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Abstract. When used for function approximation purposes, neural networks 
and neuro-fuzzy systems belong to a class of models whose parameters can be 
separated into linear and nonlinear, according to their influence in the model 
output. This concept of parameter separability can also be applied when the 
training problem is formulated as the minimization of the integral of the (func-
tional) squared error, over the input domain. Using this approach, the computa-
tion of the derivatives involves terms that are dependent only on the model and 
the input domain, and terms which are the projection of the target function on 
the basis functions and on their derivatives with respect to the nonlinear para-
meters, over the input domain. These later terms can be numerically computed 
with the data. 

The use of the functional approach is introduced here for Takagi-Sugeno 
models. An example shows that this approach obtains better results than the 
standard, discrete technique, as the performance surface employed is more simi-
lar to the one obtained with the function underlying the data. In some cases, as 
shown in the example, a complete analytical solution can be found. 
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1 Introduction 

One of the crucial problems of fuzzy rule based modelling is how to find an optimal 
or at least a quasi-optimal rule base for a certain system. If there is a human expert 
who can tell the rules explicitly or if there is a linguistic description of the modelled 
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system available then the fuzzy rule base can be easily constructed. However, in most 
applications, none is available. In this case some automatic method to determine the 
fuzzy rule base must be employed. Some of these methods were inspired by the evo-
lutionary processes can be found in nature. Apart from the evolutionary methods, in 
the area of neural networks there are training algorithms known and these can be ap-
plied to fuzzy systems as well. These are useful when there are only numerical data 
about the problem. 

Provided some assumptions are met in the rule base and in the membership func-
tions, a fuzzy system, and in particular, a Takagi-Sugeno (TS) fuzzy system, can be 
seen as a system whose parameters can be separated, according to their influence on 
the output, as linear and nonlinear. This is shown in Section 2. 

Having in mind that the ultimate goal of modelling is to obtain a “good” approxi-
mation of the function behind the data, and not to the data in itself, the modelling 
problem can be formulated as the minimization of the integral of the (functional) 
squared error, along the input domain, and not as the usual sum of the square of  
the errors. This new formulation, denoted as functional approach, is discussed in  
Section 3.  

Section 4 applies this new formulation, employing the separability property, to TS 
systems. This is achieved using a simple example. In the functional approach, the  
training algorithms employ two types of terms. i) terms dependent only on the model 
and the input domain, and independent on the target function, and ii) other terms 
which are dependent on the model, the target function and the input domain. As the 
latter are integrals, which have to be approximated, in Section 5 we compare the per-
formance of different numerical integration techniques. Conclusions and future work 
directions are drawn in Section 6. 

2 TS Fuzzy Systems 

It is assumed that the model consists of a rule base: 

 ( ){ }iR R=  (1) 

where, for the SISO case: 

( ) ( ) ( ) ( ) ( )
0 1:: if (  is ) then y ; 1, ,i i i i iR x X u u x i r= = + =                    (2) 

r being the number of rules. 
Given a crisp input datum x, assuming that for implementing logic connectives 

such as the conjunction and implication, the t-norm used is the algebraic product, the 
output, y , of this model is: 
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where ( )iX
μ is the membership function for the input linguistic term ( )iX . Assuming 

that the membership functions form a Ruspini partition, the denominator of (3) is 
unitary. Therefore, (3) can be written as Ty = φ u , with 

 (1) (2) ( ) (1) (2 ) ( )( ) ( ) ( ) ( ) ( ) ( )r r

T

X X X X X X
x x x x x x x x xμ μ μ μ μ μ =  φ      (4) 

and 

 (1) (2) ( ) (1) (2) ( )
0 0 0 1 1 1...T r ru u u u u u =  u   (5) 

The generalisation for the multi-input, single output case is straightforward. Assum-
ing k inputs, ni linguistic terms for the ith input, and denoting by 

 (1) (2) ( )
( )

r
i i i iu u u =  u   (6) 

and by  

 ( ) (1) (1)

1

( ) ( ) ( )k
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i
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X

μ μ μ  
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μ x x x x , (7) 

eqs (4) and (5) can be transformed to: 

 [ ]1( ) ( ) ( )T
k=φ μ x μ x Ix μ x Ix  (8) 

and 

 (0) (1) ( )
T

k =  u u u u  (9) 

In this work trapezoidal membership functions will be used. The jth (out of pi) interval 
on the ith input is defined as: 
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The jth membership in the ith dimension is defined as: 
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As it can be seen, from the previous equations, the u parameters appear linearly in the 
output, and the λ parameters nonlinearly. 

In this work, the model parameters are estimated with data, a process known in the 
neural network jargon as training. Considering  m  patterns, y is the output of the 

model, a vector with m elements, and X is the input matrix, with dimensions m*n (n 
is the number of inputs). It is assumed that the model has un  linear parameters and 

vn  nonlinear parameters1. Γ is the matrix of the basis functions (dimensions m * un ), 

so that the output can be seen as: 

 ( ) ( ), , ,=y X v u Γ X v u  (12) 

The training criterion normally employed is 

 ( ) ( ) ( )2 2

2 2
, , , ,

, , ,
2 2d

−
Ω = =

t Γ X v u e X v u t
X v u t , (13) 

where t is the target vector, e is the error vector and 
2

 is the Euclidean norm. As 

the model parameters can be decomposed into linear and nonlinear ones, we can de-
termine the optimal value of the linear parameters with respect to (wrt) the nonlinear 
ones: 

 ( ) ( ) 1
ˆ , , T T

d

− += =u X v t Γ Γ Γ t Γ t  (14) 

where the symbol ’+’ denotes a pseudo-inverse. We can incorporate this value in the 
usual criterion and introduce a new criterion (independent on the linear parameters): 

 ( )
222

2 2 2
ˆ

, ,
2 2 2

d
d

⊥

+−−
Ψ = = =

ΓP tt ΓΓ tt Γu
X v t  (15) 

Where ( ), ⊥

+= −Γ x vP I ΓΓ  is the projector on the orthogonal complement of the space 

spanned by the basis functions. 
The concept of separability of parameters in general nonlinear least-squares prob-

lems has been introduced in [1]. A good review on the applications of this concept 
can be found in [2]. In the context of neural networks, it has been introduced in [3], 
for Multilayer Perceptrons, in [4] for Radial Basis Functions and in [5] for B-splines 
and neuro-fuzzy systems. 

3 The Functional Approach 

Let us assume that the function to approximate was known, and let it be denoted by 

( )t x . In this case, (12) and (13) can be replaced by: 

                                                           
1 From now on, we shall denote, for compatibility with previous works, the nonlinear parame-

ters as v. 
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 ( ) ( )Ty , , ,=v u φ v ux x  (16) 

and  
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Notice that in (16) x  is now a multi-dimensional real variable: 

 1 ,, , ,i nx x x=x    (18) 

and that in (17) 
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t  and e  are also real functions. φ  is a vector of basis functions, and not a matrix as 

in the discrete case. The Jacobian is given as: 
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and the gradient as: 
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Equating the first eq.of (21) to 0, we have: 
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As in the discrete case, we can incorporate this value in criterion (17), and have a new 
criterion, independent of the linear parameters: 

 ( ) min min min

21

min, , ,
2

MAX MAX MAX

T T
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x x x
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3.1 Training Algorithms 

If we want to apply the Back-Propagation (BP) algorithm [6] to train the model: 
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We need to compute the gradient of criterion (23). It can be proved (please see [7] for 
details) that it can be obtained as: 
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Therefore, to use this methodology, we need to have available: 
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which are independent on the function to approximate, and can be obtained analytical-
ly for the model at hand.  

The only terms involving the function to approximate are: 
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In a practical application the underlying function is not known (otherwise it should be 
used). The integrals (28) and (29) can be numerically approximated using the training 
data. 
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4 An Example 

We are going to use a very simple example to illustrate how the functional approach 
can be applied to TS systems. Our aim will be to approximate the function 

( ) ( )10Sin x
t x

x
= , over the domain [ ]1,1x ∈ −  with a TS system, with only 2 rules. 

For this domain, 
min

MAX

T d φφ
x

x

x  can be given as: 
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Notice that, as the matrix is symmetric, only the upper-diagonal elements are shown. 
Notice also that, due to lack of space, we could not shown (26), the inverse of (30). 

For the same reason, we can not show (27). Instead, we will illustrate 
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We can train the TS model analytically. Equation (24) will be used, with 0.02η = , 

for 5 different starting points. The training will be stopped whether when a maximum 
number of 200 iterations is reached, or when the following criteria are simultaneously 
satisfied: 
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where  

 [ ] [ ]( )1k kβ τ= + Ψ  (34) 

and τ is a measure of the desired number of correct digits in the objective function. 
This is a criterion typically used in unconstrained optimization [8]. In all examples, 

610τ −= is used. 
As an order relation must be preserved for the nonlinear parameters (i.e. 2 1λ λ> ), 

the standard BP algorithm needs to be modified. In order to maintain the same search 
direction, the update vector ( [ ]s k = [ ]kη− g ), when a violation is detected 

( [ ] [ ]1i ik k+ <λ λ ), is reduced of a factor g so that the position of the (i+1)th knot is 

located half-way between the previous distance of the two corresponding knots: 
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λ λ
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Therefore, when there is a violation of the order relation, the learning rate for the BP 
algorithm is updated at that iteration. 

Figure 1 shows the analytical performance surface, together with the results of five 
different trainings. 

As it can be seen, even with a very simple example, several local minima exist. 
The surface is symmetric, and there are two global minima, located at  [-0.357,-0.116] 
and [0.116, 0.357], with a value of 4.4.for criterion (23). 

 

Fig. 1. Analytical performance surface  



 Exploiting the Functional Training Approach in Takagi-Sugeno Neuro-fuzzy Systems 551 

The flowing table illustrates the different trainings. 

Table 1. Analytical trainings 

va[1] [-0.90,-0.85] [-0.90,0.90] [0.85,0.90] [-0.5,0.6] [-0.5,0.4] 

n 55 26 55 200 200 

[ ]a nΨ  5.22 7.01 5.22 4.82 6.15 

Va[n] [-1.0,-0.087] [-0.28,0.28] [0.088,1.0] [0.182,0.395] [-0.28,0.06] 

 
The first line shows the starting points, and n is the number of iterations taken by 

the training. Notice that no training attains the global minima. This is due to the set-
ting of the maximum number of iterations (200). The two last evolutions would attain 
the global minima with a few more iterations. 

If the function is not known, but only data is available, a same methodology can be 
employed, this time approximating the integrals (28) and (29). In a first case, we  
shall use a Gaussian quadrature algorithm. In this technique, the integral is  
approximated as: 

 ( ) ( )max

min 1

mx

i ix
i

f x dx f x w
=

≈  (36) 

Notice that the abscissas ix are chosen by the method. The following figure and table 

illustrate the results obtained with m=25. 
 

 

Fig. 2. Gaussian quadrature performance surface 

The performance surface is very similar with the analytical one. The different  
evolutions go to the same minima, as it can be also seen in Table 2. 
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Table 2. Gaussian quadrature trainings 

vG[1] [-0.90,-0.85] [-0.90,0.90] [0.85,0.90] [-0.5,0.6] [-0.5,0.4] 

n 102 39 55 29 32 

[ ]G nΨ  5.02 7.01 4.99 4.27 4.15 

vG[n] [-1.0,-0.118] [-0.29,0.29] [0.121,1.0] [0.12,0.41] [-0.31,-0.16] 

[ ]a
a v n

Ψ  5.34 7.01 5.36 4.49 4.49 

 
The last line in the table shows the value of the analytical criterion, evaluated for 

the last parameters values obtained by the training performed with the data, using 
Gaussian quadrature. As it can be seen, comparing with Table 1, similar values were 
obtained. 

4.1 Different Integration Techniques 

As pointed above, although the last training was performed with data, the training 
inputs were obtained with Gaussian quadrature. In practice, we do not usually have 
control over the training data. For this reason, we conducted afterwards a series of 
trainings, where the input data was randomly generated. Different integration tech-
niques were also compared. In all experiments, 25 input patterns were used, In order 
to compare the different methods, we fixed the extrema to -1 and +1. Therefore, only 
23 of the 25 values were randomly generated.  

Besides comparing the different integration techniques, we also compared the 
functional approach with the standard, discrete training, minimizing (15). The follow-
ing figure and table show the results obtained. 

 

Fig. 3. Discrete performance surface 
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Table 3. Discrete trainings 

vd[1] [-0.90,-0.85] [-0.90,0.90] [0.85,0.90] [-0.5,0.6] [-0.5,0.4] 

n 2 200 2 3 4 

[ ]d nΨ  181.31 112-81 172.82 63.43 72.54 

vd[n] [-0.90,-0.85] [-0.58,1] [0.85,0.90] [0.12,0.39] [0.17,0.18] 

[ ]G
a v n

Ψ  12.21 9.00 12.21 4.65 5.35 

 
Comparing these results with the analytical results, and the Gaussian quadrature 

ones, we can conclude that for 3 of the 5 initial points, very different (worse) results 
were obtained. 

Subsequently, with the same random data, the functional methodology was expe-
rimented, with different integration techniques. 

The first one used was the forward integration. The integral is approximated as: 

 ( ) ( )( )max

min

1

1
1

mx

i i ix
i

f x dx f x x x
−

+
=

≈ −  (37) 

The results obtained are shown in the fig. and table below. 

 

Fig. 4. Forward integration 
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Table 4. Forward integration trainings 

vf[1] [-0.90,-0.85] [-0.90,0.90] [0.85,0.90] [-0.5,0.6] [-0.5,0.4] 

n 15 7 42 46 3 

[ ]f nΨ  4.82 9.54 4.69 7.02 5.21 

vf [n] [-0.43,-0.14] [-0.85,0.95] [0.08,0.81] [-0.99,0.12] [-0.87,-0.04] 

[ ]f
a v n

Ψ  4.70 9.75 5.71 7.85 5.67 

 
The results obtained are better than the discrete training for 2 out of the 5 initial 

points. The 2nd and the 5th trainings are similar and only in the 4th evolution the dis-
crete version is clearly better. 

The next integration method tested was the backward approximation: 

 ( ) ( )( )max

min

1

1 1
1

mx

i i ix
i

f x dx f x x x
−

+ +
=

≈ −  (38) 

The results obtained are summarized in Fig. 5 and Table 5. 

 

Fig. 5. Backward integration 

Table 5. Backward integration trainings 

vb[1] [-0.90,-0.85] [-0.90,0.90] [0.85,0.90] [-0.5,0.6] [-0.5,0.4] 

n 7 9 59 7 3 

[ ]b nΨ  11.60 9.16 5.14 4.70 5.09 

vb [n] [-0.88,-0.75] [-0.80,0.98] [0.08,0.32] [-0.99,-0.05] [-0.87,-0.09] 

[ ]b
a v n

Ψ  12.16 9.64 4.58 5.32 5.51 
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Subsquently, a trapezoidal technique was experimented. In the trapezoidal, or Tus-
tin method, the approximation employed is: 

 ( ) ( ) ( )( )( )max

min

1

1 1
1

1

2

mx

i i i ix
i

f x dx f x f x x x
−

+ +
=

≈ + −  (39) 

The results obtained are summarized below. 

 

Fig. 6. Trapezoidal integration  

Table 6. Trapzoidal integration trainings 

vt[1] [-0.90,-0.85] [-0.90,0.90] [0.85,0.90] [-0.5,0.6] [-0.5,0.4] 

n 6 2 24 22 12 

[ ]t nΨ  5.59 9.43 4.74 5.11 5.80 

vt[n] [-0.98,-0.16] [-0.95,0.86] [0.03,0.49] [-0.99,-0.02] [-0.99,0.18] 

[ ]t
a v n

Ψ  5.81 9.77 5.08 5.60 6.06 

 
The results are more consistent across the different initial points. The last training 

technique experimented was a polynomial interpolation algorithm, available in Ma-
thematica©. The order 3 was experimented. 
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Fig. 7. 3rd order polynomial integration 

Table 7. 3rd order polynomial integration trainings 

vp[1] [-0.90,-0.85] [-0.90,0.90] [0.85,0.90] [-0.5,0.6] [-0.5,0.4] 

n 35 12 45 35 15 

[ ]p nΨ  6.46 9.77 4.31 3.88 5.66 

vp[n] [-0.91,0.03] [-0.91,0.74] [0.071,0.36] [0.08,0.19] [-0.39,0.03] 

[ ]p
a v n

Ψ  6.34 9.51 4.65 5.59 5.32 

 
Finally, Table 8 compares the different methods tested, together with the analytical 

and the discrete methods. 
On bold we highlight the best results obtained with the random data. The discrete 

technique obtains the best values, for 3 out of the 5 starting points. In the other 2 
points very bad results were obtained, compared with the other functional approaches 

In a final test, 20 experiments were performed for each method, for each one of the 
5 starting points. The results are presented in terms of mean ( μ ) and standard devia-

tion (σ ). Table 9 presents these statistics for the optimal values of  the criteria  
optimized, and Table 10 shows the same statistics, but translated to the analytical 
criterion, evaluated at the final points for each different optimization. 
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Table 8. Comparison of different methods 

 [-0.90,-0.85] [-0.90,0.90] [0.85,0.90] [-0.5,0.6] [-0.5,0.4] 

[ ]a nΨ  5.22 7.01 5.22 4.82 6.15 

[ ]G
a v n

Ψ  5.34 7.01 5.36 4.49 4.49 

[ ]d
a v n

Ψ  12.21 9.00 12.21 4.65 5.35 

[ ]f
a v n

Ψ  4.70 9.75 5.71 7.85 5.67 

[ ]b
a v n

Ψ  12.16 9.64 4.58 5.32 5.51 

[ ]t
a v n

Ψ  5.81 9.77 5.08 5.60 6.06 

[ ]f
a v n

Ψ  6.34 9.51 4.65 5.59 5.32 

Table 9. Mean and standard deviation of the criteria optimized 

 [-0.90,-0.85] [-0.90,0.90] [0.85,0.90] [-0.5,0.6] [-0.5,0.4] 

d dμ σ±  119±56 71±28 136±37 56±13 54±14 

 

f fμ σ±  5.6±2.6 9.5±1.5 7.8±4.3 5.2±2.1 4.2±1.9 

b bμ σ±  9.7±3.0 7.7±3.7 3.5±2.4 4.1±3.1 4.0±2.5 

t tμ σ±  10.9±3.2 9.0±1.5 4.4±1.1 5.0±1.1 4.9±1.5 

p pμ σ±  10.2±3.5 7.5±2.7 9.1±3.3 3.1±2.3 3.2±2.5 

Table 10. Mean and standard deviation of the analytical criteria, for the optima found for each 
criterion 

 [-0.90,-0.85] [-0.90,0.90] [0.85,0.90] [-0.5,0.6] [-0.5,0.4] 

[ ]d
a a v n

μ σ± 11.8±1.7 7.5±2.2 12.2±0.03 5.7±1.3 5.5±0.84 

[ ]f
a a v n

μ σ± 6.0±2.1 9.3±1.0 8.3±3.3 6.0±1.2 5.4±0.2 

[ ]b
a a v n

μ σ± 11.6±1.2 9.7±0.1 5.4±0.5 5.9±1.1 5.8±0.6 

[ ]t
a a v n

μ σ± 11.5±2.1 9.7±0.1 4.9±0.4 5.8±0.9 5.4±0.2 

[ ]p
a a v n

μ σ± 9.4±3.5 7.7±2.4 8.8±3.5 5.3±1.0 5.2±1.6 
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The discrete criterion obtains the better results only for 1 out of the 5 initial points, 
and even for this case, with results very similar to the polynomial version of the func-
tional approach. Comparing the different integration schemes, we can conclude that, 
for this particular example, the polynomial integration technique is the best method, 
as it obtains 2 best results overall, and 3 out of 5, comparing only the functional ap-
proaches. 

5 Conclusions 

In this paper we have shown how to apply the functional methodology for TS fuzzy 
models, with trapezoidal membership functions, that form a Ruspini partition of the 
input space. 

The functional approach offers important advantages over the standard, discrete 
approach. We have not mentioned that it achieves important savings in computational 
time, if the training data is large (for results please see [9]). We have shown, pre-
viously and in this paper that, in most of the cases, it obtains a better approximation 
over the whole input domain than the discrete training algorithms. This is due to the 
fact that the functional performance surface is closer to the analytical performance 
surface than the discrete one. Another important point of this methodology is that it 
allows determining the local minima and the performance of a specified model, if the 
function generating the data is known. 

As the performance of the functional approach is strongly related with the numeri-
cal integral approximation used, we have compared different alternatives and con-
cluded that, for the example considered, a polynomial interpolation algorithm of order 
3 should be chosen.  The results, however, are not conclusive and further work on this 
topic should be done, and extended for the multi-dimensional case. 
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