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Abstract. Many neural network models have been mathematically demonstrated 
to be universal approximators. For accurate function approximation, the number 
of samples in the training data set must be high enough to cover the entire input 
data space. But this number increases exponentially with the dimension of the 
input space, increasing the space- and time-complexity of the learning process. 
Hence, the neural function approximation is a complex task for problems with 
high dimension of the input space, like those based on signal spectral analysis. In 
this paper, some aspects of neural estimation of signal spectral components are 
discussed. The goal is to find a feed-forward neural network (FFNN) model for 
estimating spectral components of a signal, with computational complexity com-
parable with Fast Fourier Transform (FFT) algorithm, but easier to implement in 
hardware. Different FFNN architectures, with different data sets and training 
conditions, are analyzed. A butterfly-like FFNN (BFFNN) was proposed, which 
has much less weight connections and better performance than FFNN. 

Keywords: Feed-forward neural networks, neural estimator, spectral  
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1 Introduction 

Considering the approximation problem with neural networks (NN), the main design 
objective is to find a neural network which is a good approximator to some desired 
input-output mapping. Many neural network models have been mathematically dem-
onstrated to be universal approximators.  

The related results include proofs for the conventional multilayer perceptron [5], 
the radial basis function (RBF) NN [16], the rational function NN [13].  

The feed-forward neural networks (FFNN), with a variety of activation functions, 
can be used as universal approximators [4], [5], [12], [8]. For accurate function ap-
proximation and good generalization, many aspects must be taken into account,  
regarding neural network topology [2], [18], training data set selection, and learning 
algorithm [3], [6]. 

For problems with small dimension of the input space, the main learning concern  
is related to over-training, which can lead to poor generalization capability of the 
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network and this fact must be considered when the neural network is designed and 
trained. In addition, the network size must be bounded, much less than the number of 
training samples. Otherwise, the network just memorizes the training samples, result-
ing in poor generalization [6].  

If the dimension of the input space is big, the time complexity of the learning 
process increases, and good approximation capability is hard to be reached for the 
entire domain of interest in the input space [1]. The role of input dimension on func-
tion approximation is studied in [10], for various norms, and target sets using linear 
combinations of adjustable computational units. It results that for good approxima-
tion, input upper bounds must decrease, as the input space dimension increases, which 
means that the smoothness of function being approximated would have to be in-
creased. 

The theory of function approximation by neural networks is the basis to many 
neural applications such as pattern recognition, data compression, time series predic-
tion, process state estimation, adaptive control, etc.  

In signal processing, there are many ANN applications combined with spectral 
analysis, using Fast Fourier Transform (FFT) algorithm. Frequently, the problems 
have small dimension of the input space, and frequency spectra are used as input data 
for ANN. In this case, neural networks are used as classifiers of signal spectral com-
ponents computed with FFT [14], [15].  

If the input space dimension is high, ANN applications focus on few spectral com-
ponents, like in power industry, where FFNN are widely used for harmonics analysis 
and prediction [20], [11]. FFT computation using cellular neural networks (CNN) was 
studied in [17], [19], where cell neighborhood is defined from functional rather than 
topological point of view. In CNN, each cell is connected only to its n-nearest neigh-
borhood cells.  

In this paper, some aspects of neural estimation of signal spectral components are 
discussed. The goal is to find a FFNN model to estimate several spectral components, 
with computational complexity comparable with FFT algorithms. Such FFNN spec-
tral estimator has advantages over FFT algorithm, even if the model is implemented 
on sequential machines. It is easier to implement than FFT algorithm, which requires 
specialized processors with bit-reversed addressing mode. 

Different FFNN architectures, with different data sets and training conditions, are 
analyzed. A new FFNN was proposed, with local connections of the inputs to the 
hidden layers, forming input butterflies like in radix-2 FFT algorithm. 

The paper is organized as follows. In section 2 some elements of signal spectral 
analysis are discussed. In section 3, aspects of neural approximation and generaliza-
tion, along with neural prediction techniques are presented. Section 4 describes some 
simulation results based on different neural architectures, training data sets and noise 
conditions. Conclusions are presented in section 5. 

2 Elements of Signal Spectral Analysis 

A physical signal x(t) has finite energy, and it is referred as a finite energy process. If 
all process characteristics are time invariant, then the process is called stationary. If a 
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stationary process has its mean values equals with corresponding temporal mean val-
ues across of a representative process instance, then the process is called ergodic. 
Signal types as ergodic processes are studied in this paper. 

Let xk(t) be a representative instance of an ergodic process x(t) into finite time in-
terval T, as shown in Fig. 1.  
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Fig. 1. Representative instance xk(t) of the ergodic process x(t) 

The energy of xk(t) instance is: 
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where Xk(jω) is the continuous-time Fourier transform of x k(t). If the process energy 
is finite, then the integrals in (1) are bounded. 

In signal spectral analysis, frequency spectra are desired, along with spectral com-
ponent characteristics, such as magnitude of spectral components, and signal energy 
or power distribution into the spectrum. Frequency spectra are computed, according to 
input signal type, continuous- or discrete-time signal. For continuous-time signals 
x(t), integral transforms, like continuous-time Fourier transform (CTFT), are used to 
compute frequency spectra, which are complex continuous functions in the frequency 
domain. CTFT analytical expression is: 
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Digital signal processing is based on discrete-time signals x(n), as measurements of 
physical continuous-time signals x(t), at discrete moments of time, t = nTS , where TS 
= sampling period, and n = sampling time index (integer). The samples are obtained 
with the sampling frequency fS = 1/TS. In this case, frequency spectra are computed 
with discrete transforms, like discrete-time Fourier transform (DTFT), which are also 
complex continuous functions in the frequency domain. DTFT analytical expression 
is obtained by changing integral symbol into infinite series with discrete moments of 
time: 
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DTFT  is a continuous periodic function, with a period of ωS = 2π fS. = 2π /TS. This 
can be easily verified in (3), by changing variable ω with ω + ωS. In general, DTFT 
provides an approximation of CTFT, being applied on infinite input data series. If fS 
→ ∞, then TS → dt and DTFT → CTFT. But in practical applications it is impossible 
doing computations on infinite series. Even for finite series with very long sequences 
of input data, the computations are very difficult. 

Discrete Fourier Transform (DFT) is a discrete transform for spectral analysis of 
finite-domain of discrete-time functions. It is a particular type of DTFT, applied on a 
time-window with a finite number (N) of input samples of a longer input data se-
quence. As a result, DFT computes only N different frequency components, denoted 
Xk, equally spaced into a finite frequency range, corresponding to the first period of 
DTFT frequency domain, [0, ωS]. DFT is an approximation of DTFT on this frequen-
cy domain, which gets better as the number N increases.  

DFT analytical expression is obtained by sampling DTFT in frequency domain, for 
the finite input sequence, denoted xn, n = 0 … N-1: 
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Fast Fourier Transform (FFT) is an efficient class of algorithms to compute DFT and 
its inverse (it is not another discrete transform). FFT computes more quickly the fre-
quency components of the discrete spectrum than DFT expressed in (4). Considering 
a finite input sequence of N samples, the computing complexity of DFT is O(N2), 
which means that the number of operations needed to obtain the result is proportional 
with N2. By contrast, FFT algorithms have O(N·log2N). The difference in speed is 
important, especially for big values of N, when computational time can be reduced by 
several orders of magnitude (e.g. if N = 1024 = 210, then O(N2) = 1048576, while 
O(N·log2N) = 10240). 

There are many forms of FFT algorithms, with decimation-in-time and decimation-
in-frequency. Radix-2 FFT algorithms need the length of input sequence (N) to be a 
power of 2. Other FFT algorithms need N to be equal to the product of mutual prime 
numbers (e.g. 9·7·5 = 315 or 5·16 = 80). In addition, FFT algorithms for real input 
data are about 60% effort of the same sized complex data FFT.  

In general, a radix-n FFT algorithm recursively breaks down the DFT of composite 
size N = n·m into n smaller DFTs of size m, where n is the radix number. By far the 
most commonly used radix-2 FFT is the Cooley–Tukey algorithm, which successively 
breaks a DFT of size N into 2 smaller DFTs of size N/2. In this case, the shape of the 
data-flow diagram is called butterfly diagram. At its basis, the butterfly diagram takes 
2 inputs (x1, x0) and generates 2 outputs (y1, y0).  

A decimation-in-time FFT algorithm with the length of input sequence N = 2p, 
based on primitive N-th root of unity ω = exp(-j·2π / N) uses butterfly forms: 
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where k = 0 … N-1 and it depends on the part of the transform to be computed. 
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3 Aspects of Neural Estimation Using FFNNs 

Neural network models are specified by the net topology, node characteristics, and 
training or learning rules. Static neural network (SNN) models, like FFNN, are cha-
racterized by neuron equations without memory, meaning that their outputs are func-
tions only of the current inputs. SNNs implement nonlinear transformations of the 
form y = G(x), with input vectors x ∈ ℜn, and output vectors y ∈ ℜm, where n and m 
represent the vector dimensions of x and y, respectively [7]. In this paper, FFNN 
models are used for neural estimation of signal spectral components. 

There are many aspects which must be solved when using FFNNs, regarding the 
optimal network topology, learning algorithms to deal with local minima, the condi-
tions to achieve good generalization, and efficacy in scaling to larger problems [7]. 
The most practical concerns are: the network size, time complexity of learning and 
network ability to generalize. 

The network size is important, but in general it is not known for a given problem. 
If the network is too small, it will not be able to give a good model of the problem. If 
the network is too big, it will give more solutions which are consistent with training 
data set, but they are all poor approximations of the problem [2].  

The training process consists in finding the correct set of network parameters 
(weights and biases), which produces the desired mapping for the training data set. 
Time complexity of learning is directly connected with the complexity of the prob-
lem. If the dimension of the input space is very large, then it is unlikely to determine 
if the correct set of weights and biases can be found in a reasonable amount of time 
[3]. This is the case when trying to approximate a function like FFT, with a huge di-
mension of the input space.  

One way to reduce the number of network weights is to use local connections of 
the inputs to the hidden layers, so that individual neurons in the hidden layers to 
process local regions of the input space [7]. 

Neural estimation of several spectral components of a signal is a case of approxi-
mation problem, with big dimension of the input space. The inputs are N consecutive 
signal samples of finite input sequence, denoted xn, n = 0 … N-1, and the outputs 
represent estimated amplitude of the desired spectral components. Unlike neural ap-
proximation of FFT, which tries to find an approximation into the entire input space, 
spectral estimation takes into account a much smaller input region, for signals with 
bounded variations in frequency and amplitude. 

At every k moment of time, the time-window contains a finite number (N) of time-
delayed samples, which form the input sequence of FFNN, as illustrated in Fig.2. The 
input sequence xn was denoted according with time moment considered: x0 = x(k-
N+1), …, xN-1 =  x(k).  

It can generally be assumed that any real data will have some degree of uncertain-
ty, generated by systematic or random errors. The estimates take into account the 
uncertainty in the target data or the uncertainty in the input data. Therefore, it is ne-
cessary for any learning system to be able to cope with such uncertainty, producing 
valid estimates based on real data sets. In this paper it is assumed that there is noise 
on the input data sets, generated by measurement system.  
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Fig. 2. Spectral component estimation using feed-forward neural networks 

For every step k, the estimation error e(k) is computed based on the computed and 
estimated values of spectral component amplitudes. 

The performance goal has to be small enough to assure good estimation perfor-
mance, but not too small to avoid loss of generalization. The mean squared error mse 
was chosen as performance function: 
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where M is the number of vectors in data sets. 

4 Experimental Results 

For simulations, signal data sets are generated, as sequences of samples from noisy 
signals with different narrow frequency bandwidth. In spectral analysis, time-
windows with N = 32 samples are used, as inputs to FFNN and also to FFT algorithm, 
which computes the desired frequency spectra. The sampling frequency was chosen 
as fS = 3200 Hz, resulting a frequency resolution of deltaf = 100 Hz. 

Using FFT algorithm, the computed frequency spectra have 32 spectral compo-
nents, of which only 16 are used, into the frequency domain [0, 1500] Hz. They form 
the desired frequency spectra in supervised learning process. 

Due to large dimension of the input space, ℜN, approximation of the entire FFT 
function is a very complex task. Hence, a smaller region of interest into the input 
space has to be selected, taking signals with narrow frequency bandwidth and 
bounded variations of magnitude. In this case, noisy signals in 2 narrow frequency 
intervals (3 components) are generated, I1 = [100, 300], and I2 = [700, 900] Hz.  
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The signals are series of sinusoidal functions, with variable number of spectral 
components, Nrsc = 1, 2 or 3, with discrete frequencies randomly selected in intervals. 
Also, the amplitudes and phases are bounded and randomly selected between the lim-
its: Aj ∈ [1,  3] and [-π/2, π/2], respectively. The signal analytical expression is: 
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The signal parameters are: Nrsc, Aj, fj, and ϕ j, j = 1 … Nrsc. For every parameter set 
with chosen Nrsc, a data sequence is generated. Time horizon includes Ntw = 10 dis-
tinct time-windows. Hence, each data sequence contains N·Ntw = 320 samples.  

In addition, signals can be affected by different types of noise (measurement, con-
version, digital processing), which in general is considered as additive noise z(t), re-
sulting a noisy signal: xz(t) = x(t) + z(t). In this paper, additive noise is considered 
with limited variations and uniform distribution. The signal-noise ratio is SNR = 20. 
An example of data set, with- and without noise, is shown in Fig. 3. 
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Fig. 3. Data sequence generated with 2 spectral components, fj1 = 300 Hz and fj2 = 200 Hz 

For FFNN training and testing, each input data sequence is organized as a matrix 
of type [N, Ntw], where each column contains N samples of time-windows. For exam-
ple, the samples of first time-window of data sequence, presented in Fig. 3, are illu-
strated on the left side in Fig. 4. The noisy samples are illustrated with continuous line 
and the noiseless values are drawn with dotted line. On the right side, spectral com-
ponents are represented with circle and diamonds marks, respectively. 

For every frequency interval, I1 and I2, 2 training sets, with Nrsc = 1 and 2, respec-
tively, and 3 testing sets, with Nrsc = 1, 2 and 3 are generated. The training sets con-
tains a number of Nlds = 50 data sequences, with Ntw = 10 time-windows each. So, 
each training set contains a number of learning vectors Nlv = 500. Similarly, the test-
ing sets contains a number of Ntds = 5 data sequences, with a total number of testing 
vectors Ntv = 50. 
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Fig. 4. Samples of first time-window, along with its computed FFT magnitude 

All neural networks were trained using Levenberg-Marquardt back-propagation al-
gorithm. During network learning and testing, the same performance criterion was 
used, the mean squared error (mse) of spectral component estimation related to initial 
noisy frequency spectrum, denoted msel and mset, respectively.   

Two different FFNN architectures were tested. The first type of FFNN architecture 
is a standard FFNN with one N-dimensional input, one hidden layer with Nhn neurons, 
and one N/2-dimensional output, as illustrated in Fig. 5. The neurons in hidden layer 
have tansig transfer functions, and output neurons have poslin transfer functions, so 
that only positive values to be generated for spectral component amplitudes. Two 
feed-forward neural networks were generated with different number of neurons in 
hidden layer, Nhn = 32, and 64, respectively.  

 

Fig. 5. First type of FFNN architecture, with one N-dimensional input 

The second type of FFNN architecture is a butterfly-like FFNN (BFFNN) with two 
N/2-dimensional inputs, two hidden layers with Nhn1 = Nhn2 =N/2 neurons, connected 
separately with the inputs, and one N/2-dimensional output, as illustrated in Fig. 6. 
The neurons in hidden layers have linear transfer functions, and output neurons have 
poslin transfer functions.  

The N input data samples are separated in two N/2-dimensional inputs, in the same 
manner as in radix-2 FFT algorithm to form butterfly diagram. The samples with even 
index are grouped into the first neural input, and the odd index samples form the 
second neural input. In this way, better performance than FFNN is obtained with less 
effort (much less weight connections). 
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Fig. 6. Butterfly-like FFNN architecture, with two N/2-dimensional inputs 

The training and testing results for 3 NNs are represented in Table 1. The parame-
ter mset1 represents the testing performance for testing data sets with Nrsc = 1, while 
mset2 is for testing data sets with Nrsc = 2. It can be observed that butterfly-like  
FFNN has much better performance than FFNN, and mse has similar values in both 
frequency ranges.  

Table 1. Network Performance for Different Neural Predictors 

Freq. 
Range 

Nrsc 
FFNN with Nhn = 32 FFNN with Nhn = 64 Butterfly-like FFNN 
msel 
·10-6 

mset1 
·10-6 

mset2 
·10-6

msel 
·10-6

mset1 
·10-6

mset2 
·10-6

msel 
·10-6

mset1 
·10-6 

mset2 
·10-6 

I1 
1 5.89 6.244 3.246 5.93 6.215 5.81 0.331 0.369 7.494 
2 3.29 6.461 3.342 3.02 6.31 3.01 1.38 2.218 0.845 

I2 
1 5.99 6.310 3.560 6.12 6.227 9.665 0.331 0.379 7.108 
2 3.81 6.799 3.483 3.28 6.477 3.345 1.32 0.378 0.768 

5 Conclusions 

In this paper, some aspects of neural estimation of signal spectral components are 
discussed. Different FFNN architectures, with different data sets and training condi-
tions, are analyzed. A butterfly-like FFNN (BFFNN) was proposed, which has much 
less weight connections and better performance than FFNN.  
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