
A. ten Teije et al. (Eds.): EKAW 2012, LNAI 7603, pp. 97–113, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Improving the Performance of a Named Entity
Recognition System with Knowledge Acquisition

Myung Hee Kim and Paul Compton

The University of New South Wales, Sydney, NSW, Australia
{mkim978,compton}@cse.unsw.edu.au

Abstract. Named Entity Recognition (NER) is important for extracting
information from highly heterogeneous web documents. Most NER systems
have been developed based on formal documents, but informal web documents
usually contain noise, and incorrect and incomplete expressions. The
performance of current NER systems drops dramatically as informality
increases in web documents and a different kind of NER is needed. Here we
propose a Ripple-Down-Rules-based Named Entity Recognition (RDRNER)
system. This is a wrapper around the machine-learning-based Stanford NER
system, correcting its output using rules added by people to deal with specific
application domains. The key advantages of this approach are that it can handle
the freer writing style that occurs in web documents and correct errors
introduced by the web’s informal characteristics. In these studies the Ripple-
Down Rule approach, with low-cost rule addition improved the Stanford NER
system’s performance on informal web document in a specific domain to the
same level as its state-of-the-art performance on formal documents.

Keywords: Ripple-Down Rules, Named Entity Recognition.

1 Introduction

The Web contains a vast amount of information mainly in natural language that has
been increasing exponentially. Most Web documents are relatively unstructured, with
considerable noise and they change dynamically; therefore it is important to develop
tools to manage unstructured data on the Web. A number of Natural Language
Processing (NLP) applications have been developed to reduce the amount of time
necessary to find the desired information from the Web, including Web Information
Extraction (WIE), Automatic Text Summarization (ATS) Information Retrieval (IR)
and Question-Answering (QA) systems.

Named Entity Recognition (NER) is one of key tasks in these NLP applications [1,
2]. It automatically identifies proper names in text and classifies them into a set of
categories such as persons, geographical locations, names of organizations, dates,
times, amounts of money etc. NER has mainly adopted two approaches. One is
referred to as knowledge-based using explicit resources like rules and gazetteers,
which usually are handcrafted by experienced language experts [4]. This achieves
good performance but the development can be very time-consuming. The other

98 M.H. Kim and P. Compton

approach is learning-based and uses statistics or machine learning. Supervised
learning techniques learn automatically on large corpora of annotated text. [7]. While
this approach does not need language engineering expertise, it requires large amounts
of annotated training data. Such training corpora are available from evaluation forums
but there are limitations in the amount of annotated data and coverage of the domain.
Recent studies have explored semi-supervised [8] and unsupervised learning
techniques [9], which do not require annotated corpora.

Current NER systems are trained mainly on journalistic documents such as news
articles. Consequently they have not been trained to deal with the informality of Web
documents, resulting in dramatic performance drops on Web documents. For these
reasons, some studies comment that NER is a major source of errors for Web
Information Extraction (WIE) [10, 11]. Recent WIE systems [11, 15] have avoided
the NER process and instead utilized only shallow features like part-of-speech (POS)
tags and chunk-phrase tags for entity extraction and extraction pattern generation and
then relied on the Web’s redundancy to improve accuracy. This approach has
limitations for less redundant informal Web documents such as blogs and comment.
Thus, developing NER systems for the Web is important for efficient information
extraction from informal Web documents.

There are a number of studies on Web-scale NER. One approach relies on large
Web resources. The lack of annotated corpora for Web documents and the cost of
creating annotated corpora to cover highly heterogeneous Web documents lead to
semi-supervised learning (SSL), which relies on very large collections of the Web
documents and information redundancy [9]. Another approach develops gazetteers
from Web data. Some studies have focused on automatic extraction of known entities
from the Web or Wikipedia to build gazetteers appropriate for the web [13, 14].

However, most of these studies focused on the Web’s heterogeneity rather than its
informality. While machine learning (ML) based approaches are good for scaling
domain coverage and achieves state-of-the-art performance, they have critical
limitations in interpreting and fixing specific errors as they are discovered.
Particularly, it is difficult to overcome errors caused by the Web’s informal
characteristics. Further, while gazetteers, which were automatically extracted from
Web resources, could improve the coverage of Web vocabulary, they contain high
levels of noise, which confuses context analysis NER techniques. Riloff et al. [16]
demonstrated that when noise is introduced in gazetteers, the performance of an NER
system degrades rapidly.

Web-scale NER is a tough challenge due to following characteristics of the Web’s
informality.

Informal Writing Styles. Huge amounts of Web documents are written informally
not following strict writing styles like journalistic text [3]. Many NER techniques rely
on title and trigger words. For example, in journalistic texts, person names are
generally preceded by titles (Mr., Dr.), organization names are usually followed by
trigger words (Inc., Ltd.) and location names are often identified by keywords
(mountain, city). As these markers are often absent in Web documents, NER
techniques, relying on such indicators, do not work efficiently and cause a significant
numbers of errors.

 Improving the Performance of a Named Entity Recognition System 99

Spelling Mistakes and Incomplete Sentences. Web documents often include
spelling mistakes and incomplete sentences, which hinder the syntactic analysis of
NER systems and cause extraction errors, since most of the existing NER systems are
trained with formal texts with an assumption that the content of texts follows strict
writing guidelines.

Large Amount of Newly and Informally Generated Vocabulary. Web documents
contain a large number of newly generated unknown words, informal slang and short
abbreviations which cannot be found in the formal dictionaries generally utilized by
NER systems.

In order to tackle the above challenges, we propose a Ripple-Down Rules based
Named Entity Recognition (RDRNER) system. The RDRNER system employs the
Stanford NER system as a base system and applies the Ripple-Down Rules technique
to deal with the Web’s informality. The Ripple-Down Rules technique supports
incremental knowledge acquisition (KA) and efficient knowledge base (KB)
maintenance. The benefit of the RDR technique is that the KB is built incrementally
while the system is already in use, so errors can be corrected whenever they are
identified.

The underling idea of the RDRNER system is that it takes state-of-the-art
performance from a machine learning technique but then corrects any errors due to
the Web’s informality. With the RDRNER system, the user creates rules when the
classification result provided by the system is incorrect. Since the rules are generated
by humans, the RDRNER system is more likely to be able to handle NER errors
caused by informally written Web documents. The average F-score (F1) of the
Stanford NER [17], trained on the CoNLL03 shared task dataset is 90.8% [18] but
dropped to 76.96% on our Web dataset. After 4 hours knowledge acquisition with 200
sentences, the RDRNER system improved this performance to 90.48% similar to the
Stanford NER’s best performance on formal documents. The RDRNER system
described below achieved 92.12% precision and 88.68% recall after training for a
Web subdomain and then testing on other sentences from the same subdomain.

It should be noted that Stanford NER system and the RDRNER systems have quite
different roles. The Stanford NER system is intended to be applied to any text and.
In contrast because the RDRNER system is designed to fix the errors that occur, it is
intended be used in specific domains of interest. That is, the user looking to identify
entities in a particular domain will write rules for the errors that occur in that domain.
If the scope of the application domain expands, the user writes more rules if and when
needed. The strength of the approach comes from the ease and speed for which new
rules can be added. This may seem a fairly limited solution, but we suggest that in
practice organizations generally require technology like NER to deal with specific
application domains, so that rapidly developing rules to tune a general purpose system
for a particular domain may be a very attractive solution.

Our contributions can be summarized as follows:

• We have developed an RDRNER system that employs Ripple-Down Rules’
incremental learning technique as an add-on to the state-of-the-art Stanford NER
system in order to handle the problems of the Web’s informality.

100 M.H. Kim and P. Compton

• We have evaluated the state-of-the-art Stanford NER system on a Web dataset
with fair level of Web’s informality and categorized error sources that critically
degrade performance.

• We have demonstrated how the RDRNER system handles informally written
Web documents and improves the performance of the Stanford NER system on
informal documents in a restricted domain to be equivalent to its best
performance on formal documents

The remainder of this paper is structured as follows. Section 2 presents related work
and section 3 formally defines the task and presents the Web’s informality challenges.
Section 4 explains our RDRNER system in detail, section 5 presents the experimental
setting and results and section 6 discusses the results and future work.

2 Related Work

2.1 Web Scale Named Entity Recognition

Since a large hand-annotated corpus is usually expensive and has coverage
limitations, semi-supervised or unsupervised learning adopts categorised lists of
known entities (called gazetteers) with lookup-based methods to recognize named
entities [19]. This method needs much less time and labor effort since gazetteers can
be generated using automated or semi-automated techniques [9].

As many tagging systems utilise gazetteers, some research has focused on creating
gazetteers automatically using web page sources [9] or Wikipedia [13]. While
Mikheev et al. [20] have shown that such gazetteers did not necessarily result in
increased NER performance, Nadeau et al. [19] used gazetteers in an unsupervised
named entity recognizer, and outperformed some other methods on the MUC Named
Entity test dataset. Kazama et al. [14] also achieved a 3% F-score improvement using
Wikipedia-based gazetteers in their named entity recognizer.

Liu et al. [21] studied NER performance on tweets that contains high level of noise
such as excessive informal abbreviations and short hand. They proposed a
combination of a K-Nearest Neighbours classifier and Conditional Random Fields
and showed the effectiveness of KNN and semi-supervised learning through extensive
experiments.

2.2 Ripple-Down Rules (RDR)

The basic idea of RDR is that cases are processed by the knowledge based system and
when the output is not correct or missing one or more new rules are created to provide
the correct output for that case. The knowledge engineering task in adding rules is
simply selecting conditions for the rule. The rule is automatically located in the
knowledge base with new rules placed under the default rule node for newly seen
cases, and exception rules located under the fired rules. The system also stores
cornerstone cases, cases that triggered the creation of new rules. If a new rule is fired
by any cornerstone cases, the cornerstones are presented to the expert to select further

 Improving the Performance of a Named Entity Recognition System 101

differentiating features for the rule or to accept that the new conclusions should apply
to the cornerstone. Experience suggests this whole process takes at most a few
minutes. A recent study of a large number of RDR knowledge bases used for
interpreting diagnostic data in chemical pathology, showed from logs that the median
time to add a rule was less than 2 minutes across 57,626 rules [22].

The RDR approach has also been applied to a range of NLP applications. For
example, Pham et al. developed KAFTIE, an incremental knowledge acquisition
framework to extract positive attributions from scientific papers [23] and temporal
relations that outperformed machine learning algorithms [24]. Relevant to the work
here, RDR Case Explorer (RDRCE) [25] combined Machine Learning and manual
Knowledge Acquisition for NLP problems. It automatically generated an initial RDR
tree using transformation-based learning, but then allowed for corrections to be made.
They applied RDRCE to POS tagging and achieved a slight improvement over state-
of-the-art POS tagging after 60 hours of KA. We have recently demonstrated
improved open information extraction using Ripple-Down Rules [26]. In this work
we used the Stanford NER system and the limitations we found led to the work
described here.

The idea of using an RDR system as a wrapper around a more general system was
suggested by work on detecting duplicate invoices where the RDR system was used to
clean up false positive duplicates from the general system [28].

3 The Web’s Informality and NER

In this section, we illustrate the performance drop of the Stanford NER system on a
Web dataset and categorise the type of NER errors that occur due to the Web’s
informality.

Table 1. The performance of the Stanford NER system on a Web dataset

 Person Organization Location Money Date Time Percent All
P 90.4% 86.2% 84.4% 97.2% 87.2% 100% 100% 87.1%
R 75.3% 62.5% 81.4% 85.4% 85.0% 100% 66.7% 69.2%

F1 81.8% 72.7% 82.5% 90.6% 86.0% 100% 80.2% 77.0%

Table1 presents the performance of the Stanford NER system on seven NE classes
in the Web dataset. The details of the Web dataset are discussed in section 5.1.
CONLL evaluation methodologies were used for the experiment. Overall, the
Stanford NER system achieved a 77.0% F1 score on the Web data, while it achieved
state-of-the-art 90.8% F1 score on the CONLL corpus [18]. This is about 14%
performance drop on informal Web documents compared to formal journalistic
documents without noise. On average, the Stanford NER system achieved quite
reasonable precision but low recall on the informal Web documents. The difference
between precision and recall is around 18%.

102 M.H. Kim and P. Compton

Table 2. The Stanford NER system’s error sources on the Web dataset

New vocabulary 39.53%
Machine learning inconsistency 25.97%

Informal capital letter usage 21.71%
Lack of trigger word 10.08%

Web noise 2.71%

Table 2 presents the causes of error for the Stanford NER system on the Web
dataset. Error sources were classified into five categories: new vocabulary, ML
inconsistency, informal capital letter usage, lack of trigger word and Web noise.

39.53% of errors were caused by new vocabulary that had not seen during training
and were not contained in dictionaries used by the system. As noted, in order to solve
this problem, some research has focused on creating gazetteers automatically from the
Web [9] or Wikipedia [13] increasing the size of dictionary. Since the size of these
Web gazetteers is quite large, most systems take a ‘bag of words’ approach that can
cause confusion as its size increases. Another problem is the uncontrolled noise
contained in the Web gazetteers. Liu et al. [21] have shown that the noise contained in
the Web gazetteers reduces the NER performance. 25.97% of the errors were caused
by Machine-Learning (ML) producing inconsistent annotation. For example, in one
short Web sentence, ‘(/O Encyclopedia/ORG)/O Kafka/PER’, Kafka was annotated
as a PERSON. However, in another short sentence, ‘(/O Almanac/ORG –/O
People/O)/O Kafka/LOC’, Kafka was tagged as a LOCATION, although the second
sentence has the evidence of the word ‘People’. It is difficult to understand why such
errors are made. 21.71% of the error is caused by informal Web capital letter usage.
On the Web, capital letters are often used informally in order to emphasize the
content, but this causes critical errors for current NER systems. For example, in the
sentence ‘Google/ORG Acquires/ORG YouTube/ORG’, because ‘Acquires’ started
with capital letter, the system annotated all three token as a one ORGANIZATION
NE tag. 10.08% of errors were caused by lack of trigger words expected such as ‘Ltd.,
Dr. and city’. For instance, in a sentence ‘Franz/PER Kafka/PER –/O Prague/LOC
wax/O museum/O’, ‘wax museum’ was not tagged as LOCATION NE because
museum is not recognised as a sort of trigger word. 2.71% of errors were caused by
Web noise such as spelling errors, various symbols, excessive abbreviation and
informal short hand. For instance, in a sentence, ‘This/O morning/O Googld/O
held/O a/O webcast/O and/O conference/O call/O session/O with/O Eric/PER
Schmidt/PER (/O Google/ORG CEO/O) /O’, ‘Googld’ was not tagged due to a
spelling error.

4 RDRNER System

The RDR-based Named Entity Recognition (RDRNER) system shown in Figure 1
consists of three main components: preprocessor, Stanford NER system and RDR KB
learner. In section 4.1, the implementation details of the three components are
explained; the RDR rule syntax is described in section 4.2 and RDR KB construction

 Improving the Performance of a Named Entity Recognition System 103

demonstrated in section 4.3. RDRNER rule examples to handle the Web’s informality
are presented in section 4.4 and finally the user interface is shown in section 4.5.

Fig. 1. Architecture of the RDRNER system

4.1 Implementation

Preprocessor. The preprocessor converts raw Web documents into a sequence of
sentences, and annotates each token for Part-Of-Speech (POS) and noun and verb
phrase chunk using the OpenNLP system. Annotated NLP features are utilized when
creating RDR rules.

Stanford NER System. The Stanford NER system was chosen as the base NER
system because it is well known as one of the most robust NER systems. It is based
on the use of Gibbs sampling for inference in a Conditional Random Field (CRF)
machine learning technique [17]. The system models were trained on data from
CONLL, MUC6, MUC7, and ACE named-entity corpora. Each type of serialized
classifier is provided with one more version that uses Clark’s distributional similarity
code to improve performance [27]. These versions of the classifier have additional
features which provide better performance but require more memory. It achieves a
1.5% F-measure compared to the other versions. We used the classifier
‘muc.7class.distsim.crf.ser.gz’ that was trained on the MUC corpora and classifies 7
types of NE categories: PERSON, ORGANIZATION, LOCATION, DATE, TIME,
MONEY, and PERCENT.

RDR KB Learner. The RDRNER KB is built incrementally while the system is in
use with the base NER system. In the RDRNER system, the user gets the NER
classification results from the base NER system and adds rules when the classification
results are not correct. There are three steps:

Step1: RDRNER classification
The RDR KB takes the given preprocessed sentence and the NER classification
results from the Stanford NER system then returns RDRNER classification results. If
RDR rules fired, the system replaces the Stanford NER system result with the fired
RDR rule’s conclusion. Otherwise, the Stanford NER results are given.

104 M.H. Kim and P. Compton

Step2: Create RDR rule
Whenever incorrect classification results are given (by the Stanford NER or the RDR
KB add-on), the user adds rules to correct the classification results.

Step3: Evaluate and refine RDR rule
Once the new rule is created, the system automatically checks whether the new rule
affects KB consistency by evaluating all the previously stored cornerstone cases that
may fire the new rule. To assist the expert, the user interface displays not only the rule
conditions of previously stored cases but also the features differentiating the current
case and any previously stored cases, which also satisfy the new rule but have a
different conclusion. The expert must select at least one differentiating feature, unless
they decide that new conclusion should apply to the previous case.

4.2 RDRNER’s Rule Description

An RDR rule has a condition part and a conclusion part: ‘IF (condition) THEN
(conclusion)’. A condition consists of three components: (ATTRIBUTE,
OPERATOR, VALUE). ATTRIBUTE refers to tokens of the given sentence.
Currently the RDRNER system provides 8 types of OPERATOR as follows:

• hasPOS: whether a certain part of speech matches with the attribute token
• hasChunk: whether a certain noun/verb chunk matches with the attribute token
• hasNE: whether a certain named entity matches with the attribute token
• hasGap: skip a certain number of tokens or spaces to match the pattern
• notHasPOS: whether a certain part of speech does not match with the attribute token
• notHasNE: whether a certain named entity does not match with the attribute token
• beforeWD(+a): checks tokens positioned before the given attribute token by +a
• afterWD(+a): checks tokens positioned after the given attribute token by +a

VALUE is derived automatically from the given sentence corresponding to the
attribute and operator chosen by the user in the user interface. Conditions may
connected with an ‘AND’ operation. A sequence of conditions using ‘SEQ’ operator
is used to identify a group of words in sequence order, so patterns can be detected.
For instance, the sequence condition ‘IF SEQ((‘Prague’ hasNE ‘LOC’) AND (‘wax’
hasNE ‘O’) AND (‘museum’ hasNE ‘O’))’ detects ‘Prague/LOC wax/O museum/O’.

Rule’s conclusion part has the following form:

(fixTarget, // target word to amend NE classification
 fixType, // amendment type (currently by default ‘NE type’ used)
 fixFrom, // incorrect classification to be amended
 fixTo) // correct classification which is amended

4.3 RDR KB Construction

The RDRNER system is based on Multiple Classification RDR (MCRDR) [5].
Figure 2 demonstrates MCRDR KB construction as the RDRNER system processes
the following three cases starting with an empty KB.

 Improving the Performance of a Named Entity Recognition System 105

R0:
IF(default true)
THEN NULL

R1:
IF ‘Franz Kafka’ tagged as ‘O’
THEN tag ‘Franz Kafka’ as
‘PER’

R2:
IF ‘Franz Kafka’ followed by ‘museum’
THEN tag ‘Franz Kafka museum’ as
‘LOC’

R3:
IF ‘YouTube’ tagged as ‘O’
THEN tag ‘YouTube’ as
‘ORG’

Rx:

except

except

except

except

except

Rx:

Rx:

except

Fig. 2. MCRDR structure of the RDRNER system

Case1: Franz/O Kafka/O was/O born/O into/O a/O Jewish/O family/O in/O
Prague/LOC in/O 1883/DATE

1. The default rule R0 fired and the KB system returns a NULL classification so
the Stanford NER output is not changed. The user decides this is incorrect as
‘Franz Kafka’ should be tagged as a PERSON NE.

2. A user adds a new rule R1 under the default rule R0.

Case2: Franz/O Kafka/O Museum/O (/O Easy/ORG Prague/ORG Travel/ORG
Agency/ORG -/O Accommodation/O and/O Sightseeing/O in/O Prague/LOC)/O

1. Rule R1 fired but the user decides this is as an incorrect result because ‘Franz
Kafka Museum’ should be tagged as an ORGANIZATION NE instead of
tagging ‘Franz Kafka’ as a PERSON NE.

2. A user adds an exception rule R2 under the parent rule R1.

Case3: Google/ORG Buys/O YouTube/O for/O 1.65/MONEY Billion/MONEY
Netscape.com/O

1. The default rule R0 fired and the KB system returns a NULL classification,
which the user decides is an incorrect result as ‘YouTube’ is not tagged as an
ORGANIZATION NE.

2. A user adds new rule R3 under the default rule R0.

This process continues with a new rule being added whenever the system does not
give the correct classification.

4.4 RDR Rules to Handle the Web’s Informality

In this section, we show examples of how the RDR rules handle five types of error:
new vocabulary, ML inconsistency, informal capital letter usage, lack of trigger
words and web noise, which were discussed in section 3.

The following is an example of an error caused by uncovered new vocabulary. The
word ‘YouTube’ was not tagged by the Stanford NER system since it was not
contained in the existing dictionary. A simple RDR rule is created to tag ‘YouTube’
as an ORGANIZATION NE that in effect extends the existing dictionary.

106 M.H. Kim and P. Compton

Error source New vocabulary
Problem Case Google/ORG Buys/O YouTube/O for/O 1.65/MONEY

Billion/MONEY Netscape.com/O
 NE classification error: ‘YouTube’ should be tagged as
ORGANIZATION

RDR rule IF(‘YouTube’ hasNE ‘O’)
THEN (‘YouTube’, ‘NE type’, ‘O’, ‘ORG’)

Resolved Case Google/ORG Buys/O YouTube/ORG for/O 1.65/MONEY
Billion/MONEY Netscape.com/O

The following is an instance of an error caused by ML inconsistency. In case 1, the
word ‘Kafka’ was tagged correctly as PERSON NE but in case 2 it was tagged as
LOCATION NE the Stanford NER system without obvious reason. A simple RDR
rule is created to annotate ‘Kafka’ as a PERSON NE that amends the classification
derived from the ML-based Stanford NER system.

Error source ML inconsistency
Problem Case Case1: (/O Encyclopedia/ORG)/O Kafka/PER

Case2: (/O Almanac/ORG –/O People/O)/O Kafka/LOC
 NE classification error: In case2, ‘Kafka’ is tagged as
‘LOCATION’

RDR rule IF (‘Kafka’ hasNE ‘LOC’)
THEN (‘Kafka’, ‘NE type’, ‘LOC’, ‘PER’)

Resolved Case (/O Almanac/ORG -/O People/O) /O Kafka/PER

The following is an example of an error due to informal capital letters. Because the
word ‘Acquire’ started a capital letter, it was treated as part of an ORGANIZATION
NE and resulted in an NE boundary error from the Stanford NER system. An RDR
rule is created to ‘Acquire’ as a no NE which resolves the NE boundary error and
correctly annotates two ORGANIZATION NE: Google and YouTube.

Error source Informal capital letter usage
Problem Case Google/ORG Acquire/ORG YouTube/ORG

 NE boundary error: Because ‘Acquire’ is tagged as
‘ORG’, ‘Google Acquire YouTube’ treated as one
ORGANIZATION NE tag instead of tagging ‘Google’ and
‘YouTube’ as ORGANIZATION separately

RDR rule IF (‘Acquire’ hasNE ‘ORG’)
THEN (‘Acquire’, ‘NE type’, ‘ORG’, ‘O’)

Resolved Case Google/ORG Acquire/O YouTube/ORG

The following is an instance of an error caused by lack of trigger words in informal
Web documents. Because there are no trigger words available to tag ‘Prague wax
museum’ as one LOCATION NE, only ‘Prague’ was tagged as a LOCATION NE by
the Stanford NER system. Two simple RDR rules are presented to extend the
LOCATION NE boundary from ‘Prague’ to ‘museum’.

 Improving the Performance of a Named Entity Recognition System 107

Error source Lack of trigger words
Problem Case Franz/PER Kafka/PER –/O Prague/LOC wax/O

museum/O
 NE boundary error: ‘Prague wax museum’ should be
tagged as one LOCATION NE

RDR rule Rule1:
IF SEQ((‘Prague’ hasNE ‘LOC’) AND (‘wax’ hasNE ‘O’)
AND (‘museum’ hasNE ‘O’))
THEN (‘wax’, ‘NE type’, ‘O’, ‘LOC’) AND (‘museum’,
‘NE type’, ‘O’, ‘LOC’)
Rule2:
IF ((‘Prague’ hasNE ‘LOC’) AND (‘Prague’ afterWD(+1)
‘wax’) AND (‘Prague’ afterWD(+2) ‘museum’))
THEN (‘wax’, ‘NE type’, ‘O’, ‘LOC’) AND (‘museum’,
‘NE type’, ‘O’, ‘LOC’)

Resolved Case Franz/PER Kafka/PER –/O Prague/LOC wax/LOC
museum/LOC

A more general rule for such a case might be that if a LOCATION NE is followed
by the word museum within three words then the sequence is a location. This would
implicitly recognise that museum in this context is a trigger word. It is entirely up to
the person building rules whether they build specific or more general rules.

The following shows three examples of errors caused by noise. Case 1 shows
‘Googld’ not tagged due to a spelling error. Rule 1 is generated to tag the ‘Googld’ as
an ORGANIZATION NE when there is the word ‘Google’ in the same sentence
tagged as ORGANIZATION NE. Future conflict caused by this rule could be
resolved by adding an exception rule under the rule as explained in section 4.3. Case 2
demonstrates that ‘Google’ was not tagged due to symbol ‘+’. Two simple rules (Rule
2 and Rule 3) are created to amend it. Case 3 presents a NE boundary error due to
unknown abbreviation ‘Bn.’. Rule 4 is generated to fix the boundary error adding the
‘Bn.’ as part of MONEY NE when there is a $ sign within two tokens before ‘Bn.’.

Error source Web noise
(spelling error, various symbols and abbreviations)

Problem Case Case 1: spelling error
This/O morning/O Googld/O held/O a/O webcast/O and/O
conference/O call/O session/O with/O Eric/PER
Schmidt/PER (/O Google/ORG CEO/O) /O
 NE classification error: ‘Googld’ tagged as ‘O’ due to
spelling error
Case 2: symbols
Google/O +/O YouTube/O :/O Day/O Two/O
 NE classification error: ‘Google’ and ‘YouTube’ should be
tagged as ORGANIZATION NE
Case 3: abbreviations
Google/ORG bought/O YouTube/ORG for/O $/MONEY
1.6/MONEY Bn./O Sweet/O
 NE boundary error: ‘Bn.’ Should be tagged as a part of
MONEY NE

108 M.H. Kim and P. Compton

RDR rule Rule 1 for case 1:
IF((‘Google’ hasNE ‘ORG’) AND (‘Googld’ hasNE ‘O’))
THEN (‘Googld’, ‘NE type’, ‘O’, ‘ORG’)
Rule 2 and 3 for case 2:
IF(‘Google’ hasNE ‘O’)
THEN(‘Google’, ‘NE type’, ‘O’, ‘ORG’)
IF(‘YouTube’ hasNE ‘O’)
THEN(‘YouTube’, ‘NE type’, ‘O’, ‘ORG’)
Rule 4 for case 3:
IF((‘Bn.’ beforeWD(+2) ‘$’) AND (‘Bn.’ hasNE ‘O’))
THEN (‘Bn.’, ‘NE type’, ‘O’, ‘MONEY’)

Resolved Case Case 1: This/O morning/O Googld/ORG held/O a/O
webcast/O and/O conference/O call/O session/O with/O
Eric/PER Schmidt/PER (/O Google/ORG CEO/O)/O
Case 2: Google/ORG +/O YouTube/ORG :/O Day/O Two/O
Case 3: Google/ORG bought/O YouTube/ORG for/O
$/MONEY 1.6/MONEY Bn./MONEY Sweet/O

Again, we do not suggest that these are ideal rules. The user can add whatever
rules they like and the RDR approach simply ensures that the rules added do not
degrade the performance of the knowledge base to date

4.5 RDRNER User Interface

The RDRNER system provides a graphic interface for creating and adding RDR rules
and enabling the KB to be maintained by end-users. Because most of the relevant
values are displayed automatically and the system is built based on the normal human
process of identifying distinguishing features to justify a different conclusion, a user
should be able to manage the system after few hours training. Industrial experience in
complex domain supports this [22]. Figure 3 present the RDRNER user interface and
the process flow.

Fig. 3. User Interface of the RDRNER system

 Improving the Performance of a Named Entity Recognition System 109

5 Experiments

Section 5.1 describes the Web dataset used. Section 5.2 shows the initial knowledge
base construction of the RDRNER system and the section 5.3 present the results
achieved by the RDRNER system and discusses how the system improved the
existing performance of the Stanford NER system on the Web data for this particular
domain. The CONLL evaluation methodology was used for experiments. The
CONLL evaluation uses an ‘exact-match’ scoring methodology. That is, it only
counts scores for named entity recognition, which satisfies both type classification
and boundary detection.

5.1 Web Datasets

Web datasets were prepared from the MIL dataset developed by Bunescu et al. [6].
Bunescu et al. [6] collected a bag of sentences from the Google search engine by
submitting a query string ‘a1 ******* a2’ containing seven wildcard symbols
between the given pair of arguments. The pairs of arguments used were ‘adobe
systems and macromedia’, ‘google and youtube’, ‘novartis and eon labs’, ‘pfizer and
rinat neuroscience’, ‘viacom and dreamworks’, ‘yahoo and inktomi’, ‘andre agassi
and las vegas’, ‘chalie chaplin and london’, franz kafka and prague’, ‘george
gershwin and new york’, ‘luc besson and paris’, and ‘marie antoinette and vienna’. In
the MIL dataset, each sentence has one pair of entities manually identified for their
intended extraction task, but these entity tags were removed for our NER task
experiment. That is, there are no pre-defined tags in our Web dataset. Among 4260
sentences from the positive example folder of the MIL dataset, we randomly selected
200 sentences as a training dataset and 341 different sentences as a test dataset.

The MIL dataset is widely used to evaluate Web Information Extraction (WIE)
[11, 15]. We suggest that the MIL dataset represents a reasonable approximation to
how an NER system would be used in a specific application. We expect in practice
that documents of likely interest would be retrieved because they contained keywords
and an NER would then applied to those documents as part of the information
extraction process. The MIL dataset provides an approximation of this, while at the
same time being an accepted evaluation data set. It should be noted that the MIL
sentence selection selects far more entities than just those directly relating to the a1
and a2 tokens. For example the a1 and a2 tokens used included 6 person names but
the sentences in the test dataset contained 60 different person names, and so on with
the other entity types.

5.2 RDR Initial KB Constructions

In practice, the RDRNER system would be used case by case, but in the experiments
here we first tagged the 200 sentences using the Stanford NER system. 231 NE errors
were identified and used to develop RDR rules. In processing the error 231 cases and
adding rules as required, 44 new rules were created for the cases which received a
NULL classification result and 39 exception rules were created for cases which

110 M.H. Kim and P. Compton

received an incorrect classification result because of rules added earlier. In total, 83
rules were added within four hours. KB construction time covered from when a case
is called up until a rule is accepted and this time is logged automatically. With the
RDR approach this time covers all the time spent on knowledge acquisition, and no
other time is spent validating or rule debugging outside of this.

We note that the approach may have introduced errors into cases correctly
classified by the Stanford NER system. These would have been picked up and
corrected with further rules if the normal RDR protocol had been used and cases were
processed through both systems one by one. The effect of this is that there may be
some errors in the test data which would have been corrected using the normal RDR
protocol.

5.3 RDRNER Performance

After the initial KB was built, the 341 sentences of the test dataset were run on the
RDRNER system. The test dataset contains 857 NEs including 150 PERSON, 499
ORGANIZATION, 112 LOCATION, 41 MONEY, 40 DATE, 9 PERCENT, 2 TIME.

Table 3. The performance of the RDRNER system on each named entity class

Person Organi
zation

Locatio
n

Money Date Time Percent All

P 95.1% 91.5% 86.4% 100% 89.7% 100% 100% 92.1%
R 92.0% 88.6% 84.8% 92.7% 87.5% 100% 88.9% 88.7%
F1 93.5% 90.5% 85.5% 96.4% 89.0% 100% 94.2% 90.5%

Table 3 presents the performance of the RDRNER system on seven NE classes on
the test dataset. Overall, the RDRNER system achieved a 90.5% F1 score, while the
Stanford NER system achieved a 77.0% F1 score on the same dataset (see table 1).
That is, the RDRNER system improved the F1 score by 13.5% compared to the
Stanford NER system. The 90.5% F1 score of the RDRNER system is close to the
90.8% F1 score, achieved by the Stanford NER system on the formal CONLL corpus
[18]. On average, the RDRNER system achieved both high precision and recall. The
difference between precision and recall is around 4%.

Fig. 4. Performance improvement of the RDRNER system over the Stanford NER system

 Improving the Performance of a Named Entity Recognition System 111

Figure 4 presents the performance improvement of the RDRNER system over the
Stanford NER system on each of the 7 NE classes in F1-score. For all classes the
RDRNER system improved the Stanford NER performance except for ‘TIME’ where
no rules were required as the Stanford NER system was already at 100%.
ORGANIZATION and PERSON classes had the biggest improvement.

6 Discussion

Table 3, shows that the RDRNER system improves the Stanford system to give a high
precision and recall after only 4 hours initial KB construction by a user working
through a small training dataset. Given the very rapid training time we propose that
rather than simply having to accept an inadequate level of performance delivered by a
general purpose NER tool, and the results of this flow on through the whole
information extraction task; it is a worthwhile and viable alternative to very rapidly
add rules to specifically cover the domain of interests. Such a solution may not be as
elegant as an improved general purpose NER, but given the rapid knowledge
acquisition time is certainly a practical solution for organisations needing higher NER
in a domain of interest. The approach is not specific to the Stanford NER and can be
used on top of better NER systems as they become available, and the better the
general system the less knowledge acquisition time to tune it to the particular domain.

For NER, the use of lexical features such as dictionary and trigger words is a main
technique. As discussed earlier, recent studies have focused on creating gazetteers
automatically using Web sources, increasing the size of gazetteers dramatically. With
the current ‘bag of words’ approach, the increased size of gazetteers cannot be utilised
efficiently because word sense disambiguation problems. The lack of trigger words on
the Web also make difficult to utilise lexical features by pre-defining trigger words.

The RDRNER system, however, can efficiently utilise lexical features for informal
Web documents. Section 3 showed examples of the RDRNER system using lexical
features in rule creation. One could perhaps characterise some of the rules we added
as equivalent to adding words to a gazetteer; however, because rules are used any
combination of conditions can be used to provide a much more sophisticated function
than adding words to a gazetteer. Secondly, if the vocabulary causes an incorrect
classification result with other cases seen later, we can simply add an exception rule
to correct the classification, ending up with something much more sophisticated than
a gazetteer. Similarly, when there is a lack of pre-defined trigger words in Web
documents, the RDRNER system can be used to identify new triggers, but again with
a rule structure allowing a conjunction of conditions and exceptions to be used.

The RDRNER system is designed to be trained on a specific domain of interest. It
would also be interesting to see if it was possible to extend the domain coverage to
use crowd sourcing, whereby large numbers of people on the web might contribute
rules, but there would major issues in how to combine such rules.

The RDRNER system required very little effort; rule creation is simple and rapid.
In the study here it took about three minutes on average to build a rule. Experience
suggests that knowledge acquisition with RDR remains very rapid even for large

112 M.H. Kim and P. Compton

knowledge bases [22]. Rules can be updated as errors are uncovered, or when new
vocabularies are created, or new meanings are attached to existing terminologies, or
new colloquialisms come into use. The alternative is to accumulate enough training
data to retrain a system, but this has its own demands. An error can be corrected
manually the first time it occurs with an RDR system but with a machine learning
system, one needs to keep monitoring cases until sufficient examples of each type of
error have been accumulated for the learning system. We suggest it is simpler to
correct the error when it first occurs so the user is then monitoring a continuously
improving system. When errors are sufficiently infrequent, monitoring can stop.

References

1. Califf, M.E., Mooney, R.J.: Relational Learning of Pattern-Match Rules for Information
Extraction. In: ACL 1997 Workshop in Natural Language Learning (1997)

2. Rozenfeld, B., Feldman, R.: Self-supervised relation extraction from the Web. Knowl. Inf.
Syst. 17, 17–33 (2008)

3. Collot, M., Belmore, N.: Electronic Language: A New Variety of English. In: Computer-
Mediated Communications: Linguistic, Social and Cross-Cultural Perspectives. John
Benjamins, Amsterdam/Philadelphia (1996)

4. Rau, L.F.: Extracting Company Names from Text. In: 6th IEEE Conference on Artificial
Intelligence Applications. IEEE Computer Society Press, Miami Beach (1991)

5. Kang, B.H., Compton, P., Preston, P.: Multiple Classification Ripple Down Rules:
Evaluation and Possibilities. In: 9th Banff Knowledge Acquisition for Knowledge Based
Systems Workshop (1995)

6. Bunescu, R.C., Mooney, R.J.: Learning to Extract Relations from the Web using Minimal
Supervision. In: 45th Annual Meeting of the Association of Computational Linguistics,
Prague, Czech Republic (2007)

7. Asahara, M., Matsumoto, Y.: Japanese Named Entity Extraction with Redundant
Morphological Analysis. In: Human Language Technology Conference - North American
Chapter of the Association for Computational Linguistics (2003)

8. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Linguisticae Investigationes 30, 3–26 (2007)

9. Etzioni, O., Cafarella, M., Downey, D., Popescu, A., Shaked, T., Soderland, S., Weld, D.,
Yates, A.: Unsupervised named-entity extraction from the Web: An experimental study.
Artif. Intell. 165, 91–134 (2005)

10. Nguyen, D.P.T., Matsuo, Y., Ishizuka, M.: Relation extraction from wikipedia using subtree
mining. In: 22nd National Conference on Artificial Intelligence, vol. 2, pp. 1414–1420.
AAAI Press (2007)

11. Zhu, J., Nie, Z., Liu, X., Zhang, B., Wen, J.R.: StatSnowball: a statistical approach to
extracting entity relationships. In: 18th International Conference on World Wide Web, pp.
101–110. ACM, Madrid (2009)

12. Zacharias, V.: Development and Verification of Rule Based Systems — A Survey of
Developers. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS,
vol. 5321, pp. 6–16. Springer, Heidelberg (2008)

13. Toral, A., Muñoz, R.: A proposal to automatically build and maintain gazetteers for
Named Entity Recognition by using Wikipedia. In: 11th Conference of the European
Chapter of the Association for Computational Linguistics, Trento, Italy (2006)

 Improving the Performance of a Named Entity Recognition System 113

14. Kazama, J.i., Torisawa, K.: ExploitingWikipedia as External Knowledge for Named Entity
Recognition. In: Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, Prague, Czech Republic (2007)

15. Banko, M., Etzioni, O.: The Tradeoffs Between Open and Traditional Relation Extraction.
In: ACL 2008: HLT (2008)

16. Riloff, E., Jones, R.: Learning Dictionaries for Information Extraction by Multi-Level
Bootstrapping. In: 16th National Conference on Artificial Intelligence and the 11th
Innovative Applications of Artificial Intelligence Conference Innovative Applications of
Artificial Intelligence (1999)

17. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: The Association for Computer
Linguistics (2005)

18. Ratinov, L., Roth, D.: Design Challenges and Misconceptions in Named Entity
Recognition. In: CONLL 2009 (2009)

19. Nadeau, D., Turney, P.D., Matwin, S.: Unsupervised Named-Entity Recognition:
Generating Gazetteers and Resolving Ambiguity. In: Lamontagne, L., Marchand, M. (eds.)
Canadian AI 2006. LNCS (LNAI), vol. 4013, pp. 266–277. Springer, Heidelberg (2006)

20. Mikheev, A., Moens, M., Grover, C.: Named Entity recognition without gazetteers.
In: 9th Conference on European Chapter of the Association for Computational Linguistics,
pp. 1–8. Association for Computational Linguistics, Bergen (1999)

21. Liu, X., Zhang, S., Wei, F., Zhou, M.: Recognizing Named Entities in Tweets. In: 49th
Association for Computational Linguistics, pp. 359–367 (2011)

22. Compton, P., Peters, L., Lavers, T., Kim, Y.S.: Experience with long-term knowledge
acquisition. In: 6th International Conference on Knowledge Capture, pp. 49–56. ACM,
Banff (2011)

23. Pham, S.B., Hoffmann, A.: Extracting Positive Attributions from Scientific Papers.
In: Discovery Science Conference (2004)

24. Pham, S.B., Hoffmann, A.: Efficient Knowledge Acquisition for Extracting Temporal
Relations. In: 17th European Conference on Artificial Intelligence, Riva del Garda, Italy
(2006)

25. Xu, H., Hoffmann, A.: RDRCE: Combining Machine Learning and Knowledge
Acquisition. In: Pacific Rim Knowledge Acquisition Workshop (2010)

26. Kim, M.H., Compton, P., Kim, Y.S.: RDR-based Open IE for the Web Document. In: 6th
International Conference on Knowledge Capture, Banff, Alberta, Canada (2011)

27. Clark, A., Tim, I.: Combining Distributional and Morphological Information for Part of
Speech Induction. In: 10th Annual Meeting of the European Association for
Computational Linguistics (2003)

28. Ho, V.H., Compton, P., Benatallah, B., Vayssiere, J., Menzel, L., Vogler, H.:
An incremental knowledge acquisition method for improving duplicate invoices detection.
In: Proceedings of the International Conference on Data Engineering, Shanghai, China,
pp. 1415–1418 (2009)

	Improving the Performance of a Named Entity Recognition System with Knowledge Acquisition
	Introduction
	Related Work
	Web Scale Named Entity Recognition
	Ripple-Down Rules (RDR)

	The Web’s Informality and NER
	RDRNER System
	Implementation
	RDRNER’s Rule Description
	RDR KB Construction
	RDR Rules to Handle the Web’s Informality
	RDRNER User Interface

	Experiments
	Web Datasets
	RDR Initial KB Constructions
	RDRNER Performance

	Discussion
	References

