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Abstract. The problem of training classifiers from limited data is one
that particularly affects large-scale and social applications, and as a re-
sult, although carefully trained machine learning forms the backbone of
many current techniques in research, it sees dramatically fewer appli-
cations for end-users. Recently we demonstrated a technique for select-
ing or recommending a single good classifier from a large library even
with highly impoverished training data. We consider alternatives for ex-
tending our recommendation technique to sets of classifiers, including a
modification to the AdaBoost algorithm that incorporates recommenda-
tion. Evaluating on an action recognition problem, we present two viable
methods for extending model recommendation to sets.

1 Introduction

Classifiers continue to be impractical for web-scale uses, and when they are used,
they tend to be in the form of generic classifiers (e.g., face detectors) rather than
the carefully tuned custom classifiers seen in research applications. The reasons
for this are twofold. First, properly training a classifier is a surprisingly difficult
affair — aside from the amount of data required (which might be substantial),
methodological issues such as cross-validation for appropriate SVM parameters
and the production of appropriately ‘hard’ negative examples complicate the
neat theoretical story. Second, classifiers are computationally expensive to run
and train when compared to web-scale technologies like approximate nearest
neighbor methods and hashing techniques.

While this second concern will likely be alleviated in time by advances in the
amount of available computing power, the first concern, that classifiers are in
practice difficult to produce, must be given more care.

Our recent work [1] suggests a way out: rather than requiring end users to
train classifiers, we recast the problem as a selection problem from a pre-trained
library of classifiers. Instead of an end-user trying to directly learn a classifier
from limited training data, the training data should be instead be used select
a classifier from a pre-trained library according to which classifier had the best
accuracy. But of course there is no “free lunch”: with limited labeled training
data, it is also hard to even measure the accuracy of a classifier. What we re-
alized is that if many users are attempting to perform such a selection at the
same time, then this problem of selecting the best classifier from a large library
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is exactly analogous to that addressed by collaborative filtering techniques for
recommender systems, such as Netflix and Amazon.com! While any one user’s
measured classifier accuracies will be inaccurate, when considered jointly, there
are correlations between classifier accuracies across different tasks that collabo-
rative filtering methods can exploit to improve the classifier accuracy estimates
for individual tasks. We were able to show that it is possible in practice to
select a better classifier than by directly trying every option on the limited
training set.

That technique, termed “model recommendation”, can naturally be adapted
to web-scale, since it is built around collaborative filtering techniques that were
designed with web-scale data (e.g., the Netflix ratings database) in mind. Fur-
thermore, the formulation has a number of other benefits: it allows powerful
classifier techniques to be used; in fact, any type of underlying classification
machinery can be used, because the recommendation only uses the measured
ratings or accuracies of those classifiers, and does not need to know anything
about their underlying implementations. The work can be distributed: because
the most computationally expensive step (evaluating the classifiers) can be per-
formed by the users themselves in parallel. Additionally, since the users can
evaluate classifiers locally and only return the ratings, some measure of privacy
is preserved, since the raw samples (e.g., videos) do not need to be sent to the
recommendation system.

Although model recommendation might naturally be applied to banks of clas-
sifiers such as in exemplar SVMs [2] or Action Bank [3], the major limitation
of the technique is that in the original formulation it is only designed to rec-
ommend a single model or classifier from the library. This naturally raises the
question of how to extend the method to jointly recommend sets or ensembles
of classifiers, and in this paper we evaluate several alternatives for doing so. Our
key contribution in this paper is to demonstrate that the model recommenda-
tion framework can be extended to recommending sets of models, and that this
ensemble recommendation outperforms both an AdaBoost baseline and a direct
training baseline.

Fig. 1. We adopt the same illustrative example as [1] for visualization purposes. A
library of classifiers produced by training SVMs to detect walking, where each SVM
is trained only on samples from a narrow viewpoint, defined by its elevation θ and
mean to subject r (left). The accuracies of all 1600 classifiers on a training set can be
visualized as a heat map (right).
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To help visualize model recommendation and our extensions to it, throughout
the paper we use the illustrative example from [1], which is a scenario where the
problem is to select a set of classifiers to detect the action “walking” from a
fixed camera with an unknown vantage point. Since the camera is fixed, it can
be described in terms of its mean distance r to the subject and its angle from
the horizon θ (see Fig. 1). A library of 1600 “walking” classifiers is arranged
in a 40 × 40 polar grid of possible viewing locations, and each is trained from
synthetic data (rendered motion capture videos of people walking) generated for
its assigned viewing location. Then, given a small training set of data from a new
camera at an unknown viewing point, the goal is then to select a set of classifiers
from the library which when combined gives the best classification accuracy.

2 Related Work

This work combines our model recommendation technique [1] and boosting, and
is loosely related to multi-task learning. In particular, common multi-task learn-
ing techniques attempt to enforce sparsity in the selection of features [4,5], or
support vectors [6], or kernels [7], across multiple tasks in order to enforce the
sharing of some kind of information across tasks. Unlike these sparsity based
approaches, there is no explicit forced sharing of features in model recommen-
dation; indeed, it is possible to recommend a model for a target task that is
not shared with any other task. This distinction is important because multi-task
learning is known to fail when the tasks jointly learned are insufficiently related
to one another, and hence an open area of research in multi-task learning is how
to select which tasks to learn together [8].

Given the popularity of boosting, it has unsurprisingly been applied to multi-
task learning as well. These methods tend to follow the standard multi-task
approach of enforcing sparsity, such as in Chapelle et al . [9] where boosting
selects a common set of weights for weak learners across all tasks, and then
individual tasks are allowed to sparsely deviate from that common weighting.
Wang et al . [10] take a slightly different approach, where the sparsity is enforced
by learning a partitioning (clustering) of the tasks, where all the tasks in a cluster
are forced to share the same weights for the weak learners. Faddoul et al . [11]
take yet another approach, in which the weak learners are joint classifiers of two
tasks, and so the boosting naturally selects a compromise between two tasks.
However, the limitation of their approach is that it does not easily scale to more
than two tasks, and these techniques generally need closely related tasks.

3 Method

Since model recommendation is a new and unconventional technique, we start
with a brief functional overview of what it requires as input and what it ac-
complishes. Then, we briefly review the standard AdaBoost algorithm, and we
describe how it can be modified to incorporate model recommendation.
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(a) Camera view (b) Raw accura-
cies

(c) Predicted

Fig. 2. An illustration of the model recommendation technique [1]. A set of 1600
viewpoint-tuned classifiers are evaluated (rated) on a dataset of 12 labeled samples from
a particular camera viewpoint (Fig. 2(a)). Because there are only 12 training samples,
there is quantization noise in measuring the accuracy of the classifiers (Fig. 2(b)), since
the accuracies can only vary in increments of 1

12
. Model recommendation is able to take

these noisy estimates of the accuracies and predict improved estimates (Fig. 2(c)). We
adopt this display convention to aid comparison to [1].

3.1 Recommendation in Brief

Model recommendation is a method for selecting an item from a library, where
the goal is to return an item (“model”) which is likely to be rated highly for
a specific task. More formally, suppose there is some problem-specific rating
function r(cj , dk) which returns a numerical score rating item cj on task dk; if
the items in the library are classifiers and the tasks are labeled sets of samples,
then the rating function can be the accuracy of a given classifier on a dataset.

As a notational convenience we denote r(cj , dk) = rjk. In order to make
recommendations, a ratings matrix R (or “ratings store”) is needed; the entries
of this matrix are the ratings of items on different tasks, where Rj,k = rjk, which
is the rating of item j on task k.

Model recommendation takes a subset of ratings of items on a task, and uses
that subset of rated items along with the ratings store to predict the ratings
of other items. Functionally, supposing that A is a vector of item ratings for a
target task, then model recommendation returns a prediction of a given classifier
j’s rating on that task r′j = RecommendPredictAccuracy(cj , R, A). We perform
the prediction using the factorization method presented in [1].

Note that this “subset” of probe ratings might very well be the entire set of
classifiers. For example, in Fig. 2, all 1600 classifiers are used as probes on a
small training set of 12 samples, producing a very noisy heat map of accuracies.
When this full set of accuracies is fed into model recommendation, the returned
predicted accuracies are a de-noised version of the input.

3.2 Ensemble Recommendation Methods

Here we present four options for selecting classifier ensembles. The simplest, top-
k recommendation, just selects the top-k classifiers according to their predicted
accuracies from model recommendation. AdaBoost is an unmodified, standard
boosting algorithm. Recommendation boosting takes AdaBoost, but uses model
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recommendation to select the classifier at each iteration. Recommendation boost-
ing+ uses the same underlying mechanism as recommendation boosting, but af-
terwards combines its selection with the top-k selection to add more variation
to the selected set. Note that we use the boosting methods as feature selection
mechanisms and discard the final weights of the selected classifiers in favor of
simply training an SVM on the selection; this use of AdaBoost is common in
vision [12,13] and occasionally sees use in other domains [14,15].

Top k Recommendation. Given the predicted ratings r′ according to recom-
mendation, rather than selecting only the top one, we select the top k, where
k is the size of the desired set to be recommended. This is the obvious way of
recommending multiple classifiers, but the downside is that it can potentially
recommend a highly redundant set.

AdaBoost. Although the AdaBoost has been extended to more than two
classes, for simplicity in this paper we consider only a binary classification prob-
lem. The algorithm learns a classifier from a training set, where Xi is the ith
data sample in the training set of a target task, and yi ∈ {−1, 1} is the associated
binary label for that sample, and where n is the number of training samples.

AdaBoost is an iterative algorithm, where each iteration considers a different
weighted version of the training set; we denote the weight of data sample i in
iteration t by wit. Then, given a classifier fj, the weighted error of that classifier
at an iteration is given by WeightedErr(fj , W, X, y) =

∑
i I(fj(Xi) �=yi)·wit∑

i wit
, where

I(.) is an indicator function. The weighted accuracy of the classifier is simply
WeightedAccuracy(fj , W, X, y) = 1 − WeightedErr(.).

At each iteration the classifier with the lowest weighted error is selected, and
the weights modified to increase the weights of misclassified samples and decrease
the weights of correctly classified ones. The algorithm is given in Alg. 1.

Recommendation Boosting. We modify AdaBoost to incorporate recom-
mendation using the the key insight that boosting algorithms can be seen as
a series of tasks, and therefore model recommendation can be used to pick the
weak learner at each iteration of the algorithm

Recommendation boosting simply replaces the selection of the classifier with
the lowest weighted error with a model recommendation step. That is, instead
of using the weighted errors of the classifiers to directly select the classifier
for an iteration, the measured accuracies (along with a ratings matrix R of the
accuracies of classifiers in the library evaluated on other action recognition tasks)
are fed into model recommendation to predict the accuracies for the classifiers,
and the classifier with the highest predicted accuracy selected. This modified
algorithm is given in Alg. 2.
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Input : Classifiers F = {f1, f2, . . . , fj , . . .}
Input : Training-samples and labels X, y
Output: A selected set S ⊆ F
∀wi ∈W, wi ← 1

n
;

S ← {} ;
for t = 1, . . . , k do

st ← argminfj
WeightedErr(fj , W,X, y) ;

et ← WeightedErr(st, W, X, y) ;
αt ← 1

2
log 1−et

max(et,ε)
;

∀wi ∈W, wi ← wi · e−αt·sign(yi·st(Xi)) ;
W ← Normalize(W) ;
S ← S ∪ {st} ;

end

Algorithm 1. AdaBoost

Recommendation Boosting+ As explained in [16], eventually AdaBoost will
converge to a ‘limit cycle’ in which the same weak learners are cyclically selected.
If the number of training samples is small, this convergence can happen very
quickly. As a result, in the quantitative experiments performed later, AdaBoost
only selects a mean of 11 unique classifiers over 20 iterations, while recommen-
dation boosting only selects 10 unique classifiers over those same 20 iterations.

In recommendation boosting+ we add variety to the set of classifiers selected
by recommendation boosting– if recommendation boosting only selects b unique
classifiers, but a set of k is desired, then the remaining k−b classifiers are selected
as the k − b classifiers with the highest predicted accuracies according to model
recommendation.

4 Evaluation

We evaluate our alternatives on action recognition in two ways. First, we consider
a simplified qualitative example (Fig. 1) using synthetic data (rendered videos of
motion capture data using the same viewing angle setup as in [1], with histogram
of optical flow descriptors).

For quantitative results we consider an action recognition problem on the
UCF50 dataset [17] using limited training data (10.2 training samples on aver-
age, compared to the approximately 100 per action that are available when UCF
is evaluated as a single task). We use STIP [18] plus HOG3D [19] bag-of-words
histograms as our low-level representation; this is commonly used as the founda-
tion for action recognition systems and often performs similarly to more complex
approaches [20]. The UCF50 dataset is a difficult dataset of videos of various
actions harvested from YouTube; for this setup, we limit the amount of training
data by splitting the dataset into a number of tasks. UCF50 contains approxi-
mately 5500 videos, divided into 50 actions, with each action further subdivided
into groups of videos, where each group comprises a set of related videos. We
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Input : Classifiers F = {f1, f2, . . . , fj , . . .}
Input : Training-samples and labels X, y
Input : Ratings matrix R of classifier accuracies on other tasks
Output: A selected set S ⊆ F
∀wi ∈W, wi ← 1

n
;

S ← {} ;
for t = 1, . . . , k do

A = [WeightedAccuracy(fj , W, X, y) for fj ∈ F ] ;
st ← argmaxfj

RecommendPredictAccuracy(fj , R,A) ;

et ← WeightedErr(st, W, X, y) ;
αt ← 1

2
log 1−et

max(et,ε)
;

∀wi ∈W, wi ← wi · e−αt·sign(yi·st(Xi)) ;
W ← Normalize(W) ;
S ← S ∪ {st} ;

end

Algorithm 2. Recommendation Boosting

produce each task by merging 1-3 groups of the same action, dedicating 2/3 of
the video groups to training data, and the remaining 1/3 to testing data. We
augment each group with an equal number of negative samples drawn at random
from the other actions, so that each task is then a one vs. all binary classification
problem with an equal number of positive and negative samples (so that chance
is 50% accuracy). The mean number of training samples per task is 10.2, and
the mean number of testing samples 24.3. Each group may be used in multiple
training or test tasks (but there is no overlap between test and training).

We use the training groups to generate a library of 1000 classifiers trained on
different groups, and also to generate a ratings store of those 1000 classifiers rated
on 1000 tasks. Thus, the ratings store has size 1000×1000. Ideally, different data
would be used to train the classifier library and build the ratings store, as rating
a classifier against the same group from which it was trained results in an overly
optimistic accuracy (rating) and possibly distorts the computed factorization.
For testing, we use a set of 250 tasks with no videos or video groups in common
with the set used to generate the classifiers and store. This is the same general
setup as in [1], but randomized train/test partitions mean that results cannot be
exactly compared. However, model recommendation [1] can be compared to our
proposed ensemble recommendation by noting that ensemble recommendation
degenerates to model recommendation if a set of size one is to be recommended.

5 Results

Qualitative results for the viewing angle situation can be seen in Fig. 3. Note how
top-k recommendation chooses a very redundant set of classifiers, where all five
classifiers are tightly clustered around the predicted maximum. AdaBoost, on
the other hand, is confused by the spurious classifiers that appear to have 100%
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accuracy on the training set. Recommendation boosting picks a few classifiers
near the predicted maximum, but then spreads the remainder out for better
coverage of the region near the maximum. Thus the recommendation boosted
set is more likely to be robust to variations in the action.

Direct ratings Recommendation Boosting Recommendation Only AdaBoost

Fig. 3. A comparison of the selected classifiers according to top-k recommendation,
AdaBoost, and recommendation boosting. Top-k recommendation selects a highly re-
dundant set of classifiers, while AdaBoost is led astray by a few erroneously good
classifiers. Recommendation boosting selects a nice spread of classifiers.

i = 1 i = 2 i = 3 i = 4

Fig. 4. Progression of the classifiers selected by recommendation boosting; note how
each iteration’s reweighting of the training samples shifts the distribution of predicted
accuracies so that the selected classifiers do not all clump near one location, as in top-k
recommendation (see Fig. 3).

A visualization of how recommendation boosting selects its classifier each it-
eration can be seen in Fig. 4. At the first iteration, the selected classifier is the
same as the top recommended classifier, but then in subsequent iterations, as
misclassified samples are more strongly weighted, the distribution of classifier
ratings changes to promote the selection of classifiers other than those at the
original maximum. At each iteration the method is able to smooth over the ex-
tremely noisy measured accuracies for the iteration to produce a better estimate
of where the maximum accuracy is obtained for that iteration.

Quantitative results on the UCF50 dataset are shown in Fig. 5, where it can
be seen that recommendation boosting outperforms both AdaBoost and direct
training. Interestingly, the straightforward top-k recommendation method does
better than basic recommendation boosting, suggesting that for this evaluation
domain, redundancy in the classifier library is not as large a concern as expected.
It is likely that the 1000 classifier library samples the space of possible classifiers
so sparsely that there is too little redundancy in the classifiers to be detrimental.
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Top-k.

Fig. 5. Mean accuracy of the selected set of classifiers vs. the size of the selected set.
Top-k recommendation and recommendation boosting+ have the best performance,
with recommendation boosting+ having a slight edge at larger set sizes. The accuracy
obtained by directly training each task on the low-level STIP+HOG inputs is 77%.

For this experiment, the direct training baseline (in each task, directly train an
SVM on the input STIP+HOG bag-of-words histograms, rather than appealing
to the library) obtains an accuracy of 77%, which only AdaBoost fails to exceed.
Recommendation boosting+ exhibits a slight improvement over top-k selection
(this difference is statistically significant to p < 0.05 for set sizes ≥ 18).

All of the selection strategies show large gains at first and then quickly plateau,
indicating that they front-load their selections with the strongest classifiers. In-
deed, the difference between the recommendation variants largely manifests after
the first two selected classifiers.

6 Conclusions

In this paper we have evaluated several alternatives for extending model rec-
ommendation to recommending sets. Out of these alternatives, recommendation
boosting+ and top-k recommendation methods are the clear victors.

Between these two alternatives, however, the distinction is less clear. In terms
of quantitative performance, the two are very similar, with recommendation
boosting+ having a narrow edge at larger recommended set sizes. Furthermore,
qualitative results suggest that the top-k selection strategy should be prone to
selecting redundant classifiers if the classifier library contains them.
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