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Abstract. This paper assumes the hypothesis that human learning is perception 
based, and consequently, the learning process and perceptions should not be 
represented and investigated independently or modeled in different simulation 
spaces. In order to keep the analogy between the artificial and human learning, 
the former is assumed here as being based on the artificial perception. Hence, 
instead of choosing to apply or develop a Computational Theory of (human) 
Perceptions, we choose to mirror the human perceptions in a numeric (compu-
tational) space as artificial perceptions and to analyze the interdependence be-
tween artificial learning and artificial perception in the same numeric space, 
using one of the simplest tools of Artificial Intelligence and Soft Computing, 
namely the perceptrons. As practical applications, we choose to work around 
two examples: Optical Character Recognition and Iris Recognition. In both cas-
es a simple Turing test shows that artificial perceptions of the difference  
between two characters and between two irides are fuzzy, whereas the  
corresponding human perceptions are, in fact, crisp. 
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1 Introduction 

In the last decade, Zadeh pointed out the necessity of introducing a Computational 
Theory of Perceptions (CTP). More precisely, Zadeh outlined in [21] a computational 
theory of human perceptions, i.e. a formal theory which should enable software agents 
to compute (and hopefully, to reason) with human perceptions “described by  
propositions drawn from a natural language” [21] as answers to some questions. The 
process of describing human perceptions in a natural language sets out a correspon-
dence perceptions-propositions and results in what Zadeh called “perception-based 
information” (PBI). Here in this paper PBI is viewed as a special syntactic-semantic 



58 C.M. Noaica et al. 

representation space, as a subset of legal syntaxes within a given natural language, 
which are charged with fuzzy meanings. As an example, from a syntactic point of 
view, there is nothing fuzzy about the string “young person”, whereas the fuzzy 
meaning that humans usually associate to this string makes it f-granular. By paraph-
rasing Zadeh, this means that the boundaries of perceived “young person” class are 
unsharp and the values of age ranges are represented in natural language as fuzzy 
linguistic labels (for example: “young”, “middle aged”, “old” etc.), as f-granules of 
(perceived) age, where, as Zadeh said, “a granule being a clump of values (points, 
objects) drawn together by indistinguishability, similarity, proximity, and function” 
[21].  

Zadeh illustrated the fact that perceptions are represented in natural language as 
propositions by giving the following example [21]: “it is unlikely that there will be a 
significant increase in the price of oil in the near future” (which is further denoted 
here as A) – an assertion that aggregates together fuzzy linguistic labels (words – from 
the syntactic point of view, perceptions – from the semantic point of view) as aliases 
of some f-granules of perceived likelihood (‘is unlikely’), amplitude of variation 
(‘significant increase’) and time (‘near future’).  

However, here we assume that instead of representing a human perception, the as-
sertion A is a piece of knowledge belonging in an economical theory of oil market. 
How meaningful is A (the message) depends at least on the writer (the source of the 
message), reader (the destination of the message) and on the context in which they 
communicate (the environment). For example, the credibility and the meaning that the 
reader could assign to the enounce A vary dramatically when instead of being asserted 
by a six years old kid it is announced by a spokesman of British Petroleum. Converse-
ly, even if the most qualified economist of the oil market makes the assertion A, there 
will be dramatic differences between the ways in which different people of different 
ages and qualifications would assign a meaning to it. Moreover, the assertion A could 
be just a part of a communication strategy whose goal is to manipulate the market 
players.  

Since the meanings given by different people to the assertion A are far enough 
from being “drawn together by indistinguishability, similarity, proximity, and func-
tion” [21], the example given by Zadeh actually illustrates that assigning certain 
meanings to a human perception represented as a proposition in a natural language 
could result in very volatile / unstable results. On the other hand, such an operation is 
very similar with trying to decode a message without knowing how exactly the mes-
sage was encoded in the first place.  

This paper assumes the hypothesis that human learning is perception based, and 
consequently, the learning process and perceptions should not be represented and 
investigated independently or modeled in different simulation spaces. On the other 
hand, in order to keep the analogy between the artificial and human learning, the 
former is assumed here as being based on the artificial perception. Hence, instead of 
choosing to apply or develop a Computational Theory of (human) Perceptions [21], 
we choose to mirror the human perceptions in a numeric (computational) space - as 
artificial perceptions, and to analyze the interdependence between artificial learning 
and artificial perception in the same numeric space. An alternative that we do not 
follow here would be to consider learning process as a topic of Artificial Intelligence 
and perceptions as a topic of a Computational Theory of Perceptions. This paper  
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analyzes the interdependence between learning and perceptions using one of the sim-
plest tools of Artificial Intelligence and Soft Computing, namely the perceptrons [15]. 
As practical applications, we choose to work around two examples: Optical Character 
Recognition (OCR) and Iris Recognition (IR). 

1.1 Outline 

The first question that must be answered here is what exactly do we understand here 
by “artificial perception”. The second section of this work discusses this topic.  

As it can be seen in [21], Zadeh insists on the ideas that (human) “perceptions, in 
general, are both fuzzy and granular or, for short, f-granular” and that “in much, 
perhaps most, of human reasoning and concept formation, the granules are fuzzy” - 
i.e. human reasoning and the concepts are f-granular.  

However, in the two examples that follow to be presented here, the situation is a 
little bit different: in both cases a simple Turing test [18] shows that artificial percep-
tions of the difference between two different characters and between two different 
irides are fuzzy, whereas the corresponding human perceptions are, in fact, crisp. 
Despite being contradictory to Zadeh’s beliefs expressed above, this situation comes 
very naturally, because ultimately, a perceptron emulates the human intelligent beha-
vior through an artificial one, which compared to the original is weakened and impre-
cise enough. The third and the fourth sections from here aim to illustrate this situation 
in detail using the practical examples of OCR and IR, respectively. Concluding re-
marks of this study are presented in the fifth section. 

2 The Artificial Perception 

In their seminal work, McCulloch and Pitts [10] formalized the neural networks as a 
recursively constructed language of temporal propositional expressions [10] (build by 
complexification rules with elementary proposition such as Ni(t) – i.e. the unit i fires 
at time t). This means that, naturally, a neural network is fully described if we know 
its structure and if we know why, when and how its neurons fire. Later, Rosenblatt 
[15], [16] took two important steps further in Artificial Intelligence (AI). Firstly, he 
defined the Perceptron as an elementary virtual (simulated / artificial) unit able to 
encode artificial perceptions in a manner similar to that in which is assumed that the 
human brain supports visual perception [15]. Secondly, he advanced the field of neur-
al networks from a theoretical study to practical implementations on circuits [16]. 

2.1 Artificial Intelligence vs. Human Intelligence 

Somehow paradoxically, the two works of McCulloch, Pitts [10] and Rosenblatt [15], 
[16], taken together, still drawn the limits in which the neural networks have been 
modeled and used up to this date. Of course, some improvements and some diversifi-
cation are visible with respect to the structure (recurrent networks, for example),  
dynamic (self-organizing maps [9], for example), neuron design (fuzzy [19] and neo-
fuzzy neurons [20]) and to the area of application [1], [2], [4], [5], [7], [8]. However, 
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all of these newer developments and variations are much too close, and too tributary 
to the initial design specified by McCulloch, Pitts and Rosenblatt. Maybe this is the 
reason why, as J. Copeland said in [6], “five decades since the inception of AI have 
brought only very slow progress, and early optimism concerning the attainment of 
human-level intelligence has given way to an appreciation of the profound difficulty 
of the problem”. Still, it should be very clear for anybody that there is no such logical 
thing as criticizing AI in itself. All AI tools are our creations and they have only those 
limitations that we cannot overcome when we design them. Hence, the problem of 
programming artificial intelligent agents is recursively depending on itself: the AI 
tools would not have unwanted/unexpected limitations if someone (or something) 
could be able to design them intelligently. The lower our level of understanding (our 
own) intelligence, the greater the limitations of the AI tools that we design. The vi-
cious circle does not break here because, in order to find what intelligence is, we 
should start knowing/acquiring this concept through as many of its hypostases as 
possible, but on the other hand, the task of recognizing the hypostases of intelligence 
is not always simple and successful. Moreover, even that we may recognize a hypos-
tasis of intelligence, there is no guarantee that we could understand how it is pro-
duced. Hence ultimately, if we accept that AI is “the science of making computers do 
things that require intelligence when done by humans” [6], we should also accept that 
the limitations of our AI tools originate in our limited knowledge of ourselves and, by 
consequence, in our limited capacity of designing them intelligently.  

Another problematic issue in the present state of AI is a very well established ten-
dency for overvaluation, whose roots grown right from the beginnings. For example, 
despite the fact that Rosenblatt introduced the perceptrons as elementary units de-
signed to encode artificial perceptions (as their name suggests), when he approached 
the “mathematical analysis of learning in the perceptron” [15], he involuntarily made 
an association between learning and perceptrons. Over time, this association some-
how has come to be treated, seen and claimed as it would be a strong bound between 
learning and perceptrons, a bound whose strength increased in time for no plausible 
logical reasons, only by frequent use, overvaluation and mistake.  

2.2 Overvaluation 

The belief that perceptrons learn is widely spread today in AI community and often 
treated as an objective fact. The truth is that human learning is something much more 
complex than the process of “learning in the perceptron” [15]. The latter is nothing 
more than an expression denoting a very basic piece of learning, namely a process 
that encodes (memorizes) experiences in a numeric space. This process results in a 
collection of numbers called trained memory. However, the process of human learn-
ing results (among many other things) in texts like this one that we write here, i.e. in 
well-articulated logical discourses about a certain part of reality perceived by us. Our 
discourses are pieces of complex knowledge expressed with formal correctness and 
produced by our brain – a complex system of neural networks able to play coopera-
tive games, able to make massively distributed and massively parallel computations, 
but unfortunately unable to describe itself. This is why reverse engineering the human 
brain is one of the most relevant tasks for all AI sub-disciplines of our days and is the 
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only task that could make us hope we will ever succeed to endow a machine with 
artificial learning capabilities. 

The discrepancy between expectations and achievements in AI is fueled by over-
valuation in the first place. Any objective and well-educated mind knows that what a 
system could achieve depends on how controllable it is and on what states are observ-
able. In other words, from a formal standpoint, what is achievable on a given system 
is syntactically correct and semantically relevant (all in all, is formally demonstrable) 
in the formal language and theory that describe the system. Hence, full understanding 
of a given system means that our expectations and system behavior perfectly match 
each other.  

The overvaluation occurs especially in the cases in which an observable state is 
treated as being something that it is not and/or as having properties that it does not 
have. A special paradigm of learning treated in AI is that of supervised learning by 
exposure to examples. The simplest case assumes that a perceptron learns to differen-
tiate between two classes of examples (learns a binary classification). We marked the 
sequence “perceptron learns” because, as this paper follows to show, it is more ap-
propriate to say that the (memory of a) perceptron encodes the separation between 
two linearly separable classes of examples. The process of learning is far much com-
plicated (as a routine) and far more spectacular as results than the simple mechanical 
encoding procedure through which a perceptron memorizes the separation between 
two classes of examples. Human learning, artificial learning, artificial perception and 
mechanical encoding actually are four different things in AI: human learning is a 
target behavior, artificial learning is a computational simulation of human learning, 
artificial perception is an analogy of human perception, learning is perception based 
and mechanical encoding is a procedure that may allow artificial perception. Saying 
that mechanical encoding is the same thing with artificial perception or with artificial 
learning is nothing else than overvaluation. Talking about learning without making 
the differences between human and artificial learning is also an overvaluation of the 
latter.  

2.3 What Is the Artificial Perception? 

Firstly, let us discuss about the artificial representation of human perception and to 
illustrate them on the simple case of a binary classification encoded as a trained 

memory. Let us consider two classes C  and C- of linearly separable n-dimensional 
 

 

Fig. 1. Graphical representation of two linearly separable classes 
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positive and negative examples, respectively (as those represented in Fig. 1 ), used as 
training examples for the artificial neuron (perceptron) described in Fig. 2, where:  

X=[x1, x2, … , xn] 

is the current example applied to the neuron,   

W=[w1, w2, … , wn] 

is the synaptic memory, θ is the threshold and the fire function  

Y±(X) = f±(X, W, θ) 

establishes the instant input-output relation of the neuron: 

 f±(X, W, θ) = sign(W.X - θ), (1) 

as a function depending on the instant internal activation of the neuron:  

 h(X, W) = W.X, (2) 

and on the threshold θ, where the dot operation in formula (2) signifies the scalar 
product.  

 

Fig. 2. Graphical representation of a perceptron 

With these notations, the (memory of the) neuron is said to be trained if and only if: 

 X  C+ C-, Y±(X) = IC+(X) - IC¯(X), (3) 

where IC+ and IC¯ are the regular indicator functions (binary membership functions / 
characteristic functions) of classes C+ and C¯, hence: 

 Y±(X) = 1 iff +∈ CX  and Y±(X) = -1 iff −∈ CX . (4) 

Hence, if the (memory of the) neuron is trained, then: 

 Y±(C+) = {+1} and Y±(C¯) = {-1}. (5) 
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The case from above describes an artificial neuron with bipolar output (±1). When the 
output is binary, the classes may be denoted as C1 and C0, whereas the (memory of 
the) neuron is said to be trained if and only if:  

 X  C0 C1, Y01(X) = IC1(X), (6) 

where IC1 is the indicator function of class C1 and the new instant input-output rela-
tion is as follows:  

 f 01(X, W, θ) = logical( f±(X, W, θ) + 1 )∈{0,1}. (7) 

With these notations, if the (memory of the) neuron is trained, then: 

 Y 01(C1) = {1} and Y 01(C0) = {0}. (8) 

In the two cases described above, each of the formulae (5) and (8) is an artificial re-
presentation of the human perception illustrated in Fig. 1, representation written in a 
first order logico-arithmetic formal language that aggregates constants (±1 or 0,1), 
inputs (X), states / memory instances (W, θ) and outputs (Y) accordingly to the pro-
duction rules (1)-(8), as appropriate. If we do not wish to know such an artificial re-
presentation as a predicate, we still have the possibility to know it as an internal state 
(as a numeric constant), namely as the trained memory (Wt, θt). However, interpreting 
the assertion (Wt, θt) means to assign certain meanings to (a human perception 
represented as) a proposition (Wt, θt) written in a numerical language, a process that 
could result in very volatile / unstable results if the encoding-decoding rules (1)-(8) 
are not known, just like in the case of assertion A discussed in the introduction. On the 
contrary, knowing the production rules (1)-(8) may allow one to produce a different 
trained memory Wt, θt , which still has the same meaning as (Wt, θt).  

Consequently, the above examples and comments illustrate that human perceptions 
are encodable (human perceptions can be artificially represented) as trained memory 
sequences (numeric constants) even by using simplified models of the perceptron 
initially proposed by Rosenblatt [15], [16]. What is new here is the fact that we point 
out to a second form of artificial representation for the human perceptions, which 
consists in pieces of formal knowledge (not just in numeric constants), in demonstra-
ble formulae within specific logico-arithmetic formal theories associated to a certain 
perceptron design.  

Regardless their particular type, for the artificial representations of the human per-
ceptions to become artificial perceptions, it is necessary that the artificial agent who 
finds and stores them to be self-aware and aware of the meanings that these artificial 
representations have. Hypothetically, an artificial agent that would actually have ar-
tificial perceptions should be able to produce propositions like “I perceive that …” 
and should to be aware of their meanings. Nevertheless, self-awareness and under-
standing meanings are open problems in AI today. Until the moment when significant 
progress will have been made on these two directions, the artificial perception is just 
a meaning (and a name) assigned in and by our mind for an artificial representation 
of some human perception. However, we analyze the possibility of developing  
self-aware software agents based on the basic design of a Cognitive Intelligent Agent 
given in [14].  
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3 Human vs. Artificial Perception of Similarity in OCR 

In the particular case analyzed here, the dissimilarity between two hypostases of two 
different characters is artificially represented as linear separation. For example, when 
a perceptron instructed to recognize the character ‘A’ against all the other characters 
is fully trained, all instances of ‘A’ from the training set are linearly separated from 
all instances of all the other characters by a hyperplane whose parameters form the 
trained memory W. Hence, the difference D between the minimum activation com-
puted for the positive examples and the maximum activation obtained for the negative 
examples is an artificial perception of the dissimilarity (separation) between the two 
classes. Let Xmin

+  be the positive example that realizes the minimum activation and let 

Xmax
-  be the negative example that realizes the maximum activation. With this nota-

tions, the number D/||W|| is the distance between two hyperplanes orthogonal to W, 

one containing Xmin
+  and the other containing Xmax

- . Hence, the number d’=D/||W|| is 
also an artificial perception of the dissimilarity between the two classes (namely: C  

containing ‘A’ instances, and C-containing instances of other characters).  

On the other hand, the distance between the two sets C+ and C-, 
 d C+,C- =min( d X, Y | X  C+, Y  C-}), (9) 

is the most objective expression of the dissimilarity between the two classes C+ and 

C-. The question is how accurate is the artificial perception d’ compared to actual 
distance d.  

Let Xmax
+  be the positive example that realizes the maximum activation and let 

Xmin
-  be the negative example that realizes the minimum activation. Then the number 

W.Xmax
+  - W.Xmin

+  / W  is an artificial perception for the diameter of the class C+, 

whereas the number W.Xmax
-  - W.Xmin

-  / W  is an artificial perception for the di-

ameter of C-. 
All in all, the trained memory W sets up an artificial perception (a geometrical 

view/perspective) that imprecisely encodes the diameter of C-, the distance from C- 
to C+ and the diameter of C+ as the numbers W.Xmax

-  - W.Xmin
-  / W , d(C+, C-) 

and W.Xmax
+  - W.Xmin

+  / W . This situation allows us to establish an artificial 3D 
geometrical conventional representation of the two classes and of the perceived sepa-
ration between them. The comparison between the ratio d’/d and the real unit tells us 
when the artificial perception of the separation between the two classes of characters 
is objective or maximally cointensive with the reality (d’/d=1), fuzzy undervaluated 
(d’/d<1), or fuzzy overvaluated (d/d’<1). This is why we sustain that even in the clas-
sic perceptron the artificial perception / learning is fuzzy (in terms of results). Be-
sides, the update procedure through which the memory of the perceptron changes can 
be a part of a fuzzy if-then Sugeno rule [17] also. For example, let us consider the 
following class of if-then linguistic control rules:  
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IF: 

C- and C+ are two separable classes 
of examples 

THEN: 
 

 

And  
W is a memory that must be trained  

the update rule 
(Wn+1,tn+1) = (Wn, tn) + 

U(SP(n), n) 
converges rapidly enough to 

a sufficiently well-trained  
memory W . 

And 
N is an well-chosen  

maximal number of epochs 
And 

R is a well-chosen real function hav-
ing the abscise as asymptote at +∞ 

And  
SP is an well-chosen procedure of 

selecting four examples on which the 
memory W is trained during an epoch 

 

 
instantiated as follows:  

- C+ contains 34 ‘A’ instances, each of them memorized as 8-bit unsigned in-

teger matrices of dimension 16x16, and C-contains 34 instances for each of 
the other characters, memorized in the same manner; 

- W is a memory randomly initialized;  
- N is 1000; 
- R n = n* log2 n /2n; 
- the selection procedure SP return the first two positive examples currently 

producing the smallest activations Xmin
1+ , Xmin

2+  and the first two negative ex-

amples currently producing the greatest activations Xmax
1- , Xmax

2- ; 

- the update rule assumes that:  
Wn+1 = Wn + Xmin

1+  + Xmin
2+  *R(n), tn+1 = tn - sqrt(||Wn||) 

Wn+1 = Wn - Xmax
1-  + Xmax

2- *R(n), tn+1 = tn + sqrt(||Wn||) 

 

Fig. 3. Convergence of all synaptic memory components along the increasing number of 
epochs 
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Fig. 4. Convergence of the neuronal threshold along the increasing number of epochs 

 

Fig. 5. Convergence of the minimum intraclass activation and maximum interclass activation, 
along the increasing number of epochs 

An implementation of the above fuzzy training rule produced the results presented 
in figures 3-5 after 43 epochs. The only problem is that the distance between the 

classes C-  and C  as it is artificially perceived by the neuron is approximately 
d’=216, whereas the actual distance between the two classes is approximately d=730, 
hence the artificial perception of the separation between the two classes of characters 

is undervaluated (i.e. d’/d<1). The perceived diameters of the classes C  and C-  
are 758 and 380, whereas the actual diameters of the two classes are 2019 and 3060, 
respectively.  

However, accordingly to a very simple Turing test [18], the human decisions on 
recognizing characters are binary and have nothing to do with the numerical represen-
tations mentioned above. This is an example in which the human perception is  
actually crisp, whereas the artificial perception is actually fuzzy (partial, imprecise).  
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4 Human vs. Artificial Perception of Similarity in Iris 
Recognition 

The most popular way of comparing two binary iris codes is to compute the Hamming 
distance or the Hamming similarity for the two codes. In this case, the similarity score 
is a fuzzy value within [0, 1]. However, as seen in [13], Hamming distance corres-
ponds to an artificial perception encoded as a synaptic memory referred to as an un-
trained discriminant direction (see the formulae 1-4 in [13]).  

In iris recognition, the training of the discriminant directions aims to diminish the 
confusion between the fuzzy intervals that underlay the biometric decisions (see Fig.1 
from [11], and Fig. 4-5 from [3], for example).  

An incipient stage of training the discriminant directions would mean that a narrow 
safety band (Fig. 2-3 from [13]) separates the two classes of imposter and genuine 
scores. An advanced stage of training the discriminant directions means that a com-
fortably wide safety band (Fig. 4-5 from [13]) separates the two classes of genuine 
and imposter scores. Nevertheless, as seen in Fig. 2-5 from [13], the biometric deci-
sions corresponds to a fuzzy partitioning of the [0,1] interval, regardless the fact that 
the discriminant directions are trained (sufficiently) or not, i.e. in iris recognition, the 
artificial perception of the similarity between individuals is fuzzy.  

On the contrary, accordingly to a very simple Turing test, the human decisions on 
recognizing irides are binary (as seen in Fig. 1.a [12]). This is another example in 
which the human perception is actually crisp, whereas the artificial perception is ac-
tually fuzzy (partial, imprecise).  

5 Conclusion 

Zadeh insisted on the ideas that (human) “perceptions, in general, are both fuzzy and 
granular or, for short, f-granular” and that “in much, perhaps most, of human reason-
ing and concept formation, the granules are fuzzy”. According to this point of view, 
human reasoning, human concepts and human perceptions are f-granular.  

On the contrary, in the two practical examples given here (Optical Character Rec-
ognition and Iris Recognition) in order to illustrate the concept of artificial perception, 
the situation is a little bit different. In both cases a simple Turing test shows that ar-
tificial perceptions of the dissimilarity between two different characters and between 
two different irides are fuzzy, whereas the corresponding human perceptions are, in 
fact, crisp. Despite being contradictory to Zadeh’s belief expressed above, this fact 
comes very naturally, because ultimately, a perceptron emulates the human intelligent 
behavior through an artificial one, which compared to the original is weakened and 
imprecise enough.  
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