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Abstract. Non-dense image correspondence estimation algorithms are
known for their speed, robustness and accuracy. However, current eval-
uation methods evaluate correspondences point-wise and consider only
correspondences that are actually estimated. They cannot evaluate the
fact that some algorithms might leave important scene correspondences
undetected - correspondences which might be vital for succeeding appli-
cations. Additionally, often the reference correspondences for real world
scenes are also sparse. Qutliers that do not hit a reference measurement
can remain undetected with the current, point-wise evaluation methods.
To assess the quality of correspondence fields we propose a histogram
based evaluation metric that does not rely on point-wise comparison
and is therefore robust to sparsity in estimate as well as reference.

1 Introduction

Image correspondence algorithms such as optical flow and stereo disparity esti-
mation do not always return dense correspondences [4], especially if confidence
measures [5] or consistency checks [4] are applied, Fig. [l The results of both
dense and non-dense algorithms are usually evaluated by point-wise comparison
to dense ground truth fields [3L[6]. This evaluation, however, does not take into
account the danger of sparse image correspondences to entirely miss complete
objects. For correct evaluation and comparison of non-dense image correspon-
dences, the evaluation measure should take into account the sparseness of a cor-
respondence field as well as the distribution of correspondences over the objects
in the scene. Many applications in computer vision and image processing are de-
signed to deal also with sparse image correspondences, for example ego-motion
estimation [7]. Therefore, direct evaluation of non-dense image correspondences
is desirable.

A general problem in full-reference quality assessment is the availability of
ground truth data. Dense ground truth correspondences are available only for
a very small set of test sequences that are either synthetic, cf. Ref. [8/[9] or ac-
quired in a controlled environment, cf. Ref. [Tl[I0]. For real world scenarios, laser
scanners are often used to generate ground truth data, since they provide the
easiest way to obtain reference measurements in realistic environments and to
evaluate the performance of correspondence algorithms also outside of laborato-
ries [ITl12]. Even carefully calibrated reference devices always contain a residual
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(a) First input frame  (b) Dense flow estimation (c) Reliable flow estimates

Fig.1. Input image from scene taken from [I]. Dense flow estimation with [2].
Confidence measures [3] can eliminate spurious correspondences, yielding a non-
dense but more accurate flow field.

calibration error [13], so that in these set-ups point-wise evaluation might not
be a fair measurement.

We propose a histogram based error metric that compares dense as well as
non-dense correspondences to given ground truth and does not depend on any
additional algorithms such as interpolation or warping [I4]. By design, our his-
togram based evaluation method can deal competently with alignment errors and
is robust to reference measurements with a coarse sampling grid. In the evalua-
tion of our error measure we focus on two aspects: Distribution (i.e. evaluate,
how well correspondence are distributed between all different scene entities) and
Outliers (i.e. indicate the presence and frequency of outliers).

1.1 Related Work

Due to its importance, a variety of optical flow and disparity estimation methods
exist, c.f. Ref. [IL6L[8,9]. Some of these algorithms estimate correspondences
for every pixel in the image [2,[I5], while others focus on salient points [16]
or apply confidence measures [3] and consistency checks [4] resulting in non-
dense correspondence fields. In spite of the estimated correspondence fields being
dense or non-dense, comparison is usually performed by using a point-wise error
measure [9]. Point-wise error measures can also be evaluated for different image
regions, e.g., highly textured or occluded regions [Il[6] and so indicate where the
results can be improved.

A further common measure is the ratio of wrong correspondences [6L[1317].
On the basis of the point-wise differences between test and reference fields, the
correspondence is labeled wrong if a fixed threshold is exceeded. This approach
takes the sparseness of the algorithm into account by normalizing with the to-
tal number of valid correspondences but evaluates accuracy only where both
estimate and reference are defined. To obtain independence from reference mea-
surements, Steingrube et al. [I8] consider the free space in front of an object
that moves without collisions and count the ratio of correspondence predicting
spurious collisions. However, wrong pixel ratios cannot evaluate whether some
objects remain completely undetected in non-dense correspondence estimation.
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Szeliski [I4] introduces a different metric in form of the prediction error for
additional frames. Assuming that correspondences can be used to extrapolate
or interpolate an additional frame, the prediction error towards this additional
frame gives rise to an error measure that does not require known ground truth
correspondences. Given these additional frames [Il6], this metric depends heavily
on the warping scheme, is sensitive to locally cast shadows and most of all, it
requires dense correspondences to warp the images.

While for synthetic scenes, e.g. in Ref. [1,9], ground truth is known exactly,
this assumption does not hold for all references. Correspondence established with
fluorescent color [I] or structured light [I0] are restricted to controlled indoor
scenarios. In outdoor or real world dynamic scenarios, the need to approximate
reference correspondences e.g. on known planar surfaces [I7] arises. Relying on
estimated correspondences, the approximated surface is not sure to either reflect
the actual location of the surface, nor does it give any indication of the accu-
racy. Or, reference devices such as laser scanners are used to establish at least
sparse measurements [12,[I3]. This requires careful registration of the reference
measurements to the images. Additionally, the resolution of laser-scanners is con-
siderably lower than of images, so that references are given only for a sparse set
of pixels which, however, is usually reasonabley distributed between the objects
in the scene.

2 Evaluation Measures

We will use the same notational framework for stereo imagery and video imagery
here. For a pair of rectified images from a stereo camera and for two temporally
adjacent images from a monocular camera we use the notations of mappings
from the image plane to gray- or color-values I; : 21 — R3 and 5 : 25 — R?
with 21, 2> C R?. Likewise, image correspondence w : 2 — {2 with 2 C
designates optical flow with its two independent components as well as stereo
disparity with only one independent component.

We distinguish between two types of correspondences: the output of a corre-
spondence algorithm is designated with wegs : 2.5t — {22 while the reference
correspondence is designated with wyey : £2yey — £22 where ey, 2,05 C (21 are
the subsets for which correspondence are estimated or given, respectively. Note
that the set {29 = 2c5t N (2.5 on which both estimate and reference are defined
might be the empty set.

2.1 Point-Wise Evaluation Measures

For 2y # 0 the usual error measure to compare correspondences is the point-wise
difference, also known as the point-wise endpoint error [6]

EE(2) = |lwest (2) — wrep (2)ll2 - V2 € £ (1)
together with the ratio of pixels that exceed a fixed threshold on the EF
1
R: {z € 2|EE(2z) > 7} (2)

e
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where |-| returns the number of elements in a set. For optical flow evaluation,
also the point-wise angular error

(West (2) — 2;1) T (wref(2) — 2;1)
[(west (2) = 2 )ll2 [[(wres(2) — 2312
and the ratio of wrong pixels in reference to this error, A,, are considered.
Usually the spatial means of the errors over all valid pixels are reported [3],
ie. MEE = |(§O‘ Ycn, PE(2) and MAE = \f}ol > AE(z) or - for stereo
disparities [6] - the root-mean-squared-error

AE(z) = (3)

Z€82

1
RMSE — ¢ o 2 () = wres (I

EISEON)

Given exactly aligned ground truth correspondence fields, point-wise measures
are highly suited to find where estimated correspondences are accurate and where
they are inaccurate. While outliers are clearly distinguishable in the differences
between estimate and reference, Eqs. (), (), averaging over all valid pixels for
RMSE, MEFE and M AE mixes outliers with the accuracy of correct estimates
and therefore these values are found to be of limited significance [I]. Considering
the percentage of pixels with an error larger than a threshold 7, outliers can be
identified more clearly, requiring however to set this threshold appropriately.
These measures are not sufficient for non-dense image correspondences: A
scene can contain objects with properties that inhibit confident estimation of
image correspondences on this object, e.g. low texture or changing illumination.
However, the undetected object might be of significant importance in the scene.
Additionally, if reference correspondences are sparse, the set of joint correspon-
dences {2y might contain only few, possibly non-representative correspondences.

2.2 Histogram-Based Evaluation Measures

We propose to consider the normalized distribution of flow vectors, i.e. the nor-
malized histogram h,,(u). For stereo disparity, the histogram is one dimensional
(u denotes the disparity value), while for optical flow fields the histogram has
two dimensions (u denotes the vertical and horizontal flow component), Figs.
Phl Bd If the correspondences for every object in the scene are detected reliably,
the normalized histograms h,.r and hes are similar in shape and amplitude.
If, in contrast, an entire object with independent correspondences remains un-
detected, the corresponding bins have smaller amplitude or might even remain
empty, Figl2l In the definition of the histograms the set {2y of jointly defined
correspondences is not relevant. Thus, the comparison of normalized histograms
is independent towards sparseness as long as the correspondences are evenly
distributed over all objects.

Histograms are expressed in a discretized form by choosing a suitable bin
size b. Discretized histograms can be compared bin-wise [19]. Here, however, the
choice of the bin size b as well as slight inaccuracies of the image correspondences
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Fig. 2. Histograms of disparity fields @ are 1-dimensional. Histograms of flow fields
are 2-dimensional. The difference between the full field @] and flow fields with object-
wise removed correspondences is clearly visible.

have a high influence on the result of the comparison. A more robust method to
compare normalized histograms has been proposed by Rubner et al. [20], known
as the Farth Mover’s Distance (EMD). The metric EM D(hq, ha) between two
histograms hq and hy gives the minimal cost required to match both histograms.
With the choice of the EMD for histogram comparison, dependency on bin size
can be reduced.

The advantage of histogram based evaluation is that it is robust towards dif-
ferent densities of reference and estimated correspondences, and considers distri-
bution of the correspondences over different scene entities. Building histograms
over the entire image, however, looses the property to distinguish between dif-
ferent regions of error. Thus, noise in one part of the image can compensate
for erroneous correspondences in other parts of the image. In addition to the
histogram over the entire image, we therefore consider histograms héi on subre-
gions A; of the image domain. As the location of objects is in general unknown,
we simply partition the image domain in 2™ equally sized tiles and average the
histogram distances

.
H" ZEMD i hidy) . (4)

2” est?

Note that for |A;| = 1 this corresponds to a version of the mean endpoint error
where the error is discretized by the bin size. If a correspondence field contains
numerous motions and a high degree of noise, we expect H™ to increase with
increasing n, as on small regions noise can no longer be balanced. We noticed
however, that usually consideration up to n = 2, i.e. on four tiles, suffices.

3 Implementation Details

We have chosen a bin size b = 1 for the discretized histograms in all our ex-
periments. In the EMD calculation, the Euclidean {2 norm between the two
histograms has been chosen as the ground distance. For simplicity and repro-
ducibility, we use the MATLAB implementation of [21] for the calculation of the
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(b) (c) (d)

Fig. 3. |(a)| From the synthetic scene Urban2 [I] with known ground-truth correspon-
dences, [(b)l we remove 50% of the correspondences either |(c)| randomly or @ contigu-
ously, simulating flow estimates that are rejected by a confidence measure.

EMD. The number of non-empty bins influences the size of the problem and on
the speed with which a solution can be found. For example, the determination
of H' and H? for the Urban 2 scene with 64 non-empty ground-truth bins and
193 non-empty bins in the estimated flow field requires 0.58s using a MATLAB
implementation on a 3.40GHz CPU while the scenes Venus with 18 and 48
non-empty bins requires only 0.11s.

4 Experiments

We evaluate the proposed histogram measure to show its sensitivity to missed
objects, its robustness to misalignments and its sensitivity to outliers. For com-
parable visualizations we use the color encoding as proposed in Ref. [22].

4.1 Non-densely Estimated Correspondences

One motivation for our metric is the desire to evaluate whether a sparse algo-
rithm misses a complete object. Figure Blshows an exemplary scene, from which
we successively remove the motion of the back-ground objects. As reference and
test field differ only in missed correspondences, point-wise error metrics report
zero differences. The value of the histogram distances between the fields, how-
ever, differs from zero, Fig. [dal Considering correspondences estimated with the
algorithm by Chambolle and Pock with default parameters [2] a similar behavior
can be observed, Fig. dl Histogram based measures detect the removal of objects
while M EE and R; o do not show a significant response. As the removed pixels
have small motions, the M AFE shows a tendency to decrease. However, if the
fast moving objects in the foreground are removed, the M AFE increases, Fig. [4d
Fig. ddl shows that the actual density does not have a significant effect on any
error measure, as long as the distribution is approximately uniform.

As neither point-wise nor histogram-based evaluation distinguishes between
reference and estimated correspondences, the considerations from above also hold
for sparse reference measurements. We note that a disadvantage of the histogram
based evaluation is that reference correspondences need to be evenly distributed
over the objects in the scene.
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Fig. 4. Error metric response to missing pixel correspondences. Contiguous removal of
correspondences from ground truth [(&)] and from estimation results using [2] [(b)]
as well as random removal from estimation results @
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Fig. 5. @ Shifting ground truth correspondences [10] or @correspondences estimated
with SGM [4] relative to dense ground truth. Influence of rejection of disparities by
confidence measure on error metric response.

4.2 Measured Reference Correspondences

Reference fields are usually acquired with a different device that needs to be
calibrated to the input images. We compare the reference fields to a shifted
version of themselves using the data from Ref. [10]. Also, we estimate disparities
with an implementation of the semi-global matching (SGM) algorithm [4] and
compare to shifted references. We note, Fig. Bl that in both cases the histogram-
based error measure does not show any significant changes while the point-wise
RMS error and the ratio of wrong correspondences shows larger deviation.

We simulate the influence of confidence measures on stereo correspondences
by removing disparities for overexposed pixels which have an overexposed 4-
neighborhood. Due to the - correct - absence of reference measurements in the
overexposed sky, the RM .S and ratio of wrong pixels only react to the rejection
of overexposed regions in the cars. They are approximately indifferent to the
impact of the confidence measure, utilizing block matching (BM), cross corre-
lation (NCC), and SGM estimation, Fig. Ed In contrast, the histogram-based
error measure H' clearly indicates the improvement in the correspondence fields.
The sub-region measure H? is of limited significance in this example as half the
sub-regions contain less than 50 pixels of the reference field.
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(a) Left input image (b) Laser reference (c) Confidence map

(d) Block matching (e) Cross Correlation (f) SGM

Fig. 6. For the scene parking lot 3 [12] we compare estimated disparities to laser
scanned reference data and evaluate the impact of a confidence map that eliminates
correspondences with overexposed pixels

4.3 The Influence of Noise

Due to the loss of locality, the histogram-based metric cannot distinguish be-
tween noise and reliable estimates. Considering e.g. a purely diverging flow field
and a flow field with random values in the same range, Fig. [[l only the point-
based error measure can identify the poor quality of the noise field with M EE =
10.44 and Ry = 99.79% while the overall histogram distance H'! = 0.03 is small.
Here only the consideration of sub-level histogram distances H™ with n > 1, e.g.
H? =7.65 and H? = 9.07 that are considerably larger than H' hints at a noisy
quality of the flow.

However, purely random correspondence fields can generally already be dis-
missed by visual inspection [22]. More important is the detection of small regions
which are assigned a random correspondence field, Fig.[[d To the purely diverg-
ing flow field we therefore add regions of random correspondences: randomly
chosen image regions with a diameter of 10 pixels are replaced with an arbitrary
correspondence somewhere in the image. As show in Fig. [Zdl both point-wise
and histogram based measures are able to detect the disturbance as both errors
increase in a strictly monotone way with the number of outlier regions.
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Fig. 7. Histogram-based error measures cannot distinguish the diverging motion in
@ from random values in the same range @ However, if an increasing number of
regions is substituted with arbitrary matches within the image point-based and
histogram-based measures increase in a monotone fashion

5 Conclusion and Future Work

Usual point-wise error measures can evaluate accuracy of a correspondence field
only at those points where estimated and reference correspondence are defined.
We have shown that this can be misleading in the evaluation of non-dense corre-
spondences where entire objects can be undetected. Our histogram based mea-
sure can reliably detect missed objects in correspondence fields. Additionally, it
is robust to misalignments between reference and estimates that occur due to
reference sensor calibration errors. We have shown in our experiments that our
histogram based measure is also suitable to evaluate the frequency of random
outliers in correspondence fields. However, we believe no single metric should
be used to evaluate correspondence algorithms. We strongly encourage authors
of algorithms also to evaluate the accuracy of their correspondences, e.g. via
point-wise error measures on suitable data set, the robustness of their algorithm
to noise in the input images or the drift of their results when concatenated over
long sequences.
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