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Abstract. We propose an adaptive rendering approach for large-scale
skyline characterization and matching with applications to automated
geo-tagging of photos and images. Given an image, our system auto-
matically extracts the skyline and then matches it to a database of ref-
erence skylines extracted from rendered images using digital elevation
data (DEM). The sampling density of these rendering locations deter-
mines both the accuracy and the speed of skyline matching. The pro-
posed approach successfully combines global planning and local greedy
search strategies to select new rendering locations incrementally. We re-
port quantitative and qualitative results from synthesized and real ex-
periments, where we achieve a computational speedup of around 4X.

1 Introduction

Skylines, especially in mountainous areas, provide robust and often unique features
to characterize an area. Often by looking at the skyline in a photo, such as the half
dome in Yosemite, one can recognize the area where the photo was taken. However,
to recognize where a photo is taken over a large area of tens or hundreds thousands
of square kilometers is very difficult. Based on this observation and previous work
[1112] on skyline analysis, we developed a large-scale skyline characterization and
matching system for automated geo-tagging of photos and images.

Given an image, our system automatically extracts the skyline and then
matches it to a database of reference skylines extracted from digital elevation
data (DEM). The reference skylines are generated through rendering using DEM
at locations over the entire area of interest. The selection of these rendering lo-
cations determines both the accuracy and the speed of the skyline matching. In
addition, it determines the time needed to build the reference skyline database.

We can use a grid on the ground-plane as rendering locations — in this case the
distance between two adjacent grid locations is the sampling distance. The larger
the sampling distance is, the faster the rendering and the matching algorithms
run, but less accurate the skyline matching is. The smaller the sampling distance
is, the more accurate the matching is, but the slower the rendering and the
matching algorithms run. For example, skyline rendering and extraction over a
10,000 km? using 50-100 meters sampling distance can take months to complete.
On the other hand, if the sampling distance is large, photos taken close to a
mountain or inside a mountain, such as those taken on a hiking trail or a road
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Fig. 1. Dramatic skyline change caused by occlusions in complex mountainous terrain

passing through a mountain cannot be found. Fig. [Il depicts such an example
where two views that are separated by only 30 meters have very different skylines.

In this paper, we propose an adaptive rendering approach for optimal render-
ing location selection. By modeling both the rendering process and the skyline
matching process, our system can compute the set of optimal rendering loca-
tions based on the DEM and a pre-defined matching threshold. The viewpoint
selection is optimal in the sense that for a given matching accuracy, it requires
far fewer number of renderings than if the rendering locations were uniformly
sampled on a dense grid. In the example of Fig.[Ilabove, a good viewpoint selec-
tion algorithm should automatically render densely when close to the mountain
and coarsely when far away.

2 Related Work

In recent literature, there has been increasing interest in geo-localization of
ground-level imagery using visible skylines by matching them to a database of
known skyline shapes. For urban geo-localization, Srikumar et al.[3][2] focused
on matching omni-skylines from an upward facing camera to skyline renderings
generated on-the-fly from 3D building models of the scene. Our focus in this pa-
per is on geo-localization in natural terrain — in this case, the problem is much
harder since we have to match to a specific viewpoint (i.e. the query camera is
not upward facing) and we cannot pre-render on sparse road networks like in the
urban case. It therefore becomes important to devise a rendering scheme that
will render at the fewest number of viewpoints without reducing the localization
accuracy achievable.

Lionel et al.[I] recently addressed the problem of automatic photo-to-terrain
alignment with a goal of annotating mountain pictures. In their work, high reso-
lution elevation maps are rendered to create synthesized panoramic views which
are then matched to the mountain picture using a robust edge matching al-
gorithm. However, their approach assumes that the GPS location and FOV of
the query picture are known and then they solve for the unknown camera pose
relative to the terrain. In contrast, we would like to address the problem of
localization of the query picture itself by matching to a set of terrain render-
ings obtained from sampled viewpoints. To achieve this, we have to either sample
these viewpoints very densely everywhere or we can adopt an adaptive rendering
strategy to minimize the search required at the matching stage. In this paper,
we focus on such an approach.
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Bryan et al.[4] address the problem of automatically aligning historical archi-
tectural paintings with 3D models obtained from modern photographs. A key
step in their approach is the “view-sensitive retrieval” that aims to find a 3D
viewpoint that is sufficiently close to the painting viewpoint. To achieve this,
they sample a large (dense) pool of virtual viewpoints around the 3D model and
then use a matching procedure to retrieve a small set of nearby matching can-
didate viewpoints. In this paper, we propose an approach to allow a non-dense
rendering of the 3D scene for query localization in the context of natural terrain
where dense sampling quickly becomes a computational bottleneck.

There has been some work in the literature on efficient rendering of large
terrains. However, the majority of this work has focused on the graphics aspect of
rendering including adaptive means to enable faster Google-Earth like renderings
served to an end-user. For example, Raphael el al.[5l6] describe a generic data
structure to adaptively serve data to the client rendering system and to improve
the database loading and rendering speeds independent of the database size.
Similarly, a hardware accelerated terrain rendering approach is outlined in [7].
In this paper, we assume that a terrain rendering algorithm is available to us as
a black-box and we can use it to render the terrain at any specified location and
viewpoint.

3 Skyline Rendering and Matching

In this section, we briefly introduce our skyline rendering and matching algo-
rithms. In skyline rendering, the system takes an area of geo-localized DEM
data as input. A ground-level camera location inside this area is specified along
with its intrinsic and extrinsic parameters. The system then renders the DEM
into a depth image, which is then used to extract a skyline corresponding to the
specified viewpoint e.g. Fig.

Given all the rendered skylines, the system extracts features from each of
them and saves them in a database for future matching purposes. In feature
extraction, a skyline is first approximated by polylines and then the end-points
of the line-segments composing these polylines are used as feature points.

Given a query image like in Fig. Bl we use a skyline extraction algorithm [2]
to extract the skyline. The polyline approximation-based algorithm described
above is then used to extract the query skyline features. For each extracted key
feature from the query skyline, the matching process finds a key feature from the
rendered skyline that best matches it. The matching score between a keypoint
pair is computed as the Chamfer distance between the local skylines centered at
these keypoints. This establishes a correspondence between the keypoints of the
two skylines following which RANSAC is used to find inliers corresponding to
an affine transformation between the two skylines. The overall matching score
between the two skylines is computed as the Euclidean distance between the
skylines after warping with the computed affine transformation.
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Fig. 2. Example of a rendered depth image and its extracted skyline. To extract the
skyline, the system looks at the depth image from top to bottom in each column, and
labels as skyline pixel the first pixel with a non-infinite depth.
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Mountain Boundary

x

Fig. 3. Example of a query image and its skyline. The contour of the trees are false sky-
line pixels automatically computed from the skyline extraction model — the RANSAC-
based matching process labels them correctly as outliers.

4 Problem Formulation

We assume that we start the adaptive rendering algorithm from a set of pre-
rendered viewpoints which are on a uniform but coarsely sampled grid, e.g. at 1
Km spacing. The goal of adaptive rendering is to automatically predict optimal
viewpoints ¢ (with spacing finer than 1 Km) at which the rendered skyline looks
sufficiently different from existing renderings of the same 3D feature (mountain).
To achieve this goal, we approach the viewpoint selection process as an incre-
mental algorithm that adds new viewpoints to the set of existing renderings, but
without rendering the new viewpoints first. Around each already rendered skyline
from a viewpoint ¢y, we can explicitly compute a “tolerance area” within which
the skyline projection from another candidate viewpoint ¢ looks similar to cg.
This similarity is defined by an image projection distance between the skylines at
¢ and cg. Thus, for a given threshold on the similarity metric, we can estimate
the tolerance area around each existing rendering. Intuitively, the tolerance area
specifies the extent within which no additional rendering is required. Thus, for
an existing viewpoint inside a complex terrain, we can expect to obtain a much
smaller tolerance area than for a simple flat terrain. The tolerance area compu-
tation algorithm is described in Sec. Given the tolerance areas (and their
shape) for each of the existing renderings in our set, in Sec. 3] we propose and
compare several novel planning strategies to determine the next-best viewpoint
that avoids overlap with the existing tolerance areas.
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4.1 Camera Configuration

We assume a distortion-free ideal pin-hole camera model for the rendering cam-
era with square pixels and a camera center coincident with the image center.
This leads to an ideal camera intrinsic matrix. For our experiments, we cover
the 360 degree view surrounding each candidate rendering location using four
camera viewpoints v1,...,vs, each with a horizontal field-of-view of § = 90 de-
grees and image resolution of w = h = 640. The optical axis for each viewpoint
v; can be described by a pre-defined rotation matrix R; which fixes a single
look-at direction for this viewpoint independent of the rendering location.

In our framework, we represent the 3D points corresponding to the skylines
(mountain silhouettes) in world-coordinates by variable X; € ®3. The skyline
projection at any viewpoint ¢ is then given by:

I = PuX; = K[R|t,] X;

where P, = K[R|t;] is the camera projection matrix for the camera located at
displacement t; w.r.t the world coordinate system origin. The rotation R is one
of Ry,..., Ry depending on the viewpoint’s look-at direction.

In the following, we will follow the convention that the world coordinate sys-
tem is defined with XZ as the ground-plane and the Y-axis pointing upwards.

4.2 Tolerance Area Computation

The squared difference between projected skylines Iy and Iy (at locations ¢g and
¢k, respectively) can serve as a simple error metric for the estimation of tolerance
area. However, the skyline matching algorithm (Sec. B) accounts for any small
distortions of the skyline by an affine transformation model. It therefore makes
sense to measure the projection error between skylines visible at two viewpoints
after allowing for an affine transformation. Fig. [ illustrates an example of two
projections of a synthetic skyline where the distance between the original skylines
does not correctly reflect the difference between their shape. Warping one of the
skylines using an affine transformation, however, leads to a much more accurate
error metric.

Estimating affine transformation between two images has been studied ex-
tensively. Most techniques rely on first applying RANSAC [8] to determine the
corresponding pixels and then to recover their geometrical relationships by re-
jecting outliers. Here, we can apply a similar approach but the computation cost
is high considering the huge number of such pair comparisons required in the
system.

We propose an analytical approximation approach to compute the affine trans-
formation between the two cameras given their projection matrix. It has merits of
requiring much less computation (since it is analytical) while preserving the ac-
curacy compared with the traditional correspondence-based estimation method.
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Fig. 4. Example of skyline projection improvement using an affine transformation
model from a synthetic experiment. The green and blue curves are two candidate
skylines; the red curve is the green curve after warping by an affine transformation
that best aligns the candidate skylines. The direct Euclidean distance between the
green and blue skylines is around 26 pixels. The corresponding distance between the
red and blue curves is 3.6, which is a more accurate estimate of the difference between
the skyline shapes than the direct distance.

Affine Transformation. Given two projection matrices P = K;[R1|T1] and Py =
K3[R3|T5], without loss of generality, we can assume the first camera to be in
a canonical form such that Ry = I,T1 = 0. Instead of selecting all four viewing
directions w1, ...,vs simultaneously for each location, we apply the adaptive
rendering selection algorithm to viewpoints facing each direction individually —
implying Re = R;. Further, for our problem, Ky = K7 = K. If a 3D point X
is visible to both cameras, its projection can be expressed by U; = KX and
Uy = KX + KT, where T = Ty — T} . By substituting X using K ~'U;, we have

Up=U1+ KT (1)

By representing U; in homogeneous coordinates U1, K = [k1, ko, k3]’ and writing
the above equation in a matrix formulation, we have

ksX 0 kT g
Up=| 0 ksX  koT X (2)
0 0 ksX+ksT 1

If we represent Us in homogeneous coordinates U}, we have

Us
Uy = ks X + k3T =AU; (3)
ks X 0 kT
ks X +ksT ks X +ksT
— 3 8 3 ks X 3 chT3 U{ (4)

ks X +ksT ksX+ksT
0 0 1

In the above equation, we should note that k3 X is the displacement between
the 3D point X and the reference (P;) camera center, k3T is the displacement
between the 3D point X and the candidate (P:) camera center. k3 X will be
different for each 3D point located on the skyline if their Z-coordinates are
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different. Building a per-point affine transformation generates the exact trans-
formation between U; and Us, but it is computationally expensive given the
large number of 3D points on skylines. Instead, our system chooses a z-value
that is representative of the skyline such as the mean or median distance of the
skyline points.

Given the above formulation, we now outline our tolerance area computation
algorithm: We sample a 10 x 10 neighborhood around the reference location
co- At each sampled location, we compute the reprojection error of the skylines
between the reference and the sampled location using EqH — if this error is
within a given threshold, the sampled location is included in the tolerance area
(corresponding to the reference location ¢g), otherwise it is excluded.

4.3 Optimal Viewpoint Planning and Selection

Without loss of generality, we assume that we have already computed the toler-
ance areas for the four corners of a 1 Km x 1 Km square on the terrain using the
algorithm in the previous section. The next step in our pipeline is to select a new
location at which the renderer should render so as to cover maximum uncovered
ground. In the following, we describe five different strategies to plan the next
viewpoint. In the experiments section, we will discuss how each of these strate-
gies performed on our simulation data followed by results of the best performing
strategy on real data.

Random Optimistic Viewpoint (ROV). ROV randomly chooses a number
of candidate viewpoint locations from the uncovered area. Their tolerance area
are computed and ranked based on their overlap with the uncovered area. ROV
selects the location with the highest coverage and performs rendering at the se-
lected location. This process will iterate until the coverage reaches an acceptable
number, e.g. 90% or 98% used in the experiments.

Approximated Random Optimistic Viewpoint (AROV). The tolerance
area computation in ROV is expensive since it requires projecting each 3D sky-
line point at multiple candidate locations (please refer to the computation cost
in the last row of Table[]). To make this process more efficient, AROV interpo-
lates a candidate viewpoint’s tolerance area linearly from its nearest rendered
viewpoints whose tolerance areas are already computed.

Hierarchy Optimistic Viewpoint (HOV). Different from ROV and AROV,
HOV searches optimal viewpoint using a coarse to fine process. At each level,
AROV is used to select the next-best viewpoint; when coverage is satisfied at a
level, HOV will move to the next finer level.

Shape-Assisted Optimistic Viewpoint (SOV). SOV investigates how the
shape of the tolerance area may be used in assisting optimal viewpoint selection.
From ROV, AROV and HOV, we noticed that most of tolerance areas can be
best described using 2D ellipses. Thus, instead of randomly picking the candidate
locations, in SOV we pack them along the minor axes of the ellipse-like tolerance
areas so as to achieve a tighter packing over the uncovered area.
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Line Planning Optimistic Viewpoint (LPOV). SOV uses independent tol-
erance areas to select the optimal viewpoint and this strategy may not be optimal
for covering the whole area. In order to include more global information in se-
lecting an optimal viewpoint, LPOV pre-locates optimal viewpoints on each line
joining a pair of sampled viewpoints. The location of a candidate viewpoint is
predicted as a convex combination of the locations of the endpoints; the weights
in this convex combination are proportional to the size of each end viewpoint’s
tolerance area. LPOV encourages sparse optimal viewpoint selection in flat areas
since the tolerance areas of the rendered locations are larger in comparison with
the rendered viewpoints in clutter areas, such as inside mountains. This line-
wise planning and local greedy combined approach contributes to less number
of rendered viewpoints with a fast coverage.

5 Experimental Results

This section exhibits our quantitative and qualitative experimental results on
i) a synthetic dataset generated by sampling skylines from a parametric model,
and ii) a DEM dataset covering around 50 km? on a mountainous terrain.

5.1 Simulation Results

We evaluated the five viewpoint selection techniques described in Sec. [£.3] on a
synthetic dataset consisting of an area with 100x 100 potential (dense) viewpoint
locations. All the experiments start with four rendered viewpoints at the corners
initially. We evaluate the performance of the algorithms using two criteria:

(A) Total number of viewpoints selected for rendering and,
(B) Size of overlapped area — computed as the number of times the same view-
point location is included in any of the tolerance areas.

The goal of a good adaptive rendering algorithm is to cover as much area as
possible using minimal number of rendered viewpoints where the coverage is
defined as the union of tolerance areas from all rendered viewpoints. Thus, our
objective is to achieve smaller numbers for both criteria (A) and (B).

Table{Il reports the results of all the methods for the 100x 100 grid using the
convention x/y where = represents the value of criterion (A) and y the value
of criterion (B). We include results from experiments with skylines of different
complexity with the reprojection error evaluated with and without the affine
transformation model proposed in this paper.

We can conclude the following from the simulation results:

1. Overall, the affine transformation model requires fewer number of renderings,
but produces more overlaps, as shown by a comparison between row 1 and
rows 2,3.

2. Overall, the number of selected viewpoints is proportional to the complexity
of the skylines as observed by comparing row 2 and row 3.
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Table 1. Simulation results for viewpoint planning methods using criteria (A)/(B)

Parameters ROV AROV HOV SOV LPOV
Non-Affine (p=1, t=15, c=90% r=0) 240/1545 286/1636 324/1210 275/1941 325/1515
Affine (p=1, t=3, ¢=98% r=0) 81/6664 80/5824 98/6723 100/10043 86/5489
Affine (p=2, t=3, ¢=98%, r=30) 239/9028 217/6991 252/7226 245/9148 191/5943
Computation Cost (rounded) 45mins  10mins  5mins 30mins 10mins

p: number of peaks on the skyline; t: reprojection error threshold in pixels
r: skyline rotation angle; r=0 represents a skyline that is parallel to the camera plane.
c: coverage percentage at which the adaptive rendering process is terminated.

Table 2. Query geo-localization accuracy results with and without adaptive rendering

Rendering Resolution/Number of renderings
1024m /182 512m/665 256m /2662 128m /10648 Adaptive/2800

Close to mountain 1906m 800m 379m 64m 127m
Medium Range 1609m 703m 402m 102m 98m
Far from mountain 1247m 604m 453m 202m 125m

3. SOV consistently produces the largest size of overlaps which shows that
locally optimal algorithms do not achieve good results.

4. ROV requires the highest computation cost. Other algorithms require less
computational since the tolerance area is approximated using nearest neigh-
bors. Among them, HOV requires the least computation because a fixed
pattern of optimal viewpoint selection is used.

5. LPOV obtains the best performance in the test using skylines with two
peaks. This suggests that a planning strategy with a local greedy objective
may give good results.

5.2 Experiments Using DEM Data

For experiments with real data, we used an area approximately 5kmx10km in
size in a moutainous terrain. We select the best performing viewpoint selection
method from the simulation (LPOV) for experiments with real data and compare
its performance with a hierarchical uniform approach. To characterize the perfor-
mance of the generated renderings using either approach, we use a set of query
images (with known ground-truth geo-location information) shown in Fig. Bland
match each of them to the generated renderings. We selected three groups of query
images: close to the mountain (Fig. Bl column-1), medium range from the moun-
tain (Fig. [l column-2) and far from the mountain (Fig. [l column-3). We measure
the distance between the location of the best matching rendering and the known
ground-truth location of the query to showcase the improvement in geo-location
using renderings from our adaptive algorithm versus renderings on a uniform grid
at four different levels of resolution (1024m, 512m, 256m and 128m).
Fig.[6lshows an example of the viewpoints selected from the proposed adaptive
rendering approach with two headings at 0 and 90 degrees (similar results are
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Fig.5. 6 query images used in all the experiments, along with their geo-locations on
the overhead view

mountain

Valley o c Flat Area

Mountain

Dense Rendering 10045
Viewpoints (green)

Fig. 6. Left: Example of viewpoints selected from the proposed adaptive rendering
approach for heading 0 and 90 degrees. Looking at the terrain area shown on the top,
we can see that a large number of viewpoints are selected in the valleys and areas with
clutter while a fewer number of viewpoints are selected by our algorithm in flat areas
of the terrain. It is also interesting to see that different heading directions will result in
different adaptive rendering results given the terrain structure. Right: Result of query
3976. In uniform viewpoint sampling, a 1024m spacing generates best geo-location
around 1900m away, while a 128m spacing gives the best geo-localization around 64m
away. Adaptive rendering has an error of 174m, but with a 400% system performance
improvement. The inlay on the bottom right illustrates the skyline matching result for
this query. The green curve indicates the skyline in the query image. The red curve
shows the skyline in the rendered image.

obtained from the other two headings). We can see that dense viewpoint sampling
is required in cluttered terrain areas such as valley and trails. Incidentally, these
areas are critical to skyline matching because occlusions introduce a large number
of mismatches.

Skyline matching tests are performed for query images shown in Fig.[Al One of
the geo-localization results is shown in Fig.[6l The numerical results are reported
in Table

Fig. [0 highlights the important fact that using the proposed adaptive ren-
dering algorith, one can achieve a given matching accuracy using only a small
fraction of the number of renderings required by a uniform fixed renderer.
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Fig. 7. Comparison of skyline matching accuracy using adaptive rendering and uni-
form viewpoint sampling at multiple resolution levels. In terms of accuracy, adaptive
rendering leads to an improvement of almost 200%. It has a mean error of 200m with
the number of renderings around 2500 while the error increases to 400m with the same
number of renderings in the case uniform sampling. In terms of the system perfor-
mance, adaptive rendering achieves 300% improvement as uniform sampling requires
more than 7000 renderings to bring the mean error down to 200m.

6 Conclusion

We have proposed an adaptive rendering based approach to enhance geo-
localization from 2D skyline images. Using affinity error metric, viewpoint opti-
mality and line-wise planning presented in this paper, our method can success-
fully reduce overall 4X computational cost while preserving the geo-localization
accuracy compared with a uniform sampling approach. In the near future, we
would like to explore testing on a larger area. We expect to see even further
improvements since terrain surfaces in large areas will likely contain more scat-
tered complex areas where a uniform rendering solution will be infeasible for a
desired level of geo-localization accuracy.
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