
A. Tatnall (Ed.): Reflections on the History of Computing, IFIP AICT 387, pp. 62–68, 2012.
© IFIP International Federation for Information Processing 2012

Micro Programming

Herman Spanjersberg

h.a.spanjersberg@planet.nl

Abstract. In the 1970s a need arose to perform special arithmetic operations on
minicomputers much more quickly than had been possible in the past. This pa-
per tells the story of why micro programming was needed for special arithmetic
operations on mini computers in the 1970s and how it was implemented. The
paper tells how the laboratory in which the first experiment took place had a
PDP-9 minicomputer from Digital Equipment Corporation and how the author,
with several colleagues, after attending a course for the technical service of a
PDP-9 given by a specialist from Digital Equipment, knew exactly which sig-
nals flew through the machine at any time. The paper describes how by having
‘programmable’ control memory they were able to make changes in the execu-
tion of instructions.

Keywords: Micro programming, minicomputer.

1 Introduction

In the late seventies of the last century there came a need for special arithmetic opera-
tions with a (mini)computer. One of the reasons was that researchers wanted to collect
and adapt measurement data within a few microseconds: in some cases the result of the
operations had to be fed back to the process to control the process or the character of
the research project demanded a rapid insight in the converted data. For example there
was a research project in an ophthalmologic laboratory where one needed an instant
fast Fourier transform of the measured signals. With the normal processors this was
impossible, or better formulated: it took too long time with normal ‘general purpose’
computers. Based on an article of Professor Wilkes1 we started an experiment on a
standard minicomputer with the theme ‘microprogramming’. To understand that tech-
nique at first a short description is given of processor2 architecture.

2 CPU Architecture

In Fig. 1 a general architecture of a processor is sketched. The heart of the processor is
the arithmetic and logical unit (ALU) to perform the arithmetic and logical operations.

1 Sir Maurice Wilkes was Director of the Cambridge Computer Laboratory throughout the

whole development of stored program computers starting with EDSAC; inventor of labels,
macros and microprogramming.

2 In those days indicated as the central processing unit (CPU).

 Micro Programming 63

The ALU is connected with three busses: one at each entrance (A and B) and one at the
exit (C). The busses form together with the ALU a transport channel for data between
several registers (at one combination of control signals the ALU transmits only the data
from one entrance to the exit). Some registers are implicit in use, such as the program
counter (PC) and the instruction register (IR) while other registers have to be addressed
explicitly in the instruction.

Fig. 1. CPU outline

By placing an extra register at the entrance of the ALU one can delete one bus and
by adding a further extra register at the second entrance even one bus suffices. It will
be clear that the speed of instruction execution in that case proportionally decreases.

The whole process of instruction execution is controlled by signals coming from
the control memory (CM).

3 Instruction Architecture

To fully understand the working of a traditional computer we look not only at the
hardware, but also at the instruction format. Fig. 2 represents a general format.

Memory

MDR MARIR PC

General
registers

Decoder

Control
Memory

CMAR

ALU
Control signals

A-bus

B-bus

C-bus

ALU: arithmetic and logical unit
CMAR: control memory address register
IR: instruction register
PC: program counter
MAR: memory address register
MDR: memory data register

64 H. Spanjersberg

The first part of the inst
other parts indicate in whi
result has to be placed. Th
the ratio for that one has to
tion speed the length of an
words in main memory: in
instruction. But the larger t
hand one wants to have a l
tion code is long. These wi
optimum.

To begin with one can re
placing the result in source
that one of the two original
by definition one operand
ways far less than the num
small number of bits to ad
tion to place the operand in
ecution slows down. In som
cated to contain one operan

In the first minicomputer
8 from Digital Equipment C
operand was supposed to b
result was placed back into
market, like the PDP-11 fro
cation: two address parts, e
register field indicated a reg
mode field specified the m
indirect).

To keep it simple we wil
with one memory address th
containing the other operan

4 Instruction Exec

Most instruction cycles can

The instruction fetch ph
The data fetch phase3 a
The execution phase.

3 Only the instructions influen

tions, don’t have a data fetch

Fig. 2. Instruction format

truction indicates what operation has to be executed. T
ch memory places the operands are found and where

he three addresses are not always specified. To underst
o consider that in most architectures for reasons of exe
n instruction (number of bits) is equal to the length of
n that case only one memory cycle is needed to fetch
the main memory is, the longer is the address. At the ot
large number of different operations, so ideally the ope
ishes are conflicting so that the designer has to seek for

educe the number of addresses in the instruction by alw
e address 2. The price one has to pay for that reduction
l operands is lost. A further reduction can be reached w
is the content of a register (the number of registers is

mber of addresses in the main memory so one needs bu
dress a register). That requires sometimes an extra ope
n that register with as a consequence that the program

me computers even one special register was implicitly in
nd and afterwards the result.
rs that came on the market in the late sixties (like the PD
Corporation) the instruction had one address and the ot
be in a special register (called the accumulator), while
o the accumulator. Later on there came computers on
om the same company, that had a complex operand spec
each part divided into a register field and a mode field. T
gister that was supposed to contain a memory address. T

manner in which that address had to be used (e.g. direc

ll use in the following part of this paper an instruction t
hat points to one operand and an implicit specified regi

nd and receiving the result.

cution

n be divided into three phases:

hase
and

ncing the sequence of instruction execution, such as jump inst
h phase in general.

The
the

tand
ecu-
the

h an
ther
era-
r an

ways
n is
hen

s al-
ut a
era-
ex-

ndi-

DP-
ther
the
the

cifi-
The
The
t or

type
ster

truc-

Each phase can in its turn
one word from the CM: the

The microinstruction can

Fig.

Each CM word contains
there are three fields that c
the buses. The next field de
fies a number of independe
A quite simple architecture

The last microinstruction
phase for the next instructio
found in a fixed place in C
next instruction to be exe
fetched from the main mem
to the memory address regi
memory. As a result of the r
executed – comes out in the
the instruction register (IR)
with one so that the PC alre
indicating the wanted opera
control memory. That addr
for the CM the first step of

Knowing now what oper
rands it has to be done. Fin
instruction. As indicated e
address with an extra bit in
part of the IR is now transp
to fetch the specified oper
memory read cycle has to b
not point to the operand its
be found.

After the operand has be
fered to the one input gate o
gate. At the same time a co
logical operation and the ou

4 In some architectures, like th

dressing modes that require s
5 With direct addressing the ad

the address points to a locati

Micro Programming

be divided into several steps. Each step corresponds w
e microinstruction.
n in general be described with Figure 3.

3. General outline of a microinstruction

s the address of the next microinstruction to read. Furt
control the output and the input of the several registers
efines the function the ALU has to do. The last field spe
ent control signals (like a command to read main memo

required a word length of roughly 80 bits.
n of each execution phase points to the first one in the fe
on. The fetch phase is the same for every instruction an

CM. The program counter (PC) contains the address of
ecuted. That instruction itself is still unknown until i
mory. So the content of the PC register is fed via the A
ister (MAR) and thereafter a read command is given to
read operation the word in that place – the instruction to
e memory data register (MDR) and is further transported
). In between the content of the PC has been incremen
eady points to the next instruction. The first part of the
ation, is connected to a decoder that gives an address of
ress is put into the CMAR and by starting a read operat
the new phase is started.
ration has to be executed the question arises on which o
nding the operands is closely related to the design4 of

earlier we take the most simple manner in this paper:
ndicating that the address is direct or indirect5. The addr
ported to the MAR and a memory read operation is star
rand. If the ‘indirect bit’ in the instruction is 1 an ex
be executed because the address part of the instruction d
self but to the place where the address of the operand

een fetched from main memory the content of MDR is
of the ALU and the content of the accumulator to the ot
ommand is given to the ALU to perform an arithmetic
utput is fed back to the accumulator.

he PDP-11 family from Digital Equipment, there are several
some arithmetic to determine the place of the operands.
ddress points to the operand, while indirect addressing means
on which contains the address of the operand.

65

with

ther
s on
eci-

ory).

etch
nd is

the
it is

ALU
the

o be
d to
nted
IR,

f the
tion

ope-
the

: an
ress
rted
xtra

does
can

of-
ther
c or

 ad-

that

66 H. Spanjersberg

5 The Idea of Mic

In most minicomputers bei
structed as a read only mem
to older machines where th
ters, gates, etc. – the design
ceding paragraphs. But the
with this well designed arc
variable one if that was pos

6 The First Exper

The laboratory in which th
type PDP-9 from Digital Eq
lumped components: transi
course for technical servic
Equipment so we knew aft
chine at any time.

Our first aim was to mak
To run the original program
one. Because of the wish t
enough rows and columns t

Fig

We were lucky in so fa
cores, so we could use the o
a handed over bit combinati

Having a ‘programmabl
instructions. For example w
reby the address of the oper
used. This way of addressi
data in a list: supposing t
whole list can be processed
same instructions and the sa

6 As was used to program anal

croprogramming

ing on the market in the late seventies the CM was c
mory (ROM). That was already a step forwards in relat
he control part was a specially designed complex of co
n with a CM gave a clear architecture as we saw in the p
e combination of the need to perform special operati
chitecture gave the idea to replace the CM by anothe
sible.

riment

he first experiment took place had a minicomputer of
quipment Corporation. This machine still was composed
stors, resistors, etc. With several colleagues we followe
ce of that machine, given by a specialist from Dig
ter the course exactly which signals flew through the m

ke the machine run as delivered, but now with a new C
ms the content of that CM had to be the same as the origi
to make it variable we took a matrix board6 (Fig. 4) w
to let the machine run its original instruction packet.

g. 4. Schematic detail of a matrix board

ar that the original ROM consisted of separate magn
original electronic circuits that select a row as the resul
ion (indicating the CM ‘address’).
e’ CM we were able to make changes in the execution

we could implement ‘incremental indirect addressing’ w
rand is automatically incremented each time the operan
ing saves an instruction and thus quickens the handling
this data handling requires a number of instructions,
d by repeating these instructions again and again with
ame addresses as illustrated in Figure 5.

og computers or, in older days, Hollerith machines.

con-
tion

oun-
pre-
ions
er, a

the
d of
ed a
gital
ma-

CM.
inal

with

netic
lt of

n of
whe-
nd is
g of
the
the

Fi

7 Extensions

Having a changeable ROM
grammable by using a rando

This idea was compellin
with a different content th
decided only to add a new p
problems. At first there wa
from the ROM didn’t agre
from standard RAM devic
problem was filling the CRA

To fill the CRAM we fo
device: with I/O-instruction
the I/O-bus. The only obst
with the width of the data
using a number of data tran
fill the CRAM with a block
of the RAM. Filling the CR

8 Micro-assemble

Now the problem still rema
storming session the idea a
structions. At a high level
etc. But at a lower level the
tated writing programs – e.
(e.g. the instruction to add

7 To avoid long descriptions w

Micro Programming

ig. 5. Incremental indirect addressing

M the idea arose to make the content more flexible and p
om access memory (RAM).
ng but we had to realize that by replacing the whole C
e original instruction execution was destroyed. So it w
part to the CM with RAM. That however presented seve

as a slight technical problem: the electric signals that ca
ee with the electric power levels of the signals that ca
ces. That problem could simply be tackled. But a sev
AM7: how and with what data?

ound a solution in regarding the CRAM as a special out
ns the CRAM could be filled from the general memory
tacle was that the word length of the CRAM didn’t ag
path on the I/O-bus. But that could simply be avoided
nsfers for one word in the CRAM. We decided alway
k transfer because we saw no need to replace single wo

RAM was now comparable with writing a disk drive.

er

ained on how to define the content of the CRAM. In a br
arose to look how the general memory was filled with
we used programming languages like FORTRAN, Al

e manufacturer designed an assembler language that fac
g. the drivers for the peripherals – in symbolic instructi
two numbers was indicated with the acronym ADD), w

we use the acronym CRAM for the control memory with RAM

67

pro-

CM
was
eral
ame
ame
vere

tput
via

gree
d by
s to
ords

rain
h in-
lgol
cili-
ions
with

.

68 H. Spanjersberg

symbolic addresses. The assembler program converted the symbolic instructions into
rows of bits, so we designed a micro-assembler. Now we could program new instruc-
tions and even test them before implementing them.

9 Commercial Products

At about the time we got the micro-assembler, two manufacturers of minicomputers
launched a new model of their minicomputer family: Digital Equipment Corporation
put the PDP-11/60 on the market and Hewlett Packard a model of the HP-2100A.
Both had all the benefits we already discovered.

As far as I know these were the only commercial available machines with micro-
programming facilities and they were at the same time the last scions on the family
tree of small minicomputers, because microprocessors and PCs soon came along.

	Micro Programming
	Introduction
	CPU Architecture
	Instruction Architecture
	Instruction Exec cution
	The Idea of Mic croprogramming
	The First Exper riment
	Extensions
	Micro-er assemble
	Commercial Products

