
Chapter 10
Emergent Swarm Morphology Control of
Wireless Networked Mobile Robots

Alan F. T. Winfield and Julien Nembrini

Abstract We describe a new class of decentralised control algorithms that link
local wireless connectivity to low-level robot motion control in order to maintain
both swarm aggregation and connectivity, which we term “coherence”, in unbounded
space. We investigate the potential of first-order and second-order connectivity infor-
mation to maintain swarm coherence. For the second-order algorithm we show that
a single β parameter—the number of shared neighbours that each robot tries to
maintain—acts as an “adhesion” parameter. Control of β alone affects the global
area coverage of the swarm. We then add a simple beacon sensor to each robot and
show that, by creating a β differential between illuminated and occluded robots, the
swarm displays emergent global taxis towards the beacon; it also displays interest-
ing global obstacle avoidance properties. The chapter then extends the idea of β

heterogeneity within the swarm to demonstrate variants of the algorithm that exhibit
emergent concentric or linear segregation of subgroups within the swarm, or—in the
presence of an external beacon—the formation of horizontal or vertical axial configu-
rations. This emergent swarm morphology control is remarkable because apparently
simple variations generate very different global properties. These emergent proper-
ties are interesting both because they appear to have parallels in biology, and because
they could have value to a wide range of future applications in swarm robotics.

10.1 Introduction

This chapter investigates robot swarms that combine sensing, locomotion and
morphological adaptivity. We develop wirelessly connected robots in which the wire-
less network becomes the “glue” physically connecting the robots. Previous work

A. F. T. Winfield (B)

Bristol Robotics Laboratory (BRL), University of the West of England, Bristol, UK
e-mail: alan.winfield@uwe.ac.uk

J. Nembrini
Media and Design Laboratory, EPFL, 1015 Lausanne, Switzerland
e-mail: Julien.Nembrini@epfl.ch

R. Doursat et al. (eds.), Morphogenetic Engineering, Understanding Complex Systems, 239
DOI: 10.1007/978-3-642-33902-8_10, © Springer-Verlag Berlin Heidelberg 2012



240 A. F. T. Winfield and J. Nembrini

studied the possibility of gathering sensory data across an ad hoc wireless connected
network of mobile robots with range-limited communication and was focused on
randomly moving robots in a bounded space [34]. Here we extend this idea to an
unbounded space, controlling the behaviour of the robots in order to form a dynami-
cally connected stable swarm, which we call a “coherent” swarm. Working primarily
in simulation, but with partial confirmation of results with real-robot experiments,
we show that with only an omni-directional wireless and collision avoidance device
we can achieve coherence in an unbounded environment, i.e., the swarm forms a
single connected communication network. Adding a simple beacon sensor, we also
demonstrate emergent directed swarming (taxis) towards a beacon, then extend our
approach to allow emergent swarm morphology control.

Swarm robotics is the study of artificial or embodied systems based upon the
principles of swarm intelligence [9]. In swarm robotics a number of relatively simple
robots, each with limited sensing, cognition and actuation, collectively work together.
Robotic swarms are fully distributed systems that typically exploit emergence or self-
organisation, rather than direct control, to achieve an overall task [12]. Some tasks
may be biologically plausible, such as cluster sorting [6], co-operative wall building
[20], or collective foraging [18]. A fundamental property of robot swarms is that they
are physically distributed and it follows that flocking and formation control have been
the subject of much research:

• Flocking is the task of forming a group of robots when the actual shape of the group
is not important, [19, 26]. When the group is formed because of mutual attraction
or because the group is attracted by a common source, such as a beacon, it will be
referred to as swarming. Hayes et al. introduce the idea of secondary swarming
where individuals relay the signal of the beacon, which makes the robots move as
a group [14].

• In their study of formation control, Balch and Arkin state that research on formation
control can be divided into unit-center-, leader- or neighbour-referenced control
[4]. In most cases, the task for these robots is to move in the same direction
while trying to maintain constant relative distances. This typically involves a
constrained number of robots. Relevant to this chapter is the work presented
in [5] where the use of a neighbour-referenced algorithm allows for scalabil-
ity. Weßnitzer et al. describe an example of formation control using wireless
communication [33].

Robot-robot communication is clearly an equally important property of robot
swarms. A number of models employ stigmergic communication, in which robots
communicate indirectly via the environment: one robot changes the environment
and another senses the change and alters its behaviour accordingly. In their study on
multi-robot communication, Balch and Arkin show that stigmergy can be sufficient
to complete the task, but that direct communication is able to increase efficiency
[3]. The work of this chapter employs direct robot-robot communication but adopts
the framework of situated communication proposed by Støy: it applies when “both
the physical properties of the signal that transfers the message and the content of the
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message contribute to its meaning” [29]. Also of relevance to our work is the field
of sensor networks with mobile nodes [25].

Since this chapter involves morphology control, i.e., regarding the entire swarm
as a single entity, it also concerns the field of reconfigurable robots. Such systems
typically consist of elementary robots that physically assemble to form a bigger
entity [17], or modular robots whose morphology can be easily changed [32]. The
design of reconfigurable robots raises complex problems of distributed control and
communication, but the main challenge is without doubt the physical design of an
individual robot. An example of distributed control of articulated modules that can
be reconfigured on-the-fly can be found in [31]. The SwarmBot project considers
mobile robots able to physically attach to each other to behave as a single multi-robot
system [13, 21]. Perhaps closest to the topic of this chapter is a swarm of physically
but flexibly connected robots that demonstrate emergent swarm taxis [28].

The remainder of the text is organised as follows: Sect. 10.2 describes our exper-
imental method, Sect. 10.3 presents the different algorithms that were developed
to achieve coherence, with a study of the behaviour of the most successful one:
the β-algorithm, Sect. 10.4 develops and investigates an emergent taxis behaviour
relying on the dynamic differentiation between robots within the swarm, Sect. 10.5
investigates the potential of static and dynamic differentiation to actually control the
global shape of the swarm, and overall conclusions are drawn in Sect. 10.6.

10.2 Methods

The experimental approach of this work has been to design and test swarm robotic
algorithms in simulation, validated—where possible—by experiments with labora-
tory robots. Our simulation does not attempt to model the dynamics of the robots.
We would argue that dynamical simulation is not necessary for modelling swarm
systems in which velocities and accelerations are modest and where robots do not
come into physical contact. Our simulation does, however, aim to model the kine-
matics, sensors and actuators with reasonable fidelity so that we have a valid basis
for comparison between simulation and real-robot experiments.

Robot Architecture We model the kinematics, sensors and actuators of the Bristol
Robotics Laboratory’s Linuxbot, a wheeled differential-drive robot (Fig. 10.1). In the
simulation, it is assumed that the robots are able to move with a precision ranging
from perfect to errors of 10 % on the distance travelled or angle turned, that they have
short-range infra-red avoidance sensors with range ra , and that they are equipped with
a radio device with a limited range rw, where ra < rw.

The robots’ control system, for both simulation and real-robot experiments, is
designed as a finite state automaton. A robot will be in one of several mutually
exclusive states, and can switch between them according to environmental cues. In
this chapter the messages coming from other robots are considered as a part of the
robot’s environment. The control architecture can be divided, following [11], into
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Fig. 10.1 The Linuxbots at the Bristol Robotics Laboratory (BRL)

two layers: avoidance and communication. The goal of the avoidance layer is to
steer the robot away from any obstacle that it detects (in a Braitenberg fashion [10]),
while the communication layer responds to messages from neighbours (as will be
described in Sect. 10.3). It is important that when the robot is performing control
actions dictated by the avoidance layer, it does not take account of information from
the communication layer. In Brooks’ terminology, the avoidance layer “subsumes”
the communication layer, because of its priority for the robot’s safety. For a full
account of the control architecture, see [22].

Communication An idealised model is used to simulate radio communication
between the robots. We assume that the wireless antenna is omnidirectional and
that the receiver is not able to detect any message if the transmitter is located further
away than a distance rw, the communication range. We do not attempt to simulate
buffer overflow or any other real phenomena such as signal decay, and we consider
that a robot can send a message to all neighbours within range rw. Noise is modelled
as loss of the entire message with a constant probability. This probability was chosen
to range from zero to 10 % (which represents a very poor signal-to-noise ratio).

The situation depicted in Fig. 10.2a shows a group of robots together with each
of their ranges of communication. In this example, Robot 1 can communicate with
Robot 2, and the latter with Robot 3. Robot 4 cannot communicate with the other
robots. This situation can be formalised using an undirected graph G = (V, E)

where V is a set of points, the vertices, representing the robots, and E is a set of
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Fig. 10.2 Four numbered robots shown a with disks of communication ranges in 2D, and b as an
undirected graph

lines, the edges, connecting one vertex to another, representing the possibility for
the two robots to communicate. It is then possible to draw the graph G, hence the
situation of Fig. 10.2a can be formalised as in Fig. 10.2b.

In order to avoid simulation artefacts, the states of the robots are updated following
a pseudo-random sequence that changes at each step of the simulation, and the internal
clock state of the robots is periodically randomly altered to avoid any unintended
synchronicity.

10.3 Swarm Coherence

The goal of swarm coherence is to guarantee that the network created by the wireless
connected robots of the swarm forms a single connected component, and our aim is to
ensure this coherence while using minimal exchange of information. In our proposed
swarm, the only relative positional information available to a robot is inferred from
the interplay of the short-range avoidance behaviour and the longer, but still limited-
range, wireless communication. Thus a robot can minimally classify the range of
its neighbours according to whether they are “close” (within wireless range), “too
close” (within avoidance range) or “away” (outside wireless range). We now show
how the exchange of messages between the robots is critical to transform this crude
data into sufficient information to achieve coherence.

Consider the case of two robots (Fig. 10.3). Assume that the robots are initially
in communication range, moving forward with random headings (A). Unless they
have parallel or crossing trajectories (the former situation being undetrimental to
the connection and the latter being dealt with by the avoidance behaviour) they
will eventually lose contact (B). In order to check whether this is the case or not,
the algorithm uses a send/listen mechanism: with a certain periodicity each robot
broadcasts a message and then listens for incoming messages. If no message is
received within a certain time, each robot assumes it is out of range (B) and reacts
immediately by turning 180◦ in order to reconnect (C). Then, as soon as it reconnects,
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Fig. 10.3 Basic algorithm: a
robot is shown as a circle and
its heading as a short line

A B C D

each robot chooses a new random heading (D). As no global time is implemented,
the robots should react asynchronously. However, if each robot has the same range
of communication then both reactions should occur within a short time, depending
on the periodicity of the calling messages. We refer to this periodicity as cadence,
and we choose a default value of 100 time steps.

This behaviour leads to the two robots maintaining themselves in range as if they
were attached with an elastic connection. The choice of a random heading when
reconnection occurs makes the pair follow a random walk. It is important to observe
that the reciprocity of reaction, even though it does not have to be simultaneous, is
crucial to retaining the connection. Homogeneous robots have equal velocities and
the reaction of only one robot could lead to an endless pursuit. We formally define
coherence of a wireless connected swarm as follows: The swarm is considered to be
coherent if any break in the overall connectivity of the network lasts less than a time
constant C . Clearly, the constant C is related to the periodicity of the calling messages
(cadence). In the results that follow we have chosen C = 10 ∗ cadence; for any runs
in which a break in connectivity exceeds C , the swarm is declared disconnected
and the run unsuccessful. The default values of parameters for the simulation and
real-robot experiments of this section are given in Table 10.1.

10.3.1 Connection Degree Algorithm: The α-Algorithm

Applying this basic algorithm to a greater number of robots by making each robot
react to every loss of connection leads to an over-reactive swarm which clumps
together (Fig. 10.4). To react to every loss of connection is equivalent to aiming

Table 10.1 Default parameter values for swarm coherence

α coherence β coherence β area coverage β real-robot

Swarm size 20 or 60 20 20 7
Cadence 100 100 100 100
Random noise (%) 2 2 2 –
α or β value 6 2 or 5 2 or 5 2
Time steps 50,000 100,000 100,000 Variable
Runs 10 10 10 10
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Fig. 10.4 30 simulated robots
aiming for a complete graph

towards a complete graph where each vertex is connected to every other, which is
not our aim.

So the problem for the robot is choosing when is an appropriate time to react to a
loss of connection. A candidate algorithm consists of giving each robot a threshold
α on the number of connections, called the connection degree, and making the robot
react if this number falls below α. This is close to the approach adopted in Støy’s
algorithm [30], although it relies on differences in the number of neighbours without
the help of thresholds. Thus, in his case, while robots stay together more than random
movement alone would allow, the coherence of the network is not assured.

Results of α-Algorithm Simulation Figure 10.5a shows the global degree of edge-
and vertex-connectivity with increasing values of the α threshold for swarms of 20
and 60 robots. The most striking feature is the fall in connectivity between a swarm
of 20 robots and a swarm of 60. Note that only the runs ending with a successfully
connected swarm were retained. The proportion of successful runs is 85 % for 20
robots and 66 % for 60 robots. In order to investigate more closely the drop of
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Fig. 10.5 Global degree of α-algorithm connectivity. a Increasing α under swarm sizes
n = 20 (‘*’) and n = 60 (‘+’). b Increasing swarm size under α = 6
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connectivity between swarm size, the parameter α was also fixed to the value of 6
while the size of the swarm varied (Fig. 10.5b). There, the drop of connectivity can
clearly be followed as the size increases. Again these results are from successful runs
only.

These results show that, for the α-algorithm, the coherence of the network is
more or less maintained—but not guaranteed—for thresholds α = 6 or above. Note
that there exist network configurations that must be avoided in order to assure the
coherence of the swarm. For example, when a robot (or a group) is linked to the rest of
the swarm by a single communication link, the danger lies in the possibility of a robot
not reacting to the loss of such a connection essential to global connectivity, because
the number of remaining connections is above the threshold. In graph theory, an edge
representing such a singular connection is known as a bridge (Fig. 10.6a). Another
example is a single vertex essential for connectivity, which is called a cutvertex: in
such a situation a robot failure would lead to the disconnection of a larger graph
component (Fig. 10.6b).

Thus we have an explanation for the drop in connectivity observed: the mea-
sures of edge- and vertex-connectivity are global measures. This means that a single
change in the network topology can potentially lead to a decrease in the connec-
tivity value. With an increasing swarm size, the probability of the occurrence of
such situations increases. In fact, the connectivity measures represent the resilience
of the network to component failure: the edge-connectivity value is the number of
connections—regardless of which ones—that can be lost without disconnecting the
network, whereas the vertex-connectivity value represents the number of nodes that
can be removed without disconnection (a node removal will happen, for instance, in
the case of a robot communication failure).

10.3.2 Shared Neighbour Algorithm: The β-Algorithm

To avoid the extreme configurations of Fig. 10.6, we make use of the graph theory
concept of clustering: instead of considering only its own degree of connection, each
robot will receive from its neighbours their “adjacency table”, i.e., their neighbours’

(a) (b)

Fig. 10.6 Extreme connectivity states presenting single points of failure. a Examples of singular
vertices, called “bridges”. b Example of a singular vertex, called a “cutvertex”
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Fig. 10.7 Shared neighbour

D
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C

lists, in order also to check whether a particular neighbour is shared, that is whether
a particular neighbour is the neighbour of other robots.

The algorithm works as follows: for each lost connection, a robot first checks how
many of its remaining neighbours still have the lost robot in their neighbourhood.
If this number is less than or equal to the fixed threshold β, the robot executes the
180◦ turn of Fig. 10.3; or, if its number of connections is rising, the robot chooses
a random heading. Consider the situation of Fig. 10.7: Robot A, when losing the
connection with Robot B, checks its other neighbours and finds that Robots C and
D share Robot B as neighbour. Hence Robot A will react and turn back only if the
threshold β is set equal or greater than two. The algorithm tries to maintain the
triangulation observable in Fig. 10.7, therefore avoiding the extreme states. Note that
Robot B may also react to the loss of connection with Robot A; this reciprocity is
desirable. Pseudo-code for the β-algorithm of each robot is listed in Table 10.2.

Simulation confirms that the β-algorithm does indeed increase swarm coherence,
and a value of β = 2 is enough to achieve coherent spread. Of course, the com-
munication bandwidth of the whole process is somewhat increased compared to the
α-algorithm, as well as the processing power needed for the robot. More sensitiv-
ity to the message content (semantics) is also introduced. However, communication
remains situated, and hence message loss or misinterpretation only leads to over-
reactivity without loss of robots, as the introduction of noise into the simulation
confirms. Furthermore, the increase in bandwidth does not affect the scalability of
the algorithm as it concerns only exchanges between neighbouring robots; messages
are not propagated beyond more than asingle hop in the network.

If M is the maximum number of neighbours, then the length of a transmitted
message will not be greater than M2 robot identification numbers (IDs) (M neigh-
bours each with M neighbours). An approximation for M is given as follows:

M =
⌈ Acomm

Abody

⌉
− 1

where Acomm is the robot’s communication area, Abody is the area of the robot’s body
and �.� is the upper rounded integer function.
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Table 10.2 Pseudo-code for the β-algorithm

It is worth stressing that the significant benefits gained from the increase of infor-
mation exchange needed by the β-algorithm could not be achieved in the framework
of the α-algorithm. The second-order information, about the neighbours of a neigh-
bour, is crucial to detect bridges and cutvertices before they form. This follows from
the fact that the first-order information of one robot connected to another is not suf-
ficient to determine the nature of this connection in terms of the connectivity of the
neighbouring network.

10.3.2.1 β-Algorithm Simulation Results

Figure 10.8 shows the variation of the edge-connectivity with an increase in β

threshold and swarm size. The drop in connectivity observed in the results of the
α-algorithm is no longer seen. With the β-algorithm, in contrast, connectivity is more
constant against swarm size increase. Figure 10.8a also shows that the connectivity
increases sharply with increasing β, then levels out at β values between 5 and 10.

The reason for this leveling is due both to the avoidance behaviour that comes
into action when robots are close together, and the fact that with high values of β,
aggregation takes some time to complete. The typical mid-run configuration is a
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Fig. 10.8 β-algorithm edge-connectivity under a increasing swarm size, b n = 7 and 20

highly connected swarm with a few satellite robots that need some time to aggregate
with the rest of the swarm. Because of the global nature of the connectivity measure
these satellites can lead to a slight underestimate of the connectivity, which we would
not observe with much longer runs. Also, smaller swarms seem to present a slightly
lower performance, especially with higher values of β. The reason is the higher
dynamicity of smaller swarms that gives them a more brittle behaviour (Fig. 10.8b).
The vertex-connectivity measure, almost equal to the edge-connectivity, is not shown
for readability.

We now test the β-algorithm with increasing levels of noise, and the results are
shown in Fig. 10.9. Note that this curve has been obtained with increasing levels
of noise in communication, proximity sensors and actuators simultaneously. This
is by no mean realistic, as there is no reason that the amount of noise in actuators
should be proportional to communication noise. It does, however, provide a worst
case evaluation of the effect of noise. A drop in connectivity with increasing noise
can be observed, but it is small in the case of β = 2.

The introduction of noise directly decreases connectivity due to the loss of
messages. With increasing noise, a robot experiences more disconnection and as a
result its reactivity increases, which maintains the connectivity for β = 2 (Fig. 10.9).

Fig. 10.9 Edge-connectivity
against noise in the
β-algorithm with n = 20
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Fig. 10.10 Examples of area coverage with a β = 1 and b β = 4

With a higher threshold value β = 5, a swarm is more reactive, hence the potential
to absorb the decrease of connectivity due to noise is lower, and the expected drop
in connectivity at higher noise is clearer.

Spatial Coverage We now test the precise role played by the threshold coefficient
β and how the area coverage can be controlled through it. Area coverage is defined
by the radius of communication of each robot within the swarm. Regions covered by
several robots are counted only once, and robots disconnected from the swarm do
not contribute to the measured area. We estimate area coverage using the method of
“square bisection”. The plane is subdivided into squares; for each square if it falls
completely within the coverage radius of a connected robot then it is added to the
area coverage estimate; if only part of the square is within the coverage radius then
it is bisected into four equal squares and the process repeated for each of those four
squares. The depth of recursion determines the precision of the estimate. Figure 10.10
shows that differing β values do influence swarm spatial coverage.

Figure 10.11 shows the area covered by a swarm of 40 robots when the β threshold
is stepped from β = 1 to β = 20 and vice-versa, which confirms that this value can
indeed be used to control the area coverage. It is also interesting to note that swarm
spreading is much faster than swarm aggregation: when β is raised, the area coverage
is slowly reduced to reach an equilibrium in around 100,000 time steps, whereas the
swarm only needs about 25 % of this time to return to its initial area.

When the mean area covered by the swarm is plotted against β for different
swarm sizes, we obtain the family of curves of Fig. 10.12a. Here, the potential of
the β threshold to control the area is clear, and control is effective up to a value of
β = 10. Beyond this value, the contraction of the swarm takes longer than the length
of the run, and is therefore not measured. But in any case, the contraction is limited
firstly by the low-level avoidance behaviour and secondly by the physical size of the
robot body. What is also significant is the linear increase of the area when increasing
the size of the swarm. This increase can also be modulated by the β threshold without
compromising its linearity. This shows that there is no leveling of the action of the
algorithm and we can therefore potentially control the area of any swarm size.
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β changes from 1 to 20 β changes from 20 to 1

Fig. 10.11 Transitions in area covered between β = 1 and β = 20
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Fig. 10.12 Area coverage against β and swarm size a absolute area b normalised area

The swarm area divided by the number of robots gives the mean contribution of
a single robot to the coverage (Fig. 10.12b). For all swarm sizes, the slope of the
decreasing normalised area is strikingly similar. This confirms that the effectiveness
of the β-control is independent of the number of robots. Of course, the effect on
the whole swarm area is greater with larger swarms (Fig. 10.12a). The decrease
of the contribution for increasing swarm sizes is due to overlapping communication
areas: for larger swarms, a greater proportion of robots are situated within the swarm.
Because of overlaps, these robots do not contribute as much as robots at the boundary
to the whole swarm area. As expected, this decrease levels out with increasing swarm
size.
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Fig. 10.13 Area coverage
versus noise

The influence of noise on area coverage is shown in Fig. 10.13. These results
have been obtained with increasing levels of noise in connection, proximity sensors
and actuators simultaneously. The normalised area coverage remains constant for
β = 2 but shows a clear increase, with increasing noise, for β = 5. The increase
corresponds to a drop in connectivity which suggests that an increase in noise could
lead to a more brittle swarm. Nevertheless the fact that the area shows such a small
variation with a large increase in noise is a clear strength of the algorithm.

10.3.2.2 Real-Robot Experiments

Experimental Details The Linuxbots are equipped with an IEEE 802.11b wireless
LAN device for TCP/IP communication both to allow robots to be stared, stopped
and monitored from fixed workstations, and for direct robot-robot wireless commu-
nication, as described in [36]. However, the WLAN device has a range of a few
hundred metres. A much shorter range of the order of one metre is required. We
therefore simulate this requirement by measuring distances between robots using the
robots’ infra-red (IR) tower and allowing them to communicate only if within range,
a method referred to as virtual sensing [7]. The IR tower consists of a circular array
of eight IR emitters under a circular array of IR receivers. In order to maintain the
same ratio between avoidance range and communication range as in the simulation,
the robots were calibrated with a range distance of 1.2 m. The IR tower used is actu-
ally very noisy and the resulting virtual sensor does not correspond exactly with the
idealised model of the simulation (see Sect. 10.2). In particular, the IR signal is not
omnidirectional as the range is different in asymmetrical directions around the robot,
resulting in a non-circular area of communication.

The Linuxbots’ obstacle avoidance IR sensors are situated as follows: two
mounted symmetrically at the front and one at the rear, each with a range of approx-
imately 50 cm. In all real-robot experiments the physical environment is a 9-metre
wide powered-floor octagon delimited by white edges suitable for IR reflection. Each
experiment starts with the robots randomly grouped near the centre of the arena and
lasts until the group is obviously disconnected. This approach was necessary because
of the restricted size of the arena which, if permitted, would allow a lost robot to
return to the swarm by reflecting back from the arena boundary, thus negating the
basic assumption of an unbounded environment.
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Each measured quantity was recorded every time a message was sent and has
been averaged over the whole run. For a number of values of swarm size, β, and
cadence, an average of 10 runs have been performed and the result given is the mean
over these runs with its standard deviation. Unless varied, the default values for the
remaining parameters are as shown in Table 10.1.

Real-Robot Coherence For real-robot experiments, the physical resources (number
of robots and arena size) did not allow experiments with more than 7 robots. Despite
this limitation, and the use of the IR tower to emulate the range-limited wireless
communication, the qualitative behaviour seen in the real-robot experiments does
not differ significantly from that observed in simulation (see Fig. 10.16 for pictures
of 7 robots running the β-algorithm).

Investigating the performance of the β-algorithm with different real-robot swarm
sizesm, we obtain Fig. 10.14. A much lower connectivity than in the simulation with
a swarm of 7 robots is observed, even in the presence of 10 % noise. However, the
length of the runs is much shorter: in simulation, the runs were arbitrarily stopped
after some time, while the real-robot experiments were halted because of robots
disconnecting themselves from the swarm (typically after 2 min). The number of
exchanged messages was 1000 in a successful simulation run and only 35 for the
average length of a real-robot run. As a result, the β-algorithm has not been defini-
tively proven to lead to swarm coherence on the experimental platform that was used.
Note that measurement of connectivity presents some difficulties: as the real robots
are asynchronous finite-state real machines, there is no global “clock” to allow for
a meaningful sample of the topology of the network. The measures were recorded
on board each robot, but the inevitable drift between the robots’ processing cycles
weakens the accuracy of the connectivity measure.

In fact, the lower connectivity observed in real-robot experiments is not, as one
might expect, due to the difference between the non-ideal IR-tower virtual commu-
nication and the idealised communication model of the simulation. It is largely due
to interference between the short-range IR avoidance sensors, which operate on the
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Fig. 10.14 Edge-connectivity in β-algorithm real-robot experiments versus simulation, as a
function of a swarm size, and b β value
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Fig. 10.15 Area coverage with a increasing swarm size (β = 2), b increasing β (n = 7)

Fig. 10.16 Real-robot experiments with β = 2 and β = 6

same frequency. This interference triggers a proportion of false-positive sensor read-
ings, causing robots to unnecessarily initiate avoiding actions. The influence of the
β threshold on the behaviour of the swarm is seen in Fig. 10.14b: high variability is
again observed. Despite this, the potential of the β-algorithm to tune the real-robot
connectivity is clearly apparent.

Real-Robot Spatial Coverage The results of real-robot experiments on the
β-algorithm area coverage are shown in Fig. 10.15. Note that the correspondence
in area values between real-robot experiments and simulations is computed through
a geometrical transformation that does not consider lens distortion—the effect of
which is that the area coverage for real-robot experiments is somewhat underesti-
mated, especially for smaller values of β. The comparisons in the figures are thus
more qualitative than quantitative. An increase in swarm size shows a decreasing
curve for the normalised area, similar to the simulation results (Fig. 10.15). This
behaviour is also due to communication overlaps, as described in Sect. 10.3.2.1.

When parameter β is varied, a decrease in the normalised area coverage is notice-
able (Fig. 10.15b), although the range of this decrease is not as large as that seen in
simulation. The reason could be the lack of connectivity. Indeed, such values in con-
nectivity are in simulation translated into larger area coverage. Figure 10.16 shows
typical dispositions of real robots running the β-algorithm with differing β values.
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10.4 Swarm Taxis

This section extends the β-algorithm to allow the swarm to move toward a beacon
while retaining coherence. Choosing light as our exemplar beacon (although it could
be any point source capable of being occluded), we equip the robots with minimalist
sensors and enhance the environment with the beacon and possible obstacles. We then
evaluate the performance of the swarm taxis behaviour, with and without obstacles,
and in the presence of noise.

10.4.1 Behaviour Description

Sensing We equip each robot with a simple omnidirectional on-off beacon (light)
sensor with a range of, effectively, infinity. This sensor is placed on the robot such that
the presence of another robot in its line-of-sight to the beacon occludes the sensor.
This binary sensor is either illuminated if it can “see” the beacon (at any range), or
not-illuminated if it is occluded. Furthermore, beacon sensing is independent of the
direction of movement of the robot.

In order to give the necessary tropism to the swarm, a beacon is introduced into
the environment 1000 units north of the initial position of the swarm. We now have
a swarm that senses the beacon (with some noise) only on its side facing the beacon
(Fig. 10.17). Note that there is no measure of signal strength that gives an estimate
of the distance. Real robots need only react to a threshold value that discriminates
between ambient light and direct beacon illumination. Thus a single robot is not
able to generate an approximation of the direction of the beacon. Nevertheless, the
illuminated side of the swarm provides, as a whole, a direction to follow. We now
show that this is sufficient to facilitate swarm beacon taxis.

Movement Let the illuminated robots enter a new state that we label as “red”. We
now modify the shared neighbour behaviour such that a robot always reacts if the

Fig. 10.17 An illuminated
swarm of 30 simulated robots
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lost connection involved a red robot, regardless of β. Thus a robot must broadcast its
“red” state to its neighbours so that they can react appropriately. (Communication
bandwidth utilisation will be slightly increased by a number of bits per message
equal to the number of the robot’s neighbours.)

It was noted in Sect. 10.3 that swarms with a higher β threshold tended to remain
in the same place, while smaller β values allowed for more fluid movement. In fact
the “red” state corresponds to setting the β value to infinity for illuminated robots.
This results in the red robots trying to build complete graphs among themselves,
reacting to each loss, clumping together and therefore restricting their global move-
ment. Meanwhile, other robots are drawn towards the red ones, surrounding them
and hence themselves becoming illuminated. As the current red robots build their
complete graph, they occlude the red ones that happen to stand inside. This leads to
a configuration similar to that at the start, but, importantly, the restricted movement
of the red part of the swarm has “pulled” the other robots slightly toward the beacon.
The process then repeats itself and we have a steady movement of the swarm toward
the beacon.

Thus taxis is not implemented through direct coding. It is a swarm behaviour
that emerges from the interaction of the illuminated and non-illuminated robots. We
simply add the following conditional statement into the for loop of the pseudo-code
of Table 10.2:

if (color of robot == red)
{ Set reaction indicator Back to TRUE }

Parameter values for the taxis and shape control algorithms, in this and the following
sections, are given in Table 10.3.

10.4.2 Swarm Taxis Simulation Results

Without Obstacles To measure progress towards the beacon (with or without obsta-
cles), we use the y-coordinate of the position of the swarm’s centroid at the end of the
run as an indication of the speed of taxis. Using this metric, Fig. 10.18a shows this
progression without obstacles, increasing swarm sizes and change in β parameter.

Table 10.3 Parameter values for taxis and shape control algorithms

β axis β segregation β axis formation

Swarm size 20 20 or 60 20 or 60
Cadence 100 100 100
Random noise (%) 2 2 2
β value 1 or 2 (7, 3, 1) 2
Time steps 1,000,000 500,000 500,000
Runs 5 5 5
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Fig. 10.18 Progression for taxis behaviour a without obstacles, and b with obstacles

First, we see that there is movement of the swarm in the direction of the beacon. We
observe that a value of β = 1 is not enough to guarantee the cohesion of the swarm
as almost all runs finish disconnected. Thus the good performance of the few runs
that completed cannot be considered as conclusive. On the other hand, with values
β = 2 or 3, the proportion of good runs increases and a net movement in the direction
of the beacon is clearly measured. The shape of the curve suggests the presence of
an optimal swarm size near n = 20 and an optimal value β = 2.

The difference of performance when changing β is explained by the fact that the
process relies on differentiation between illuminated and non-illuminated robots.
By raising the β value for the non-illuminated robots, the differentiation is lowered
and hence the taxis performance degrades. The optimum performance of swarm size
n = 20 suggests that the proportion of differentiated robots within the swarm is an
important factor. In small swarms, almost all robots are illuminated while the reverse
is true in larger swarms.

Any discussion of performance needs to acknowledge that the speed of the swarm
taxis is very slow. The length of each run is 1,000,000 steps and, in this time, a lone
robot going in a straight line can travel 10,000 distance units. This means that in the
best swarm taxis case, a robot spends roughly 1/25th of its time moving towards the
beacon. Actually, the interesting feature of this algorithm is not the speed of swarm
taxis but the fact that taxis takes place at all, and without any directional sensing. The
reduced performance with larger β values or larger swarm sizes is counterbalanced
by confidence that the swarm will eventually reach the beacon, even though we have
non-directional sensors and no potential gradient.

With Obstacles We now introduce three beacon-occluding obstacles into the envi-
ronment (Figs. 10.19 and 10.20). Progress toward the beacon for a range of β values
and swarm sizes is shown in Fig. 10.18b. While a value β = 1 shows the same brit-
tleness as in the previous section, it can be seen that swarms of 10 and 20 robots
with β = 2 are able to move through the obstacles. But in the case of β = 3, for
a size greater than n = 7 for instance, the requirements on connectivity of the β-
algorithm do not leave enough malleability in the swarm to let it “ooze” through the
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Fig. 10.19 A broken swarm
of 60 robots

obstacles. In this case, the disposition of obstacles represents a trap for the swarm
as the attraction draws the swarm towards a gap that it cannot go through. This is
of course dependent on the size of the gap. Nevertheless, the ability of the swarm to
find its way between the obstacles is impressive, sometimes showing very interesting
behaviours as in Fig. 10.20.

The case of n = 7 with β = 3 is interesting as it shows better performance with
obstacles than without. An explanation is that the obstacles prevent over-illumination
of the swarm, while the small number of robots can easily pass through the gap. Larger
swarms with β = 2 tend to disconnect themselves in the presence of obstacles. The
attraction on the part of the swarm that has already passed between the obstacles
is stronger than the connectivity “glue” of the β-algorithm. Figure 10.19 shows a
disconnected swarm of 60 robots experiencing this problem.

The interplay of the local avoidance abilities of the robots with the taxis behaviour
gives the swarm the ability to travel around or between occluding obstacles, while
maintaining coherence. This behaviour is not coded in the algorithm and is thus
emergent. When it is situated behind an occluding obstacle, the swarm actually
functions as a distributed sensing network. It spreads, moving randomly, until one
of its bounding robots is beyond the shade of the obstacle and becomes illuminated
by the beacon, starting the taxis process in the direction of this lighted area, and
ultimately the beacon.

Influence of Noise We assess the influence of noise on the swarm taxis process in
two stages. First, noise is increased on all possible sources simultaneously, namely
on actuators, avoidance sensors, communication device and beacon sensor. Second,
noise on communication is fixed at a level of 2 % and only the remaining sources are
varied. The results are shown in Fig. 10.21.
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(a) (b)

(c) (d)

(e)

Fig. 10.20 Taxis progression through the obstacles for a swarm of 30 robots

When noise is increased on all sources at the same time the degradation of
performance is serious (Fig. 10.21a), with 10 % noise leading to the possibility of
negative movement, i.e., away from the beacon. Nevertheless with intermediate lev-
els of noise, swarm taxis still takes place, thus demonstrating the robustness of the
algorithm. Also, the difference in performance with differing swarm sizes appears to
be reduced as noise increases. As already suggested, swarm taxis results from differ-
entiation between the illuminated and non-illuminated robots. This differentiation
lies in an increase of the β threshold, leading to a greater reactivity of the illuminated
robots. The rise in noise increases the reactivity of all robots indiscriminately, which
levels down the differentiation, hence the decrease in performance.
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Fig. 10.21 a Taxis progression versus noise, b with communication noise fixed at 2 %

When the level of noise on the communication device is fixed at 2 %, the degrada-
tion of performance is greatly reduced (Fig. 10.21b), which shows that noise-induced
degradation is mainly due to noise on the communication device. Considering that
the loss of 2 % of messages represents, by current standards, a very poor communica-
tion channel, there is good confidence that such a signal-to-noise ratio is achievable
on real robots. This shows the robustness of the algorithm. Indeed the algorithm is
strikingly insensitive to an increase in noise on the beacon sensor, a factor which
may be of considerable value to potential applications.

Taxis is Possible Through Differential Cellular Adhesion It has been demonstrated
that cellular adhesion plays a crucial role in the Dictyostelium discoideum slug migra-
tion [27]. And as suggested in Sect. 10.3, the β threshold value can be considered as
an adhesion value between the robots. In introducing the environmental cue together
with the extension of the original β-algorithm, this adhesion is differentiated over the
swarm according to an external incentive, providing the swarm with both direction
and movement at the same time.

A further emergent property of our swarm taxis, which is suggestive of the behav-
iour of an amoeba, is that when the swarm reaches the beacon the interplay of the
avoidance behaviour and beacon attraction gives rise to beacon enclosure, similarly
to the phagocyte behaviour of the amoeba (Fig. 10.22). This behaviour could be of
considerable interest for real-world applications.

10.5 Swarm Shape

This section investigates the potential of the β-algorithm to control of the overall
swarm morphology. We first explore spatial segregation by introducing predefined
heterogeneities into the swarm, leading to both concentric and linear segregations.
We then modify the swarm taxis algorithm to allow axial formations.
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Fig. 10.22 Amoeba-like
enclosure of the beacon

10.5.1 Spatial Segregation

Concentric Segregation We now make use of the threshold β, in order to investigate
how robots with different β values self-organise. This algorithm simply consists of
assigning different β values to the robots belonging to different groups and will
be referred to as the concentric β-algorithm. It follows that robots with higher β

values are more sensitive to the quality and the number of connections in their
neighbourhood. They react more to losses of connections and tend to stay in the
same locale. Therefore, they group together while the robots with lower β values
simply surround them. Figure 10.23 shows a case of 2-group concentric segregation.

Figure 10.24a shows group distances from the swarm’s centre of mass for a
3-group partition. The group with an intermediate β value presents a mean distance
to the centre of mass in between the groups with maximal and minimal β value. The
difference between the intermediate and the maximal-value group levels down as
expected with increasing β of Group 1. Figure 10.24b confirms that the concentric
segregation property scales with increasing swarm size.

We observe that the process of segregation is quite slow, typically requiring hun-
dreds of thousands of time steps. This is because each robot must discover neigh-
bours with stronger bonds by random movement while the requirements of coherence
restrict freedom of movement within the swarm. Notwithstanding this drawback, we
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Fig. 10.23 2-group concentric segregation (initial and resulting pattern)
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Fig. 10.24 3-group concentric segregation with a n = 20, and b different swarm sizes n

have shown that heterogeneities in β values across the swarm are sufficient to con-
centrically segregate the groups with differing values, with greater β values closer
to the center of mass. Thus we see an example of global shape control through local
rules.

Linear Segregation To obtain linear segregation, each robot applies a different β

value depending on the group membership of the lost robot. In other words, each
group of robots has preferences, unlike the concentric β-algorithm. In terms of β

thresholds, for a group A to prefer another group B means that robots belonging to
group A will apply a β threshold larger for robots in group B than for other robots.
This new algorithm is named preferred β-algorithm. It results in a group being more
reactive to losses from one particular group and less reactive to losses from another,
while being specially reactive to the robots belonging to its own group.
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Fig. 10.25 Topology of the
differing groups’ β-thresholds

To test this algorithm swarms are divided into three groups of equal sizes. The
preferences are as follows: robots in Group 0 prefer robots of Group 1, robots from
Group 2 prefer robots from Group 1, and robots from Group 1 prefer robots in Group
0 and robots in Group 2. The topology of the preferences is depicted in Fig. 10.25.
The aim is to show that the underlying linear nature of the preference topology
translates into a linear segregation in the simulated swarm.

Figure 10.26 shows the evolution of the swarm from its initial random state to
3-group linear segregation, with intermediate stages. The topology of group prefer-
ences is clearly reflected in the emerging structure of the swarm. The chosen topology
assigns a central role to Group 1 that can be directly observed: the linear nature of
group preferences leads directly to the formation of a “linear” swarm structure.

The mean minimum distance between individuals in different groups is a mea-
sure of the distribution of those different groups. Thus for groups G and G ′, where
d(Ri , R j ) is the Euclidian distance between robots Ri and R j :

dmin = 1

|G|
∑
Ri ∈G

min
R j ∈G ′(d(Ri , R j ))

dmin is compared to a default (non-segregated) value, which is the mean of all pairs
of groups over 10 measures at the beginning of the run, when the groups are ran-
domly mixed. Figure 10.27a shows the mean minimum distances between the dif-
ferent groups as compared with the non-segregated case. The Group 0/Group 2 pair
clearly exhibits larger minimum distances than the other pairs, while all group pairs
differ qualitatively from the non-segregated case, approaching it with increasing
intermediate β value.

Figure 10.27a shows that the difference in minimum distance between neighbour-
ing pairs and the Group 0/Group 2 pair is conserved for swarm sizes above 40. The
time needed for larger swarms to reach the desired equilibrium explains the better
performance of smaller swarms and suggests longer simulation runs are needed to
investigate if the performance at the equilibrium is dependent on swarm size. How-
ever, single long runs of 3-group linear segregation (Fig. 10.26) show very good
performance with large swarms.

Thus with a simple algorithm and, more importantly, without increasing robot-
robot information exchange, control of the global structure of the swarm is again
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Fig. 10.26 Sequence of 3-group linear segregation process (5,000,000 time steps)

demonstrated. However, this process needs several million time steps to reach equi-
librium: the slow speed is simply because each robot tries to maintain connections
for the sake of coherence, thus diminishing its mobility within the swarm.

10.5.2 Axis Formation

To achieve axis formation we use the swarm taxis algorithm described in Sect. 10.4,
but introduce a velocity differential between illuminated (“red”) and non-illuminated
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Fig. 10.27 3-group linear segregation with a n = 60, and b different swarm sizes n

robots. This variant of the β-algorithm will be referred to as the axis β-algorithm.
A velocity ratio is defined as follows: if it is positive, the “red” robots move with a
speed equal to 1/ratio, while the others move with a speed equal to 1. If the ratio is
negative, the “red” robots move with a speed of 1 and the others with a speed equal
to 1/|ratio|. The value 0 corresponds to no speed differential.

The differential velocity has a significant impact on the morphology of the swarm.
A negative velocity ratio has the effect of elongating the swarm in the direction of
the beacon. By contrast, with a positive velocity ratio (in which the group of “non-
red” robots moves faster), the robots that become illuminated slow down and are
overrun by fast robots that soon become illuminated. The result is a swarm growing
in both directions perpendicular to the direction of the beacon. Figure 10.28 shows an

Fig. 10.28 Vertical axis
formation with speed
ratio = −10 (beacon toward
north)
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Fig. 10.29 Horizontal axis formation sequence with speed ratio = 10 (beacon to the north)

example of vertical axis formation. Figure 10.29 shows the evolution of a horizontal
axis formation, with intermediate stages.

Swarm Size and β Threshold Variation First, the influence of increasing swarm
size and increasing β parameter are investigated. We measure the axial ratio as
follows: if we choose a frame of reference such that the swarm centroid is located at
x = 0, y = 0, with the beacon on the y-axis, then for n robots

ratioaxial =
∑n

i=1 (Rix )
2

∑n
i=1 (Riy )

2

where Rix and Riy are respectively the x- and y-coordinates of Robot Ri . The influ-
ence on the vertical/horizontal ratio can be seen in Fig. 10.30a. The top surface
corresponds to a speed ratio value of −10; the lower surface to a value of 10. Clearly,
a separation is observable between the behaviours with different speed ratios. We
note a drop in performance with increasing swarm size and increasing β threshold.
The former is mainly due to the restricted length of the run, as the self-organisation of
the swarm takes more time with increasing swarm sizes, especially where the speed
of a group of robots is slowed. The latter drop corresponds to the fact that the algo-
rithm needs a high differential between the “red” robots and the others; increasing
the β threshold reduces this differential.

Speed Ratio Now consider the change of behaviour of the swarm with varying
velocity ratio values. The behaviour of the axial ratio with increasing velocity ratio
values is suggestive of a phase transition (Fig. 10.30b). For both swarm sizes n = 20
or 60, though to a different extent, the axial ratios for negative and positive speed
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Fig. 10.30 Axial ratio for a speed ratio = 10 and −10, b increasing speed ratio values

ratio values are qualitatively extremely different. The behaviour of the swarm stays
at a relatively high ratio value for negative values and sharply decreases to reach the
state of the swarm for positive values. The neutral speed ratio value stands at the
mid-point between these two different states.

10.6 Conclusions and Further Work

This chapter has presented a number of new and potentially valuable results in swarm
robotics, first and foremost that decentralised control can lead to global coherence
of a wireless connected robot swarm based only upon range-limited communication.
Section 10.3 verified this and showed, through both simulation and real-robot exper-
iments, that second-order information (information on the neighbours’ neighbours)
is needed to guarantee coherence. It was shown that the β-algorithm (Sect. 10.3.2)
was scalable and robust to high levels of noise, and that it could be implemented
on real robots, despite important differences between the robotic platform used and
the assumptions of the simulation. This algorithm involves only local broadcast of
neighbours’ information, and can be considered as fully distributed and thus arbitrar-
ily scalable. The algorithm allows area coverage control by tuning the β threshold.
This area control is closely linked with the ability of the β threshold to control the
edge- and vertex-connectivity of the network, which are global metrics that relate to
the resilience of the network to component failure. The ability of this fully distrib-
uted algorithm to influence global features of the underlying network is of particular
interest.

Although the α-algorithm has been presented in this chapter as a stepping stone
toward the β-algorithm, the latter has the drawback of requiring each robot to have
a unique ID. The minimalist α-algorithm does not suffer this drawback and should,
for this reason, be regarded as a potentially useful contribution in its own right.

Secondly, in Sect. 10.4, extension of the β-algorithm to include beacon sensing led
to the development of a truly emergent taxis behaviour, with the additional emergent
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properties of swarm avoidance of beacon-occluding obstacles and beacon enclosure.
The β-taxis algorithm relies on subtle robot-robot interactions, and dynamic equilib-
rium between those (illuminated) robots that sense the beacon and those (occluded)
robots that do not. Although the aim of this work was not to investigate biologi-
cally plausible solutions, the emergent swarm taxis is highly suggestive of the social
amoebae slime mould Dictyostelium discoideum [16, 23].

Thirdly, in Sect. 10.5, we presented the potential for fixed and dynamical hetero-
geneities between robots within the swarm to allow control of the overall swarm
morphology. With these results the potential of the β-algorithm and its variants to
exhibit complex behaviours through the tuning of a small set of parameters has been
powerfully demonstrated. Again, these behaviours are suggestive of biological exam-
ples of morphogenesis, ranging from Dictyostelium to the development of different
types of symmetry in the embryo [24]. We also see a parallel with the size-matching
model of concentric segregation seen in fish schools [15].

Finally, we should note that the α- and β-algorithms, and their extensions for
swarm taxis and shape control, are all dimensionally independent. The swarm prop-
erties that we have described are defined primarily by the connectivity of the swarm
and are therefore completely independent of the dimensionality of its physical envi-
ronment. Although the robot vehicles would necessarily be very different, implemen-
tation in a 3D environment requires essentially no change to the basic algorithms.

The primary assumption of the work in this chapter is in the idealised disk-model
of communication of both simulation and real-robot experiments, in contrast to real-
world communication links, which have complex properties including asymmetrical
signal strength patterns, fading and multi-path effects. Further work is certainly
needed to study the effect of such properties. However, we contend that the dynamics
of communication, counter-intuitively, are not critical to the basic performance of the
α- and β-algorithms. This is because robot actions are determined by the presence
or absence of messages and, for the β-algorithm, local information sharing. The
random motion of robots and relative infrequency of messages (cadence) means that
coherence is insensitive to the timing of messages. Furthermore, departures from
the ideal model tend to increase the connectivity of the swarm, as our results have
shown. Indeed, the stochastic nature of the swarm systems described in this chapter
is an essential characteristic; without the random mixing (ergodicity) of robots we
would not see the emergence of the interesting swarm morphologies described in
this chapter.

10.6.1 Further Research Directions

Real Robot Experiments An area for further work is to extend the real-robot imple-
mentation to include β-taxis and the shape control algorithms of Sect. 10.5 in order
to confirm the validity of the simulation results. The recent appearance of very lower
power radio standards such as IEEE 802.15.4 (Zigbee) and hardware implementa-
tions with tunable range that can be limited to the order of a metre [2], gives us
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confidence that verification of the full set of behaviours can be achieved in the near
future. Such work would additionally allow us to study the impact of real-world
communication noise and propagation effects.

Ad-hoc and Sensor Networks The β-algorithm has shown its ability to tune the
connectivity of the communication network, and it is of great interest to study the
communication properties of the resulting dynamic network. For instance could we
achieve, despite the constant reorganisation of the physical network topology, global
multi-hop routing with only the help of the information already provided by the
β-algorithm? Further, is it possible to link the routing protocol to the behaviour of the
robots in order to self-organise a reliable dynamical communication network? This
advance could lead to applications in large-scale mobile sensor arrays which could,
as demonstrated, exhibit adaptation of their shape to provide appropriate sensing.

Parameters, Adaptation and Evolution The behaviours presented need further
investigation to determine the precise role of the different parameters: for instance,
the influence of randomness, communication range/avoidance range ratio, obstacles’
sizes or different topologies of the radial β-algorithm. We have investigated differ-
ential β values to control swarm morphology. These results strongly suggest that we
should also investigate the potential for (a) introducing differential values in other
parameters, (b) variable (adapting) parameters, such that the swarm can continu-
ously adapt its morphology in response to external cues or environmental changes,
and (c) evolutionary approaches (i.e., the genetic algorithm) toward exploring and
optimising the parameter space of the coherent swarm.

Modelling We have argued that tools for modelling and analysis are crucially needed
in the field of swarm robotics [35]. For modelling, the most successful approach
to date is the probabilistic method developed by Martinoli (see for instance [1]),
and indeed we have applied this approach to develop a promising model of the
α-algorithm in [37]. We have also modeled the reliability and scalability of a variant of
the β-algorithm in [8]. The application of such approaches to the problems presented
in this chapter would be of remarkable interest: our results strongly suggest that some
fundamental properties are involved that would benefit from formal analysis.
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