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Abstract. Local description of images is a common technique in many
computer vision related research. Due to recent improvements in RGB-D
cameras, local description of 3D data also becomes practical. The number
of studies that make use of this extra information is increasing. However,
their applicabilities are limited due to the need for generic combination
methods. In this paper, we propose combining textural and geometrical
descriptors for scene recognition of RGB-D data. The methods together
with the normalization stages proposed in this paper can be applied
to combine any descriptors obtained from 2D and 3D domains. This
study represents and evaluates different ways of combining multi-modal
descriptors within the BoW approach in the context of indoor scene
localization. Query’s rough location is determined from the pre-recorded
images and depth maps in an unsupervised image matching manner.

Keywords: 2D/3D description, feature fusion, localization.

1 Introduction

The scene recognition problem is widely studied in many research areas such
as robot localization, path planning, similarity retrieval, matching and classifi-
cation. In this study we focus on the indoor image matching problem in which
the scene information is gathered from multi-modal (2D/3D) sensors. Today,
extracting such information from real environments is rather effortless with the
help of the new generation depth cameras and range scanners such as Kinect [1].
These RGB-D cameras, can acquire both color data (RGB) and the depth
data in real dimensions. They have significant advantages compared to laser
scanning devices: i) they can operate in real time (up to 30 Hz), ii) they are
affordable, and #7) depth data is synchronized with the color information.
Unlike the Simultaneous Localization and Mapping (SLAM) [2] methods where
the exact pose of the robot (position and orientation) is required and unlike
the scene classification problems [3] in which semantics and categories are ex-
tracted, in this paper, scene recognition is regarded as determining a rough
location (topological place) from the pre-recorded images and depth-maps asso-
ciated with labels in an unsupervised image matching manner (Fig. [I). In this
context, our main aim is to investigate the effects of local geometrical properties
in scene recognition research. This study also represents different ways of com-
bining textural and geometrical descriptors within the Bag-of-words approach.
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Fig. 1. Flowchart of the proposed method. Information fusion can be performed in
different stages depending on the combination method.

1.1 Related Work

In literature, indoor scene matching is considered to be more challenging than
the outdoor scene matching problem M, B] because outdoor scenes contain more
discriminative and unique features leading to comparatively easy recognition.
Besides, indoor scenes comprise many similar structures such as doors, win-
dows, chairs, etc. Consequently, such images resemble each other in the global
sense but can still contain local distinguishing patterns. The accuracy of this
inspiration is testified by the state-of-the-art scene matching methods. Sivic and
Zisserman ﬂa] demonstrated efficiency of the region based descriptors within the
Bag-of-words (BoW), or Bag-of-Features (BoF), approach for scene retrieval by
making analogy between the text retrieval. After that, substantial amount of
work adopted this BoF model for scene matching ﬂi E

Until recently, vision based scene recognition methods were utilizing texture
based features (2D) [4-17]. After the release of RGB-D cameras, 3D features have
also started to be used for scene recognition purposes M Ren et al. ﬂg] utilized
local 3D features together with texture based descriptors for supervised object
classification. Similarly, Janoch et al. E] applied histogram of oriented gradients
(HOG) on depth maps for supervised object classification. However, they did
not integrate depth features with the texture based ones. Browatzki et al. ]
also combined 2D features with 3D ones for supervised object categorization in
which the objects are isolated and viewed from several angles.

The closest work to our study is described in HE] While the main emphasis in
their work is on the scene classification and segmentation with object labelling,
they applied texture based descriptors onto the depth maps for scene classifica-
tion. However, in this study, we are extracting several 3D features from the 3D
point cloud representations instead of mapped 3D information (depth maps).
We also demonstrate three different ways of combining 2D and 3D information
for scene matching.
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2 Theoretical Background

2.1 Bag-of-Words/Features

In the BoF approach there are three main steps: i) feature detection and descrip-
tion, ii) construction of visual vocabulary(dictionary), iii) matching. The main
goal in the feature detection is to find keypoints holding significant information
that are also robust across transformed versions of the image. A comparison of
some of the interest point detection algorithms can be found in [12]. Feature de-
scriptors which are usually represented as vectors carry local information in the
neighbourhood of each keypoint. Scale Invariant Feature Transform (SIFT)[13]
and Speeded Up Robust Feature (SURF) [14] are popular descriptors because
of their accomplished performances. Visual vocabulary is built by clustering all
the extracted features from a dataset of images. The selection of the number of
clusters (k) is empirical, although it is critical. Obtaining BoF representation of
database images is the next stage. First, features are extracted from an image.
After that features are assigned to the closest cluster (word) in the vocabulary.
Then, the count of each word that appears in the image is used to form the BoF
representation of the image. When a query is placed, firstly the BoF representa-
tion is constructed. After that, the BoF representation of query image and the
BoF representation of the database images are compared and matched.

2.2 Local 3D Features

Since the 3D object description has become popular during the last decade the
number of research efforts is less than the 2D counterparts. In the shape anal-
ysis research, global description of 3D mesh models is popular. Still there exist
local 3D feature detectors and descriptors. We refer the reader to Tangelder and
Veltkamp [15] for a detailed survey.

Methods that rely on the global descriptors are usually utilized in similarity
retrieval of 3D mesh models among the database of the same type, whereas local
ones are employed in partial matching and point correspondences. There are two
challenges regarding the 3D local descriptors. First one is the time complexity.
Most of the 3D (or point cloud) descriptors rely on the normal vector informa-
tion. The normal vector estimation step usually requires analysis of a covariance
matrix. Besides, the nearest neighbourhood search or a similar strategy is uti-
lized in finding the local neighbourhood of a keypoint which, if repeated many
times, lead to high computation cost. The second and the critical challenge is
the following: 3D local descriptors are considered to be less discriminative and
far from being robust, since 3D shapes (surfaces) have insufficient features and
keypoint repeatability is usually not satisfied [16].

In this study, we employed spin images descriptor which is one of the well-
known local surface descriptors [17]. It is a two-dimensional histogram of the
spatial distribution of neighbouring points around a keypoint (Fig. ). Utilizing
the keypoint’s normal vector makes the descriptor rotation and translation in-
variant. However, spin images descriptor does not ensure the scale invariance.
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We also utilized D2 distributions descriptor which is a simple yet an efficient
descriptor. It is originally proposed as a global descriptor for 3D mesh model
retrieval |18] and corresponds to the distribution of the Euclidean distances be-
tween object points that are selected randomly. The D2 distributions, which
is also rotation and translation invariant, does not rely on the normal vector
information, it is faster than the spin images descriptor. In addition to these
descriptors, one could also use more sophisticated methods such as Fast Point
Feature Histograms [19] for describing local geometry.
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Fig. 2. Local 3D descriptors, left: spin images, right: D2 Distributions.

3 Combining 2D and 3D Features

Since RGB-D data is composed of two different modalities (texture and 3D
geometry), there are several ways for extracting and also for combining this
information. Table [ shows straightforward ways of feature detection and feature
description for RGB-D data. Feature detectors in 3D domain generally depend
on the curvature information. Mapped data can be considered as 2D image in
which the pixels represent a function value at the corresponding 3D location for
the given geometry such as depth maps, shape index mapped images, etc.

Table 1. Feature Detection and Description for RGB-D Data

Feature Detection Feature Description
2D Detector 2D Descriptor
3D Detector 3D Descriptor

Detection on mapped data

The most critical point of feature detection is keypoint repeatability. We be-
lieve that keypoint repeatability is higher in 2D images than in the 3D domain.
Therefore, in our tests feature detection is performed only on 2D images. We
employed SURF as a feature detector. Also, in this study, we utilized only SURF
features as the texture based descriptor, since the objective is not to optimize
the performance of the 2D descriptors but to find the best way to combine the
two types of descriptors.
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After extracting information from the 2D and 3D representations, gathering
them to obtain a single descriptor is the next stage. We employed following
strategies to combine these descriptors: i) Point Description Fusion, ii) Scene
Description Fusion, and i) Decision Level Fusion.

3.1 Point Description Fusion

A keypoint can be described locally by its textural and geometrical properties
if both the 2D image and the 3D information are available. These descriptors
can be concatenated to form a single vector as is done in |10] and in [20]. In
this type of fusion, keypoints should be selected from the single modality. Dense
feature detectors can also be utilized; however, both (2D and 3D) descriptors
should exist for each keypoint. Contrary to the previous studies, we carried out a
normalization step before concatenating descriptors. Normalization is necessary
if the 2D and 3D descriptor vectors are having different lengths and/or their
order-of-magnitudes differs a lot. We propose the following normalization on the
descriptor vectors fg:

I fili] ‘
il = S flil, Fli) = ie(1,2,.,m) (1)
v M B e s -

where N is the total number of descriptors (2D/3D) obtained from the training
set, n is the size of the descriptor vectors and fj is the normalized descriptor of
point k. The final descriptor is then formed by scaling these normalized descriptor
vectors by some constants ¢ and ~ as
in Fig. Bl These constants can be se-

lected as ¢ = 1 and v = 1 for equal Concatenated descriptor :
contribution and also be adjusted if ofon | Yfap ‘
one of the modalities (2D/3D) is de- Tength =T, Tength=n,

sired to have more influence on the de-

scription than the other. This normal-  Fig, 3. Final descriptor is a concatenation
ization enables to concatenate point of normalized and scaled feature vectors
descriptors which are extracted from which are obtained from texture and shape
any means of modality.

3.2 Scene Description Fusion

Information fusion can also be done in the stage of scene representation (Fig
M). In this case, BoF descriptors that are separately obtained from textures and
point clouds are concatenated. This configuration introduces the flexibility of
choosing different number of clusters for 2D and 3D descriptors. Also keypoint
detection can be performed in different modalities.

The algorithm makes two passes over the scenes: one-pass to construct the
dictionary of 2D descriptors and second to obtain the dictionary of 3D descrip-
tors. After that, each scene is described by two histograms obtained from the
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BoF representations. We propose normalizing and scaling these individual BoF
representations before concatenating. Histograms are normalized such that their
sums are equal to one. Scaling histograms with some constants a and  is again
necessary to compensate the effects of different vocabulary sizes and also for as-
signing weights to the description type (2D/3D) because individual description
performances of 2D and 3D descriptors are different.

3.3 Decision Level Fusion

Decision level fusion is a common approach for combining classifiers [21]. A simi-
lar strategy can be employed in image matching methods. For combining the 2D
and 3D information, we propose evaluating the BoF based indexing approach
separately for 2D images and 3D point clouds. After the query is presented, im-
ages in the database are indexed (rank list) according to their similarity measures
for both 2D and 3D. Then, using the ranked results of each modality re-indexing
is utilized. The new criterion puts emphasis on the joint position on the ranked
lists. That is, if the similarity score of an image (location) is higher in both the
2D similarity list and the 3D similarity list, then the probability of being the
true location increases. We propose the new score of an image as a weighted
combination of the individual scores:

indemk(gp/gp)
#ofimages (2)
score(imager)combined = W1 X score(imager)2p + wa X score(imager)sp

score(imager)ap/sp = 1 —

where indexy, denotes the position of the imagey, in the similarity list and w; and
wy are the weights. The ratio of the weights w; and wy can be tuned such that
it can reflect the ratio of the matching performances of 2D and 3D descriptors.
The highest scored image’s label is returned as the location of the query.

4 Dataset and Experimental Results

Our dataset sampled from the publicly available dataset |[L0] consists of 1626
unique Kinect frames, spread over 64 different indoor environments. In the orig-
inal dataset, “Bookstore” scenes have higher number of samples. We reduced
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this number since this may affect the fair evaluation of the methods. Fig. Bl rep-
resents a sample image from the dataset, corresponding raw depth map and the
registered point cloud respectively. Table 2 gives a list of location types and the
number of scenes belonging to that type. In our experiments, instead of using
raw depths we utilized processed depth maps provided by HE]

Fig. 5. Sample image from the dataset, associated raw depth map and the registered
point cloud respectively

Given a query we search for the closest image from the dataset depending on
the distance measure. To evaluate the accuracy of descriptors all images are in-
cluded in both test and training sets. Therefore the top match is always the query
itself, we report recognition rates for the second match. OpenCV’s SURF im-
plementation is employed in our experiments. The implementation of BoF stage
is standard, built dictionaries using k-means clustering and hard assignment is
utilized in feature mapping. We use the Fast Library for Approximate Near-
est Neighbors (FLANN) also from the OpenCV library for ranking the image
similarities. BoF representations are compared using Lo norm. SURF generates
feature descriptors of size 64, and in our implementation sizes for D2 Distribu-
tion and spin images are 16 and 100 (« x [3) respectively. Originally spin images
are 2D histograms, but we vectorized them for combination purposes.

Firstly, individual recognition rates are evaluated for 2D and 3D descriptors.
The optimal cluster number k is decided by evaluating the recognition rates for
different % values. Fig. [0l represents the recognition rate as a function of dictio-
nary size. The SURF descriptor achieves the highest recognition rate at 87.57%,
whereas D2 Distribution has a 72.44% and spin images has a 68.17% recogni-
tion rate at best. The highest recognition rate is achieved with 2D descriptor
at dictionary size of 100, whereas it is 50 with the 3D descriptors. However, k
is not the the only parameter which needs to be tuned. The local region size
is another important parameter which affects the discriminative power of the
3D descriptors. For very small regions, 3D descriptors cannot convey significant
information, since surfaces tend to change smoothly. On the other hand, if eval-
uation is performed on bigger regions, due to clutter and occlusion, descriptor
may contain unrepeatable representation of a combination of different objects.
Fig. [0 shows the relation between the recognition rate and the local region size.
Both of the 3D descriptors achieved highest rates at 0.7 m with recognition rates
of 72.44% with D2 Distribution and 75.46% with spin images descriptor.
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Table 2. Dataset Statistics Table 3. Scene Description Fusion

Place Type Scenes Recognition Rate (%)
Living Room 13 Parameters SURF-D2 SURF-Spin
Office 14 (a=1,8=1) 85.17 87.27
Kitchen 10 (a=1,=2) 86.41 88.49
Bedroom 17 (a=1,8=4) 89.85 89.98
Bathroom 6 (a=1,8=28) 88.42 88.93
Book store 3

Cafe 1

Total 64

Table @ gives the overall evaluation of the methods presented here. In combin-
ing the point descriptors, normalization constants are tuned as ¢ = 2,y =1 for
D2 Distribution and ¢ = 4,y = 1 for spin images descriptor with the dictionary
size of 100. Dictionary sizes (M/N) for scene description fusion are 100 and 50 for
2D and 3D respectively. The normalization constants are tuned as a = 1,5 =4
for both D2 Distribution and spin images descriptor (Table [)). In decision-level
fusion, highest recognition rate is achieved with parameters w; = 20 and wy = 1.

Individual performances of 3D descriptors are lower than that of the 2D de-
scriptor, since local 3D features are not as rich as 2D ones. After combining
2D and 3D features we obtained about a 6% improvement with the decision-
level method. Other combination methods did not improve the recognition rates
significantly. At first glance, one can expect that concatenated feature vector
should describe a keypoint more precisely. However, some keypoints which own
different texture descriptors may have same 3D descriptors (similar surface prop-
erties) and some other keypoints having similar textures may reside on different
surfaces. Therefore, introducing 3D features decreases the discriminative power
of the texture based descriptors for the former case, similarly 3D features will
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Table 4. Overall Evaluation

Method Recognition rates
2D only Description (SURF) 87.57%
3D only Description (D2-Distributions) 72.44%
3D only Description (Spin Images) 75.46%
Point Fusion, SURF/D2-Distributions 87.69%
Point Fusion, SURF/Spin-Images 86.28%
Scene Fusion, SURF /D2-Distributions 89.85%
Scene Fusion, SURF /Spin-Images 89.98%
Decision-Level, SURF /D2-Distributions 93.54%
Decision-Level, SURF /Spin-Images 93.41%

become less effective in the latter case. Besides, using single dictionary size also
decreases the performance. Therefore, fusing scene descriptions that enables uti-
lizing individual dictionaries in different sizes performs better.

5 Discussions and Conclusions

In this study, we proposed and evaluated integrating local descriptors of images
and 3D data in the context of indoor scene localization. We proposed normal-
ization methods which are necessary and critical in information fusion. Since
the RGB-D data contains complementary information with depth maps and
RGB, their combination always introduces improvements in recognition. In our
dataset, images belonging to same location is captured at the same time with
similar illumination conditions. As a result, 2D descriptors achieved a consider-
ably high recognition rate by themselves. We believe that 3D information will
be more effective for datasets containing high illumination variations among im-
ages. In that case, 2D descriptors will not be as successful as in our case. Since
3D descriptors are not affected from the illumination they would have better
impact on the combined result. We can conclude that local 3D features enhance
the performances of local 2D descriptors with proper combinations. However,
depending on the application, the increased complexity introduced by 3D de-
scriptor extraction and also by file I/O operations of 3D point clouds should be
considered.
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