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Abstract. One of the major goals of computer vision is the development
of flexible and efficient methods for shape representation. This paper
proposes an approach for shape matching and retrieval based on scale-
invariant heat kernel (HK). The approach uses a novel descriptor based
on the histograms of the scale-invariant HK for a number of critical points
on the shape at different time scales. We propose an improved method
to introduce scale-invariance of HK to avoid noise-sensitive operations in
the original method. A collaborative classification (CC) scheme is then
employed for object classification. For comparison we compare our ap-
proach to well-known approaches on a standard benchmark dataset: the
SHREC 2011. The results have indeed confirmed the high performance
of the proposed approach on the shape retrieval problem.

Keywords: Heat kernels, shape retrieval, collaborative classification,
3D shape descriptors.

1 Introduction

Recently, using 3D objects data has become more important in the area of com-
puter vision, as recognition based on 3D models is less sensitive, or may be
invariant, to lighting conditions and pose variations as compared to 2D models.
The emergence of laser/lidar sensors, reliable multi-view stereo techniques and
more recently consumer depth cameras have made the acquisition of 3D models
easier than before. The domain of the presented work is the classification of these
3D objects into a set of pre-defined classes. One of the main challenges in that
regard is the development of flexible and efficient methods for shape representa-
tion or the creation of a shape descriptor or signature for shape matching. The
descriptor captures the properties of the shape that distinguish it from shapes
belonging to other classes.

Shape descriptor should have as many of the following properties as possible:
1) Isometry invariant: isometric shapes should have the same descriptor inde-
pendently of the objects given representation and location. 2) Scale invariant:
For some applications, it is necessary that the descriptor is independent of the
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objects size, therefore the descriptor should optionally be scale invariant. 3) Sim-
ilarity: Similarly shaped objects should have similar descriptors. 4) Efficiency:
The time and space needed to compute those descriptor should be reasonable.
5) Completeness or shape-awareness: descriptor should give a complete charac-
terization of the shape, thus representing the shape uniquely.

1.1 Review of Related Work

Although global shape descriptors (e.g., [2]) have shown good performance on
many data sets, they have an underlying assumption that shapes are rigidly
transformed. Other approaches have used local feature detection and local de-
scriptor to describe 3D shapes, such as spin images [10], local patches [11], and
conformal factor [I12]. But these methods cannot deal with the non-rigid shape
deformation, and cannot cover the properties of the desired shape descriptor.

The problem of non-rigid shape deformation needs more work to compensate
for the degrees of freedom resulting from local deformations. Early work by Elad
and Kimmel [3] proposed modeling shapes as metric spaces with the geodesic
distances as an intrinsic metric, which are invariant to inelastic deformations.
Bronstein et al [4] used this framework with a metric defined by internal distances
in 2D shapes. Reuter et al. [5] used the Laplacian spectra as intrinsic shape
descriptors, and they employed the Laplace-Beltrami spectra as ’'shape-DNA’ or
a numerical fingerprint of any 2D or 3D manifold (surface or solid). They proved
that ’shape-DNA’ is an isometry-invariant shape descriptor.

Recently Sun et al. [§] proposed heat kernel signatures (HKS) as a
deformation-invariant descriptors based on diffusion of multi-scale heat kernels.
HKS is a point based signature satisfying all of the good descriptor properties
except for scale invariance. It characterizes each vertex on the meshed surface
using a vector. However, the authors did not demonstrate how to retrieve shapes
using HKS, although they pointed out the future potentials in shape retrieval
applications. Fang et al [9] defined the temperature distribution (TD) of the heat
mean signature (HMS) as a shape descriptor for shape matching. Their TD is a
global shape descriptor and they used L2 norm which is a very basic matching
method to compute the distance between two TD descriptors. Bronstein et al [7]
solved the HKS scale problem through a series of transformations. The same
research group has recently introduced the Shape Google approach [I7] based
on the scaled-invariant HKS. The idea is to use HKS at all points of a shape, or
alternatively at some shape feature points, to represent the shape by a Bag of
Features (BoF) vector. Sparsity in the time domain is enforced by preselecting
some values of the time.

1.2 Paper Contribution

In this paper, we present an approach for shape matching and retrieval based
on scale-invariant heat kernel (HK). Several aspects are novel in our approach.
We use the first non-trivial Laplace-Beltrami eigenfunction to detect a small
number of sparse critical points on the shape surface. These points are robust
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to the shape class, and their number can in itself be used as one of the discrim-
inatory features among the various classes. Then we calculate the HK for the
detected critical points at different time scales. Then scale invariance is achieved
using an improved method to Bronstein et al’s approach [I7]. A concatenation
of the histograms of the significant components of the scale-invariant HK for all
the points is used as a feature vector for classification. The resulting descriptor
captures the local as well as global shape information since it uses the temper-
ature distribution at the critical points at several time samples. For the sake of
comparison we compare our approach to the Shape Google approach [I7], the
shape-DNA [6] and the TD approach of [9] on the SHREC 2011-Shape Retrieval
Contest of Non-rigid 3D Watertight Meshes [13]. In particular, we demonstrate
that our approach can perform partial matching, when there are missing data,
and more robust performance against noise. In [I8] similar approach to this work
but the scale invariance achieved by different way, also the classification is done
by different technique.

2 Heat Kernel Basics

In this section we start with the basics of diffusion on Riemannian manifolds
that are necessary to define the proposed heat kernel signature. We will model
the shape as a Riemannian manifold, possibly with boundary. The heat kernel
quantitatively encodes the heat flow across a manifold M and is uniquely defined
for any two vertices i, j on the manifold. The heat diffusion propagation over M
is governed by the heat equation

0
(et 1)

where Ang denotes the positive semi-definite Laplace- Beltrami operator of M
, which is Riemannian equivalent of the Laplacian. The solution u(x,t) of the
heat equation with initial condition u(x,0) = ug(x) describes the amount of heat
on the surface at point z in time t¢. u(z,t) is required to satisfy the Dirichlet
boundary condition u(x,t) = 0 for all € M and all ¢. Given an initial heat
distribution f : M — R, let H¢(f) denote the heat distribution at time ¢, namely
H.(f) satisfies the heat equation for all ¢, and lim;_,o Hy(f) = f . Hy is called
the heat operator. Both Ay; and H; are operators that map one real valued
function defined on M to another such function. It is easy to verify that they
satisfy the following relation H; = e **™ . Thus both operators share the same
eigenfunctions and if A is an eigenvalue of Apg, then e~ is an eigenvalue of H,
corresponding to the same eigenfunction. The solution of () is called heat kernel
and can be thought of as the amount of heat that is transferred from z to y in
time ¢ given a unit heat source at z. In other words, Hy(x,.) = H;(d,), where ,
is the Dirac delta function at x : 6,(z) = 0 for any z # z, and [y, 0(2)dz = 1.
If M is compact then the heat kernel has the following eigen decomposition

Amu(z,t) = —

Hyw,y) = 3 e oi(@)6i(y), (2)
k=1
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where \; and ¢; are the i*" eigenvalue and the i*" eigenfunction of the Laplace-
Beltrami operator respectively, and = and y denote two vertices. The Hy(z,y)
is defined as the heat affinity Hoy(z,y) between a pair of vertices which is a
measure of heat transfered between node x and y after time ¢.

Properties of the Heat Kernel: The heat kernel H;(x,y) has many good
properties [§]. Tt is symmetric: or He¢(x,y) = Hi(y,z). It is invariant under
isometric deformations: which is a direct consequence of the invariance of the
Laplace-Beltrami operator. It is informative: by only considering its restriction
to the temporal domain we can obtain a concise and informative signature. It is
multi-scale: for different values of ¢ the heat kernel reflects local properties of the
shape around x at small ¢ and the global structure of M from the point of view
of x at large values of t. And it is stable under perturbations of the underlying
manifold.

3 Proposed Approach

In this paper, we propose to construct the shape descriptor as follows: HKs are
calculated at some critical points detected on the surface (see below) at various
time samples (about 150). Then scale-invariance is introduced in the computed
HK as explained in the following subsection. Since the complexity of using the
heat kernel as a signature is extremely high, and it would be difficult to compare
descriptors of two different points, we use histograms to overcome the descriptor
alignment problem and to reduce the descriptor size. At each time sample, (as
described in the Scale Invariance sec. [31]) after taking the logarithmic transfor-
mation, and the amplitude of the Fourier transform, a histogram of 100 pins is
calculated for the low-frequency components. Then all the histograms from all
detected critical points are concatenated to build a long feature vector. Then the
normalized eigenvalues of the Laplace-Beltrami operator are appended to this
vector. This vector, dubbed Critical Points-based Heat Kernel (CP-HK), can be
used for classification using some well-known classifiers. However, for the latter
part, we use collaborative classification [2I]. In order to construct the HK at a
given vertex z based on formula (2], we use a finite number eigenfunctions and
eigenvalues of the Laplace-Beltrami operator which is replaced by its cotangent
formula for triangular meshes [14]:

(Amu); = —j Z (cot av;j + cot Byj) (ui — uy), (3)

’ JENi(i)

where (Apu); for a mesh function u denotes its discrete Laplacian evaluated at
vertex ¢ (for ¢ = 1;2;....; N, N number of vertices); A; is the Voronoi area at
the i*" mesh vertex [14]; ans oij, Bi; are the two angles supporting the edge con-
necting vertices i and j. This discretization preserves many important properties
of the continuous Laplace-Beltrami operator, such as positive semi-definiteness,
symmetry, and locality, and it is numerically consistent [I5]. In a matrix form
we can write

(AMU)Z = A_ILU, (4)
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where A = diag(A;), L = diag(zl# wy) —w;j, and w;; = (cot o +cot B;5). The
first k£ smallest eigenvalues and eigenfunctions of the Laplace-Beltrami operator
discretized according to (@) are computed by solving the generalized eigende-
composition problem W¢ = AA¢p, where L = ¢pApT, A is a diagonal matrix of
eigenvalues,and ¢ is a NX (k+ 1) matrix whose columns correspond to the right
eigenvectors of L.

3.1 Scale Invariance

Scale invariance can be achieved by four different methods: (1) trying to detect
scale, as done in most feature descriptors in image analysis (e.g. SIFT). How-
ever, 3D shapes are usually poorer in features and scale detection can be done
reliably only at a sparse set of feature points. (2) through the normalization of
Laplace-Beltrami eigenvalues, but this method may suffer if the object has miss-
ing parts [7]. In such case, the scale invariance must be introduced locally rather
than globally. (3) Using a series of transformations applied to the HKS [7] in or-
der to avoid scale detection. This allows creating a dense descriptor. This method
is considered local, thus can work with objects with missing parts. (4) the local
equi-affine invariant Laplace-Beltrami operator proposed by Raviv et al [IJ.

In this paper, we propose an improved variant of the third method to achieve
scale invariance. It was shown [7] that scaling a shape by a factor 8 results in
changing Hy(z,y) to 82 Hgey(2,y). Thus a series of transformations are applied
to HK as follows. Starting from each critical point z, the HK is sampled at every
surface point y logarithmically in time (¢ = o™) and the function h, = Hyr (2, 9)
is formed. Scaling the shape by § results in a time shift s = 2log, 8 and am-
plitude scaling by 2. That is, b, = B2h,+s. The logarithmic transformation
log h!. decouples the multiplicative constant from h,4,. Bronstein et al [7] pro-
posed to take the derivative afterwards to remove the effect of the resulting
additive 3% term and then taking the amplitude of the Fourier transform (FT)
of the derivative to remove the effect of the time shift s. Since the derivative
operator is sensitive to noise, in a departure from [7], we propose to apply the
Fourier transform directly to log h’. The effect of the multiplicative constant 32
is eliminated by dropping the DC (zero frequency) component of the FT, and
then the amplitude of the remaining significant FT components (we normally
use 6) are attained. This eliminates the scale effect without having to use the
noise-sensitive derivative operation.

3.2 Critical Points

For a piecewise linear real-valued function ¢ given by the values at the vertices
(¢i) of a triangle mesh, we define a critical point as a vertex i whose function ¢;
is a maximum or minimum over its neighborhood (in two rings). These points are
detected using the local maxima/minima of the first non-trivial Laplace-Beltrami
eigenfunction [19]. Critical point detected near the boundary are discarded. Fig-
ure[Ilshows the critical points detected from the first non-trivial eigenfunction for
sample shapes. The figure gives the total number of critical points for each shape.
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Fig. 1. Critical points detected for several shapes. Number below each shape represents
the total number of shape critical points. Colors visualize the average temperature
induced from these critical points throughout all shape vertices.

It is interesting to observe that shapes belonging to the same class consistently
have almost the same number of critical points, whereas these numbers differ from
one class to another. As such, this number can be used as one of the discriminatory
features between the different classes, in addition to the HK descriptor.

3.3 Collaborative Classification

Recently, collaborative representation has also been used in pattern classifica-
tion. Zhang [20] proposed a new classification scheme, namely collaborative rep-
resentation (CR) based classification with regularized least square (CRC-RLS),
which has significantly less complexity than the sparse representation based clas-
sification (SRC) but leads to very competitive classification results. Then [21]
propose a relaxed collaborative representation (RCR) model, which considers
both the similarity and distinctiveness of different features in coding and clas-
sification stages. Zhang [21I] showed that RCR is simple, and very competitive
with state-of-the-art image classification methods. We use the RCR approach
for the coding and classification of our proposed descriptors. More details about
the algorithm in [21].

4 Experimental Results

To test the performance of the proposed approach we use the SHREC 2011 -
Shape Retrieval data set [13]. This is a large-scale database which consists of
600 non-rigid 3D objects that are derived from 30 original models. For the sake
of comparison, we show the results of the Shape-DNA approach [6], describing
shapes by the vector of the first eigenvalues of the Laplace-Beltrami operator. We
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used first 15 eigenvalues to construct the Shape-DNA descriptors. Eigenvalues
were computed using the same cotangent weight discretization. We also compare
our results to the method in [9] that uses the (TD) as a shape descriptor and
the Shape Google approach [I7]. Figure [2] shows sample shape retrieval results
of the CP-HK descriptor on the SHREC 2011 dataset. The figure shows the first
15 matches for each query ranked according to the distance measure of the RCR
classifier. Afterwards, the objects ranked from 30-35 for each query are shown on
the right. Several of these objects are also similar in shape to the query object.
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Fig. 2. Shape retrieval results of SHERC 2011 dataset. Left: queries. Middle: First 15
matches using the HK descriptor. Right: matches from 30 to 35. The color represents
the first component HK at each point. The detected critical points shown in yellow.

Table 1. Results on SHERC11 dataset. Note the results for the Shape Google method
is from our implementation as described [I7]

Feature SI Classifier NN  1-Tier 2-Tier e-Measure DCG
TD - NN 0.6483 0.3704 0.4768 0.3369 0.6684
Shape-DNA - NN 0.9900 0.8588 0.9295 0.6797 0.9649
SI-HKS [17] BOF 0.9567 0.6225 0.7288 0.5245 0.8718

CP-HK Our method RCR 0.9733 0.7798 0.8823 0.6443 0.9364

For the sake of quantitative assessment of the approach performance with
all the tested classifiers, we record the following standard five evaluation mea-
sures (see [I6] for detailed definitions): Nearest Neighbor (NN) where N = 1,
First Tier (FT), Second Tier (ST), E-measure (E), and Discounted Cumula-
tive Gain (DCG). Table [l shows the performance on the SHERC 2011 dataset.
The table compares the proposed descriptor against TD, Shape-DNA and Shape
Google. The proposed approach significantly outperforms the TD approach and
performs higher than the Shape Google. Although the Shape-DNA shows the
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Table 2. Performance versus noise, shot-noise, and scale in three severity levels of the
CP-HK descriptor using the RCR classifier compaerd to the results of Shape Google
[17]. (1.00 mean 100%)

Noise L. NN our NN [I7] Shot N. L. NN our NN [I7] Sclae L. NN our NN [I7]

1 1.0000 1.0000 1 0.9333 0.9333 1 1.0000 0.8000
2 1.0000  0.9000 2 0.8666 0.8666 2 1.0000 0.4666
3 0.9333 0.1333 3 0.8000 0.5333 3 1.0000 0.2333
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Fig. 3. Some shape retrieval results for different shapes with different noise levels

best performance in this experiment, it severely suffers when there are miss-
ing parts in the objects (i.e., on partial shape matching, different scale and
noise). This was clearly demonstrated in [I7] compared with the Shape Google
approached.

Another experiment is carried out to assess the approach performance under
several distorted data scenarios. Here we compare the performance of the pro-
posed approach with that of the Shape Google approaches. We have formed a
query set consisting of 30 shapes taken from the SHERC11 data set, after apply-
ing several distortions: a Gaussian white noise, shot-noise, scaling, and missing
parts. The performance versus white noise in three different levels of severity is
shown in Table[2l FigureBland Hlillustrates sample shapes corrupted with these
three different noise, and shot noise levels. Clearly the proposed approach shows
a more robust noise performance.

The average performance of the two approaches in the case of shot noise is
summarized, and lists the overall performance versus query objects with several
scales are also shown in Table2l The proposed approach has retrieved the shapes
with different scales with 100% accuracy. The Shape Google presented consider-
ably lower performance. The performance against missing parts is demonstrated
in Figure Bl The results show that the proposed approach is better to handle
partial data. Note that we used data set consists of 30 class and we don’t ig-
nore similar-class positive shapes (males and females, centaur, horse, and human
shapes) as in Shape Google experiment [I7]. This justifies why the results of
Shape Google in Table [2] are lower compared to the results reported in [I7].
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Fig.5. Some shape retrieval results for different shapes with different missing parts.
Left: queries. Right: the first 5 matched shapes.

5 Conclusion and Future Work

In this paper, we have presented an approach for shape matching and retrieval
based on scale-invariant heat kernel (HK). An improved method to introduce
scale-invariance has been also proposed to avoid noise-sensitive operations in
the original transformation method. We have also proposed to use the first non-
trivial Laplace-Beltrami eigenfunction to detect a small number of sparse critical
points on the surface of the shape. These points were shown to be robust to the
shape class, and their number can in itself be used as one of the discriminatory
features among the various classes. We have utilized a collaborative classification
scheme for object matching and retrieval. Our experimental results have shown
that the proposed descriptor can achieve high performance on a public, well-
known benchmark dataset. An important observation from our experiments is
that the proposed approach is more able to handle data under several distortion
scenarios (noise, shot-noise, scale, under missing parts) than the well-known
Shape Google approach. Therefore, the proposed approach is more suitable for
partial shape matching and retrieval from databases. Our current research is
directed towards using the proposed approach to address dense correspondence
between non-rigid shapes.
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