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Abstract. This paper provides a personal perspective on our group’s efforts in 
building event-based vision sensors, algorithms, and applications over the  
period 2002-2012. Some recent advances from other groups are also briefly  
described. 

When Mahowald and Mead built the first silicon retina with asynchronous digital 
output around 1992 [1], conventional CMOS active pixel sensors (APS) were still 
research chips. It required the investment by industry of about a billion dollars to 
bring CMOS APS to high volume production. So it is no surprise that while the im-
ager community has been consumed by the megapixel race to make nice photos, cam-
eras that mimic more closely how the eye works have taken a long time to come to a 
useful form. These “silicon retinas” are much more complex at the pixel level than 
APS cameras and they pay the price in terms of fill factor and pixel size; machine 
vision cameras with capability of synchronous global electronic shutter are about 
5um. Silicon retina pixels are roughly 10 times the area of a machine vision camera 
pixel. So why are silicon retinas still interesting? Mostly because of the high cost at 
the system level of processing the highly redundant data from conventional cameras, 
and the fixed latencies imposed by the frame intervals. High performance activity 
driven event-based sensors could greatly benefit applications in real time robotics, 
where just as in nature, latency and power are very important [2,5,9,10]. 

1 Being Frame Free 

Like fat free milk, event-based silicon retinas can free the consumer from consump-
tion of excess energy. To be effective, the pixels must be designed to signal signifi-
cant events so that events are not redundant. For us, the story really started when we 
developed the first functional dynamic vision sensor (DVS). In the DVS, each event 
signifies that the log intensity has changed by some threshold amount since the last 
event from the pixel (Fig. 1) [2,3]. The sensor output is an asynchronous stream of 
pixel addresses (address-events) signifying that the brightness has increased or de-
creased at particular pixels. Because the event signals a log intensity change and not 
an absolute intensity change, it generally signifies a change of scene reflectance, 
which often is caused by movement of an object. This response is the key feature that 
makes these sensors useful for dynamic vision. 
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Fig. 1. The Dynamic Vision Sensor silicon retina. (a) The DVS pixel emulates the photorecep-
tor-bipolar-ganglion cell information flow. It consists of 3 parts: a logarithmic photoreceptor, a 
differencing amplifier (bipolar cells), and 2 decision units (ganglion cells). The pixel output 
consists of asynchronous ON and OFF address-events that signal scene reflectance changes. (b) 
The events are computed by the pixel as illustrated. The continuous-time photoreceptor output, 
which encodes intensity logarithmically, is constantly monitored for changes since the last 
event was emitted by the pixel. A detected change in log intensity which exceeds a threshold 
value results in the emission of an ON or OFF event. The threshold is typically set to about 
10% contrast. Communication of the event to the periphery resets the pixel, which causes the 
pixel to memorize the new log intensity value. (c) The pixels are arranged in an array and fabri-
cated in a standard CMOS process. Address-Event Representation (AER) circuits along the 
periphery of the chip handle the access to the shared AER bus and ensure that all events are 
transmitted, even if there are collisions. Colliding pixels must wait their turn for access to the 
AER bus. (d) The chips are integrated into a camera, either interfaced to a computer by USB, 
directly to a microcontroller, or to another neuromorphic chip via its AER interface. (e) Data 
collected from the DVS shows its characteristics: the events can be histogrammed in 2d-space 
over a certain time window to form an image which either displays the ON and OFF events as 
contrast (Faces), or as a gray scale showing the relative event time (Juggling event time), or 
they can be viewed in space-time to see the spatiotemporal structure (Space-Time Spike 
Events). Adapted from [9]. 
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1.1 Pixel Designs 

Our original DVS temporal contrast pixel design has held up remarkably well. The 
advantages of this design are apparent after considering a number of non-ideal effects. 
The pixel first of all relies on a simple continuous time logarithmic photoreceptor 
circuit which uses feedback to clamp the photodiode at a “virtual ground”, i.e., the 
feedback holds the photodiode reverse bias at a fixed, small voltage, while sensing the 
photocurrent and outputting the result as a low impedance voltage that is logarithmic 
with intensity. Clamping a small reverse bias reduces dark current and thus improves 
dynamic range. However, we have not figured out a way to use pinned photodiodes 
which are standard in high performance CMOS image sensors. The voltage gain is 
low, only about 40mV per e-fold or 100mV per decade, but this allow representation 
of 7 decades of light intensity in a voltage range of less than 700mV.  This means that 
no other gain control is necessary even in a deep sub-micron process with a supply 
voltage of only 1.8V.  Recent designs have exposed some headroom problems that 
were not apparent until we encountered them in fabricated silicon. We circumvent this 
problem in a number of ways. The simplest solution is to use higher threshold voltage 
transistors in some places in the pixel. These are available in submicron processes for 
use in IO pads or analog circuits.  

But really the key points are how the DVS achieves its sensitivity despite massive 
amounts of transistor mismatch. The keys are the blocking of the large DC offsets 
from the photoreceptor, the use of well-matched passive feedback via a capacitive 
divider, and the matched amplifier and comparator amplifiers. Then the gain of the 
amplifier is set largely by the capacitive divider ratio and not by transistor intrinsic 
voltage gain. The differencing amplifier and comparators are formed from 6 transis-
tors that are all laid out in the same orientation and geometry and which are thus 
matched as well as it is possible to make them, if bulky common centroid layout and 
dummy transistors are not used. 

1.2 New Retina Pixels 

Bernabe Linares-Barranco and Teresa Serrano-Gotarredona at the Inst. of Microelec-
tronics in Sevilla and Christoph Posch, now at the Vision Instititute in Paris, have 
been particularly creative in devising interesting retina pixels with good performance. 
Fig. 2 sketches the comparison discussed next.  

The ATIS 
Posch designed the ATIS1 pixel with colleagues while at the Austrian Inst. of Tech-
nology [18]. This pixel consists of two sub pixels. The first sub pixel is a DVS tem-
poral contrast pixel. Events from the DVS pixel trigger time-based intensity readings 
in the second sub pixel. The intensity is measured by the time is takes the photodiode 
voltage to integrate between two levels. The beautiful thing about this mechanism is 
the way it avoids both mismatch and kTC noise, by integrating not from a reset vol-
tage to a threshold, but rather between two thresholds, which are multiplexed to a 

                                                           
1 Asynchronous time-based image sensor. 
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Fig. 2. Retina pixel designs that are compared in the text. I sketched this comparison at the 
2012 Capo Caccia Cognitive Neuromorphic Engineering Workshop session on 5.5.12 on 
“Event- and Spike-based computing methods and systems.” 

common comparator. This way, the kTC reset level variation and the comparator 
offset are both suppressed [17]. The main advantage of the ATIS pixel is the event-
triggered and wide dynamic range intensity readout; however the price of this is a 
large pixel size and small fill factor (the ATIS is effectively about twice the area of 
the DVS pixel and must use a separate photodiode for each measurement), and inten-
sity capture time that can be up to several hundred ms at low intensities.  

Faster and More Sensitive DVS Pixels 
The latest DVS pixels from Linares-Barranco and Serrano-Gotarredona are also very 
interesting. They addressed the need in some applications of higher speed and sensi-
tivity by realizing that the best improvement in performance results from adding more 
gain and bandwidth to the photoreceptor that precedes the differencing amplifier. 
They have taken two approaches to this improvement but only the first is published 
[19]. In their pixel, they interposed two non-inverting voltage gain amplifiers between 
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the logarithmic photoreceptor and the capacitive differencing amplifier. The voltage 
amplifiers are formed by current mirror stages using strong inversion operation with 
transistor geometry and operating current determining the voltage gain. This photore-
ceptor requires global gain control to keep the circuits in range over the entire intensi-
ty range of natural lighting. The time constant for this global gain control must be 
carefully chosen to provide sufficiently fast response to changes in lighting while not 
being so fast that it by itself generates oscillations or “gain control events”. By using 
this circuit, they increase the gain of the photoreceptor by a factor of about 6, to result 
in an overall gain increase from 20 to 125. This increase allows them to set a lower 
nominal event threshold of about 2% contrast, compared with about 10% for our orig-
inal DVS. 

They also use a different feedback arrangement for the photoreceptor. Instead of 
supplying photocurrent from the source of an nfet with feedback to the gate of the 
nfet, they use the photoreceptor from Oliver Landolt [19], where the feedback photo-
current is supplied from the drain of a pfet, with feedback applied to the source of the 
pfet. The gate of the pfet is tied to a fixed voltage, which determines the clamped 
photodiode voltage. The main advantage of this circuit is the reduced Miller capacit-
ance, which allows lower latency responses. The main disadvantages are that the pho-
tocurrent cannot be read from the drain of the transistor, and the requirement that the 
feedback amplifier bias must be larger than the largest photocurrent. This requirement 
means that bias current cannot be arbitrarily reduced to control bandwidth. However 
this is not a severe constraint for the high speed applications of this photoreceptor. 

The apsDVS Pixel 
We are trying to address some of the drawbacks of the ATIS in our newest pixel, 
which we call the apsDVS pixel (Fig. 3). Here “aps” stands for “active pixel sensor” 
and is used to describe any kind of conventional CMOS image sensor pixel with in-
pixel active buffering of the integrated photodiode voltage.  In our as yet unpublished 
apsDVS pixel, we share the same photocurrent between two complementary functions 
- the asynchronous detection of brightness changes and the synchronous readout of 
linear intensities. The cost of adding the aps readout is only 4 transistors per pixel. 
This pixel asynchronously emits brightness change events and we can synchronously 
read out the intensities by resetting and then later reading the integrated voltage.  

We prototyped the first version of the apsDVS in one of our SEEBETTER chips as 
a 32x64 array (Fig. 3). The chip is functional but we discovered a parasitic capacitive 
coupling between the aps readout and the DVS circuit that generates spurious DVS 
events during aps readout. We currently have a corrected 240x160 design with 
18.5um pixels in fabrication. 

The apsDVS chip marries the advantages of simple small synchronous pixels with 
the low latency, wide dynamic range detection capabilities of the DVS pixels. We 
think the main disadvantage of the apsDVS will be the small dynamic range of the aps 
pixels. We hope we can take advantage of this combination in future application areas 
that extend on the obvious advantage of simply having a DC view of the scene in 
front of the sensor. In particular, we hope that we can extrapolate from the aps frames 
using the DVS events to complete a richer and more powerful retinal output stream 
than is offered by the present DVS. 
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Fig. 3. The new “apsDVS” pixel. (a) pixel architecture; the same photocurrent provides intensi-
ty samples and temporal contrast change events; (b) test chip layout; (c) sample data over one 
aps frame and 18ms of DVS data; the grayscale image is from the aps pathway and the colored 
pixels are from events from the DVS pathway; the person is moving their head to the left and 
the green DVS events from the edge of his head lead the aps frame data which is from older 
data. 

2 Usable End User Systems 

We first developed the DVS in the CAVIAR project where we partnered with 4 other 
institutions to develop a purely hardware spike-based vision system [13]. It was our 
experience with the requirement in CAVIAR for a crew of 4 PhD students needed to 
boot and run the system that drove us strongly in the direction of software exploration 
of algorithms for processing sensor output. We realized that most neuromorphic labs 
are so heavily focused on hardware development that is rare that any device makes it 
off the lab bench and into the hands of potential end users. That is the main reason we 
put a huge effort into developing usable USB-based DVS cameras with integrated 
biases that are temperature and process insensitive [23].   

Initially we developed event-based processing algorithms in Matlab, but we quick-
ly realized that we needed a more structured, reusable software framework capable of 
multithreaded operation. These developments led in 2007 to the open source jAER 
software project, hosted at SourceForge [5,11]. jAER contains everything almost 
everyone has done with processing retina and cochlea output, and classes that encap-
sulate for display all of our AER chip developments and USB-based computer inter-
faces, along with some from other groups. As of 2012, jAER consists of more than 
1000 Java classes, which makes it daunting for newcomers to understand what al-
ready exists. However the core of jAER is much smaller and our experience is that 
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when we have a new student, it typically requires only a few weeks for them to im-
plement their work by sub-classing the basic event processor. But because most com-
puter vision researchers are more accustomed to using C++ or Matlab, jAER is hard 
for them to grasp.  In particular, what we need to develop is a simple C API that al-
lows outsiders to easily access the raw DVS data under Windows and Linux, and 
following this, toolboxes that allow access to some of the algorithm outputs. 

2.1 Application Areas of the DVS 

Experience has shown that immediate application areas of the DVS are mostly in 
object tracking [4,5,6,21,22]. Here the sparse output, low latency, and form of the 
DVS output are ideally suited to the task of tracking moving objects. Small isolated 
objects like balls, cells, cars, particles in hydro or aero dynamics, etc. are easily 
tracked using rather simple algorithms based on updating the object models by the 
events; see the jAER class RectangularClusterTracker for details. The Goalie class is 
a complete robot implementation that tracks balls to control an arm that blocks the 
balls [6]. More complex objects like lines are also tracked using more sophisticated 
algorithms based on continuous Hough transforms. Here the algorithms become quite 
non-intuitive. Readers are referred to Matthew Cook’s open-sourced PencilBalenc-
er [4] and the unpublished PigTracker2 classes for excellent examples of these algo-
rithms. PencilBalancer is a complete implementation of a pencil balancing robot that 
uses a pair of DVS [4]. PigTracker extends on this idea to track an arbitrary line draw-
ing over affine transformations including scale, rotation and skew. The goalie and 
pencil balancer robots run on a cheap PC with CPU load of less than 10% and laten-
cies of about 2ms. 

Surveillance and behavioral monitoring is another area of application that benefits 
from the sparse DVS output and the high dynamic range of the pixels. We have rec-
orded activity such as mouse sleep cycles over periods of a week at millisecond reso-
lution, in a data file of about 1GB size (<2kBps), although we have not yet published 
any results of these measurements. Here the low latency of the DVS has not been 
used, although it could allow feedback control. 

Other applications we have recently explored include gesture recognition [22], 
whisker tracking, satellite tracking, yeast cell tracking in microfluidics, hydrodynam-
ics with particle velocimetry [21], aerodynamics using soap bubbles, line following 
robots, and obstacle detection using a pulsed laser line. 

Computing with Suspicious Coincidences 
Although object tracking is natural and easy with the DVS, it is somehow limited by 
the lack of a full cortically-inspired hierarchy of computation. However even object 
tracking already takes advantage of spatio-temporal event occurrence: Moving objects 
emit events like the familiar sparklers waved around on holiday occasions. It is the 
spatio-temporal coincidences of these events that drive the tracker models. Vision is 

                                                           
2 “PigTracker” comes from the line drawing of a pig used during development in Telluride. 
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often considered to be the process of object recognition. Now we observe from biolo-
gy that there exists an impressive amount of cortical tissue that expands the visual 
representation of the dynamic visual input to a high dimensional representation. How 
can we bring these ideas into algorithmic processing of the retina output, while some-
how taking advantage of the event-based output which affords us information about 
spatio-temporal coincidences in the sensor input? 

I tried to instantiate some ideas about early feature extraction into two jAER 
classes, SimpleOrientationFilter and DirectionSelectiveFilter. The SimpleOrienta-
tionFilter expands the representation of events from the On/Off of the DVS output to 
add Orientation as another field of the output events. OrientationEvents are computed 
by measuring “suspicious coincidences” at a particular orientation. A spatial map of 
most-recent event times is used as input to the algorithm. An orientation event is only 
output if the events lying along a particular orientation are temporally coincident, as 
they would be if they were produced by a moving edge. This edge produces a plane 
with a cliff to past times in the spatial map of event times. This filter works robustly 
on scenes with clear edges like hands or indoor spaces, although we have not tried to 
quantify the performance. In any case, the next obvious step was to include another 
ubiquitous feature of cortical simple cells, that they are almost always direction selec-
tive. Therefore, DirectionSelectiveFilter takes packets of OrientationEvent as inputs, 
and outputs packets of MotionOrientationEvent. These events add “direction” and 
“speed” fields to the OrienationEvents and are computed using time-of-flight of 
OrientationEvents. These events are very noisy (as is generally the case with local 
motion computations) but by integrating them over translational, tangential, and radial 
directions we obtain a fairly robust measure of global optical flow. One possible next 
step was obviously binocular vision: By correctly correlating vertical orientation 
events from the two eyes we should be able to obtain some stereo binocular disparity 
information; in practice this works in artificial simple scenes but not yet in realistic 
natural scenarios. Ryad Benosman’s group has made the most progress in full stereo 
vision [15,16], but personally I have only had convincing success in using stereo vi-
sion to binocularly track small moving objects like balls; see the jAER class StereoC-
lusterTracker for details.  

Of course the real aim here is to obtain the motion parallax flow that signifies 
scene structure from a moving camera. To this end, inspired by our friends in Sevilla 
[25], I recently integrated a 3-DOF rate gyro on the back of a DVS camera. This sen-
sor provides independent measure of the camera rotation. By combining this camera 
rotation information with measured local optical flow, I hope we can robustly detect 
obstacles in the environment on a power budget more competitive with that of flying 
insects. This target has long been an aim of neuromorphic engineering and although 
we are not there yet, we are getting closer. Together with developments of new sen-
sors, new hardware for sensor processing, and inventive new algorithms, we are sure 
to have a grand time over the next few years. 
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