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Abstract. An accurate sleep staging is crucial for the treatment of sleep disord-
ers. Recently some studies demonstrated that the long range correlations of 
many physiological signals measured during sleep show some variations during 
the different sleep stages. In this study, detrended fluctuation analysis (DFA) is 
used to study the electroencephalogram (EEG) signal autocorrelation during 
different sleep stages. A classification of these stages is then made by introduc-
ing the calculated DFA power law exponents to a K-Nearest Neighbor classifi-
er. Our study reveals that a 2-D feature space composed of the DFA power law 
exponents of both the filtered THETA and BETA brain waves resulted in a 
classification accuracy of 94.44%, 91.66% and 83.33% for the wake, non-rapid 
eye movement and rapid eye movement stages, respectively. We conclude that 
it might be possible to build an automated sleep assessment system based on 
DFA analysis of the sleep EEG signal. 
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1 Introduction 

Sleep is not just a constant state controlled by metabolic needs for the body being at 
rest. Instead, sleep consists of different well-defined sleep stages, namely, wake 
(WK), rapid eye movement (REM) and non-REM sleep. In a normal restorative sleep, 
these stages follow a well-structured temporal order [1].  

For more than 40 years, visual assessment of wakefulness and sleep in clinical 
sleep studies has been based on standard manual of Rechtschaffen and Kales (R&K) 
[2]. Although this manual is considered the gold standard inside sleep research com-
munity, a considerable amount of research has been carried to define methods that 
would give a more detailed and accurate sleep description of sleep macrostructure and 
overcome the known limitations of the R & K manual [3-5]. 
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During recent decades, multitude methods aiming at objective, continuous-scale 
quantification of sleep depth have been presented [4, 6, 7]. Most of the important 
early findings of clinical sleep medicine were based on period analysis, which makes 
it possible to carry out time–frequency analysis even visually for properly band-pass 
filtered data [4].  Hjorth parameters were introduced to characterize amplitude, time 
scale and complexity of the EEG through time-domain operations and were exempli-
fied to be applicable in the analysis of objective sleep depth [8].  More recently, more 
studies on sleep staging have been conducted including: at least stochastic complexity 
measures [9], relations of certain spectral bands [10-12], models on EEG micro-
continuity [13], Hidden Markov Models [14], segmentation approaches [15], k-means 
clustering based feature weighting combined with K-Nearest Neighbor and decision 
tree classifier [16], and Fuzzy logic combined with  genetic algorithm [17]. 

The electrophysiological activities on the cortex reflected by EEG vary with the 
electrophysiological activities of the nerve cell in a special part of brain. When people 
are performing some mental tasks, the EEG signal shows highly non-stationary and 
non-linear characteristics. The detection of the mental EEG properties was studied 
using detrended fluctuation analysis (DFA) [18]. DFA is a new method recently in-
troduced for analyzing power-law long-range correlations in a variety of non-
stationary time series. DFA was used to characterize long-rang correlations between 
nucleotide sequences [19]. The advantage of the DFA method is that it systematically 
eliminates trends of various order caused by imperfect measurement [20]. 

Recently researchers applied the DFA for the analysis of the physiological time se-
ries as the heart rate variability (HRV) [21, 22] and breathing rate variability (BRV) 
intervals during sleep [23]. These studies revealed that both the HRV and BRV show 
high autocorrelation exponents during both WK and REM stages while they lose au-
tocorrelation during NREM sleep stage. 

In this paper, we used DFA to study the correlation properties of the EEG signal 
and its filtered components (Alpha, Beta, Delta and Theta) during various sleep stag-
es. Our aim was to gain better understanding of the relative importance of the DFA-
derived features for automated sleep staging. The DFA power-law exponents derived 
from a single EEG signal were then used to design a K-Nearest Neighbor- based clas-
sifier for sleep stages detection with a high degree of accuracy. 

2 Subjects and Methods 

2.1 Subjects and Sleep Recording 

Twelve subjects aged 20-32 underwent one overnight polysomnographic recording 
which comprised EEG signal acquisition (4 channels, Ag/AgCl electrodes placed 
according to the 10-20 International System referred to linked earlobes: C3, C4, F3, 
F4). Recordings were carried out using Alice Polysomnogramic System (Respironics, 
Inc.). The signals were sampled at 100 Hz using 12-bit A/D precision and stored on 
hard disk for further analysis.  
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2.2 Sleep Scoring 

Sleep stages were initially scored and labeled using the automated scoring algorithm 
of Alice Sleepware software then the scored signals were reviewed by a specialist for 
correction according to standard criteria (R&K) on 30-second epochs. For subsequent 
analysis, the labeled sleep stages were grouped into three classes: “NREM sleep”, 
“REM sleep” and “wakefulness”. Nine minutes for each sleep stage were extracted 
from each patient EEG record to be investigated. The first and last epochs of each 
sleep stage is excluded from our analysis in order to avoid the effect of transitions 
between sleep stages. Thus, the whole dataset is composed of 108 min/sleep stage or 
324 min representing all the stages.  

2.3 EEG Signal Analysis 

The raw EEG signal was introduced to a filter bank as shown in Fig. 1 to separate 
known brain waves: Delta, Theta, Alpha and Beta waves. The filtered signals are 
shown in Fig 2. Each wave was then segmented by 1 minute long window and studied 
separately during each sleep stage using DFA to reveal the variations in the autocorre-
lation properties of each of these waves during various sleep stages. 

2.4 Detrended Fluctuation Analysis(DFA) 

DFA is a technique used to characterize the correlation structure of non-stationary  
time series.  DFA reveals the properties of non-stationary time series by calculating 
the scaling exponents which index the long-range power-law correlations. The DFA 
procedure [19, 20] consists of four steps. 
 

 

Fig. 1. Block diagram of the filter bank system 
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Fig. 2. The filtered EEG signals: Delta, Theta, Alpha, and Beta 

• Step 1: Determine the “profile” 
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of the data series kτ of length N and a mean τ . 

• Step 2: we divide Y (i) into Nt = int(N / t) non-overlapping segments of equal 
length t. Since the length N of the series is often not a multiple of the considered 
time scale t, a short part at the end of the profile may remain. In order not to dis-
regard this part of the series, the same procedure is repeated starting from the op-
posite end. Thereby, 2Nt segments are obtained altogether. 

• Step 3: Calculate the local trend for each of the segments by a least-square fit of 
the data. Then determine the variance 
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for each segment υ, υ = 1,………, Nt . Here, pυ(i) is the fitting polynomial in 
segment υ. Linear, quadratic, cubic, or higher order polynomials can be used in 
the fitting procedure (conventionally called DFA1, DFA2, DFA3,…..) . 

• Step 4: Average over all segments and take the square root to obtain the fluctua-
tions function 
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The logarithm of F(t) is then plotted as a function of the logarithm of the time 
scale t. The slope, α, of the plot of Log2 (F(n)) versus Log2(n) is called the scaling 
or self-similarity exponent. If the time series shows self-similarity, this plot will 
display a linear scaling region and slope α > 0.5. This exponent is 0.5 for white 
noise, where the values of the time series are completely uncorrelated. When the 
exponent is α < 0.5, power-law anti-correlation is present, such that large values 
in the time series are more likely to be followed by small values and vice versa. 
When α > 0.5, correlations exist but cease to follow a power-law form. 

In order to determine how F(t) depends on the time scale t, steps 2 to 4 were repeated 
30 times with different time scales between t = 4 and 6000.  The long range auto-
correlation properties of the raw sleep EEG signal and the filtered brain waves of each 
sleep stage were investigated separately using DFA2 as shown in Fig. 3. The mean and 
standard deviation of the computed DFA2 parameters for the different sleep stages are 
given in Table 1.  

 

Fig. 3. DFA analysis of a 1-min long EEG record of a single subject corresponding to the WK,  
NREM and REM sleep stages 

Table 1. The DFA characteristic values for each sleep stage 

Sleep Stage Raw EEG Delta Theta Alpha Beta 

WK 0.858 ± 0.1003 1.0665 ± 0.0908 0.2853 ± 0.0203 0.1582 ± 0.013 0.0437 ± 0.0108 

NREM 0.4099 ± 0.1675 0.9626 ± 0.0926 0.3021 ± 0.007 0.1566 ± 0.0095 0.0616 ± 0.0078 

REM 0.8628 ± 0.0835 1.0128 ± 0.0809 0.2937 ± 0.0118 0.1597 ± 0.01 0.0551 ± 0.0095 
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Table 2. The significane levels for the group differences between sleep STAGES USING 
Bonferroni test. each line lists the results for the comparison of the stages named in coloumn 1 
and 2 

Stage 1 Stage 2 Raw EEG Delta Theta Alpha Beta 

WK NREM P < 0.001 P < 0.001 P < 0.001 n.s P < 0.001 

WK REM n.s P < 0.001 P < 0.001 n.s P < 0.001 

NREM REM P < 0.001 P < 0.001 P < 0.001 P < 0.05 P < 0.001 

2.5 Statistical Analysis 

In order to check the difference between individual groups, Bonferroni test was ap-
plied to DFA data sets. Statistical significance was stated for p < 0.05. The statistical 
test was performed by SPSS version 10 (SPSS Inc, Chicago, IL). 

The results of the Bonferroni test are listed in Table 2. It can be seen that the Alpha 
waves showed no significance on comparing both the WK versus REM stages and the 
WK versus NREM stages. For this reason, the DFA2 parameters of the Alpha waves 
are excluded from the features vector construction to be used in sleep stages classifi-
cation. 

2.6 K-Nearest Neighbor Classifier (KNN) 

The Nearest Neighbor Classification is the most straightforward in machine learning 
where examples are classified based on the class of their nearest neighbor. It is often 
useful to take more than one neighbor into account so a modified technique common-
ly referred to as K- Nearest Neighbor (KNN) classification uses the K nearest neigh-
bors in determining the class of the unknown example [24].  Fig. 4 depicts the basic 
idea of a 5-Nearest Neighbor classifier applied for a two class problem in a two di-
mensional feature space. 

In general, the distance d between q and xi is calculated as : 
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where q is unknown example, F is the training set, xi is i-dimensional feature vector, 
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Hence, q is classified according to the majority class of the N-nearest neighbors. 
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Fig. 4. A simple example of 3-Nearest Neigbour classification 

In this study, the classification of the different sleep stages is done and compared 
using the DFA2 parameters of the raw EEG signal on one hand and the filtered sig-
nals on the other hand.  The raw EEG parameters were used to construct a 1-D feature 
space. The parameters of the Delta, Theta and Beta waves were used to construct 
three sets of 2-D features spaces. Fig. 5 shows the 2-D feature space derived from the 
Theta and Beta waves. Also, a one 3-D features space is derived from the three fil-
tered signals together as illustrated in Fig. 6. The whole dataset size composed of 324 
stages is divided into a training set of 216 stages and a testing set of 108 stages. 

 

Fig. 5. The 2-D features space constructed from the DFA2 parameters of Theta waves versus 
BETA waves 
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Fig. 6. The 3-D feature space constructed from the DFA2 parameters of Theta, Beta and Delta 
waves  

Table 3. The accuracy of KNN classifier to classify varous sleep stages based on three different 
sets of 2-D feature spaces 

Sleep 
Stage 

Delta vs Beta Delta vs Theta Beta vs Theta 
K accuracy K accuracy K accuracy 

WK 
7 

72.22% 
5 

55.55% 
7 

94.44% 
NREM 50.00% 75.00% 92.66% 
REM 55.55% 50.00% 83.33% 

3 Results 

The KNN classification using the raw EEG parameters resulted in an accuracy of 
61.11%, 83.33% and 44.44% at K=7 for the WK, NREM and REM sleep stages, re-
spectively. The 3-D feature space showed an accuracy of 55.55%, 58.33% and 
55.55% at K=7 to separate the WK, NREM and REM sleep stages, respectively. 

The introduced three sets of 2-D feature spaces to the KNN classifier showed the 
classification accuracies listed in Table 3. It can be seen that Beta versus Theta features 
showed the highest accuracy in differentiating between the different sleep stages. 

4 Discussion 

In our knowledge, this paper presents the first study which systematically investigates 
the autocorrelation properties of the sleep EEG signal and its extracted waves: Alpha, 
Beta, Theta, and Delta, using DFA. The study reveals that the EEG signal is almost 
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uncorrelated during NREM (α ≈ 0.5) while long-range correlations (α > 0.5) exist 
during the WK and REM stages. These results are consistent with the DFA analysis 
results for both the heart rate variability and the breathing rate variability during sleep 
[21, 22, 23].  The mechanism underlying such fluctuations may be related primarily to 
the different autonomic regulations during REM and NREM sleep stages. The ex-
tracted components, Theta, Beta, and Alpha, however, show anti-power-law correla-
tion properties (0 < α < 0.5) which indicates the high roughness inherent in these 
waves during the different sleep stages. 

An attempt of separating the sleep stages using KNN classifier based on the feature 
space derived from the power-law exponents of the EEG signals and its filtered com-
ponents is done. Results revealed that the Beta versus Theta features had superior 
ability to separate sleep stages than the other features. 

The small number of subjects is considered as a limitation in our study as we think 
the accuracy of the classifier could be enhanced with increasing the training data set 
as the KNN classifier are considered as Lazy classifiers. 

Our results do indicate that it might be possible to build a sleep assessment system 
based on EEG signal only to reduce the large number of electrodes that is mounted on 
the subject with a conventional polysomnogram method which obviously affects the 
comfort ability of the subject and may interfere with the accuracy of his sleep assess-
ment.  
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