined, respectively, for
the GaN layer and for the Photoresist layer for the two in-line measured spots in
Fig. 19.8

19.3 Photovoltaics

19.3.1 Market Trends

The last decade has seen the photovoltaic (PV) technology emerging as a potentially
major technology for power generation worldwide. Despite the economic crisis, the
PV market has continued to grow by almost 15 % in 2009 compared to 2008 and
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Fig. 19.13 Optical constants of the photoresist

the total power installed in the World raised by 45 % up to 22.9 GW. Compared to the
growth rate for new photovoltaic installations in 2010, 2011 was not as strong for the
industry. Newly added capacity in 2011 is estimated to have reached 23.8 gigawatts
(GW), but 2012 is not expected to see as much growth. Predictions from market
analysts say that the year should see around 25 GW installed. Overall, new sales
markets and additional applications for solar energy mean that newly installed pho-
tovoltaic capacity is predicted to rise by an annual average of 18 percent up to 2015.
The European Union contributes to over 60 % of the global cumulative capacity
while Japan and the US are following behind. By 2020, photovoltaic electricity can
become a mainstream energy source in Europe and cover up to 12 % of the electricity
demand [6].
About pricing and technology, 2011 was characterized by rapid capacity growth
combined with weaker than expected demand in some key countries. This led to a
severe over supply of products throughout the supply chain which has forced prices
down significantly throughout the year. There are already cases in Europe of modules
selling for less than e0.80 per watt (/W), while in China, prices have been as low
as e0.70/W. Overall, module prices reached e0.65/W in March 2012. The huge
supply of attractively priced c-Si modules means that crystalline will continue to
hold a majority share of the market. Specifically, crystalline silicon (c-Si) modules
represent 85–90 % of the global annual market today. c-Si modules are subdivided
in two main categories: (i) single crystalline (sc-Si) and (ii) poly-crystalline (pc-Si).
Thin films currently account for 10–15 % of global PV module sales. Various thin-
film technologies are currently being developed to reduce the mass of light absorbing
material required to create a solar cell.
The thin film technologies shares is also growing (see Fig. 19.14) due to lower costs,
and advantages such as flexibility, lighter weight, and feasibility of integration. The
main light absorbing materials in thin film photovoltaic cells are:

• Cadmium telluride (CdTe)
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Fig. 19.14 a Example of photovoltaic module. b Trends over the years of the main thin film solar
cells technologies

• Copper indium gallium selenide (Ci(G)S)
• Gallium arsenide multijunction
• Dye sensitized solar cells (DSSC)
• Organic materials
• Amorphous silicon (a-Si) and nanocrystalline silicon (nc-Si) or microcrystalline

silicon (μc-Si)

Emerging technologies encompass advanced thin films and organic cells, which are
about to enter the market via niche applications.
Novel PV concepts aim at achieving ultra-high efficiency solar cells via advanced
materials and new conversion concepts and processes. They are currently the subject
of basic research.
The performance of a solar cell is measured in terms of its efficiency at turning
sunlight into electricity.
The efficiency/production cost relationship estimated in 2011 for the main thin films
technologies listed above is shown in Fig. 19.15, indicating that major solution are
required to improve efficiency and reduce cost of organic photovoltaics to become
competitive.
With the aim of achieving further significant cost reductions and efficiency improve-
ments, R&D is predicted to continuously progress in improving existing technologies
and developing new technologies. It is expected that a broad variety of technologies
will continue to characterize the PV technology portfolio, depending on the spe-
cific requirements and economics of the various applications. Figure 19.16 gives an
overview of the different PV technologies and concepts under development.

19.3.2 Ellipsometry Characterization

In thin film solar cells, the thickness of each layer and its uniformity represent a
critically important point in the evaluation of the overall performance of a multilayer
PV stack. Furthermore, the photon energy dependence of the refractive index and
absorption coefficient and their uniformity are also critically important, as these



642 D. Cattelan et al.

Fig. 19.15 Production costs and efficiency of the main thin film solar cells as at 2011 [Source Yole
Development Report 2011].

Fig. 19.16 Photovoltaic technology status and prospects [7]

spectra, together with thicknesses, enable the calculation of the optical quantum
efficiency of the PV device. Analysis of the optical spectra of the dielectric function
for each layer constituting a solar cell can also give fundamental optical parameters
such as optical gap, density, composition, strain, grain size, and defect density.
Therefore, SE is an ideal technique for measuring film thickness and roughness for
multilayers solar cells.
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Fig. 19.17 Scheme of the sin-
gle junction microcrystalline
silicon solar cell (a) and the
amorphous and microcrys-
talline silicon tandem solar
cell (b) (a)

(b)

Here applications are described in the two major thin film technologies of micro-
crystalline silicon and of ZnO layers used as transparent conductive oxide (TCO) to
replace the common indium tin oxide (ITO).
Transparent Conductive Oxides (TCOs) are an essential part of thin-film silicon
solar cells. They have to exhibit good electrical (high conductivity) and optical (high
transmittance) properties. In addition to these characteristics, they also have to scat-
ter light at the TCO/cell interface in order to increase the effective absorption of
light within the active layer of the cell. This aspect is especially important in the
case of microcrystalline silicon (μc-Si:H) thin-film solar cells, because of their rel-
atively low optical absorption coefficient in the red and near-infrared (NIR) spectral
range. Hydrogenated microcrystalline silicon (μc-Si:H) has attracted great attention
for use as a long wavelength absorbing material for the bottom cell in double-junction
thin film solar cells, where the top cell is normally hydrogenated amorphous silicon
(a-Si:H). This cell structure is normally called ‘micromorph’ tandem solar cell. The
schematic structure of solar cells coupling ZnO with μc-Si:H are shown in Fig. 19.17.
The thickness of the microcrystalline bottom solar cells as well as of the top amor-
phous cell and of the back reflector are important to optimize the performance of the
tandem solar cells.
Therefore, ellipsometric characterization aims at establishing optical properties for
all the major thin film PV material components at a research level, while at a manu-
facturing level the aim is the analysis of thickness, optical properties and uniformity
over full scale panels.
Measurements are performed using the HORIBA Jobin Yvon UVISEL spectroscopic
phase modulated ellipsometer. Ellipsometric data were acquired at an angle of inci-
dence of 70◦, across the extended spectral range from 0.6 to 6.5 eV (190–2100 nm).
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Fig. 19.18 a Transmission electron microscopy image of a μc-Si layer. b Scheme showing the
gradient in crystallinity from the bottom amorphous layer to the top microcrystalline layer that
characterizes μc-Si. c Experimental data and d fit results according to the sketched model with
thicknesses results of a microcrystalline silicon layer. The derived graded optical constants of the
microcrystalline silicon are also shown in (d)

19.3.2.1 Example of Characterization of Microcrystalline Silicon

This example has been chosen because it allows to discuss the description of a
non-homogeneous material that also does not have a standard reference dielectric
function, since the optical properties of μc-Si depend on the grain size and on dop-
ing level. Therefore, a parameterization of the optical properties has to be used.
Microcrystalline silicon layers, generally composed of nanometer-scale crystalline
Si grains with amorphous silicon phase at the grain boundaries, have been applied
widely to fabricate a-Si:H/μc-Si tandem solar cells as shown in Fig. 19.17. The
microcrystalline silicon layer is inhomogeneous in depth and, therefore, it exhibits
an optical gradient (Fig. 19.18) that can be accurately detected by spectroscopic ellip-
sometry. Figure 19.18 shows the experimental ellipsometric spectra acquired for a
μc-Si layer grown on a crystalline Si substrate, the optical model used to analyze
spectra and the results of the analysis. The model includes a graded layer used to
specify different values of crystallinity at the bottom and at the top of the microcrys-
talline layer. The optical constants of the microcrystalline layer were parameterized
using a Tauc-Lorentz dispersion formula [8].
To minimize the numerical parameters, the microcrystalline silicon dielectric func-
tion is modeled by considering three optical transitions of the E1,E2 critical points
of silicon and of the fundamental bandgap. Figure 19.18 shows the good agreement
between the experimental spectra (dots) and the model calculations (lines) on the
whole spectral range with a fit goodness χ2 = 0.81. Noteworthy, analyzing the
shape of the determined optical constants for the microcrystalline layer, the bottom
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Fig. 19.19 Best-fit optical
model with thicknesses results

layer of the gradient (dots in Fig. 19.18d) shows in the extinction coefficient, k, spec-
trum a single broad peak due to the formation of the a-Si:H phase, as indicated by the
scheme and TEM picture in Fig. 19.18. At the top of the gradient, the appearance of
two sharp features at 3.4 and at 4.2 eV for the top layer (line in Fig. 19.18d) indicates
that the grains of microcrystalline silicon become larger towards the top surface, as
confirmed by the transmission microscopy analysis. These two optical transitions E1
and E2 arise from the direct interband transitions: specifically, the E1 critical point
at 3.4 eV is due to the transition from�3 (valence band) to�1 (conduction band) in
the first Brillouin zone, whereas the E2 critical point at 4.3 eV originates from many
transitions along the X and � directions (see also Chaps. 16 and 17 of this book).
Thus, as a result of the ellipsometric analysis, the thickness and non-homogeneous
optical constants of the microcrystalline layers can be determined.

19.3.2.2 Example of Ellipsometric Characterization of Transparent
Conductive Electrodes (TCO)

Among all TCOs studied recently, zinc oxide (ZnO), which has an optical band gap
of 3.4 eV, has emerged as one of the most promising materials due to its optical
and electrical properties, its high chemical and mechanical stability and, owing to
its abundance in nature, it is a lower cost material compared to the commonly used
indium tin oxide (ITO). Here we provide the example of the ellipsometric analysis
of the optical properties of a ZnO layer deposited on c-Si.
Crystalline ZnO is an anisotropic uniaxial material with a hexagonal wurtzite crystal
structure. However, most of the ZnO thin films for solar cells grown by sputter-
ing or plasma enhanced chemical vapor deposition (PECVD) are polycrystalline,
although highly preferentially oriented, and hence most of the time do not show sig-
nificant anisotropy. Therefore, an isotropic model is sufficient to describe the ZnO
optical constants. On the other hand, often due to the deposition process and inter-
action/diffusion of oxygen, ZnO thin films may present a gradient in density and/or
conductivity. In order to represent the in depth non-homogeneity of the ZnO layer), a
graded layer and/or a three layer model is used (Fig. 19.19). For many ZnO samples
the density increases from the c-Si interface (1st layer) to the top (2nd layer); the
sample also exhibits a surface roughness. Therefore, the modeling of SE spectra was
performed using a multilayer and multicomponent Bruggemann effective medium
approximation (BEMA) (ZnO + voids); the dielectric function, ε, of the ZnO was
parameterized by a dispersion equation that combines the Drude model to describe
the contribution of the free carrier concentration to the ZnO conductivity, with a

http://dx.doi.org/10.1007/978-3-642-33956-1_16
http://dx.doi.org/10.1007/978-3-642-33956-1_17
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Fig. 19.20 Refractive index, n, and extinction coefficient, k, of ZnO bottom (thin line) and top
(thick line) layers

double Lorentzian oscillator to describe the contribution of the band edge and of the
interband transition, i.e.,

ε(E) = ε∞ − �
2ω2

p

(�ω)2 + i(�ωτ )(�ω)
+

2∑
i=1

fi (�ω)

(�ωi )2 − (�ω)2 + iγi (�ω)

where ε∞ is the high-frequency dielectric constant, ωi is the resonance frequency, γi
is the damping factor of the ith Lorentzian oscillator with strength f, while ωp is the
plasma frequency and ωτ the collision frequency in the Drude model. The refractive
index, n, and extinction coefficient, k, as obtained from fitting the spectra are shown
in Fig. 19.20. The k-spectra for the bottom and top layers shows an onset of the
absorption at 3.3 eV and a characteristic peak around 4 eV, which correspond to the
absorption edge of the direct band gap semiconductor ZnO. The difference between
the onset and peak energies observed here and that reported for single crystalline
ZnO may be interpreted in terms of the Burstein-Moss shift, which is a blue-shift of
the bandgap with increasing doping level, after partially filling the conduction band
of ZnO with electrons. The contribution of those electrons to the ZnO conductivity
is seen in the increase of k at the low-energy side of the range, which is described
by the Drude theory.
Ultimately, the ellipsometric analysis and the Drude component enables determina-
tion of the scattering time, resistivity, and sheet resistance of ZnO layers, providing
a contactless tool for control in-line of ZnO conductivity.
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(a) (b) (c)

Fig. 19.21 a Flexible solar cell. b Scheme of a flexible organic solar cell. c Formula of the organic
P3HT donor and PCBM acceptor in the OPV active layer

19.3.2.3 Example of Characterization of Flexible Solar Cells

Lately, research efforts have moved toward the production of flexible substrates to
take advantage of the semiconducting, conducting, and light-emitting properties of
organics (polymers, oligomers) and hybrids (organic-inorganic composites) through
novel synthesis and self-assembly techniques. The next technological revolution
will be the mass production of plastic-based, printable organic semiconductors on
flexible substrates (Fig. 19.21), which will further reduce production prices and open
new fields of applications.
The use of flexible substrates offers significant advantages such as light weight,
thinness, robustness, and the ability to be rolled. In addition, plastic-based substrates-
coupled with new and smart deposition processes-open up the possibility of
cost-effective and high volume roll-to-roll processing, which is attractive to optical-
coating, and solar-module industries where cost-efficient production and high-quality
transparent coatings are the drivers.
Efficiency and lifetime have reached commercially acceptable levels and flexible
modules with roughly 2 % power conversion efficiency, and over 1 year lifetimes
are already on the market. Mitsubishi Chemical Holdings have attained laboratory-
scale cell efficiencies of 10 % [9]. Among the thinnest reported substrates for organic
photovoltaics (OPV) devices are 125-μm plastic foils. Indeed, to answer the ques-
tions “how light?” and “how flexible”? OPV can be, recent work has demonstrated
ultrathin, flexible and compliant OPV devices constructed on only 1.4μm thick poly-
ethylene terephtalate (PET) substrates with a 4.2 % power conversion efficiency [10].
Accurate control of the film thickness is mandatory to achieve a fabrication process
that gives repeatable film properties and remains cost-effective. Because of the nature
of the data provided by SE, and its ability to provide them quickly, ellipsometry
is a preferred nondestructive thin-film metrology technique for fast multiple film-
thickness and refractive-index measurements.
Organic polymer solar cells are built from thin films (typically 100 nm) of organic
semiconductors such as polymers and small-molecule compounds like polypheny-
lene vinylene, copper phthalocyanine (a blue or green organic pigment) and carbon
fullerenes and fullerene derivatives such as PCBM. Energy conversion efficiencies
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achieved to date using conductive polymers are low compared to inorganic materi-
als, with the highest reported efficiency approaching 10 % [10]. However, these cells
could be beneficial for some applications where mechanical flexibility and dispos-
ability are important.
These devices differ from inorganic semiconductor solar cells in that they do not rely
on the large built-in electric field of a PN junction to separate the electrons and holes
created when photons are absorbed. To achieve efficient organic solar cells, donor
and acceptor molecules are mixed in the photoactive layer to form a so-called bulk
heterojunction. Due to molecular interactions, a certain degree of phase separation
between donor and acceptor domains arises, which is necessary to achieve efficient
charge extraction within the absorber layer. However, the mechanism that induces the
phase separation is not fully understood and gaining detailed information about the
molecular arrangement within these blend layers is quite challenging. Therefore, we
show the use of spectroscopic ellipsometry to infer information about composition
and phase separation of organic blend layers.
The active region of an organic device consists of two materials (see Fig. 19.21b),
one which acts as an electron donor and the other as an acceptor. When a photon
is converted into an electron hole pair, typically in the donor material, the charges
tend to remain bound in the form of an exciton, and are separated when the exci-
ton diffuses to the donor-acceptor interface. The short exciton diffusion lengths of
most polymer systems tend to limit the efficiency of such devices. Nanostructured
interfaces, sometimes in the form of bulk heterojunctions, can improve performance.
The most successful OPV active material system consists of a bulk heterojunction
that is formed by the p-type semiconductor (electron donor) poly(3-hexylthiophene)
(P3HT) with the n-type semiconductor (electron acceptor) [6,6]-phenylC61-butyric
acid methyl ester (PCBM), as schematized in Fig. 19.21. The distribution of the
constituents in the blend film plays an important role for efficient charge extraction
toward the electrodes. Ideally, more p-type material (polymer) should be located
at the interface of the hole collecting anode and more n-type (fullerene) material
should be at the electron collecting cathode facilitating collecting of charges from
the active layer to the electrodes. Concerning P3HT:PCBM blends deposited by spin
coating, a lateral phase separation can take place leading to the formation of PCBM
clusters. Vertical phase separation can also occur due to the surface energy difference
of the two components and of the surface energy of the substrate. The distribution
of the P3HT and PCBM can dramatically affect the final OPV device performance.
Therefore, it is important to detect non destructively and or infer the distribution of
the polymer and fullerene constituents.
We demonstrate here the use of ellipsometry as a powerful and sensitive metrology
for monitoring blend morphology, phase separation as well as crystallinity.
The UVISEL spectroscopic phase modulated ellipsometer has been used to character-
ize three organic samples including P3HT/c-Si, PCBM/c-Si and P3HT:PCBM/c-Si.
Ellipsometric measurements were performed at an angle of incidence of 70◦, across
the spectral range 190–2100 nm.
The goal for the characterization of the first two samples was to find the film thickness
and optical constants of P3HT and PCBM materials. As shown in Figs. 19.22 and
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Fig. 19.22 Fit model and optical constants of P3HT

Fig. 19.23 Fit model and optical constants of PCBM

19.23, a simple isotropic one-layer model was used to derive the P3HT and PCBM
optical constants modeled using a dispersion formula.
Two different analysis protocols were used to model the P3HT:PCBM blend.
The first protocol analysis is based on the use of the effective medium theory (see
Chap. 3 of this book), allowing to mix pure P3HT and PCBM in a layer to represent
the blend P3HT:PCBM structure (Fig. 19.24). In the second protocol, the blend is
considered as a, homogenous material, represented optically through a dispersion
equation (Fig. 19.25).

http://dx.doi.org/10.1007/978-3-642-33956-1_3
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Fig. 19.24 Best-fit model based on EMA for the analysis of the P3HT:PCBM blend with
thicknesses results

Fig. 19.25 Model based on the use of a dispersion model with thicknesses results and derived
P3HT:PCBM Blend Optical Constants. The inset shows the fingerprints of P3HT and PCBM visible
in the extinction coefficient, k, measurements

Analysis protocol I: use of the effective medium theory
The model used to represent the blend P3HT:PCBM is an effective medium approx-
imation, i.e. a mixture of the two constituents, as shown in Fig. 19.24. The best-fit is
based on a bi-layer model. The layer 2 (L2) represents the surface roughness layer
consisting of PCBM and void (i.e., air). The layer 1 (L1) is a linear gradient, with
P3HT concentration increasing whereas PCBM decreasing towards surface layer.
The individual P3HT and PCBM optical constants are fixed to those previously deter-
mined using the previously discussed samples 1 and 2, whereas the volume fraction
percentages are varied to model blend index changes. Therefore, the fit parameters
are the volume fractions of the P3HT and PCBM in the graded layer, i.e., at the
bottom and at the top of the gradient, and the thickness of the graded and surface
layer.
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This analysis protocol results in detecting gradients in the phase separation of the
two components.
The best-fit model in Fig. 19.24 shows that those blends are characterized by donor-
enriched top regions (high P3HT content), consistently with literature reports on this
OPV system.

Analysis protocol II
The P3HT:PCBM blend has been approximated as a homogenous material, repre-
sented optically through one single new dispersion function. Specifically, the blend
optical response has been modeled by the Tauc-Lorenz (TL) oscillator model using
five TL oscillators to describe the interband absorptions above the energy band gap of
the blend. Noteworthy the fingerprints of constituents are visible in effective optical
spectra of P3HT:PCBM blend. As it can be seen in Fig. 19.25, the optical response
of the blend films in the VIS-UV spectral range includes five optical absorption
peaks. The first optical absorption at 2.05 eV to the singlet excitonic transition of the
P3HT conjugated polymer, whereas the transition at 2.24 eV is due to the coupling
of excitons with phonons. The other three peaks at higher energies are originated
from the PCBM. The advantage of the latter protocol II is that it provides insights
into blend film composition and crystallinity through the monitoring of fingerprints
of each component (peak amplitude, broadening, etc.)
Thus, for the P3HT:PCBM blend layer, protocol I and protocol II are complementary
and allow accurate characterization of the variations of the material composition as
well as optical constants.

19.4 Information and Communication Technologies

19.4.1 Memories and Data Storage

The data storage industry is currently growing at a healthy rate. A large range of mem-
ory technologies is developed for data storage (Fig. 19.26) including non-volatile,
flash, molecular, resistive and magnetoresistive, and super resolution optical data
storage. Hard disk drives (HDD) and solid-state storage media, such as flash mem-
ory USB devices and cards, are facing very high growth (Fig. 19.26). The demand
is so high that there might be a shortage of Solid State Drives (SSD), which unlike
HDD contain no moving parts and instead use flash memory and are therefore less
susceptible to physical shock and vibration than HDD.
Regarding resistive memory, the information is stored as a variation of electrical resis-
tivity of a material, without involving the storage of electrical charges. The different
types of physical mechanisms that are used for varying the memory resistivity utilize
different materials: fast phase-changing material for Phase-Change RAM (PCRAM)
or metal oxides for memory (OxRAM).
Phase change memory is a term used to describe a class of nonvolatile memory
(NVM) devices that exploit the ability of certain materials to rapidly change phase,
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Fig. 19.26 Hard disk drive, example of “Non-Volatile Memory Chips” and CD storage devices and
total worldwide HDD shipments increased by 16.9 % over 2009, to 651.32 million units in 2010,
and this is expected to rise to 708.81 million this year and go to close to 1 billion units by 2015

between two stable physical states, e.g., localized laser induced heating of a thin
layer to cause a phase transition from the crystalline to amorphous state.
This transformation results in optical reflectance differences detectable by spectro-
scopic ellipsometry.
The large optical contrast between the amorphous and crystalline states is the key
property for optical read/write data storage media and has been applied widely in
compact disk (CD), digital versatile disk (DVD), and Blu-ray disk technologies.
Although the optical contrast of phase change materials has found wide applications
in optical storage media, the large change in electrical resistivity accompanying
the transition from the amorphous to the crystalline state is only now becoming
available in novel nonvolatile random access memory devices. Such phase change
random access memory (PCRAM) devices have the potential to compete with flash
memory as nonvolatile storage media and have switching speeds high enough to
replace dynamic random access memory (DRAM) devices for use in general com-
puting. Consequently, PCRAM could become a key enabling technology for univer-
sal data storage devices, combining roles as fast-switching DRAM and nonvolatile
memory [11].
Phase change materials have to meet several requirements to be suitable for data
storage applications. These properties can be summarized as follows:

• large optical contrast between the amorphous and crystalline states (optical
read/write memory),

• large resistance change between the amorphous and crystalline states (PCRAM),
• high-speed phase transition (fast switching),
• long thermal stability of the amorphous phase (data retention),
• several possible cycles between the amorphous and crystalline states (device

integrity), and
• excellent chemical stability.

The PCRAM technology uses a class of materials known as chalcogenides, which
are alloys that contain an element in the oxygen/sulphur family of the periodic table.
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Fig. 19.27 Phase change chalcogenides exhibit a reversible phase change between the amorphous
phase and the crystalline phase

Germanium-Antimony-Tellurium, GeTe-Sb2Te3, commonly referred as Ge-Sb-Te
(GST) alloys are the phase-change materials of choice for optical memory devices
used in rewritable optical memory devices such as CDs and DVDs.
As illustrated in Fig. 19.27, in the amorphous phase, there is an absence of regular
order to the crystalline lattice. In this phase, the material demonstrates high resistivity
and low reflectivity. In contrast, in the polycrystalline phase, the material has a regular
crystalline structure and exhibits high reflectivity and low resistivity.
Spectroscopic ellipsometry is able to determine the key dimensional and optical
parameters for accurate production control of PCRAM devices on multiple wafers
in a single batch run.
This example discusses automatic multi-measurements (9-points) acquired accord-
ing to a pre-set mapping grid, as shown in Fig. 19.28 and analyzed according to the
model also schematized in Fig. 19.28 to check for homogeneity in thickness and
optical properties.
The three layer model used (Fig. 19.28) includes a SiO2 layer, a GeSbTe layer and a
rough GeSbTe overlayer (thicknesses are in Angstroms) on a substrate of crystalline
silicon (a reference file present in all ellipsometry softwares was used for c-Si) . The
rough overlayer is modelled by a mixture of 50 % voids and 50 % GeSbTe using the
effective medium approximation.
The Tauc Lorentz formula [8] was used to model the optical constants of the GeSbTe
layer. The fitting parameters were the GeSbTe film thickness, the surface roughness
thickness and the Tauc-Lorentz parameters. The determined optical constants are
shown in Fig. 19.29, which put in evidence an amorphous state for GeSbTe.
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Fig. 19.28 Automatic nine points mapping grid acquisition and model used to fit spectra in the
various points with thicknesses results

Fig. 19.29 Optical constants of refractive index, n, and extinction coefficient, k, derived for GST

The thickness determined in the various points by the three-layers model are sum-
marized in the table in Fig. 19.30.

19.4.2 RF and Antennas Components

19.4.2.1 Example of Characterization of PZT Thin Films

In recent years, we have become accustomed to using radiofrequency (RF) wire-
less technology for telephone calls, internet access and navigation. Going forward,
RF will be a basic enabling technology for multiple applications, from high-speed
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Fig. 19.30 Mapping results of the thickness on the nine points of the wafer as in Fig. 19.27

data transmission to networks of tiny autonomous sensors and in-body therapeutic
devices. Within the radiofrequency microelectromechanical systems (RF MEMS)
research community, there is great interest in RF MEMS switches for creating low
loss phase shifters for phased array antennas for communication and radar systems.
In this field, the material of interest is lead zirconate titanate (PZT) thin films for
improved device performance and actuation voltages compatible with most CMOS
electronics.
Recently, the use of ferroelectric thin films of the PbZrxTi1−xO3 (PZT) family of
functional materials in microsystems technology has drawn remarkable interest [12].
PZT films provide a direct electro-mechanical coupling and are useful for memory,
piezoelectric and pyroelectric devices . PZT thin films have advantage over bulk
materials: they can be directly deposited on platinized silicon to allow direct integra-
tion with electronics. Due to the applications of PZT in pyroelectric devices, studies
on PZT stability with changes in temperature are very important. For actuation, the
most significant PZT material property of interest is the piezoelectric stress constant
for which PZT has an effective, transverse piezoelectric stress constant nearly an
order of magnitude larger than AlN [13]. The ferroelectric and dielectric properties
of PZT have been extensively investigated, while few studies exist on their optical
properties. Indeed, the optical constants, e.g., the refractive index and extinction
coefficient, have great importance for waveguiding.
Every application of MEMS requires a different thickness of the functional film,
leading to the challenge of manufacturing film of the required thickness. Furthermore,
the broad applications of PZT films, and inter alia the growing interest in graded
refractive index films for applications in optical devices, make it imperative to study
the depth profile of optical properties of thin films throughout a single layer and an
entire coating. Additionally, information on the homogeneity of the films and the
physical properties resulting from different processing methods represents crucial
knowledge, especially because gradients in optical properties have been reported for
sputtered PZT films, and chemical composition gradients were reported for some



656 D. Cattelan et al.

Fig. 19.31 Experimental spectra (dots) and fit results (line) according to the sketched model with
thicknesses results yielding the graded optical properties of refractive index, n, and extinction
coefficient, k, for PZT shown in the right panel

PZT films [14].Variation in chemical composition throughout the film thickness
due to the inhomogeneity results in variation in physical properties of the films
and lowers the performance of electromechanical systems. Thus, knowledge of the
compositional gradients within a film allows identification and further optimization
of thin-film performance and applications in piezo- and ferro-devices. Therefore,
here we present ellipsometry for determining thickness and optical gradient in PZT
films.
The phase modulated spectroscopic ellipsometer (PMSE) was to determine the opti-
cal constants of PZT materials, used as PZT actuator for RF switches in mobile phone
applications. Ellipsometric measurements were collected at an angle of incidence of
70◦ across the spectral range 190–850 nm. PZT thin films were grown directly on
Platinum 100 nm (Pt)/Ti/SiO2/c-Si substrate.
Due to the Pt thickness, a pseudo 3-phase model—air/PZT/Pt—was used (Fig. 19.31).
The PZT coating has been described using a 3 layers stack (Fig. 19.31) where the
density of the PZT decreases from the bottom to the top surface. The model assumed
that the PZT sample consists of three layers on the Pt substrate, i.e., (1) Interface layer,
(2) PZT film, and (3) top layer with surface roughness—an effective medium approxi-
mation mixture of the void (air) and the PZT material. The PZT optical constants have
been determined using a dispersion formula. Specifically, the Cody–Lorentz CLO
and Lorentz oscillators were applied to characterize the complex dielectric functions
of the PZT thin films and Pt thin film. The explanation of motivation of choosing
these oscillators to describe the complex dielectric functions of our materials can be
found in Ref. [15].
Experimental data and model fit are presented in Fig. 19.31, where film is considered
to be isotropic.
This non homogeneity in depth results in graded optical constants as shown in
Fig. 19.31.
The variation in refractive index with thickness for PZT is more likely due to different
compositions, such as a variation in Zr/Ti ratio and/or directional increase in Pb from
the substrate to the film surface accompanied by high stress. Therefore, the detection
of this non-homogeneity by ellipsometry can be used to reveal the influence of sample
preparation conditions on film homogeneity.
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Fig. 19.32 VO2 SMT transition: electrical (left) and optical (right) properties changes upon tem-
perature variation

19.4.2.2 Example of Characterization of VO2 Thin Films

The development of new types of ultra-fast switches operating in the RF-microwave
and optical domains is based on the use of a class of materials undergoing fast,
reversible phase transitions from a semiconducting state to a metallic one (Semicon-
ductor Metal Transition / SMT). An example of such a material is vanadium dioxide
(VO2).
VO2 exhibits very fast SMT transition that can be triggered by different external
excitations such as temperature change, optical excitation or charge injection. Dur-
ing the phase transition the electrical resistivity of the VO2 thin film can decrease
by several orders of magnitude. Optically the material is transparent in the semicon-
ductor state and highly reflective in the metallic state for a large spectral range (from
1 mm up to THz frequencies), as shown in Fig. 19.32. These remarkable properties
can be exploited for optical micro mirrors, modulators, switches and microwave
waveguides to overcome the current problems encountered in communication sys-
tems (consumption, power handling, slow switching and integration) [16].
Here it is described how to characterize the optical properties of VO2 including its
phase change , being the transition induced by a temperature change.
A HORIBA Scientific UVISEL Spectroscopic Phase Modulated Ellipsometer with a
temperature controlled cell has been used to characterize the optical properties VO2
deposited on a sapphire substrate (Al2O3) (Fig. 19.33). The change in the optical
constants (n, k) at various temperatures is characteristic of the SMT exhibited by
VO2. Ellipsometric measurements were performed at a range of temperatures from
room temperature to 90 ◦C using an angle of incidence of 70◦ and spectral range
190–2100 nm.
The model used to describe the sample is represented in Fig. 19.34. It includes a
thin roughness layer (58 Å) at the surface of the VO2 film; this surface roughness
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Fig. 19.33 UVISEL 2 with a temperature controlled cell

Fig. 19.34 Best-fit model with thicknesses results and optical constants of VO2

improves the goodness of fit from χ2 = 1.3 to χ2 = 0.2. As the sapphire is a
transparent substrate the model also includes the calculation of backside reflection
contribution (voids on the back side), and it also takes into account the anisotropy
of the sapphire for which the ordinary (O) and extraordinary (E) optical constant are
introduced.
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Fig. 19.35 Evolution of the VO2 refractive index, n, (left panel) and extinction coefficient, k, (right
panel) as a function of temperature

The optical constants of the VO2 were determined using the multiple Tauc Lorentz
[8] component dispersion formula, and the derived refractive index, n, and extinction
coefficient, k, for the bulk VO2 layer with a thickness of approximately 2398 Å are
also shown in Fig. 19.34.
It has also been investigated the temperature dependence of the optical properties
from ambient to 90◦C and the results are shown in Fig. 19.35.
It can be seen that the refractive index decreases and the extinction coefficient
increases in the near infrared region, for temperatures above 76 ◦C. This behavior
is typical of metals. Therefore, using spectroscopic ellipsometric data in the NIR,
one can infer the presence of the semiconducting or metallic state of VO2.

19.5 Optical Coatings and Functional Coatings

19.5.1 Market Trends

Continuous advancements have given rise to new business and market opportuni-
ties in the optical coatings industry. The total global market for optical coatings is
estimated to rise from 4.6 billion in 2010 to 5.7 billion in 2015, with a compound
annual growth rate of 4.3 %, according to the report Optical Coatings: Technologies
and Global Markets [17].
Optical coatings are used in a wide range of sectors namely abrasion, chemical and
environmental resistance, low and high temperature operation, biological protection,
climate control, EMI (electro-magnetic interference) shielding, optical filters and
fibers applications.
The major end-use areas are optical components (mirror, lenses, etc), TV and com-
puter screens, laser optics, flat panel displays, transportation and medical indus-
tries. Lighting technology is on the verge of a significant technological transition
as incandescent lighting is replaced. Optical coatings and filters will play a role in
producing new lighting options. Flat screens on televisions, cell phones, comput-
ers and other displays are becoming ubiquitous, and optical coating technology can
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extend their usefulness in various lighting settings. Coatings are usually deployed
to improve a device; thus, cost is a limiting factor. Most common are antireflection
coatings, which are typically low-margin high-volume-produced for lenses and other
optical components. Optical coatings, will continue to be important in the military,
which now emphasizes remote sensing and observation in warfare tactics. In terms of
architecture, coatings are applied to windows. Growth in ‘green’ window coating is
expected to increase. Solar energy is another green revenue opportunity for coatings.
Optical coatings are a key component in lasers, adding that, as lasers evolve, very
complex coatings will be in greater demand. Because much funding is going into
next-generation telescopes, advances in optics and coatings likely will be needed in
these efforts.
A variety of materials and composites can be exploited as spectrally selective coatings
depending on the application. Thin coatings (less than 1μm) of oxides, nitrides,
oxynitrides and sulfides of Si can be used as selective infrared emitters. Inorganic
coatings of SiO, Si3N4 and polymer coatings are also suitable for high infrared
emitting applications [18].
All most all the energy related applications of selective coatings desire a high emit-
tance at a particular frequency or within a particular frequency range. Therefore,
determining the optical properties of the various categories of coatings is of para-
maunt importance.

19.5.2 Ellipsometry Characterization

Here three different examples of the use of ellipsometry for the industrial con-
trol of optical coatings, of hard coatings for cutting tools and of electrochromic
coatings [19].

19.5.2.1 Example of Characterization of TiN/AlN Hard Coatings

The interest in thin films of metal nitrides is growing rapidly for such diverse appli-
cations as wear resistant coatings on cutting tools, selective transmission coatings on
architectural glass, and as diffusion barriers in integrated circuits. Among the various
transition metal nitrides, processing, properties and applications of titanium nitride
(TiN) have been investigated extensively. Titanium nitride crystallizes in the B1 NaCl
structure and exists as a solid solution containing nitrogen in the range 37.5/50 at.%.
Hard coatings such as TiN and its variants including titanium carbon nitride (TiCN),
titanium aluminium nitride (TiAlN or AlTiN), and titanium aluminum carbon nitride
(TiAlCN) are used to improve the performance of cutting tools, moulds and dies.
It is well established that (Ti,Al)N coating enhances wear and oxidation resis-
tance of tools, while overcoming the shortcomings of TiN and TiCN coatings.
Recently, TiAlN coatings have attracted more and more attentions because of the
optical properties. Compared with tradition cermet material,TiAlN coating has
good thermal stability and excellent oxidation resistance at high temperature in air
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Fig. 19.36 Model with thicknesses results and optical constant of TiN (left panel) and optical
constants of AlN (right panel)

atmosphere and has become a favorable candidate for the applications of solar selec-
tive absorbers [20].
A nanoscale bilayer TiN/AlN deposited on crystalline silicon, c-Si, was investigated
by the UVISEL spectroscopic ellipsometer to determine thicknesses and optical
constants of the various layers. The TiN material exhibits a high absorption coefficient
that limits the thickness measurement by ellipsometry. In this example, it was still
possible to determine a TiN thickness of 611 Å.
A simple model, shown in Fig. 19.36, represented the sample and it included a rough
overlayer modeled using the effective medium approximation of 50 % AlN+50 %
voids.
The optical constants of TiN (Fig. 19.36) were directly taken from the reference
library of the DeltaPsi2 software whereas the AlN optical constants were calculated
using a Lorentz oscillator dispersion formula.

19.5.2.2 Example of Characterization of Electrochromic Thin Films

Electrochromic (EC) materials have been finding several applications in smart win-
dows, anti-dazzling rear view mirrors, switchable motorcycle helmet, for contrast
enhancement in some emissive display devices and in non-emissive large area colour
displays for information advertisement [21].
The refractive index (n), extinction coefficient (k), and thickness (d) are important
parameters for predicting the performance of a film in an optical system. Spectro-
scopic ellipsometry is the ideal technique to measure these parameters simultane-
ously, very accurately and non destructively.
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Fig. 19.37 Model with thicknesses results used to obtain the best-fit (lines) to the experimental
spectra (dots) of the right panel

A typical EC device comprises two EC films separated by a transparent ion conductor,
and this three-layer stack is positioned between transparent electrical conductors. One
of the EC electrodes usually consists of tungsten oxide, WOx. The optical absorption
can be modulated—reversibly and persistently—by shuttling charge between the two
EC films, which is effected by applying a voltage between the transparent electrodes
(e.g. ITO).
Here it is discussed the characterization of the multilayer device sketched in Fig. 19.37
exploiting the UVISEL spectroscopic ellipsometer. Indeed, the multilayer sample
was characterized in several steps measuring layers step by step, to achieve a better
precision in the found results.
The optical constants have been determined using:

• A combined Lorentz oscillator and Drude term for the ITO layer
• An absorbing Lorentz oscillator for the Ta2O5 layer
• The W-oxide film was homogeneous and could be well represented by a Tauc–

Lorentz parameterization as well as the TiVOx layer.

The excellent agreement to the experimental data, evident from Fig. 19.37, was
obtained for fitted values of the W-oxide layer thicknesses equal to 2828 A, and for its
surface roughness (represented by EMA mixture of 50 % voids+50 % WOx) equal
to 57 Å, respectively, when the corresponding thickness numbers for the Ta2O5,
TVOx and ITO layers were, respectively, 596 Å, 977 Å and 1643 Å. TiVOx and
WOx materials both exhibit an absorption peak in the FUV range around 400 nm,
while Ta2O5 exhibits a continuous absorption along the measured spectral range.
The optical gap Eg = 3.11 ± 0.03 found for the WOx layer is in agreement with the
literature data. The optical constants derived for the four oxide layers are shown in
Fig. 19.38.
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Fig. 19.38 Optical constants, namely, the refractive index, n, and the extinction coefficient, k, for
ITO, TiVO|x, Ta2O5 and WOx thin films

19.6 Chemistry and Biology Engineering

The sensitivity (down to a few picometers thickness), the speed of measurement
(down to a few seconds) and the possibility to make in situ measurements at
solid/liquid interfaces make ellipsometry a reliable and attractive tool for applications
in the life science area. Spectroscopic ellipsometry can be used in situ at solid/liquid
interfaces thus allowing measurements to be performed in a physiologically-like
environment. The non-invasive character and the possibility to perform fast mea-
surements in situ allows to monitor adsorption kinetics with a time resolution suffi-
cient to resolve the adsorption of a single macromolecular layer [22]. Therefore, a
large number and variety of applications of ellipsometry are found in biology and
biochemistry as well as on organic layers in general. For instance, biomolecular
recognition processes, like antigen-antibody binding, hormon-recept binding and
enzymatic reactions on surfaces can be in principle monitored in real time.
The formation of ultrathin layers of biologic molecules on well characterized surfaces
is attracting growing scientific and technological interest. In this field, a key concept
is that of Self-Assembled Monolayer (SAM) to be opposed to the formation of
defined layers of adventitious molecules. SAMs are well defined assemblies formed
by the adsorption of molecular constituents from the solution or the gas phase onto
the surface of solids or even liquids. Obeying to the interplay, often very subtle,
between molecule-substrate and molecule-molecule interactions, the adsorbates tend
to organize spontaneously (self-assembly) into somewhat spectacular networks. In
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fact, when substrates of high morphologic quality are used (e.g. if they present
large, atomically flat terraces) these networks may display two-dimensional order
properties over very long ranges. The thickness being typically a few nanometers,
SAMs represent the most elementary form of a nanometer scale biological thin-film
material. The most extensively studied class of SAMs is represented by far from the
adsorption of alkanethiols [23], proteins and DNA.
The main applications of ellipsometry for chemistry and biology engineering are:

• The measurement of thickness of organic layers deposited on surfaces. The corre-
sponding application of interests for chemistry and biology are: surface functional-
ization, binding reactions, surface coverage, self-assembly processes, biomolecule
orientation.

• The interface studies in liquid environment

19.6.1 Ellipsometry Characterization of Ultra Thin Surfactant
Films

Non-ionic surfactants find widespread industrial application in detergency, dispersion
stabilization, foaming and emulsification. They are also commonly used as stabilizers
of thin films including wetting films. Therefore, the equilibrium and dynamic adsorp-
tion of surfactants at the air-water and solid-water interfaces are critical information.
A common method of studying surfactant adsorption at the air-water and solid-water
surfaces is to use a pressure balance technique and interpret the surface tension as
function of bulk concentration. However, this method is rather imprecise since even
small errors in the tension values may cause large errors in the derived surface excess
concentrations. Additionally, the restricted amount of information provided by such
technique limits the understanding of the adsorption process. Spectroscopic ellip-
sometry is a powerful technique for thin layer characterization and has the required
sensitivity to probe thin film at the nanoscale. Additionally, ellipsometry is not limited
to information related to the amount of adsorbed surfactant and process knowledge
can be gained by determining both thickness and optical constants of the film.
However, film thickness at the nano-scale remains a challenging application for
spectroscopic ellipsometry for two main reasons: the reliability of the extracted film
parameters depends on the sensitivity of the ellipsometric data in picking up both
film thickness and optical constants information. Since the ellipsometric data are
collected in a limit-detection regime, any error carried in these data will be passed
to the predicted film thickness and optical constants. As a consequence, in most of
ultrathin film ellipsometric data analysis, the calculation of the film thickness is done
by using predetermined values for the refractive index. The thickness is calculated
from the assumption that the film is homogeneous and a refractive index is kept
constant and estimated either from literature or measured by another technique (i.e.
Abbe refractometer).
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Fig. 19.39 Liquid cell for ellipsometry

Membrane-derivatized liquid-solid interfaces either on particles or on flat surfaces
offer an extensive repertoire of chemical functionality. However, the interaction
between bilayers vesicles and mineral surfaces does not always produce the desired
spreading, which is a single lipid bilayer on the support. Here, we demonstrate
the excellent sensitivity of the UVISEL phase modulated spectroscopic ellipsome-
ter to monitor the adsorption process of two non-ionic surfactants, Pentaethylene
glycol monododecyl ether (C12E25) and Dioctadecyldimethylammonium bromide
(DODAB) at silica-water and air-water interfaces, respectively.

19.6.1.1 Example of Characterization of Adsorption of C12E25
at the Silica-Water Interface

In order to characterize accurately the adsorption process of C12E25, the pseudo
substrate consisting of 30 nm of thermal grown oxide deposited on c-Si was first
measured into a liquid cell environment filled with water, shown in Fig. 19.39. Mea-
surements were performed by the UVISEL at an angle of 70◦ over a spectral range
of 260–600 nm. A film thickness of 31.95 nm was found for the SiO2 layer.
The equilibrium adsorption of C12E5 was monitored at a wavelength of 400 nm with
a time resolution of 200 ms. Figure 19.40a shows the equilibrium adsorption derived
from the UVISEL measurements. Results show clearly that the critical surfactant
concentration (cmc) is reached around 480 s from which the adsorbed amount of
surfactant can be deduced. A one layer model with a Lorentz oscillator formula was
applied to measure simultaneously the surfactant film thickness and the refractive
index. The thickness of the surfactant was found equal to 3.59 nm and the optical con-



666 D. Cattelan et al.

(a) (b)

Fig. 19.40 a Adsorption kinetics of C12E25 on SiO2 monitored at the wavelength of 400 nm.
b C12E25 optical constants

stants derived across the full spectral range after the critical surfactant concentration
is reached are shown in Fig. 19.40b.

19.6.1.2 Example of Characterization of Adsorption of DODAB
at the Air-Water Interface

The cationic lipid DODAB is special due to its anti-microbial properties and the
additional possibility of direct immobilization of oppositely charged biomolecules.
These properties justify the systematic studies of DODAB bilayer adsorption on sili-
con wafers. In order to characterize the adsorption process of the DODAB surfactant
at the air-water interface, the angle of incidence of the UVISEL was changed to 54◦,
close to the Brewster angle for pure water substrates, and ellipsometric data were
collected from 260 to 600 nm.
As previously, measurements on pure water were first collected and used as the
pseudo substrate in the ellipsometric model. The film thickness and the optical con-
stants of the DODAB surfactant were also extracted by using a one layer model with
a Lorentz oscillator formula. Figure 19.41a shows a good fit agreement between the

(a) (b)

Fig. 19.41 a Fit agreement (lines) for the ellipsometric parameters � and � measured (dots) for
the DODAB film. b DODAB optical constants derived from the fit analysis
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collected data (dots) and the model (solid line). The thickness found for the DOBAD
film was 1.44 nm and its optical constants are displayed in the Fig. 19.41b.

19.7 Conclusions

For the accurate and non destructive characterization of thickness and optical con-
stants of thin film structures, spectroscopic ellipsometers are the instruments of
choice. They are well suited for scientific research and industrial control in a produc-
tion environment. The ellipsometers have considerably evolved these last ten years
serving the technological advances in microelectronic, flat panel display, photo-
voltaic, optoelectronic and biotechnology. Ellipsometry is now an important metrol-
ogy tool in several different industries and an important technique for industrial
research on new materials, devices and processes.
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Chapter 20
Ellipsometry and Correlation Measurements

Rados Gajic and Milka Jakovljevic

Abstract Ellipsometry, in general, is one of the most sensitive spectroscopic tech-
niques nowadays in both macro- and nano-scale research. Advantages like absolute
measurements (without need for references), high precision, non-destructive char-
acter, easy real-time monitoring and many possible applications make Imaging
Ellipsometry and Spectroscopic Ellipsometry unavoidable tools in modern research
practice. Still, one of the main disadvantages of ellipsometry concerns the fact that an
optical model is required in order to define constituents, the structure and morphol-
ogy of each sample. In most cases, a good optical model that properly describes the
structure is not possible to make without additional information like the number of
layers, their structure, surface roughness or type of interfaces. For this reason we need
additional measurements that corroborate ellipsometric ones in order to construct a
valid optical model. We call these measurements Correlation Measurements and they
are the topic of this communication. We describe the most frequently used ones like
SEM, AFM, STM, Raman or FTS, and we also mention new trends that combine
spectroscopic or imaging ellipsometers with one or more correlation techniques in
the same instrument.

20.1 Introduction

In the last 40 years, ellipsometry (both imaging ellipsometry (IElli) and especially
spectroscopic ellipsometry (SE)) has become one of the most commonly used tech-
niques for optical characterization of surfaces, interfaces and thin films particularly
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in the area of micro- and nano-electronics. SE has been and is used to measure film
thickness and optical dielectric function of dielectrics, semiconductors and metallic
thin films.

Ellipsometry is a non-destructive, non-invasive and fast technique that could be
used even in-situ. Ellipsometry, as discussed in details in Chap. 1, measures the
change of polarization state of linearly polarized light upon reflection from a sam-
ple, obtaining two independent parameters, � and �. Ellipsometry determines the
complex amplitude ratio ρ defined as the ratio of the amplitude reflection coeffi-
cients rp and rs given as ρ = rp/rs = tan(�) · exp(i�), where indices p and
s stand for the p- and s-polarizations [1–3]. In SE the (�,�) pair is measured
by changing the wavelength of light. In most cases the spectral range covers the
ultraviolet/visible (UV/VIS) range but the infrared (IR) range has also been widely
used.

One of the advantages of SE consists in performing absolute measurements (there
is no need for a reference sample as in spectrophotometry and optical constants can
be directly determined without the Kramers-Kronig relations from (�,�)). Other
advantages include high precision, nondestructive measurements, a variety of appli-
cations that can be addressed (as described in the previous chapters), fast and real-
time monitoring, a wide spectral range and the possibility to characterize anisotropic
samples using generalized ellipsometry (see Chap. 10). One of the main features of
ellipsometry is its precision. Namely, this technique is very sensitive to any changes
of layer thicknesses even below 1 nm with a sensitivity of 0.1 Å. It turns out that ellip-
sometry is a promising technique for nanomaterial characterization. For an overview
of the various ellipsometry strategies for the measurement and analysis of nanometric
films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submi-
cron periodic structures the reader should take a look at [4]. Ellipsometry is a very
sensitive technique but the crucial problem is, both for macro and nanosize samples,
that one often does not know what has been measured so sensitively (stated by E. A.
Irene) (see Chap. 1).

The inherent disadvantage of ellipsometry stems from the fact that it requires an
optical model that defines the number of constituents, the structure and morphology
of each constituent and the overall structure and morphology of the sample. For the
correct interpretation of the sensitive and accurate ellipsometry measurements in
most cases it is necessary to have a good optical model that describes the structure
and sometimes it is not possible to make one without additional information like the
number of layers, their structure, surface roughness, interfaces etc.

It is unlikely that a single technique will solve the problem of rational character-
ization of nanomaterials; hence, there is a general consensus that a multi-diagnostic
approach has to be used and that platforms for simultaneously assessing multiple
properties have to be addressed. Therefore, different characterization techniques
including scanning electron microscopy (SEM), transmission electron microscopy
(TEM), atomic force microscopy (AFM), scanning tunneling microscopy (STM),
Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, photolumi-
nescence (PL) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray reflec-

http://dx.doi.org/10.1007/978-3-642-33956-1_1
http://dx.doi.org/10.1007/978-3-642-33956-1_10
http://dx.doi.org/10.1007/978-3-642-33956-1_1


20 Ellipsometry and Correlation Measurements 671

tivity, and many others, are being used to corroborate ellipsometry. We refer to those
additional methods as correlation measurements or techniques.

For correlation measurements the numerous imaging techniques help us to visu-
alize the structures whereas the analytical techniques give us direct additional
morphological and structural information that cannot be obtained by ellipsometry
only and identify materials properties and changes at a nanoscale. Therefore, correla-
tion techniques are necessary for proper interpretation and extraction of information
based on ellipsometry data.

20.2 Correlation Measurement Techniques

Correlation techniques can be tentatively divided into imaging (microscopies) and
analytical techniques (spectroscopies or different surface analytical techniques). The
imaging techniques can involve light, electrons, ions or scanning probes.

A common approach is to use light as a probe in the so-called near-field scanning
microscopes (SNOM/NSOM). The other important light microscope is the confocal
laser scanning microscope (e.g. take a look at Olympus LEXT OLS LEXT 4000)
with a lateral resolution close to 100 nm. Still, the most widely used techniques for
the characterization of nanomaterials are electron microscopes, such as scanning
electron and transmission electron microscopies (SEM and TEM). The second most
important imaging methods are numerous scanning probe techniques like scanning
tunneling microscopy (STM), atomic force microscopy (AFM), lateral (shear) force
microscopy (LFM), conductive atomic force microscopy (c-AFM), two-pass AFM
methods, electric force microscopy (EFM), magnetic force microscopy (MFM), and
Kelvin probe microscopy (KPM). On the other hand, the analytical methods com-
prise of different spectroscopic techniques like Raman spectroscopy, photometric
methods like Fourier transform spectroscopies (FTS/FTIR), attenuated total reflec-
tion (ATR), photoluminescence spectroscopy (PL), and surface analytical techniques
such as Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS)
and X-ray reflectometry (XRR), energy dispersive X-ray spectroscopy (EDS or
EDX, EDAX)—usually combined with SEM or TEM, low-energy electron diffrac-
tion (LEED)—sometimes as an accessory to the low-vacuum STM/AFM systems or
electron energy loss spectroscopy (EELS)—also often combined with electron micro-
scopes. In order to set the correct model for the ellipsometric analysis to increase accu-
racy of our determined parameters, the proper correlation techniques are involved.
In most cases people are limited by the experimental techniques available in labora-
tories. In general, ellipsometry is used for characterization of thin films and nanos-
tructures. Usually, ellipsometry is combined with at least one imaging/analytical
(structural/compositional) technique. Statistics based on Web of Science [5] still
show a clear difference between the correlation techniques used for thin films and
nanostructures in conjunction with SE. It seems that ellipsometry used for the
characterization of 3D nanostructures, including nanowires, nanoparticles, quantum
dots, fullerenes and dentrimers, is much more often combined with different correla-
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tion methods compared to thin film analysis. For instance, in the case of nanostructure,
in more than 50 % of cases ellipsometry is supported by a microscopy technique for
visualizing their size, geometry and spatial distribution. Since it is almost an impos-
sible task to describe all these techniques in detail in this chapter we will mention
just the most important and often used ones.

20.2.1 Imaging Correlation Techniques

Transmission electron microscopy (TEM) is a microscopic technique whereby a
beam of electrons is transmitted through an ultra-thin specimen. An image forms
by the interaction of the electrons transmitted through the specimen with the spec-
imen, which is magnified and detected by a sensor such as a CCD camera. TEMs
are capable of imaging at a significantly higher resolution than light microscopes,
owing to the small de Broglie wavelength of the electrons. The best TEM systems
have an atomic resolution. One of the disadvantages of TEM is the complex sample
preparation.

The scanning electron microscopy (SEM) images a sample by scanning it with a
high-energy beam of electrons in a raster scan pattern. The electrons interact with
the atoms that make up the sample producing signals that contain information about
the sample’s surface topography, composition, and other properties such as electrical
conductivity. Comparing to TEM, SEM usually has a smaller spatial resolution of a
few nm in high vacuum. For conventional imaging in SEM, specimens must be elec-
trically conductive, at least at the surface, and electrically grounded to prevent the
accumulation of electrostatic charge at the surface. Metal objects require not much
special preparation for SEM except for cleaning and mounting on a specimen stub.
Nonconductive specimens tend to charge when scanned by the electron beam, and
especially in secondary electron imaging mode, this causes scanning faults and other
image artifacts. They are therefore usually coated with an ultrathin coating of elec-
trically conducting material (like Au or graphite), deposited on the sample either by
low-vacuum sputter coating or by high-vacuum evaporation. Nonconducting speci-
mens may be imaged uncoated using specialized SEM instrumentation such as the
Environmental SEM (ESEM) or field emission gun (FEG) SEMs operated at low
voltage and low vacuum. The resolution of SEM systems can be increased using the
field emission guns (FEG SEM) of the cold-cathode type using tungsten single crys-
tal emitters or the thermally assisted Schottky type. FEG SEM can have a resolution
even below 1 nm approaching the TEM resolution.

AFM is one of many different scanning probe methods (SPM) and the best
known member in the numerous scanning force microscopy family are electrical
force microscopy (EFM), lateral force microscopy (LFM), Kelvin probe microscopy
(KPM), magnetic force microscopy (MFM), and conductive-AFM (c-AFM). AFM
is a very high-resolution type of scanning probe microscopy, with demonstrated res-
olution of the order of fractions of a nanometer, more than 1000 times better than the
optical diffraction limit. AFM is one of the foremost tools for imaging, measuring,
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and manipulating matter at the nanoscale. The information is gathered by measuring
the force between the probe and the surface. The AFM resolution is limited by the
probe geometry. Typical maximum resolutions in the plane are of a few nm and with
specific tips, 1 nm or even atomic (UHV systems) resolution is possible. In standard
use AFM gives high resolution topography of the sample.

STM is a scanning probe microscopy based of the concept of quantum tunneling
between the tip and the conductive surface of the sample. For STM, good resolution
is considered to be 0.1 nm lateral resolution and 0.01 nm depth resolution. With this
resolution, individual atoms are routinely imaged and manipulated. The STM can
be used not only in ultra-high vacuum but also in air, water, and various other liquid
or gas environments, and at temperatures ranging from near zero Kelvin to a few
hundred degrees Celsius. The STM probes the local density of states (LDOS) of a
material measuring the tunneling current.

20.2.2 Analytical Correlation Techniques

A powerful spectroscopic method used for nano-characterization is Raman spec-
troscopy. Raman spectroscopy is used to observe low frequency symmetric excita-
tions (phonons, plasmons, magnons,. . .) in a sample. It relies on inelastic scattering,
or Raman scattering, of monochromatic light, usually from a laser in the visible, near
infrared, or near ultraviolet range. The laser light interacts with molecular vibrations,
phonons or other excitations in the system, resulting in the inelastic scattered photons
below and above the Rayleigh line (laser line) called Stokes and Anti-Stokes lines.
The shift in energy gives information about the excitations in the system. Infrared
spectroscopy yields similar, but complementary, information since the selection rules
for IR and Raman active modes are different. Raman spectroscopy as a simple, quick
and noninvasive technique is a useful tool for characterization. However, the main
limitation of Raman spectroscopy for applications in the domain of nanotechnolo-
gies is its low spatial resolution. Namely, even with the best confocal microscopes,
a spatial resolution better than 500 nm is hardly obtainable. Recently new more sen-
sitive Raman techniques are appearing like surface enhanced Raman spectroscopy
or surface enhanced Raman scattering (SERS) and Tip Enhanced Raman Scatter-
ing (TERS). SERS exploits concentrated electromagnetic energy in metallic nanos-
tructures to significantly enhance the Raman scattering cross section. The enhance-
ment factor can be as much as 1010−1011 meaning that single molecules can be
detected.

FTS/FTIR is a photometric technique where dispersion elements like diffrac-
tion gratings in monochromators are replaced with interferometers (the Michelson’s
intereferometer is mostly used). After reflection or transmission through the sample,
the interferogram is recorded followed by the Fourier transform of the interfero-
gram signal resulting in the reflectance or transmittance spectrum. FTS is, simi-
lar to Raman spectroscopy, a noninvasive technique whose advantage concerns a
high spectral resolution and high wavenumber accuracy in the whole spectral range
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from the FAR IR to the UV range. Because of low spatial resolution Raman spec-
troscopy and FTS cannot be used directly for characterization of nanosize particles
but they enable an indirect determination of nanoparticles due to the confinement
effect. For instance phonon lines broaden and shift for particles less than 50 nm
in size. The fitting of the line shape provides information on the average size of
particles [6].

GXR is a powerful technique to measure the absolute thickness without “a
priori” structural modeling of a multi-layer stack. GXR applies to any type of mate-
rial: semiconductor, metallic, dielectric or organic. GXR and SE measurement can
be performed quasi-simultaneously at exactly the same sample spot. Analysis of
complementary data from both techniques with the same physical model leads to
unprecedented accuracy in measurement results. GXR is certainly the technique of
choice for absolute thickness measurement of new materials. At this energy, every
material displays the same refractive indices (n being 1 and k being 0), simpli-
fying considerably the structural model for data analysis. In the case of complex
multi-layers, accurate information can be obtained on the periodicity of stacks
as well as on the interlayer structures. SE combined with GXR is the winning
choice for the following applications: high K dielectrics (ZrO2, nitrided oxides), thin
ONO layers, thin optical coatings, Si and SiGe thin epitaxial structures, thin metal-
lic and organic layers, and coatings for micro-lithography. SOPRALAB GES5E-
GXR SE is an example of combining two non-destructive characterization tech-
niques on the same instrument: Spectroscopic Ellipsometry and Grazing X-Ray
Reflectometry [7].

The higher the energy of electromagnetic radiation, the deeper we can look into the
structure of nanomaterials. The classical application of X-rays is elastic diffraction
used for the analysis of crystal structures and grain size in crystalline materials.
The beam of X-rays hits a sample and scatters into many different directions. By
analysis of angles and intensities of the scattered beams, a 3D picture of the density
of electrons can be reconstructed. The electron density reveals information about the
mean position of the atoms in the crystal, their chemical bonds, disorder and other
information. Still, XRD has some limitations when it comes to nano-domains. As the
size of the nanocrystal decreases, the broadening of the diffraction peak increases.
At some point, the broadening is so high that it can merge with other peaks and
information is lost. Grain size can be extracted from XRD spectra by using the
Scherrer’s formula. Still, it is important to be aware that the Scherrer’s formula gives
a lower limit of particle size. The XRD peaks depends on the “crystalline coherent
domain” size which does not always correspond to the “grain” or “particle” size
obtained by microscopies, since the plane defects can break the structure symmetry.

X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for
chemical analysis (ESCA), is a technique in which x-rays are employed to generate
photoelectrons. Analysis of the energies of these electrons is used to identify and
quantify the elemental composition and chemical state of the material being analyzed.
XPS spectra are obtained by irradiating a material with a beam of X-rays while
simultaneously measuring the kinetic energy and number of electrons that escape
from the top 1–10 nm of the material being analyzed. XPS requires ultra-high vacuum
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Fig. 20.1 Different techniques used in nanomaterial characterization (Data source ISI Web of
Science)

conditions. XPS is used to analyze the surface chemistry of a material before or after
some treatments, for example: fracturing, cutting or scraping in air or UHV to expose
the bulk chemistry, ion beam etching to clean off some of the surface contamination,
exposure to heat to study the changes due to heating, exposure to reactive gases or
solutions, exposure to ion beam implant, exposure to ultraviolet light. XPS is used
to determine: elemental composition of the surface (top 1–10 nm usually), empirical
formula of pure materials, elements that contaminate a surface, chemical or electronic
state of each element in the surface and uniformity of elemental composition across
the top surface.

Secondary ion mass spectrometry (SIMS) is a technique used in materials science
and surface science to analyze the composition of solid surfaces and thin films by
sputtering the surface of the specimen with a focused primary ion beam and collecting
and analyzing ejected secondary ions with a mass spectrometer. SIMS can be used
in a scanning mode and a spatial image of surface chemical composition can be
constructed [8]. SIMS is the most sensitive surface analysis technique, being able to
detect elements present in “the parts per billion” range.

The ISI Web of Science has been used to map the techniques used for charac-
terization of nanomaterials. There are 76,419 “nano” records. The main techniques
used for their characterization are shown in Fig. 20.1.

There are 230 “nano + ellipsometry” records. In those papers, ellipsometry was
corroborated with other techniques used for “nano” characterization, and the percent-
age of papers corroborating ellipsometry with different characterization techniques
is presented in Fig. 20.2. The statistics shows both the importance of imaging and
analytical techniques in nanomaterial characterization.
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Fig. 20.2 Percentage of the techniques used in correlation with ellipsometry (ISI Web of Science)

20.3 Examples of Ellipsometry and Correlation
Measurements

20.3.1 AFM for Surface Roughness Analysis and Visualization
of Particle Size

One of the most common output of ellipsometry modeling and analysis concerns sur-
face roughness. Namely, from the measured pair (�,�) a pseudo-dielectric function
〈ε〉 is obtained from an optical model that typically assumes an ideally flat surface for
the sample. When roughness is present, the pseudo-dielectric function depends on
the size and complexity of the roughness and could differ significantly from the bulk
dielectric function of the sample (see Chap. 4 in this book). The pseudodielectric
function 〈ε〉 is the dielectric function obtained directly from the measured values
(�,�) assuming a perfectly flat substrate of infinite thickness (bulk sample) as in
Fig. 20.3.

It is estimated that when surface roughness exceeds 30 % of measurement wave-
length, the errors cannot be tolerable. Therefore, an estimation of the sample rough-
ness is an important issue. Figure 20.4 shows a real sample with surface roughness
and the corresponding effective medium model based on surface roughness and
bulk layers. Parameters, ds and fvoid are the roughness thickness and volume frac-
tion of the voids, respectively [1]. The calculation of the SE (�,�) spectra of c-Si
based on the effective medium optical model from Fig. 20.4, with the surface rough-
ness layer modeled as a Bruggeman effective medium approximation (BEMA) of

http://dx.doi.org/10.1007/978-3-642-33956-1_4
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Fig. 20.3 Structure with a
surface roughness and cor-
responding pseudo-dielectric
function 〈ε〉 given as in the
right panel [1] (for 〈ε〉 defini-
tion, see Chap. 1 of this book)

Fig. 20.4 Modeling of sur-
face roughness

Fig. 20.5 (�,�) spectra of
c-Si based on the optical
model for ds between 0 and
50 Å and fvoid = 0.5 at the
incident angle of 70◦ [1]

50 %c-Si + 50 %voids (see Chap. 4) is given in Fig. 20.5. As a result, Fig. 20.5 puts in
evidence that even a small surface roughness causes large changes of � confirming
the importance of the effect of surface roughness in ellipsometry.

The simplest way to estimate surface roughness is by the use of AFM as Fig. 20.6
shows. 3D scanning laser confocal microscopy with a smaller spatial resolution com-
paring to AFM can also be used (www.olympus.com) for determination of roughness.

http://dx.doi.org/10.1007/978-3-642-33956-1_1
http://dx.doi.org/10.1007/978-3-642-33956-1_4
www.olympus.com
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Fig. 20.6 Correlation between root-mean-square (ms) surface roughness deduced from atomic
force microscopy images (see inset for example) and the roughness thickness from real-time SE
measurements at the end of the depositions for a set of eight a-Si1−x Cx :H thin films prepared
under different conditions. Substrates were smooth c-Si (lower data set) and rough SnO2:F (upper
data set). Two different AFM instruments were used, one operated in contact mode (squares)
and the other in tapping mode (solid circles). The solid line is a fit to the data points obtained in
tapping mode, since these yield larger roughness thicknesses for the four samples measured by both
instruments, presumably due to the higher resolution in tapping mode. The form of the solid line
correlation is ds(SE) = 1.5 drms(AFM) + 4Å. [Reprinted with permission from Ref. [9]. Copyright
Elsevier Limited (1998)]

There are many reports in literature demonstrating the correlation between the
surface roughness measured by elliposmetry and AFM, and an example is shown in
Fig. 20.6: the roughness layer thicknesses (ds) on a-Si1−x Cx :H films deduced by real-
time SE correlate with those measured ex situ by atomic force microscopy (AFM)
in tapping mode according to the relationship: d(SE) = 1.5 drms(AFM)+4Å [9].

As another example, SE and AFM were used to study the film thickness and the
surface roughness of both ‘soft’ and solid thin films. ‘Soft’ polymer thin films of
polystyrene and polystyrene–ethylene/butylene–styrene block copolymer were pre-
pared by spin-coating onto planar silicon wafers [10]. SE parameters were obtained
by the Cauchy model using a two-layer model with planar boundaries between the
layers. The smooth surfaces of the prepared polymer films were confirmed by AFM.
There is good agreement between AFM and ellipsometry in the 80–130 nm thick-
ness range. In the same communication, Si surfaces obtained by anisotropic chemi-
cal etching were investigated as an example of a randomly rough surface. To define
roughness parameters by ellipsometry, the top rough layers were treated according
to the Bruggeman effective medium approximation. The combined use of both meth-
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Fig. 20.7 A direct compar-
ison of thickness measure-
ments of homogeneous soft
polymer films obtained by
combining SE and AFM.
[Reprinted with permission
from Ref. [10]. Copyright
John Wiley and Sons (2007)]

Fig. 20.8 Pseudo-extinction
coefficient 〈k〉 of Au nanopar-
ticles on the Si substrate as a
function of the particle size. E1
and E2 are the critical points
of c-Si. At the bottom are the
500 × 500 nm AFM images.
[Reprinted with permission
from Ref. [11]. Copyright
Elsevier Limited (2011)]
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ods appears to offer the most comprehensive route to quantitative surface roughness
characterization of solid films as in Fig. 20.7.

One of the promising fields of application of ellipsometry in recent years is plas-
monics. By applying ellipsometry to plasmonic structures it is possible to infer
nanoparticle size and plasmonic properties [11]. Here we report the exploitation
of SE for gold nanoparticles directly sputtered on the Si(111) substrate. It turned out
that the Si/Au nanoparticle system is challenging for ellipsometry because of AuSix

interface layers. Figure 20.8 shows an example of the temporal evolution of pseudo-
extinction coefficient 〈k〉 as a function of Au sputtering time i.e. the Au nanoparticle
size. The corresponding AFM measurements corroborate the ellipsometric analysis
providing nanoparticles’ size. The surface plasmon resonance (SPR) is red-shifted
whereas their amplitudes increase in correlation with an increasing particle size, as
confirmed by the AFM measurements. Therefore, SE in combination with AFM pro-
vides means to monitor the formation of Au nanoparticles on Si and characterizes
their plasmon properties [11].
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(b)

(a)

Fig. 20.9 Experimental (dots) and best-fit (lines) ellipsometric spectra of the real, 〈ε1〉, and imag-
inary, 〈ε2〉, parts of the pseudodielectric function of the samples annealed in air for 1 h at a 500 ◦C
and b 700 ◦C. The best-fit models showing the layered structure of films are also reported

20.3.2 SEM/TEM Corroborating Ellipsometry

An example of TEM measurements corroborating ellipsometry is given in Fig. 20.9,
reporting thickness measurement of nanosize interface layers. The example shows
La2O3 thin films deposited on a Si(100) substrate, which have gained attention
as a potential high-permittivity dielectric material in complementary metal-oxide-
semiconductor (CMOS) devices. The complexity of this system rises from the inter-
face reactivity resulting in nanometric interfaces layers of different composition,
including a SiO2 interface layer and a silicate LaSiOx interface layer. Determining
accurately the thickness of the interface layers is mandatory for an accurate deter-
mination of the optical functions of the La2O3 film. Figure 20.9 shows the experi-
mental and best-fit ellipsometric spectra of the real 〈ε1〉 and imaginary 〈ε2〉 parts of
the pseudodielectric function for the samples heated in air at two different tempera-
tures of 500 and 700 ◦C, which resulted in different interfaces layers [12]. In a first
attempt, thickness values as determined by TEM analysis have been used as input
for the ellipsometric model to derive the optical properties of the silicate interface
layer as well as of the La2O3 films. Ellipsometric measurements clearly support a
multi-layer structure for the annealed films. The best-fit models show the layered
structure of the films. In particular, a SiO2 interface layer with a thickness of 5 nm is
found for the 45 nm La2O3 film upon 500 ◦C annealing in air, while the best-fit of the
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Fig. 20.10 a, b TEM images of Er2O3 ultrathin layers grown on Si(100) used to accurately calculate
layer thicknesses and to extract the spectra of the refractive index and of the extinction coefficient
of Er2O3 layers from ellipsometric analysis. For (a) the interface and Er2O3 thicknesses are 1.8
and 4 nm, respectively; for (b) the interface and Er2O3 thicknesses are 1.5 and 6.7 nm, respectively.
Spectra derived from ellipsometric modeling for the refractive index (c) and extinction coefficient
(d) of the Er2O3 layer in (a) considering (and not considering) in the model the interface layer. The
square dot indicates a reference value reported in literature for the Er2O3 layer

sample annealed at 700 ◦C has been achieved with two interface layers, i.e., a 11 nm
thick SiO2 interface layer followed by a 16 nm thick layer with a higher refractive
index, which has been attributed to the formation of lanthanum silicate, and a La2O3
thickness of 30 nm. Once the ellipsometric analysis approach is validated with TEM
analysis, and the optical properties of the La2O3 films are known, the ellipsometric
analysis can be routinely used for measuring thicknesses, interface reactivity, and as
an optimization process for growth of La2O3 films on Si.

The use of TEM in corroborating SE measurements of ultrathin films with a
thickness <10 nm is also shown for the thin Er2O3 layers grown on Si(100) [13].
Without the corroborating TEM analysis, and simply relying on fitting ellipsometric
data using a simple Er2O3 layer whose optical function was unknown and parame-
terized with a Lorentzian oscillator, overestimated total film thickness was obtained.
Accurate analysis was instead achieved by determining the thickness of the SiO2
interface layer and the Er2O3 ultrathin layer by corroborating TEM analysis. These
thickness values were used as input in a two-layer model to derive the correct optical
properties of the interface layer as well as the Er2O3 films as reported in Fig. 20.10.

20.3.3 XPS and Ellipsometry

Based on the statistics shown in Fig. 20.2, XPS is one of the most used correlation ana-
lytical compositional techniques corroborating ellipsometry. Here this is discussed
for the chemical and physical analysis of the Si(SiO2)/Au(Ag) interfaces. The first
example concerns gold (Au) nanoparticles sputtered at room temperature on a silicon
substrate [5]. The Au nanoparticles dielectric function has to be parameterized and
determined by the fitting to ellipsometric spectra, and its accuracy and reliability
depend on the model used in the analysis. Therefore, in order to reduce unknown
parameters about the sample structures, the proper ellipsometric model was based on
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Fig. 20.11 a TEM image, b best-fit model, c XPS spectrum of the Si2p photoelectron core level,
d experimental spectra and e, f best fit results for gold nanoparticles sputtered on Si

information obtained by XPS and TEM as shown in Fig. 20.11. The TEM provides
information about the thickness of the interface and of the Au nanoparticle layer
while XPS gives the chemical composition of the interface. Specifically, Fig. 20.11a
shows the HR-TEM image of Au NPs sputtered on Si, which put in evidence the
formation of an extended, amorphous, and rough alloyed interface layer between the
Au NPs and the Si substrate. The interface layer is a mixture of AuSi and SiO2, as
confirmed by EFTEM and by the XPS spectrum of the Si 2p photoelectron peak
shown in Fig. 20.11c. The thickness of the interface layer was obtained by HR-TEM
and the ratio of the SiO2/AuSi was determined from XPS and both were used as
input and fixed in the ellipsometric analysis. In particular, the Si 2p core level in
Fig. 20.11c shows main peak component at a binding energy (BE) of 99.7 eV due
to the Si substrate and at BE of 103.8 eV due to the interface SiO2, together with
additional peaks at BE of 98.2 and 101.5 eV, which are indicative of interface inter-
mixing, i.e., gold silicide AuSi and its oxide. On the basis of those structural-chemical
information, the best-fit model sketched in Fig. 20.11b was used to model the ellipso-
metric spectra shown in Fig. 20.11d. Being the composition and thickness of layers
defined by those correlation techniques, the only fit variables are the parameters of
the ensemble of Lorentzian oscillators used to describe the plasmon resonance and
interband transitions of gold according to the equation:

N 2 = (n + ik)2 = ε = ε1 + iε2 = ε∞ +
∑

j

A jω
2
j

ω2
j − ω2 − iγω

where ε∞ is the high-frequency dielectric constant, ω j , γ j , and A j are the frequency,
width and strength of the j oscillator.
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These correlating techniques are used to build a model in order to derive the Au
nanoparticle dielectric function. Similar analysis was used for the Ag/(SiO2, SiNx ,
TiO2) films on Si(100) substrates [14].

20.3.4 Ellipsometry of Uniaxial Samples Corroborated by
Polarized Reflectometry for the True In-Plane Response

As mentioned before, the dielectric function of isotropic, bulk samples can directly
be measured using SE. In anisotropic materials, the dielectric function varies with
the propagation direction of light and the ellipsometry data analysis using conven-
tional Fresnel equations becomes rather difficult. A special mathematical formalism
is necessary for the data calculation of anisotropic structures. Besides that, appro-
priate experimental setups are required. Generalized ellipsometry comprises theory
and experiment of anisotropic samples (see Chap. 10). This can be avoided if the
orientation of the optical axes is known “a priori”, e.g. using spectrophotometric
measurements.

The uniaxial (anisotropic) response of highly oriented pyrolytic graphite (HOPG)
in mid-IR was studied using spectroscopic ellipsometry in order to extract parameters
of the IR active vibrations of E1u (in-plane mode) and E2u (out-of-plane mode)
symmetry [15]. The large in-plane polarizability is seen directly as the large values
of the pseudodielectric function and the influence of free electrons is detectable as
the steep decrease of its real part with decreasing wavenumber (Fig. 20.12a). At the
oblique incidence used in SE, both the in-plane and out-of-plane IR active modes are
detectable. In order to observe the true in-plane response, the near-normal incidence

(a) (b)

Fig. 20.12 a Real and imaginary parts of the pseudodielectric function of HOPG measured at an
angle of incidence of 78 ◦. The arrows indicate the in-plane (E1u) and out-of-plane (A2u) vibrational
modes. Inset the real part of conductivity computed from the imaginary part of 〈ε〉 and b the
near-normal incidence reflectance (dashed line) and the reflectance spectrum calculated from the
pseudodielectric function (solid line). The inset shows the measured data (symbols) and the best-
fit Lorentzian lineshape. [Reprinted with permission from Ref. [15]. Copyright Elsevier Limited
(2011)]

http://dx.doi.org/10.1007/978-3-642-33956-1_10
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Fig. 20.13 Measured and theoretical normalized reflectance, (Rgraphene−Rsubstrate)/Rsubstrate for the
single layer graphene flake on the left; and the calculated conductivity in the units of σ0 = π e2/2h
(universal optical conductivity); on the right. The inset represents the flake and the position of the
IR spot [18]

reflectivity of HOPG is measured. The results and the comparison with the pseudo-
reflectance computed from the ellipsometric data are shown in Fig. 20.12b. While
both phonon lines are seen in the latter spectrum, the out-of-plane vibration is absent
in the measured reflectance.

20.3.5 Characterization of Single and Few Layer Graphene
by IR Spectroscopy Measurements

Near-normal NIR reflectance measurements can be applied for determination of the
number of graphene layers and subsequently used for the ellipsometry characteriza-
tion of optical parameters of graphene films (see Chap. 17). Optical conductivity (AC
conductivity) is calculated from NIR reflectance measurements carried out under an
IR microscope mounted on a FTIR spectrometer. In the NIR, energies are well above
2μc, where μc is the chemical potential, and conductivity saturates to σ0 = π e2/2h
for single layer graphene (SLG). Conductivity of few layer graphene (FLG) samples
could be interpreted as parallel SLG conductors, meaning that conductivity linearly
increased by σ0 for each layer of the FLG sample. Obtained results are in agree-
ment with both theoretical and experimental data reported by other groups [16, 17]
(Fig. 20.13).

20.3.6 Raman Spectroscopy and Ellipsometry of Nanostructures
and Thin Films

20.3.6.1 Raman Spectroscopy and Ellipsometry of Graphene

As a suitable example of the correlation between SE and Raman spectroscopy we
will consider graphene. Graphene is the first truly 2D system with extraordinary

http://dx.doi.org/10.1007/978-3-642-33956-1_17
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Fig. 20.14 Large graphene
flake (15,000 μm2) and the
corresponding Raman spectra
at different points of the flake
indicating single and few-
layer graphene as well as
the Raman spectra of single
and few-layer graphene as
a function of number of
layers [21]

physical properties [19, 20] and its characterization is of outmost importance. For
this purpose Raman spectroscopy is proven to be a suitable tool for identifying the
number of graphene layers as presented in Fig. 20.14. Raman spectra of single and
few-layer graphene consists of two prominent peaks, the G peak represents a normal
in plane mode allowed by the symmetry rules whereas the 2D one is a two-phonon
mode. Both the G and 2D peaks can be used to characterize graphene flakes before
the ellipsometric measurements are carried out. Namely, a symmetric shape of the
2D at 2700 cm−1 confirms the presence of a single graphene layer while, on the other
hand, the structure of the same peak for few-layer graphene (up to 5 layers) can be
exploited for determination of the numbers of layers. It is worth mentioning that the
frequency of the G mode can also be used for the same purpose but it did not turn
out as a reliable method because of possible impurities and charging of the flakes.
When the whole Raman spectrum of a graphene flake is recorded in a single scan it
is possible to compare the intensities of the G and 2D peaks. In the case of single-
layer graphene the 2D peak is much higher than the G one. It is worth emphasizing
that FTIR cannot be used for identifying graphene since, differently from Raman
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(a) (b)

(c)

Fig. 20.15 a Single-layer graphene on a 300 nm thin layer of SiO2. Optical micrography and b its
Raman spectra; the Raman spectrum of a single-layer graphene was obtained in a single scan [23].
c The ellipsometric measurement configuration

spectra, graphene has no active normal modes in the IR spectrum. Therefore Raman
spectroscopy represents an unavoidable method for graphene characterization.

After identification of graphene on its substrate using optical microscopy, Raman
spectroscopy (see the example shown in Fig. 20.15), ellipsometric measurements
can be carried out on the same flake and they are shown in Fig. 20.16. The Raman
spectrum of a single-layer graphene was obtained in a single scan in order to compare
the ratio I2D/IG of the 2D and G Raman peaks more precisely. For a single graphene
layer I2D/IG > 1. More details on the Raman spectroscopy of graphene can be found
in a recent review paper [22].

Because of ellipsometry high sensitivity (down to 1 Å) to thickness of layers, SE
turned out to be a useful tool [24, 25] for the proper determination of optical para-
meters of graphene for many different applications. Figure 20.17 shows the complex
susceptibility (ε = 1 + χ ), refractive index and conductivity of graphene derived
from the ellipsometric measurements shown in Fig. 20.16 of the graphene flakes in
Fig. 20.15. Indeed, one of the problems in SE measurements of graphene is the small
size of the graphene flake of high quality. Even when the micro-spot optics (approx-
imately 60 × 110 μm in our case at an incidence of 60◦) is used, the ellipsometric
spot size could be larger than the graphene flake rendering correct ellipsometric data
analysis difficult because part of the substrate is also sampled as schematized in



20 Ellipsometry and Correlation Measurements 687

(a) (b)

Fig. 20.16 a tan(�) and b cos(�) of the graphene sample (dashed line) and of the bare substrate
(dot-dashed line) for the two different incident angles of 60◦ and 50◦. Filled lines represent fitted
sample data [23]

Fig. 20.17 a Complex dielectric susceptibility, b complex refractive index, and c complex optical
conductivity of graphene derived by the measured tan(�) and cos(�) from Fig. 20.16

(a) (b)

Fig. 20.18 Large few-layer graphene flake and the light beam spot obtained by optical microscopy
(a) and the sample configuration used for the island model (b)

Fig. 20.18. For this reason the island-film model (see [1] and references therein and
also Chap. 6 of this book) has been used in data modeling. The idea, as explained in
Fig. 20.15b, is that the reflection coefficient r is a weighted average of the reflection
coefficient r0 of the bare substrate and the reflection coefficient r g with graphene on
top, r = (1 − s)r0 + sr g , (1) where s is the fraction of the surface covered by the
graphene flake [26].

http://dx.doi.org/10.1007/978-3-642-33956-1_6
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(a)
(b)

Fig. 20.19 AFM and Raman spectroscopy characterization of a graphene sample. a AFM tapping
mode topography map of the sample. The middle part shows the FLG while some glue residue
is seen around it. The size of the white scale bar in the upper right corner is 20 μm. b Raman
spectrum of the sample

In order to establish the proper ellipsometric model, the surface fraction, s, covered
by the graphene flake and the thickness of the graphene flake have to be known.
Therefore, we used optical microscopy, AFM and Raman spectroscopy as shown in
Fig. 20.18. The AFM height profile across the flake edge, shown in Fig. 20.19, gave
an approximate thickness of 2 nm, while from the IG/I2D peaks intensity ratio five
layers of graphene are inferred Therefore, in the ellipsometric analysis, we entered
that thickness to enable a reliable determination of optical parameters of graphene
(n, k) in agreement with a few previous reports [24, 25].

20.3.6.2 Raman Spectroscopy and Ellipsometry of ZnO Thin Films

As mentioned before, Raman and IR selection rules are different. If a system has
a center of inversion, the normal vibrational modes cannot be both Raman and IR
active. Otherwise, vibrational modes are both IR and Raman active as in case of
ZnO [27]. Infrared dielectric function spectra and phonon modes of high-quality,
single crystalline wurtzite ZnO films were obtained from IR and Raman studies
(Fig. 20.20). The optical phonons at the �-point of the Brillouin zone belong to the
following irreducible representation: �opt = 1A1 + 2B1 + 1E1 + 2E2. Both the A1
and E1 modes are polar and split into transverse (TO) and longitudinal (LO) phonons
with different frequencies. The short range interatomic forces cause anisotropy and
the A1 and E1 modes have different frequencies. They are both IR and Raman active.
The two nonpolar IR inactive E2 modes are only Raman active, and the B1 modes
are silent modes. It turns out that the phonon mode parameters for A1 and E1 modes
obtained by both techniques are highly consistent. Furthermore, parameters obtained
by Raman spectra for A1 and E1 modes can be used to make fitting of the IRSE spectra
easier or to confirm the quality of the fit. Also, for detection of the two E2 modes,
Raman gives complementary results. They cannot be detected by IRSE, only by
Raman measurements.
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(a) (b) (c)

Fig. 20.20 a IR ellipsometric spectra of the ZnO bulk and film samples (dotted lines, experimental
data; solid lines, best-fit spectra). The ZnO phonon modes of A1 and E1 symmetry are indicated
by vertical lines (solid lines, TO phonons; dotted lines, LO phonons). b Spectra for the real and
imaginary part of the dielectric function according to the best-fit (solid lines, film; dotted lines,
bulk sample). c Raman spectra of the bulk ZnO sample. First order phonon modes of ZnO are
indicated by the vertical solid lines. The vertical dashed-dotted lines mark the features due to
multiple-phonon scattering processes. [Reprinted with permission from Ref. [27]. Copyright of the
American Institute of Physics (2003)]

20.3.7 Surface Enhanced Raman Spectroscopy
and Spectroscopic Ellipsometry

An unusual example of correlation measurements represents a combination of SERS,
SEM and SE for the characterization of silver island films [28]. The authors utilized
this multidiagnostic method to determine the dielectric functions of silver island
films over a large range of sizes and morphologies from the percolation threshold
down to an average particle size smaller than 5 nm as shown in Fig. 20.21. They
measured films on silicon substrates with 2 and 20 nm oxide layers and compared
the surface-enhanced Raman scattering properties of the films. The use of a com-
binatorial deposition method in creating a gradient film is crucial to reducing the
uncertainties associated with multiple sequential depositions and Raman measure-
ments. The statistical analysis from high quality SEM images, combined with SE
analysis of the film dielectric functions, and scanning Raman measurements of the
relative Raman enhancement on combinatorial films allow nanostructural, optical,
and SERS parameters to be directly correlated (see Fig. 20.22). Optimal enhancement
is observed when the interparticle spacing is minimized. The use of a combinatorial
method resulted in significantly reduced uncertainties by avoiding multiple sample
preparations and allowed unambiguous identification of optimal film parameters for
the different substrates.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 20.21 (Left) Deposition of silver films by RF magnetron and (right) SEM images of sil-
ver nanostructures on silicon with a–c native oxide (2.7 nm) and d–f thermal oxide (19.3 nm).
Images correspond to (x) distance from slit in mm) a 0, b 2, c 4, d 1, e 3, and f. The scale bar
is 500 nm

Fig. 20.22 (Left) Dependence of the relative Raman enhancement on the substrate and (right) the
dielectric functions of the silver films as a function of position. The black line shows ε1 = 0, which
corresponds to the position of the plasmon resonance maximum

20.3.8 Grain Size Measured by XRD Used
in Ellipsometric Modelling

The properties of certain nanomaterials depend on their synthesis. Improving existing
processes and developing new ones enabled creation of many different nanocompos-
ites. For nanocomposites, the grain size of the constituting materials and phases is
important in rationalizing their properties. The dielectric function also depends on
the crystallites and grain size.

Grain size of certain nanocomposites can be measured using different micro-
scopies, but also by the analysis of XRD spectra. The broadening of a peak in a
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diffraction pattern in a solid correlates to the size of the particles or crystallites by
the Scherrer’s equation. Here the example of silver zirconium nitride films is dis-
cussed.

Silver zirconium nitride films were deposited by unbalanced magnetron sputtering
[29]. They were studied by different techniques like XRD, TEM, XPS and SE. The
films consisted of nanocrystals of zirconium nitride embedded in a silver matrix.
The grain size was deduced from the width of the XRD peaks using the Scherrer
formula and it was found to decrease with addition of silver. The chemical and
phase composition was determined from XPS measurements. The optical constants
were measured using SE and the correlation between film and structure/composition
was established. The ellipsometric data were fitted using a single layer model since
the films were optically thick. Based on the Bruggeman effective medium theory
the layer was simulated as a mixture of the constituent phases zirconium nitride and
silver. The dielectric function of the constituent phases was determined by measuring
the dielectric function of zirconium nitride and silver coatings deposited under the
same conditions. Good fits were obtained only when the reference dielectric function
for zirconium nitride corresponded to a film with a grain size equivalent to the one
deduced from the Scherrer formula. XRD and ellipsometric spectra are shown in
Fig. 20.23.

(a) (b)

(c)

Fig. 20.23 a Real and imaginary part of the dielectric function for different samples. b and c XRD
spectra for the samples used in ellipsometry [29]
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(a)
(b) (d)

(c) (e)

Fig. 20.24 a SEM image of golden split-ring resonators with tabulated geometric parameters. The
ellipsometric parameters b tan(�) and c cos(�) are calculated using data extracted from the SEM
image. The measured ellipsometric parameters are d tan(�) and e cos(�)

20.3.9 Spectroscopic Ellipsometry of Metamaterials

The most common artificial structures used as building blocks for metamaterials with
negative effective permeability are split-ring resonators (SRRs). SRRs are cut metal
rings with a non-conducting gap. The spectral positions of the multiple resonances in
SRRs are interpreted using the standing wave plasmonic resonance model [30].The
positions of these resonances can be measured using SE [31]. Different numerical
tools are used for simulation and interpretation of the measured ellipsometric spectra,
and they all use the geometrical parameters of the real structure (shape, size, orienta-
tion, thickness etc.). Therefore, visualization of SRRs structures is necessary. Since
the current goal is to push the EM response to the optical regime, the size of “meta-
atoms” (SRRs) is in order of a few hundred nm. A direct imaging of nanostructures
is possible only by using TEM, SEM and SPM. One example of ellipsometry of
golden split-ring resonators is presented in Fig. 20.24. The geometrical parameters
were extracted from the SEM image of the structure (Fig. 20.24a), and the ellipso-
metric spectra were simulated using rigorous coupled wave analysis (RCWA) (see
also Chap. 7 of this book). The simulated data are shown in Fig. 20.24b, c and are
in a good agreement with the measured spectra in Fig. 20.24d, e. There are many
variables like length of the rings, period of the structure, size of the gap, thickness
of the layers etc. Without prior knowledge about all of them, it would be impossible
to find a good qualitative agreement between measured and calculated data as it is
in this example.

http://dx.doi.org/10.1007/978-3-642-33956-1_7
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20.4 New Trends

In recent years, there is a new trend regarding ellipsometry and correlation tech-
niques consisting in combining correlation techniques and ellipsometry in the same
instrument. The main advantage is that both the correlation and ellipsometric mea-
surements are done on the same sample spot, in addition to the obvious advantages
of being less time consuming and allowing easier sample handling, and practically
in real time.

20.4.1 Attenuated Total Reflection Combined with Spectroscopic
Ellipsometry

As we mentioned above, one of the disadvantages of SE concerns the characteri-
zation of samples with small absorption coefficients. Here we describe the case of
detection of the Si-Hn modes in the hydrogenated silicon, S:H, thin films where
due to small absorption coefficients of Si-Hn vibrations both ellipsometry and even
IR transmission spectroscopy are difficult to use. Therefore, a combination of real-
time infrared attenuated total reflection (ATR) spectroscopy and SE (Fig. 20.25) has
been applied to assess depth profiles of Si-Hn (n =1–2) bonding modes in Si:H thin
films [32].

To evaluate the SiHn bonding modes having low absorption coefficients IR spec-
troscopy performed by ATR is the most promising technique, owing to very high
sensitivity realized by internal multiple reflections of the IR light inside an ATR
prism. The proper data analysis procedure for real-time ATR spectra was established
by combining ATR with SE measurements since in estimating the SiHn bonding
concentrations in thin Si:H layers, an accurate thickness measurement is required.
Real-time SE performed in the ultraviolet /visible range provides an ideal tool for
the purpose of thickness determination.

Fig. 20.25 ATR prism and the setup for the real time measurements by SE and ATR. [Reprinted
with permission from Ref. [32]. Copyright American Institute of Physics (2002)]
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20.4.2 Spectroscopic Ellipsometry Corroborated by Glow
Discharge Optical Emission Spectroscopy

Recently Horiba Jobin Yvon successfully combined ellipsometry and Glow Dis-
charge Optical Emission Spectroscopy (GDOES). They studied Copper Indium
Selenide (CuInSe2) 2 micron thick films. CuInSe2 has extremely high optical absorp-
tion coefficient that allows nearly all of the available light within the terrestrial spec-
trum to be absorbed in the first micrometer of the material. Therefore, the total
thickness of the active layers is of the order of 2 μm, resulting in the efficient use
of materials without negatively impacting the conversion efficiency. The addition of
controlled amounts of gallium and/or sulfur into the CuInSe2 absorber layer permits
the adjustment of its energy gap to provide device with higher voltage, better carrier
collection and higher conversion efficiency. Various analytical techniques are applied
to understand the growth mechanism, to monitor and control the optical properties
and the composition, to verify the thickness of the layers during deposition, to pro-
file the layers and to see gradients. Among the panel of techniques available, SE and
Glow Discharge Optical Emission Spectroscopy stand out due to their ease of use
and the complementary information they provide. Glow Discharge Optical Emission
Spectroscopy is a technique that relies on the controlled erosion of a representative
part of a material by dense RF plasma. It provides the elemental distribution as a
function of the penetration depth it offers a nanometer depth resolution and it is ideal
to detect composition changes, interface contaminations and gradients (www.horiba.
com/scientific). In order to characterize photovoltaic materials, Horiba recently also
combined SE with various spectroscopic methods including: Raman Spectroscopy
Glow Discharge Optical Emission Spectroscopy and Plasma Profiling Time of Flight
Mass Spectroscopy

20.4.3 Grazing X-Ray Reflectometry Combined with Spectroscopic
Ellipsometry

SOPRALAB has developed a new approach by combining two non-destructive char-
acterization techniques on the same instrument: Spectroscopic Ellipsometry (SE) and
Grazing X-Ray Reflectometry (GXR) (Fig. 20.26). GXR is a powerful technique to
measure the absolute thickness without a-priori structural modelling of a multi-
layer stack. GXR applies to any type of material: semiconductor, metallic, dielec-
tric, organic. GXR and SE measurements can be performed quasi-simultaneously
at exactly the same sample location. Analysis of complementary data from both
techniques with the same physical model leads to unprecedented accuracy in mea-
surement results.

Grazing X-Ray Reflectometry (GXR) is certainly the technique of choice for
absolute thickness measurement of new materials. At this energy, every material
displays the same refractive indices (n being 1 and k being 0), simplifying consid-

www.horiba.com/scientific
www.horiba.com/scientific
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Fig. 20.26 Spectroscopic ellipsometry and grazing X-ray reflectometry

erably the structural model for data analysis. In the case of complex multi-layers,
accurate information can be obtained on the periodicity of stacks as well as on
the interlayer structures. SE combined with GXR is the choice for the following
applications: High K dielectrics (ZrO2, nitrided oxides), thin ONO layers, thin opti-
cal coatings, Si and SiGe thin epitaxial structures, thin metallic and organic layers,
and coatings for micro-lithography.

20.4.4 Correlating Techniques in Imaging Ellipsometry

20.4.4.1 Ellipsometry and Near-Field Optics

Borchagovsky theoretically demonstrated the capability of an ellipsometric detection
method for near-field optical measurements [33]. He showed that the change in the
state of polarization of scattered light due to tip-protrusion interaction is sufficient
for detection in most of the analyzed cases, even without resonant enhancement.
This suggests that ellipsometry of scattered light may be used in near-field optics for
the investigation of nanosize structures [34] experimentally demonstrated by near-
field ellipsometry. They created an apertureless optical near-field scanning micro-
scope system combining a commercially available AFM and an ellipsometer without
any prior changes in design of the respective devices. In preliminary experiments,
an optical resolution of about 20 nm (λ/32) has been achieved using the combined
microscope. They called this technique scanning near-field ellipsometric microscopy
(SNEM) (Fig. 20.27).

The AFM is placed on the sample so that the tip is over the spot illuminated by
the ellipsometer. During the measurement, the AFM operates in contact mode. By
scanning the tip within the evanescent field, null ellipsometry conditions are dis-
turbed. The detector registers a change in the optical signal which is simultaneously
displayed with the topography as a two-dimensional image (Fig. 20.28). It is
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Fig. 20.27 Experimental
setup of SNEM where P
denotes a polarizer, C—
compensator, A—analyzer,
and D—detector. [Reprinted
with permission from Ref.
[34]. Copyright American
Institute of Physics (2001)]

Fig. 20.28 Topography (a),
(c) and SNEM (b), and (d)
images of a polycrystalline
film of a thermotropic liq-
uid crystal. [Reprinted with
permission from Ref. [34].
Copyright American Institute
of Physics (2001)]

(a) (b)

(c) (d)

interesting to note that the structures were better resolved in a SNEM than in an
AFM image.

20.4.4.2 Imaging Ellipsometry and Scanning Probe Microscopy

In order to add imaging to an ellipsometer, an objective and a spatially resolving
detector, e.g. a sensitive CCD camera, are needed. The objective images the illumi-
nated area of the sample onto the camera. As a consequence, areas that have different
optical properties cause a different signal in the camera image. Especially those areas
that are currently fulfilling the condition of the ellipsometric “Null”, i.e. where the
optical parameters are such that the light reflected is extinguished for that particular
setting of polarizer (P), compensator (C) and analyzer (A) angles, and will appear
dark in the image. Higher light intensities are incident at the detector from areas of the
sample that do not meet that condition, producing brighter image regions. Changing
the settings of P, C, and A it is now possible to find the Null also for these regions,
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which will cause the former dark areas to appear now bright (see Fig. 20.30a). The
main advantage of such an imaging ellipsometer is that the signal is not the aver-
age over an entire laser beam spot on the sample, but it is spatially resolved to
show the details of the sample. With the imaging ellipsometer it is possible to get
not only immediate qualitative information but it is also possible to restrict ellipso-
metric analysis to a particular region of interest within the field-of-view. Applying
appropriate algorithms allows mapping the Nulls for the entire image. This yields a
two-dimensional map of the ellipsometric data that can be transformed into a thick-
ness map of the sample. One of the advantages of the null ellipsometry is the fact
that one measures angles instead of light flux ((�,�) = f (P,C, A)), partly avoid-
ing problems due to the stability of the light source or non-linearity of the detectors.
Imaging ellipsometry combines the power of ellipsometry with microscopy and over-
comes the limits of classical ellipsometers. With imaging ellipsometry the size of the
object under investigation may be reduced to the micrometer range, accomplishing
the need to measure on micro-structured samples. For example, reactive coatings on
cantilever-based microsensors can be characterized by imaging ellipsometry, being
inaccessible to the large spot size of conventional ellipsometers. Simultaneously, it
is possible to generate maps of ellipsometric data with spatial resolution down to
a micrometer, while preserving the sub-nm film thickness resolution of a classical
ellipsometer. Presently, imaging ellipsometry is combined with AFM for charac-
terization of nanostructures and nanofilms (sometimes this combination is called
scanning probe ellipsometric microscopy—SPEM). Such instruments have made
commercially available in the last few years (Fig. 20.29). In general, the thickness
is obtained by ellipsometry and the topography by atomic force microscopy. Imag-
ing ellipsometry enables not only the quantitative determination of the thickness but
also the optical properties with a lateral resolution down to 1 μm. By performing
ellipsometric contrast pictures a real time imaging of nanofilms is a unique feature
of this technique. The integration of a scanning probe microscope into the setup
of an imaging ellipsometers ensures rapid evaluation of optical properties and sub-
sequent zooming-in with sub-micron lateral resolution by means of SPM on the
same field of view. A typical task of the instrument is to simplify the search for
regions of interest on a sample; the preparatory work in terms of identification of
thickness variations is performed by the imaging ellipsometer. This is not only time-
saving; it also circumvents the artifacts produced by scanning probe microscopy
(SPM). Once a region of interest has been defined, the sub-micron lateral resolu-
tion of the SPM overcomes the constraints of the imaging ellipsometry caused by
the optical diffraction limit. The advantage of combining AFM and imaging ellip-
sometry stems from the convenience of using imaging ellipsometry to visualize thin
films and surface structures, and then zoom into nanometer details with SPM on the
same spot!

As an example, the SPEM analysis of few layer graphene on the n-type GaAs
substrate is discussed here.

The advantage of AFM measurements is that it seems to be the most direct way to
identify graphene thickness but the measurements are slow and could easily damage
the surface of the sample during measurements. Still, the obtained thickness is often
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Fig. 20.29 AFM and ellipsometry (left panel) and an integration of AFM and IElli
(http://www.accurion.com)

hard to interpret due to adsorbents on the flake under ambient conditions. Imaging
ellipsometry is a powerful tool to detect and characterize graphene on any flat sub-
strate. The results of the imaging ellipsometry measurements on a graphene flake are
shown in Fig. 20.30c–e.

(a)

(b) (c) (d) (e)

Fig. 20.30 a Imaging ellipsometry setup. The lens system mounted between the sample and ana-
lyzer allows imaging with submicron lateral resolution. b Optical image and c imaging ellipsometric
intensity image of a sample on SiO2/Si showing regions with graphene monolayer covering up to
thin graphite. Numbers in (b) correspond to the layer number. d Ellipsometric → map and e the
corresponding _ map of the boxed region display grapheme mono- and bilayer areas with higher
resolution. Copyright American Institute of Physics (2010)

http://www.accurion.com
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Fig. 20.31 Scanning probe ellipsometry of the micro-contact printed thiol on glass. From the top
to the bottom 3D profile by the SPEM mapping mode, ellipsometric microscopic contrast image,
and the thickness map recorded by AFM

Another example of the full integration of imaging ellipsometry and AFM—
the scanning probe ellipsometric microscope (SPEM)—is the measurement of the
micro-contact printed thiols on glass, as shown in Fig. 20.31.

The measurement has been carried out at the same spot on the sample using
software-controlled sample transport between the ellipsometer and SPM with a μm
accuracy Nanofilm (Accurion now) application note on scanning probe ellipsomet-
ric microscope. The following figure shows a 3D profile obtained with the SPEM
mapping mode together with the ellipsometric contrast-image and a corresponding
AFM image.

Interesting combinations of ATR-FTIR and imaging ellipsometry corroborated
by an in situ AFM were successively used for the investigation of structural and
physical properties of bilayers of the hydrocarbon and the fluorocarbon segments in
bilayers of 1,2- dipalmitoyl-sn glycero-3-phosphocholine (DPPC) [36]. Interested
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readers can take a look at a review paper on applications of imaging ellipsometry in
biotechnology [37].

20.4.5 Scanning Probe Ellipsometric Microscopy and Grazing
Incidence Small Angle X-Ray Scattering

Recently a new combination of grazing incidence small angle X-ray scattering
(μGISAXS) and imaging ellipsometry was used for the in situ characterization
of colloidal polystyrene nanoparticles [38] in HASYLAB. It turned out that this
combination introduced a new versatile tool for the characterization of nanostruc-
tures. μGISAXS provides a local lateral and depth-sensitive structural characteri-
zation, and imaging ellipsometry adds the position-sensitive determination of the
three-dimensional morphology in terms of thickness, roughness, refractive index,
and extinction coefficient. Together μGISAXS and imaging ellipsometry enable a
complete characterization of structure and morphology.

In contrast to AFM and SEM/TEM, μGISAXS allows large sample areas to be
probed and yield structural information about nanosize objects. For the experimental
setup the authors used a commercial surface probe ellipsometric microscope (SPEM)
integrated into a GISAXS beamline as in Fig. 20.32. The SPEM comprises an imaging
ellipsometer from Nanofilm Technologies-GmbH and an atomic force microscope
from Surface Imaging Systems. There is obvious benefit in using imaging ellipsom-
etry instead of optical microscopy since a position-sensitive determination of the
3D morphology in terms of thickness, roughness, refractive index, and extinction
coefficient becomes possible instead of a simple picture of the sample surface. The
results of these complementary techniques are presented in Fig. 20.33.

Fig. 20.32 Ellipsometer installation at the GISAXS beamline at HASYLAB (DESY, Hamburg,
Germany)
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(c)

(d)

Fig. 20.33 c The � and � maps of the dewetted polymer structure obtained with IElli and the
resulting thickness map; d AFM topography and the two-dimensional (2D) microbeam μGISAXS
pattern measured at the center of the colloidal drop at the right

20.5 Conclusion

We have emphasized the role of correlation techniques that corroborate ellipsomet-
ric measurements in order to apply proper models on experimental data, enabling
a reliable extraction of optical and compositional parameters of the samples under
investigation. The most frequently used correlation methods have been described and
demonstrated on chosen examples. Since every paper related to ellipsometry con-
tains one or a few corroborating techniques it is practically impossible to describe
all of these methods in detail and cite all relevant papers. Therefore, in this limited
communication we confined ourselves to the most important techniques in our opin-
ion, as well as the ones we used in our investigations. Also, an overlook on the new
trends in ellipsometry has been provided.

Combining one or more correlating techniques with spectroscopic ellipsometry or
imaging ellipsometry assembled on the same instrument is going to be one of the most
fascinating fields of research on nanomaterials from both instruments-development
and application points of view to gain deeper knowledge.
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Chapter 21
Nanotechnology: Applications and Markets,
Present and Future

Ottilia Saxl

Abstract The effects of nanotechnology, the application of nanoscience, which
owes its early success to the IT industry, are already being felt across society. Because
nanotechnology can now be applied so widely, it is called an enabling technology.
There are few, if any, industries or products that could not benefit from the application
of nanotechnology. It is not unreasonable to predict that nanotechnology will com-
pletely revolutionise industry and industrial processes within a decade. This chapter
examines the economic and social potential of nanotechnology, and put figures on
this potential, setting the scene for the remainder of the book which addresses how
the most important issue of real time, non-destructive or invasive characterization at
the nanoscale is being resolved.

21.1 Nanotechnology: Applications and Markets

21.1.1 Nanotechnology: Already of Global Economic Importance

Today we understand more and more about how the properties of everything in the
world around us (including ourselves!) are defined by their component atoms and
molecules. Already we are at the early stages of being able to manipulate these atoms
and molecules in order to design new things with the features we want, improve med-
ical treatments, the way we generate energy and process our food. This is nanoscience.
The effects of nanotechnology, the application of nanoscience, which owes its early
success to the IT industry, are already being felt across society. Because nanotechnol-
ogy can now be applied so widely, it is called an enabling technology. For example,
nanotech underpins many novel industrial developments, such as fabric treatments
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that repel stains, non-toxic paints that prevent rusting and biofouling, surface coatings
that can kill bacteria and in more effective ways to deliver drugs.

We only need to think of the characteristics of a mobile phone, which today is in
effect a mini computer, to appreciate just how many features can be incorporated
into a product through micro and nanotechnology. A mobile phone can transmit
sound, data, pictures, act as a video camera, a bank, a global positioning system, a
health monitoring system, a teaching tool and an active (rather than passive) news
provider. In essence, nano–enabled products are smaller, cheaper, lighter, faster,
cleverer and often dramatically different to what they supercede. In theory, these
new nano products should also use fewer raw materials and consume less energy
to make. The developing countries are leapfrogging old technology and aiming to
produce these new multifunctional products from the outset, in industries as diverse as
aerospace, automotive, materials, foods, textiles and medicine, as well as in military,
electronics and telecoms applications. There are few, if any, industries or products
that could not benefit from the application of nanotechnology, and those that do not
embrace the technology will be left behind by their competitors who do. It is not
unreasonable to predict that nanotechnology will completely revolutionise industry
and industrial processes within a decade.

As of March, 2011, the nanotechnology consumer products inventory contains 1317
products or product lines as shown in Fig. 21.1. Indeed, the inventory quoted suffers
from the lack of a clear definition of what is a nanoproduct, and so is unlikely to be
comprehensive, and should be considered only as a guide to the possible scale of
market penetration.

Products were grouped according to relevant main categories (Fig. 21.2) that are
loosely based on publicly available consumer product classification systems. The
largest main category is Health and Fitness, with a total of 738 products. This includes
products like cosmetics and sunscreens.
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Fig. 21.1 Number of total products listed, by date of inventory update (source http://www.
nanotechproject.org/inventories/consumer/analysis_draft/)
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Fig. 21.2 Number of products, according to category on the market in 2011 (source http://www.
nanotechproject.org/inventories/consumer/analysis)

The message is clear—the potential of nanotechnology is vast. However, there are
some critically important sticking points that need to be quickly overcome before the
benefits of nanotechnology are fully realized. These are: repeatability, stabilisation
and characterization; latter being essential to establishing the first two.

These factors have determined so far the limited number of raw materials that con-
stitute, so far, the main nanotechnology products on the market (see Fig. 21.3)

This chapter examines the economic and social potential of nanotechnology, and
put figures on this potential, setting the scene for the remainder of the book which
addresses how the most important issue of real time, non-destructive or invasive
characterization at the nanoscale is being resolved.

Fig. 21.3 Main elements constituting nanotechnology products on the market

http://www.nanotechproject.org/inventories/consumer/analysis
http://www.nanotechproject.org/inventories/consumer/analysis
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21.1.2 Nano in the Home

If we take a whistle-stop tour of the nanotechnology products around us, we can
usefully start in our homes. In a modern house, there could be stay-clean windows,
solar collectors, dirt repellent carpets, curtains and chair coverings, anti-bacterial sur-
faces in the kitchen and toilet, stay-clean exterior paints, anti-corrosion coatings for
radiators and gutterings, security lighting, lightweight and transparent wall and roof
insulation and furniture treatments, all inside a structure made of environmentally
friendly lightweight concrete.

If we examine the ‘nano’ behind some of these new products in a little more detail. To
achieve a self-cleaning surface, there are two principal ‘nano’ techniques—one using
super-hydrophobic and the other using super-hydrophilic materials. New structural
paints can cleverly impart water and dirt repellency to whichever surface they are
applied to. This is through emulating the Lotus effect, the way the leaves of the
Lotus plant repel water through their special structure. Superhydrophilic surfaces
on the other hand can be obtained by coating glass, ceramic tiles or plastics with
nanoparticles of a semiconducting photocatalyst, titanium dioxide (TiO2). If TiO2 is
illuminated by light, any grease, dirt and organic contaminants are decomposed and
are easily swept away by rainwater. By definition, the size of a nanoparticle is below
the wavelength of light, so the bonus is that the coating on the glass is therefore
invisible.1

Even the technology for non-stick frying pans has switched to “nano” by using
nanocomposites to provide heavy duty non sticking surface finishes. The idea of using
silver for antimicrobial purposes has been adopted in many non-medical products.
As well as in filters for air-conditioning, silver has also been introduced into washing
machines and refrigerators for its antibacterial effect (Table. 21.1).

Nanoporous materials also offer superior thermal insulation. Although silica aerogels
are the world champions in low thermal conductivity, their brittleness and high price
have so far prevented a widespread use. Nevertheless, nanoporous materials have
been developed in the form of flexible blankets or evacuated panels for better thermal
management, vital in energy saving.

Table 21.1 Uses of
nanotechnology products in
the home

Dirt resistant facade paints
Self-cleaning coatings (windows etc)
Easy clean hygienic surfaces (in bathrooms, on food
preparation surfaces)
Aerogels for lightweight insulation, and reduced flammability
Stay clean textiles (for carpets, furniture)

1 http://www.nanoes.com/Reference/Self-Clean%20Materials.pdf

http://www.nanoes.com/Reference/Self-Clean%20Materials.pdf
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The Market for Nano-Enabled Homecare Products
According to Euromonitor, the sale of homecare products in the UK in 2010 was
3.7 billion UK£. Say the affluent world consists of only 1 billion people, then
let’s speculate that sales wolrdwide of homecare products to that community
alone could be around 50 billion UK£, extrapolating the Euromonitor figures
for the UK. If nano penetration is only 10 %, then the nano market worldwide
for homecare products is already a not inconsiderable 5 billion UK£, or about
7.5 billion USD. As the world population increases, as wealth increases and
the penetration of nano increases, it is not unreasonable to expect that nano
influenced household products might reach 10 billion USD easily by 2015, and
possibly much more.

Of course, nanotechnology represents not only a commercial opportunity but also
to some, a considerable threat—and not just in product differentiation. For exam-
ple, still in the area of household products, companies involved in manufacturing
cleaning products could be threatened by self-cleaning coatings. Similarly detergent
manufacturers might be disadvantaged by the development of dirt repellent textiles.

21.1.3 Up Close and Personal: A Nano Revolution in
the Sunscreen and Cosmetic Industries

Nanoparticles serve many purposes in cosmetics: they enhance the properties and
acceptability of cosmetics by providing softness, lustre, moisturizing and optical
effects; they can protect the skin through sunscreens incorporating UV-filters. Most
cosmetic manufacturers are extremely interested in the new properties nano brings
to their formulations.

Ultra small capsules called liposomes were introduced into cosmetics as far back as
1986 by L’Oreal, a company that holds many nanotech patents. Liposomes are small
containers or capsules ranging in size from below 100 nm to several micrometres.
They are able to contain and deliver active ingredients such as drugs, vitamins and
other cosmetic materials.

The same ingredients as found in common cosmetic formulations can be formulated
in a variety of ways at the nanoscale—as nanospheres, nanocapsules, oleosomes and
liposomes. These nano-based structures are important because they often improve
the stability of the cosmetic and the active ingredients that they contain. Nano encap-
sulation techniques have led to many improvements in cosmetic products, such as the
time-controlled release of scents, which means a more constant odour, as opposed to
being overpowering immediately after application, but then the scent disappearing
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quickly.2,3 Nanocapsules with a porous shell can release their content steadily over
many months. If the capsule wall is rigid, it only releases the fragrance if it is ruptured
(the release-on-demand principle). As only a few of the capsules burst at any one
time, the effect can also last for months in this case. If not encapsulated, fragrance
shelf life is short, with the scent altering or disappearing within a few weeks.

Ordinary cosmetic emulsions have droplet sizes between 100 and 100,000 nm.
Nanoemulsions contain the same type of ingredients but their droplet dimensions
may be as low as 10 nm. Given this small droplet size, nanoemulsions are transparent
and have particular rheological properties, and because of their rheology and trans-
parent properties, nanoemulsions are used in a number of cosmetics. When applied
to skin or hair, nanoemulsions break down into their constituent ingredients.4

Some cosmetic products use mineral-based materials and their performance depends
on particle size. In sunscreens, mineral nanoparticles (e.g. titanium dioxide and zinc
oxide with particle sizes in the order of 20 nm) are efficient UV-filters. They transmit,
reflect and scatter the visible part of the sun’s rays while strongly absorbing in the
UV region. These UV-filters consist of micron-sized aggregates, which are composed
of nanosized primary particles.5 The surface of these nanoparticles may be treated
with an inert coating to improve their dispersion in the formulation and to prevent
photocatalytic activity. The advantage of mineral UV-filters is that they provide broad
UV-protection and usually do not cause adverse health effects.

The Market for Nano in Cosmetics.
According to Global Industry Analysts (GIA), the global cosmetics market is
predicted to reach $41.4 billion by 2014.6 Nano offers many advantages for
new formulations, and few successful companies will have a range of cosmetics
that do not have some kind of nano aspect to their formulation. So penetration is
likely to be high, at the very least 20 %, and growing. So by 2015, nano enhanced
cosmetics could be worth at least 8–10 billion USD.

21.1.4 NanoTextiles for Fashion, Work, Sport and Industry

Nano is having a major impact in textiles, an industry that is remarkable for being
an early adopter of new ideas and technologies. Textiles are not only for the fashion

2 http://www.salvona.com/19-nanosal-
3 http://www.cosmeticsdesign.com/news/ng.asp?n=80466-naturalnano-nanotechnology-
license-agreement-nanotubes
4 http://www.pharmainfo.net/pharma-student-magazine/nanoemulsions
5 Nanotechnology and Sunscreens, http://www.foe.org/nano_sunscreens_guide/Nano_Sunscreens.
pdf
6 http://www.cosmeticsdesign.com/Market-Trends/Global-market-for-color-cosmetics-set-to-
reach-41.4billion.

http://www.salvona.com/19-nanosal-
http://www.cosmeticsdesign.com/news/ng.asp?n=80466-naturalnano-nanotechnology-license-agreement-nanotubes
http://www.cosmeticsdesign.com/news/ng.asp?n=80466-naturalnano-nanotechnology-license-agreement-nanotubes
http://www.pharmainfo.net/pharma-student-magazine/nanoemulsions
http://www.foe.org/nano_sunscreens_guide/Nano_Sunscreens.pdf
http://www.foe.org/nano_sunscreens_guide/Nano_Sunscreens.pdf
http://www.cosmeticsdesign.com/Market-Trends/Global-market-for-color-cosmetics-set-to-reach-41.4billion.
http://www.cosmeticsdesign.com/Market-Trends/Global-market-for-color-cosmetics-set-to-reach-41.4billion.
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conscious—they have important applications in the aerospace, automotive, construc-
tion, healthcare and sportswear industries. Already on the market are socks and
leisurewear with embedded silver nanoparticles that combat odour through killing
bacteria—and this capability has been extended successfully to wound dressings.
Several brands of clothing, including designer labels, have incorporated self-cleaning
and stain repellent nanotechnologies, very convenient for school clothes and military
wear,—and, of course, the less a garment needs to be washed, the more energy and
money is saved.

More glamorous applications include embedding gold and other precious metal
nanoparticles into natural fabrics such as wool. The gold nanoparticles impart soft
colours from pale soft greens, to browns and beiges, depending on the particle size
and shape. These colours are stable, and may even provide some antibacterial prop-
erties to the fabrics, as an added bonus.

Currently, considerable research is focused on developing electrospinning techniques
which produce long fibres of polymer, only nanometres in width, originally developed
in an effort to emulate spider silk. The spun, polymer-based nanofibres can be ‘loaded’
with different additives which could be nanoparticles, enzymes, drugs or catalysts.
Some combinations can be antibacterial and sprayed on to wounds as a kind of
healing ‘web’, others can be conductive or even form filters or membranes. There
are many exciting applications of the ability to spray-on a textile.

Scientists are also working on nanoelectronic devices that can be embedded into
textiles to provide special support systems for individuals in dangerous professions
or sports. Some garments can now provide monitoring for several life signs, includ-
ing temperature, chemical sensing and they can be used for power generation and
storage to enable communication with the outside world. Garments with this kind
of technology can be vital for the safety of say firefighters working in dangerous
situations in isolation from their colleagues, or even for skiers or their rescuers to
give early warning signs of hypothermia.

Research is also ongoing into man-made nanofibres where clay minerals, carbon
nanotubes or nanoparticulate metal oxides are used to impart new properties. These
properties provide halogen-free, flame retardancy, increased strength and shock-
absorbency, heat and UV radiation stability, and even brighter colouration. Other
work is focused on the very exciting area of inkjet printing onto textiles. This is
opening up many possibilities, not just for the customised or localised printing of
textiles to an individual design, but inkjet techniques can be used to create flexible
electronic materials, sensing materials, and even the materials of the future with
printed-on display capabilities.
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The Market for Nano in Textiles
Textiles include materials with an almost unimaginable spectrum of appli-
cations, and nanotechnology is further widening that spectrum. Given the
many varieties and uses of textiles, and considering figures from various bod-
ies involved in the industry, it is not unreasonable to suggest that in 2010, the
global textile market was worth around 100 billion USD. It is likely that a high
percentage of textile manufacturers are not taking advantage of nano, as much
clothing is being produced in time-honoured ways. If the penetration of nano is
only 1 % for high end applications, this still represents a 1 billion USD market,
possibly 1.5 billion USD by 2015, as nano becomes more accepted and desirable,
offering product differentiation opportunities.

21.1.5 Nano for Security: Anti-Counterfeit Protection
and Discouraging Thieves

In a study undertaken in 2010, and reported in The Enquirer,7 US Congress decided
it was almost impossible to quantify the cost of counterfeit goods to industry, and
surprisingly, that the effect was not necessarily all bad, and in the long run counterfeit
goods can benefit consumers, mostly because counterfeit products are cheaper than
the alternatives.

Although Congress in the US may dismiss counterfeiting as not all ‘bad’, this is
not how commercial companies, who have built up their brands embodying quality
and value over possibly many decades, view it. Most companies with known brands
will fight tooth and nail to protect their brand rights and their investment in product
development and promotion. Counterfeiting can also be dangerous, as in an extreme
situation where aeroplane parts are replaced by counterfeit ones that are not fit for
purpose.

The latest developments in nano for brand security and packaging offer what is called
“smart protection”, where often invisible, nano-enabled taggants provide not only an
authentication of products, but can also assist in identifying the provenance of stolen
goods. This security technique depends on the fact that nanoparticles are invisible.
Consequently, they can impart new, unseen properties.

Quantum dots, which are fluorescent nanoparticles, have a whole range of possible
applications in this industry. They are invisible until ‘lit up’ by ultraviolet light, and
can even be made to exhibit a range of colours, depending on their composition and
size. Such nanoparticles are ideal for crime prevention, where goods can be invisibly
and non-destructively ‘tagged’. Stolen goods can be traced by this invisible ‘bar code’

7 The Inquirer (http://s.tt/14vqR).

http://s.tt/14vqR
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Table 21.2 Nanotech in
brand and product security

Nanoparticles for security printing (e.g. invisible bar codes)
Unique recognition systems
Paper-like electronic displays which can be used to display

information on a given product (history of manufacture
and transport)

Magnetic nanoparticle tagging
Nanoparticle chemical markers
Ambient atmosphere nanoparticulate indicators

(anti-tamper)

and also illict drugs by the fact they possess no legal nano identification. In some
countries, cheap agricultural fuel can be ‘laced’ with harmless nanoparticles, making
it easy for police to identify a stolen consignment, merely by using ultraviolet light.

Some taggants contain unique magnetic ‘fingerprints’ and can be used on a wide
range of articles, including pharmaceutical packaging, luxury goods (such as watches
and handbags), and automotive and aviation spare parts. Other, invisible, nano scale
identification tags can be added to products and, using special equipment, field testers
can immediately spot the real from the fake. A number of nano-based products
have already been introduced including intelligent inks and nanoparticle coatings
for product security (Table 21.2).

To illustrate the importance of the problem. Nanotechnology has been a key priority
in the Sixth EU framework programme for RTD (FP6, 2002–2006) and this remains
the case in the Seventh Framework programme (FP7, 2007–2013), with a budget of
e 3475 Million for the NMP programme. Key areas include security and the preven-
tion of identity theft, counterfeiting, with especial resonance for the financial services
industry, in relation to credit cards, personal identification techniques, authentication,
forensics, quantum cryptography and the market for counterfeit and grey goods.

The Market for Nano in Brand and Product Security Applications.
According to a 2009 Observatory Nano report,8 the size of the global market for
brand and product security applications is estimated at between 40 and 60 billion
USD. Nanotech offers an innovative approach in this technologically advanced
market, so even if penetration is only 10–15 % now, it is likely to rise to at least
20 % by 2015, representing a possible market size of 8–12 billion USD.

8 http://www.observatorynano.eu/project/filesystem/files/Economics_Security_final.pdf

http://www.observatorynano.eu/project/filesystem/files/Economics_Security_final.pdf
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Fig. 21.4 Global brand and product security: nanotechnology implementation

21.1.6 Food for the Family: Nanotech in Food Processing,
Improved Shelf Life, Flavour Enhancement, Vitamin
Encapsulation and Fat Reduction

Working at the nanoscale is not new to food companies. The properties of all foods
and beverages relate to their constituent components that are nanoscale in size. The
manipulation of naturally occurring nanoparticles involved in the processing of dairy
products, for example, has been undertaken for some time under the name of ‘colloid
science’. More recently, an improved understanding of techniques such as targeted
delivery, has enabled food companies to deliver scents, flavours, vitamins and min-
erals that offer health benefits or impart new physical, visual and sensory effects to
foods. This has not only helped the exponential growth in the market for nutraceu-
ticals and other functional foods but has enabled a wide range of new food products
with new tastes, flavours and textures to be developed. Other applications of nano-
technology to food manufacturing include antibacterial work surfaces, filters that can
extract toxins, and packaging that provides a better barrier against contamination, or
can signal when perishable contents are spoiling, by changing colour.

Whether a product is a food, a drink, a pharmaceutical drug or a cosmetic, whether
it is ingested or applied, so long as it enters the bloodstream, it will produce an
effect on the human organism. The line between these different groups is hard to
draw. It is interesting to note that while hospitals are focused on the treatment of
patients using prescription drugs, very few consider that treatment may be possible
by monitoring/selecting appropriate foodstuffs—although everything we ingest is a
chemical to some degree or other, as it is made up of molecules that are absorbed
in the body. In fact, treatment through a professional nutritional analysis is an area
that has been almost entirely ignored until now, in preference to treatment by drugs
which, because of their concentration of a single chemical, are often highly toxic.

Food companies themselves are increasingly aware of the medical component of their
products, and the implementation of scientific knowledge in commercial foodstuff
production could have much wider implications for the health of the population
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than is presently acknowledged. Table 21.3 below lists some of the applications of
nanotechnology in foods, from production to ingestion.

It is only in relatively recent times that novel technologies have come under inves-
tigation as offering new functionalities and benefits as well as efficient delivery
mechanisms for the food and beverage industries. For example, food researchers
are gaining a greater understanding of the mechanisms of targeted delivery, with a
view to optimizing the delivery of vitamins and minerals in food to benefit health;
technologies related to the creation of novel physical, visual and sensory effects for
competitive advantage.

The Market for Nano in the Processed Food, Beverage and Related Pack-
aging Industries
There are many figures for the world market for processed foods. Whatever
figure is used, the numbers are extraordinary. In 2005, this market was esti-
mated at 3.2 trillion USD.9 So for the world giants in food processing, the
competition is cut throat, with everything to play for in terms of market share
through increased food stability, shelf life, safety, and a better consumer expe-
rience. It is estimated that the market for alcoholic, soft and hot drinks is about
50 % of that for processed foods. So the total market, given an annual growth
rate of 7.5 % can be estimated at around 7.5 trillion USD in 2010 and up to 10
trillion dollars in 2015.
If nano has a penetration of even 1 % in this market, and it may be more as
the market is dominated by around 100 companies who can afford to (and need
to!) adopt new technologies, then nano in the food and beverage industries
could be worth at least 100 billion USD by 2015. Not an insignificant number
by any means. Regarding smart, active packaging for the food and beverage
industries, this has been estimated at 11.7 billion USD in 2011.10 It is likely
that nano will have an important impact in most of this market sector, because
of its dependence on technology. Even estimating only a 20 % penetration, this
represents over 2 billion USD now, and probably twice as much by 2015 as nano
applications become increasingly important to the sector. So again, more large
numbers for nano here.

Potential applications of nanotechnology includes nano-encapsulation of flavours or
nutrients to suit consumer preference or health requirements; nanofilters that can
remove toxins; food constituents that can be made to alter their colour; flavour mod-
ifications that can be created by using differently-‘twisted’ molecules (for example,
the direction of chirality of a molecule may determine whether the flavour imparted is
‘lemon’ or ‘orange’); packaging that can keep perishable contents fresher for longer,
or detect when contents are spoiling and changing colour to warn consumers. In

9 http://www.ers.usda.gov/AmberWaves/February05/Features/ProcessedFood.htm
10 http://www.visiongain.com/Report/574/The-Active-Intelligent-and-Smart-Food-Drink-
Packaging-Market-2011-2021

http://www.ers.usda.gov/AmberWaves/February05/Features/ProcessedFood.htm
http://www.visiongain.com/Report/574/The-Active-Intelligent-and-Smart-Food-Drink-Packaging-Market-2011-2021
http://www.visiongain.com/Report/574/The-Active-Intelligent-and-Smart-Food-Drink-Packaging-Market-2011-2021
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essence, the understanding of food materials and food processing at the nanoscale is
increasingly recognized as vital in the creation of new and better food products, and
also to minimizing waste from increasing shelf life and visual indicators of freshness.
No more sell-by dates! (Table 21.3).

Table 21.3 Applications of nanoproducts in food related areas

Market sub sector Nano applications

Food production - Anti-bacterial food preparation surface coatings
- Colloid stability improvements

Conservation - Preservatives, antioxidants etc
- Optimal environment emulation
- Lifespan extension
- Fridge food freshness maintenance

Packaging - Anti-counterfeit (tracking systems, smart packaging)
- Contamination prevention, freshness maintenance
- Novel, brand-oriented packaging
- Freshness/shelf life indicators
- Speed check out enhancements
- Improved flexibility, durability, temperature/ moisture

stability, barrier, anti-microbial properties
Novel and ‘Fashion’ Foods - Colour, scent, flavour, taste and texture enhancement
Health foods - Supplement encapsulation (vitamins, minerals etc)

- Enhanced bioavailability
- Reduction in salts, fats and sugars
- ‘Delivery systems’ (scents, flavours etc)
- Sprays

Agriculture - Soil remediation
- Water purification
- Pesticides
- Nanosensors

Source International Nano Markets

Table 21.4 Areas where applications of nanotechnology for health foods are currently close to
market or already available

Enhanced delivery of nutraceuticals and bioactive compounds in functional foods
Enhanced flavours, texture and delivery of bioactive functional ingredients
Enhanced solubility—the smaller the component particle, the more soluble
Controlled release for in-situ flavour and colour modification of products
Improved bioavailability of vitamins and minerals for medical and sporting applications
Protection of the stability of micronutrients and bioactive compounds during processing, storage

and distribution
Encapsulation of fats and oils for reduced calorie products
Nano particulate salt for more flavour with less salt content
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21.1.7 Getting Around: Nano in Cars, Aeroplanes,
Ships, Trains etc

The automotive industry has appreciated for some time that nanotechnology can offer
many benefits in this highly competitive and litigious sector. Research is taking place
into applications of nanotechnology to improved safety systems from tyre blow out
and brake failure warning systems to collision avoidance (Table 21.4).

Other nano benefits include improved lubricants, lighter and stronger materials
for engine blocks, nanoporous filters, self-cleaning windshields, self-healing and
scratch-resistant coatings, environmentally friendly corrosion protection and colour-
changing paints. Major advances are also being made in the use of polymer nanocom-
posites for body panels as these can be made lightweight yet rugged, and in new metal
nanocomposites to improve engine efficiency. Specially designed nanoparticles are
presently used as fuel additives to lower consumption in commercial vehicles and
reduce toxic emissions (Table 21.5).

Car manufacturers are keen to be more environmentally friendly in their manufac-
turing processes as well as in the final product. Investigations are underway in how
nanotechnology may lead to a reduction in toxic wastes and by-products by sub-
stituting new nanomaterials for hazardous reactants and solvents or, better still, by
using nanotechniques to eliminate their use altogether (Table 21.6).

The Market for Nano in the Automotive Sector.
According to Wikipedia (which cites the “2008 Global Market Data Book”,
Automotive News, p. 5), 71.9 million new cars were sold worldwide in 2007.
This figure is probably quite similar in scale to today’s sales, given the downturn,
balanced by the increase in population. The sale of new trucks is about one third
that of cars, making total industry sales of about 96 million new vehicles a year.
The automotive sector has always been an early adopter of new technology
for competitive and liability reasons. If the size of the automotive industry is
estimated at a reasonable average value of 4500 USD per car, and the truck
industry at twice that, namely 9000 USD per vehicle, then the value of the total
industry (trucks and cars) is around 650 billion USD/yr. If the penetration of
nano into automotive components is about 15 % by value, possibly more, then
the worth of nano to that industry can be estimated today at about 100 billion
USD, and by 2015, given a market penetration of at least 20 %, would be about
130–150 billion USD—the latter given some increased growth also in the sector
value.
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Table 21.5 Nanotechnologies in the food and beverage processing and related packaging industries

Organic nanoadditives
Inorganic nanoadditives
Addition of nanoparticles offering specific additional functionalities or novelty
Nanosensors for food quality control and smart packaging
Nanoparticles for toxin scrubbing and to slow down ripening
Nanocoatings and nanofilms for protecting kitchenware and foodstuffs against pathogenic bacteria
Packaging for ambient temperature maintenance
Nanosprays of bioluminescent indicators in antibacterial defence systems
Incorporation of nanosized ingredients and additives
Processing of food at the nanoscale
Nanoencapsulation of ingredients, additives and supplements (based on micelles and liposomes)
Manufactured mineral nanoparticles as additives and supplements
Incorporation of nano sunscreens and other modifications in food packaging

Table 21.6 Areas of
application of
nanotechnology in the
automotive sector

Fuel cells
Power systems
Tyres
Heat transfer
Lighting and displays
Sensors
Coatings
Smart materials
Interiors
Structural and functional materials

21.1.8 When We Get Ill: Nanomedicine, High Speed Diagnostics,
Drug Delivery and Medical Devices

In the past, medical treatments have been, rather like medieval architecture, the result
of adopting those techniques that worked and discarding those that didn’t. Today, our
improving knowledge of how the body functions at the molecular, or ‘nano’, level,
is leading to many new and better medical techniques. For example, we know that
the earlier a disease can be detected, the easier it is to remedy, but until now, early
detection has been very difficult (Table 21.7).

Today we can introduce into the body specially designed nanoparticles, which are
composed of tiny fluorescent quantum dots that are chemically bound to antibodies,
which in turn ‘bind’ to diseased cells. When this happens, the quantum dots fluo-
resce brightly. This fluorescence can then be picked up by new, specially developed,
advanced imaging systems, enabling the accurate pinpointing of a disease even at a
very early stage indeed.
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Table 21.7 Applications of nanotechnology in the life sciences and healthcare sector

Market area Nanomaterials application

Diagnostics - Diagnostic imaging, with the use of targeted imaging agents that signal
the site of disease

- In-vivo monitoring of the body’s physiology using a variety of
nanotechnology-based probes and sensors

- In-vitro diagnosis that is faster, more precise and informative, building
hundreds of diagnostic tests into a single device

Drug delivery - Nanoparticles for the delivery of minute doses of highly-active drugs,
or of novel theranostic products to specific sites that can be tracked
and activated by conventional radiological devices

- Nanodevices that could be used to deliver substances or drugs to spe-
cific target areas in the body, e.g. oxygen to poorly vascularized
tissues

- New “smart” nanoengineered materials that can impart new levels of
performance to “conventional” medical devices and drugs

Implants and medical
supplies/devices

- Biocompatible nanostructured implant surfaces and coated stents

- Easy-clean and self-cleaning nanocoatings and antibacterial surfaces
- Better performing and cheaper to produce artificial retinas and cochlear

implants that mimic more closely nature’s light/sound receptor and
transmission systems

- Novel implantable devices allowing treatment of hitherto incurable
degenerative or congenital diseases

- Nanodevices for minimally invasive surgery
- Design of surgical and diagnostic tools with cheaper manufacturing

facilitated by nanotechnology and offering improved performance,
e.g. ultra-sharp nano-diamond coated scalpels for microsurgery

Tissue engineering - Biomimetic scaffolds as pattern for tissues and organ regeneration

Source International Nano Markets

Nanotechnology is also leading to faster diagnosis. Diagnosis can be a lengthy and
stressful business, often with a test sample having to be sent away for analysis,
with the results taking several days at least. Ultra miniaturisation is enabling many
tests to be speedily undertaken on ‘lab-on-a-chip’ devices, using tiny samples which
can be processed and analysed so rapidly that the results can be read out almost
instantaneously.

People often complain that the cure for a disease can feel almost as bad as the disease
itself, as prescription drugs may have unpleasant, sometimes even fatal, side effects.
This is because the body needs to be flooded with very high doses of a drug in order
to ensure that a sufficient volume reaches the site of the disease. Accurate targeting of
the drug can now be achieved, using specially designed drug-carrying nanoparticles.
This also means that much smaller quantities of a drug are necessary, so it is less toxic
to the body. The drug is then activated only at the disease site (such as a tumour) by
light or other means, and the progress of the cure can also be monitored by imaging
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the location and movement of the specially designed nanoparticles, which usually
have a fluorescent component.

The Market for Nano in Pharmaceutical Drugs
Most commentators seem to have a figure of around a trillion dollars for the
value of pharma sales worldwide. IMS Health estimate 1.1 trillion USD sales
by 2014; PRLog estimate a trillion USD sales by 2012. As the pipeline for new
drugs has faltered over the last decade, balanced by new opportunities in tar-
geted drug delivery, which offers reduces toxicity while improving outcomes, the
importance of nano to the pharma industry has increased dramatically. Designer
nanoparticles carry drugs and release them to the therapeutic target, and the ben-
efit to drug companies from using innovative techniques with existing drugs is
that no further expensive testing is required. Furthermore, protein-based drugs,
which have hitherto been difficult to deliver, are now experiencing a huge resur-
gence of therapeutic interest as at the nanoscale their solubility properties change
dramatically.
If nano only has 5 % penetration of the pharma market, this still means a market
size of around 50 billion USD—and definitely growing.

The Market for Nano in Medical Devices
According to Espigen, the US market for medical devices (the largest in the
world) is estimated at 105.8 billion USD in 2011, though CIMS, the Center
for Integrated Manufacturing Studies placed it at 336 billion USD in 2008. The
CIMS estimate includes: implantable devices (such as pacemakers, drug pumps,
stents, and joint replacements); diagnostic testing devices, including clinical
blood, urine, and tissue testing; and home healthcare products and electronic
monitoring devices. Speculatively, if the rest of the world together equals the
size of the US market, then the total size could be around 600–700 billion USD.
Devices increasingly need to be smart, in some instances, vanishingly small and
body friendly, so nano has an increasing role in new developments. Estimating
a penetration today of nano in devices of about 10 %, probably rising to 15 %
in 2015—within a fast growing market, driven by demographic trends of an
increasing ageing and wealthy population, to about 1 trillion USD in 2015, gives
a modest estimate of market size of about 100 billion USD for nano-enabled
devices.

21.1.9 Nano for the Environment

Nanotechnology offers some really exciting breakthrough opportunities in environ-
mentally friendly technologies, from extracting renewable energy from the sun to
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the prevention of pollution. Geoffrey Sacks, the American economist, in his 2007
BBC Reith lectures entitled ‘Bursting at the Seams’, commented: “The fate of the
planet is not a spectator sport. We live in an interconnected world, where all parts
of the world are affected by what happens in all other parts”.

There is no doubt that the pressures we are putting on the planet are leading to poten-
tially catastrophic consequences. In the developed world, we have grown accustomed
to using our car to go to the local shops, take weekend cruises and even day trips to
far-flung places that might have taken three or more months to reach before air travel
became commonplace. We like our vegetables and fruit out of season, and increas-
ingly expect to eat meat at least once, if not twice a day. We also want to hoard our
assets in the form of gold and diamonds. We haven’t thought about the effects of
these activities on the planet, which in the past could absorb our excesses, but with
the ongoing destruction of the rainforest (which is responsible for 25 % of carbon
emissions!) and the population of the world reaching an unsustainable 7 billion, the
earth is showing clear signs of being unable to bounce back from the demands we
are placing on it.

So what can we do to limit the damage and ensure a future for our children? Firstly,
the bad news. The fossil fuel that oils our everyday lives is responsible for 44 % of
the carbon dioxide we emit annually—and rising. The good news is that the energy
from sunlight is sufficient to meet our needs ten thousand times over. Today, more
efficient and cheaper solar energy collectors are in the process of being developed
using nanotechnology; these could be deployed as small units in our homes. They
work particularly well in diffuse light, so would suit less sunny climates. This would
have the benefit of not sterilizing precious land (a diminishing resource for food),
and quickly improve the quality of many people’s lives, especially for people living
in in poor quality housing or in the less developed world, where energy is hard or
expensive to access.

Not only do we need new ways of generating energy, we need better ways of storing it,
and nanotechnology is leading to improved, environmentally-friendly batteries and
supercapacitors. We also need to reduce damage to the environment. Particularly
toxic are those chemicals we use as solvents, and nanotechnology is leading to
their eradication through the development new nanocoatings and nano structured
surfaces that can effectively repel dirt and other contaminants. Most coatings used to
prevent corrosion are toxic and seriously affect the environment. Many anti-corrosion
coatings involve chromium and cadmium, deadly substances, the use of which is
being limited by the EU. Of course, vehicle and component producers are keen to
find alternatives, as recycling of toxic compounds is costly and unpleasant, so new
smart nanocoatings are in the process of being developed that are non-toxic and
highly effective.

Serious contamination of the environment with heavy metals and other pollutants are
thrown into the atmosphere from the fumes and smoke being emitted from industrial
processes. It is encouraging to note that most of these of these particles and gases
(including carbon dioxide) can be ‘scrubbed’ out—and even reclaimed and reused,
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using specially functionalised nanomaterials, placed in the waste gas stream. Finally,
given the old adage, if you can’t measure it, you can’t control it, fast, accurate, in-
situ and online pollution monitoring is essential. New, cheap nanosensors are being
developed from techniques used in medicine, that will enable us to do this quickly,
effectively and cost effectively.
There is a raft of potential applications enabled by nanotechnology, short and long-
term, offering environmental benefits. Some of these are listed below, but it is a vast
area.

• water purification and filtration;

• new materials offering ‘more for less’;

• more efficient use of material and energy and therefore reduced environmental
impact;

• sensors for improved monitoring and detection capabilities;

• treatment and remediation techniques for cost-effective and specific site cleanup;

• green manufacturing to eliminate the generation of waste products;

• green energy technology for the creation of commercially viable clean energy
sources;

• paints using less or water based solvent;

• more efficient fuel cells and batteries;

• fuel additives to improve fuel economy.

Nanotechnology offers opportunities in reducing and saving energy; some applica-
tions under investigation include:

• Thermoelectric nanomaterials that enable the generation of electricity from waste
heat in consumer appliances, automobiles, and industrial processes;

• Higher efficiency photovoltaic cells using quantum dots connected by carbon nan-
otubes;

• Gases flowing over carbon nanotubes that have been shown to convert to an elec-
trical current, a discovery with implications for novel distributed wind power;

• Multi-walled nanotubes that increase the performance of hydrogen fuel cells.

Advanced nanotechnology projects relating to energy are in storage and conversion,
and in manufacturing improvements by reducing materials and process rates in energy
saving e.g. by better thermal insulation, and in enhancing renewable energies sources.
Specifically, this includes products such as batteries, manufacturing catalysts, fuel
cells, solar cells, and strong lightweight materials.
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Global Market for Nano in Environmental Applications
This is a huge market with several important sectors. Perhaps the largest is
renewable energy generation, energy storage and energy saving.

Wind. The market for wind turbines is estimated to be 100 billion USD by
2013.11 Nano composites have an increasingly important role to play in the
development of stronger, tougher and lighterweight turbine blades. If the market
penetration for nano composites is only 10 %, that is still a market of 10 billion
USD.

Solar Energy. Recent figures12 from the USA’s leading solar trade group, the
Solar Energy Industries Association (SEIA), show that in 2010, solar energy is
America’s fastest growing energy sector stock, growing in total market value by
67 % from 3.6 billion USD in 2009 to 6.0 billion USD in 2010, compared to the
overall US GDP growth rate of only 3 percent. Nano has an increasing impact
on solar energy collection. If penetration of nano in solar collectors is only 5 %,
then that represents a market of about 0.3 billion USD in the United States alone,
and around 0.75–1 billion USD worldwide, in a fast growing market.

Energy Storage. Energy storage technologies where nano is impacting
include13: batteries, fuel cells (fuel cell development has increased in recent
years due to an attempt to increase conversion efficiency of chemical energy
stored in hydrocarbon or hydrogen fuels into electricity). Research is being
conducted on harnessing the quantum effects of nanoscale capacitors to create
digital quantum batteries. Although this technology is still in the experimental
stage, it theoretically has the potential to provide dramatic increases in energy
storage capacity.14 According to a BCC Research 2009 report,15 nano for envi-
ronmental applications, including protection, maintenance, enhancement and
remediation is predicted to be worth 21.8 billion USD by 2014.

21.1.10 Nanomaterials

Nanomaterials, and their associated manufacturing and processing technologies,
are the key enablers of the nanotechnology industry, and encompass a wide range
of materials. Nanoparticles serve as the “building blocks” for nanomaterials and
devices. They include nanocrystalline materials such as ceramic, metal and metal

11 http://windharvest.com/windmarket
12 http://www.seia.org/cs/news_detail?pressrelease.id=1292
13 http://en.wikipedia.org/wiki/Energy_storage
14 http://www.technologyreview.com/computing/24265/?a=f
15 http://www.bccresearch.com/report/nanotechnology-environmental-applications-nan039b.html

http://windharvest.com/windmarket
http://www.seia.org/cs/news_detail?pressrelease.id=1292
http://en.wikipedia.org/wiki/Energy_storage
http://www.technologyreview.com/computing/24265/?a=f
http://www.bccresearch.com/report/nanotechnology-environmental-applications-nan039b.html
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oxide nanoparticles; fullerenes, nanotubes and related structures. By virtue of their
structure, nanomaterials exhibit different physical, chemical, electrical, and mag-
netic properties from conventional materials, which can be exploited for a variety of
structural and non-structural applications. The following are the core nanomaterials
offering the main market opportunities:

• Nanoparticles
• Nanocoatings
• Nanocomposites
• Carbon nanotubes
• Graphene
• Nanoporous materials
• Quantum dots
• Nanofibres
• Fullerenes
• Nanowires
• Nanocapsules.

There are many examples of nanotechnology applications in new materials. For
example, polymer coatings are notoriously easily damaged, and affected by heat.
Adding only 2 % of nanoparticulate clay minerals to a polymer coating makes a
dramatic difference, resulting in coatings that are tough, durable and scratch resis-
tant. This has implications for situations where a material fits a particular application
in terms of its weight and strength, but needs protection from an external, poten-
tially corrosive environment—which a reinforced polymer nanocoating can provide.
Other nanocoatings can prevent the adherence of grafitti, enabling them to be eas-
ily removed by hosing with water once the coating has been applied. This has the
important knock-on effect of improving urban environments, making them more
attractive to bona fide citizens and less encouraging to criminals. These kinds of
coatings, invented in Mexico, have been shown to work well in parts of Mexico
City, transforming seedy crime-ridden neighbourhoods into increasingly respectable
suburbs.

Novel nanocomposites have applications in many industries, including the aerospace
and automotive industries. Carbon nanotubes are increasingly applied where tough-
ness, electrical conductivity and flexibility are required, combined with light weight.
Nanoporous materials have applications in purification techniques including blood
and water and pure liquids for the electronics industries; quantum dots have appli-
cations in security, electrics and medical diagnostics; nanofibres have many applica-
tions in reinforcing; fullerenes have medical and other applications; nanowires for
the electronics industries, and nanocapsules for the delivery of drugs, scents and
flavours and the stabilisations of foods and perishable materials.

Scents and flavours are a surprisingly interesting and lucrative field for the applica-
tion of nano encapsulation and delivery technologies. These technologies were first
developed for the delivery of pharmaceutical drugs, and have now found new appli-
cations in foods and household products. Encapsulation is an ideal way to improve
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the attributes and performance of a less-than-stable substance that might be affected
by light or air, or have a tendency to sediment. Encapsulation gives active ingredients
a longer shelf life, stability and protection from harsh processing environments so
they can be delivered in a perfect state at ‘the moment of consumption’! For the
food industry, it is a way of delivering enhanced taste, or ensuring that daily doses of
vitamins and minerals are met—this is discussed in more detail below. In household
products, nano encapsulation techniques can aid in the deposition of a cleaner or
polish onto a surface such as a floor or counter; they can provide long lasting scents
in household fragrances, and the slow release of enzymic and other agents in washing
machines and dishwashers, helping reduce energy and water use.

Carbon nanotubes are a recently discovered unique material possessing amazing
electronic, thermal, and structural properties They are highly conductive both to
electricity and heat, with an electrical conductivity as high as copper, and a ther-
mal conductivity as great as diamond. They offer amazing possibilities for creating
future nanoelectronic devices, circuits and computers. Carbon nanotubes also have
extraordinary mechanical properties—they are 100 times stronger than steel, while
only one sixth of the weight. These mechanical properties offer huge possibilities,
for example, in the production of new stronger and lighter materials for military,
aerospace and medical applications. Other applications include lubricants, coatings,
catalysts and electro-optical devices.

The cost, purification and separation of nanotube types, constraints in processing and
scaling up and assembly methods are hurdles that are now being overcome. Already
there are several consumer products containing nanotubes on the market, for example,
in sports equipment including tennis racquets, golf clubs and skis, where nanotubes
improve the strength of the equipment but at less weight and also the ability to absorb
shocks. Carbon nanotubes can also be mixed with many different materials such as
polymers and included in textiles for example in the production of lighterweight
bullet-proof vests, and in several military applications.

Graphene is the new nanomaterial that is generating huge excitement. It is an allotrope
of carbon that can be produced in thin sheets of only one atom in thickness. Appli-
cations include commercial, aerospace and military. As graphene is currently the
‘material of the moment’ some space is given to potential applications are currently
being explored:

Composites with higher strength to weight ratios. By adding graphene to ther-
mosetting and other polymer composites, a stronger/stiffer composite may be
possible compared with a similar weight of carbon nanotubes, with applications
in wind turbine blades or aircraft components, for example.

Transistors that operate at higher frequency. Electrons in graphene move at higher
speed compared to electrons in silicon, offering the potential to build high fre-
quency transistors. Researchers are also working on lithography techniques for
fabricating integrated circuits based on graphene.
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Lower cost of display screens in mobile devices. Graphene is capable of replac-
ing indium-based electrodes in organic light emitting diodes (OLEDs). These
diodes are used in electronic device display screens which require low power
consumption. The use of graphene instead of indium not only reduces the cost but
eliminates the use of metals in OLEDs, which may also make devices easier to
recycle.

Storing hydrogen for fuel cell powered cars. It has been found that graphene layers
in a fuel tank increase the binding energy of hydrogen to the graphene surface,
resulting in a higher amount of hydrogen storage and therefore a lighter weight
fuel tank. This could help in the development of hydrogen fueled cars.

Sensors to diagnose diseases. Graphene, strands of DNA, and fluorescent mole-
cules can be combined to diagnose diseases. Graphene has a large surface area
and molecules sensitive to particular diseases can attach to the carbon atoms in
the graphene. When an identical single strand DNA combines with the strand on
the graphene a double strand DNA is formed that floats off from the graphene,
increasing the fluorescence level, thus detecting the same DNA for a particular
disease in a sample.

Ultracapacitors with better performance than batteries. These ultracapacitiors
store electrons on graphene sheets, as the large surface of graphene provides an
increase in the electrical power that can be stored in the capacitor. It is possible
that these ultracapacitors will have as much electrical storage capacity as lithium
ion batteries, but can be recharged in minutes instead of hours

Global Market for Nanomaterials

Nanoparticles Nanoparticles are available as dry powders or liquid dispersions. Important
nanoparticulate materials are simple metal oxides, such as silica, alumina, titania,
zinc oxide, iron oxide, ceria, and zirconia. Silica and iron oxide nanoparticles
have been in the market for about a half-century or more. Nanocrystalline tita-
nia, zinc oxide, ceria, and other oxides have entered the market more recently.
The nanoparticles market is an important one, worth around 1.6 billion USD
in 2007, and predicted to rise to over 20.5 billion USD by 2015.a In the last
few years, clay nanoparticles have made their way into composites in cars and
packaging materials, and this makes up a significant percentage of the current
market; however, new applications are coming onto the market. For example,
casings for electronic devices such as computers containing nanoparticles also
offer improved shielding against electromagnetic intrusion.b

aNanomaterials. Applications and Markets to 2015. International Nano Markets
bNanomaterials, Applications and Markets to 2015. International Nano Markets
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Nanocoatings Nanocoatings such as thin films and engineered surfaces have been developed
and applied across a wide range of industries for decades. The ability of
controlling surface coatings at the nanoscale is of paramount importance for
a large-scale industrial development of nanotechnology. Highly sophisticated
surface-related properties, such as optical, magnetic, electronic and catalytic
can be obtained via nanostructured coatings. For example, in the silicon-
integrated circuit industry many devices rely on thin films for their operation,
and control of film thicknesses approaching the atomic level is routine. Other
applications on the market are “self-cleaning” coatings and optical-functional
surfaces for facades, vehicles, solar cells etc. (e.g. for anti-reflective surfaces,
sunshade glazing, anti-reflective coatings for instrument panels). At present,
many physical and chemical methods are available for the nanofabrication of
layers and coatings with nanometric control of the structural and functional
features; however, the scale-up of these methods remains a major challenge.
“One way” coating systems based on nanomaterials make up the bulk of this
market, for example in anti-bacterial; protective and conductive coatings.
However under development are “two way” systems such as shape-memory
materials, hydrophobic/hydrophilic switching and thermochromic pigmented
coatings that will come onto the market in the next 4–5 years.
The fastest growing markets to 2015 is expected to be in interior and exterior
household protection, textiles and medical markets, driven by the increased
demands for protective and repellent coatings. Conductive carbon nanotube
coatings are also finding market traction in the electronics and automotive
sectors and this will continue to be a strong growth area. Continuing to hold
the biggest market share will be military applications such as anti-corrosion
coatings which also find application in the gas and oil markets. According to
new studyc, global consumption of paints and coatings in 2012 is projected
to be worth 120 billion USD. If a modest 10% of this market can be ascribed
to nano-influenced coatings, then that market alone in 2012 is worth 6 billion
USD. Given a year-on-year increase in market share of 15%, then the market
for nanopaints and coatings in 2015 can be estimated at around 10 billion
USD. It is likely that including other nano coatings could increase this market
estimate by at least 50%.

Nanocomposites The nanocomposites market was worth around 437 million USD in 2007,
increasing to approximately 2 billion USD by 2010, and 7 billion USD by
2015. Applications in automotive, aerospace, packaging (food and drink),
electronics and consumer goods is expected to account for the largest per-
centage of revenue by 2015

c Global Paint & Coatings, 2013–2018, Kusumgar, Nerlfi, & Growney
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Nanoporous
materials

Nanoporous materials possess unique surface, structural, and bulk properties that
underline their important uses in various fields such as ion exchange, separation,
catalysis, sensor, biological molecular isolation and purifications. Nanoporous
materials are also of scientific and technological importance because of their vast
ability to adsorb and interact with atoms, ions and molecules on their large interior
surfaces and in the nanometer sized pore space. They offer new opportunities in
areas of inclusion chemistry, guest-host synthesis and molecular manipulations and
reaction in the nanoscale for making nanoparticles, nanowires and other quantum
nanostructures.d According to a 2009 reporte published by GIA, Global Market for
Nanoporous/Microporous Materials Expect to Reach 3.75 billion USD by 2015

Quantum
dots

The global market for quantum dots, which in 2010 was estimated to generate
67 million USD in revenues, is projected to grow over the next 5 years at a
compound annual growth rate (CAGR) of 58.3 %, reaching almost 670 million
USD by 2015, representing a tenfold increase.f

Nanofibres Nanofibres have a variety of applications, in the electronics, energy, medical and
aerospace sectors. Several types of nanofibres have been developed: polymeric,
carbon, ceramic, glass, metallic and composite. Nanofibres are being developed
for conductive and reinforcement applications in composites. The main revenue
generating application in 2007 for nanofibres was in filtration and separation
media. The nanofibres sector is expected to grow from 10.4 million USD in 2007
to 1193 million USD in 2015. The fastest growing sector is expected to be in ITC,
increasing from 7 million USD in 2007 to 480 million USD by 2015. Inorganic
nanowire light-emitting diodes (LEDs) have held promise as inexpensive and
tiny light sources, but fabrication has been challenging. Nanofibre technology
has been shown to enable on-chip light sources smaller and cheaper than LEDs,
and easier to fabricate.g Thermoplastics play a vital role in protecting electronic
devices from electromagnetic interference (EMI) and a variety of additives can
be used to provide this protection, with carbon nanofibres the most promising
application area. The energy sector will also benefit from carbon nanofibres
growing from 7 million USD in 2007 to 480 million USD in 2015. Lithium-
ion batteries incorporating nanofibres will come onto the market in the next 2–3
years. Carbon filaments are covered with platinum nanoparticles and can be made
into nonwoven fabrics and used as electrode layers in a hydrogen fuel cell. The
platinum acts as a catalyst, separating electrons from hydrogen atoms so they can
be discharged as electricity. The carbon nanofibres transport the electrons out of
the fuel cell with their large surface area of the nanofibres providing a base for
the chemical reaction to occur. Also under development are thin film nanofibre
sensors that can be made of polyaniline nanofibres having superior performance
in both sensitivity and time response to a variety of gas vapours including, acids,
bases, redox active vapors, alcohols and volatile organic chemicals.

dhttp://www.icpress.co.uk/etextbook/p181/p181_chap1.pdf
ehttp://www.strategyr.com/Nanoporous_Microporous_Materials_Market_Report.asp
f http://bccresearch.blogspot.com/2011/06/global-market-for-quantum-dots-to-grow.html
gNANO OPTICS: Electrospun light-emitting nanofibers could replace LEDs,
http://www.laserfocusworld.com/display_article/311576/12/ARTCL/none/News/NANO-
OPTICS:-Electrospun-light-emitting-nanofibers-could-replace-LED

http://www.icpress.co.uk/etextbook/p181/p181_chap1.pdf
http://www.strategyr.com/Nanoporous_Microporous_Materials_Market_Report.asp
http://bccresearch.blogspot.com/2011/06/global-market-for-quantum-dots-to-grow.html
http://www.laserfocusworld.com/display_article/311576/12/ARTCL/none/News/NANO-OPTICS:-Electrospun-light-emitting-nanofibers-could-replace-LED
http://www.laserfocusworld.com/display_article/311576/12/ARTCL/none/News/NANO-OPTICS:-Electrospun-light-emitting-nanofibers-could-replace-LED
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Fullerenes A fullerene is any molecule composed entirely of carbon, in the form of a hollow
sphere, ellipsoid or tube. The fullerenes market is worth around 58.5 million USD
in 2007. The energy sector is the most prominent with fullerenes used in fuel cells,
solar cells and batteries. This market is expected to grow, with significant growth
also expected in the ITC and automotive sectors, reaching approx. 1.8 billion
USD by 2015

Nanowires Nanowires are ultrafine wires or linear arrays of dots, formed by self-assembly,
which can be manufactured from a wide range of materials. Semiconductor
nanowires made of silicon, gallium nitride and indium phosphides have demon-
strated remarkable optical, electronic and magnetic characteristics. For example,
silica nanowires can bend light around very tight corners.
The market for nanowires is worth approximately 34 million USD in 2007. The
main market is in ITC, and this will continue to be the case with an esti-
mated market worth 1.227 billion USD in 2015. Nanowires are finding appli-
cation in electronic devices (including field-effect transistors, sensors, detectors.
light-emitting diodes, and for metallic interconnects of quantum devices and
nanodevices, allowing replacement of copper in computers and electronics);
high-density data storage (as magnetic read heads or patterned storage media);
and superconducting wires that can make electrical generators lighter and more
efficient. Other applications are as bio and chemical sensors. Nanowires com-
prised of ‘1-dimensional’ semiconducting materials have the greatest potential
as biosensors because they can easily be incorporated into electronic circuits that
allow continuous readout. Nanowires can be ‘functionalized’ to detect virtually
any form of bi-molecular interaction that involves proteins (including antibodies,
receptors and enzymes) or nucleic acids.h

Nanocapsules The nanocapsules market is worth around 32 million USD in 2007. Applications
in healthcare especially in the area of drug delivery, cosmetics and homecare
are expected to account for the largest percentage of revenue by 2015, which is
predicted to reach over 1.4 billion USD by then

Carbon
nanotubes

The market for carbon nanotubes was approximately 168.5 million USD in 2008.
The ITC market is likely to see the biggest penetration to 2015, with the perfor-
mance enhancing properties allowing electronics manufacturers to meet demand-
ing market needs. The incorporation of CNTs into the displays market will
increase demand by 2010, with a revenue forecast in the ITC market of 1.1 billion
USD approx. by 2015. While in the longer run, electronics will continue to dom-
inate nanotube applications as broader use in semiconductors occurs, strong
opportunities are also expected in CNT-based products.i

Graphene According to a new technical market research report by BCC, the global market
value for graphene-based products will be worth an estimated 67 million USD in
2015 and is expected to increase to 675.1 million USD in 2020, for a five-year
compound annual growth rate (CAGR) of 58.7 %.j

h Nanomaterials. Applications and Markets 2008-2015. International Nano Markets
i Global Market for Carbon Nanotubes, International Nano Markets
j http://www.electronics.ca/publications/products/Graphene%3A-Technologies%2C-Applications
%2C-and-Markets.html

http://www.electronics.ca/publications/products/Graphene%3A-Technologies%2C-Applications%2C-and-Markets.html
http://www.electronics.ca/publications/products/Graphene%3A-Technologies%2C-Applications%2C-and-Markets.html
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21.1.11 Finally, What are the Risks from Nanotechnology?

Some engineered nanoparticles, including carbon nanotubes, although offering
tremendous opportunities also may pose risks which have to be addressed sensibly in
order that the full benefits of new nanomaterials can be realized. We have all learned
how to handle electricity, gas, steam and even cars, aeroplanes and mobile phones in
a safe manner because we need their benefits. The same goes for engineered nanopar-
ticles. Mostly they will be perfectly safe, embedded within other materials, such as
polymers. There is some possibility that free nanoparticles of a specific length scales
may pose health threats if inhaled, particularly at the manufacturing stage. Industry
and government are very conscious of this, are funding research into identifying
particles that may pose a hazard to health or the environment, and how these risks
may be quantified, and minimised over the whole lifecycle of a given nanoparticle.
There is no doubt that nanotechnology has great potential to bring benefits to society
over a wide range of applications, but it is recognised that care has to be taken to
ensure these advances come about in as safe a manner as possible.
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