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Abstract. In the 1970s a need arose to perform special arithmetic operations on 
minicomputers much more quickly than had been possible in the past. This pa-
per tells the story of why micro programming was needed for special arithmetic 
operations on mini computers in the 1970s and how it was implemented. The 
paper tells how the laboratory in which the first experiment took place had a 
PDP-9 minicomputer from Digital Equipment Corporation and how the author, 
with several colleagues, after attending a course for the technical service of a 
PDP-9 given by a specialist from Digital Equipment, knew exactly which sig-
nals flew through the machine at any time. The paper describes how by having 
‘programmable’ control memory they were able to make changes in the execu-
tion of instructions.  
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1 Introduction 

In the late seventies of the last century there came a need for special arithmetic opera-
tions with a (mini)computer. One of the reasons was that researchers wanted to collect 
and adapt measurement data within a few microseconds: in some cases the result of the 
operations had to be fed back to the process to control the process or the character of 
the research project demanded a rapid insight in the converted data. For example there 
was a research project in an ophthalmologic laboratory where one needed an instant 
fast Fourier transform of the measured signals. With the normal processors this was 
impossible, or better formulated: it took too long time with normal ‘general purpose’ 
computers. Based on an article of Professor Wilkes1 we started an experiment on a 
standard minicomputer with the theme ‘microprogramming’. To understand that tech-
nique at first a short description is given of processor2 architecture. 

2 CPU Architecture 

In Fig. 1 a general architecture of a processor is sketched. The heart of the processor is 
the arithmetic and logical unit (ALU) to perform the arithmetic and logical operations. 
                                                           
1 Sir Maurice Wilkes was Director of the Cambridge Computer Laboratory throughout the 

whole development of stored program computers starting with EDSAC; inventor of labels, 
macros and microprogramming. 

2 In those days indicated as the central processing unit (CPU). 
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The ALU is connected with three busses: one at each entrance (A and B) and one at the 
exit (C). The busses form together with the ALU a transport channel for data between 
several registers (at one combination of control signals the ALU transmits only the data 
from one entrance to the exit). Some registers are implicit in use, such as the program 
counter (PC) and the instruction register (IR) while other registers have to be addressed 
explicitly in the instruction.  

 

Fig. 1. CPU outline 

By placing an extra register at the entrance of the ALU one can delete one bus and 
by adding a further extra register at the second entrance even one bus suffices. It will 
be clear that the speed of instruction execution in that case proportionally decreases. 

The whole process of instruction execution is controlled by signals coming from 
the control memory (CM). 

3 Instruction Architecture 

To fully understand the working of a traditional computer we look not only at the 
hardware, but also at the instruction format. Fig. 2 represents a general format.  
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g. 4. Schematic detail of a matrix board 
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symbolic addresses. The assembler program converted the symbolic instructions into 
rows of bits, so we designed a micro-assembler. Now we could program new instruc-
tions and even test them before implementing them. 

9 Commercial Products 

At about the time we got the micro-assembler, two manufacturers of minicomputers 
launched a new model of their minicomputer family: Digital Equipment Corporation 
put the PDP-11/60 on the market and Hewlett Packard a model of the HP-2100A. 
Both had all the benefits we already discovered. 

As far as I know these were the only commercial available machines with micro-
programming facilities and they were at the same time the last scions on the family 
tree of small minicomputers, because microprocessors and PCs soon came along. 
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