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Abstract. To offer sustainable robotic services, service robots must ac-
cumulate knowledge by using recognition results and choose a action for
services intelligently. Robust knowledge instantiation and update by us-
ing imperfect sensing data such as misidentification of perception is a
main issue to implement semantic robot intelligence. In this paper, ro-
bust knowledge acquisition method is proposed to enable robots to detect
falsity of object recognition for robust knowledge instantiation, where
spatial reasoning, temporal reasoning, movable properties and data con-
fidences are considered.

1 Introduction

The robotic service is up-and-coming application to receive attention in various
research fields of robotics [1]. Various robots is expected to be one of the most
important issues to occur in the residential space to offer services. However, ser-
vice environments are said to be partially observable and uncertain with respect
to service robots. Even though a robot may often fail to perform service tasks,
given service tasks should be sustained to satisfy the user’s requests.

Performing service tasks successfully, such as taking orders semantically from
a person, moving to various type of residential space, and finding an object
which meets person’s needs, autonomous robots are required to have substantial
knowledge [2]. Service robots are designed to complete service tasks semi or fully
automatically in a service environment [3]. Service robots will need to understand
semantic relationships of objects, spaces and contexts in order to assist humans
in their everyday lives, and then the robot must carry out its service tasks with
its primitive behaviors. For this, a robot needs many kinds of data from low
level sensor data to high level symbolic data. High level perceptual tasks such as
context awareness, object recognition and navigation are essential for intelligent
robots. Also a robot must combine its atomic behaviors.
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Robots must interact semantically with humans as well as understand user
intentions to enable socially collaboration [4], [5]. When interacting with humans,
it will be needed for robots to be able to understand semantic and contextual
information regarding objects. For example, if a robot needs to find a cup from a
table that contains other objects such as kettle and the cup are occluded by the
kettle, some additional information can give more chances to find the cup. This
might take the form of a spatial relationship, such as “kettle is left of the cup.” If a
service robot recognized the kettle, the cup might be right of the kettle. Semantic
knowledge also evaluates candidate objects based on spatial semantic properties
such as the door handle should be found in one of a few areas once the door
is detected [6]. Semantic navigation is another example to show the validity of
semantic robot knowledge. Humans do not necessarily use accurate quantitative
information to perceive space where one is located or to move to another place.
Instead, they remember a few landmarks that constitute the space such as a
specific structure or distinct objects, they restructure the knowledge based on
a spatial contexts and then utilize the knowledge again [7]. Moreover, humans
interact others with symbolic information, which are not just simple data but
semantic knowledge which is represented by network or graph which represents
semantic relations between concepts. Through the relationships, humans can
acquire additional information beyond given information in interaction.

Service tasks always creates some social situation which is framed to pay
attention to restricted and related domains [8]. Moreover, service tasks have
successive interrelation of number of subtasks as service flow. From the service
provider’s vies, there are obstacles to look for recurrent sequence of subtasks
from many various kinds of service tasks. Service tasks tend to be repeating
pattern of task sequence. Each service captures specific tasks to be carried out
(forming a very flexible sort of subtasks) and their respective precondition and
post conditions. These service tasks can be modeled with each subtasks being
further linked to a rich description as a scenario. However, a situation cannot be
understood using sensory information such as object recognition, robot localiza-
tion and human recognition, it requires contextual interpretation of the scene
using not only robot-embodied sensors but also exogenous sensors [9]. Under-
standing situation provides clues for the appropriate and efficient action selection
for sustainable service tasks.

In knowledge management literature it has often been pointed out that the
relation between knowledge, information and data is important, and often misun-
derstood. It has also been argued that this misunderstanding leads to problems
in information system design [10]. Data has commonly been seen as simple facts
that can be structured to become information. Information, in turn, becomes
knowledge when it is interpreted, put into context, or when meaning is added
to it. There are several variations of this widely adopted theme. The common
idea is that data is something less than information, and information is less than
knowledge. Moreover, it is assumed that we first need to have data before in-
formation can be created, and only when we have information, knowledge can
emerge.
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2 Robot-Centered Ontology

OWL ontology [11] is used for representation of robot knowledge. Here, ontol-
ogy that expresses semantics with concept hierarchy and their relationships is
mainly formulated in the knowledge representation formalism and is necessary
to enable the assimilation of information from diverse sources [12]. Semantics
for robot knowledge refers to five knowledge classes including feature, object,
space, context, and action, and how these classes are related to each other. Also,
there is production system with two types of rules, uni-directional rules and bi-
directional rules. Robot knowledge can be integrated from the different sources
of knowledge including encyclopedic knowledge designed manually from expert
knowledge or from Internet, action knowledge derived from observations of hu-
man motion, and robot knowledge about self-model and its surrounding world
model [13], [14]. These robot knowledge should reflect actual environments as
practice knowledge [15]. A robot perceives objects with its own sensors, models
a world where it exists, plans some sequences of tasks, performs tasks with its
own behaviors, and then perceives again [2], [16]. To comply with such cognitive
capabilities, robot-centered ontology is designed to be composed of knowledge
boards (KBoards) and rules, where KBoards is composed of five classes of knowl-
edge (KClass): feature, object, space, action, and context as shown in Fig. 1.
Here, context is a characteristic environmental situation around robots which
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Fig. 1. An example of robot-centered ontology including schematic knowledge, an ex-
perimental environment and their knowledge instances
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can provide clues of the proper action selection mechanism for a robot. A world
model represents a robot’s internal states reflecting perceived environments and
consists of context, object, and space (COS) classes.

Each knowledge class has three knowledge levels (KLevel) such as high level,
middle level and low level knowledge. Low level knowledge of feature class and
action class (numerical descriptor, and behavior) are robot-specific knowledge
for its own sensory motor capabilities, and COS classes of low-level knowledge
consists of spatial context, part object, and metric map. Middle level knowl-
edge visual feature, object, topological map, temporal context, and task are
common robot knowledge at the abstract level and hide details of a partic-
ular set of low-level sensor data and motor commands. High-level knowledge
of compound object, semantic map, situation, and service classes are common
knowledge for robots as well as humans. Each knowledge level has three ontology
layers (OLayer), such as the meta ontology layer for generic knowledge, ontology
schema layer for domain knowledge, and ontology instance layer for knowledge
instance. Meta ontology can be a template of the ontology schema layer, and the
ontology schema layer is instantiated to instance layer.

The feature KClass has three KLevels. The low level knowledge of feature
is the numerical descriptor level that includes a set of numerical descriptors of
image processing algorithms, which are produced by robots’ own sensors and
data processing algorithms. The middle level knowledge of feature is the visual
feature level that includes visual features, which are extracted by numerical
descriptors in the low level. The high level knowledge of feature is the visual
concept level that is grounded with visual features in feature knowledge class
and object feature in the object knowledge class or metric map in the space
knowledge class. The following is a DL representation of blue.

Blue := ColorFeature ∧ ∃hasColor.HueV alue

∧∃hasAlgorithm.extractColor

Each COS class consists of three knowledge levels for the representation of the
robot world model. Low levels such as an object part, metric map, and spatial
context are used for matching with perceptual feature. Middle levels include
object, topological map, and temporal context that contain its name and func-
tionality. High levels such as situation, compound object, and semantic map
are abstract level, which easily describe relationships between other knowledge
classes. In the Description Logic (DL) example below, a cup has a colorFeature.

Cup := Object ∧ ∃isObject.Container

∧∃hasColor.ColorFeature

Context is not a list of objects and their locations, but implies abstract and
characteristic situations that can be represented by relationships between objects
and object properties. The low level knowledge of context denotes the spatial
context level that has a spatial concept such as on, in, left and right, which are
inferred by using the object level and space level instances in the model class.
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The middle level knowledge of context represents the temporal context level that
has temporal concepts defined by Allen [17]. Finally, the high level knowledge of
context is the high-level context. The following is a DL representation of left.

Left := SpatialContext ∧ ∀hasSubjective.Object

∧∀hasObjective.Object

3 Robust Knowledge Acqusition

Successfully accomplishing everyday service tasks requires autonomous robots
to have substantial knowledge with their own sensors. These robot knowledge
should be instantiated and updated by using imperfect perception data, such
as misidentification of object recognition [15]. The feature knowledge of visual
observation can be instantiated as ontology, which ensures that only sound and
complete data are asserted and propagated with ontology inference. Noisy sen-
sor data, such as false positives and false negatives, should be filtered for robust
robot knowledge acquisition. For instance, a misidentified object may make er-
roneous spatial relationships. Moreover, inferred erroneous facts will result in
false consequences for reasoning; this generates a vicious cycle, and errors are
difficult to correct, even with additional true negative results.

To address the failure of knowledge instantiation, a reasoning mechanism with
knowledge acquisition rules are proposed to instantiate and update knowledge
by estimating confidence of the perception results. There are four properties
to build robust knowledge acquisition rules: temporal reasoning to check the
validity of relationships between time intervals, statistical reasoning to determine
the confidence level of the perception results, ontological reasoning to check if a
perceived feature satisfies object properties or space properties.

3.1 Likelihood Confidence Interval (LCI)

Our way to estimate the confidence of likelihood for perception is to extend
some form to formalize the common sense law of inertia, whereby an event
is assumed to persist unless there is reason to believe otherwise, and to be
perceived perfected without recognition failure or misidentification [18]. The
extend form considers the uncertainty of perception on the basis of the confidence
law of inertia, whereby knowledge instance is assumed to persist unless there is
confidence to believe otherwise as shown in Fig. 2.

Confidence of recognition is determined by an likelihood interval-counter (γ)
from the measurement likelihood for each object recognition result. If the mea-
surement likelihood of object A is xA, then (1-xA) is the probability that the
recognition data for A can be false. From that, (1-xA)

γA can be calculated to de-
fine probability when the values of γA consecutive data are all false. If the result
of (1-xA)

γA is less than 5% (0.05), then it can be said that the data have been
obtained within a confidence interval (1.96σ, P = 0.05) of the 95% confidence
level. For example, if the measurement likelihood of object A is 80%successively,
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Fig. 2. The confidence law of inertia as an extended form of the common sense law of
inertia

the recognition failure rate of object A might be 20% (0.2). The result rate of
recognition failure of two consecutive observations is 4% (0.04) and 4% is beyond
the 95% confidence interval(P = 0.05), so γ of object A is 2. At that time, the
instance of object A is created and vice versa. The likelihood interval-counter
using β likelihood distribution can be represented as follows:

γβ = min{γ ∈ I|
n∏

i=1

(1− xobj) ≤ P}, (1)

where P = 0.05 = 1− 95% confidence level.

3.2 Temporal and Statistical Reasoning

According to continuous observations from robot movement, object instances
might be created or deleted whether certain number of consecutive observation
likelihoods exceed the likelihood confidence interval. Time intervals of object
instances which exist or not is determined by the durations between the changes
of confidence. Temporal relations between intervals are inferred using temporal
reasoning. The temporal relation was first proposed by Allen [17] and represents
temporal relations using before, after, meets, met-by, overlaps, overlapped-by,
and so on. If two intervals meet or overlap, then they are merged into one
interval. The merged interval begins at the start point of the former and ends
at the end point of the latter. Temporal confidence reasoning (TCR) is based on
the assumption that recognized objects cannot go away and come back within a
single time interval.

When an object instance of A is registered, if other objects are also considered
to be true positive instances and to have a temporal relation of overlapped with
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Fig. 3. An example of space knowledge instance

object A, then spatial relations among the objects can be inferred. Then, the
spatial relation between them can be reasoned and set using spatial reasoning.
All object instances and their spatial relations can be registered in the instance
database.

3.3 Space Knowledge Class

Figure 3 show an experimental result of space knowledge class instance includ-
ing metric-topology map and semantic-topology map. For this experiment, a
pioneer 3 AT robot carrying a single consumer-grade camera was driven around
the fourth floor of IT&BT building in Hanyang university. The TCR rules are
applied to check the validity of the relationships between intervals and statisti-
cal reasoning to determine the LCI of visual perception from commercial vision
system. As a result, there are 19 nodes and 27 objects.

4 Concluding Remarks

In this paper, a robust knowledge acquisition method that makes imperfect infor-
mation of epistemic results toward robust and consistent knowledge is proposed
as one of knowledge management methods. The method uses temporal reasoning
to check the validity of relationships between intervals and statistical reasoning
to determine the confidence interval (CI) of object recognition. The experimen-
tal results indicate that false positives in recognition results were corrected. The
proposed method had difficulty registering some objects with a recognition rate
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less than 52.9% (γ = 4). In spite of this, the method can determine misidentifi-
cation well, and thus dependable semantic knowledge for service robots can be
instantiated.

Acknowledgement. This work was supported for the Intelligent Robotics De-
velopment Program, one of the 21st Century Frontier R&D Programs funded by
the Korea Ministry of Knowledge Economy.

References

[1] Stefanov, D., Bien, Z., Bang, W.: The smart house for older persons and persons
with physical disabilities: structure, technology arrangements, and perspectives.
IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(2), 228–
250 (2004)

[2] Lim, G.H., Suh, I.H., Suh, H.: Ontology-based unified robot knowledge for service
robots in indoor environments. IEEE Transactions on Systems, Man and Cyber-
netics, Part A: Systems and Humans 41(3), 492–509 (2011)

[3] Kawamura, K., Pack, R., Iskarous, M.: Design philosophy for service robots. In:
IEEE International Conference on Systems, Man and Cybernetics, Intelligent Sys-
tems for the 21st Century, vol. 4 (1995)
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