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Abstract. In this paper, cooperative particle swarm optimization (CPSO)-based
model predictive control (MPC) scheme is proposed to deal with the formation
control problem of multiple nonholonomic mobile robots. In distributed MPC
framework, control input of each robot needs to be optimized over a finite predic-
tion interval considering control inputs of the other robots, where the objective
function is coupled by the state variables of the neighboring robots. To solve the
optimization problem on a prediction interval, we present a modified CPSO algo-
rithm which finds a Nash equilibrium between multiple robots. Simulations are
performed on a group of nonholonomic mobile robots to demonstrate the effec-
tiveness of the proposed MPC scheme incorporating CPSO.

1 Introduction

Model predictive control (MPC) has been successfully applied to control complex sys-
tems in industry as one of the most popular optimal control techniques. The control
technique is derived on the basis of the prediction of the future behavior estimated by
the explicit model of the system. Thus, the application to nonlinear system is not easy
because the nonlinear optimization process should be completed within a limited time.

Recently, some researchers have studied the possibility of applying evolutionary al-
gorithms (EAs) to solve the optimization problem in MPC. Onnen et al. [1] suggested
a genetic algorithm (GA) in order to optimize a control sequence, and they showed the
effectiveness of the GA comparing to a branch-and-bound discrete search algorithm.
Similar algorithms applying GA to MPC were presented in [2,3,4]. More recently, mod-
ified particle swarm optimization (PSO) algorithms have been combined with MPC as
presented in [5,6,7,8] due to the fact that PSO algorithms provide quick results even
with multiple objectives and constraints [6]. In particular, the PSO-based nonlinear
MPC controller developed in [7] showed its better performance compared to a MPC
controller using quadratic programming.

Cooperative particle swarm optimization (CPSO) algorithm is a variant of PSO, em-
ploying multiple swarms to optimize different variables of the solution in a cooperative
coevolution (CC) framework. An early attempt to apply the CC framework to PSO
was made by Bergh and Engelbrecht [9], resulting in two CPSO algorithms, namely
CPSO-SK and CPSO-HK . Recent studies by Li and Yao [10,11] suggest cooperative
coevolving PSO (CCPSO) and CCPSO2 incorporating random grouping and adaptive
weighting schemes, and their performance was validated on benchmark functions of up
to 1,000 dimensions.
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The problem of interest here is cooperative control between subsystems in MPC
framework by including coupling terms in the objective function. Subsystems which
are coupled in the objective function are referred as neighbors. In this paper, a dis-
tributed MPC scheme incorporating CPSO algorithm is presented where each subsys-
tem is assigned its own optimization problem and communicates information only with
neighboring subsystems. Thus, each subsystem has a particle swarm to optimize its
objective function value, and the optimization problem is solved according to a Nash
equilibrium strategy, i.e., in the optimization process, the swarms coevolve to reach a
Nash equilibrium state by exchanging the best particles between the subsystems. In
general, it has been found that finding the Nash equilibrium is very difficult given that
the system is nonlinear [12]. In [13], a receding horizon Nash controller was developed
for multi-agent systems, but it has been limited to linear systems. Thus, this paper pro-
poses a distributed MPC incorporating CPSO having multiple swarms. The proposed
MPC scheme is simulated for a formation control problem of multiple nonholonomic
robots.

2 Modified CPSO for Distributed MPC

A Nash equilibrium strategy is a collection of strategies of all subsystems, and each
strategy is the best response regarding the others’ strategies. When the system reaches a
Nash equilibrium, no subsystem can further improve their cost by changing its strategy
given that all the others keep their strategies fixed or stationary. A Nash equilibrium
strategy (u∗1,u

∗
2, ...,u

∗
M) is defined by the condition
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∗
1,u
∗
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∗
i−1,u

∗
i ,u
∗
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∗
M)≤ Ji(u

∗
1,u
∗
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∗
i−1,ui,u

∗
i+1, ...,u

∗
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for i = 1, ...,M where Ji is the objective function of the i-th subsystem and ui is an
arbitrary control input.

In order to reach the Nash equilibrium, each subsystem needs first to know what the
others’ strategies are. However, the others’ strategies are not available at the time when
a subsystem computes its strategy since the state variables and control inputs of the
multiple subsystems are coupled together in the objective functions, which results in a
chicken and egg problem.

To deal with the problem, the concept of cooperative particle swarms is adapted
such that all subsystems reach a Nash equilibrium at the same time in a distributed
way. Since CPSO coevolves the multiple particle swarms by exchanging the global
best particles with neighboring swarms, we have selected CPSO as the optimizer for
multiple subsystems.

2.1 Cooperative Particle Swarms for Nash Equilibrium

For each subsystem, an objective function defined as a coupled form by the state vari-
ables and control inputs of the neighboring subsystems is given, and a particle swarm is
assigned to each subsystem in order to optimize the given objective function. To reach
the Nash equilibrium, each subsystem evolves its particle swarm with respect to its ob-
jective function by exchanging the global best particle with its neighboring swarms,
while the neighboring swarms are also evolving.
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The proposed cooperative PSO algorithm incorporates two new schemes to improve
its performance. First, we put the best particle from the neighboring swarms together
into the particle swarm to be optimized at the initialization step. Second, the best parti-
cles to be used to evaluate the objective function are updated at every generation. The
details are given below.

2.1.1 Particle Initialization
At every update time step, particles of each swarm should be initialized in order to re-
search optimal control input. When initializing the particles of i-th swarm, the global
best particles from j-th swarm are used where j ∈Ni and Ni is the set of the swarms
neighboring with j-th swarm. The fact that the optimization process starts with the best
particles from itself and neighboring swarms leads to improved convergence
performance.

2.1.2 Objective Evaluation
Let Pj.xi

l−1 be the current position of the i-th particle of the j-th swarm at generation
l− 1, Pj.yi

l−1 the personal best of the i-th particle of the j-th swarm, and Pj.ŷl−1 the
global best particle of the j-th swarm. For M subsystems, at generation l, j-th subsys-
tem optimizes its objective function Jj using the j-th swarm Pj,l−1 and the global best
particles Pi.ŷl−1 from N j where i ∈N j, and then the same process iterates through all
swarms from j = 1 to M at the same time. After the optimization process of a gen-
eration, each subsystem sends the global best particle to neighboring subsystems. In
order to evaluate the objective, each particle Pj.xi constructs a context vector ŝN j (Pj.xi)

consisting of the particle Pj.xi
l and the received best particles from its neighbor N j.

For example, in three-subsystem case where their objective functions are coupled with
each other, i.e., N1 = {2,3}, N2 = {1,3}, and N3 = {1,2}, the context vectors can
be constructed as ŝN1(P1.xi) = (P1.xi

l ,P2.ŷl ,P3.ŷl), ŝN2(P2.xi) = (P1.ŷl ,P2.xi
l ,P3.ŷl),

and ŝN3(P3.xi) = (P1.ŷl ,P2.ŷl ,P3.xi
l), at generation l. The subsystems reach a Nash

equilibrium when there are no subsystems which can further improve their objective
evaluation.

2.1.3 Update Rule
The update rule for the i-th particle in the j-th swarm is given by

Pj.xi
l+1 = Pj.xi

l +Pj.vi
l+1, (2)

Pj.vi
l+1 = wlPj.vi

l + c1r1(Pj.yi
l−Pj.xi

l)+ c2r2(Pj.ŷl−Pj.xi
l), (3)

where wl is the inertia coefficient, which decrease linearly to maintain a balance be-
tween exploration and exploitation, c1 and c2 are acceleration coefficients, and r1 and r2

are random values uniformly and independently generated at every generations within
[0,1].

2.2 Nash Equilibrium-Based Predictive Control

The Nash equilibrium-based predictive control is based on the proposed CPSO as shown
in Algorithm 1. There are two main loops, inner and outer, in order to perform Nash
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equilibrium-based predictive control. The outer loop is for the process of MPC, and the
inner loop is for the optimization over a finite prediction interval through the CPSO at
each control time step t. In the inner loop, for Pj.xi

l , its personal best Pj.yi
l is checked,

and then the global best Pj.ŷl is checked for update. When the subsystems reach a Nash
equilibrium, the states of the subsystems are updated using Pj.ŷl in the time interval
[t, t + δ t) where δ t < T . These procedures are repeated until a termination condition is
satisfied.

Algorithm 1. The pseudocode of the Nash equilibrium-based MPC incorporating
CPSO algorithm. In this psudocode, the j-th subsystem is considered.

Create and initialize swarm;
repeat

for each particle i ∈ [1, ...,swarmSize] do
Initialize particle;

end for
repeat

for each particle i ∈ [1, ...,swarmSize] do
if Jj(ŝN j

(S j.xi
l))< Jj(ŝN j

(S j.yi
l−1)) then

S j.yi
l ← S j.xi

l
else

S j.yi
l ← S j.yi

l−1
end if
if Jj(ŝN j

(S j.yi
l))< Jj(ŝN j

(S j.ŷl−1)) then
S j.ŷl ← S j.yi

l
else

S j.ŷl ← S j.ŷl−1
end if

end for
Update position and velocity of each particle in Pj using (2) and (3);
Send Pj.ŷl to neighboring robots;
Receive Pi.ŷl from neighboring robots where i ∈N j;
l← l +1;

until Termination condition is satisfied;
Perform state update of plant j using Pj.ŷl in the time interval [t, t +δ t);
t← t +δ t;

until Termination condition is satisfied;

3 Application to Multi-Robot Formation Control

3.1 Multi-Robot Formation Control Problem

Consider a group of M identical differential drive mobile robots. The motion state of
j-th robot defined by Xj = [x j,y j,θ j ]

T can be described by
⎡
⎣

x j(k+ 1)
y j(k+ 1)
θ j(k+ 1)

⎤
⎦=

⎡
⎣

x j(k)+ΔT cosθ j(k)v j(k)
y j(k)+ΔT sinθ j(k)v j(k)

θ j(k)+ΔTω j(k)

⎤
⎦ (4)
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where Xj is described by its position (x j,y j) and orientation θ j; v j and ω j are the linear
and angular velocities of each robot, respectively, k is a discrete time step, and ΔT is a
sample time.

A desired formation pattern P consisting of M vertices satisfies the relationships,
∑M

i=1 pix = 0 and ∑M
i=1 piy = 0, where pix and piy are defined by orthogonal coordinate

such that the center of the formation pattern P is placed at the origin of the orthogonal
coordinate.

Now, we define the multi-robot formation control problem in a similar way to [14]
as follows:

Problem Definition 1. Consider a group of nonholonomic mobile robots, given a ref-
erence path Xr and a desired formation patterns P . For each robot j, using its own
state [x j,y j,θ j]

T , its neighbors’ state [xi,yi,θi]
T for i ∈N j , the reference path Xr, and

the desired formation pattern P , find a predictive controller such that

lim
t→∞

[
x j− xi

y j− yi

]
=

[
p jx− pix

p jy− piy

]
,1≤ j �= i≤M, (5)

lim
t→∞

⎡
⎢⎣

∑M
j=1(xr− x j

M )

∑M
j=1(yr− y j

M )

∑M
j=1(θr− θ j

M )

⎤
⎥⎦=

⎡
⎣

0
0
0

⎤
⎦ . (6)

Equations (5) and (6) mean that the formation and tracking error converge to zero as
t→∞, i.e., the center of the group of robots tracks the reference path while maintaining
the desired formation pattern P .

3.2 State Description

The global best particle Pj.ŷ represents the predicted control input of subsystem j,
u j(t) = [v j(t),ω j(t)]T , over a prediction interval T as a sequence, i.e.,

Pj.ŷ = [v j(1),v j(2), ...,v j(N− 1),ω j(1),ω j(2), ...,ω j(N− 1)] (7)

subject to |v j(k)| ≤ Vmax and |ω j(k)| ≤ Ωmax, for j = 1,2, ...,M and k = 1,2, ...,N− 1
where N is a number of prediction steps. Based on v j and ω j, the robot state can
be produced from the current pose Xj(1) = [x j(1), y j(1), θ j(1)] at update time
t using (4) as x j(k + 1) = x j(1) + ∑k

m=1 cosθ j(m)v j(m)ΔT , y j(k + 1) = y j(1) +
∑k

m=1 sinθ j(m)v j(m)ΔT , and θ j(k+ 1) = θ j(1)+∑k
m=1 ω(m)ΔT .

3.3 Objective Function

The control objective is to achieve two goals: tracking a reference path and maintaining
a desired formation in a cooperative and distributed way. Considering system (4) with
its neighbors N j, the objective function Jj, for robot j over a number of finite prediction
interval step N can be expressed as follows:

Jj =
N

∑
k=1

||X̃ j(k)||2P + ∑
i∈N j

N

∑
k=1

||X̃ j(k)− X̃i(k)||2Q (8)
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where X̃ j = [x̃ j ỹ j θ̃ j ]
T , x̃ j = xr + px j− x j, ỹ j = yr + py j− y j, and θ̃ j = θr− θ j. Also,

P = PT > 0, Q = QT > 0, and ||x||2P represents xT Px.
Since the multi-robot formation control problem can be considered to be a nonsepa-

rable problem (i.e., there are coupling terms in the objective functions), it can be opti-
mized by the proposed CPSO algorithm.

Fig. 1. Desired formation pattern of robots. In simulation, (px1, py1) = (0, 0.1√
3
), (px2, py2) =

(0.05,− 0.05√
3
), and (px3, py3) = (−0.05,− 0.05√

3
).

3.4 Simulation Results

The number of prediction horizon steps is selected as N = 10, while the control time
interval and prediction time interval are selected to be δ t = 0.1s and ΔT = 0.1s.
Thus, the prediction horizon is 1s. Since the controller has high computational bur-
den as the prediction interval increase, a long prediction length is not feasible. The
weight matrices P and Q are set to be diagonal where P = diag[0.1, 0.1, 0.1] and
Q = diag[0.1, 0.1, 0.1].

For the optimization process by the modified CPSO, each swarm has a population
size of 100, and the maximum number of generations is 100. The inertia weight wl starts
with 0.9 and linearly decrease to 0.4. The search space is limited to real-valued variables
within [−Vmax,Vmax] and [−Ωmax,Ωmax] for v j and ω j, respectively, where Vmax = 10m/s
and Ωmax = πrad/s. The acceleration coefficients are c1 = 2.0 and c2 = 2.0.

Three mobile robots are used with the network graph described in Fig. 1. The
reference path is a sinusoidal path given by xr(t) = 0.1t, yr(t) = 0.8sin(t/10), and
θr(t) = arctan2(ẏr, ẋr). Initially, the robots are located at X1 = [0.0,0.0,π/2]T , X2 =
[0.0,−0.05,π/2]T , and X3 = [0.0,0.05,π/2]T , respectively. The desired formation pat-
tern P is an equilateral triangle formation in which the desired separation between the
robots is 0.1m, i.e., px1 = 0, py1 = 0.1/

√
3, px2 = 0.05, py2 =−0.05/

√
3, px3 =−0.05,

and py3 = −0.05/
√

3 as shown in Fig. 1. To validate the performance, the tracking er-
ror eT and the formation error eF are defined by eT =

√
(xr− xc)2 +(yr− yc)2 and

eF =
√
||X̃1− X̃2||2 + ||X̃2− X̃3||2 + ||X̃3− X̃1||2, respectively.

The resulting trajectories of the group of the robots are shown in Fig. 2. It is
shown that the three robots maintain a triangular formation while the center of the



Cooperative Particle Swarm Optimization-Based Predictive Controller 539

−2 0 2 4 6 8
−1

−0.5

0

0.5

1

X(m)

Y
(m

)

 

 

Fig. 2. Triangular formation tracking a sinusoidal reference path. The robot locations sampled at
every 5s are indicated by squares, stars, and triangles for j = 1,2,3 and the black dots denote the
center of the formation. The headings are tangential to the robot’s path.
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Fig. 3. The tracking error eT and formation error eF during tracking a sinusoidal reference path
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formation tracks the given reference path using the transmitted information from neigh-
boring robots. Fig. 3 shows the tracking error and formation error which are stable
during maneuvering.

4 Conclusion and Future Works

In this paper, a distributed MPC scheme incorporating CPSO was proposed for multi-
robot formation control problem. For the optimization process in MPC, a Nash equi-
librium strategy was used to solve the optimization problem by exchanging particle
information which has the best experience among neighboring subsystems. In the sim-
ulation, using the proposed MPC scheme, it was found that the robots moved to track a
given reference path, while maintaining a desired formation pattern successfully.

Future works may include investigations of the stability, robustness, improvement
of convergence speed, and comparative studies between the proposed method and con-
ventional MPC schemes. The final goal of this research is the development of real-time
cooperative MPC scheme according to the Nash equilibrium strategy.
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