
Chapter 3
Morphogenetic Robotics: A New
Paradigm for Designing Self-Organizing,
Self-Reconfigurable and Self-Adaptive
Robots

Yaochu Jin and Yan Meng

Abstract By morphogenetic robotics, we mean a class of methodologies for design-
ing self-organizing, self-reconfigurable and self-adaptive robots inspired by biolog-
ical morphogenesis. We categorize these methodologies into three areas, namely,
morphogenetic swarm robotic systems, morphogenetic modular robots and morpho-
genetic co-design of body and brain for robots. We also discuss the relationship
between morphogenetic robotics and a few closely related areas in robotics, such
as epigenetic robotics, which focuses on cognitive development in robotic systems,
and evolutionary robotics, which is concerned with evolutionary design of robot
controllers. A few examples are provided to illustrate the main ideas underlying the
morphogenetic approaches to robotics.

3.1 What is Morphogenetic Robotics?

In biology, morphogenesis is a general term denoting the biological process that
causes the creation of the form of multi-cellular organisms [60], including the body
plan and the nervous system. In recent years, increasing evidence has been found in
evolutionary developmental biology (evo-devo) that morphogenesis can be regarded
as a self-organizing and self-assembling process through cellular and molecular inter-
actions under genetic and environmental control [4, 52]. In addition, biological mor-
phogenesis also shows a surprising degree of robustness [5].

Due to the attractive properties that biological morphogenesis exhibits, much
attentionhasbeenpaidtotheuseofgeneticandcellularmechanismsfordesigningrobotic
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systems, in particular self-organizing swarm robotic systems and self-reconfigurable
modular robots. Meanwhile, a large body of research has been conducted in artifi-
cial life and robotics to simultaneously design the body plan and neural controller of
robots or animats using an evolutionary developmental approach [53, 55, 57].

With the recent and rapid advances in evolutionary developmental biology and
systems biology, we expect that increasing research interest will focus on solving
various problems in robotics inspired from biological morphogenesis. To promote
research activities along this line, we advocate the term of morphogenetic robotics
as a new research field in robotics that concentrates on the application of biological
morphogenetic mechanisms to the design of self-organizing, self-configurable and
self-adaptive robots.

From our perspective, morphogenetic robotics may include, but is not limited to
the following three main topics:

• Morphogenetic swarm robotic systems that deal with the self-organization of
swarm robots using genetic and cellular mechanisms underlying early biologi-
cal morphogenesis [17, 31, 50].

• Morphogenetic modular robots, where modular robots adapt their configuration
autonomously using morphogenetic principles [63].

• Evolutionary developmental approaches to the design of the body plan of robots,
including sensors and actuators, and/or the controller of robots [18, 28].

Morphogenetic robotics is related to, but differs from, epigenetic robotics, often
known as developmental robotics [30, 59], or developmental cognitive robotics [26].
The main difference between morphogenetic robotics and epigenetic robotics is that
the former focuses on self-organization, self-reconfiguration, self-assembly and self-
adaptive control of robots using genetic and cellular mechanisms inspired from bio-
logical morphogenesis, whereas the latter emphasizes the development of robots’
cognitive capabilities, such as language, emotion and social skills, through experience
during their lifetime. Morphogenetic robotics is closely connected to developmental
biology and systems biology, while epigenetic robotics is related to cognitive science,
developmental psychology and neuroscience. As a whole, morphogenetic robotics
and epigenetic robotics together lay the foundation of developmental robotics in a
more general sense. Meanwhile, morphogenetic robotics can be seen as a sub-field
of morphogenetic engineering [12].

Other closely related notions are evolutionary robotics [46] and morphological
computation (also known as morphological robotics) [41]. Traditionally, evolution-
ary robotics is concerned with the design of robot controllers using evolutionary
algorithms. Complementary to evolutionary robotics, where the role of the robot’s
morphology in realizing an intelligent behavior is overlooked to a large degree, mor-
phological computation was employed for connecting brain, body and environment in
robot design. Unfortunately, it turned out that morphological computation has put too
much emphasis on the direct design of the morphology of robots in shaping intelligent
robotic behaviors and has not paid sufficient attention to the developmental aspects.

A brief introduction to biological morphogenesis and its computational models are
presented in Sect. 3.2. A metaphor linking swarm robotic systems to multi-cellular
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systems is described in Sect. 3.3, where a gene regulatory model is used for self-
organizing multiple robots to form complex shapes. Related issues such as how
to represent and form complex shapes without a global coordinate system are
also discussed. Section 3.4 presents our idea of using a gene regulatory network
model to configure modular robots, followed by Sect. 3.5, where the developmental
approach to evolutionary co-design of the body and controller of robots or robot
parts (e.g., robot arm and hand for object grasping) is discussed along with a short
overview of research work on brain-body co-evolution originated from both artifi-
cial life and evolutionary robotics. Concluding remarks of this chapter are provided
in Sect. 3.6.

3.2 Multi-Cellular Morphogenesis and its Computational
Modeling

3.2.1 Biological Morphogenesis and Metamorphosis

Animal morphogenesis can be divided into early embryonic development and later
embryonic development [16]. Early embryonic development typically involves cleav-
age, gastrulation, and axis formation, while later embryonic development is mainly
responsible for the development of the nervous system, starting with the segregation
of neural and glial cells from the ectoderm germ layer [47].

Metamorphosis is another interesting stage of biological development during
which both the shape and size of the organisms changes [7]. There are two types
of metamorphosis, namely, incomplete and complete metamorphosis. For organ-
isms underlying incomplete metamorphosis, there are three developmental stages, in
which nymphs look similar to adults. By contrast, organisms that undergo complete
metamorphosis have four developmental stages, in which the shape of the organisms
changes drastically.

Both multi-cellular morphogenesis and metamorphosis are under the control of
gene regulatory networks (GRN). When a gene is expressed, information stored
in the genome is transcribed into mRNA and then translated into proteins. Some of
these proteins are transcription factors that can regulate the expression of their own or
other genes, thus resulting in a complex network of interacting genes, the GRN. In the
following, we discuss computational modeling of GRNs and show how these models
can be used both for understanding biology and solving engineering problems.

3.2.2 Computational Modeling of Developmental
Gene Networks

In order to understand the emergent morphology resulting from the interactions of
genes in a GRN, reconstruction of gene regulatory pathways using a computational
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model has become popular in systems biology [9]. A large number of computational
models for GRNs have been suggested [11, 14], which can be divided into dis-
crete models, such as random Boolean networks and Markovian models, and contin-
uous models, such as ordinary differential equations and partial differential equations.
Sometimes, one can also distinguish among GRNs deterministic models and stochas-
tic models according to their ability to describe stochasticity in gene expression.

Generally speaking, the regulatory dynamics in a unicellular cell can be described
by a set of ordinary differential equations. The mathematical model of gene expres-
sion with autoregulation can be typically described by:

d [R]
d t

= −γR [R] + αR H([P]), (3.1)

d [P]
d t

= −γP [P] + αP [R], (3.2)

where [R] and [P] are the concentrations of mRNA and protein, respectively, γR and
γP are the decay rates of mRNA and protein, αR and αP are the synthesis rates of
mRNA and protein, H(X) is the Hill function. If the autoregulation is a repression,
also known as negative autoregulation, the Hill function can be described by

Hr (x) = θn + β

θn + xn
, (3.3)

and if the autoregulation is an activation, the Hill function can be written as:

Ha(x) = β xn

θn + xn
, (3.4)

where β is an activation coefficient, θ is a threshold, and n is the “Hill coefficient”.
To describe the morphogenesis of multi-cellular organisms, interaction among the

cells in their gene expression dynamics must also be taken into account. Mjolsness
et al. [35] have suggested a generalized GRN that considers diffusion of transcription
factors among the cells:

∂gi j

∂t
= −γ j gi j + φ

[ ng∑
l=1

W jl gil + θ j

]
+ D j∇2gi j , (3.5)

where gi j denotes the concentration of j-th gene product (protein) in the i-th cell.
The first term on the right-hand side of Eq. (3.5) represents the degradation of the
protein at a rate of γ j , the second term specifies the production of protein gi j , and the
last term describes protein diffusion at a rate of D j . φ is an activation function for
the protein production, which is usually implemented by a sigmoid function φ(z) =
1/(1+exp(−μz)). Interactions between genes are described by an interaction matrix
W jl , whose elements can be either active (positive value) or repressive (negative
value). θ j is a threshold for the activation of gene expression. ng is the number of
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Fig. 3.1 Illustration of cell signaling in a multi-cellular system

proteins. An illustration of cell-cell interactions is provided in Fig. 3.1, where gene
1 of cell 1 is activated by its own protein and repressed by the protein produced by
gene 1 of cell 2 through diffusion. Similarly, gene 2 of cell 1 is activated by its own
protein, and repressed by the protein of gene 2 of cell 2 through diffusion.

3.2.3 Applications of Computational Models of GRN

In addition to the reconstruction of gene regulatory pathways based on biological
data [51], computational models have been widely used for analyzing the dynamics
of GRNs, particularly regarding the robustness of GRN motifs, the in silico synthesis
of typical regulatory dynamics such as bistability and sustained oscillation, and the
design of engineered systems [12], including morphogenetic robotics that we discuss
in greater detail in the following sections.

3.2.3.1 Analysis of GRN Motifs

It is believed that GRNs can be analyzed by examining the structure and function
of a number of wiring patterns, known as network motifs, such as auto-regulation,
feedforward loops and feedback loops [1]. Recently, the role of feedback loops, in
particular their coupling and its relationship to the robustness of resulting dynamics
in the network motifs, has received increasing attention [10, 27, 58].

The cis-regulation logic also plays an important role in the dynamics and func-
tionality of GRNs. A systematic investigation of control logic in gene regulation has
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been reported in Schilstra and Nehaniv [48], who suggested that networks consisting
of competitively binding activators and repressors can be controlled more robustly.

3.2.3.2 In Silico Synthesis

In Silico synthesis of typical regulatory dynamics can offer insight into the way
nature has shaped the evolution of regulatory motifs [15, 40]. In Knabe et al. [25],
a GRN was used for evolving biological clocks in the presence of periodic environ-
mental stimuli, where both the number and activation type (activating or repressive)
of regulatory units of each gene were subject to evolution. They reported that the
evolved clock tended to be robust to perturbations that evolution has experienced. Jin
and Sendhoff [22] investigated the influence of the genetic encoding scheme as well
as the activation function used in the gene regulatory model of a relaxation oscilla-
tion circuit. Their results suggested that evolving sustained oscillation using a step
function as the activation function was much easier than using a Hill function. Most
recently, it has been found that robust motifs can emerge from in silico evolution
without an explicit selection pressure [20].

3.2.3.3 Artificial Embryogeny

A large body of research has been reported on simulating biological development
in computational environments [55]. Motivations for building models of artificial
embryogeny include understanding biological development in artificial life, design-
ing complex structures [56], and amorphous computing [6], to name a few. Obviously,
all three areas of morphogenetic robotics involve computational models of biological
morphogenesis, which will be elaborated upon in the following sections.

3.3 Morphogenetic Swarm Robotic Systems

3.3.1 Swarm Robotic Systems

A swarm robotic system is a multi-robot system consisting of a large number of
homogeneous simple robots. Swarm robots are often used to fulfill tasks that are dif-
ficult or even impossible for a single robot, especially in the presence of uncertainties,
or with incomplete information, or where a distributed control or asynchronous com-
putation is required. Compared with centralized systems, swarm robotic systems with
a distributed control are believed to be flexible, robust, and adaptive for tasks that are
inherently distributed in space and/or time. Typical applications of swarm robotic
systems include group transport, foraging, shape formation, and boundary coverage.
However, designing a decentralized control algorithm for swarm robotic systems has
been a challenging task [32].
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3.3.2 A Metaphor Linking Swarm Robotic Systems
to Multi-Cellular Systems

3.3.2.1 Cell-Robot Mapping

The basic idea in applying the genetic and cellular mechanisms of biological morpho-
genesis to the self-organized control of swarm robots is to establish a metaphorical
link between a cell and a robot. In other words, it is assumed that the motion dynamics
of each robot can be modeled by the regulatory dynamics of a cell. In [17, 19, 33],
the location and velocity of the robots are described by the protein concentration of
a few genes whose expression is influenced by each other. Typically, for a robot in
a three-dimensional space, three proteins are used for denoting the robot’s position,
and three for the velocity. Note however that the mathematical definition of the pro-
tein concentrations standing for position and velocity of the robots do not satisfy the
exact physical relationship between position and velocity. Figure 3.2 shows multiple
robots in a field, each represented by a cell, where the robots are represented by cells
containing a virtual DNA in a field. The dashed circle indicates the neighborhood of
the shaded cell (robot) into which its proteins can diffuse and can influence the gene
expression of these cells.

Keeping the metaphor between the cells and the robots in mind, the motion dynam-
ics of each robot can be described by a GRN model, where the concentrations of two
proteins of type G represent the x and y position of a robot, respectively, and that of
the proteins of type P represent the analog of the velocity.

dgi,x

dt
= −azi,x + mpi,x

dgi,y

dt
= −azi,y + mpi,y, (3.6)

dpi,x

dt
= −cpi,x + k f (zi,x ) + bDi,x

dpi,y

dt
= −cpi,y + k f (zi,y) + bDi,y, (3.7)

Fig. 3.2 A swarm robotic
system represented by a
multi-cellular system
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where i = 1, 2, . . . , n and n is the total number of robots (cells) in the system. gi,x

and gi,y are the x and y position of the i-th robot, respectively, which correspond to
the concentrations of two proteins of type G. zi,x and zi,y are spatial gradients (to be
defined later). pi,x and pi,y are the concentrations of two proteins of type P, which
denote the velocity-like property of the i-th robot along the x and y coordinates,
respectively. Di,x and Di,y are the sum of the distances between the i-th robot and its
neighbors. In the language of the multi-cellular system, it is the sum of the concen-
trations of protein type G diffused from neighboring cells. Mathematically, we have:

Di,x =
Ni∑

j=1

D j
i,x , Di,y =

Ni∑
j=1

D j
i,y, (3.8)

where Ni denotes the number of neighbors of robot i , and D j
i,x and D j

i,y are the
protein concentrations diffused from neighboring robot j received by robot i , which
are defined as:

D j
i,x = (gi,x − g j,x )√

(gi,x − g j,x )2 + (gi,y − g j,y)2
, (3.9)

D j
i,y = (gi,y − g j,y)√

(gi,x − g j,x )2 + (gi,y − g j,y)2
. (3.10)

The diffusion term in the regulatory model simulates cell-cell signaling in multi-
cellular systems. For a swarm robotic system, this only entails that each robot should
be able to detect the distance to its neighboring robots, which is practical and easy
to realize.

3.3.2.2 Morphogen Gradients for Target Shape Representation

In biological morphogenesis, morphogen concentration gradients control cell fate
specification and play a key role in pattern formation [3]. In the present gene regula-
tory model for shape formation of swarm robots, the target shape information is also
provided in terms of morphogen gradients, which is defined by f (z) in Eq. (3.7). For
two-dimensional target shape, f (zi ) can be defined as follows:

f (zi,x ) = 1 − e−zi,x

1 + e−zi,x
f (zi,y) = 1 − e−zi,y

1 + e−zi,y
(3.11)

where zi,x and zi,y are the gradients along the x-axis and y-axis, respectively, of an
analytic function h, which is described as:

zi,x = ∂h

∂gi,x
, zi,y = ∂h

∂gi,y
(3.12)
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where h defines the shape the robots should form. For example, if the robots are
required to form a unit circle, h can be defined as

h = (g2
i,x + g2

i,y − 1)2. (3.13)

The above GRN makes it possible for the swarm robots to form shapes that can
be described by an analytical function. There are potentially three problems with this
way of shape representation. First, the complexity of the shapes is limited. Second,
the system needs a global coordinate system for describing the shapes, which poses
a big problem for decentralized systems. Third, the shape can be formed only on
a predefined location. To address these issues, parametrized shape representation
models, such as are Bézier, B-Spline and non-uniform rational B-Spline (NURBS)
can be used.

NURBS [43] is a mathematical model commonly used in computer graphics and
design optimization for generating and representing curves and surfaces. NURBS
can offer two unique features for multi-robot shape formation. First, it provides
a common mathematical formalism for both standard analytical shapes and free-
form shapes. Second, it is a parametrized representation that is independent of an
absolute coordinate system. Once the parameters in the NURBS curve are fixed,
a corresponding point on the NURBS curve can be determined without a global
coordinate system. The basis functions used in NURBS curves are defined as Bi,k(u),
where i corresponds to the i-th control point, and k is the degree of the basis function.
A NURBS curve can be defined as the combination of a set of piecewise rational
basis functions with n+1 control points pi and the associated weights wi as follows:

c(u) =

n∑
i=1

pi wi Bi,k(u)

n∑
j=1

w j B j,k(u)

(3.14)

where n is the number of control points, u is the parametric variable, and Bi,k(u)

are B-spline basis functions. Assuming that the basis functions are of degree k-1, a
NURBS curve has n + k + 1 knots ti in non-decreasing sequences: t0 ≤ t1 ≤ . . . ≤
tn+k . The basis functions are defined recursively as:

Bi,1(u) =
{

1 if ti ≤ u ≤ ti+1
0 otherwise

with

Bi,k(u) = u − ti
ti+k − ti

Bi,k−1(u) + ti+k+1 − u

ti+k+1 − ti+1
Bi+1,k−1(u)

The parametric domain is tk−1 ≤ u ≤ tk+1.
With the NURBS model for shape description, complex shapes can be formed,

please refer to Sect. 3.3.3 for examples.
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3.3.3 Illustrative Results

Simulation results where 20 robots are used to form a circle are shown in Fig. 3.3.
The robots are randomly distributed in the area in the beginning. Driven by the GRN-
based dynamics, the robots move toward a circle and distribute on it evenly. Snapshots
showing 56 virtual robots forming a NURBS shape are provided in Fig. 3.4. A proof-
of-concept experiment has also been performed using real e-puck robots. Figure 3.5
shows a few snapshots of eight e-puck robots converging to a capital letter “R”, see
[33] for details.

Fig. 3.3 Autonomous formation of a circle using 20 robots. a Initial positions. b Intermediate
positions. c Converged positions

Fig. 3.4 Formation of ‘NURBS’ using 56 robots. a Initial positions. b Intermediate position. c Final
shape

Fig. 3.5 Formation of letter ‘R’ using eight e-puck robots. a t = 0 s, b t = 6 s, c t = 11 s
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3.4 Morphogenetic Modular Robots for Self-Organized
Reconfiguration

3.4.1 Reconfigurable Modular Robots

Self-reconfigurable modular robots consist of a number of modules and are able
to adapt their shape (configuration) to changing environments by re-arranging their
modules [37]. Each module is a physical or simulated “body” containing a con-
troller. Physical modular robots, such as M-TRAN [36] and Molecube [38], have
been constructed for reconfigurable robotic systems. Modules in M-TRAN com-
prise two connected cubic parts. The connection mechanism between the two cubic
parts allows the modules to perform basic motions such as lifting or rotating.
However, compared to single-cube mechanisms, the mandatory connection between
the two cubic parts may become a mechanical constraint. The modules in Molecube
are composed of two half-cubes on a diagonal plane. Each half-cube can swivel
with respect to the other half, which is inspired by the swiveling action. An advan-
tage of Molecube modules is their single cubic shape that can freely be attached to
or detached from neighboring modules. However, the motion of the modules often
requires more free space around the module so that the movement is not blocked.
Although self-reconfiguration is the most important feature of self-reconfigurable
robots, the ability to adapt their configuration autonomously under environmental
changes remains to be demonstrated.

3.4.2 CrossCube: A Simulated Modular Robot

We have developed CrossCube [63], which adopts a lattice-based cube design. Each
module in CrossCube is a cubical structure having its own computing and communi-
cation resources and actuation capabilities. Like all modular robots, the connection
part of the modules can easily be attached or detached to/from other modules. Each
module can perceive its local environment and communicate with its neighboring
modules using on-board sensors.

Each CrossCube module consists of a core and a shell as shown in Fig. 3.6a. The
core is a cube with six universal joints. Their default heading directions are bottom,
up, right, left, front, and back, respectively. Each joint can attach to or detach from
the joints of its neighbor modules. The axis of each joint can be actively rotated,
extended, and can return to its default direction.

The cross-concaves on each side of the shell restrict the movement trajectory of
the joints, as show in Fig. 3.6a. The borders of each module can actively be locked
or unlocked with the borders of other modules, as shown in Fig. 3.6b. The length and
angle of the lock mechanism can also be adjusted on the borders of the modules.

Basic movements of modules in CrossCube include rotation, climbing and parallel
motion. Figure 3.6c illustrates a rotation movement of two modules. Parallel motion
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Fig. 3.6 Mechanical demonstration of CrossCube. a The joints. b The locks on the boundaries of
the modules. c Rotation and extension of the joints of the modules

means that a module moves to a next position which is parallel to its current position.
During a parallel motion, a module moves from its current position to a parallel
position on its right. All joints of the modules stick out slightly to make enough
free space for modules to move. Climbing motion means that a module moves to
a diagonal neighboring position. Parallel motion and climbing allow a module of
CrossCube to move to any position within the modular robot as long as the modules
are connected.

3.4.3 Self-Reconfiguration as Morphogenesis

The link between reconfigurable modular robots and multi-cellular organisms appears
more straightforward than in the case of collective robotics. Each unit in modular
robots can be seen as a cell, and there are similarities in control, communication
and physical interactions between cells in multi-cellular organisms and modules
in modular robots. For example, control in both modular robots and multi-cellular
organisms is decentralized. In addition, the global behavior of both modular robots
and multi-cellular organisms emerges through local interactions of the units, which
include mechanic, magnetic and electronic mechanisms in modular robots, and
chemical diffusion and cellular physical interactions such as adhesion in multi-
cellular organisms. Therefore, it is a natural idea to develop control algorithms for
self-reconfigurable modular robots inspired from biological morphogenetic mech-
anisms [62, 63]. In the following, we briefly describe a recently proposed mor-
phogenetic approach to designing control algorithms for reconfigurable modular
robots.

Similar to morphogenetic swarm robotic systems, each unit of the modular robot
contains a chromosome consisting of several genes that can produce different pro-
teins. The proteins can diffuse into neighboring modules, thus establishing local
communications between the modules. The concentration of the diffused proteins
decays over time. The target configuration of the modular robot is also defined by
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morphogen gradients. The space in which the modular robot is located is divided in a
grid, where each grid location is occupied by one CrossCube module. The morphogen
gradient can be either positive or negative. A positive morphogen gradient means
that the grid location should be occupied by a module, while a negative gradient
suggests that the module at that location, if any, should be removed. A higher value
of morphogen gradient indicates a higher priority for the grid location to be filled by
a module.

Different from the morphogenetic swarm robotic system described in Sect. 3.3, in
which the target shape is fully predefined by a virtual “maternal” morphogen, each
unit in the morphogenetic modular robot system can modify the morphogen gradients
by secreting either positive or negative morphogen gradients, essential for adapting
its configuration to the current environment or task. As a result, each module is able
to attract or repel neighboring modules.

The attraction and repelling types of behavior of the modules are regulated by a
GRN-based controller, which can adaptively set the state of the modules to one of
the following five situations, namely, “stable”, “unstable”, “attracting”, “repelling”,
and “repelled”. The transition relationships between the five states of modules are
given in Fig. 3.7. Refer to [63] for details of state transitions.

3.4.3.1 GRN-Based Pattern Transition

State transitions are controlled by a GRN model containing two gene-protein pairs, an
attracting gene-protein pair (G A − PA) and a repelling gene-protein pair (G P − PP ).
We assume that the repelling states always have a higher priority than the attracting
states. As a result, all the states triggered by attracting behavior types can be over-
written by the states triggered by repelling behavior types. The rationale for this is
that a grid location with a repelling (negative) morphogen gradient should be kept
empty as long as migrating modules are still in need during reconfiguration.

Fig. 3.7 State transition of
each module in CrossCube
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3.4.3.2 Gene-Protein Pair for Attraction

The attracting gene-protein pair (G A − PA) is used to control the transition between
“attracting”, “stable” and “unstable” states as shown in Fig. 3.7. At the initial stage
of shape configuration, all modules are set as unstable. After they are initialized with
the target configuration, modules at grid locations with an attracting morphogen
gradient become stable. For a newly stabilized module, the gene expression level of
its attracting gene G A is initialized to be zero. Meanwhile, this module generates an
attracting protein PA for each empty neighboring grid location that has an attracting
morphogen gradient. These locations become “attracting” to attract unstable modules
to occupy them. Here, PA is defined as:

Pi j
A = {APi j , Si , Ci j

A }, (3.15)

where Pi j
A is the attracting protein generated by the i-th module for its j-th neighbor.

APi j is the j-th neighboring attracting grid location of the i-th module. Si is the
identification label of the i-th module, and Ci j

A is the concentration of the protein Pi j
A ,

which is equal to the morphogen gradient of APi j . PA can regulate G A in the same
cell and can also diffuse into neighboring modules to regulate the G A of neighbors
as well.

The dynamics of G A and PA can be described by the following GRN model:

dgA(t)

dt
= −a · gA(t) + b ∗

∑
pA,local − c ∗

∑
pA,rec, (3.16)

where gA(t) is the gene expression level of G A at time t . pA,local and pA,rec are
protein concentrations of locally generated protein and received protein from other
modules, respectively. a, b, and c are constant coefficients.

Based on the expression level of gA, the state of the module can be regulated
according to the following rules:

state =
⎧⎨
⎩

unstable for gA < G A,L

stable for G A,L < gA < G A,H

attracting for gA > G A,H

(3.17)

where G A,L is a negative threshold and G A,H is a positive threshold. According to
Eq. (3.16), gA falls below a negative threshold G A,L with the increase of c∗∑

pA,rec.
A higher value of c ∗∑

pA,rec means that there are more important grid locations to
be filled. So the module needs to change its state from stable to unstable and move to
a more important position following the attracting morphogen gradient. An unstable
module chooses a PA with the highest concentration value from all the received
attracting proteins. Then the module migrates to the attracting position requested
by that PA. In order to guide the unstable modules to migrate to their destination,
each module can detect the proteins within its local environment and choose the
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position with the highest protein concentration as its destination. Once they reach
their destination, the unstable modules become stable.

On the contrary, the expression level of gA will be enhanced when b ∗ ∑
pA,local

increases, which means that the module will have important neighboring positions
to fill. So the module changes its current state to the attracting state. The attracting
modules emit attracting proteins in the grid location in which they sit, and the emitted
proteins will then diffuse into other modules. The attracting module will become
stable again once its neighboring attracting positions are all occupied.

In summary, the gene-protein pair (G A − PA) can regulate each other through
the GRN-based model described in Eqs. (3.16) and (3.17). More specifically, PA can
regulate G A through Eq. (3.16), while G A can determine when PA is allowed to
diffuse into neighboring grid locations based on Eq. (3.17). That is to say, only if the
expression level of G A is between G A,L and G A,H , PA can be generated; and only
if the expression level of G A is above G A,H , PA is allowed to diffuse.

3.4.3.3 Gene-Protein Pair for Repulsion

The repelling states are controlled by the repelling gene-protein pair (G P − PP ).
The repelling modules produce PP , which is defined as

Pi j
P = {Ri j , Si , Ci j

P }, (3.18)

where Pi j
P is the repelling protein generated by the i-th module for its j-th neighbor.

Ri j is the j-th repelling grid position around the i-th module. Si is the identification
label of repelling module i , and Ci j

P is the concentration of the protein Pi j
P , which

is equal to a predefined positive constant. As we mentioned before, when a stable
module finds out that some of its neighbors are located in a position with repelling
morphogen gradient, it changes its state to “repelling” and switches the state of its
neighbors to “repelled”. If the repelling module is triggered under this situation,
Ri j is reset such that PP can only repel the specific neighboring module that is
located in Ri j . If the repelling module is triggered by a deadlock, Ri j is not reset
because PP should be detected by all the neighboring modules of the repelling
module.

The gene expression level of gP is initialized to be the morphogen gradient of the
current grid position of the module. It can be regulated by PP through the following
equation:

dgP(t)

dt
= d · gP(t) − e ∗

∑
pPrec state = “repelled” when gP < G PL (3.19)

where gp(t) is the gene expression level of the repelling gene G P at time t , pPrec

is the concentration of the received repelling protein, G PL is a negative constant
threshold and d and e are constant coefficients.
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When a module receives PP , the concentration of gP will be reduced. If
gp < G PL , the module changes its state to “repelled”. Obviously, modules with
a lower morphogen gradient are more easily repelled.

To summarize, PP can regulate G P through Eq. (3.19). G P can produce PP under
the condition that G P is below G PL and the module is blocked.

3.4.3.4 A Representation of Robot Configurations Based
on Lookup Tables

Adaptation to environmental changes is of paramount importance in reconfigurable
modular robots. Similar to analytical or parametrized representation of the target
shape in morphogenetic swarm robots, a mechanism is needed to define and modify
the target configuration of the modular robot. Adaptation of the global configuration
of the modular robot, i.e., change in morphogen gradients, can be triggered by local
sensory feedback. Once a module receives such sensory feedback, this information
will be passed on to its neighbors through local communication. In this way, a global
change in configuration can be achieved.

For the sake of simplicity, a number of basic configurations for different environ-
ments can be predefined in terms of a lookup table for a given mission, for instance
locomotion. For such tasks, it is also assumed that each module is equipped with a
sensor to detect the distance between the module and obstacles in the environment.
An example of defining the configuration of a vehicle is provided in Table 3.1. In this
table, x , y, and z represent 3D coordinates of grid positions, ML denotes a morphogen
level and PID stands for position identification. Additionally, we define a few joints’
movements to enable the vehicle to move, once the configuration is completed. Joints
can be identified by their PID, and RD means the joint’s rotate direction.

Table 3.1 Vehicle configuration lookup table

Positions (x, y, z, ML, PID) Joints (PID1, PID2, RD)

(0, 0, 0, 10, 0) (1, 0, 3, 10, 10) (0, 1, 0)
(1, 0, 0, 10, 1) (2, 0, 3, 10, 11) (2, 3, 1)
(2, 0, 0, 10, 2) (0, 0, 4, 10, 12) (6, 7, 0)
(3, 0, 0, 10, 3) (1, 0, 4, 10, 13) (8, 9, 1)
(1, 0, 1, 10, 4) (2, 0, 4, 10, 14) (12, 13, 0)
(2, 0, 1, 10, 5) (3, 0, 4, 10, 15) (14, 15, 1)
(0, 0, 2, 10, 6) (0, 0, 1, -1, 16)
(1, 0, 2, 10, 7) (3, 0, 1, -1, 17)
(2, 0, 2, 10, 8) (0, 0, 3, -1, 18)
(3, 0, 2, 10, 9) (3, 0, 3, -1, 19)
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Fig. 3.8 Autonomous con-
figuration of a vehicle from a
rectangle

3.4.4 Illustrative Examples for Self-Reconfiguration

This section briefly describes a case study using a GRN-based controller to coordinate
CrossCube modules for a locomotion task. A software is developed to simulate the
behavior of CrossCube and its interactions with a physical world using C++ and the
PhysX engine from Nvidia. In the following experiment, the parameters of the GRN
models are set as follows: a = 0.7, b = 1, c = 1, G A,L = −1, G A,H = 1, G PL = 2,

and Ci j
P = 0.7. The concentration of each protein decays to 80 % of its previous level

when it diffuses into new grid locations.
A set of snapshots is provided in Fig. 3.8 to show how a vehicle configura-

tion can be realized using the GRN-based control model and the lookup table in
Table 3.1.

To verify the model’s ability to adapt the configuration, a simulation was per-
formed where a vehicle needs to go through a narrow tunnel whose width is smaller
than that of the vehicle generated above. In this case, self-reconfiguration of the
vehicle is necessary to accomplish the task. A number of snapshots showing this
adaptation process is given in Fig. 3.9. More details about the GRN-based modular
robot system can be found in [63].
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Fig. 3.9 A set of snapshots demonstrating a reconfiguration process during a locomotion task

3.5 Morphogenetic Brain-Body Co-Design of Robots

3.5.1 Brain-Body Co-Evolution

Brain-body co-evolution has attracted much attention in the research field of artificial
life [57] since the seminal work of Karl Sims [53], refer to Fig. 3.10 for an overview.
The most attractive aspect of the work is that a developmental model using a directed
graph has been adopted for both neural controller and body plan. However, no sig-
nificant progress in the understanding of biological principles have been achieved
since Sims’ work due to the following two facts. First, the power of the models for
brain-body co-evolution remains practically bounded [18, 34, 54]. While detailed



3 Morphogenetic Robotics: A New Paradigm 79

Fig. 3.10 A summary of brain-body co-evolution research

models of either neural development [24] or morphology [13] have been suggested,
few models can achieve a balanced and biologically plausible abstraction level in
modeling the development of both neural controller and body plan, and most of them
are not able to perform biologically meaningful behaviors. Second, most works in
brain-body co-evolution were meant mainly for improving the efficiency of generat-
ing a specific behavior, rather than understanding biological principles. An exception
can be found the work by Bongard and Paul [8], who studied the correlation between
morphological symmetry and locomotive efficiency.

In the following section, we first emphasize the importance of including develop-
ment into robot design, followed by the description of a cellular model for modeling
morphological and neural development. Then, a conceptual example of co-evolution
of shape development and hand control for object grasping is presented.

3.5.2 Developmental Bias in Brain-Body Co-Evolution

Although the importance of co-evolution of brain and body has long been recognized
[44], the simultaneous development of both the body plan and its control system has
largely been overlooked in evolutionary robotics [29]. This situation has not changed
much over time due to various difficulties in co-evolving the development of body
and brain. First, there is a lack of knowledge about developmental mechanisms in
biology and a lack of physically realistic simulated environments [42]. Second, the
influence of artificial development on system performance is not well understood.
Although it is believed that developmental mechanisms offer the possibility to evolve
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Fig. 3.11 Influence of development on selection directions. (Left) Developmental bias due to a
nonlinear genotype-phenotype mapping (adapted from [45]). (Right) Change of selection directions
in the presence of developmental bias (adapted from [2])

complex systems, the performance advantage of such developmental systems over
non-developmental ones remains unclear. Finally, the necessary hardware, which is
of particular importance in robotics, such as growing materials, adaptable structures,
adaptable sensors and actuators, is still lacking.

Nevertheless, the role of development in brain-body co-evolution cannot be over-
estimated, simply because in natural evolution, development is an indispensable
phase during which organisms have to interact with the environment constantly and
find a way to survive. It is believed that development can bias the evolutionary path
considerably, as illustrated in Fig. 3.11.

3.5.3 A GRN Model for Neural and Morphological
Development

The growth of an animat morphology can also be put under the control of a GRN
and cellular physical interactions. Elaborating upon the cellular growth model for
structural design, we have proposed GRN models for the development of a nervous
system [21] and body plan [49] of primitive animals. In the genome of the GRN mod-
els, each gene consists of a number of structural units (SUs) preceded by a number
of regulatory units (RUs) on the genomic sequence. RUs can be activating (RU+) or
repressive (RU−). When SUs are activated, they will produce either proteins respon-
sible for cellular behaviors such as cell division, cell death, cell migration, and axon
growth, or proteins regulating the activation of the SUs, also known as transcription
factors (TFs). If a TF can only regulate the genes inside the cell, it is then called an
internal TF. If a TF can also diffuse outside the cell and regulate the genes of other
cells, it is called an external TF. A TF can be both intracellular and intercellular. An
example of a chromosome in the cellular model for neural development is provided
in Fig. 3.12. From the figure, we note that single or multiple RUs may regulate the
expression of a single or multiple SUs, located just after them on the sequence.

Whether a TF can influence an RU is dependent on the degree of match between the
affinity value of a TF and that of an RU. If the difference between the affinity values
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Fig. 3.12 An example of
chromosome for neural devel-
opment, where RU+ and
RU− denote activating and
inhibitory regulatory units,
respectively; SUT F , SUD and
SUM are structural units, once
activated, producing transcrip-
tion factors, resulting in cell
division and cell migration,
respectively

of a TF and a RU is smaller than a predefined threshold ε, the TF can bind to the RU
to regulate. The affinity match (γi, j ) between the i-th TF and j-th RU is defined by:

γi, j = max
(
ε −

∣∣∣affTF
i − affRU

j

∣∣∣ , 0
)

. (3.20)

If γi, j is greater than zero and the concentration ci of the i-th TF is above a threshold
(ϑ j ) defined in the j-th RU, then the i-th TF influences the j-th RU.

Thus, the activation level contributed by this RU (denoted by a j , j = 1, . . . , N )
amounts to a j = ∑M

i=1 |ci ,−ϑ j |, where M is the number of existing TFs. The
expression level of the k-th gene, that is regulated by N RUs, can be defined by

αk = 100
N∑

j=1

h j a j (2s j − 1), (3.21)

where s j ∈ (0, 1) denotes the sign (positive for activating and negative for repressing)
of the j-th RU and h j is a parameter representing the strength of the j-th RU. If
αk > 0, then the k-th gene is activated and its corresponding behaviors encoded in
the SUs are performed.

A SU that produces a TF encodes all parameters related to the TF, such as the
affinity value, a decay rate Dc

i , a diffusion rate D f
i , as well as the amount of the TF

to be produced:

A = β
2

1 + e−20· f ·α − 1, (3.22)

where f and β are both encoded in the SUTF.
A TF produced by a SU can be partly internal and partly external. To determine

how much of a produced TF is external, a percentage (pex ∈ (0, 1)) is also encoded
in the corresponding gene. Thus, pex A is the amount of external TF and (1 − pex)A
is that of the internal TF.

To make it easier for simulating the diffusion of TFs, cells are put in an environment
that is divided in a grid. External TFs are put on four grid points around the center
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of the cell, which undergoes first a diffusion and then decay process:

Diffusion: ui (t) = ui (t − 1) + 0.1 · D f
i · (G · ui (t − 1)), (3.23)

Decay: ui (t) = min ((1 − 0.1 · Dc
i ) ui (t), 1), (3.24)

where ui is a vector of the concentrations of the i-th TF at all grid points and the
matrix G defines which grid points are adjoining.

The SUs encode cellular behaviors and the related parameters. The SU for cell
division encodes the angle of division, indicating where the daughter cell is placed. A
cell with an activated SU for cell death will die at the end of the developmental phase.

The above cellular model has been applied to the simulation of both morphological
and neural development [21, 49].

In one experiment, we generate an animat similar to C. elegans, on the basis of
two prediffused, external TFs without decay and diffusion, which are deployed in
the computation area (maternal morphogen gradients). The first TF has a constant
gradient in the x-direction and the second in the y-direction. A few screenshots of the
self-stabilized growth is provided in Fig. 3.13. Other images showing the growth of a
nervous system distributed on a cylinder body simulating a hydra are given in

Fig. 3.13 Self-stabilized cellular growth under the control of a GRN model

Fig. 3.14 Development of a nervous system



3 Morphogenetic Robotics: A New Paradigm 83

Fig. 3.15 An evolved GRN for artificial neural development

Fig. 3.14. A GRN resulting from the evolution of neural development is presented in
Fig. 3.15.

3.5.4 Co-Evolution of Hand Morphology and Controller
Development

One can observe that the morphology of animal hands kept changing dramatically
during evolution. Animal hands distinguish themselves in both shape and length
in the finger segments. Moreover, it has been hypothesized that the reproductive
advantage of certain types of behavior, such as throwing and clubbing, played a key
role in differences between human and chimpanzee hands [61].

The importance of co-evolving the development of hand morphology and control
in robotics is twofold. First, object grasping and manipulation with a robot hand is in
itself a challenging task as such systems are usually highly redundant. Existing work
focuses on the design of the hand controller for a given morphology, which becomes
inefficient when the shape of the objects changes noticeably. A better approach is to
co-design the hand morphology and control in a developmental manner, as illustrated
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Fig. 3.16 A diagram for co-
evolving the development of
hand/arm and control

in Fig. 3.16. In this way, the shape and number of finger segments, the number of
fingers and even the number of arms can evolve together with their controller.

Second, co-evolution of the hand morphology and control in a computational
environment gives us means for understanding the phylogenetic changes in evolu-
tion of animal hands. Brain-body co-evolution in computational environments has
led to findings regarding the organizational principles of nervous systems and the
emergence of bilateral symmetry in neural configuration [23, 39]. We expect that
different hand morphologies will emerge by evolving the system toward different
behaviors.

3.6 Concluding Remarks

This chapter suggests a new field of robotics termed morphogenetic robotics, which
focuses on employing genetic and cellular mechanisms from biological morphogen-
esis toward the development of self-organizing, self-reconfigurable and self-adaptive
robotic systems, covering a wide range of robotic systems such as swarm robotic sys-
tems, modular robots and intelligent robots. While epigenetic robotics concentrates
on the cognitive development of robotic systems, morphogenetic robotics looks at
on the growth process of the body plan and nervous system. Therefore, we believe
that morphogenetic robotics is complementary to epigenetic robotics and fills the
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gap between epigenetic robotics and developmental robotics in that developmental
robotics should include neural, morphological and cognitive development. We also
expect that we will benefit from the synergies between morphogenetic and epigenetic
robotics, as neural and morphological development are laying down the neurophys-
iological foundations of cognitive development.
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