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Abstract. The rapid development of 3D acquisition technology has
brought with itself the need to perform standard signal processing opera-
tions such as filters on 3D data. It has been shown that the eigenfunctions
of the Laplace-Beltrami operator (manifold harmonics) of a surface play
the role of the Fourier basis in the Euclidean space; it is thus possible to
formulate signal analysis and synthesis in the manifold harmonics basis.
In particular, geometry filtering can be carried out in the manifold har-
monics domain by decomposing the embedding coordinates of the shape
in this basis. However, since the basis functions depend on the shape
itself, such filtering is valid only for weak (near all-pass) filters, and pro-
duces severe artifacts otherwise. In this paper, we analyze this problem
and propose the fractional filtering approach, wherein we apply itera-
tively weak fractional powers of the filter, followed by the update of the
basis functions. Experimental results show that such a process produces
more plausible and meaningful results.

Keywords: Computational Geometry and Object Modeling, Hierar-
chy and geometric transformations, Laplace-Beltrami operator, 3D Mesh
filtering.

1 Introduction

Different operations on the 3D data, such as noise removal, enhancement of spe-
cific parts of the object, may be formulated as applying filter F to the shape. It is
well-known that the eigenfunctions of the Laplace-Beltrami operator (manifold
harmonics) of a 3D shape (modelled as a 2-manifold) play the role of the Fourier
basis in the Euclidean space [14J6]. Methods based on the Laplace-Beltrami oper-
ator have been used in a wide range of applications, among them remeshing [59],
parametrization [2], compression [3], recognition [ITJ12], clustering, etc. Many
methods in computer graphics and geometry processing draw inspiration from
the world of physics, finding analogies between physical processes such as heat
diffusion or wave equations [I] and the geometric properties of the shape [13].
Several works have studied consistent discretizations of the Laplace-Beltrami
operator for the physical problems where this operator is involved [L0/S/15]
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Original shape Standard filter Fractional filter

Fig.1. Low- and band-pass filtering of the dragon shape (first column) using the
Laplace-Beltrami filter (second column) and the proposed fractional approach (third
column)

The influential paper of Taubin [I4] drew the analogy between the classical
signal processing theory and the manifold harmonics, showing that standard
tools in signal processing such as analysis and synthesis of signals can be carried
out on manifolds. This idea was extended in [4] and later in [7], showing a
practical framework for shape filtering using the manifold harmonics transform.

One of the problematic issues in this approach is that, unlike the Euclidean
case, where the basis functions are fixed, the manifold harmonics depend on the
shape itself. Thus, filtering the shape changes the basis in which the filter co-
efficients are expressed. For strong filter, this may result in severe artifacts and
unnatural behaviour.

Main Contribution. In this paper, we analyze this problem and propose the
fractional filtering approach, wherein we apply iteratively weak fractional powers
of the filter, followed by the update of the basis functions. The rest of the paper
is organized as follows. We first review some notions in differential geometry and
harmonic analysis in Section 2l In Section Bl we describe the filtering proposed
in [7] and our fractional filtering approach. In Section [l we show experimental
results. Finally, Section Bl concludes the paper.

2 Background

In this section we briefly review the concept of manifold harmonics, and how
to use it for approximating the shape filtering. For more detailed introduction
reader referred to [T4l[7].
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2.1 Manifold Harmonics

We model a shape as a compact two-dimensional manifold X, possibly with a
boundary dX. Given a smooth scalar field f on the manifold X, the negative
divergence of the gradient of a scalar field f, Af = —divgrad f, is called the
Laplacian of f. For a general manifold the operator A is called the Laplace-
Beltrami operator, and it generalizes the standard notion of the Laplace operator
to manifolds. Note that we define the Laplacian with the negative sign to conform
to the computer graphics and computational geometry convention.

Being a positive self-adjoint operator, the Laplacian admits an eigendecom-
position

Ad = Ao (1)

with non-negative eigenvalues A and corresponding orthonormal eigenfunctions
¢, where orthonormality is understood in the sense of the local inner product
induced by the metric on the manifold. Furthermore, due to the assumption that
our domain is compact, the spectrum is discrete, 0 = A1 < Ag < ---.

In physics, () is known as the Helmholtz equation representing the spatial
component of the wave equation. Thinking of our domain as of a vibrating
membrane (with appropriate boundary conditions), the ¢;’s can be interpreted
as natural vibration modes of the membrane, while the \;’s assume the meaning
of the corresponding vibration frequencies. In fact, in this setting the eigenval-
ues have inverse area or squared spatial frequency units. We will denote the
corresponding spatial frequencies as w; = v/\; and use the two interchangeably.
The eigenbasis of the Laplace-Beltrami operator is frequently referred to as the
harmonic basis of the manifold, and the functions ¢; as manifold harmonics.

Given a square integrable function f on the manifold, satisfying certain bound-
ary conditions when appropriat, it is well-established that f can be expanded
into a Fourier series

fl@)=>" fidi(x) (2)

i>1
with the coefficients

fi= () = /X F(@)gi(x)da(z). 3)

The process of obtaining the coefficients fz from f is usually referred to as anal-
ysis; the corresponding linear transformation will be dubbed as the manifold
harmonic transform (MHT) after [7]. The inverse process obtained via the in-
verse MHT (IMHT) is known as synthesis.

! If the manifold has a boundary, dX, it is typical to enforce Dirichlet boundary
conditions of the form f|sx = fo, or Neumann boundary conditions of the form
(gradf,n)lox = go, where n denotes the normal to the boundary. Corresponding
boundary conditions have to be imposed on the Laplace-Beltrami operator.
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2.2 Discrete Manifold Harmonics

In the discretized setting, we represent the manifold X as a triangular mesh built
upon the vertex set {x1,...,%,}. A function f on the manifold is represented by
the vector f = (f(x1),..., f(x,))T of its samples. A common approach to dis-
cretizing manifold harmonics is by first constructing a discrete Laplace-Beltrami
operator on the mesh, represented as a n x n matrix, followed by its eigende-
composition.

In our experiments we adopt a standard cotangent scheme []]. The eigende-
composition results in the following generalized eigenvalue problem:

Wi = DAy (4)
where matrix D is diagonal, s.t. D;; = % (S; - denotes area of all triangles
sharing the vertex i), and Wy; = (cot(ay;) + cot(Bi;))/2, Wi = — 3, Wy;

(cvij, Bi; are the two angles opposite to the edge between vertices ¢ and j in the
two triangles sharing the edge). In this case the the resulting eigenfunctions ®
are D—orthogonal [4], and the discrete MHT is expressed as multiplication by
an n x n matrix ®'D, and IMHT is a multiplication by ®. In the following
we shortly will write ®1 instead of ®T D, assuming that the appropriate inner
product is considered.

3 Shape Filtering

In [7], Vallet and Lévy argued that the extrinsic geometry of a shape (i.e., the
coordinates of the embedding of the manifold) can be thought of as a vector field
x : X — R3 on the manifold and, hence, decomposed into

» 1. Compute manifold harmonics ¢

|
., & N
Input X 2. Compute decomposition coefficients Output Y
<¢,,X> <¢,,X> <¢,, X>
F(w)

3. Filter decomposition coefficients

Fig. 2. Pipeline of the Vallet-Lévy method
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X = Zf(i@ (5)

i>1

using the MHT, with %; = ((z1, ¢;), (2%, ¢s), (23, ¢;)), 27 denoting the j-th com-
ponent of the vector x. Since each Fourier coefficient is associated with a spatial
frequency, the first coeflicients can be interpreted as extrinsic geometric approx-
imation of the shape, while the next ones correspond to the geometric details.

Analogously to the Fourier transform, the MHT separates frequencies, making
the application of a filter F'(w) a simple product,

y = Flw)Xip;. (6)

i>1

The resulting embedding coordinates, y : X — R3, describe a new shape with
frequency components changed according to the filter “transmission function”
F(w).

In practice, the above summation is truncated at some ¢ = k corresponding
to w;, which is roughly comparable to the sampling radius of the shape. For that
reason, fine geometric details do not participate in the analysis and synthesis,
creating essentially a low-pass filter on top of F'(w). To counter this effect, Vallet
and Lévy [7] proposed to compute the residual

k
e=Y Flw)kipi =x— Y Flw)%idi, (7)

i>k i=1
and re-inject it into the filtered shape by

k

y =Y F(w)%i¢i + Fre, (3)
i=1

where F}, is the average filter response at w > wy. In this way, the high frequency
components are treated as a wave packet and filtered as a whole.

In the discrete setting, we represent the embedding of the shape as the n x 3
matrix X, and the response of the filter by the k x k diagonal matrix F(wx) =
diag{F(w1), ..., F(wg)}. The discretized filter is given by

E=(1-&x®x" )X
Y = &xF(wx)®x ' X + RE, (9)

or alternatively by
Y = (&xF(wx)®x" + FIX, (10)

where ®x is the n x k matrix representing the first k& frequencies of the MHT
and IF =1 &x®x".
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3. Update manifold harmonics ¢ 4—I

5
Input X 1. Compute decomposition coefficients Output Yk
<¢4,X> <P X> o < X>
 —————————
F”K(UJ)
2. Filter decomposition coefficients

Repeat K times

Fig. 3. Pipeline of our method

3.1 Fractional Filter

It is important to note that the MHT ®x in (@) actually depends on X itself
and changes as a result of filtering. However, Vallet and Lévy [7] do not account
for this effect: their approach is correct only for infinitesimal change (Y =~ X),
which is valid only if the filter is “weak” (F = I). For “strong” filters, such
processing may result in severe artifacts (see Figure []).

To counter this effect, we propose computing filters in an iterative manner,
using fractional powers o < 1 of the transfer function such that F' 1. The frac-
tional filter is computed according to (@) using F*(w;) as the transfer function;
after each application, the Laplace-Beltrami operator and its eigenfunctions are
recomputed. Setting o = 1/K, the fractional filter is applied K times, resulting
in the following intermediate results

k)

-y (
YD = (&g P (wyw ) Bym + FT, YW, (11)

The final result is

[eY T a_Y(kil) « T aFX
Y =(®yeF (wY(k—U)(I)Y(k,l) + FT, ) (PxFY(wx)®x~ + T, )X.
If all the eigenfunctions are used (® is n x n), the fractional filtering result is

Y = (@Y(Kfn Fa(wwm))@fw_l)) (@XFa(wx)@,T() X,

as opposed to the standard approach where the eigenfunctions are not updated,

Y = ((I)XFO‘(wx)i))T() . <<I>XF°‘(wX)<I>)T() X

= &xF(wx)Px.
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Since the fractional filter is infinitesimal, the Laplacain does not change signifi-
cantly between two applications of the filter; this allows to update efficiently the
eigenfunctions ® as a perturbation of the Laplacian.

4 Results

In this section, we compare the standard filtering approach [7] with the pro-
posed fractional filtering method. As test data, we used the dragon and angel
shapes from the Stanford repository. The models were represented as triangular
meshes with 4 x 104 and 5 x 10* vertices, respectively. Cotangent weight scheme
was used to compute the discretization of the Laplace-Beltrami operator. In all
the experiments, we used the full set of eigenvectors without resorting to the
approximation proposed in [7] (treating high frequency components as a wave
packet). We used two types of filters: low-pass and band-pass, with cutoff fre-
quencies selected roughly according to the typical feature size on the shape. The
fractional power was chosen in each case such that the resulting fractional filter
is sufficiently weak.

Figure Bl shows the filtering results of the two shapes. We show the resulting
shape after applying several times the fractional filter, without and with recom-
putation of the eigenbasis after each application. The final (rightmost) image
is the filtering result. We can observe severe artifacts caused by the standard
approach, such as sharp spikes on the dragon feet (unreasonable for a low-pass
filter) and inflated ball-like structures on the dragon tail and angel fingers pro-
duced by the band-pass filter (see also Figure[ll). Overall, our approach produces
much more plausible and logical results: the low-pass filter result is smooth as
expected, and the band-pass filter result has the effect of “feature enhancement”
or sharpening.

®100 ?300 D5 108 @104

Fig. 4. The eigenfunctions of the Laplace-Beltrami operator of the dragon shape. Top:
computed on original shape; middle: after 1/10 of a band-pass filter; bottom: after a
full band-pass filter
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Fig. 5. First, fourth and seventh rows: fractional powers of the filter; fractional filtering
results with (second, fifth and eighth row) and without (third, sixth and ninth row)
recompilation of the Laplacian basis
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Conclusions

We analyzed the problem of shape filtering in the manifold harmonic transform
domain and presented the fractional filtering method which allows to signifi-
cantly reduce the artifacts observed when using strong filters. Our approach
decomposes the filter into fractional powers and applies it sequentially, recom-
puting the Laplace-Beltrami eigenbasis after each application. Such a recom-
putation can be done efficiently as a small perturbation of the eigenvectors.
Experimental results show that better results are obtained using this approach
compared to direct filtering.
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