
A Knowledge-Based Approach to Augment Applications
with Interaction Traces

Olivier Curé1, Yannick Prié2, and Pierre-Antoine Champin2

1 Université Paris-Est, LIGM, CNRS UMR 8049, France
ocure@univ-mlv.fr

2 Université Lyon 1, LIRIS, CNRS UMR 5205, F-69622, France
{yannick.prie,pierre-antoine.champin}@liris.cnrs.fr

Abstract. This paper presents a trace-based framework for assisting personal-
ization and enrichment of end-user experience in an application. We propose a
modular ontology-based architecture, to provide semantics for interaction traces,
observed elements and their associated objects, and we extend existing inference
services, with a declarative and generic approach, in order to reason with those
interaction traces. We present the architecture of our framework and its reasoning
levels, provide a proof of concept on a medical Web application, and emphasize
that different kinds of actors can benefit from the supported inferences.

1 Introduction

We present an assistance framework for personalizing and enriching end-user applica-
tion interactions. These features rely on user profiles generated from interaction traces
that provide information on how data is used and created. Our declarative approach
is based on explicitly modeled interaction traces consisting of recordings of observed
elements (henceforth obsels) that are collected during the use of the application.

A first contribution is to provide a Description Logics (DL) [4] based approach to
modeling traces by constructing a global knowledge base of entities and actions that
can be reasoned upon. The semantics of interaction traces, obsels and their associated
objects are provided through mappings to DL concepts or roles. DL formalism has been
selected because it enables to reason in a sound and complete manner, and enables inter-
operability by underlying Semantic Web technologies. Another contribution is to define
means of reasoning over various levels of interaction knowledge. Standard (i.e. sub-
sumption) and non-standard DL inferences support these services. In order to represent
uncertainty, a probabilistic approach is used. Various levels of reasoning are presented
that support various kinds of user assistance based on the manipulated objects, traces,
and user profiles. Moreover, we have implemented this approach in an existing medi-
cal application, and have shown its interest by adding several functionalities that have
proven valuable to various actors of this system, from admin to end-users.

This paper is organized as follows. Sec. 2 is dedicated to related works. Sec. 3 details
how an application can be augmented with our framework for managing interaction
traces, while Sec. 4 describes the different reasoning approaches. In Sec. 5, we provide
an evaluation on our running example, emphasize on the system’s inferences adequacy.

A. ten Teije et al. (Eds.): EKAW 2012, LNAI 7603, pp. 317–326, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

318 O. Curé, Y. Prié, and P.-A. Champin

Application

Decision module

Interaction traces module

Ontologies

General Trace
Ontology

Trace Generic
Ontology

Domain Trace
Bridge Ontology

Domain Specific
Ontology

Interaction Traces

Mappings

Reasoner

Domain database

Admin module

1

2

3

4

4

4

 Graph Generator

5

6
7

7

8

Fig. 1. Architecture overview of an application enriched with a trace-based system for assistance

2 Related Works

Interaction traces have long been considered a valuable source of information, either
for an a posteriori analysis of the activity, or during the traced activity in order to pro-
vide some kind of user-assistance [13]. The latter is based on the assumption that the
traces can help to automatically build a user’s profile, instead of requiring the user’s to
manually provide their personal information and preferences [11]. Different paradigms
have been explored to provide trace-based user-assistance, such as case-based reason-
ing (traces can be used to dynamically generate cases corresponding to a problem at
hand [10]), or machine learning (traces are used as a training set for further recommen-
dations [11]). Traces can also be modeled using ontologies, allowing complex infer-
ences to be performed in order to assist the user [7]. Like our system, this work uses
Semantic Web technologies to represent ontologies. There is indeed a growing interest
in modeling temporal information related to users’ activity on the Semantic Web [6].
[1] combine statistical analysis with a semantic model and rules in order to measure the
health of on-line communities by analyzing the behavior of their users. There has been
other work aiming at integrating time in DL [3] and Semantic Web technologies [2,12];
however those approaches consider time as a dimension orthogonal to the data. As such,
they are not adapted to our approach where time is merely a property of every obsel.

3 A Framework for Integrating Interaction Traces in Applications

Fig. 1 describes the different information flows between the components of our ar-
chitecture. The user interacts (1) with the application, causing updates to the domain
database (2) and the interaction traces component (3). In the latter, a subset of the end-
user interactions is stored as temporally situated interaction traces, e.g. start of a session
or description of an item. This subset of interactions is defined through a set of map-
ping assertions (Mappings component) between interaction traces and elements of the
ontologies. Note that some mapping assertions also relate the database with the ontol-
ogy (4). A set of interaction traces, mapping assertions and ontologies is used by the
Graph generator to define a global graph (5), containing the overall information in-
volved in the process of describing interactions. Moreover, it integrates metadata such

A Knowledge-Based Approach to Augment Applications with Interaction Traces 319

as object specific information coming from the ontologies and/or the domain database.
The global graph is passed to the reasoner (6) to generalize on the represented informa-
tion, computing subsumption relationships between ontology concepts. The generaliza-
tions are both stored as (transformed) interaction traces and in the domain database (7),
e.g. to store end-user models which will be used to personalize the application together
with information directly coming from the traces. Finally, the Admin module enables
to manage and query information stored as raw or transformed interaction traces (8) to
detect assets and drawbacks of the application, e.g. objects that are rarely accessed, etc.

Representation of Interaction Traces. We use the meta-model proposed in [9] for man-
aging interaction traces: a trace is defined as a list of timestamped obsels, holding a set
of attributes and relations. Each trace is related to a trace model, defining the different
types of obsel the trace can contain, and which attributes and relations obsels of each
type can have. A trace-based management system (TBMS) collects obsels from the ap-
plication in so-called primary traces. A TBMS also manages transformed traces, which
are computed based on the content of other traces, providing higher levels of interpreta-
tion. Hence we have three knowledge containers for each trace: its metadata , its model,
and the list of contained obsels. In our framework, the set of obsels recorded in an inter-
action trace is the representation of an end-user’s interactions with a given application.
They mainly correspond to CRUD (Create, Read, Update, Delete) operations, but can
be extended to higher level operations (e.g. Copy, Paste).

Each end-user session is represented by a single trace, satisfying the schema (idT,
idU, ssDate, seDate) where attributes respectively identify an interaction trace, the sub-
ject of the trace (i.e. the end-user whose activity is recorded), the session start and end
dates. Traces then contain a number of obsels describing the data operations performed
within the application during the session. Obsels satisfy the schema (idT, obselDate,
idObj, op, objField, oldValue, newValue) where idT references the containing trace,
obselDate is the timestamp of the obsel (and must be comprised between ssDate and
seDate of the containing trace), idObj identifies the object impacted by the interaction,
op identifies the data operation performed on that object, objField identifies the object’s
field impacted by the operation, if appropriate, and oldValue and newValue contain, if
appropriate, the field value before and after the operation respectively. The last three
attributes are optional, depending on the kind of operation. That is a Retrieve operation
does not impact a specific field of an object and has none of those three attributes; a
Delete operation only has an old value, an Insert operation only has a new value and an
Update operation has the three attributes filled in.

Ontologies for traces. A particular attention has been given to the ease of plugging in
and out ontologies and to provide a comprehensive decoupled organization. The default
setting of our framework consists of the following 4 ontologies. The general trace ontol-
ogy provides a model for a high-level view of interaction traces. It contains 3 concepts:
Trace, Obsel and Subject (the user whose interaction was traced); 2 object properties:
describes and composedOf, respectively relating an interaction trace to its subject and
its obsels; 4 datatype properties, supporting subject identification and temporal infor-
mation. The trace generic ontology supports the definition of a set of obsels and corre-
sponds to a hierarchy of concepts some of which subsume concepts of the general trace
ontology. It aims to specify data operations needed to reason with interaction traces.

320 O. Curé, Y. Prié, and P.-A. Champin

General Trace Ontology Trace Generic Ontology Domain Trace Bridge
Ontology

Domain Specific Ontology

Trace

Subject

Obsel

Date

String

describes

hasSubjectID

performedAtcomposedOf

startSession

endSession

DataOperation

Retrieve
ModifyOperation

Update Delete Create

StringnewValue

oldValueoldValue

newValue

Object

Field

String

hasObjectID

onField

onObject

Form

Allo Phyto Homeo

Drug
sideEffect

Molecule

contraIndication

TherapeuticClass

hasForm hasSideEffect

hasContraIndication
treats

contains

......

Fig. 2. Ontology-based framework for considering both traces and domain objets

The domain specific ontology describes the semantics of the objects observed in the
interaction traces. In opposition to the other ontologies of the architecture, this compo-
nent may integrate an ABox.Obviously, the more information is provided on observed
objects (either in a TBox or an ABox), the more accurate the results of our inferences.
The domain trace bridge ontology links the trace generic ontology to the domain spe-
cific ontology. It contains 2 concepts: Object and Field, and 2 properties to identify an
object and relate an object to its fields. These 2 concepts subsume some of the concepts
of the domain specific ontology and are related to some of the trace generic ontology
concepts via object properties, e.g. onObject and hasField.

Example 1. Fig .2 provides a comprehensive view of a framework instance for our
medical application. The domain trace bridge ontology provides information on drug
objects which have a certain form (i.e. allopathy or homeopathy), treat some therapeutic
classes and contain some molecules. Two other concepts of this ontology, namely Con-
traIndication and SideEffect are subsumed by the Field concept of the domain trace
bridge ontology. Note that only Drug is subsumed by the Object concept from the
bridge ontology, so only operations on drugs will be recorded in the trace. However,
Molecule and TherapeuticClass can be used as external knowledge to support infer-
ences on drugs and the related obsels.

If our framework was to be used in a completely different domain, the domain spe-
cific ontology would have to be replaced. The modular structure would however make
it easy to reuse an existing Semantic Web ontology for the new application domain, and
link it to the other ontologies through mappings to the domain trace bridge ontology.

4 Reasoning over Traces

We model interaction traces using a set of ontologies, using DL to provide them with
model-theoretic semantics [4]. A DL knowledge base (KB) is composed of a TBox
and an ABox which respectively correspond to a set of terminological axioms and
concept/property assertions. A key feature of DLs is to integrate in the system the
following set of standard inferences: concept satisfaction and subsumption, instance

A Knowledge-Based Approach to Augment Applications with Interaction Traces 321

External Knowledge

Retrieve :obsel1 Create

:obsel2

:field1 contraIndication

:u1

:field2 sideEffect

:obj1

Allo

AntiPyretic

Paracetamol

3595583
Iproniazide

Nausea
:obsel3

Delete

:t1

5

contains

hasObjectId

hasForm

treats

type

onField

hasNewValue
type

onObject

type

onObject

onField

hasOldValue

type

onObject

type

composedOf

composedOf

composedOf

hasSubjectId

describes

idT
1
...

idU
5
...

ssDate
2011/09/10 03:00
...

seDate
2011/09/10 04:15
...

IdT
1
1
1

obselDate
2011/09/10 03:02
2011/09/10 03:03
2011/09/10 03:05

idObj
3595583
3595583
3595583

op
Retrieve
Create
Delete

objField

contraIndication
sideEffet

oldvalue

Nausea

newvalue

Iproniazide

(a)

(b)

Fig. 3. A trace extract and its graph instance (with some data omitted for readability)

checking, realization and retrieval. Although we use some of these inferences, we also
adapt two non standard DL inferences named Most Specific Concept (MSC) and Least
Common Subsumer (LCS) [4]. The MSC of an individual α wrt a KB is the concept
description C such that (i) α is an instance of C and (ii) if there is another concept C’
of which α is an instance of, then C’ is more general w.r.t. subsumption than C. The
LCS of a given set S of concept descriptions is the most specific concept (wrt the sub-
sumption relationship) subsuming all concepts descriptions in S . In general, they are
computed with either a structural subsumption algorithm or via the specification of a
normal form. Within our framework, MSC is used to generate DL concepts (hence mod-
els) from individuals corresponding to instances of interaction traces, obsels or their ob-
jects. Given these instances, the system generates concept description in the EL DL [5]
which underpins the OWL2 EL fragment. This DL presents good properties in terms of
reasoning: subsumption is polynomial even if one allows for cyclic terminologies and
the MSC of an ABox individual always exists. Moreover, users’ goals and intentions
are too complex to be entirely accounted for by formal inferences. To handle this un-
certainty, we use Probabilistic EL[8], an extension of EL that associates probabilities
to concept descriptions.

As seen in Fig. 1(5), the reasonner works on a global graph generated from differ-
ent knowledge sources. Fig. 3(a) presents some interaction traces performed over our
medical application while Fig. 3(b) displays its associated instance graph. Note that the
contains, treats and hasForm properties associated to the :obj1 node can not be gener-
ated from the interaction traces. In fact they correspond to external knowledge retrieved
from the domain database. This is a difference with the original TBMS approach [9].
A major advantage of using ontologies is the ability to generalize patterns discovered
with type inference, i.e. the most common concept that satisfies a given situation.

Inferencing over various levels of interaction knowledge. The analysis of the end-user’s
behavior can be performed at different levels. We propose 5 of them which cover a wide
range of relevant features and still support a generic approach. They correspond to the
main DL concept abstractions found in our ontologies: Field, Object, Obsel, Trace and

322 O. Curé, Y. Prié, and P.-A. Champin

Subject. These levels require different forms of processing: a finite model checking
approach handled with a simple query answering interface; or a more elaborate logical
reasoning. Inference services provided by each level build on the previous ones.

The Field level is the most specialized level and little information can be retrieved
from it. Intuitively, it enables to retrieve which kind of fields specified in the Domain
specific ontology have been observed. Hence a simple query answering interface is suffi-
cient. For instance, the question: “Which fields have been observed?” may be answered
with an enumeration of subconcepts of the Field concept that have been effectively
observed. This query may help to detect which fields are never operated upon.

The Object level is central as it is the first one to require logical reasoning and all
remaining levels build on its inferences. Both query answering and logical reasoning
are needed at this level. For instance, query answering can be used to identify objects
operated upon. The main logical reasoning of this level enables to generalize on a given
object description (detailed in Sec. 4).

The Obsel level enables to study the operation associated to an observed object.
Typical queries are CRUD-like and reasoning amounts to generalize obsel description.

The Trace level is an interesting level due to the non-functionality of the composedOf
property, i.e. a trace can be composed of several obsels. Moreover, an interaction trace is
associated to some temporal values representing its begin and end session dates. Thus, a
query answering approach can answer to questions such as “When was a trace recorded?
How long did it last?”. Logical reasoning is mainly concerned with generalizing a given
interaction trace. An interesting aspect of reasoning at this level involves considering
ordered sequences of generalized traces. By storing the result of that generalization as
transformed traces, we can then query sequences of similar sessions.

Finally, the Subject level enables to infer over a set of interactions performed by an
end-user. Query answering can be used to reply to the following questions for a given
end-user: “When did this user use the application for the last time?”, “How often does
this user use the application?”. We can also consider queries involving a group of end-
users, i.e. queries aggregating over end-users. Logical reasoning amounts essentially in
defining an end-user profile (i.e. concept descriptions) given her set of interaction traces.
In our running example, this user profile aims to define her pharmacology expertise, i.e.
in terms of molecules, therapeutic classes and drug forms she is an expert in.
Reasoning method. The reasoning methods needed by our levels of analysis are based
on the following 3 algorithms. The first algorithm, simpMSC, corresponds to a simpli-
fied version of MSC and aims to generate a DL concept description for any individual
present in the global graph. These DL concepts are specified by the following normal
form:

�
Ai ��∃r jAk where Ai and Ak are atomic concepts and r j is an object property.

The algorithm takes as input an individual α and acts as follows. For all assertions of
the form Γ(α) (i.e. defining the type of α), it creates a conjunction AC of Γs. Moreover,
for all assertions of the form r(α, β) with r an object property assertion, it creates a con-
junction EQ of ∃r.β. The algorithm returns as output AC � EQ. This algorithm is used
at both the Object and Obsel levels respectively to produce a DL concept for an object
in terms of elements of the Domain specific ontology and an obsel in terms of elements
of the Trace generic ontology and Domain specific ontology.

A Knowledge-Based Approach to Augment Applications with Interaction Traces 323

Example 2. Consider the :obj1 individual in Fig. 3. Its assertion set contains: a type
definition Drug(:obj1), 3 object property assertions (contains(:obj1, Paracetamol),
hasForm(:obj1, Allo) and treats(:obj1,AntiPyretic)) and a data type property asser-
tion: (hasOb jectID(:obj1,3595583)). The execution of simpMSC over this individual
returns: Drug � ∃contains.Paracetamol � ∃treats.AntiPyretic � ∃hasForm.Allo.

The second algorithm, probLCS, corresponds to an approximation of LCS extended
with probabilities on concepts. We use the notation of [8]: a concept Trace �
∃composedO f (P=1/2Retrieve�∃onOb ject.O1) describes an interaction trace composed
of an obsel on object O1 and a Retrieve data operation with probability 0.5. We re-
strict probabilities to occur in front of DL concepts and allow disjunction in the form
A � B � C since it can be eliminated modulo the introduction of the new concept C.

The input of this algorithm is a set of concept descriptions produced by simpMSC. In
a first step, a disjunction of atomic concepts is computed. That is, it counts the number
of occurrences of each non quantified atomic concepts over the set of descriptions and
produces a probabilistic formula for each of them where the probability is the number of
occurrences of this concept divided by the total number of occurrences of the set. In the
second step, for each distinct existentially quantified property, the first step is applied
over its set of concepts. The probLCS algorithm serves at the Trace level to specify a
probabilistic view of the obsels present in an interaction trace.

Example 3. Consider the obsels of Fig. 3 (i.e. :obselsi with i ∈ [1,3]). Ap-
plying simpMSC to these obsel individuals yields the respective concepts (where
O1 is the concept description from Ex. 2): Retrieve � ∃onOb ject.O1, Create �
∃onField.ContraIndication � ∃onOb ject.O1, Delete � ∃onField.S ideE f f ect �
∃onOb ject.O1. Computing probLCS over this set yields the following concept:
(P=1/3Retrieve�P=1/3Create�P=1/3Delete) � ∃onField.(P=1/3 ContraIndication�P=1/3

SideEffect) � ∃onOb ject.P=3/3O1

The last algorithm, setProb, operates on a set of probabilistic concepts to create a gen-
eralized concept, using the notion of concept comparability.

Definition 1. The comparability property, defined over the normal form of a proba-
bilistic concept, i.e.

�
(S C) � �(∃rS C) where S C, standing for Simple Concept, is a

disjunction of probabilistic atomic concept, is stated as follows: non quantified sim-
ple concepts are comparable and simple concepts existentially quantified by the same
property are also comparable. No other concepts are comparable.

Given this comparability property, the generalization of probabilistic concepts is defined
as summing the probabilities of comparable simple concepts. To compute a relevant
sum, all probabilities are expressed over the total number of occurrences found locally.
This approach enables to sum properties and to have a coherent global view of the
distribution of probabilities. The setProb algorithm is used at the Subject level when a
generalization of interaction traces described by a given end-user is required.

Example 4. Consider the composition of the 2 following interaction traces:
- (P=1/3Retrieve � P=1/3Create � P=1/3Delete) � ∃onField.(P=1/3 ContraIndication
�P=1/3 SideEffect) � ∃onOb ject.P=3/3O1
- (P=2/4Retrieve � P=2/4U pdate) � ∃onField.(P=2/4 SideEffect) � ∃onOb ject.P=4/4O2

324 O. Curé, Y. Prié, and P.-A. Champin

The execution of setProb over these interaction traces yields: (P=3/7Retrieve �
P=1/7Create� P=1/7Delete� P2/7U pdate) � ∃onField.(P=1/7 ContraIndication �P=3/7

SideEffect) � ∃onOb ject.(P=3/7 O1 � P4/7 O2)

The probabilities of the concept description computed by setProb represent the uncer-
tainty of our conclusions about the user’s activity at a certain level. In the context of
the Subject level, this concept description serves to create an approximation of a user
model. A threshold θ is used to cope with the uncertainty of our approximation.

Definition 2. Given a probabilistic DL concept, a certain rewriting of this concept wrt
a threshold θ is computed by retaining only the inner concepts whose probability is
superior or equal to θ.

The certain rewriting of a probabilistic concept wrt to a threshold θ serves to generate a
model for a given subject. That is the remaining concepts of the description specify the
expertise/point of interest of the end-user.

Example 5. Consider the probabilistic concept generated in Ex. 4 and a threshold θ=1/3.
The certain version corresponds to: (Retrieve) � ∃ onField.(SideEffect) � ∃ onOb-
ject.(O1 � O2) where the drug O1 (resp. O2) has form Allo, treats Cough and con-
tains Dextromethorphan (resp. has form Phyto and treats the respiratory system). This
enables to define a user model corresponding to a domain expert involved in Retrieve
data operation and side effect field over allopathic and phytotherapeutic drugs of both
the Cough and respiratory system, containing the Dextromethorphan molecule.

Finally, testing subsumption of concepts filling the onObject property is performed.
Intuitively, using the Domain specific ontology, the system checks for concepts cover-
ing wrt. to subsumption. Thus a set of subsumed concepts are replaced with the super
concept. This approach limits the size of generated user models and improves their rel-
evance by relating them to named concepts rather than complex concepts expressions.

5 Trace-Based Assistance in a Self-prescription Application

Reasoning occurs at the different levels of interaction knowledge. Several kinds of ac-
tors (end-user, staffmanager and developer) can benefit from various inference services.

At the Object level, the system can efficiently compute statistics on frequently mod-
ified objects and fields and hence provide up-to-date information on market evolution.

The Obsel reasoning level enables to detect repetitive operations performed on same
category objects. The system then proposes the end-user to execute them automatically
on the remaining objects in this category, as soon as it has been repeated more than a
given threshold (defaulting to 3). This kind of information also supports the discovery
of some integrity constraints, e.g. which fields or objects are most frequently updated
for the drug category of homeopathy or respiratory system. For example, it is relatively
frequent in the medical domain that some molecules are being attributed new proper-
ties. This may cause drugs containing that molecule to change from OTC to requiring
a prescription. After the end-user has changed the state of 3 such drugs, the system
will offer to make the change to all remaining drugs. Before the adoption of our trace
reasoning level, all modifications had to performed manually.

A Knowledge-Based Approach to Augment Applications with Interaction Traces 325

In our medical application, all modifications are double-checked by an expert of
this product’s category, i.e. either form, molecule or therapeutic class. For instance, a
homeopathy expert usually does not have the expertise to check information on the
allopathy drug category. The Subject level automatically generates this expertise profile
for each user based on their interaction traces. Based on these user models, we are able
to personalize the home page of each end-user in the following way: (i) she is only asked
to check drugs in her domain of expertise, (ii) she is provided with a list of contacts in
her domain of expertise and (iii) health news displayed in the application are prioritized
according to her domain of expertise. This approach has simplified the tasks of our team
of health care professionals and has significantly lowered time delivery of data updates.

The administration tool is also very useful to improve our system. Due to different
forms of reasoning, it enables to identify drug categories not frequently operated upon
(obsel level), to control the cleaning/checking activity of a given domain expert (trace
level), to detect domains of expertise missing in a team of end-users, to discover who
checks and/or overrules the updates of a given expert (subject level), etc.

Evaluation. We have conducted an evaluation to highlight our framework’s assets and
weaknesses on certain criteria related to Subject level reasoning and user profiles: a)
productivity gain of end-users, b) correctness of the models generated for each end-user.
The experimentations have been conducted on our medical application over a real data-
set involving 12 health care professionals over 3 months and resulting in the recording
of 420 interaction traces and over 23000 obsels.

The first experiment tackles the gain of productivity of end-users. The experimenta-
tion took place after a period of 2 months of recording interaction traces.None of them
were aware of the existence of the framework. Given the user models generated after the
recording of 2 months of interaction traces, we divided the group of 12 end-users into
3 homogeneous (i.e. based on the precision of their models) groups of 4 persons. Then
over a period of 3 weeks, we conducted a survey over the evolution of the precision of
the check box. This box is displayed on the home page of each end-user and contains
a list of drugs that have been recently modified and which need a checking by another
health care professionals before being put into production. Hence, it is an invitation for
end-users to control the information associated to a given drug. For group #1, the check
box did not benefit from the inferences of the framework. The end-users hence had to
browse the list of drugs to find by themselves the ones in which they have some exper-
tise. For group #2, the check box was progressively taking benefit from the 2 months
of analysis. That is in the first week, the box benefited from the user model deduced
after 3 weeks of analysis, in the second week, it benefited from 6 weeks of analysis
and in the last week it used the models generated over the 2 months of analysis. In the
case of group #3, the check box benefited from the 2 months of analysis right from day
one of the experimentation. Participants in each group rated the adequacy of the drugs
presented in the check box according to their medical expertise. A Likert scale with 5
ordered responses was used, ranging from ’5=strongly adapted’ to ’1= not adapted’.
Fig. 4(a) emphasizes that group #1 does not see any improvement in adequacy of the
box list. As expected, through the period of the evaluation, participants of group #2
sensed an improvement in the adaptability of the proposed list of drugs. Finally, the
improvement was felt right away for members of group #3.

326 O. Curé, Y. Prié, and P.-A. Champin

Fig. 4. Results of experimentations

The second experiment was conducted right after the first one and once all end-users
were informed about the existence and aim of the framework. We presented a compre-
hensive view (i.e. presented in natural language) of the user model generated for each
participants (out of the 2 months plus 3 weeks of storing interaction traces on experi-
ment #1) and asked them to rate (using the same Likert scale as in (1)) the precision of
their profile. Fig. 4(b) presents the average of individual results over members of the 3
groups. The averages range from 4.5 for group #1 to 4.75 for group #3. We consider
these results to be satisfactory as it rewards the work invested on this framework. Any-
how, the quality of these results is related to the well-defined expertise of each health
care professional participating to the project.

References
1. Angeletou, S., Rowe, M., Alani, H.: Modelling and Analysis of User Behaviour in Online

Communities. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 35–50. Springer, Heidelberg
(2011)

2. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event
processing and stream reasoning. In: WWW, New York, NY, USA, pp. 635–644 (2011)

3. Artale, A., Franconi, E.: Temporal description logics. In: Fisher, M., et al. (eds.) Handbook
of Temporal Reasoning in Artificial Intelligence, vol. 1, pp. 375–388. Elsevier (2005)

4. Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press (2003)

5. Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope. In: IJCAI, pp. 364–369 (2005)
6. Champin, P.-A., Passant, A.: SIOC in Action – Representing the Dynamics of Online Com-

munities. In: 6th Int. Conf. on Semantic Systems, I-SEMANTICS 2010, Graz, Austria (2010)
7. Groza, T., Handschuh, S., Müller, K.: The NEPOMUK project - on the way to the social

semantic desktop, Graz, Austria (2007) (peer-reviewed)
8. Gutiérrez-Basulto, V., Jung, J.C., Lutz, C., Schröder, L.: A closer look at the probabilistic

description logic prob-el. In: AAAI (2011)
9. Laflaquière, J., Settouti, L.S., Prié, Y., Mille, A.: A trace-based System Framework for Expe-

rience Management and Engineering. In: EME 2006 in Conjunction with KES 2006 (2006)
10. Smyth, B., Briggs, P., Coyle, M., O’Mahony, M.P.: A Case-Based Perspective on Social Web

Search. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 494–508.
Springer, Heidelberg (2009)

11. Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user profile con-
structed without any effort from users. In: WWW, New York, USA, pp. 675–684 (2004)

12. Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Querying of RDF
Data with SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T.,
Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS,
vol. 5554, pp. 308–322. Springer, Heidelberg (2009)

13. Wexelblat, A.: History-rich tools for social navigation. In: CHI 1998 Conference Summary on
Human Factors in Computing Systems, CHI 1998, New York, NY, USA, pp. 359–360 (1998)

	A Knowledge-Based Approach to Augment Applications with Interaction Traces
	Introduction
	Related Works
	A Framework for Integrating Interaction Traces in Applications
	Reasoning over Traces
	Trace-Based Assistance in a Self-prescription Application
	References

