
Linked-Data Aware URI Schemes

for Referencing Text Fragments

Sebastian Hellmann1, Jens Lehmann1, and Sören Auer2

1 Universität Leipzig, IFI/BIS/AKSW, D-04109 Leipzig, Germany
lastname@informatik.uni-leipzig.de

http://aksw.org
2 Technische Universität Chemnitz, Informatik/ISST, D-09107 Chemnitz, Germany

soeren.auer@informatik.tu-chemnitz.de

Abstract. The NLP Interchange Format (NIF) is an RDF/OWL-based
format that aims to achieve interoperability between Natural Language
Processing (NLP) tools, language resources and annotations. The moti-
vation behind NIF is to allow NLP tools to exchange annotations about
text documents in RDF. Hence, the main prerequisite is that parts of
the documents (i.e. strings) are referenceable by URIs, so that they can
be used as subjects in RDF statements. In this paper, we present two
NIF URI schemes for different use cases and evaluate them experimen-
tally by benchmarking the stability of both NIF URI schemes in a Web
annotation scenario. Additionally, the schemes are compared with other
available schemes used to address text with URIs. The String Ontology,
which is the basis for NIF, fixes the referent (i.e. a string in a given text)
of the URIs unambiguously for machines and thus enables the creation of
heterogeneous, distributed and loosely coupled NLP applications, which
use the Web as an integration platform.

1 Introduction

We are currently observing a plethora of Natural Language Processing (NLP)
tools and services being available and new ones appearing almost on a weekly
basis. Some examples of web services providing just Named Entity Recognition
(NER) services are Zemanta, OpenCalais, Ontos, Evri, Extractiv, Alchemy. Sim-
ilarly, there are tools and services for language detection, Part-Of-Speech (POS)
tagging, text classification, morphological analysis, relationship extraction, sen-
timent analysis and many other NLP tasks. Each of the tools and services has
its particular strengths and weaknesses, but exploiting the strengths and syn-
ergistically combining different tools is currently an extremely cumbersome and
time consuming task. The programming interfaces and result formats of the tools
have to be analyzed and differ often to a great extent. Also, once a particular
set of tools is integrated this integration is not reusable by others.

Additionally, the use of LOD background knowledge in NLP applications
poses some particular challenges. These include: identification – uniquely iden-
tifying and reusing identifiers for (parts of) text, entities, relationships, NLP

A. ten Teije et al. (Eds.): EKAW 2012, LNAI 7603, pp. 175–184, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://aksw.org

176 S. Hellmann, J. Lehmann, and S. Auer

concepts and annotations etc.; provenance – tracking the lineage of text and
annotations across tools, domains and applications; semantic alignment – tackle
the semantic heterogeneity of background knowledge as well as concepts used by
different NLP tools and tasks.

In order to simplify the combination of tools, improve their interoperability
and facilitate the use of Linked Data we developed the NLP Interchange Format
(NIF). NIF is an RDF/OWL-based format that aims to achieve interoperabil-
ity between Natural Language Processing (NLP) tools, language resources and
annotations. The NIF specification has been released in an initial version 1.0
in November 20111 and implementations for 8 different NLP tools (e.g. UIMA,
Gate ANNIE and DBpedia Spotlight) exist and a public web demo2 is available.
NIF addresses the interoperability problem on three layers: the structural, con-
ceptual and access layer. NIF is based on a Linked Data enabled URI scheme
for identifying elements in (hyper-)texts that are described by a String Ontol-
ogy (structural layer) and a selection of ontologies for describing common NLP
terms and concepts (conceptual layer). NIF-aware applications will produce out-
put (and possibly also consume input) adhering to the NIF URI Scheme and the
String Ontology as REST services (access layer). Other than more centralized
solutions such as UIMA3 and GATE4, NIF enables the creation of heteroge-
neous, distributed and loosely coupled NLP applications, which use the Web
as an integration platform. Another benefit is that a NIF wrapper has to be
only created once for a particular tool, but enables the tool to interoperate with
a potentially large number of other tools without additional adaptations. Ulti-
mately, we envision an ecosystem of NLP tools and services to emerge using NIF
for exchanging and integrating rich annotations.

We present the NIF URI Schemes including an experimental evaluation in
Section 2. The usage of identifiers in the String Ontology is discussed in Section 3.
We review related work in Section 4 and conclude with an outlook on future work
in Section 5.

2 NIF URI Schemes

The motivation behind NIF is to allow NLP tools to exchange annotations about
documents in RDF. Hence, the main prerequisite is that parts of the documents
(i.e. strings) are referenceable by URIs, so that they can be used as subjects in
RDF statements. We call an algorithm to create such identifiers URI Scheme:
For a given text t (a sequence of characters) of length |t| (number of characters),
we are looking for a URI Scheme to create a URI, that can serve as a unique
identifier for a substring s of t (i.e. |s| ≤ |t|). Such a substring can (1) consist of
adjacent characters only and it is therefore a unique character sequence within
the text, if we account for parameters such as context and position or (2) derived
by a function which points to several substrings as defined in (1).

1 http://nlp2rdf.org/nif-1-0/
2 http://nlp2rdf.lod2.eu/demo.php
3 http://uima.apache.org/
4 http://gate.ac.uk/

http://nlp2rdf.org/nif-1-0/
http://nlp2rdf.lod2.eu/demo.php
http://uima.apache.org/
http://gate.ac.uk/

Linked-Data Aware URI Schemes 177

Fig. 1. NIF URI schemes: Offset (top) and context-hashes (bottom) are used to create
identifiers for strings, see Section 3 for sso:oen

NIF provides two URI schemes, which can be used to represent strings as
RDF resources. In this section, we focus on the first scheme using offsets. In the
top part of Figure 1, two triples are given that use the following URI as subject:
http://www.w3.org/DesignIssues/LinkedData.html#offset 717 729

According to the above definition, the URI points to a substring of a given
text t, which starts at index 717 until the index 729.

For the URI creation scheme, there are three basic requirements – uniqueness,
ease of implementation and URI stability during document changes. Since these
three conflicting requirements can not be easily addressed by a single URI cre-
ation scheme, NIF defines two URI schemes, which can be chosen depending on
which requirement is more important in a certain usage scenario. Naturally fur-
ther schemes for more specific use cases can be developed easily. After discussing
some guidelines on the selection of URI namespaces, we explain in this section
how stable URIs can be minted for parts of documents by using offset-based and
context-hash based schemes (see Figure 1 for examples).

Namespace Prefixes. A NIF URI is constructed from a namespace prefix and
the actual identifier (e.g. “offset 717 729“). Depending on the selected context,
different prefixes can be chosen. For practical reasons, it is recommended that the
following guidelines should be met for NIF URIs: If we want to annotate a (web)
resources, the whole content of the document is considered as str:Context,
as explained in the next section, and it is straightforward to use the existing
document URL as the basis for the prefix. The prefix should then either end
with slash (‘/’) or hash (‘#’)5.

5 Note that with ’/’ the identifier is sent to the server during a request (e.g. Linked
Data), while everything after ’#’ can only be processed by the client.

178 S. Hellmann, J. Lehmann, and S. Auer

Recommended prefixes for http://www.w3.org/DesignIssues/LinkedData.
html are:
– http://www.w3.org/DesignIssues/LinkedData.html/

– http://www.w3.org/DesignIssues/LinkedData.html#

Offset-BasedURIs. The offset-based URI scheme focuses on ease of implemen-
tation and is compatible with the position and range definition of RFC 5147[6]
(esp. Section 2.1.1) and builds upon it in terms of encoding and counting charac-
ter positions (See Section 4 for a discussion). Offset-based URIs are constructed of
three parts separated by an underscore ‘ ’: (1) a scheme identifier, in this case the
string ‘offset’, (2) start index, (3) the end index. The indexes are counting the gaps
between the characters starting from 0 as specified in RFC 5147with the exception
that the encoding is defined to be Unicode Normal FormC (NFC)6 and counting is
fixed on Unicode Code Units7. This scheme is easy and efficient to implement and
the addressed string can be referenced unambiguously. Due to its dependency on
start and end indexes, however, a substantial disadvantage of offset-based URIs
is the instability with regard to changes in the document. In case of a document
change (i.e. insertion or deletion of characters), all offset-based URIs after the po-
sition the change occurred become invalid.

Context-Hash-Based URIs. As an alternative to the offset-based scheme,
context-hash-based URIs are designed to remain more robust regarding docu-
ment changes. Context-hash-based URIs are constructed from five parts sepa-
rated by an underscore ‘ ’:

1. a scheme identifier, in this case the string ‘hash’,
2. the context length (number of characters to the left and right used in the

message for the hash-digest),
3. the overall length of the addressed string,
4. the message digest, a 32-character hexadecimal MD5 hash created from the

string and the context. The message M consists of a certain number C of
characters (see 2. context length above) to the left of the string, a bracket
‘(’, the string itself, another bracket ‘)’ and C characters to the right of the
string: ‘leftContext(String)rightContext’. If there are not enough characters
to left or right, C is adjusted and decreased on the corresponding side (see
the ’Hurra!’ example below).

5. the string itself, the first 20 (or less, if the string is shorter) characters of the
addressed string, urlencoded.

The additional brackets ‘(’ and ‘)’ around the string were introduced to make the
identifier more uniquely distinguishable. If there is a sentence ‘Hurra! Hurra!’ and
the context size is too large, e.g. 10, then the first and the second ’Hurra!’ would
have the same hash. By adding brackets, however, the hash is easily distinguish-
able: md5("(Hurra! Hurra!)") != md5("(Hurra!) Hurra!") != md5("Hurra!

(Hurra!)").

6 http://www.unicode.org/reports/tr15/#Norm_Forms
7 http://unicode.org/faq/char_combmark.html#7

http://www.w3.org/DesignIssues/LinkedDatahtml
http://www.unicode.org/reports/tr15/#Norm_Forms
http://unicode.org/faq/char_combmark.html#7

Linked-Data Aware URI Schemes 179

Note that context-hash-based URIs are unique identifiers of a specific string
only if the context size is chosen sufficiently large. If, for example, a complete
sentence is repeated in the document, parts of the preceding and/or subsequent
sentences are to be included to make the reference to the string unique. However,
in many NLP applications, a unique reference to a specific string is not necessary,
but rather, all word forms within the same minimal context (e.g., one preceding
and one following word) are required to be analysed in the same way. Then, a
context-hash-based URI refers uniquely to words in the same context, not one
specific string. Using a small context, one can refer to a whole class of words
rather than just an individual one. For example, by using the string ‘ the ’ (with
one preceding and following white space as context) we obtain the digest: md5(’
(the) ’). The resulting URI is http://www.w3.org/DesignIssues/LinkedData.
html#hash 1 5 8dc0d6c8afa469c52ac4981011b3f582 %20the%20 and would
denote all occurrences of ’the’ in the given reference context, surrounded by
a single white space on both sides.

Trivially, every string is uniquely addressable if the context-length is large
enough. The algorithm for finding the addressed strings in a given text is simple:
1. URL decode the fifth part (the string itself) and search for all occurrences
and get the start indices. 2. From all found start indices generate the hash by
calculating the end index (start index + overall length), adding brackets and
including the context (if start index − context length < 0, then left context
starts at index 0, right context starts at end index and does not go beyond end
of text). The following algorithm computes the minimal context-length (MinCl)
on a fixed document with a given set of annotations, so that each URI only
denotes one substring.

1: procedure MinCl(annotations, cl)
2: uris← {}
3: for all annotations a do
4: uri← makeUri(a)
5: if uris contains uri then
6: return MinCl (annotations, cl +1)
7: else
8: uris← uris ∪ uri
9: end if

10: return cl
11: end for
12: end procedure

URI Stability Evaluation. As the context-hash-based URI scheme differs
significantly in terms of uniqueness and stability from the offset-based scheme,
we evaluate both schemes with real revision histories from Wikipedia articles.
AlthoughWikipedia pages are edited quite frequently (≈ 202,000 edits per day8),
the senses of each page tend to remain relatively stable after a certain number
of revisions [2].

8 http://www.wikistatistics.net/wiki/en/edits/365

http://www.w3.org/DesignIssues/LinkedData.html#hash_1_5_8dc0d6c8afa469c52ac4981011b3f582_%20the%20
http://www.w3.org/DesignIssues/LinkedData.html#hash_1_5_8dc0d6c8afa469c52ac4981011b3f582_%20the%20
http://www.wikistatistics.net/wiki/en/edits/365

180 S. Hellmann, J. Lehmann, and S. Auer

Table 1. Evaluation of URI stability with different context length versus the offset
scheme. The second last column measures how many annotations remain valid over
100 edits on Wikipedia.

tok ≈ 7410.7 Unique URatio Stability 1...100 Stab 1...100

context 1 2830.2 0.3988 0.3946 2647.3 0.3680
context 5 7060.0 0.9548 0.9454 6417.7 0.8551
context 10 7311.4 0.9871 0.9771 6548.8 0.8712
context 20 7380.6 0.9963 0.9854 6429.1 0.8553
context 40 7402.2 0.9990 0.9866 6146.8 0.8183
context 80 7408.8 0.9998 0.9847 5678.6 0.7568
offset 7410.7 1.00 0.5425 104.4 0.0164

We downloaded a Wikipedia dump with the full edit revision history9. From
this dump, we randomly selected 100 articles which had more than 500 edits
total. We retrieved the last 100 revisions of these 100 articles and removed the
wiki markup10. Then we split the resulting plain text into tokens at word level.
We used a deterministic algorithm (mostly based on regular expressions) for the
markup removal and the tokenisation to avoid any side effects. The text for each
revision contained 57062.4 characters on average, which we split into 7410.7 to-
kens on average (around 7.7 chars/token). About 47.64 characters were added
between each revision. For each token and each revision, we generated one URI
for the offset scheme and six URIs for the context-based scheme with context
length 1, 5, 10, 20, 40 and 80. Cf. Section 4 for details why other approaches
were not included in this evaluation. For every same URI that was generated
within one revision i for two different tokens (a violation of the uniqueness prop-

erty), the uniqueness ratio (URatio) decreases: |UniqueURIsi |
|Tokensi| . The stability was

calculated by the intersection of UniqueURIs of two revisions (i and i+1) over

the number of tokens of the second revision: |UniqueURIsi∩UniqueURIsi+1 |
|Tokensi+1| . Thus

non-unique URIs were penalized for the calculation of stability (without this
penalty the percentage was always about 99%). We did the same measurement
between the first and the last revision (columns 1...100 and Stab 1...100) of
each article. The results are summarized in Table 1.

While a high context length (cl=80) provides more stability between revisions
(99.98%), cl = 10 yields 87.12% of the URIs valid over 100 edits. The offset-
based URIs have a probability of 54% to become invalid between revisions. This
corresponds roughly to the theoretically probability for a random insertion to
break a URI: a−1

n+1 + n−a+2
2n+2 = a+n

2n+2 (n = text length, a = annotation length).

For context-hash URIs: a+2cl−1
n+1 .

3 Usage of Identifiers in the String Ontology

We are able to fix the referent of NIF URIs in the following manner: To avoid
ambiguity, NIF requires that the whole string of the document has to be included

9 http://dumps.wikimedia.org/enwiki/20111007/
10 Code from http://www.mediawiki.org/wiki/Extension:ActiveAbstract

http://dumps.wikimedia.org/enwiki/20111007/
http://www.mediawiki.org/wiki/Extension:ActiveAbstract

Linked-Data Aware URI Schemes 181

in the RDF output as an rdf:Literal to serve as the reference point, which we
will call inside context formalized using an OWL class called str:Context11.
By typing NIF URIs as str:Context we are refering to the content only, i.e. an
arbitrary grouping of characters forming a unit. The term document would be
inappropriate to capture the real intention of this concept as str:Context could
also be applied to a paragraph or a sentence and is absolutely independent
upon the wider context in which the string is actually used such as a Web
document reachable via HTTP.

We will distinguish between the notion of outside and inside context of a piece
of text. The inside context is easy to explain and formalise, as it is the text itself
and therefore it provides a reference context for each substring contained in the
text (i.e. the characters before or after the substring). The outside context is
more vague and is given by an outside observer, who might arbitrarily interpret
the text as a “book chapter” or a “book section”.

The class str:Context now provides a clear reference point for all other rel-
ative URIs used in this context and blocks the addition of information from a
larger (outside) context. str:Context is therefore disjoint with foaf:Document,
because labeling a context resource as a document is an information, which is
not contained within the context (i.e. the text) itself. It is legal, however, to say
that the string of the context occurs in (str:occursIn) a foaf:Document. Ad-
ditionally, str:Context is a subclass of str:String and therefore its instances
denote textual strings as well.

1 @prefix : <http://www.w3.org/DesignIssues/LinkedData.html#> .
2 @prefix str: <http://nlp2rdf .lod2.eu/schema /string/> .
3 :offset_0_26546 a str:Context ;
4 #the exact retrieval method is left underspecified
5 str:occursIn <http://www.w3.org/DesignIssues/LinkedData.html > ;
6 # [...] are all 26547 characters as rdf:Literal
7 str:isString "[...]" .
8 :offset_717_729 a str:String ;
9 str:referenceContext :offset_0_26546 .

As mentioned in Section 2, NIF URIs are grounded on Unicode Characters
using Unicode Normalization Form C counted in Code Units. For all resources of
type str:String, the universe of discourse will then be the words over the al-
phabet of Unicode characters (sometimes calledΣ∗). According to the “RDF
Semantics W3C Recommendation“, such an interpretation is considered a “se-
mantic extension”12 of RDF, because “extra semantic conditions” are “imposed
on the meanings of terms”13. This “semantic extension” allows – per definitionem
– for an unambiguous interpretation of NIF by machines. In particular, the
str:isString term points to the string that fixes the referent of the context.
The meaning of a str:Context NIF URI is then exactly the string contained in
the object of str:isString. Note that Notation 3 even permits literals as sub-
jects of statements, a feature, which might even be adopted to RDF14.

11 For the resolution of prefixes, we refer the reader to http://prefix.cc
12 http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#urisandlit
13 http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#intro
14 http://lists.w3.org/Archives/Public/www-rdf-comments/2002JanMar/

0127.html

http://prefix.cc
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#urisandlit
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#intro
http://lists.w3.org/Archives/Public/www-rdf-comments/2002JanMar/0127.html
http://lists.w3.org/Archives/Public/www-rdf-comments/2002JanMar/0127.html

182 S. Hellmann, J. Lehmann, and S. Auer

Table 2. Comparison of URI schemes (first two are used in NIF)

Uniq Val XML Trans Addr Self Impl Exp Example
Context-Hash(NIF) + + + + + + o o #hash 10 12 60f0. . .
Offset(NIF) ++ ++ + - - - ++ + ++ o #offset 717-729
Offset plain ++ ++ - - - - ++ - ++ o #717-729
Yee (Context) + - - + + - - - - - - o #:words:The-(Semantic We. . .
RFC 5147 [6] ++ ++ + - - - ++ ++ + + #char=717-12
LiveURL (Content) - - + - + + - ++ o #8Semantic12+0x206A73ED
LiveURL (Position) + + - - - + - - o not available for text
Wilde et al. (Regex) o ++ + + + + - - ++ #matching=Semantic\sWeb

Conceptual Interoperability via Ontologies. The Structured Sentence Ontology
(SSO)15 is built upon the String Ontology and provides additional classes for
three basic units: sentences, phrases and words. Conceptual interoperability is
ensured in NIF by providing ontologies and vocabularies for representing the ac-
tual annotations in RDF. For each NLP domain a pre-existing vocabulary was
chosen that serves the most common use cases and facilitates interoperability.
Details are described elsewhere: Part-Of-Speech tags and Syntax uses the On-
tologies of Linguistic Annotation (OLiA, [1]); Entity Linking is realized using
NERD [4], note that the property sso:oen – meaning ’one entity per name’ – is
explained and formalized there.

4 Related Work

As the suitability of the string identifiers highly depends on the specific task,
we present in the following a list of criteria, which allow to evaluate and design
suitable identifiers:

Uniqueness. The URIs must uniquely identify the substring. Validity. The
URI scheme must produce valid URIs for arbitrary substrings. Valid URIs must
not contain invalid characters and must be limited in length, since most browsers
limit the size of the URIs, they can handle16. XML Compatibility. The iden-
tifier part for the generated URIs should be usable as an XML tag name (for
RDF/XML serialisation). For example, XML tag elements can not begin with a
number, thus prohibiting tags such as <717-729>. Stability. The URI should
only become invalid if the referenced string is changed significantly, thus right-
fully rendering the annotations void. It should not become invalid through un-
related changes. Addressability. The URIs can efficiently find the annotated
substring within the text, i.e. calculate the start and end index (ideally rule
based). Self-Description. Some URI schemes require certain parameters to
find the appropriate substring in the document. The URIs should contain en-
coded information that can be used to identify the scheme itself and that can
be used to reproduce the configuration of the scheme. As correct implementa-
tions are necessary to allow the creation of tool chains, it is beneficial, if the

15 http://nlp2rdf.lod2.eu/schema/sso/
16 MS Internet Explorer has a maximum URL length of 2,083 characters.

http://support.microsoft.com/kb/q208427/

http://nlp2rdf.lod2.eu/schema/sso/
http://support.microsoft.com/kb/q208427/

Linked-Data Aware URI Schemes 183

scheme has a low complexity to avoid implementation errors. Expressivity.
This criteria measure how expressive the function is that references the strings
(e.g. regex is more expressive than just start/end index).

Table 2 shows a comparison of various URI schemes. LiveURLs [3]17 is re-
alized as a Firefox plugin and offers two different ways to produce string iden-
tifiers: a context-based and a position based. The user can select a text in the
browser and then the plugin creates the URL pointing to the corresponding frag-
ment. This URL can be shared and the referenced string is highlighted. As the
identifier starts with a number, it can create a conflict with XML serialisation.
Furthermore, the identifier does not contain enough information to uniquely dis-
tinguish duplicates, i.e. it would match several occurrences. The position based
method uses a combination of the parent node’s id and index in the DOM
tree alongside an identifier for the child position. The position based method
is content-specific and works only on XHTML. Analogous to all position based
methods, the scheme is highly susceptible to change. Wilde and Dürst [6] filed
an RFC in April 200818 proposing a parameter-like syntax using fragments that
refer to statistics about the characters in the string (e.g. offsets, line, length),
e.g. ftp://example.com/text.txt#line=10,20;length=9876,UTF-8. The ba-
sic properties of this scheme are a super set to the offset-based NIF scheme and
the owl:sameAs relation holds: :offset 717 729 owl:sameAs :char=717,729.

The line parameter will be considered for further benchmarks, but lacks the
necessary granularity. The spec of the RFC restricts this scheme to the “plain
text” media type, which excludes XML and HTML. Furthermore the scheme
contains many optional parameters for integrity checking. When used as RDF
subjects, it is tedious to resolve such optional parts, as #line=10,20 is nei-
ther syntactically the same URI as #line=10,20;length=9876, nor can we
automatically infer an owl:sameAs relation. Yee [7] proposed Text-Search Frag-
ment Identifiers, which pinpoint the wanted substring with a fragment that in-
cludes the string and its context. Before the creation of the fragment identifier,
however, the original HTML source is manipulated and all HTML tags are re-
moved and special characters are normalized. The resulting URL for our example
is: #:words:The-(Semantic Web)-isnt-just-about-putting. The problem is
that the proposed normalization (i.e. remove HTML and tokenise
context) can not be standardized easily as it relies on difficult to normalize
NLP methods. Therefore, there is no guarantee to reproduce the manipulation
bi-directionally (e.g. to find the annotated substring). Longer selected substrings
lead to longer, invalid URIs. Wilde and Baschnagel [5] propose to use regular
expression patterns following the parameter ”matching“ as fragment identifiers,
i.e. matching=Semantic\sWeb would match all nine occurrences of ”Semantic
Web“ at once. Although being powerful, it is not straight-forward to implement
an algorithm that produces regular expressions addressing the correct strings in
a text and thus results in high implementation complexity and unpredictability

17 http://liveurls.mozdev.org
18 http://tools.ietf.org/html/rfc5147

http://liveurls.mozdev.org
http://tools.ietf.org/html/rfc5147

184 S. Hellmann, J. Lehmann, and S. Auer

regarding uniqueness. Considering the possibility to include the context in an
URI, this scheme is a superset of the previous approach by Yee.

5 Conclusions and Future Work

In this paper, we presented the URI schemes and relevant parts of the String
Ontology, which underlie the NLP Interchange Format for integrating NLP ap-
plications. NIF addresses weaknesses of centralized integration approaches by
defining an ontology-based and linked-data aware text annotation scheme. We
argued that the URI schemes used in NIF have advantageous properties when
compared with other approaches. This comparison is based on an extensive qual-
itative comparison as well as an experimental evaluation benchmark, which can
be easily reproduced and extended for other scenarios. Especially, the context-
hash based URIs look promising to provide a solution for web-scale annotation
exchange. Future work comprises the creation of a new version NIF 2.0 with
community feedback19 as well as interoperability with (1) XML-based schemes,
e.g. XPointer, (2) Media Fragments and the almost completed Provenance AQ .

Acknowledgments. We would like to thank our colleagues from AKSW re-
search group and the LOD2 project for their helpful comments during the de-
velopment of NIF. Especially, we would like to thank Christian Chiarcos for
his support while using OLiA. This work was partially supported by a grant
from the European Union’s 7th Framework Programme provided for the project
LOD2 (GA no. 257943).

References

1. Chiarcos, C.: Ontologies of linguistic annotation: Survey and perspectives.
In: LREC. European Language Resources Association (2012)

2. Hepp, M., Siorpaes, K., Bachlechner, D.: Harvesting wiki consensus: Using wikipedia
entries as vocabulary for knowledge management. IEEE Internet Computing 11(5),
54–65 (2007)

3. Kannan, N., Hussain, T.: Live urls: breathing life into urls. In: 15th Int. Conf. on
World Wide Web, WWW 2006, pp. 879–880. ACM, New York (2006)

4. Rizzo, G., Troncy, R., Hellmann, S., Bruemmer, M.: NERD meets NIF: Lifting NLP
extraction results to the linked data cloud. In: LDOW (2012)

5. Wilde, E., Baschnagel, M.: Fragment identifiers for plain text files. In: ACM HY-
PERTEXT 2005, pp. 211–213. ACM, New York (2005)

6. Wilde, E., Duerst, M.: URI Fragment Identifiers for the text/plain Media Type
(2008), http://tools.ietf.org/html/rfc5147 (Online; accessed April 13, 2011)

7. Yee, K.: Text-Search Fragment Identifiers (1998),
http://zesty.ca/crit/draft-yee-url-textsearch-00.txt

(Online; accessed April 13, 2011)

19 http://nlp2rdf.org/get-involved

http://tools.ietf.org/html/rfc5147
http://zesty.ca/crit/draft-yee-url-textsearch-00.txt
http://nlp2rdf.org/get-involved

	Linked-Data Aware URI Schemes for Referencing Text Fragments
	Introduction
	NIF URI Schemes
	Usage of Identifiers in the String Ontology
	Related Work
	Conclusions and Future Work
	References

