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Abstract. The paper presents the development and implementation of a model 
predictive control (MPC) used for inside temperature control of a building. The 
inside temperature is tracking a prescribed reference inside a comfort zone de-
fine by the optimization problem implementing offset free control through a 
Kalman filter state estimator. The MPC is validated by simulation and experi-
ment using a building thermal model, a 24 hour ahead predicted solar irradiance 
and ambient temperature and measured actual weather data and inside tempera-
ture for the closed loop simulation operation. 
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1 Introduction 

As the building sector represents a major consumer in the world, with an estimated 
26.5% of the total global consumption in 2009 according to [1], research on develop-
ing energy efficient buildings represents a large energy savings potential. 

The model predictive control algorithm is well suited for energy efficient buildings 
and systems where both the control variables and state variables have physical con-
straints. The MPC is able to take action before a predicted event actually takes place; 
in this case, the system having large time constants, the electrical heaters are turned 
off prior to mid day, where the solar irradiance has a powerful effect on increasing the 
inside temperature.  

In building temperature control there are two large approaches on MPC algorithms: 
the first are tracking a prescribed reference, minimizing the difference between the 
controlled variable and the reference inside temperature as in [2] and [3] and the eco-
nomic MPC which minimizes the cost of energy in keeping the inside temperature 
inside the comfort zone [4]. 

In [5] is studied the impact of modeling accuracy on the MPC of the passive build-
ing thermal capacitance to minimize an objective function.  

MPC algorithms for controlling the inside temperature were developed considering 
weather predictions as in [6] and stochastic disturbances in [2] or human presence [7]. 

The objective function of the PMC can be stated as a linear programming LP prob-
lem as [8] or as a quadratic problem QP as in [2]. 
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This paper presents a MPC for controlling the inside temperature of a building to 
track the prescribed reference formulated as a quadratic problem, with prediction on 
the two disturbances, the solar radiation and ambient temperature. 

2 Model of the System 

The temperature dynamics of a given space can be modeled with the help of an equiv-
alent electric circuit. This paper considers the simplified thermal model of an eight 
room building from SYSLAB facility from DTU Elektro at RISO campus. The build-
ing has 125 squared meters and one electrical heater in each room, except two rooms 
which are equipped with two electrical heaters each. The parameter identification and 
validation tests of the mathematical model are presented in the work of Bacher and 
Thavlov[9]. 

The objective of this paper is to develop, implement, and test through simulations 
and experiment, a model predictive controller which considers the inside temperature 
of the building as the controlled variable. The objective is for the controlled variable 
to track the prescribed reference, minimizing the peak consumption and maintain the 
inside temperature inside the comfort zone considering the difference between the 
predicted and measured perturbation: the solar irradiance and ambient temperature. 
This paper uses offline 24 hours ahead prediction data for the ambient temperature 
and solar irradiance and online measured values of weather data taken from the local 
weather station. 

The building can be estimated as having a single room, with an additional assump-
tion that each electrical heater has the same power (1kW) and the same effect on the 
inside temperature on this one room model. The equivalent (RC) electric circuit of the 
building is shown in Fig.1. 

 

 

Fig. 1. Equivalent thermal model of the building  

The mathematical thermal model of the one room equivalent building is shown in (1): 
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Where 
Ci – thermal capacitance of the house 
Ria – thermal resistance of walls and windows isolating the house from the outside 

environment 
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Aw – window effective area 
Ti – inside temperature 
Ta – ambient temperature 
G – solar irradiance on the house 

For developing the MPC, the state-space model from (2) is needed. The parameters of 
the model are presented in Table 1. 
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Table 1. Model parameters 

Ci 

[kW/°C] 

Ria 

[°C/ kW] 

AW 

[m2] 
A B E C 

3.42 4,87 5,53 [0.99] [0.0487] [0.01,   0.2695] [1] 

3 MPC Algorithm 

Model predictive control uses a mathematical model of the system, a discrete state 
space system in this paper, to estimate the process output for a fixed number of steps 
N into the future predicted horizon, according to the current internal state values, the 
predictions, and the reference trajectory. The MPC calculates the control sequence of 
the future N steps by minimizing an objective function. From this sequence only the 
first control output is considered and at the next time step the optimization is recalcu-
lated according to the new values available. 

The MPC starts from a model, in this paper a state-space model, presented in (2), 
and an optimization function as seen in (3). 
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(3) 

This is a weighted quadratic optimization function with two objectives:  

- The output variable (zk) to track the reference (rk), and 
- doing so with small variations (Δuk) 

This optimization is realized for the next N steps interval, from which only the first 
term is considered for the controller output. At the next step, the optimization problem 
is recalculated, with the new values for the inputs, predictions, and measurements 
specific to that step. 

Another important aspect of this control is the ability to alter the importance of the 
optimization terms in the optimization function by using weight coefficients, in this 
case Q for minimizing the trajectory difference and S for minimizing the variations of 
the manipulated variables. 
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The controller was developed in Matlab, using the quadprog solver, from the opti-
mization toolbox. The optimization problem from (3) had to be rewritten in the form 
of (4), specific to this Matlab solver. 

UgHUUf
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''
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min +=                                              (4) 

Subject to 

qq bUA ≤                                (5) 

From (2), the output values of the system can be estimated for the next prediction 
horizon, zi , (i=1...N) considering the following values: x0 - as the initial value for the 
state variable at each time step interval, D-  the predicted disturbance vector over the 
predicted horizon and U - the system input, the command variable for the control 
algorithm, in this case the output power of the heaters. The predicted output values for 
the next N steps are: 
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where: 

BCAH k
k

1−=
 
                                    (7) 
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dk
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Equation (6) can be rewritten in a simpler way to handle, as shown in (9)  

DUxZ dΓ+Γ+Φ= 0                                                 (9) 
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By developing the first term of (3) and using (9) , it is obtained: 
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(10) 

Where 

DxRb dΓ−Φ−= 0                                             (11) 

 
By considering the form of (4), (10) is written as (12): 
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For the second term of (3), the following form is obtained: 
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Which develops into (14): 
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And for the required form of (4), the second term of (3) is: 
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From (12) and (15), the parameters H and g of (4) can be identified from the initial 
objective function of (3), in order to use the Matlab toolbox: 
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An advantage of the MPC is the ability to deal with constraints, both on the manipu-
lated and controlled variables. The constraints on the two types of variables defined in 
(18) and (19) have to be written as a function of the manipulated variable and written 
in the form of variables Aq and bq from (3). 

1...0,maxmin −=≤≤ NkUUU                                      (18) 

NkZZZ ...0,maxmin =≤≤                                               (19) 

As (19) have to be a function of manipulated variable U, the equation is rewritten as 
(20) and (21) as only the “smaller than” relation can be used for both the ends of the 
interval. 

UDxZ d Γ≤Γ−Φ− 0min                                          (20) 

UDxZ d Γ−≤Γ+Φ+− 0max                                      (21) 

The parameters Aq and bq from (4), for the considered model have the following  
relation: 



















Γ−
Γ
−

= N

N

q

I

I

A     



















Γ+Φ+−
Γ−Φ−

−
=

DxZ

DxZ

U

U

b

d

d
q

0max

0min

max

min

                         

(22) 

Parameters H, g, Aq, and bq from (16), (17), and (22) will be computed and used as 
call parameters for the quadprog solver: 

U = quadprog(H, g, Aq, bq)                                                (23) 

The function returns the next N values of the manipulated variable U, which 
represents the output power of the electrical heaters for the N step prediction interval. 
From this, only the first value U1 is used, and at the next step the optimization prob-
lem is recalculated.  

4 Offset Free MPC 

The system used in this paper and described in (3) uses two disturbance predictions 
which both have a large influence on the system output (inside temperature). These 
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are the solar irradiance and the outside ambient temperature. These data are provided 
by the local weather station with 24 hours-ahead prediction. However, like in the 
general case, these predictions are not perfect as it is shown in the figures of the next 
section. 

These differences between the actual and the predicted values have to be consi-
dered in the model, otherwise they will introduce an offset in the controlled variable.  

One of the possibilities to incorporate an integrator in the system model is to ex-
tend the state-space model with a number of additional states equal to the distur-
bances, and using a Kalman filter for their estimation. The offset free control has been 
discussed in [10] and [11]. 

If stochastic perturbation on the state variables (ωk), on the system output (vk) and 
errors in prediction (ξk) are considered, the augmented system (3) becomes: 
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And in the state-space form of: 
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where ωk ≈ N(0,Qw); ξk ≈ N(0,Qxi); vk ≈ N(0,Rv) are zero-mean white-noise  
The system from (25) is used to resolve the MPC problem according to the equa-

tions presented in section 3.  
For the off-set free control, the states are estimated as follows: 
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And the prediction of future augmented states is obtained by: 
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Equations (26) and (27) are the measurement update and time update state of a Kal-
man filter used to introduce an integrator element into the control. The two equations 
can be written in a condensed form: 
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Where the Kalman filter gain is computed offline according to:  

( ) 1'' ~~~ −
+= vRCPCCPK                                               (29) 

And P is the unique symmetric positive semidefinite solution of the discrete algebraic 
Riccati equation: 
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5 Simulation and Experiment 

For the simulation and experiment, the augmented model from (24) is used with a 
prediction horizon of 50 steps of 10 minutes and parameters from Table 1. 

For the Kalman filter implementation the following values were chosen for the co-
variance matrices: Rv = [0.01], Qw = [0.015], Qxi = [1 0; 0 1]. 
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Fig. 2. Simulation results considering continuous consumption of the electrical heaters 
Φnormal=0.0195 and Φobserver=0.0165 
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Fig. 3. Simulation results considering 1kW steps consumption of the electrical heaters; 
Φnormal=0.0252 and Φobserver=0.0174 

The simulation presented in Fig. 2 was performed by considering real weather data 
taken from the SYSLAB facility: historical 24 hour prediction data set for four days 
in May and the historical measured data for the same period of time. 

The constraints on the manipulated variable, inside temperature are set to be 20° 
and 25° C. The limits on the manipulated variable, the electrical heaters output power, 
is set to Umin=0 and Umax=10. 

In both simulation, as seen in the “Inside temperature” plot, are represented three 
variables: the prescribed reference, the inside temperature when using for the optimi-
zation problem the system from (2), which presents offset and the augmented system 
(24) for offset free solution by using the Kalman filter to estimate the initial states x0. 
For comparison reasons, a cost function was introduced: 
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The solution of the optimization problem is a real number. In order to operate the ten 
1kW electrical heaters, this solution was rounded to the closest integer to the actual 
solution. The results by using a more realistic 1kW step power consumption of the 
electrical heaters are presented in Fig. 3. 
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Fig. 4. Experimental results 

Even if in the second simulation the performance is lower for both MPC solutions 
compared to the first simulation, the usage of the observer can be well justified as 
ΔΦnormal= 0.0057 and ΔΦobsever= 0.0009 and will be more meaningful in the case addi-
tional unknown disturbances affect the system. 

A validation experiment was conducted using the MPC developed in Matlab. Us-
ing the described MPC, and online measurements of the inside temperature, solar 
irradiance and ambient temperature the controlled variable (inside temperature) was 
tracking the prescribed trajectory, as seen in Fig. 4. 

Some additional errors and perturbations were observed: the inside temperature 
was considered as the average of the temperature inside the eight rooms the electrical 
heaters had different output powers and the system had a very simplified model. 
Another issue was the relatively hot and sunny weather which interfered with the 
experiment, the amount of energy from the exterior being enough to heat the house to 
the desired temperature and even to exceed it. 

The MPC developed in this paper can affect the controlled variable in a single way: 
it can only increase the inside temperature by increasing the output power of the hea-
ters and not to cool down the temperature since it does not use any air conditioning 
unit. This phenomenon is clear in the first part of the experiment, when the inside of 
the building is overheated by the weather during the day. 
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As it can be seen from fig. 4, at the end of the first day (sample 126 is 9 PM), the 
temperature inside the house is 26 degrees and the MPC can operate only during the 
night to track the prescribed values. 

The controller of this process can affect only one direction of the system, that is the 
MPC cab only increase the temperature by turning heaters on and cannot take any 
action in lowering it. The decrease in temperature must come naturally, and the MPC 
can only set all the heaters to off. 

6 Conclusions 

The controlled variable of the MPC presents offset free by using augmented state 
space model, considering an additional state for the two disturbances of the system, 
the solar irradiance and the ambient temperature. 

The influence of using an observer to estimate the unmeasured disturbances that af-
fect the process is reflected in the performance cost comparing the evolution of the 
system for the two cases: when using an observer and when the disturbance is not 
considered by the controller. 

The simulated MPC algorithm was validated through experiments using a 125 
square meter building and predicted and measured weather data.  

The MPC presented in this paper it is a “one sided control” since it can influence 
only the increase of the inside temperature, by the use of the electric heaters and not 
the cooling of the building. The cooling of the building comes as a natural factor, 
influence only by the disturbances.  
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