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Abstract. We introduce an atomic action based features and demon-
strate that it consistently improves performance on human activity recog-
nition. The features are built using auxiliary atomic action data collected
in our lab. We train a kernelized SVM classifier for each atomic ac-
tion class. Then given a local spatio-temporal cuboid of a test video,
we represent it using the responses of our atomic action classifiers. This
new atomic action feature is discriminative, and has semantic meanings.
We perform extensive experiments on four benchmark action recognition
datasets. The results show that atomic action features either outperform
the corresponding low level features or significantly boost the recognition
performance by combining the two.

1 Introduction

Low level local spatio-temporal features such as HOG and HOF [1–8] have been
shown very successful for action recognition in the past. In a “bag of words” rep-
resentation scheme, these local features are directly clustered to build a visual
dictionary and then represented as visual words. During this process, neither se-
mantic nor discriminative cues are utilized. Hence redundant or non-informative
visual patterns might be kept. We argue that representing local features in a
semantic, discriminative space may offer extra advantages and provide comple-
mentary information to that of the low level features.

In this paper, we propose atomic action features, a new representation of
local spatio-temporal cuboids based on atomic actions. Atomic actions are ba-
sic units of human actions, such as “raising a hand”, “one-arm waving”. Many
atomic actions can be characterized by local motion, and complex actions such
as “playing basketball” can be considered as compositions of atomic actions. In-
tuitively, we can categorize an action based on what atomic actions are observed
and how frequent they are. Our idea is to encode local features in atomic action
space. Figure 1 illustrate the framework of extracting our atomic action feature
representation. The implementation is simple: we train a number of discrimi-
native atomic action classifiers (kernelized SVM classifiers are employed in this
paper), then for a local spatio-temporal cuboid, we apply the learned classifiers.
A classification score denotes the confidence that a cuboid belongs to an atomic
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Fig. 1. Illustration of the atomic action feature extraction process. We first collect an
atomic action dataset. For each atomic action class, we train a kernelized SVM based
on low level features. Given a new action video, for each local spatio-temporal cuboid,
we run all the atomic action classifiers. The classification scores are used as the atomic
action features to represent the cuboid.

action. Then the set of classification scores are used to represent the cuboid,
which shows how likely the cuboid belongs to each of the atomic actions. The
new feature representation is complementary to the low-level features, as shown
by our experiments.

We build this feature representation based on two insights. First, the represen-
tation is discriminative. We train our atomic action SVM classifiers using many
positive and negative training examples. In the training process, discriminative
visual patterns that are beneficial for classification are preserved, while the oth-
ers are abandoned. By mapping a local spatio-temporal cuboid to this space,
we explicitly exploit its affinity with these discriminative visual patterns. Sec-
ond, the representation has semantic meanings, and is well aligned with human
interpretation.

As a result, though the methodology is conceptually simple, we find it works
very well on most of the popular action recognition databases. It either outper-
forms the corresponding low level features or boosts the performance by combin-
ing it with the low level features. And interestingly, our atomic action classifiers
have very strong generalization ability. We collect atomic action videos in our
lab, with around 10 subjects. The same atomic actions classifiers are applied to
four datasets: KTH [9], Hollywood2 [10], Olympic Sport [5] and Youtube [2]. All
the results show the effectiveness of our method without adapting the atomic
action classifiers. This is very useful, since we don’t have to manually annotate
atomic action examples for a specific dataset when applying this idea.
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1.1 Related Work

Our work is most relevant to the line of work which uses many object categories
as the basic representation for image annotation, retrieval, and classification
[11, 12, 6, 13]. Our works differs from theirs in two senses. First, we develop
this representation for action representation, while they tackle image analysis.
Second, our atomic action features are local features. In contrast, [14, 12] build
global image features, and [11] detects object instances based on sub-windows,
which are still semi-local. In [6], Liu et al. proposed a middle level representation:
a video sequence is represented with responses to a set of attribute classifiers. In
this paper, we represent each local spatio-temporal cuboid using atomic action
features. Local features are expected to be more robust to clutter, occlusion, etc.

We learn atomic action features using positive and negative examples. Re-
cently, there has been growing interest in learning features for action recognition
[15, 16]. These works learn spatio-temporal features in a unsupervised manner,
to replace the HOG/HOF features, and show promising results. Our work is
complementary to theirs, since we can build our atomic action features based on
their learned representation.

Atomic actions are studied before by various researchers [17, 18]. They usually
aim to reliably detect atomic actions, or build models to model the composition
of atomic actions. Different from their work, we encode local features in the
semantic atomic action space and can apply it to various action recognition
tasks including sports recognition and movie clip recognition.

2 Approach

Our approach is to build atomic action features for human action recognition.
The atomic action features are expected to capture the semantic meanings of
local spatio-temporal cuboids, and are discriminative. We have training and test
videos, we also collect a dataset with atomic action clips. We train a kernelized
SVM classifier for each atomic action based on the conventional low level fea-
tures Then given a local spatio-temporal cuboid, we extract the same low level
features, and apply our atomic action classifiers to produce atomic action fea-
tures, which are the classification responses. We train classifiers based on these
new atomic action features. We also combine atomic action features with the
original low level features in a multiple kernel learning framework.

2.1 Collecting an Atomic Action Dataset

To our best knowledge, there are no atomic action datasets available. We collect
an atomic action dataset in our lab to train the atomic action classifiers. We
choose 26 common atomic actions, including “one-hand waving”, “two-hands
up”, “stretching”, “stand up”, and so on. For each atomic action class, we invite
around 10 volunteers to perform it. Then we can run a saliency detector to detect
clean local spatio-temporal cuboid to represent these actions. In order to deal
with view variance, we capture each atomic action in three different views. In
total, our dataset includes about 1300 videos.



294 Q. Zhou and G. Wang

2.2 Training Atomic Action Classifier to Generate Atomic Action
Features

We train atomic action classifiers based on local features, as atomic actions are
usually characterized by local motion. For each atomic action video, we run the
STIP [19] detector to find local spatio-temporal cuboids which contain the salient
information. We choose histogram of oriented gradient (HOG) and histogram of
optical flow (HOF) [1] to describe local appearance and motion, due to their
popularity and the superior performance [1–3, 5]. Following [1], we concatenate
HOG and HOF descriptors as a single feature vector For each atomic action
category, we randomly choose 2000 cuboids as positive training examples, we
also randomly choose 2000 negative samples from all the other categories. A
binary SVM classifier with the chi-square kernel is trained based these positive
and negative training examples. Note that each atomic action class has three
different views. We train a classifier for each view independently due to the big
inter-view variation. At the end, we have 78 classifiers in total.

We want to use classification scores as the feature representation, then classifi-
cation scores of different classifiers must be calibrated. We do this by converting
the SVM decision values into probabilistic scores by using the sigmoid mapping
function:

g(x) =
1

1 + exp
(
af(x) + b

) (1)

where f(x) is the classification score of an atomic action classifier on a local
cuboid x, a and b are sigmoid function parameters. We directly use the LIBSVM
[20] software to generate probabilistic outputs.

Then given a new local cuboid xt, we run all the atomic action classifier on
it and get an atomic action feature (AAF) vector.

AAF (xt) = [g1(xt), . . . , gN(xt)] (2)

where gi(x) is the probabilistic score of the ith atomic action classifier. We use
�2 normalization scheme to normalize the feature vector.

2.3 Using Atomic Action Features to Recognize Actions

We apply our atomic action features to general action recognition. We adopt
the most popular “bag of words” scheme to make a fair comparison with the
original low level features. But note that our features can also be used with
other complex models.

Two types of global representation are tested. The first one is the original
bag of words representation. No spatio-temporal information is exploited. In the
second method, we follow [1] to partition a video into several spatio-temporal
grids. We use three types of spatio-temporal grids: 1×1 t1, 1×1 t2 and h3×1 t1.
More details can be found in [1]. We call the first method BoW and the second
methods SPM in the rest of this paper.

Again, we use the SVM classifier with the chi-square kernel to recognize
actions.
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Fig. 2. The average precision (AP) score of the 78 atomic action classifiers on a vali-
dation set. The three atomic action classes which have the highest AP values are: torso
bending, torso stretching, and one-arm raise up; the three classes which have the lowest
AP values are: body whirling, jumping upright and one-arm forward raise up.

For each type of low-level features (such as the HOG/HOF), we can produce
the corresponding atomic action features. These two features are expected to
be complimentary. We also combine these two features together in the multiple
kernel learning framework. We construct a chi-square kernel for each, and then
add the two kernels with weights. The weights are learnt via cross validation. Our
experimental results show that the combined kernel always works better than
the kernel constructed using the original low-level features. This is interesting,
as for a low-level feature, we can use this method to boost its performance.

3 Experiments

3.1 Evaluating the Trained Atomic Action Classifiers

We first evaluate the performance of our atomic action classifiers on a validation
set. For a particular atomic action classifier, there are 350 positive test samples
(cuboids) and 14000 negative test samples (cuboids). An average precision (AP)
score is calculated for each atomic action classifier. Figure 2 shows the AP of all
categorizes. The mean AP over all classifiers is 0.473. It shows our atomic action
classifiers can do reasonably well on classification.

3.2 Performance of the Atomic Action Features on Different
Dataset

The same atomic action classifiers are applied to four benchmarks dataset to
produce atomic action features for recognition.

The KTH Action Dataset. This dataset is firstly introduced in [20]. We
follow a previous experiment setup [9, 3] and train a multi-class classifier and
the average accuracy is used to evaluate the performance.

We report the performances of different types of feature on the KTH dataset
in Table 1. For all the compared features, the visual dictionary size is 1024.
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Table 1. Average Accuracy values on the KTH dataset. “HOG” shows the results of
only using the HOG features to represent each local spatio-temporal cuboid. “HOF”
shows the results of only using the HOF features to represent each local spatio-temporal
cuboid. “HOG/HOF” shows the results of concatenating HOG and HOF features (162
dimensions in total) to represent each local spatio-temporal cuboid. “Atom” shows the
results of only using our atomic action features to represent each local spatio-temporal
cuboid. “HOG/HOF+Atom” shows the results of combing “HOG/HOF” and atomic
action features with a multiple kernel SVM classifier. “Bow” means the standard bag of
word scheme; “SPM” means spatio-temporal grids are used, and each grid is represented
as a bag of words histogram.

Feature HOG HOF HOG/HOF Atom HOG/HOF+Atom

BoW 81.1% 91.4% 89.6% 88.3% 93.2%
SPM 81.6% 90.7% 88.5% 87.5% 93.0%

We use the same size for all the other four datasets. And a chi-square kernelized
SVM classifier is applied. The performance of atomic action features is com-
parable to that of “HOF/HOF”. Combining the two significantly boosts the
performance.

The Hollywood2 Dataset. This is a dataset of 12 action classes collected
from 69 Hollywood movies [10]. We follow the experiment setup of [3] and train
a binary classifier for each action class. We first compute the average precision
(AP) for each action class. And the mean average precision over all the action
classes is reported, as in [10, 3].

Table 2. Average Precision (AP) values on the Hollywood2 Dataset. (Please refer to
table 1 for notation definition.)

Feature HOG HOF HOG/HOF Atom HOG/HOF+Atom

BoW 31.8% 40.3% 41.3% 43.1% 46.3%
SPM 37.6% 42.2% 44.0% 45.9% 49.4%

A comparison of our atomic action feature against other feature for each ac-
tion category on the HOllywood2 dataset is shown in Table 2. For both BOW
and SPM methods, our atomic action feature outperform HOG, HOF, and the
corresponding HOG/HOF features. Atomic action features outperform the oth-
ers on 7 categories with BOW, and on 8 categories with SPM over all the action
classes. Combining “HOG/HOF” and atomic actions features obtains around 5%
improvement on mean average precision, for both the BOW and SPM methods.

Olympic Sports Dataset. This dataset is created by Niebles et al. [5]. We
follow their experimental setting in [5] and train a binary classifier for each action
class. Similar to the Hollywood2 dataset, average precision (AP) is calculated for
each action class, and mean average precision values over all the action classes
are reported.
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Table 3. Average Precision (AP) values on the Olympic Sports Dataset. (Please refer
to table 1 for notation definition.

Feature HOG HOF HOG/HOF Atom HOG/HOF+Atom

BoW 55.1% 57.2% 59.2% 63.1% 68.4%
SPM 61.9% 59.5% 63.9% 64.5% 71.0%

Table 4. Average Accuracy values for the classification task in YouTube Action
dataset.(Please refer to table 1 for notation definition.)

Feature HOG HOF HOG/HOF Atom HOG/HOF+Atom

BoW 61.7% 56.0% 61.9% 59.3% 68.4%
SPM 65.9% 57.7% 65.9% 62.7% 72.7%

In table 3, we show the performance of different features on the Olympic Sport
dataset. Our atomic action feature achieve the best results on the mean average
precision over all the categories, compared to HOG, HOF, and HOG/HOF. This
shows our atomic action representation is very discriminative on this dataset.
On most categorizes (12/16 for BOW and 11/16 for SPM), our atomic action
features outperform the corresponding low-level HOG/HOF features. Combing
the two types of features results in about 9% and 7% gain in mean AP for BOW
and SPM methods, respectively. We shows two examples of our atomic action
features on the Olympic Sport dataset in Figure 3, which are very descriptive.

YouTube Action Dataset. This dataset is published in [2] for evaluating
action recognition in unconstrained videos. We follow their leave on out cross
validation (LOOCV) method for these 25 groups in our experiments. Average
accuracy scores over all the classes are compared.

The results are compared in table 4. From the table, we can see a gain of about
7% is achieved by combining our atomic action features with “HOG/HOF”,
compared to only using “HOF/HOF”. Interestingly, “HOF/HOF+Atom” out-
performs a more complicated approach proposed by Liu et al. [2], whose average
accuracy number is 71.2%.

Table 5. Comparison of using the “HOG/HOF + Atom” feature with other methods
in the literature

KTH Olympic Sports Hollywood2

Niebles et al. [5] 91.3% Niebles et al. [5] 72.1% Alexander et al. [21] 45.3%
Laptev et al. [1] 91.8% Liu et al. [6] 74.3% Laptev et al.[1] 47.7%
Liu et al. [6] 91.6%

Our Method 93.2% Our Method 71.0% Our Method 49.4%
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Fig. 3. Two examples of our atomic action feature on the Olympic Sports dataset.
Left : local spatio-temporal cuboid (indicated in red), right : the corresponding atomic
action features.

Fig. 4. The performance of different features on the Olympic Sports dataset, with
different number of training samples. Our atomic action feature representation always
outperform HOG, HOF and HOG/HOF features.

3.3 Comparison with Previous Work

In table 5, we compare our results with those of several previous papers on
the KTH, Olympic Sports, and Hollywood2 datasets. Even only using a less
sophisticated model (SPM), we find our approach “HOG/HOF+atom” works
reasonably well compared to many previous, more sophisticated models.

3.4 The Effect of Training Sample Size

In this section, we investigate the effect of training sample size, when using the
proposed atomic action features. We test the performance of atomic action fea-
tures with different number of training samples on the Olympic Sports dataset.
We randomly select 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% of the posi-
tive and negative videos respectively in the training data for each category to do
the experiments. For each size, we repeat the experiments 10 times by randomly
selecting training examples. The results are averaged and compared in Figure 4.
We can see from the figure that the atomic action features always perform better
than the other features (HOG, HOF, and HOG/HOF), with varying number of
training samples.
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Fig. 5. The performance with different atomic action classifiers sizes on Olympic Sports
dataset. For each classifier size, we repeat the experiments 30 times by randomly se-
lecting classifiers. Averaged score is reported and compared.

3.5 The Effect of Atomic Action Classifier Size

We also investigate the effect of the number of atomic action classifiers, on the
Olympic Sports datasets. We perform experiments with different numbers of
atomic action classifiers: 1, 2, 3, 4, 5, 8, 18, 28, 38, 48, 58, and 68 respectively.
For each number, we repeat the experiments 30 times, by randomly choosing
a subset of atomic action classifiers. Averaged results are reported. Figure 5
shows the mean average precision values with varying number of atomic action
classifiers. The improvement is not so significant when the size of atomic action
classifiers reaches 30.

4 Conclusions and Discussions

In this paper, we have presented a simple method to build atomic action features
for action recognition. Our extensive results on four action recognition bench-
mark datasets show the effectiveness of this method. There are two interesting
things about this new type of feature. First, for a state-of-the-art low level fea-
ture (HOG/HOF), our method can at least help improving its performance by
combing it with the atomic action features. Second, our atomic action classifiers
have very strong generalization ability because they only capture local motion
information. We build the atomic action classifiers using a dataset collected in
our lab, but can successfully apply it to various datasets.
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