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Abstract. This paper presents a crowd detection system based on texture anal-
ysis. The state-of-the-art techniques based on co-occurrence matrix have been
revisited and a novel set of features proposed. These features provide a richer
description of the co-occurrence matrix, and can be exploited to obtain stronger
classification results, especially when smaller portions of the image are consid-
ered. This is extremely useful for crowd localisation: acquired images are divided
into smaller regions in order to perform a classification on each one. A thorough
evaluation of the proposed system on a real world data set is also presented: this
validates the improvements in reliability of the crowd detection and localisation.
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1 Introduction

Crowd monitoring is a very important topic in the field of video surveillance. Crowds
represent a potentially dangerous environment, due to the difficulty of controlling a high
number of people. Crowds often set up during events like football matches and concerts,
that take place inside large venues, under the control of a security staff. Such a large
public is constantly monitored by security officers that look at the whole crowd from a
distant point of view, and try to detect unusual or potentially dangerous situations. They
coordinate a number of stewards that operate in the field in order to prevent dangerous
situations and keep under control crowd density, that is crucial for safety considerations.
Crowds can create and grow also unexpectedly, under several exceptional conditions;
this second case is extremely dangerous, because of the lack of management of such
large groups of people.

Over the years, technology has been used to help security officers: nowadays, several
active cameras are installed in the venues and the control room of a football stadium
is usually full of monitors and camera controls. This virtually enables security staff to
analyse every part of the venue, inside and outside, so that the whole crowd can be
observed. However, the huge amount of data provided by such surveillance systems
would require several operators to be completely analysed, leading to very high costs.
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On the other hand, if just one or two people are devoted to the task of analysing video
streams provided by all cameras, they will likely miss several situations of interest.

To cope with this issue, a system capable of analysing multiple video streams and
automatically detecting situations that require human intervention would be extremely
effective. Such a system should be able to detect the crowd inside a venue, analyse its
behaviour, and detect situations that could be dangerous: in that case, a security officer
could be warned, in order to adopt proper countermeasures. In other words, such an
automatic system is asked to select suspicious situations, and let security staff focus
on them. The first step in developing a system capable of understanding dangerous
situations inside large venues is detection and localisation of the crowded areas, together
with crowd density estimation.

In this paper, we present a crowd monitoring system that is able to detect and localise
crowded areas in the image. The core of our approach is based on a machine learning
classifier which can categorise texture features extracted from image regions into a set
of classes corresponding to different crowd density. We extend the feature set proposed
by [1] to improve the classification performance in small image areas, demonstrate the
ability of the method to localise the crowd and present a thorough evaluation of the
system on a challenging data set acquired during a real crowded event. We first present
state of the art in the area of crowd monitoring, then describe different components of
our system, followed by experiments and finally briefly conclude and discuss possible
future work.

2 Related Work

The first thorough study on crowd analysis dates back to the mid ‘90s: [2] discusses
the importance of such topic in order to enhance public safety, and proposes a way for
describing crowd at a high level that is inspired by gas dynamics laws. At a lower level,
the paper deals with several computer vision techniques for detecting crowds.

Over the years, several approaches have been developed to detect crowd. For in-
stance, some methods are based on motion analysis: in [3] a technique based on the
observation of the motion of particles is described; such particles are initially evenly
placed over the image domain, and then moved according to optical flow. In [4] a tech-
nique based on motion heat maps is presented, together with a set of indicators for
measuring motion entropy and, finally, classifying motion as normal or abnormal. Fi-
nally, in [5] a method is presented, that is capable of detecting the precise contour of a
crowd.

2.1 Texture Analysis

The main approach is based on the evaluation of GLDM (Gray Level Dependency Ma-
trix): this is a method, dating back to the ‘70s, that aims at measuring texture content,
and was originally developed for satellite image processing [6]. This first paper present-
ing GLDM discussed also a set of features for characterising it, and consequently mea-
sure image texture. The proposed feature set is quite large, but only few of the features
were exploited when the co-occurrence matrix was employed for detecting crowds: for
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example in [1] four features called contrast, homogeneity, energy, and entropy were
used as input to a neural network, developed for classifying crowd density. In [7] the
same indicators were exploited, again for measuring crowd density.

Beside optical flow-based and GLDM-based methods, some works tackle the prob-
lem in other ways, like edge density [8,9], HOG descriptor [10], SIFT feature den-
sity [5]. In [11], a number of texture classification techniques is considered.

2.2 Crowd and Groups

A point that needs to be highlighted is the difference between a crowd and a group.
Usually, people detectors (or pedestrian detectors) focus on detecting every person,
that is supposed to be fully visible. However, people often walk in groups, that are
composed of a number of people that are fully visible, and just side by side, or cause
little occlusion [12,13,14]. A crowd is, on the other hand, a group in which people are so
close that the occlusion level is sensibly high, and a few people (or even none) are fully
visible [11]. This definition is coherent with computer vision techniques that are used in
these two scenarios: when dealing with groups, a common people detector can be used
to analyse the scene, while when dealing with crowds, such techniques fail and specific
algorithms need to be created in order to understand the scene. Of course, intermediate
scenarios also exist, like in [10].

3 Crowd Detection System

The developed system aims at detecting crowd, defined, as previously described, as a
large group of people characterised by a high level of occlusion, that makes it impossi-
ble to see every single human body. The system has been developed starting from the
GLDM-based texture analysis technique already proposed in the literature; however,
deeper studies on the GLDM revealed that such matrix contains a great amount of in-
formation, that is only partially extracted by features commonly used in other systems.
Therefore, we proposed a novel method for crowd analysis.

Our system is based on the GLDM approach since this offers several advantages over
other methods. First, it does not require the crowd to generate sensible motion cues, as
it is needed by systems based on motion observation; moreover, it runs faster than meth-
ods based on feature density: in this case, performance depends on the computational
complexity for extracting each feature; in general, however, this time is not negligible
and performance tends to drop when high concentrations of features are found in the
images, that is, just when crowd is present in the scene. This makes features-based ap-
proaches not best-suited for real-time applications. On the other hand, GLDM-based ap-
proaches suffer from the complexity of extracting salient features once such histogram
is available: this one of the main topic addressed in this paper.

3.1 GLDM Indicators

The GLDM can be seen as a two-dimensional histogram, that is created by setting up
a grid of 256×256 locations (in the common case of 8-bit image depth), one for each
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greyscale value. The image for which the GLDM should be evaluated is then analysed
by considering pixel couples, that are usually two pixels that are adjacent in a row,
column or along a diagonal. For each couple, the two grey-scale values are used as the
coordinates of the GLDM, and the corresponding bin value is increased of one unity. A
GLDM depends on two parameters: d – the distance between the pair of pixels and the
orientation (horizontal, vertical or diagonal). Once the whole image has been scanned
and each pixel couple considered, the GLDM represents how pixels change: if only
smooth variations can be found in the image, the GLDM will be concentrated towards
the diagonal, while abrupt changes will lead to peaks that have a certain distance from
the diagonal.

Since abrupt pixel changes increase the bins that are far from the diagonal, several
indicators exploited so far are ways of performing a weighted sum of the bins. The
weights depends on the distance to the diagonal; this is the case, for example, of contrast
and homogeneity. Other indicators measure how even the distribution among the bins
is, as it is the case of energy and entropy. These four features were exploited in [1].

Fig. 1. An example of GLDM and the frame it is evaluated from

In Figure 1 a three-dimensional plot of a GLDM is shown: it presents several peaks of
different size and shape: it is clear that such histogram is only partially measured when
discussed indicators are evaluated. For example, a high contrast indicates that a sensible
amount of the histogram is localised at some distance to the diagonal, but it is then
impossible to know if this component is concentrated in some small area, or it develops
over a wide region. For example, consider Figure 2 where two frames with substantially
different texture contents are represented, together with the corresponding GLDMs that
appear different as well. However, by considering the four mentioned indicators, it is
possible to observe that just one of them (i.e. energy) undergoes significant change in
value when comparing the two histograms.
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(a) (b)

(c) (d)

Fig. 2. Example of two different frames (a) and (b) characterised by different GLDMs (c) and (d).
However, values of indicators commonly used in the literature for the two images are similar.
GLDMs are drawn in two dimensions: the height of each bin is coded by the grey-level of the
corresponding pixel.

3.2 GLDM Shape Analysis

To obtain a better characterisation of GLDMs, a set of new features has been developed,
whose aim is to describe in more detail the shape of the histogram. From a detailed
shape description it is then possible to obtain much more data than that provided by
commonly used indicators.

To analyse the shape of a GLDM, a technique based on its contour lines at several
heights has been developed: such lines are evaluated, and some parameters are exploited
to measure the properties of their shapes; finally, parameters referring to a single line are
compared to those evaluated for contour lines at other heights, and from the observed
pattern, information is gathered about the shape of the GLDM.

3.2.1 Single Contour Line Description
A single contour line usually appears as a set of curves, one of which is clearly larger
than the others, and is therefore called the principal component. This is the only part to
be analysed, as smaller components are usually similar for every image. Each contour
line is evaluated by intersecting the GLDM with a horizontal plane at a given height: by
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choosing several planes at different heights it is possible to provide a detailed descrip-
tion of the two-dimensional histogram.

Once the principal component is found, the least squares fitting algorithm is used to
find the best fitting ellipse; the axes lengths are then evaluated. The ellipsis was chosen
because it is the best suited shape for representing the typical contour line provided by
GLDMs.

In all cases of interest, the ellipse has its major axis placed along the diagonal of the
GLDM; its length tends to be maximum when the level curve is at a low height, unless
the original image is not extremely uniform.

3.2.2 Multilayer Shape Analysis
The GLDM is analysed at several heights; ten height values were enough to precisely
characterise the shape in all cases we observed. Values used for the actual heights de-
pend on the size of the original image, as larger image produce higher histograms, due
to the higher number of pixels; however, this problem can be solved by evaluating the
normalised GLDM.

Once the result of the ellipse fitting is available for every contour line, some indica-
tors are derived from the comparison of all of them. Such indicators are:

• Evenness depends on the ellipse minor axis at different heights. If wi represents
the minor axis at the i-th layer, N the total number of layers, and Δw is the aver-
age of the minor axis difference between ellipses belonging to consecutive layers,
evenness is then defined to be:

EV =

√
1
N

∑N−1
i=1

[
(wi −wi+1)−Δw

]2

i
. (1)

Evenness is a measure of how evenly the ellipse minor axis shorten its length as
long as the height at which the contour line is found is increased; the division by
i is necessary to cope with the fact that the difference between subsequent height
values does not increase linearly.

• Minor axis spread measures how steep the GLDM is, and is evaluated as the dif-
ference between the maximum and minimum lengths of the minor axis over all
contour lines:

MAS = wmax −wmin . (2)

• Minimum width of the minor axis over all contour lines, which provides informa-
tion about the smoothness of the upper part of the GLDM.

• Total volume included under the analysed level curves measures how spread the
GLDM is outside the main component. If hi and wi are the major and minor axis of
the ellipse found at the i-th height hi, it is evaluated as:

TV = w1h1l1 +
N

∑
i=2

wihi (li − li−1) . (3)
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• Width-height ratio measures the mean of the width-height ratio of all ellipses,
describing how spread over dark and light regions the texture is. It is evaluated as:

WHR =
1
N

N

∑
i=1

wi

hi
. (4)

• Volume of the peak is the volume of the portion of the GLDM that is above the
highest level curve, and represents another descriptor of the GLDM shape in its
peak. If L is the highest level at which the GLDM is analysed, and there are M bins
of height Hi ≥ L, the peak volume is then evaluated as:

PV =
M

∑
i=1

(Hi −L) . (5)

This is a way of taking into consideration the part of the histogram that is neglected
by the analysis of the contour lines.

• Maximum-minimum area ratio is the ratio between the area of the largest ellipse,
and that of the smallest one, and describes the gradient of the GLDM; this can
appear similar to the minor axis spread, but the major axis of each ellipse is also
involved in this case. Since ellipses found at lower levels are larger than the ones
found at higher levels, this ratio is evaluated as:

MMAR =
Area1

AreaN
. (6)

• Minimum area is the area of the smallest ellipse, another descriptor of the GLDM
peak.

• Blank GLDM locations is the number of empty bins in the GLDM. This is not
directly related to the shape of the GLDM; however, this indicator is useful because
it describes the histogram at the lowest level, as if a level curve at height 1 would
be considered. The number of blank locations has been chosen instead of such level
curve, because this second solution would have neglected a high number of blank
locations that are inside a region composed of bins that are low, but anyway greater
than zero. This situation is often the case in the region where the GLDM is very
low.

These features represent a novel way for analysing GLDMs, that takes into consider-
ation a high number of geometrical characteristics. It is then possible to use them as
input for a classifier, together with previously used features, in order to obtain more
accurate results.

3.3 Classification

Features described in the previous section form input data for a machine learning clas-
sifier. We use AdaBoost [15] to categorise these features into classes corresponding to
different density of the crowd. AdaBoost combines so called “weak classifiers” into
one final strong classifier that performs better than any of the weak classifiers alone
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(see [15] for details of the training algorithm). We use the Real AdaBoost variant of the
algorithm [16] that provides a lower error rate by allowing weak classifiers to vote by
their individual degree of certainty instead of making simple binary decision. We use
binary decision trees [17] as weak classifiers. A single decision tree is constructed re-
cursively based on the weighted training examples and in result only the relevant input
features are selected. Therefore such a classifier can be considered as a feature selector.

The standard AdaBoost algorithm performs the binary classification only; to perform
multi-class classification, we adopt the AdaBoost.MH algorithm [16] which creates a
separate strong classifier for each class. This method requires the training examples to
be presented individually for each class with amended labels indicating their affiliation
to this specific class.

3.4 Crowd Localisation

A standard GLDM captures the global properties of the entire image, and is therefore
unable to localise the detected crowd. In order to obtain localisation information, we
applied a pyramidal image division into a set of regions: first, the entire image is di-
vided into four equal parts, then each part is divided into four regions. After splitting, a
separate GLDM is calculated and a set of the proposed texture features is extracted from
each region. Each splitting step increases the number of regions but at the same time re-
duces the region area. In result, the localisation ability of the algorithm improves, while
its discriminative power (i.e. ability to categorise) decreases. This trade-off should be
considered when deciding for the optimal number of the splitting steps. In our work,
we analyse results obtained for 0, 1 and 2 splitting steps which corresponds to division
into 1, 4 and 16 regions.

The pyramidal division is a key factor of the developed system, since it enables a
GLDM-based method to provide localisation information. It has been observed that
when the GLDM is evaluated over a portion of the image, the new descriptors based on
multilayer shape analysis provide better classification results with respect to the ones
used in the literature: the new features are therefore required in order to let GLDM
provide strong result with localisation information.

4 Experiments

4.1 Experimental Data

The presented system has been tested on a set of challenging sequences recorded during
the real football matches at the local stadium arena. The acquisition system consisted
of the four best placed PTZ cameras installed at the venue: three cameras directed at
the spectator areas and one placed outside the stadium. Data collection started one hour
before the match and ended half an hour after the game was over.

The collected video sequences include people getting into the venue, watching the
game and leaving the stadium. Available scenes include several scenarios: the public
framed at several distances watching the game, the game field with players, people
queuing up for coffee and crowds flowing into and out from the venue. The crowd itself
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does not always present the same texture density due to the different zoom levels and
camera orientations used during the acquisition. As it can be seen, the system is required
to correctly face large variety of different situations, with several crowd densities, scales
and viewpoints; performed tests are therefore able to measure the generality of the
proposed method.

The video resolution was set to 640× 480 pixels. From all available data, we have
selected 22 different video sequences resulting in 901 images in total that were used for
our experiments.

The ground truth data were collected by manually annotating the number of persons
in each image region corresponding to image division into 16 parts. These examples
were later categorised into a set of classes representing different crowd density accord-
ing to the criteria presented in Table 1. Ground truth for other image divisions (i.e. into
4 and 1 region) was calculated in a similar way.

Table 1. Experimental data: crowd categories, the corresponding number of persons per image
region and a number of examples per class

Category No crowd Low Med High
Persons 0-1 2-4 5-9 10 and more

Examples 9954 2072 1489 901

4.2 Classification Results

4.2.1 Training and Testing
To train AdaBoost we have used 300 training examples for each class. The number of
weak classifiers was set to 50 and the depth of the decision tree set to 3. Each experiment
was cross-validated 20 times. The performance of the classifier was verified on 400
testing examples for each class and compared to the ground truth information.

4.2.2 Classification Performance
We have run several tests to investigate the main characteristics of our system. Table 2
presents the classification results obtained when using the original and proposed feature
sets alone and using both sets together. In addition, to check the ability of the system
to discriminate between different crowd categories we have run the tests for different
number of classes including 4 original crowd categories, 3 categories where the Mid and

Table 2. Classification results for different feature sets and different number of classes. The fea-
ture sets include: MAR - original feature set, MD - the proposed feature set, MAR&MD - com-
bination of all features.

Classes MAR MD MAR&MD
4 84.0±1.0% 84.3±1.2% 89.4±0.8%
3 83.2±1.3% 83.6±0.9% 88.4±1.0%
2 85.6±2.0% 85.2±1.5% 89.8±1.4%
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Table 3. Classification results for different number of image regions

Regions MAR MD MAR&MD
16 84.0±1.0% 84.3±1.2% 89.4±0.8%
4 95.9±0.9% 96.0±0.8% 97.3±0.9%
1 98.7±0.6% 98.7±0.6% 98.3±1.1%

Fig. 3. Six frames presenting different situations of crowd-no crowd. These six frames are cor-
rectly classified when they are considered as one region or divided into four regions. However,
when divided into 16 regions, the system correctly classifies most of the blocks (as shown by the
black blocks in the lower part of the images), correctly locating the crowd. Only few blocks are
problematic and misclassified (the grey blocks in the lower part of the images – brighter the block,
larger the difference between the classifier output and the ground truth). Each block also contains
two words: the classification output of the system (upper row) and the ground truth (lower row).

High class were combined into one and 2 categories with Low, Mid and High classes
combined into one.

While performance for these two features sets is comparable (∼84%) combination
of all features results in a significant improvement (∼89%). We can also see that this
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trend is similar for different number of classes and that merging different crowd classes
did not significantly affect the results.

To test the trade-off between the system’s ability to localise the crowd and accurately
estimate its density we run the classification tests for different number of splitting steps
(i.e. image regions): default division into 16 regions, division into 4 regions and for
the entire image. The results presented in Table 3 indicate that the classification perfor-
mance drops significantly (by ∼8%) when increasing the number of regions from 4 to
16. We can also see that differences in performance for different feature sets are less
pronounced for lower number of regions and almost the same when analysing the entire
image.

The main sources of misclassification were caused by rich texture content of non-
crowded regions, significant image blur and the rough division into image regions.
Some of the problematic situations are presented in Fig. 3, where the analysed im-
ages are coupled with the classification output, shown as a image that is black when the
classification is correct, and that becomes lighter for increasing error entity. The results
of the classification provided by our system and the ground truth are also reported, in
the first and second row of each block, respectively.

We have also investigated the importance of each input feature, by analysing the
weights of individual weak classifiers. In our tests, the features were ranked in the fol-
lowing order, starting from the most important one: homogeneity, entropy, total volume,
contrast, blank locations, energy, minimum width, minor axis spread, volume of the
peak, max-min area ratio, width-height ration and evenness. Two of the most important
features turned out to be from the original set, while the most relevant features from the
proposed set include total volume and blank locations. The evenness and width-height
ratio were the last in the rank; however these features were also contributing to the final
outcome of the classifier.

5 Conclusions and Future Work

We have presented a texture-based crowd detection system that is able to categorise
image regions into classes corresponding to different crowd density and to roughly
localise the crowd in the image. The presented results demonstrate that the additional
proposed features improve the classification performance in smaller image areas. We
have also demonstrated a trade-off between the localisation and classification ability of
the system and investigated the importance of individual features.

Possible extensions to the system include incorporation of motion cues (e.g. based
on motion flow analysis) for detection of moving crowds, the use of additional features
(e.g. Gabor filters), combining information from multiple sensors, tracking individuals
and groups of people in crowds, etc. It should also be possible to apply regression
models to obtain continuous density estimates instead of discrete density categories.
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